Science.gov

Sample records for 3d cartesian tracking

  1. SACR ADVance 3-D Cartesian Cloud Cover (SACR-ADV-3D3C) product

    DOE Data Explorer

    Meng Wang, Tami Toto, Eugene Clothiaux, Katia Lamer, Mariko Oue

    2017-03-08

    SACR-ADV-3D3C remaps the outputs of SACRCORR for cross-wind range-height indicator (CW-RHI) scans to a Cartesian grid and reports reflectivity CFAD and best estimate domain averaged cloud fraction. The final output is a single NetCDF file containing all aforementioned corrected radar moments remapped on a 3-D Cartesian grid, the SACR reflectivity CFAD, a profile of best estimate cloud fraction, a profile of maximum observable x-domain size (xmax), a profile time to horizontal distance estimate and a profile of minimum observable reflectivity (dBZmin).

  2. Parallel Cartesian grid refinement for 3D complex flow simulations

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2013-11-01

    A second order accurate method for discretizing the Navier-Stokes equations on 3D unstructured Cartesian grids is presented. Although the grid generator is based on the oct-tree hierarchical method, fully unstructured data-structure is adopted enabling robust calculations for incompressible flows, avoiding both the need of synchronization of the solution between different levels of refinement and usage of prolongation/restriction operators. The current solver implements a hybrid staggered/non-staggered grid layout, employing the implicit fractional step method to satisfy the continuity equation. The pressure-Poisson equation is discretized by using a novel second order fully implicit scheme for unstructured Cartesian grids and solved using an efficient Krylov subspace solver. The momentum equation is also discretized with second order accuracy and the high performance Newton-Krylov method is used for integrating them in time. Neumann and Dirichlet conditions are used to validate the Poisson solver against analytical functions and grid refinement results to a significant reduction of the solution error. The effectiveness of the fractional step method results in the stability of the overall algorithm and enables the performance of accurate multi-resolution real life simulations. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482.

  3. The 3D Euler solutions using automated Cartesian grid generation

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.

    1993-01-01

    Viewgraphs on 3-dimensional Euler solutions using automated Cartesian grid generation are presented. Topics covered include: computational fluid dynamics (CFD) and the design cycle; Cartesian grid strategy; structured body fit; grid generation; prolate spheroid; and ONERA M6 wing.

  4. Shared Memory Parallelism for 3D Cartesian Discrete Ordinates Solver

    NASA Astrophysics Data System (ADS)

    Moustafa, Salli; Dutka-Malen, Ivan; Plagne, Laurent; Ponçot, Angélique; Ramet, Pierre

    2014-06-01

    This paper describes the design and the performance of DOMINO, a 3D Cartesian SN solver that implements two nested levels of parallelism (multicore+SIMD) on shared memory computation nodes. DOMINO is written in C++, a multi-paradigm programming language that enables the use of powerful and generic parallel programming tools such as Intel TBB and Eigen. These two libraries allow us to combine multi-thread parallelism with vector operations in an efficient and yet portable way. As a result, DOMINO can exploit the full power of modern multi-core processors and is able to tackle very large simulations, that usually require large HPC clusters, using a single computing node. For example, DOMINO solves a 3D full core PWR eigenvalue problem involving 26 energy groups, 288 angular directions (S16), 46 × 106 spatial cells and 1 × 1012 DoFs within 11 hours on a single 32-core SMP node. This represents a sustained performance of 235 GFlops and 40:74% of the SMP node peak performance for the DOMINO sweep implementation. The very high Flops/Watt ratio of DOMINO makes it a very interesting building block for a future many-nodes nuclear simulation tool.

  5. Development and Applications of 3D Cartesian CFD Technology

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Berger, Marsha J.; VanDalsem, William (Technical Monitor)

    1994-01-01

    The urgent need for dramatic reductions in aircraft design cycle time is focusing scrutiny upon all aspects of computational fluid dynamics (CFD). These reductions will most likely come not from increased reliance upon user-interactive (and therefore time-expensive) methods, but instead from methods that can be fully automated and incorporated into 'black box' solutions. In comparison with tetrahedral methods, three-dimensional Cartesian grid approaches are in relative infancy, but initial experiences with automated Cartesian techniques are quite promising. Our research is targeted at furthering the development of Cartesian methods so that they can become key elements of a completely automatic grid generation/flow solution procedure applicable to the Euler analysis of complex aircraft geometries.

  6. 3D automatic Cartesian grid generation for Euler flows

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.

    1993-01-01

    We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.

  7. 3D automatic Cartesian grid generation for Euler flows

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Enomoto, Francis Y.; Berger, Marsha J.

    1993-01-01

    We describe a Cartesian grid strategy for the study of three dimensional inviscid flows about arbitrary geometries that uses both conventional and CAD/CAM surface geometry databases. Initial applications of the technique are presented. The elimination of the body-fitted constraint allows the grid generation process to be automated, significantly reducing the time and effort required to develop suitable computational grids for inviscid flowfield simulations.

  8. Free breathing whole-heart 3D CINE MRI with self-gated Cartesian trajectory.

    PubMed

    Usman, M; Ruijsink, B; Nazir, M S; Cruz, G; Prieto, C

    2017-05-01

    To present a method that uses a novel free-running self-gated acquisition to achieve isotropic resolution in whole heart 3D Cartesian cardiac CINE MRI. 3D cardiac CINE MRI using navigator gating results in long acquisition times. Recently, several frameworks based on self-gated non-Cartesian trajectories have been proposed to accelerate this acquisition. However, non-Cartesian reconstructions are computationally expensive due to gridding, particularly in 3D. In this work, we propose a novel highly efficient self-gated Cartesian approach for 3D cardiac CINE MRI. Acquisition is performed using CArtesian trajectory with Spiral PRofile ordering and Tiny golden angle step for eddy current reduction (so called here CASPR-Tiger). Data is acquired continuously under free breathing (retrospective ECG gating, no preparation pulses interruption) for 4-5min and 4D whole-heart volumes (3D+cardiac phases) with isotropic spatial resolution are reconstructed from all available data using a soft gating technique combined with temporal total variation (TV) constrained iterative SENSE reconstruction. For data acquired on eight healthy subjects and three patients, the reconstructed images using the proposed method had good contrast and spatio-temporal variations, correctly recovering diastolic and systolic cardiac phases. Non-significant differences (P>0.05) were observed in cardiac functional measurements obtained with proposed 3D approach and gold standard 2D multi-slice breath-hold acquisition. The proposed approach enables isotropic 3D whole heart Cartesian cardiac CINE MRI in 4 to 5min free breathing acquisition. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  9. Development and application of a 3D Cartesian grid Euler method

    NASA Technical Reports Server (NTRS)

    Melton, John E.; Aftosmis, Michael J.; Berger, Marsha J.; Wong, Michael D.

    1995-01-01

    This report describes recent progress in the development and application of 3D Cartesian grid generation and Euler flow solution techniques. Improvements to flow field grid generation algorithms, geometry representations, and geometry refinement criteria are presented, including details of a procedure for correctly identifying and resolving extremely thin surface features. An initial implementation of automatic flow field refinement is also presented. Results for several 3D multi-component configurations are provided and discussed.

  10. Single-breath-hold 3-D CINE imaging of the left ventricle using Cartesian sampling.

    PubMed

    Wetzl, Jens; Schmidt, Michaela; Pontana, François; Longère, Benjamin; Lugauer, Felix; Maier, Andreas; Hornegger, Joachim; Forman, Christoph

    2017-05-26

    Our objectives were to evaluate a single-breath-hold approach for Cartesian 3-D CINE imaging of the left ventricle with a nearly isotropic resolution of [Formula: see text] and a breath-hold duration of [Formula: see text]19 s against a standard stack of 2-D CINE slices acquired in multiple breath-holds. Validation is performed with data sets from ten healthy volunteers. A Cartesian sampling pattern based on the spiral phyllotaxis and a compressed sensing reconstruction method are proposed to allow 3-D CINE imaging with high acceleration factors. The fully integrated reconstruction uses multiple graphics processing units to speed up the reconstruction. The 2-D CINE and 3-D CINE are compared based on ventricular function parameters, contrast-to-noise ratio and edge sharpness measurements. Visual comparisons of corresponding short-axis slices of 2-D and 3-D CINE show an excellent match, while 3-D CINE also allows reformatting to other orientations. Ventricular function parameters do not significantly differ from values based on 2-D CINE imaging. Reconstruction times are below 4 min. We demonstrate single-breath-hold 3-D CINE imaging in volunteers and three example patient cases, which features fast reconstruction and allows reformatting to arbitrary orientations.

  11. Making Tracks on Mars 3-D

    NASA Image and Video Library

    2004-08-12

    NASA Mars Exploration Rover Spirit has been making tracks on Mars for seven months now, well beyond its original 90-day mission, when it reached Columbia Hills. 3D glasses are necessary to view this image.

  12. Rapid compressed sensing reconstruction of 3D non-Cartesian MRI.

    PubMed

    Baron, Corey A; Dwork, Nicholas; Pauly, John M; Nishimura, Dwight G

    2017-09-23

    Conventional non-Cartesian compressed sensing requires multiple nonuniform Fourier transforms every iteration, which is computationally expensive. Accordingly, time-consuming reconstructions have slowed the adoption of undersampled 3D non-Cartesian acquisitions into clinical protocols. In this work we investigate several approaches to minimize reconstruction times without sacrificing accuracy. The reconstruction problem can be reformatted to exploit the Toeplitz structure of matrices that are evaluated every iteration, but it requires larger oversampling than what is strictly required by nonuniform Fourier transforms. Accordingly, we investigate relative speeds of the two approaches for various nonuniform Fourier transform kernel sizes and oversampling for both GPU and CPU implementations. Second, we introduce a method to minimize matrix sizes by estimating the image support. Finally, density compensation weights have been used as a preconditioning matrix to improve convergence, but this increases noise. We propose a more general approach to preconditioning that allows a trade-off between accuracy and convergence speed. When using a GPU, the Toeplitz approach was faster for all practical parameters. Second, it was found that properly accounting for image support can prevent aliasing errors with minimal impact on reconstruction time. Third, the proposed preconditioning scheme improved convergence rates by an order of magnitude with negligible impact on noise. With the proposed methods, 3D non-Cartesian compressed sensing with clinically relevant reconstruction times (<2 min) is feasible using practical computer resources. Magn Reson Med, 2017. © 2017 International Society for Magnetic Resonance in Medicine. © 2017 International Society for Magnetic Resonance in Medicine.

  13. 3-D model-based vehicle tracking.

    PubMed

    Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J

    2005-10-01

    This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.

  14. Tensor decomposition in electronic structure calculations on 3D Cartesian grids

    SciTech Connect

    Khoromskij, B.N. Khoromskaia, V.; Chinnamsetty, S.R.; Flad, H.-J.

    2009-09-01

    In this paper, we investigate a novel approach based on the combination of Tucker-type and canonical tensor decomposition techniques for the efficient numerical approximation of functions and operators in electronic structure calculations. In particular, we study applicability of tensor approximations for the numerical solution of Hartree-Fock and Kohn-Sham equations on 3D Cartesian grids. We show that the orthogonal Tucker-type tensor approximation of electron density and Hartree potential of simple molecules leads to low tensor rank representations. This enables an efficient tensor-product convolution scheme for the computation of the Hartree potential using a collocation-type approximation via piecewise constant basis functions on a uniform nxnxn grid. Combined with the Richardson extrapolation, our approach exhibits O(h{sup 3}) convergence in the grid-size h=O(n{sup -1}). Moreover, this requires O(3rn+r{sup 3}) storage, where r denotes the Tucker rank of the electron density with r=O(logn), almost uniformly in n. For example, calculations of the Coulomb matrix and the Hartree-Fock energy for the CH{sub 4} molecule, with a pseudopotential on the C atom, achieved accuracies of the order of 10{sup -6} hartree with a grid-size n of several hundreds. Since the tensor-product convolution in 3D is performed via 1D convolution transforms, our scheme markedly outperforms the 3D-FFT in both the computing time and storage requirements.

  15. Tracking earthquake source evolution in 3-D

    NASA Astrophysics Data System (ADS)

    Kennett, B. L. N.; Gorbatov, A.; Spiliopoulos, S.

    2014-08-01

    Starting from the hypocentre, the point of initiation of seismic energy, we seek to estimate the subsequent trajectory of the points of emission of high-frequency energy in 3-D, which we term the `evocentres'. We track these evocentres as a function of time by energy stacking for putative points on a 3-D grid around the hypocentre that is expanded as time progresses, selecting the location of maximum energy release as a function of time. The spatial resolution in the neighbourhood of a target point can be simply estimated by spatial mapping using the properties of isochrons from the stations. The mapping of a seismogram segment to space is by inverse slowness, and thus more distant stations have a broader spatial contribution. As in hypocentral estimation, the inclusion of a wide azimuthal distribution of stations significantly enhances 3-D capability. We illustrate this approach to tracking source evolution in 3-D by considering two major earthquakes, the 2007 Mw 8.1 Solomons islands event that ruptured across a plate boundary and the 2013 Mw 8.3 event 610 km beneath the Sea of Okhotsk. In each case we are able to provide estimates of the evolution of high-frequency energy that tally well with alternative schemes, but also to provide information on the 3-D characteristics that is not available from backprojection from distant networks. We are able to demonstrate that the major characteristics of event rupture can be captured using just a few azimuthally distributed stations, which opens the opportunity for the approach to be used in a rapid mode immediately after a major event to provide guidance for, for example tsunami warning for megathrust events.

  16. Unstructured Cartesian refinement with sharp interface immersed boundary method for 3D unsteady incompressible flows

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Chawdhary, Saurabh; Sotiropoulos, Fotis

    2016-11-01

    A novel numerical method is developed for solving the 3D, unsteady, incompressible Navier-Stokes equations on locally refined fully unstructured Cartesian grids in domains with arbitrarily complex immersed boundaries. Owing to the utilization of the fractional step method on an unstructured Cartesian hybrid staggered/non-staggered grid layout, flux mismatch and pressure discontinuity issues are avoided and the divergence free constraint is inherently satisfied to machine zero. Auxiliary/hanging nodes are used to facilitate the discretization of the governing equations. The second-order accuracy of the solver is ensured by using multi-dimension Lagrange interpolation operators and appropriate differencing schemes at the interface of regions with different levels of refinement. The sharp interface immersed boundary method is augmented with local near-boundary refinement to handle arbitrarily complex boundaries. The discrete momentum equation is solved with the matrix free Newton-Krylov method and the Krylov-subspace method is employed to solve the Poisson equation. The second-order accuracy of the proposed method on unstructured Cartesian grids is demonstrated by solving the Poisson equation with a known analytical solution. A number of three-dimensional laminar flow simulations of increasing complexity illustrate the ability of the method to handle flows across a range of Reynolds numbers and flow regimes. Laminar steady and unsteady flows past a sphere and the oblique vortex shedding from a circular cylinder mounted between two end walls demonstrate the accuracy, the efficiency and the smooth transition of scales and coherent structures across refinement levels. Large-eddy simulation (LES) past a miniature wind turbine rotor, parameterized using the actuator line approach, indicates the ability of the fully unstructured solver to simulate complex turbulent flows. Finally, a geometry resolving LES of turbulent flow past a complete hydrokinetic turbine illustrates

  17. Cooperative Wall-climbing Robots in 3D Environments for Surveillance and Target Tracking

    DTIC Science & Technology

    2009-02-08

    distribution of impeller vanes, volume of the chamber, and sealing effect , etc. Fig. 5 and 6 show some exemplary simulation results. In paper [11], we...Environments for Surveillance and Target Tracking 11 multiple nonholonomic mobile robots using Cartesian coordinates. Based on the special feature...gamma-ray or x-ray cargo inspection system. Three-dimensional (3D) measurements of the objects inside a cargo can be obtained by effectively

  18. 3D Tracking via Shoe Sensing

    PubMed Central

    Li, Fangmin; Liu, Guo; Liu, Jian; Chen, Xiaochuang; Ma, Xiaolin

    2016-01-01

    Most location-based services are based on a global positioning system (GPS), which only works well in outdoor environments. Compared to outdoor environments, indoor localization has created more buzz in recent years as people spent most of their time indoors working at offices and shopping at malls, etc. Existing solutions mainly rely on inertial sensors (i.e., accelerometer and gyroscope) embedded in mobile devices, which are usually not accurate enough to be useful due to the mobile devices’ random movements while people are walking. In this paper, we propose the use of shoe sensing (i.e., sensors attached to shoes) to achieve 3D indoor positioning. Specifically, a short-time energy-based approach is used to extract the gait pattern. Moreover, in order to improve the accuracy of vertical distance estimation while the person is climbing upstairs, a state classification is designed to distinguish the walking status including plane motion (i.e., normal walking and jogging horizontally), walking upstairs, and walking downstairs. Furthermore, we also provide a mechanism to reduce the vertical distance accumulation error. Experimental results show that we can achieve nearly 100% accuracy when extracting gait patterns from walking/jogging with a low-cost shoe sensor, and can also achieve 3D indoor real-time positioning with high accuracy. PMID:27801839

  19. Electrically tunable lens speeds up 3D orbital tracking

    PubMed Central

    Annibale, Paolo; Dvornikov, Alexander; Gratton, Enrico

    2015-01-01

    3D orbital particle tracking is a versatile and effective microscopy technique that allows following fast moving fluorescent objects within living cells and reconstructing complex 3D shapes using laser scanning microscopes. We demonstrated notable improvements in the range, speed and accuracy of 3D orbital particle tracking by replacing commonly used piezoelectric stages with Electrically Tunable Lens (ETL) that eliminates mechanical movement of objective lenses. This allowed tracking and reconstructing shape of structures extending 500 microns in the axial direction. Using the ETL, we tracked at high speed fluorescently labeled genomic loci within the nucleus of living cells with unprecedented temporal resolution of 8ms using a 1.42NA oil-immersion objective. The presented technology is cost effective and allows easy upgrade of scanning microscopes for fast 3D orbital tracking. PMID:26114037

  20. Implicit Approaches for Moving Boundaries in a 3-D Cartesian Method

    NASA Technical Reports Server (NTRS)

    Murman, Scott M.; Aftosmis, Michael J.; Berger, Marsha J.; Kwak, Dochan

    2003-01-01

    This work considers numerical simulation of three-dimensional flows with time-evolving boundaries. Such problems pose a variety of challenges for numerical schemes, and have received a substantial amount of attention in the recent literature. Since such simulations are unsteady, time-accurate solution of the governing equations is required. In special cases, the body motion can be treated by a uniform rigid motion of the computational domain. For the more general situation of relative-body motion, however, this simplification is unavailable and the simulations require a mechanism for ensuring that the mesh evolves with the moving boundaries. This involves a "remeshing" of the computational domain (either localized or global) at each physical timestep, and places a premium on both the speed and robustness of the remeshing algorithms. This work presents a method which includes unsteady flow simulation, rigid domain motion, and relative body motion using a time-evolving Cartesian grid system in three dimensions.

  1. Ct3d: tracking microglia motility in 3D using a novel cosegmentation approach.

    PubMed

    Xiao, Hang; Li, Ying; Du, Jiulin; Mosig, Axel

    2011-02-15

    Cell tracking is an important method to quantitatively analyze time-lapse microscopy data. While numerous methods and tools exist for tracking cells in 2D time-lapse images, only few and very application-specific tracking tools are available for 3D time-lapse images, which is of high relevance in immunoimaging, in particular for studying the motility of microglia in vivo. We introduce a novel algorithm for tracking cells in 3D time-lapse microscopy data, based on computing cosegmentations between component trees representing individual time frames using the so-called tree-assignments. For the first time, our method allows to track microglia in three dimensional confocal time-lapse microscopy images. We also evaluate our method on synthetically generated data, demonstrating that our algorithm is robust even in the presence of different types of inhomogeneous background noise. Our algorithm is implemented in the ct3d package, which is available under http://www.picb.ac.cn/patterns/Software/ct3d; supplementary videos are available from http://www.picb.ac.cn/patterns/Supplements/ct3d.

  2. 3D gaze tracking system for NVidia 3D Vision®.

    PubMed

    Wibirama, Sunu; Hamamoto, Kazuhiko

    2013-01-01

    Inappropriate parallax setting in stereoscopic content generally causes visual fatigue and visual discomfort. To optimize three dimensional (3D) effects in stereoscopic content by taking into account health issue, understanding how user gazes at 3D direction in virtual space is currently an important research topic. In this paper, we report the study of developing a novel 3D gaze tracking system for Nvidia 3D Vision(®) to be used in desktop stereoscopic display. We suggest an optimized geometric method to accurately measure the position of virtual 3D object. Our experimental result shows that the proposed system achieved better accuracy compared to conventional geometric method by average errors 0.83 cm, 0.87 cm, and 1.06 cm in X, Y, and Z dimensions, respectively.

  3. Automatic respiration tracking for radiotherapy using optical 3D camera

    NASA Astrophysics Data System (ADS)

    Li, Tuotuo; Geng, Jason; Li, Shidong

    2013-03-01

    Rapid optical three-dimensional (O3D) imaging systems provide accurate digitized 3D surface data in real-time, with no patient contact nor radiation. The accurate 3D surface images offer crucial information in image-guided radiation therapy (IGRT) treatments for accurate patient repositioning and respiration management. However, applications of O3D imaging techniques to image-guided radiotherapy have been clinically challenged by body deformation, pathological and anatomical variations among individual patients, extremely high dimensionality of the 3D surface data, and irregular respiration motion. In existing clinical radiation therapy (RT) procedures target displacements are caused by (1) inter-fractional anatomy changes due to weight, swell, food/water intake; (2) intra-fractional variations from anatomy changes within any treatment session due to voluntary/involuntary physiologic processes (e.g. respiration, muscle relaxation); (3) patient setup misalignment in daily reposition due to user errors; and (4) changes of marker or positioning device, etc. Presently, viable solution is lacking for in-vivo tracking of target motion and anatomy changes during the beam-on time without exposing patient with additional ionized radiation or high magnet field. Current O3D-guided radiotherapy systems relay on selected points or areas in the 3D surface to track surface motion. The configuration of the marks or areas may change with time that makes it inconsistent in quantifying and interpreting the respiration patterns. To meet the challenge of performing real-time respiration tracking using O3D imaging technology in IGRT, we propose a new approach to automatic respiration motion analysis based on linear dimensionality reduction technique based on PCA (principle component analysis). Optical 3D image sequence is decomposed with principle component analysis into a limited number of independent (orthogonal) motion patterns (a low dimension eigen-space span by eigen-vectors). New

  4. 3D hand tracking using Kalman filter in depth space

    NASA Astrophysics Data System (ADS)

    Park, Sangheon; Yu, Sunjin; Kim, Joongrock; Kim, Sungjin; Lee, Sangyoun

    2012-12-01

    Hand gestures are an important type of natural language used in many research areas such as human-computer interaction and computer vision. Hand gestures recognition requires the prior determination of the hand position through detection and tracking. One of the most efficient strategies for hand tracking is to use 2D visual information such as color and shape. However, visual-sensor-based hand tracking methods are very sensitive when tracking is performed under variable light conditions. Also, as hand movements are made in 3D space, the recognition performance of hand gestures using 2D information is inherently limited. In this article, we propose a novel real-time 3D hand tracking method in depth space using a 3D depth sensor and employing Kalman filter. We detect hand candidates using motion clusters and predefined wave motion, and track hand locations using Kalman filter. To verify the effectiveness of the proposed method, we compare the performance of the proposed method with the visual-based method. Experimental results show that the performance of the proposed method out performs visual-based method.

  5. Deployment of a 3D tag tracking method utilising RFID

    NASA Astrophysics Data System (ADS)

    Wasif Reza, Ahmed; Yun, Teoh Wei; Dimyati, Kaharudin; Geok Tan, Kim; Ariffin Noordin, Kamarul

    2012-04-01

    Recent trend shows that one of the crucial problems faced while using radio frequency to track the objects is the inconsistency of the signal strength reception, which can be mainly due to the environmental factors and the blockage, which always have the most impact on the tracking accuracy. Besides, three dimensions are more relevant to a warehouse scanning. Therefore, this study proposes a highly accurate and new three-dimensional (3D) radio frequency identification-based indoor tracking system with the consideration of different attenuation factors and obstacles. The obtained results show that the proposed system yields high-quality performance with an average error as low as 0.27 m (without obstacles and attenuation effects). The obtained results also show that the proposed tracking technique can achieve relatively lower errors (0.4 and 0.36 m, respectively) even in the presence of the highest attenuation effect, e = 3.3 or when the environment is largely affected by 50% of the obstacles. Furthermore, the superiority of the proposed 3D tracking system has been proved by comparing with other existing approaches. The 3D tracking system proposed in this study can be applicable to a warehouse scanning.

  6. Monocular 3-D gait tracking in surveillance scenes.

    PubMed

    Rogez, Grégory; Rihan, Jonathan; Guerrero, Jose J; Orrite, Carlos

    2014-06-01

    Gait recognition can potentially provide a noninvasive and effective biometric authentication from a distance. However, the performance of gait recognition systems will suffer in real surveillance scenarios with multiple interacting individuals and where the camera is usually placed at a significant angle and distance from the floor. We present a methodology for view-invariant monocular 3-D human pose tracking in man-made environments in which we assume that observed people move on a known ground plane. First, we model 3-D body poses and camera viewpoints with a low dimensional manifold and learn a generative model of the silhouette from this manifold to a reduced set of training views. During the online stage, 3-D body poses are tracked using recursive Bayesian sampling conducted jointly over the scene's ground plane and the pose-viewpoint manifold. For each sample, the homography that relates the corresponding training plane to the image points is calculated using the dominant 3-D directions of the scene, the sampled location on the ground plane and the sampled camera view. Each regressed silhouette shape is projected using this homographic transformation and is matched in the image to estimate its likelihood. Our framework is able to track 3-D human walking poses in a 3-D environment exploring only a 4-D state space with success. In our experimental evaluation, we demonstrate the significant improvements of the homographic alignment over a commonly used similarity transformation and provide quantitative pose tracking results for the monocular sequences with a high perspective effect from the CAVIAR dataset.

  7. Linear tracking for 3-D medical ultrasound imaging.

    PubMed

    Huang, Qing-Hua; Yang, Zhao; Hu, Wei; Jin, Lian-Wen; Wei, Gang; Li, Xuelong

    2013-12-01

    As the clinical application grows, there is a rapid technical development of 3-D ultrasound imaging. Compared with 2-D ultrasound imaging, 3-D ultrasound imaging can provide improved qualitative and quantitative information for various clinical applications. In this paper, we proposed a novel tracking method for a freehand 3-D ultrasound imaging system with improved portability, reduced degree of freedom, and cost. We designed a sliding track with a linear position sensor attached, and it transmitted positional data via a wireless communication module based on Bluetooth, resulting in a wireless spatial tracking modality. A traditional 2-D ultrasound probe fixed to the position sensor on the sliding track was used to obtain real-time B-scans, and the positions of the B-scans were simultaneously acquired when moving the probe along the track in a freehand manner. In the experiments, the proposed method was applied to ultrasound phantoms and real human tissues. The results demonstrated that the new system outperformed a previously developed freehand system based on a traditional six-degree-of-freedom spatial sensor in phantom and in vivo studies, indicating its merit in clinical applications for human tissues and organs.

  8. 3D imaging of neutron tracks using confocal microscopy

    NASA Astrophysics Data System (ADS)

    Gillmore, Gavin; Wertheim, David; Flowers, Alan

    2016-04-01

    Neutron detection and neutron flux assessment are important aspects in monitoring nuclear energy production. Neutron flux measurements can also provide information on potential biological damage from exposure. In addition to the applications for neutron measurement in nuclear energy, neutron detection has been proposed as a method of enhancing neutrino detectors and cosmic ray flux has also been assessed using ground-level neutron detectors. Solid State Nuclear Track Detectors (or SSNTDs) have been used extensively to examine cosmic rays, long-lived radioactive elements, radon concentrations in buildings and the age of geological samples. Passive SSNTDs consisting of a CR-39 plastic are commonly used to measure radon because they respond to incident charged particles such as alpha particles from radon gas in air. They have a large dynamic range and a linear flux response. We have previously applied confocal microscopy to obtain 3D images of alpha particle tracks in SSNTDs from radon track monitoring (1). As a charged particle traverses through the polymer it creates an ionisation trail along its path. The trail or track is normally enhanced by chemical etching to better expose radiation damage, as the damaged area is more sensitive to the etchant than the bulk material. Particle tracks in CR-39 are usually assessed using 2D optical microscopy. In this study 6 detectors were examined using an Olympus OLS4100 LEXT 3D laser scanning confocal microscope (Olympus Corporation, Japan). The detectors had been etched for 2 hours 50 minutes at 85 °C in 6.25M NaOH. Post etch the plastics had been treated with a 10 minute immersion in a 2% acetic acid stop bath, followed by rinsing in deionised water. The detectors examined had been irradiated with a 2mSv neutron dose from an Am(Be) neutron source (producing roughly 20 tracks per mm2). We were able to successfully acquire 3D images of neutron tracks in the detectors studied. The range of track diameter observed was between 4

  9. Stagnant lid convection in 3D-Cartesian geometry: Scaling laws and applications to icy moons and dwarf planets

    NASA Astrophysics Data System (ADS)

    Deschamps, Frédéric; Lin, Ja-Ren

    2014-04-01

    We conducted numerical experiments of stagnant lid thermal convection in 3D-Cartesian geometry, and use these experiments to derive parameterizations for the average internal temperature, heat flux, and stagnant lid thickness. Our experiments suggest that the non-dimensional temperature jump across the bottom thermal boundary layer (TBL) is well described by (1 -θm) = 1.23 (ΔTv / ΔT) , where θm is the non-dimensional average temperature of the convective sublayer, and ΔTv / ΔT a viscous temperature scale defined as the inverse of the logarithmic temperature derivative of viscosity. Due to the presence of the stagnant lid at the top of the fluid, the frequency of the time-variations of the surface heat flux is much lower than those of the bottom heat flux. The Nusselt number, measuring the heat transfer, is well explain by Nu = 1.46 Ram0.270 (ΔTv / ΔT)1.21 , where Ram is the effective Rayleigh number. This result indicates that the heat flux through the outer ice shells of large icy moons and dwarf planets is larger than that predicted by scalings in 2D-Cartesian geometry by 20-40%. We then apply our parameterizations to the dynamics of the outer ice I shells of icy moons and dwarf planets. As pointed out in previous studies, our calculations indicate that the presence of volatile in the primordial ocean of these bodies strongly reduces the vigor of convection within their outer ice I shell, the heat transfer through these shells, and the tectonic activity at their surface. Furthermore, thicker ice I layers may be achieved in bodies having low (0.7 m/s2) gravity acceleration (e.g., Pluto), than in bodies having larger (1.3 m/s2 and more) gravity acceleration (e.g., Europa, Ganymede, and Titan). Decrease in the surface temperature increases the thickness of the stagnant lid, which may result in a stronger lithosphere, and thus in fewer tectonic activity. Our parameterizations may also be used as boundary conditions at zero curvature to build parameterizations

  10. Tracking variable number of multiple subcellular structures in 3D.

    PubMed

    Wen, Quan; Gao, Jean

    2009-01-01

    With the introduction of sensitive and fast electronic imaging devices and the development of biological methods to tag proteins of interest by green fluorescent proteins (GFP), it has now become critical to develop automatic quantitative data analysis tools to study the live cell dynamics at subcellular level. In this paper, a sequential Monte Carlo (SMC) method to track variable number of multiple 3D subcellular structures is proposed. First, multiple subcellular structures are represented by a joint state. Then the distribution of the dimension changing joint state is sampled efficiently by the reverse jump Markov chain Monte Carlo (RJMCMC) method designed with update move, identity switch move, disappearing move, and appearing move. The experimental results show that the proposed method can successfully track multiple 3D subcellular structures with different motion modalities such as object appearing and disappearing.

  11. Light driven micro-robotics with holographic 3D tracking

    NASA Astrophysics Data System (ADS)

    Glückstad, Jesper

    2016-04-01

    We recently pioneered the concept of light-driven micro-robotics including the new and disruptive 3D-printed micro-tools coined Wave-guided Optical Waveguides that can be real-time optically trapped and "remote-controlled" in a volume with six-degrees-of-freedom. To be exploring the full potential of this new drone-like 3D light robotics approach in challenging microscopic geometries requires a versatile and real-time reconfigurable light coupling that can dynamically track a plurality of "light robots" in 3D to ensure continuous optimal light coupling on the fly. Our latest developments in this new and exciting area will be reviewed in this invited paper.

  12. A 3D diamond detector for particle tracking

    NASA Astrophysics Data System (ADS)

    Bachmair, F.; Bäni, L.; Bergonzo, P.; Caylar, B.; Forcolin, G.; Haughton, I.; Hits, D.; Kagan, H.; Kass, R.; Li, L.; Oh, A.; Phan, S.; Pomorski, M.; Smith, D. S.; Tyzhnevyi, V.; Wallny, R.; Whitehead, D.

    2015-06-01

    A novel device using single-crystal chemical vapour deposited diamond and resistive electrodes in the bulk forming a 3D diamond detector is presented. The electrodes of the device were fabricated with laser assisted phase change of diamond into a combination of diamond-like carbon, amorphous carbon and graphite. The connections to the electrodes of the device were made using a photo-lithographic process. The electrical and particle detection properties of the device were investigated. A prototype detector system consisting of the 3D device connected to a multi-channel readout was successfully tested with 120 GeV protons proving the feasibility of the 3D diamond detector concept for particle tracking applications for the first time.

  13. Characterisation of walking loads by 3D inertial motion tracking

    NASA Astrophysics Data System (ADS)

    Van Nimmen, K.; Lombaert, G.; Jonkers, I.; De Roeck, G.; Van den Broeck, P.

    2014-09-01

    The present contribution analyses the walking behaviour of pedestrians in situ by 3D inertial motion tracking. The technique is first tested in laboratory experiments with simultaneous registration of the ground reaction forces. The registered motion of the pedestrian allows for the identification of stride-to-stride variations, which is usually disregarded in the simulation of walking forces. Subsequently, motion tracking is used to register the walking behaviour of (groups of) pedestrians during in situ measurements on a footbridge. The calibrated numerical model of the structure and the information gathered using the motion tracking system enables detailed simulation of the step-by-step pedestrian induced vibrations. Accounting for the in situ identified walking variability of the test-subjects leads to a significantly improved agreement between the measured and the simulated structural response.

  14. Lagrangian 3D tracking of fluorescent microscopic objects in motion.

    PubMed

    Darnige, T; Figueroa-Morales, N; Bohec, P; Lindner, A; Clément, E

    2017-05-01

    We describe the development of a tracking device, mounted on an epi-fluorescent inverted microscope, suited to obtain time resolved 3D Lagrangian tracks of fluorescent passive or active micro-objects in microfluidic devices. The system is based on real-time image processing, determining the displacement of a x, y mechanical stage to keep the chosen object at a fixed position in the observation frame. The z displacement is based on the refocusing of the fluorescent object determining the displacement of a piezo mover keeping the moving object in focus. Track coordinates of the object with respect to the microfluidic device as well as images of the object are obtained at a frequency of several tenths of Hertz. This device is particularly well adapted to obtain trajectories of motile micro-organisms in microfluidic devices with or without flow.

  15. Speeding up 3D speckle tracking using PatchMatch

    NASA Astrophysics Data System (ADS)

    Zontak, Maria; O'Donnell, Matthew

    2016-03-01

    Echocardiography provides valuable information to diagnose heart dysfunction. A typical exam records several minutes of real-time cardiac images. To enable complete analysis of 3D cardiac strains, 4-D (3-D+t) echocardiography is used. This results in a huge dataset and requires effective automated analysis. Ultrasound speckle tracking is an effective method for tissue motion analysis. It involves correlation of a 3D kernel (block) around a voxel with kernels in later frames. The search region is usually confined to a local neighborhood, due to biomechanical and computational constraints. For high strains and moderate frame-rates, however, this search region will remain large, leading to a considerable computational burden. Moreover, speckle decorrelation (due to high strains) leads to errors in tracking. To solve this, spatial motion coherency between adjacent voxels should be imposed, e.g., by averaging their correlation functions.1 This requires storing correlation functions for neighboring voxels, thus increasing memory demands. In this work, we propose an efficient search using PatchMatch, 2 a powerful method to find correspondences between images. Here we adopt PatchMatch for 3D volumes and radio-frequency signals. As opposed to an exact search, PatchMatch performs random sampling of the search region and propagates successive matches among neighboring voxels. We show that: 1) Inherently smooth offset propagation in PatchMatch contributes to spatial motion coherence without any additional processing or memory demand. 2) For typical scenarios, PatchMatch is at least 20 times faster than the exact search, while maintaining comparable tracking accuracy.

  16. Tracking people and cars using 3D modeling and CCTV.

    PubMed

    Edelman, Gerda; Bijhold, Jurrien

    2010-10-10

    The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice.

  17. Coverage Assessment and Target Tracking in 3D Domains

    PubMed Central

    Boudriga, Noureddine; Hamdi, Mohamed; Iyengar, Sitharama

    2011-01-01

    Recent advances in integrated electronic devices motivated the use of Wireless Sensor Networks (WSNs) in many applications including domain surveillance and mobile target tracking, where a number of sensors are scattered within a sensitive region to detect the presence of intruders and forward related events to some analysis center(s). Obviously, sensor deployment should guarantee an optimal event detection rate and should reduce coverage holes. Most of the coverage control approaches proposed in the literature deal with two-dimensional zones and do not develop strategies to handle coverage in three-dimensional domains, which is becoming a requirement for many applications including water monitoring, indoor surveillance, and projectile tracking. This paper proposes efficient techniques to detect coverage holes in a 3D domain using a finite set of sensors, repair the holes, and track hostile targets. To this end, we use the concepts of Voronoi tessellation, Vietoris complex, and retract by deformation. We show in particular that, through a set of iterative transformations of the Vietoris complex corresponding to the deployed sensors, the number of coverage holes can be computed with a low complexity. Mobility strategies are also proposed to repair holes by moving appropriately sensors towards the uncovered zones. The tracking objective is to set a non-uniform WSN coverage within the monitored domain to allow detecting the target(s) by the set of sensors. We show, in particular, how the proposed algorithms adapt to cope with obstacles. Simulation experiments are carried out to analyze the efficiency of the proposed models. To our knowledge, repairing and tracking is addressed for the first time in 3D spaces with different sensor coverage schemes. PMID:22163733

  18. Inertial Motion-Tracking Technology for Virtual 3-D

    NASA Technical Reports Server (NTRS)

    2005-01-01

    In the 1990s, NASA pioneered virtual reality research. The concept was present long before, but, prior to this, the technology did not exist to make a viable virtual reality system. Scientists had theories and ideas they knew that the concept had potential, but the computers of the 1970s and 1980s were not fast enough, sensors were heavy and cumbersome, and people had difficulty blending fluidly with the machines. Scientists at Ames Research Center built upon the research of previous decades and put the necessary technology behind them, making the theories of virtual reality a reality. Virtual reality systems depend on complex motion-tracking sensors to convey information between the user and the computer to give the user the feeling that he is operating in the real world. These motion-tracking sensors measure and report an object s position and orientation as it changes. A simple example of motion tracking would be the cursor on a computer screen moving in correspondence to the shifting of the mouse. Tracking in 3-D, necessary to create virtual reality, however, is much more complex. To be successful, the perspective of the virtual image seen on the computer must be an accurate representation of what is seen in the real world. As the user s head or camera moves, turns, or tilts, the computer-generated environment must change accordingly with no noticeable lag, jitter, or distortion. Historically, the lack of smooth and rapid tracking of the user s motion has thwarted the widespread use of immersive 3-D computer graphics. NASA uses virtual reality technology for a variety of purposes, mostly training of astronauts. The actual missions are costly and dangerous, so any opportunity the crews have to practice their maneuvering in accurate situations before the mission is valuable and instructive. For that purpose, NASA has funded a great deal of virtual reality research, and benefited from the results.

  19. Coverage assessment and target tracking in 3D domains.

    PubMed

    Boudriga, Noureddine; Hamdi, Mohamed; Iyengar, Sitharama

    2011-01-01

    Recent advances in integrated electronic devices motivated the use of Wireless Sensor Networks (WSNs) in many applications including domain surveillance and mobile target tracking, where a number of sensors are scattered within a sensitive region to detect the presence of intruders and forward related events to some analysis center(s). Obviously, sensor deployment should guarantee an optimal event detection rate and should reduce coverage holes. Most of the coverage control approaches proposed in the literature deal with two-dimensional zones and do not develop strategies to handle coverage in three-dimensional domains, which is becoming a requirement for many applications including water monitoring, indoor surveillance, and projectile tracking. This paper proposes efficient techniques to detect coverage holes in a 3D domain using a finite set of sensors, repair the holes, and track hostile targets. To this end, we use the concepts of Voronoi tessellation, Vietoris complex, and retract by deformation. We show in particular that, through a set of iterative transformations of the Vietoris complex corresponding to the deployed sensors, the number of coverage holes can be computed with a low complexity. Mobility strategies are also proposed to repair holes by moving appropriately sensors towards the uncovered zones. The tracking objective is to set a non-uniform WSN coverage within the monitored domain to allow detecting the target(s) by the set of sensors. We show, in particular, how the proposed algorithms adapt to cope with obstacles. Simulation experiments are carried out to analyze the efficiency of the proposed models. To our knowledge, repairing and tracking is addressed for the first time in 3D spaces with different sensor coverage schemes.

  20. 3-D model-based tracking for UAV indoor localization.

    PubMed

    Teulière, Céline; Marchand, Eric; Eck, Laurent

    2015-05-01

    This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.

  1. Tracked 3D ultrasound in radio-frequency liver ablation

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Fichtinger, Gabor; Taylor, Russell H.; Choti, Michael A.

    2003-05-01

    Recent studies have shown that radio frequency (RF) ablation is a simple, safe and potentially effective treatment for selected patients with liver metastases. Despite all recent therapeutic advancements, however, intra-procedural target localization and precise and consistent placement of the tissue ablator device are still unsolved problems. Various imaging modalities, including ultrasound (US) and computed tomography (CT) have been tried as guidance modalities. Transcutaneous US imaging, due to its real-time nature, may be beneficial in many cases, but unfortunately, fails to adequately visualize the tumor in many cases. Intraoperative or laparoscopic US, on the other hand, provides improved visualization and target imaging. This paper describes a system for computer-assisted RF ablation of liver tumors, combining navigational tracking of a conventional imaging ultrasound probe to produce 3D ultrasound imaging with a tracked RF ablation device supported by a passive mechanical arm and spatially registered to the ultrasound volume.

  2. 3D Tracking of small-scale convective upflows

    NASA Astrophysics Data System (ADS)

    Lemmerer, Birgit; Hanslmeier, Arnold; Veronig, Astrid; Muthsam, Herbert; Piantschitsch, Isabell

    2015-08-01

    High resolution simulations and observations of the solar photosphere and convection zone show a new population of small granules with diameters less than 800 km. The mechanism of formation and dissipation is still unclear. We developed automated detection and tracking algorithms to study their evolution as well as their physical and statistical properties in 2D. We found that small granules may not result from the fragmentation of larger granules because they show a small variation in size from the point of appearance at the photosphere until their dissolution. In this study we present a newly developed 3D segmentation and tracking algorithm for the analysis of small-scale convective cells in high resolution simulations. We study the 3D topology and evolution of convective upflows and their interaction with strong vortex motions and magnetic flux tubes. We show that the evolution of small-scale convective upflows in the convection zone is mainly governed by strong vortex motions within downdrafts rather than by strong magnetic fields.

  3. Polar versus Cartesian velocity models for maneuvering target tracking with IMM

    NASA Astrophysics Data System (ADS)

    Laneuville, Dann

    This paper compares various model sets in different IMM filters for the maneuvering target tracking problem. The aim is to see whether we can improve the tracking performance of what is certainly the most widely used model set in the literature for the maneuvering target tracking problem: a Nearly Constant Velocity model and a Nearly Coordinated Turn model. Our new challenger set consists of a mixed Cartesian position and polar velocity state vector to describe the uniform motion segments and is augmented with the turn rate to obtain the second model for the maneuvering segments. This paper also gives a general procedure to discretize up to second order any non-linear continuous time model with linear diffusion. Comparative simulations on an air defence scenario with a 2D radar, show that this new approach improves significantly the tracking performance in this case.

  4. 3D visualisation and analysis of single and coalescing tracks in Solid state Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, David; Gillmore, Gavin; Brown, Louise; Petford, Nick

    2010-05-01

    Exposure to radon gas (222Rn) and associated ionising decay products can cause lung cancer in humans (1). Solid state Nuclear Track Detectors (SSNTDs) can be used to monitor radon concentrations (2). Radon particles form tracks in the detectors and these tracks can be etched in order to enable 2D surface image analysis. We have previously shown that confocal microscopy can be used for 3D visualisation of etched SSNTDs (3). The aim of the study was to further investigate track angles and patterns in SSNTDs. A 'LEXT' confocal laser scanning microscope (Olympus Corporation, Japan) was used to acquire 3D image datasets of five CR-39 plastic SSNTD's. The resultant 3D visualisations were analysed by eye and inclination angles assessed on selected tracks. From visual assessment, single isolated tracks as well as coalescing tracks were observed on the etched detectors. In addition varying track inclination angles were observed. Several different patterns of track formation were seen such as single isolated and double coalescing tracks. The observed track angles of inclination may help to assess the angle at which alpha particles hit the detector. Darby, S et al. Radon in homes and risk of lung cancer : collaborative analysis of individual data from 13 European case-control studies. British Medical Journal 2005; 330, 223-226. Phillips, P.S., Denman, A.R., Crockett, R.G.M., Gillmore, G., Groves-Kirkby, C.J., Woolridge, A., Comparative Analysis of Weekly vs. Three monthly radon measurements in dwellings. DEFRA Report No., DEFRA/RAS/03.006. (2004). Wertheim D, Gillmore G, Brown L, and Petford N. A new method of imaging particle tracks in Solid State Nuclear Track Detectors. Journal of Microscopy 2010; 237: 1-6.

  5. Holographic microscopy for 3D tracking of bacteria

    NASA Astrophysics Data System (ADS)

    Nadeau, Jay; Cho, Yong Bin; El-Kholy, Marwan; Bedrossian, Manuel; Rider, Stephanie; Lindensmith, Christian; Wallace, J. Kent

    2016-03-01

    Understanding when, how, and if bacteria swim is key to understanding critical ecological and biological processes, from carbon cycling to infection. Imaging motility by traditional light microscopy is limited by focus depth, requiring cells to be constrained in z. Holographic microscopy offers an instantaneous 3D snapshot of a large sample volume, and is therefore ideal in principle for quantifying unconstrained bacterial motility. However, resolving and tracking individual cells is difficult due to the low amplitude and phase contrast of the cells; the index of refraction of typical bacteria differs from that of water only at the second decimal place. In this work we present a combination of optical and sample-handling approaches to facilitating bacterial tracking by holographic phase imaging. The first is the design of the microscope, which is an off-axis design with the optics along a common path, which minimizes alignment issues while providing all of the advantages of off-axis holography. Second, we use anti-reflective coated etalon glass in the design of sample chambers, which reduce internal reflections. Improvement seen with the antireflective coating is seen primarily in phase imaging, and its quantification is presented here. Finally, dyes may be used to increase phase contrast according to the Kramers-Kronig relations. Results using three test strains are presented, illustrating the different types of bacterial motility characterized by an enteric organism (Escherichia coli), an environmental organism (Bacillus subtilis), and a marine organism (Vibrio alginolyticus). Data processing steps to increase the quality of the phase images and facilitate tracking are also discussed.

  6. 3D whiteboard: collaborative sketching with 3D-tracked smart phones

    NASA Astrophysics Data System (ADS)

    Lue, James; Schulze, Jürgen P.

    2014-02-01

    We present the results of our investigation of the feasibility of a new approach for collaborative drawing in 3D, based on Android smart phones. Our approach utilizes a number of fiduciary markers, placed in the working area where they can be seen by the smart phones' cameras, in order to estimate the pose of each phone in the room. Our prototype allows two users to draw 3D objects with their smart phones by moving their phones around in 3D space. For example, 3D lines are drawn by recording the path of the phone as it is moved around in 3D space, drawing line segments on the screen along the way. Each user can see the virtual drawing space on their smart phones' displays, as if the display was a window into this space. Besides lines, our prototype application also supports 3D geometry creation, geometry transformation operations, and it shows the location of the other user's phone.

  7. Solwnd: A 3D Compressible MHD Code for Solar Wind Studies. Version 1.0: Cartesian Coordinates

    NASA Technical Reports Server (NTRS)

    Deane, Anil E.

    1996-01-01

    Solwnd 1.0 is a three-dimensional compressible MHD code written in Fortran for studying the solar wind. Time-dependent boundary conditions are available. The computational algorithm is based on Flux Corrected Transport and the code is based on the existing code of Zalesak and Spicer. The flow considered is that of shear flow with incoming flow that perturbs this base flow. Several test cases corresponding to pressure balanced magnetic structures with velocity shear flow and various inflows including Alfven waves are presented. Version 1.0 of solwnd considers a rectangular Cartesian geometry. Future versions of solwnd will consider a spherical geometry. Some discussions of this issue is presented.

  8. Tracking initially unresolved thrusting objects in 3D using a single stationary optical sensor

    NASA Astrophysics Data System (ADS)

    Lu, Qin; Bar-Shalom, Yaakov; Willett, Peter; Granström, Karl; Ben-Dov, R.; Milgrom, B.

    2017-05-01

    This paper considers the problem of estimating the 3D states of a salvo of thrusting/ballistic endo-atmospheric objects using 2D Cartesian measurements from the focal plane array (FPA) of a single fixed optical sensor. Since the initial separations in the FPA are smaller than the resolution of the sensor, this results in merged measurements in the FPA, compounding the usual false-alarm and missed-detection uncertainty. We present a two-step methodology. First, we assume a Wiener process acceleration (WPA) model for the motion of the images of the projectiles in the optical sensor's FPA. We model the merged measurements with increased variance, and thence employ a multi-Bernoulli (MB) filter using the 2D measurements in the FPA. Second, using the set of associated measurements for each confirmed MB track, we formulate a parameter estimation problem, whose maximum likelihood estimate can be obtained via numerical search and can be used for impact point prediction. Simulation results illustrate the performance of the proposed method.

  9. 3D imaging of particle tracks in Solid State Nuclear Track Detectors

    NASA Astrophysics Data System (ADS)

    Wertheim, D.; Gillmore, G.; Brown, L.; Petford, N.

    2009-04-01

    Inhalation of radon gas (222Rn) and associated ionizing decay products is known to cause lung cancer in human. In the U.K., it has been suggested that 3 to 5 % of total lung cancer deaths can be linked to elevated radon concentrations in the home and/or workplace. Radon monitoring in buildings is therefore routinely undertaken in areas of known risk. Indeed, some organisations such as the Radon Council in the UK and the Environmental Protection Agency in the USA, advocate a ‘to test is best' policy. Radon gas occurs naturally, emanating from the decay of 238U in rock and soils. Its concentration can be measured using CR?39 plastic detectors which conventionally are assessed by 2D image analysis of the surface; however there can be some variation in outcomes / readings even in closely spaced detectors. A number of radon measurement methods are currently in use (for examples, activated carbon and electrets) but the most widely used are CR?39 solid state nuclear track?etch detectors (SSNTDs). In this technique, heavily ionizing alpha particles leave tracks in the form of radiation damage (via interaction between alpha particles and the atoms making up the CR?39 polymer). 3D imaging of the tracks has the potential to provide information relating to angle and energy of alpha particles but this could be time consuming. Here we describe a new method for rapid high resolution 3D imaging of SSNTDs. A ‘LEXT' OLS3100 confocal laser scanning microscope was used in confocal mode to successfully obtain 3D image data on four CR?39 plastic detectors. 3D visualisation and image analysis enabled characterisation of track features. This method may provide a means of rapid and detailed 3D analysis of SSNTDs. Keywords: Radon; SSNTDs; confocal laser scanning microscope; 3D imaging; LEXT

  10. Tracking tissue section surfaces for automated 3D confocal cytometry

    NASA Astrophysics Data System (ADS)

    Agustin, Ramses; Price, Jeffrey H.

    2002-05-01

    Three-dimensional cytometry, whereby large volumes of tissue would be measured automatically, requires a computerized method for detecting the upper and lower tissue boundaries. In conventional confocal microscopy, the user interactively sets limits for axial scanning for each field-of-view. Biological specimens vary in section thickness, thereby driving the requirement for setting vertical scan limits. Limits could be set arbitrarily large to ensure the entire tissue is scanned, but automatic surface identification would eliminate storing undue numbers of empty optical sections and forms the basis for incorporating lateral microscope stage motion to collect unlimited numbers of stacks. This walk-away automation of 3D confocal scanning for biological imaging is the first sep towards practical, computerized statistical sampling from arbitrarily large tissue volumes. Preliminary results for automatic tissue surface tracking were obtained for phase-contrast microscopy by measuring focus sharpness (previously used for high-speed autofocus by our group). Measurements were taken from 5X5 fields-of-view from hamster liver sections, varying from five to twenty microns in thickness, then smoothed to lessen variations of in-focus information at each axial position. Because image sharpness (as the power of high spatial frequency components) drops across the axial boundaries of a tissue section, mathematical quantities including the full-width at half-maximum, extrema in the first derivative, and second derivative were used to locate the proximal and distal surfaces of a tissue. Results from these tests were evaluated against manual (i.e., visual) determination of section boundaries.

  11. Ion track reconstruction in 3D using alumina-based fluorescent nuclear track detectors

    NASA Astrophysics Data System (ADS)

    Niklas, M.; Bartz, J. A.; Akselrod, M. S.; Abollahi, A.; Jäkel, O.; Greilich, S.

    2013-09-01

    Fluorescent nuclear track detectors (FNTDs) based on Al2O3: C, Mg single crystal combined with confocal microscopy provide 3D information on ion tracks with a resolution only limited by light diffraction. FNTDs are also ideal substrates to be coated with cells to engineer cell-fluorescent ion track hybrid detectors (Cell-Fit-HD). This radiobiological tool enables a novel platform linking cell responses to physical dose deposition on a sub-cellular level in proton and heavy ion therapies. To achieve spatial correlation between single ion hits in the cell coating and its biological response the ion traversals have to be reconstructed in 3D using the depth information gained by the FNTD read-out. FNTDs were coated with a confluent human lung adenocarcinoma epithelial (A549) cell layer. Carbon ion irradiation of the hybrid detector was performed perpendicular and angular to the detector surface. In situ imaging of the fluorescently labeled cell layer and the FNTD was performed in a sequential read-out. Making use of the trajectory information provided by the FNTD the accuracy of 3D track reconstruction of single particles traversing the hybrid detector was studied. The accuracy is strongly influenced by the irradiation angle and therefore by complexity of the FNTD signal. Perpendicular irradiation results in highest accuracy with error of smaller than 0.10°. The ability of FNTD technology to provide accurate 3D ion track reconstruction makes it a powerful tool for radiobiological investigations in clinical ion beams, either being used as a substrate to be coated with living tissue or being implanted in vivo.

  12. Progress in the Simulation of Steady and Time-Dependent Flows with 3D Parallel Unstructured Cartesian Methods

    NASA Technical Reports Server (NTRS)

    Aftosmis, M. J.; Berger, M. J.; Murman, S. M.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    The proposed paper will present recent extensions in the development of an efficient Euler solver for adaptively-refined Cartesian meshes with embedded boundaries. The paper will focus on extensions of the basic method to include solution adaptation, time-dependent flow simulation, and arbitrary rigid domain motion. The parallel multilevel method makes use of on-the-fly parallel domain decomposition to achieve extremely good scalability on large numbers of processors, and is coupled with an automatic coarse mesh generation algorithm for efficient processing by a multigrid smoother. Numerical results are presented demonstrating parallel speed-ups of up to 435 on 512 processors. Solution-based adaptation may be keyed off truncation error estimates using tau-extrapolation or a variety of feature detection based refinement parameters. The multigrid method is extended to for time-dependent flows through the use of a dual-time approach. The extension to rigid domain motion uses an Arbitrary Lagrangian-Eulerlarian (ALE) formulation, and results will be presented for a variety of two- and three-dimensional example problems with both simple and complex geometry.

  13. Multiview 3-D Echocardiography Fusion with Breath-Hold Position Tracking Using an Optical Tracking System.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views.

  14. 3D Cartesian MRI with compressed sensing and variable view sharing using complementary poisson-disc sampling.

    PubMed

    Levine, Evan; Daniel, Bruce; Vasanawala, Shreyas; Hargreaves, Brian; Saranathan, Manojkumar

    2017-05-01

    To enable robust, high spatio-temporal-resolution three-dimensional Cartesian MRI using a scheme incorporating a novel variable density random k-space sampling trajectory allowing flexible and retrospective selection of the temporal footprint with compressed sensing (CS). A complementary Poisson-disc k-space sampling trajectory was designed to allow view sharing and varying combinations of reduced view sharing with CS from the same prospective acquisition. These schemes were used for two-point Dixon-based dynamic contrast-enhanced MRI (DCE-MRI) of the breast and abdomen. Results were validated in vivo with a novel approach using variable-flip-angle data, which was retrospectively accelerated using the same methods but offered a ground truth. In breast DCE-MRI, the temporal footprint could be reduced 2.3-fold retrospectively without introducing noticeable artifacts, improving depiction of rapidly enhancing lesions. Further, experiments with variable-flip-angle data showed that reducing view sharing improved accuracy in reconstruction and T1 mapping. In abdominal MRI, 2.3-fold and 3.6-fold reductions in temporal footprint allowed reduced motion artifacts. The complementary-Poisson-disc k-space sampling trajectory allowed a retrospective spatiotemporal resolution tradeoff using CS and view sharing, imparting robustness to motion and contrast enhancement. The technique was also validated using a novel approach of fully acquired variable-flip-angle acquisition. Magn Reson Med 77:1774-1785, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  15. A 3D feature point tracking method for ion radiation

    NASA Astrophysics Data System (ADS)

    Kouwenberg, Jasper J. M.; Ulrich, Leonie; Jäkel, Oliver; Greilich, Steffen

    2016-06-01

    A robust and computationally efficient algorithm for automated tracking of high densities of particles travelling in (semi-) straight lines is presented. It extends the implementation of (Sbalzarini and Koumoutsakos 2005) and is intended for use in the analysis of single ion track detectors. By including information of existing tracks in the exclusion criteria and a recursive cost minimization function, the algorithm is robust to variations on the measured particle tracks. A trajectory relinking algorithm was included to resolve the crossing of tracks in high particle density images. Validation of the algorithm was performed using fluorescent nuclear track detectors (FNTD) irradiated with high- and low (heavy) ion fluences and showed less than 1% faulty trajectories in the latter.

  16. LayTracks3D: A new approach for meshing general solids using medial axis transform

    SciTech Connect

    Quadros, William Roshan

    2015-08-22

    This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to the MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.

  17. 3D coronary motion tracking in swine models with MR tracking catheters.

    PubMed

    Schmidt, Ehud J; Yoneyama, Ryuichi; Dumoulin, Charles L; Darrow, Robert D; Klein, Eric; Kiruluta, Andrew J M; Hayase, Motoya

    2009-01-01

    To develop MR-tracked catheters to delineate the three-dimensional motion of coronary arteries at high spatial and temporal resolution. Catheters with three tracking microcoils were placed into nine swine. During breath-holds, electrocardiographic (ECG)-synchronized 3D motion was measured at varying vessel depths. 3D motion was measured in American Heart Association left anterior descending (LAD) segments 6-7, left circumflex (LCX) segments 11-15, and right coronary artery (RCA) segments 2-3, at 60-115 beats/min heart rates. Similar-length cardiac cycles were averaged. Intercoil cross-correlation identified early systolic phase (ES) and determined segment motion delay. Translational and rotational motion, as a function of cardiac phase, is shown, with directionality and amplitude varying along the vessel length. Rotation (peak-to-peak solid-angle RCA approximately 0.10, LAD approximately 0.06, LCX approximately 0.18 radian) occurs primarily during fast translational motion and increases distally. LCX displacement increases with heart rate by 18%. Phantom simulations of motion effects on high-resolution images, using RCA results, show artifacts due to translation and rotation. Magnetic resonance imaging (MRI) tracking catheters quantify motion at 20 fps and 1 mm(3) resolution at multiple vessel depths, exceeding that available with other techniques. Imaging artifacts due to rotation are demonstrated. Motion-tracking catheters may provide physiological information during interventions and improve imaging spatial resolution.

  18. pySeismicFMM: Python based Travel Time Calculation in Regular 2D and 3D Grids in Cartesian and Geographic Coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Wilde-Piorko, M.; Polkowski, M.

    2016-12-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation final release of a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. Source code of pySeismicFMM will be published before Fall Meeting. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  19. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin

    2016-04-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  20. A 3D diamond detector for particle tracking

    NASA Astrophysics Data System (ADS)

    Artuso, M.; Bachmair, F.; Bäni, L.; Bartosik, M.; Beacham, J.; Bellini, V.; Belyaev, V.; Bentele, B.; Berdermann, E.; Bergonzo, P.; Bes, A.; Brom, J.-M.; Bruzzi, M.; Cerv, M.; Chau, C.; Chiodini, G.; Chren, D.; Cindro, V.; Claus, G.; Collot, J.; Costa, S.; Cumalat, J.; Dabrowski, A.; D`Alessandro, R.; de Boer, W.; Dehning, B.; Dobos, D.; Dünser, M.; Eremin, V.; Eusebi, R.; Forcolin, G.; Forneris, J.; Frais-Kölbl, H.; Gan, K. K.; Gastal, M.; Goffe, M.; Goldstein, J.; Golubev, A.; Gonella, L.; Gorišek, A.; Graber, L.; Grigoriev, E.; Grosse-Knetter, J.; Gui, B.; Guthoff, M.; Haughton, I.; Hidas, D.; Hits, D.; Hoeferkamp, M.; Hofmann, T.; Hosslet, J.; Hostachy, J.-Y.; Hügging, F.; Jansen, H.; Janssen, J.; Kagan, H.; Kanxheri, K.; Kasieczka, G.; Kass, R.; Kassel, F.; Kis, M.; Kramberger, G.; Kuleshov, S.; Lacoste, A.; Lagomarsino, S.; Lo Giudice, A.; Maazouzi, C.; Mandic, I.; Mathieu, C.; McFadden, N.; McGoldrick, G.; Menichelli, M.; Mikuž, M.; Morozzi, A.; Moss, J.; Mountain, R.; Murphy, S.; Oh, A.; Olivero, P.; Parrini, G.; Passeri, D.; Pauluzzi, M.; Pernegger, H.; Perrino, R.; Picollo, F.; Pomorski, M.; Potenza, R.; Quadt, A.; Re, A.; Riley, G.; Roe, S.; Sapinski, M.; Scaringella, M.; Schnetzer, S.; Schreiner, T.; Sciortino, S.; Scorzoni, A.; Seidel, S.; Servoli, L.; Sfyrla, A.; Shimchuk, G.; Smith, D. S.; Sopko, B.; Sopko, V.; Spagnolo, S.; Spanier, S.; Stenson, K.; Stone, R.; Sutera, C.; Taylor, A.; Traeger, M.; Tromson, D.; Trischuk, W.; Tuve, C.; Uplegger, L.; Velthuis, J.; Venturi, N.; Vittone, E.; Wagner, S.; Wallny, R.; Wang, J. C.; Weilhammer, P.; Weingarten, J.; Weiss, C.; Wengler, T.; Wermes, N.; Yamouni, M.; Zavrtanik, M.

    2016-07-01

    In the present study, results towards the development of a 3D diamond sensor are presented. Conductive channels are produced inside the sensor bulk using a femtosecond laser. This electrode geometry allows full charge collection even for low quality diamond sensors. Results from testbeam show that charge is collected by these electrodes. In order to understand the channel growth parameters, with the goal of producing low resistivity channels, the conductive channels produced with a different laser setup are evaluated by Raman spectroscopy.

  1. Real Time 3D Facial Movement Tracking Using a Monocular Camera

    PubMed Central

    Dong, Yanchao; Wang, Yanming; Yue, Jiguang; Hu, Zhencheng

    2016-01-01

    The paper proposes a robust framework for 3D facial movement tracking in real time using a monocular camera. It is designed to estimate the 3D face pose and local facial animation such as eyelid movement and mouth movement. The framework firstly utilizes the Discriminative Shape Regression method to locate the facial feature points on the 2D image and fuses the 2D data with a 3D face model using Extended Kalman Filter to yield 3D facial movement information. An alternating optimizing strategy is adopted to fit to different persons automatically. Experiments show that the proposed framework could track the 3D facial movement across various poses and illumination conditions. Given the real face scale the framework could track the eyelid with an error of 1 mm and mouth with an error of 2 mm. The tracking result is reliable for expression analysis or mental state inference. PMID:27463714

  2. THE THOMSON SURFACE. III. TRACKING FEATURES IN 3D

    SciTech Connect

    Howard, T. A.; DeForest, C. E.; Tappin, S. J.; Odstrcil, D.

    2013-03-01

    In this, the final installment in a three-part series on the Thomson surface, we present simulated observations of coronal mass ejections (CMEs) observed by a hypothetical polarizing white light heliospheric imager. Thomson scattering yields a polarization signal that can be exploited to locate observed features in three dimensions relative to the Thomson surface. We consider how the appearance of the CME changes with the direction of trajectory, using simulations of a simple geometrical shape and also of a more realistic CME generated using the ENLIL model. We compare the appearance in both unpolarized B and polarized pB light, and show that there is a quantifiable difference in the measured brightness of a CME between unpolarized and polarized observations. We demonstrate a technique for using this difference to extract the three-dimensional (3D) trajectory of large objects such as CMEs. We conclude with a discussion on how a polarizing heliospheric imager could be used to extract 3D trajectory information about CMEs or other observed features.

  3. High resolution 3D insider detection and tracking.

    SciTech Connect

    Nelson, Cynthia Lee

    2003-09-01

    Vulnerability analysis studies show that one of the worst threats against a facility is that of an active insider during an emergency evacuation. When a criticality or other emergency alarm occurs, employees immediately proceed along evacuation routes to designated areas. Procedures are then implemented to account for all material, classified parts, etc. The 3-Dimensional Video Motion Detection (3DVMD) technology could be used to detect and track possible insider activities during alarm situations, as just described, as well as during normal operating conditions. The 3DVMD technology uses multiple cameras to create 3-dimensional detection volumes or zones. Movement throughout detection zones is tracked and high-level information, such as the number of people and their direction of motion, is extracted. In the described alarm scenario, deviances of evacuation procedures taken by an individual could be immediately detected and relayed to a central alarm station. The insider could be tracked and any protected items removed from the area could be flagged. The 3DVMD technology could also be used to monitor such items as machines that are used to build classified parts. During an alarm, detections could be made if items were removed from the machine. Overall, the use of 3DVMD technology during emergency evacuations would help to prevent the loss of classified items and would speed recovery from emergency situations. Further security could also be added by analyzing tracked behavior (motion) as it corresponds to predicted behavior, e.g., behavior corresponding with the execution of required procedures. This information would be valuable for detecting a possible insider not only during emergency situations, but also during times of normal operation.

  4. Feature point based 3D tracking of multiple fish from multi-view images

    PubMed Central

    Qian, Zhi-Ming

    2017-01-01

    A feature point based method is proposed for tracking multiple fish in 3D space. First, a simplified representation of the object is realized through construction of two feature point models based on its appearance characteristics. After feature points are classified into occluded and non-occluded types, matching and association are performed, respectively. Finally, the object's motion trajectory in 3D space is obtained through integrating multi-view tracking results. Experimental results show that the proposed method can simultaneously track 3D motion trajectories for up to 10 fish accurately and robustly. PMID:28665966

  5. Tracking 3-D body motion for docking and robot control

    NASA Technical Reports Server (NTRS)

    Donath, M.; Sorensen, B.; Yang, G. B.; Starr, R.

    1987-01-01

    An advanced method of tracking three-dimensional motion of bodies has been developed. This system has the potential to dynamically characterize machine and other structural motion, even in the presence of structural flexibility, thus facilitating closed loop structural motion control. The system's operation is based on the concept that the intersection of three planes defines a point. Three rotating planes of laser light, fixed and moving photovoltaic diode targets, and a pipe-lined architecture of analog and digital electronics are used to locate multiple targets whose number is only limited by available computer memory. Data collection rates are a function of the laser scan rotation speed and are currently selectable up to 480 Hz. The tested performance on a preliminary prototype designed for 0.1 in accuracy (for tracking human motion) at a 480 Hz data rate includes a worst case resolution of 0.8 mm (0.03 inches), a repeatability of plus or minus 0.635 mm (plus or minus 0.025 inches), and an absolute accuracy of plus or minus 2.0 mm (plus or minus 0.08 inches) within an eight cubic meter volume with all results applicable at the 95 percent level of confidence along each coordinate region. The full six degrees of freedom of a body can be computed by attaching three or more target detectors to the body of interest.

  6. Modeling cell migration on filamentous tracks in 3D

    NASA Astrophysics Data System (ADS)

    Schwarz, J. M.

    2014-03-01

    Cell motility is integral to a number of physiological processes ranging from wound healing to immune response to cancer metastasis. Many studies of cell migration, both experimental and theoretical, have addressed various aspects of it in two dimensions, including protrusion and retraction at the level of single cells. However, the in vivo environment for a crawling cell is typically a three-dimensional environment, consisting of the extracellular matrix (ECM) and surrounding cells. Recent experiments demonstrate that some cells crawling along fibers of the ECM mimic the geometry of the fibers to become long and thin, as opposed to fan-like in two dimensions, and can remodel the ECM. Inspired by these experiments, a model cell consisting of beads and springs that moves along a tense semiflexible filamentous track is constructed and studied, paying particular attention to the mechanical feedback between the model cell and the track, as mediated by the active myosin-driven contractility and the catch/slip bond behavior of the focal adhesions, as the model cell crawls. This simple construction can then be scaled up to a model cell moving along a three-dimensional filamentous network, with a prescribed microenvironment, in order to make predictions for proposed experiments.

  7. Experimental characterization of 3D localization techniques for particle-tracking and super-resolution microscopy.

    PubMed

    Mlodzianoski, Michael J; Juette, Manuel F; Beane, Glen L; Bewersdorf, Joerg

    2009-05-11

    Three-dimensional (3D) particle localization at the nanometer scale plays a central role in 3D particle tracking and 3D localization-based super-resolution microscopy. Here we introduce a localization algorithm that is independent of theoretical models and therefore generally applicable to a large number of experimental realizations. Applying this algorithm and a convertible experimental setup we compare the performance of the two major 3D techniques based on astigmatic distortions and on multiplane detection. In both methods we obtain experimental 3D localization accuracies in agreement with theoretical predictions and characterize the depth dependence of the localization accuracy in detail.

  8. A non-disruptive technology for robust 3D tool tracking for ultrasound-guided interventions.

    PubMed

    Mung, Jay; Vignon, Francois; Jain, Ameet

    2011-01-01

    In the past decade ultrasound (US) has become the preferred modality for a number of interventional procedures, offering excellent soft tissue visualization. The main limitation however is limited visualization of surgical tools. A new method is proposed for robust 3D tracking and US image enhancement of surgical tools under US guidance. Small US sensors are mounted on existing surgical tools. As the imager emits acoustic energy, the electrical signal from the sensor is analyzed to reconstruct its 3D coordinates. These coordinates can then be used for 3D surgical navigation, similar to current day tracking systems. A system with real-time 3D tool tracking and image enhancement was implemented on a commercial ultrasound scanner and 3D probe. Extensive water tank experiments with a tracked 0.2mm sensor show robust performance in a wide range of imaging conditions and tool position/orientations. The 3D tracking accuracy was 0.36 +/- 0.16mm throughout the imaging volume of 55 degrees x 27 degrees x 150mm. Additionally, the tool was successfully tracked inside a beating heart phantom. This paper proposes an image enhancement and tool tracking technology with sub-mm accuracy for US-guided interventions. The technology is non-disruptive, both in terms of existing clinical workflow and commercial considerations, showing promise for large scale clinical impact.

  9. Tracking Protein-coated Particles in 3D.

    NASA Astrophysics Data System (ADS)

    Gratton, Enrico

    2006-03-01

    The utilization of 2-photon microscopy in the field of Cell Biology is of increasing importance because it allows imaging of living cells, including those systems where UV imaging is not possible due to photobleaching or photodamage limitations. We propose a novel approach using 2-photon excitation based on the use of a scanner to produce an effective ``intensity trap''. As the particle moves in this trap (note that there is no force applied on the particle at the power level we are using for particle detection), the detection system continuously calculates the position of the particle in the trap. As the position of the particle is calculated with respect to the trap, the scanner position is moved to minimize the ``modulation'' of the light intensity in the trap. In practice, we set the scanner to perform an orbit around the particle in about 1 millisecond. The sampling rate is chosen such that many points (32 or 64) are acquired during the orbit. An FFT (Fast Fourier Transform) is performed on the points acquired during one orbit or after a series of orbits. The DC, AC and phase of the first harmonic of the FFT are calculated. The value of the modulation varies monotonically as the distance of the particle from the center of the orbit is increased so that for every value of the modulation we can estimate the value of the distance of the particle from the center of the orbit. The phase of the first harmonic gives the angular position of the particle with respect to the scanner zero phase which is known relative to the lab coordinates. The effective bandwidth of the tracking system depends on the maximum frequency for sinusoidal oscillation of the scanner, which is about 5 kHz for our galvano-scanner and on the number of photons needed for detecting the particle against the noise. Of course, there are other important considerations. First, if the motion of the particle is too fast such that after one orbit the particle moves too far from the new position calculated

  10. On the dynamics of jellyfish locomotion via 3D particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Piper, Matthew; Kim, Jin-Tae; Chamorro, Leonardo P.

    2016-11-01

    The dynamics of jellyfish (Aurelia aurita) locomotion is experimentally studied via 3D particle tracking velocimetry. 3D locations of the bell tip are tracked over 1.5 cycles to describe the jellyfish path. Multiple positions of the jellyfish bell margin are initially tracked in 2D from four independent planes and individually projected in 3D based on the jellyfish path and geometrical properties of the setup. A cubic spline interpolation and the exponentially weighted moving average are used to estimate derived quantities, including velocity and acceleration of the jellyfish locomotion. We will discuss distinctive features of the jellyfish 3D motion at various swimming phases, and will provide insight on the 3D contraction and relaxation in terms of the locomotion, the steadiness of the bell margin eccentricity, and local Reynolds number based on the instantaneous mean diameter of the bell.

  11. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  12. A new 3D tracking method exploiting the capabilities of digital holography in microscopy

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Merola, F.; Fusco, S.; Embrione, V.; Netti, P. A.; Ferraro, P.

    2013-04-01

    A method for 3D tracking has been developed exploiting Digital Holographic Microscopy (DHM) features. In the framework of self-consistent platform for manipulation and measurement of biological specimen we use DHM for quantitative and completely label free analysis of specimen with low amplitude contrast. Tracking capability extend the potentiality of DHM allowing to monitor the motion of appropriate probes and correlate it with sample properties. Complete 3D tracking has been obtained for the probes avoiding the issue of amplitude refocusing in traditional tracking processing. Our technique belongs to the video tracking methods that, conversely from Quadrant Photo-Diode method, opens the possibility to track multiples probes. All the common used video tracking algorithms are based on the numerical analysis of amplitude images in the focus plane and the shift of the maxima in the image plane are measured after the application of an appropriate threshold. Our approach for video tracking uses different theoretical basis. A set of interferograms is recorded and the complex wavefields are managed numerically to obtain three dimensional displacements of the probes. The procedure works properly on an higher number of probes and independently from their size. This method overcomes the traditional video tracking issues as the inability to measure the axial movement and the choice of suitable threshold mask. The novel configuration allows 3D tracking of micro-particles and simultaneously can furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. In this paper, we show a new concept for a compact interferometric microscope that can ensure the multifunctionality, accomplishing accurate 3D tracking and quantitative phase-contrast analysis. Experimental results are presented and discussed for in vitro cells. Through a very simple and compact optical arrangement we show how two different functionalities

  13. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  14. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

    PubMed Central

    Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-01-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values. PMID:26693303

  15. 3D deformable organ model based liver motion tracking in ultrasound videos

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Bae; Hwang, Youngkyoo; Oh, Young-Taek; Bang, Won-Chul; Lee, Heesae; Kim, James D. K.; Kim, Chang Yeong

    2013-03-01

    This paper presents a novel method of using 2D ultrasound (US) cine images during image-guided therapy to accurately track the 3D position of a tumor even when the organ of interest is in motion due to patient respiration. Tracking is possible thanks to a 3D deformable organ model we have developed. The method consists of three processes in succession. The first process is organ modeling where we generate a personalized 3D organ model from high quality 3D CT or MR data sets captured during three different respiratory phases. The model includes the organ surface, vessel and tumor, which can all deform and move in accord with patient respiration. The second process is registration of the organ model to 3D US images. From 133 respiratory phase candidates generated from the deformable organ model, we resolve the candidate that best matches the 3D US images according to vessel centerline and surface. As a result, we can determine the position of the US probe. The final process is real-time tracking using 2D US cine images captured by the US probe. We determine the respiratory phase by tracking the diaphragm on the image. The 3D model is then deformed according to respiration phase and is fitted to the image by considering the positions of the vessels. The tumor's 3D positions are then inferred based on respiration phase. Testing our method on real patient data, we have found the accuracy of 3D position is within 3.79mm and processing time is 5.4ms during tracking.

  16. Head Tracking for 3D Audio Using a GPS-Aided MEMS IMU

    DTIC Science & Technology

    2005-03-01

    Aircraft, Directional Signals, GPS/INS Fusion , GPS/INS Integration, Head Tracking Systems, IMU (Inertial Measurement Unit), Inertial Sensors, MEMS...HEAD TRACKING FOR 3D AUDIO USING A GPS-AIDED MEMS IMU THESIS Jacque M. Joffrion, Captain, USAF AFIT/GE/ENG/05-09 DEPARTMENT OF THE AIR FORCE AIR...the United States Government. AFIT/GE/ENG/05-09 HEAD TRACKING FOR 3D AUDIO USING A GPS-AIDED MEMS IMU THESIS Presented to the Faculty of the Department

  17. 3D model-based catheter tracking for motion compensation in EP procedures

    NASA Astrophysics Data System (ADS)

    Brost, Alexander; Liao, Rui; Hornegger, Joachim; Strobel, Norbert

    2010-02-01

    Atrial fibrillation is the most common sustained heart arrhythmia and a leading cause of stroke. Its treatment by radio-frequency catheter ablation, performed using fluoroscopic image guidance, is gaining increasingly more importance. Two-dimensional fluoroscopic navigation can take advantage of overlay images derived from pre-operative 3-D data to add anatomical details otherwise not visible under X-ray. Unfortunately, respiratory motion may impair the utility of these static overlay images for catheter navigation. We developed an approach for image-based 3-D motion compensation as a solution to this problem. A bi-plane C-arm system is used to take X-ray images of a special circumferential mapping catheter from two directions. In the first step of the method, a 3-D model of the device is reconstructed. Three-dimensional respiratory motion at the site of ablation is then estimated by tracking the reconstructed catheter model in 3-D. This step involves bi-plane fluoroscopy and 2-D/3-D registration. Phantom data and clinical data were used to assess our model-based catheter tracking method. Experiments involving a moving heart phantom yielded an average 2-D tracking error of 1.4 mm and an average 3-D tracking error of 1.1 mm. Our evaluation of clinical data sets comprised 469 bi-plane fluoroscopy frames (938 monoplane fluoroscopy frames). We observed an average 2-D tracking error of 1.0 mm +/- 0.4 mm and an average 3-D tracking error of 0.8 mm +/- 0.5 mm. These results demonstrate that model-based motion-compensation based on 2-D/3-D registration is both feasible and accurate.

  18. LayTracks3D: A new approach for meshing general solids using medial axis transform

    DOE PAGES

    Quadros, William Roshan

    2015-08-22

    This study presents an extension of the all-quad meshing algorithm called LayTracks to generate high quality hex-dominant meshes of general solids. LayTracks3D uses the mapping between the Medial Axis (MA) and the boundary of the 3D domain to decompose complex 3D domains into simpler domains called Tracks. Tracks in 3D have no branches and are symmetric, non-intersecting, orthogonal to the boundary, and the shortest path from the MA to the boundary. These properties of tracks result in desired meshes with near cube shape elements at the boundary, structured mesh along the boundary normal with any irregular nodes restricted to themore » MA, and sharp boundary feature preservation. The algorithm has been tested on a few industrial CAD models and hex-dominant meshes are shown in the Results section. Work is underway to extend LayTracks3D to generate all-hex meshes.« less

  19. 3D-printed concentrators for tracking-integrated CPV modules

    NASA Astrophysics Data System (ADS)

    Apostoleris, Harry; Leland, Julian; Chiesa, Matteo; Stefancich, Marco

    2016-09-01

    We demonstrate 3D-printed nonimaging concentrators and propose a tracking integration scheme to reduce the external tracking requirements of CPV modules. In the proposed system, internal sun tracking is achieved by rotation of the mini-concentrators inside the module by small motors. We discuss the design principles employed in the development of the system, experimentally evaluate the performance of the concentrator prototypes, and propose practical modifications that may be made to improve on-site performance of the devices.

  20. Extraction and tracking of MRI tagging sheets using a 3D Gabor filter bank.

    PubMed

    Qian, Zhen; Metaxas, Dimitris N; Axel, Leon

    2006-01-01

    In this paper, we present a novel method for automatically extracting the tagging sheets in tagged cardiac MR images, and tracking their displacement during the heart cycle, using a tunable 3D Gabor filter bank. Tagged MRI is a non-invasive technique for the study of myocardial deformation. We design the 3D Gabor filter bank based on the geometric characteristics of the tagging sheets. The tunable parameters of the Gabor filter bank are used to adapt to the myocardium deformation. The whole 3D image dataset is convolved with each Gabor filter in the filter bank, in the Fourier domain. Then we impose a set of deformable meshes onto the extracted tagging sheets and track them over time. Dynamic estimation of the filter parameters and the mesh internal smoothness are used to help the tracking. Some very encouraging results are shown.

  1. 3D tracking of mating events in wild swarms of the malaria mosquito Anopheles gambiae.

    PubMed

    Butail, Sachit; Manoukis, Nicholas; Diallo, Moussa; Yaro, Alpha S; Dao, Adama; Traoré, Sekou F; Ribeiro, José M; Lehmann, Tovi; Paley, Derek A

    2011-01-01

    We describe an automated tracking system that allows us to reconstruct the 3D kinematics of individual mosquitoes in swarms of Anopheles gambiae. The inputs to the tracking system are video streams recorded from a stereo camera system. The tracker uses a two-pass procedure to automatically localize and track mosquitoes within the swarm. A human-in-the-loop step verifies the estimates and connects broken tracks. The tracker performance is illustrated using footage of mating events filmed in Mali in August 2010.

  2. High-throughput 3D tracking of bacteria on a standard phase contrast microscope

    NASA Astrophysics Data System (ADS)

    Taute, K. M.; Gude, S.; Tans, S. J.; Shimizu, T. S.

    2015-11-01

    Bacteria employ diverse motility patterns in traversing complex three-dimensional (3D) natural habitats. 2D microscopy misses crucial features of 3D behaviour, but the applicability of existing 3D tracking techniques is constrained by their performance or ease of use. Here we present a simple, broadly applicable, high-throughput 3D bacterial tracking method for use in standard phase contrast microscopy. Bacteria are localized at micron-scale resolution over a range of 350 × 300 × 200 μm by maximizing image cross-correlations between their observed diffraction patterns and a reference library. We demonstrate the applicability of our technique to a range of bacterial species and exploit its high throughput to expose hidden contributions of bacterial individuality to population-level variability in motile behaviour. The simplicity of this powerful new tool for bacterial motility research renders 3D tracking accessible to a wider community and paves the way for investigations of bacterial motility in complex 3D environments.

  3. High-throughput 3D tracking of bacteria on a standard phase contrast microscope

    PubMed Central

    Taute, K.M.; Gude, S.; Tans, S.J.; Shimizu, T.S.

    2015-01-01

    Bacteria employ diverse motility patterns in traversing complex three-dimensional (3D) natural habitats. 2D microscopy misses crucial features of 3D behaviour, but the applicability of existing 3D tracking techniques is constrained by their performance or ease of use. Here we present a simple, broadly applicable, high-throughput 3D bacterial tracking method for use in standard phase contrast microscopy. Bacteria are localized at micron-scale resolution over a range of 350 × 300 × 200 μm by maximizing image cross-correlations between their observed diffraction patterns and a reference library. We demonstrate the applicability of our technique to a range of bacterial species and exploit its high throughput to expose hidden contributions of bacterial individuality to population-level variability in motile behaviour. The simplicity of this powerful new tool for bacterial motility research renders 3D tracking accessible to a wider community and paves the way for investigations of bacterial motility in complex 3D environments. PMID:26522289

  4. Optimal Local Searching for Fast and Robust Textureless 3D Object Tracking in Highly Cluttered Backgrounds.

    PubMed

    Seo, Byung-Kuk; Park, Jong-Il; Hinterstoisser, Stefan; Ilic, Slobodan

    2013-06-13

    Edge-based tracking is a fast and plausible approach for textureless 3D object tracking, but its robustness is still very challenging in highly cluttered backgrounds due to numerous local minima. To overcome this problem, we propose a novel method for fast and robust textureless 3D object tracking in highly cluttered backgrounds. The proposed method is based on optimal local searching of 3D-2D correspondences between a known 3D object model and 2D scene edges in an image with heavy background clutter. In our searching scheme, searching regions are partitioned into three levels (interior, contour, and exterior) with respect to the previous object region, and confident searching directions are determined by evaluating candidates of correspondences on their region levels; thus, the correspondences are searched among likely candidates in only the confident directions instead of searching through all candidates. To ensure the confident searching direction, we also adopt the region appearance, which is efficiently modeled on a newly defined local space (called a searching bundle). Experimental results and performance evaluations demonstrate that our method fully supports fast and robust textureless 3D object tracking even in highly cluttered backgrounds.

  5. Optimal local searching for fast and robust textureless 3D object tracking in highly cluttered backgrounds.

    PubMed

    Seo, Byung-Kuk; Park, Hanhoon; Park, Jong-Il; Hinterstoisser, Stefan; Ilic, Slobodan

    2014-01-01

    Edge-based tracking is a fast and plausible approach for textureless 3D object tracking, but its robustness is still very challenging in highly cluttered backgrounds due to numerous local minima. To overcome this problem, we propose a novel method for fast and robust textureless 3D object tracking in highly cluttered backgrounds. The proposed method is based on optimal local searching of 3D-2D correspondences between a known 3D object model and 2D scene edges in an image with heavy background clutter. In our searching scheme, searching regions are partitioned into three levels (interior, contour, and exterior) with respect to the previous object region, and confident searching directions are determined by evaluating candidates of correspondences on their region levels; thus, the correspondences are searched among likely candidates in only the confident directions instead of searching through all candidates. To ensure the confident searching direction, we also adopt the region appearance, which is efficiently modeled on a newly defined local space (called a searching bundle). Experimental results and performance evaluations demonstrate that our method fully supports fast and robust textureless 3D object tracking even in highly cluttered backgrounds.

  6. Improving segmentation of 3D touching cell nuclei using flow tracking on surface meshes.

    PubMed

    Li, Gang; Guo, Lei

    2012-01-01

    Automatic segmentation of touching cell nuclei in 3D microscopy images is of great importance in bioimage informatics and computational biology. This paper presents a novel method for improving 3D touching cell nuclei segmentation. Given binary touching nuclei by the method in Li et al. (2007), our method herein consists of several steps: surface mesh reconstruction and curvature information estimation; direction field diffusion on surface meshes; flow tracking on surface meshes; and projection of surface mesh segmentation to volumetric images. The method is validated on both synthesised and real 3D touching cell nuclei images, demonstrating its validity and effectiveness.

  7. Tracking 3D Picometer-Scale Motions of Single Nanoparticles with High-Energy Electron Probes

    PubMed Central

    Ogawa, Naoki; Hoshisashi, Kentaro; Sekiguchi, Hiroshi; Ichiyanagi, Kouhei; Matsushita, Yufuku; Hirohata, Yasuhisa; Suzuki, Seiichi; Ishikawa, Akira; Sasaki, Yuji C.

    2013-01-01

    We observed the high-speed anisotropic motion of an individual gold nanoparticle in 3D at the picometer scale using a high-energy electron probe. Diffracted electron tracking (DET) using the electron back-scattered diffraction (EBSD) patterns of labeled nanoparticles under wet-SEM allowed us to super-accurately measure the time-resolved 3D motion of individual nanoparticles in aqueous conditions. The highly precise DET data corresponded to the 3D anisotropic log-normal Gaussian distributions over time at the millisecond scale. PMID:23868465

  8. Detailed Evaluation of Five 3D Speckle Tracking Algorithms Using Synthetic Echocardiographic Recordings.

    PubMed

    Alessandrini, Martino; Heyde, Brecht; Queiros, Sandro; Cygan, Szymon; Zontak, Maria; Somphone, Oudom; Bernard, Olivier; Sermesant, Maxime; Delingette, Herve; Barbosa, Daniel; De Craene, Mathieu; ODonnell, Matthew; Dhooge, Jan

    2016-08-01

    A plethora of techniques for cardiac deformation imaging with 3D ultrasound, typically referred to as 3D speckle tracking techniques, are available from academia and industry. Although the benefits of single methods over alternative ones have been reported in separate publications, the intrinsic differences in the data and definitions used makes it hard to compare the relative performance of different solutions. To address this issue, we have recently proposed a framework to simulate realistic 3D echocardiographic recordings and used it to generate a common set of ground-truth data for 3D speckle tracking algorithms, which was made available online. The aim of this study was therefore to use the newly developed database to contrast non-commercial speckle tracking solutions from research groups with leading expertise in the field. The five techniques involved cover the most representative families of existing approaches, namely block-matching, radio-frequency tracking, optical flow and elastic image registration. The techniques were contrasted in terms of tracking and strain accuracy. The feasibility of the obtained strain measurements to diagnose pathology was also tested for ischemia and dyssynchrony.

  9. Vision-Based Long-Range 3D Tracking, applied to Underground Surveying Tasks

    NASA Astrophysics Data System (ADS)

    Mossel, Annette; Gerstweiler, Georg; Vonach, Emanuel; Kaufmann, Hannes; Chmelina, Klaus

    2014-04-01

    To address the need of highly automated positioning systems in underground construction, we present a long-range 3D tracking system based on infrared optical markers. It provides continuous 3D position estimation of static or kinematic targets with low latency over a tracking volume of 12 m x 8 m x 70 m (width x height x depth). Over the entire volume, relative 3D point accuracy with a maximal deviation ≤ 22 mm is ensured with possible target rotations of yaw, pitch = 0 - 45° and roll = 0 - 360°. No preliminary sighting of target(s) is necessary since the system automatically locks onto a target without user intervention and autonomously starts tracking as soon as a target is within the view of the system. The proposed system needs a minimal hardware setup, consisting of two machine vision cameras and a standard workstation for data processing. This allows for quick installation with minimal disturbance of construction work. The data processing pipeline ensures camera calibration and tracking during on-going underground activities. Tests in real underground scenarios prove the system's capabilities to act as 3D position measurement platform for multiple underground tasks that require long range, low latency and high accuracy. Those tasks include simultaneously tracking of personnel, machines or robots.

  10. Note: Time-gated 3D single quantum dot tracking with simultaneous spinning disk imaging

    SciTech Connect

    DeVore, M. S.; Stich, D. G.; Keller, A. M.; Phipps, M. E.; Hollingsworth, J. A.; Goodwin, P. M.; Werner, J. H.; Cleyrat, C.; Lidke, D. S.; Wilson, B. S.

    2015-12-15

    We describe recent upgrades to a 3D tracking microscope to include simultaneous Nipkow spinning disk imaging and time-gated single-particle tracking (SPT). Simultaneous 3D molecular tracking and spinning disk imaging enable the visualization of cellular structures and proteins around a given fluorescently labeled target molecule. The addition of photon time-gating to the SPT hardware improves signal to noise by discriminating against Raman scattering and short-lived fluorescence. In contrast to camera-based SPT, single-photon arrival times are recorded, enabling time-resolved spectroscopy (e.g., measurement of fluorescence lifetimes and photon correlations) to be performed during single molecule/particle tracking experiments.

  11. Fast and reliable active appearance model search for 3-D face tracking.

    PubMed

    Dornaika, F; Ahlberg, J

    2004-08-01

    This paper addresses the three-dimensional (3-D) tracking of pose and animation of the human face in monocular image sequences using active appearance models. The major problem of the classical appearance-based adaptation is the high computational time resulting from the inclusion of a synthesis step in the iterative optimization. Whenever the dimension of the face space is large, a real-time performance cannot be achieved. In this paper, we aim at designing a fast and stable active appearance model search for 3-D face tracking. The main contribution is a search algorithm whose CPU-time is not dependent on the dimension of the face space. Using this algorithm, we show that both the CPU-time and the likelihood of a nonaccurate tracking are reduced. Experiments evaluating the effectiveness of the proposed algorithm are reported, as well as method comparison and tracking synthetic and real image sequences.

  12. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  13. Towards 3D ultrasound image based soft tissue tracking: a transrectal ultrasound prostate image alignment system.

    PubMed

    Baumann, Michael; Mozer, Pierre; Daanen, Vincent; Troccaz, Jocelyne

    2007-01-01

    The emergence of real-time 3D ultrasound (US) makes it possible to consider image-based tracking of subcutaneous soft tissue targets for computer guided diagnosis and therapy. We propose a 3D transrectal US based tracking system for precise prostate biopsy sample localisation. The aim is to improve sample distribution, to enable targeting of unsampled regions for repeated biopsies, and to make post-interventional quality controls possible. Since the patient is not immobilized, since the prostate is mobile and due to the fact that probe movements are only constrained by the rectum during biopsy acquisition, the tracking system must be able to estimate rigid transformations that are beyond the capture range of common image similarity measures. We propose a fast and robust multi-resolution attribute-vector registration approach that combines global and local optimization methods to solve this problem. Global optimization is performed on a probe movement model that reduces the dimensionality of the search space and thus renders optimization efficient. The method was tested on 237 prostate volumes acquired from 14 different patients for 3D to 3D and 3D to orthogonal 2D slices registration. The 3D-3D version of the algorithm converged correctly in 96.7% of all cases in 6.5s with an accuracy of 1.41mm (r.m.s.) and 3.84mm (max). The 3D to slices method yielded a success rate of 88.9% in 2.3s with an accuracy of 1.37mm (r.m.s.) and 4.3mm (max).

  14. Dictionary learning-based spatiotemporal regularization for 3D dense speckle tracking

    NASA Astrophysics Data System (ADS)

    Lu, Allen; Zontak, Maria; Parajuli, Nripesh; Stendahl, John C.; Boutagy, Nabil; Eberle, Melissa; O'Donnell, Matthew; Sinusas, Albert J.; Duncan, James S.

    2017-03-01

    Speckle tracking is a common method for non-rigid tissue motion analysis in 3D echocardiography, where unique texture patterns are tracked through the cardiac cycle. However, poor tracking often occurs due to inherent ultrasound issues, such as image artifacts and speckle decorrelation; thus regularization is required. Various methods, such as optical flow, elastic registration, and block matching techniques have been proposed to track speckle motion. Such methods typically apply spatial and temporal regularization in a separate manner. In this paper, we propose a joint spatiotemporal regularization method based on an adaptive dictionary representation of the dense 3D+time Lagrangian motion field. Sparse dictionaries have good signal adaptive and noise-reduction properties; however, they are prone to quantization errors. Our method takes advantage of the desirable noise suppression, while avoiding the undesirable quantization error. The idea is to enforce regularization only on the poorly tracked trajectories. Specifically, our method 1.) builds data-driven 4-dimensional dictionary of Lagrangian displacements using sparse learning, 2.) automatically identifies poorly tracked trajectories (outliers) based on sparse reconstruction errors, and 3.) performs sparse reconstruction of the outliers only. Our approach can be applied on dense Lagrangian motion fields calculated by any method. We demonstrate the effectiveness of our approach on a baseline block matching speckle tracking and evaluate performance of the proposed algorithm using tracking and strain accuracy analysis.

  15. Geometric-model-free tracking of extended targets using 3D lidar measurements

    NASA Astrophysics Data System (ADS)

    Steinemann, Philipp; Klappstein, Jens; Dickmann, Juergen; von Hundelshausen, Felix; Wünsche, Hans-Joachim

    2012-06-01

    Tracking of extended targets in high definition, 360-degree 3D-LIDAR (Light Detection and Ranging) measurements is a challenging task and a current research topic. It is a key component in robotic applications, and is relevant to path planning and collision avoidance. This paper proposes a new method without a geometric model to simultaneously track and accumulate 3D-LIDAR measurements of an object. The method itself is based on a particle filter and uses an object-related local 3D grid for each object. No geometric object hypothesis is needed. Accumulation allows coping with occlusions. The prediction step of the particle filter is governed by a motion model consisting of a deterministic and a probabilistic part. Since this paper is focused on tracking ground vehicles, a bicycle model is used for the deterministic part. The probabilistic part depends on the current state of each particle. A function for calculating the current probability density function for state transition is developed. It is derived in detail and based on a database consisting of vehicle dynamics measurements over several hundreds of kilometers. The adaptive probability density function narrows down the gating area for measurement data association. The second part of the proposed method addresses weighting the particles with a cost function. Different 3D-griddependent cost functions are presented and evaluated. Evaluations with real 3D-LIDAR measurements show the performance of the proposed method. The results are also compared to ground truth data.

  16. The BaBar Level 1 Drift-Chamber Trigger Upgrade With 3D Tracking

    SciTech Connect

    Chai, X.D.; /Iowa U.

    2005-11-29

    At BABAR, the Level 1 Drift Chamber trigger is being upgraded to reduce increasing background rates while the PEP-II luminosity keeps improving. This upgrade uses the drift time information and stereo wires in the drift chamber to perform a 3D track reconstruction that effectively rejects background events spread out along the beam line.

  17. Moving Human Path Tracking Based on Video Surveillance in 3d Indoor Scenarios

    NASA Astrophysics Data System (ADS)

    Zhou, Yan; Zlatanova, Sisi; Wang, Zhe; Zhang, Yeting; Liu, Liu

    2016-06-01

    Video surveillance systems are increasingly used for a variety of 3D indoor applications. We can analyse human behaviour, discover and avoid crowded areas, monitor human traffic and so forth. In this paper we concentrate on use of surveillance cameras to track and reconstruct the path a person has followed. For the purpose we integrated video surveillance data with a 3D indoor model of the building and develop a single human moving path tracking method. We process the surveillance videos to detected single human moving traces; then we match the depth information of 3D scenes to the constructed 3D indoor network model and define the human traces in the 3D indoor space. Finally, the single human traces extracted from multiple cameras are connected with the help of the connectivity provided by the 3D network model. Using this approach, we can reconstruct the entire walking path. The provided experiments with a single person have verified the effectiveness and robustness of the method.

  18. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    PubMed

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  19. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics

    PubMed Central

    YOSHINO, Masanori; SAITO, Toki; KIN, Taichi; NAKAGAWA, Daichi; NAKATOMI, Hirofumi; OYAMA, Hiroshi; SAITO, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications. PMID:26226982

  20. A full-parallax 3D display with restricted viewing zone tracking viewer's eye

    NASA Astrophysics Data System (ADS)

    Beppu, Naoto; Yendo, Tomohiro

    2015-03-01

    The Three-Dimensional (3D) vision became widely known as familiar imaging technique now. The 3D display has been put into practical use in various fields, such as entertainment and medical fields. Development of 3D display technology will play an important role in a wide range of fields. There are various ways to the method of displaying 3D image. There is one of the methods that showing 3D image method to use the ray reproduction and we focused on it. This method needs many viewpoint images when achieve a full-parallax because this method display different viewpoint image depending on the viewpoint. We proposed to reduce wasteful rays by limiting projector's ray emitted to around only viewer using a spinning mirror, and to increase effectiveness of display device to achieve a full-parallax 3D display. We propose a method by using a tracking viewer's eye, a high-speed projector, a rotating mirror that tracking viewer (a spinning mirror), a concave mirror array having the different vertical slope arranged circumferentially (a concave mirror array), a cylindrical mirror. About proposed method in simulation, we confirmed the scanning range and the locus of the movement in the horizontal direction of the ray. In addition, we confirmed the switching of the viewpoints and convergence performance in the vertical direction of rays. Therefore, we confirmed that it is possible to realize a full-parallax.

  1. Handling Motion-Blur in 3D Tracking and Rendering for Augmented Reality.

    PubMed

    Park, Youngmin; Lepetit, Vincent; Woo, Woontack

    2012-09-01

    The contribution of this paper is two-fold. First, we show how to extend the ESM algorithm to handle motion blur in 3D object tracking. ESM is a powerful algorithm for template matching-based tracking, but it can fail under motion blur. We introduce an image formation model that explicitly consider the possibility of blur, and shows its results in a generalization of the original ESM algorithm. This allows to converge faster, more accurately and more robustly even under large amount of blur. Our second contribution is an efficient method for rendering the virtual objects under the estimated motion blur. It renders two images of the object under 3D perspective, and warps them to create many intermediate images. By fusing these images we obtain a final image for the virtual objects blurred consistently with the captured image. Because warping is much faster than 3D rendering, we can create realistically blurred images at a very low computational cost.

  2. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography

    PubMed Central

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J.; French, Paul M. W.; McGinty, James

    2015-01-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound. PMID:25909009

  3. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography.

    PubMed

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J; French, Paul M W; McGinty, James

    2015-04-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound.

  4. Surveillance, detection, and 3D infrared tracking of bullets, rockets, mortars, and artillery

    NASA Astrophysics Data System (ADS)

    Leslie, Daniel H.; Hyman, Howard; Moore, Fritz; Squire, Mark D.

    2001-09-01

    We describe test results using the FIRST (Fast InfraRed Sniper Tracker) to detect, track, and range to bullets in flight for determining the location of the bullet launch point. The technology developed for the FIRST system can be used to provide detection and accurate 3D track data for other small threat objects including rockets, mortars, and artillery in addition to bullets. We discuss the radiometry and detection range for these objects, and discuss the trade-offs involved in design of the very fast optical system for acquisition, tracking, and ranging of these targets.

  5. Particle Filters and Occlusion Handling for Rigid 2D-3D Pose Tracking

    PubMed Central

    Lee, Jehoon; Sandhu, Romeil; Tannenbaum, Allen

    2013-01-01

    In this paper, we address the problem of 2D-3D pose estimation. Specifically, we propose an approach to jointly track a rigid object in a 2D image sequence and to estimate its pose (position and orientation) in 3D space. We revisit a joint 2D segmentation/3D pose estimation technique, and then extend the framework by incorporating a particle filter to robustly track the object in a challenging environment, and by developing an occlusion detection and handling scheme to continuously track the object in the presence of occlusions. In particular, we focus on partial occlusions that prevent the tracker from extracting an exact region properties of the object, which plays a pivotal role for region-based tracking methods in maintaining the track. To this end, a dynamical choice of how to invoke the objective functional is performed online based on the degree of dependencies between predictions and measurements of the system in accordance with the degree of occlusion and the variation of the object’s pose. This scheme provides the robustness to deal with occlusions of an obstacle with different statistical properties from that of the object of interest. Experimental results demonstrate the practical applicability and robustness of the proposed method in several challenging scenarios. PMID:24058277

  6. 3D model-based detection and tracking for space autonomous and uncooperative rendezvous

    NASA Astrophysics Data System (ADS)

    Shang, Yang; Zhang, Yueqiang; Liu, Haibo

    2015-10-01

    In order to fully navigate using a vision sensor, a 3D edge model based detection and tracking technique was developed. Firstly, we proposed a target detection strategy over a sequence of several images from the 3D model to initialize the tracking. The overall purpose of such approach is to robustly match each image with the model views of the target. Thus we designed a line segment detection and matching method based on the multi-scale space technology. Experiments on real images showed that our method is highly robust under various image changes. Secondly, we proposed a method based on 3D particle filter (PF) coupled with M-estimation to track and estimate the pose of the target efficiently. In the proposed approach, a similarity observation model was designed according to a new distance function of line segments. Then, based on the tracking results of PF, the pose was optimized using M-estimation. Experiments indicated that the proposed method can effectively track and accurately estimate the pose of freely moving target in unconstrained environment.

  7. Structured light 3D tracking system for measuring motions in PET brain imaging

    NASA Astrophysics Data System (ADS)

    Olesen, Oline V.; Jørgensen, Morten R.; Paulsen, Rasmus R.; Højgaard, Liselotte; Roed, Bjarne; Larsen, Rasmus

    2010-02-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light with a DLP projector and a CCD camera is set up on a model of the High Resolution Research Tomograph (HRRT). Methods to reconstruct 3D point clouds of simple surfaces based on phase-shifting interferometry (PSI) are demonstrated. The projector and camera are calibrated using a simple stereo vision procedure where the projector is treated as a camera. Additionally, the surface reconstructions are corrected for the non-linear projector output prior to image capture. The results are convincing and a first step toward a fully automated tracking system for measuring head motions in PET imaging.

  8. Eye Tracking to Explore the Impacts of Photorealistic 3d Representations in Pedstrian Navigation Performance

    NASA Astrophysics Data System (ADS)

    Dong, Weihua; Liao, Hua

    2016-06-01

    Despite the now-ubiquitous two-dimensional (2D) maps, photorealistic three-dimensional (3D) representations of cities (e.g., Google Earth) have gained much attention by scientists and public users as another option. However, there is no consistent evidence on the influences of 3D photorealism on pedestrian navigation. Whether 3D photorealism can communicate cartographic information for navigation with higher effectiveness and efficiency and lower cognitive workload compared to the traditional symbolic 2D maps remains unknown. This study aims to explore whether the photorealistic 3D representation can facilitate processes of map reading and navigation in digital environments using a lab-based eye tracking approach. Here we show the differences of symbolic 2D maps versus photorealistic 3D representations depending on users' eye-movement and navigation behaviour data. We found that the participants using the 3D representation were less effective, less efficient and were required higher cognitive workload than using the 2D map for map reading. However, participants using the 3D representation performed more efficiently in self-localization and orientation at the complex decision points. The empirical results can be helpful to improve the usability of pedestrian navigation maps in future designs.

  9. Label free cell tracking in 3D tissue engineering constructs with high resolution imaging

    NASA Astrophysics Data System (ADS)

    Smith, W. A.; Lam, K.-P.; Dempsey, K. P.; Mazzocchi-Jones, D.; Richardson, J. B.; Yang, Y.

    2014-02-01

    Within the field of tissue engineering there is an emphasis on studying 3-D live tissue structures. Consequently, to investigate and identify cellular activities and phenotypes in a 3-D environment for all in vitro experiments, including shape, migration/proliferation and axon projection, it is necessary to adopt an optical imaging system that enables monitoring 3-D cellular activities and morphology through the thickness of the construct for an extended culture period without cell labeling. This paper describes a new 3-D tracking algorithm developed for Cell-IQ®, an automated cell imaging platform, which has been equipped with an environmental chamber optimized to enable capturing time-lapse sequences of live cell images over a long-term period without cell labeling. As an integral part of the algorithm, a novel auto-focusing procedure was developed for phase contrast microscopy equipped with 20x and 40x objectives, to provide a more accurate estimation of cell growth/trajectories by allowing 3-D voxels to be computed at high spatiotemporal resolution and cell density. A pilot study was carried out in a phantom system consisting of horizontally aligned nanofiber layers (with precise spacing between them), to mimic features well exemplified in cellular activities of neuronal growth in a 3-D environment. This was followed by detailed investigations concerning axonal projections and dendritic circuitry formation in a 3-D tissue engineering construct. Preliminary work on primary animal neuronal cells in response to chemoattractant and topographic cue within the scaffolds has produced encouraging results.

  10. Fusing inertial sensor data in an extended Kalman filter for 3D camera tracking.

    PubMed

    Erdem, Arif Tanju; Ercan, Ali Özer

    2015-02-01

    In a setup where camera measurements are used to estimate 3D egomotion in an extended Kalman filter (EKF) framework, it is well-known that inertial sensors (i.e., accelerometers and gyroscopes) are especially useful when the camera undergoes fast motion. Inertial sensor data can be fused at the EKF with the camera measurements in either the correction stage (as measurement inputs) or the prediction stage (as control inputs). In general, only one type of inertial sensor is employed in the EKF in the literature, or when both are employed they are both fused in the same stage. In this paper, we provide an extensive performance comparison of every possible combination of fusing accelerometer and gyroscope data as control or measurement inputs using the same data set collected at different motion speeds. In particular, we compare the performances of different approaches based on 3D pose errors, in addition to camera reprojection errors commonly found in the literature, which provides further insight into the strengths and weaknesses of different approaches. We show using both simulated and real data that it is always better to fuse both sensors in the measurement stage and that in particular, accelerometer helps more with the 3D position tracking accuracy, whereas gyroscope helps more with the 3D orientation tracking accuracy. We also propose a simulated data generation method, which is beneficial for the design and validation of tracking algorithms involving both camera and inertial measurement unit measurements in general.

  11. Alignment of 3D Building Models and TIR Video Sequences with Line Tracking

    NASA Astrophysics Data System (ADS)

    Iwaszczuk, D.; Stilla, U.

    2014-11-01

    Thermal infrared imagery of urban areas became interesting for urban climate investigations and thermal building inspections. Using a flying platform such as UAV or a helicopter for the acquisition and combining the thermal data with the 3D building models via texturing delivers a valuable groundwork for large-area building inspections. However, such thermal textures are useful for further analysis if they are geometrically correctly extracted. This can be achieved with a good coregistrations between the 3D building models and thermal images, which cannot be achieved by direct georeferencing. Hence, this paper presents methodology for alignment of 3D building models and oblique TIR image sequences taken from a flying platform. In a single image line correspondences between model edges and image line segments are found using accumulator approach and based on these correspondences an optimal camera pose is calculated to ensure the best match between the projected model and the image structures. Among the sequence the linear features are tracked based on visibility prediction. The results of the proposed methodology are presented using a TIR image sequence taken from helicopter in a densely built-up urban area. The novelty of this work is given by employing the uncertainty of the 3D building models and by innovative tracking strategy based on a priori knowledge from the 3D building model and the visibility checking.

  12. Real-Time 3D Tracking and Reconstruction on Mobile Phones.

    PubMed

    Prisacariu, Victor Adrian; Kähler, Olaf; Murray, David W; Reid, Ian D

    2015-05-01

    We present a novel framework for jointly tracking a camera in 3D and reconstructing the 3D model of an observed object. Due to the region based approach, our formulation can handle untextured objects, partial occlusions, motion blur, dynamic backgrounds and imperfect lighting. Our formulation also allows for a very efficient implementation which achieves real-time performance on a mobile phone, by running the pose estimation and the shape optimisation in parallel. We use a level set based pose estimation but completely avoid the, typically required, explicit computation of a global distance. This leads to tracking rates of more than 100 Hz on a desktop PC and 30 Hz on a mobile phone. Further, we incorporate additional orientation information from the phone's inertial sensor which helps us resolve the tracking ambiguities inherent to region based formulations. The reconstruction step first probabilistically integrates 2D image statistics from selected keyframes into a 3D volume, and then imposes coherency and compactness using a total variational regularisation term. The global optimum of the overall energy function is found using a continuous max-flow algorithm and we show that, similar to tracking, the integration of per voxel posteriors instead of likelihoods improves the precision and accuracy of the reconstruction.

  13. 3D orbital tracking in a modified two-photon microscope: an application to the tracking of intracellular vesicles.

    PubMed

    Anzalone, Andrea; Annibale, Paolo; Gratton, Enrico

    2014-10-01

    The objective of this video protocol is to discuss how to perform and analyze a three-dimensional fluorescent orbital particle tracking experiment using a modified two-photon microscope(1). As opposed to conventional approaches (raster scan or wide field based on a stack of frames), the 3D orbital tracking allows to localize and follow with a high spatial (10 nm accuracy) and temporal resolution (50 Hz frequency response) the 3D displacement of a moving fluorescent particle on length-scales of hundreds of microns(2). The method is based on a feedback algorithm that controls the hardware of a two-photon laser scanning microscope in order to perform a circular orbit around the object to be tracked: the feedback mechanism will maintain the fluorescent object in the center by controlling the displacement of the scanning beam(3-5). To demonstrate the advantages of this technique, we followed a fast moving organelle, the lysosome, within a living cell(6,7). Cells were plated according to standard protocols, and stained using a commercially lysosome dye. We discuss briefly the hardware configuration and in more detail the control software, to perform a 3D orbital tracking experiment inside living cells. We discuss in detail the parameters required in order to control the scanning microscope and enable the motion of the beam in a closed orbit around the particle. We conclude by demonstrating how this method can be effectively used to track the fast motion of a labeled lysosome along microtubules in 3D within a live cell. Lysosomes can move with speeds in the range of 0.4-0.5 µm/sec, typically displaying a directed motion along the microtubule network(8).

  14. 3D Orbital Tracking in a Modified Two-photon Microscope: An Application to the Tracking of Intracellular Vesicles

    PubMed Central

    Gratton, Enrico

    2014-01-01

    The objective of this video protocol is to discuss how to perform and analyze a three-dimensional fluorescent orbital particle tracking experiment using a modified two-photon microscope1. As opposed to conventional approaches (raster scan or wide field based on a stack of frames), the 3D orbital tracking allows to localize and follow with a high spatial (10 nm accuracy) and temporal resolution (50 Hz frequency response) the 3D displacement of a moving fluorescent particle on length-scales of hundreds of microns2. The method is based on a feedback algorithm that controls the hardware of a two-photon laser scanning microscope in order to perform a circular orbit around the object to be tracked: the feedback mechanism will maintain the fluorescent object in the center by controlling the displacement of the scanning beam3-5. To demonstrate the advantages of this technique, we followed a fast moving organelle, the lysosome, within a living cell6,7. Cells were plated according to standard protocols, and stained using a commercially lysosome dye. We discuss briefly the hardware configuration and in more detail the control software, to perform a 3D orbital tracking experiment inside living cells. We discuss in detail the parameters required in order to control the scanning microscope and enable the motion of the beam in a closed orbit around the particle. We conclude by demonstrating how this method can be effectively used to track the fast motion of a labeled lysosome along microtubules in 3D within a live cell. Lysosomes can move with speeds in the range of 0.4-0.5 µm/sec, typically displaying a directed motion along the microtubule network8. PMID:25350070

  15. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction.

    PubMed

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-08-22

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs' configuration schemes and the proposed cross-track reconstruction method.

  16. Measurement Matrix Optimization and Mismatch Problem Compensation for DLSLA 3-D SAR Cross-Track Reconstruction

    PubMed Central

    Bao, Qian; Jiang, Chenglong; Lin, Yun; Tan, Weixian; Wang, Zhirui; Hong, Wen

    2016-01-01

    With a short linear array configured in the cross-track direction, downward looking sparse linear array three-dimensional synthetic aperture radar (DLSLA 3-D SAR) can obtain the 3-D image of an imaging scene. To improve the cross-track resolution, sparse recovery methods have been investigated in recent years. In the compressive sensing (CS) framework, the reconstruction performance depends on the property of measurement matrix. This paper concerns the technique to optimize the measurement matrix and deal with the mismatch problem of measurement matrix caused by the off-grid scatterers. In the model of cross-track reconstruction, the measurement matrix is mainly affected by the configuration of antenna phase centers (APC), thus, two mutual coherence based criteria are proposed to optimize the configuration of APCs. On the other hand, to compensate the mismatch problem of the measurement matrix, the sparse Bayesian inference based method is introduced into the cross-track reconstruction by jointly estimate the scatterers and the off-grid error. Experiments demonstrate the performance of the proposed APCs’ configuration schemes and the proposed cross-track reconstruction method. PMID:27556471

  17. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking.

    PubMed

    Dettmer, Simon L; Keyser, Ulrich F; Pagliara, Stefano

    2014-02-01

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  18. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  19. A 3D front tracking method on a CPU/GPU system

    SciTech Connect

    Bo, Wurigen; Grove, John

    2011-01-21

    We describe the method to port a sequential 3D interface tracking code to a GPU with CUDA. The interface is represented as a triangular mesh. Interface geometry properties and point propagation are performed on a GPU. Interface mesh adaptation is performed on a CPU. The convergence of the method is assessed from the test problems with given velocity fields. Performance results show overall speedups from 11 to 14 for the test problems under mesh refinement. We also briefly describe our ongoing work to couple the interface tracking method with a hydro solver.

  20. Error control in the set-up of stereo camera systems for 3d animal tracking

    NASA Astrophysics Data System (ADS)

    Cavagna, A.; Creato, C.; Del Castello, L.; Giardina, I.; Melillo, S.; Parisi, L.; Viale, M.

    2015-12-01

    Three-dimensional tracking of animal systems is the key to the comprehension of collective behavior. Experimental data collected via a stereo camera system allow the reconstruction of the 3d trajectories of each individual in the group. Trajectories can then be used to compute some quantities of interest to better understand collective motion, such as velocities, distances between individuals and correlation functions. The reliability of the retrieved trajectories is strictly related to the accuracy of the 3d reconstruction. In this paper, we perform a careful analysis of the most significant errors affecting 3d reconstruction, showing how the accuracy depends on the camera system set-up and on the precision of the calibration parameters.

  1. 3D imaging of semiconductor colloid nanocrystals: on the way to nanodiagnostics of track membranes

    NASA Astrophysics Data System (ADS)

    Kulyk, S. I.; Eremchev, I. Y.; Gorshelev, A. A.; Naumov, A. V.; Zagorsky, D. L.; Kotova, S. P.; Volostnikov, V. G.; Vorontsov, E. N.

    2016-12-01

    The work concerns the feasibility of 3D optical diagnostic of porous media with subdifraction spatial resolution via epi-luminescence microscopy of single semiconductor colloid nanocrystals (quantum dots, QD) CdSe/ZnS used as emitting labels/nanoprobes. The nanoprecise reconstruction of axial coordinate is provided by double helix technique of point spread function transformation (DH-PSF). The results of QD localization in polycarbonate track membrane (TM) is presented.

  2. 3D imaging of semiconductor colloid nanocrystals: on the way to nanodiagnostics of track membranes

    NASA Astrophysics Data System (ADS)

    Kulyk, S. I.; Eremchev, I. Y.; Gorshelev, A. A.; Naumov, A. V.; Zagorsky, D. L.; Kotova, S. P.; Volostnikov, V. G.; Vorontsov, E. N.

    2017-01-01

    The work concerns the feasibility of 3D optical diagnostic of porous media with subdifraction spatial resolution via epi-luminescence microscopy of single semiconductor colloid nanocrystals (quantum dots, QD) CdSe/ZnS used as emitting labels/nanoprobes. The nanoprecise reconstruction of axial coordinate is provided by double helix technique of point spread function transformation (DH-PSF). The results of QD localization in polycarbonate track membrane (TM) is presented.

  3. Mechanical left ventricular dyssynchrony detection by endocardium displacement analysis with 3D speckle tracking technology.

    PubMed

    Li, Chi Hion; Carreras, Francesc; Leta, Rubén; Carballeira, Lidia; Pujadas, Sandra; Pons-Lladó, Guillem

    2010-12-01

    Myocardium deformation and displacement analysis by echocardiography has proven useful to evaluate the synchrony of myocardial mechanics. The aim of our study was to evaluate the mean standard deviation of time to longitudinal peak displacement in 16 cardiac segments by 3D echo wall motion Speckle Tracking analysis. We studied 15 patients with ventricular dyssynchrony-defined by a QRS > 120 ms in the ECG. We obtained the differences between time peaks of endocardial longitudinal displacement for 16 segments of the heart by 3D echo Speckle Tracking. We compared the temporal dispersion of these peaks with results obtained in a control group of 13 healthy individuals without dyssynchrony. The results showed a significant difference (p < 0.001) between the dispersion of standard deviation in the 13 patients in the control group (34 ms ± 19) and the 15 patients in the dyssynchrony group (117 ms ± 57). We describe a new parameter obtained by 3D echo wall motion Speckle Tracking analysis for the detection of dyssynchrony. It can be useful to identify dyssynchrony of left ventricular myocardial mechanics, to indicate the resynchronization therapy, to optimize the parameters of the device and to achieve a less operator-dependent evaluation.

  4. 3D ocular ultrasound using gaze tracking on the contralateral eye: a feasibility study.

    PubMed

    Afsham, Narges; Najafi, Mohammad; Abolmaesumi, Purang; Rohling, Robert

    2011-01-01

    A gaze-deviated examination of the eye with a 2D ultrasound transducer is a common and informative ophthalmic test; however, the complex task of the pose estimation of the ultrasound images relative to the eye affects 3D interpretation. To tackle this challenge, a novel system for 3D image reconstruction based on gaze tracking of the contralateral eye has been proposed. The gaze fixates on several target points and, for each fixation, the pose of the examined eye is inferred from the gaze tracking. A single camera system has been developed for pose estimation combined with subject-specific parameter identification. The ultrasound images are then transformed to the coordinate system of the examined eye to create a 3D volume. Accuracy of the proposed gaze tracking system and the pose estimation of the eye have been validated in a set of experiments. Overall system error, including pose estimation and calibration, are 3.12 mm and 4.68 degrees.

  5. 3D Visualization of Monte-Carlo Simulation's of HZE Track Structure and Initial Chemical Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    Heavy ions biophysics is important for space radiation risk assessment [1] and hadron-therapy [2]. The characteristic of heavy ions tracks include a very high energy deposition region close to the track (<20 nm) denoted as the track core, and an outer penumbra region consisting of individual secondary electrons (6-rays). A still open question is the radiobiological effects of 6- rays relative to the track core. Of importance is the induction of double-strand breaks (DSB) [3] and oxidative damage to the biomolecules and the tissue matrix, considered the most important lesions for acute and long term effects of radiation. In this work, we have simulated a 56Fe26+ ion track of 1 GeV/amu with our Monte-Carlo code RITRACKS [4]. The simulation results have been used to calculate the energy depiction and initial chemical species in a "voxelized" space, which is then visualized in 3D. Several voxels with dose >1000 Gy are found in the penumbra, some located 0.1 mm from the track core. In computational models, the DSB induction probability is calculated with radial dose [6], which may not take into account the higher RBE of electron track ends for DSB induction. Therefore, these simulations should help improve models of DSB induction and our understanding of heavy ions biophysics.

  6. 3D Visualization of Monte-Carlo Simulation's of HZE Track Structure and Initial Chemical Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2009-01-01

    Heavy ions biophysics is important for space radiation risk assessment [1] and hadron-therapy [2]. The characteristic of heavy ions tracks include a very high energy deposition region close to the track (<20 nm) denoted as the track core, and an outer penumbra region consisting of individual secondary electrons (6-rays). A still open question is the radiobiological effects of 6- rays relative to the track core. Of importance is the induction of double-strand breaks (DSB) [3] and oxidative damage to the biomolecules and the tissue matrix, considered the most important lesions for acute and long term effects of radiation. In this work, we have simulated a 56Fe26+ ion track of 1 GeV/amu with our Monte-Carlo code RITRACKS [4]. The simulation results have been used to calculate the energy depiction and initial chemical species in a "voxelized" space, which is then visualized in 3D. Several voxels with dose >1000 Gy are found in the penumbra, some located 0.1 mm from the track core. In computational models, the DSB induction probability is calculated with radial dose [6], which may not take into account the higher RBE of electron track ends for DSB induction. Therefore, these simulations should help improve models of DSB induction and our understanding of heavy ions biophysics.

  7. Robust 3D Object Tracking from Monocular Images using Stable Parts.

    PubMed

    Crivellaro, Alberto; Rad, Mahdi; Verdie, Yannick; Yi, Kwang Moo; Fua, Pascal; Lepetit, Vincent

    2017-05-26

    We present an algorithm for estimating the pose of a rigid object in real-time under challenging conditions. Our method effectively handles poorly textured objects in cluttered, changing environments, even when their appearance is corrupted by large occlusions, and it relies on grayscale images to handle metallic environments on which depth cameras would fail. As a result, our method is suitable for practical Augmented Reality applications including industrial environments. At the core of our approach is a novel representation for the 3D pose of object parts: We predict the 3D pose of each part in the form of the 2D projections of a few control points. The advantages of this representation is three-fold: We can predict the 3D pose of the object even when only one part is visible; when several parts are visible, we can easily combine them to compute a better pose of the object; the 3D pose we obtain is usually very accurate, even when only few parts are visible. We show how to use this representation in a robust 3D tracking framework. In addition to extensive comparisons with the state-of-the-art, we demonstrate our method on a practical Augmented Reality application for maintenance assistance in the ATLAS particle detector at CERN.

  8. Potential benefits of dosimetric VMAT tracking verified with 3D film measurements.

    PubMed

    Crijns, Wouter; Defraene, Gilles; Van Herck, Hans; Depuydt, Tom; Haustermans, Karin; Maes, Frederik; Van den Heuvel, Frank

    2016-05-01

    To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution's position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously irradiated prostate. A drawback

  9. Potential benefits of dosimetric VMAT tracking verified with 3D film measurements

    SciTech Connect

    Crijns, Wouter Depuydt, Tom; Haustermans, Karin; Defraene, Gilles; Van Herck, Hans; Maes, Frederik; Van den Heuvel, Frank

    2016-05-15

    Purpose: To evaluate three different plan adaptation strategies using 3D film-stack dose measurements of both focal boost and hypofractionated prostate VMAT treatments. The adaptation strategies (a couch shift, geometric tracking, and dosimetric tracking) were applied for three realistic intrafraction prostate motions. Methods: A focal boost (35 × 2.2 and 35 × 2.7 Gy) and a hypofractionated (5 × 7.25 Gy) prostate VMAT plan were created for a heterogeneous phantom that allows for internal prostate motion. For these plans geometric tracking and dosimetric tracking were evaluated by ionization chamber (IC) point dose measurements (zero-D) and measurements using a stack of EBT3 films (3D). The geometric tracking applied translations, rotations, and scaling of the MLC aperture in response to realistic prostate motions. The dosimetric tracking additionally corrected the monitor units to resolve variations due to difference in depth, tissue heterogeneity, and MLC-aperture. The tracking was based on the positions of four fiducial points only. The film measurements were compared to the gold standard (i.e., IC measurements) and the planned dose distribution. Additionally, the 3D measurements were converted to dose volume histograms, tumor control probability, and normal tissue complication probability parameters (DVH/TCP/NTCP) as a direct estimate of clinical relevance of the proposed tracking. Results: Compared to the planned dose distribution, measurements without prostate motion and tracking showed already a reduced homogeneity of the dose distribution. Adding prostate motion further blurs the DVHs for all treatment approaches. The clinical practice (no tracking) delivered the dose distribution inside the PTV but off target (CTV), resulting in boost dose errors up to 10%. The geometric and dosimetric tracking corrected the dose distribution’s position. Moreover, the dosimetric tracking could achieve the planned boost DVH, but not the DVH of the more homogeneously

  10. Automated 3-D tracking of centrosomes in sequences of confocal image stacks.

    PubMed

    Kerekes, Ryan A; Gleason, Shaun S; Trivedi, Niraj; Solecki, David J

    2009-01-01

    In order to facilitate the study of neuron migration, we propose a method for 3-D detection and tracking of centrosomes in time-lapse confocal image stacks of live neuron cells. We combine Laplacian-based blob detection, adaptive thresholding, and the extraction of scale and roundness features to find centrosome-like objects in each frame. We link these detections using the joint probabilistic data association filter (JPDAF) tracking algorithm with a Newtonian state-space model tailored to the motion characteristics of centrosomes in live neurons. We apply our algorithm to image sequences containing multiple cells, some of which had been treated with motion-inhibiting drugs. We provide qualitative results and quantitative comparisons to manual segmentation and tracking results showing that our average motion estimates agree to within 13% of those computed manually by neurobiologists.

  11. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  12. Automated 3-D Tracking of Centrosomes in Sequences of Confocal Image Stacks

    SciTech Connect

    Kerekes, Ryan A; Gleason, Shaun Scott; Trivedi, Dr. Niraj; Solecki, Dr. David

    2009-01-01

    In order to facilitate the study of neuron migration, we propose a method for 3-D detection and tracking of centrosomes in time-lapse confocal image stacks of live neuron cells. We combine Laplacian-based blob detection, adaptive thresholding, and the extraction of scale and roundness features to find centrosome-like objects in each frame. We link these detections using the joint probabilistic data association filter (JPDAF) tracking algorithm with a Newtonian state-space model tailored to the motion characteristics of centrosomes in live neurons. We apply our algorithm to image sequences containing multiple cells, some of which had been treated with motion-inhibiting drugs. We provide qualitative results and quantitative comparisons to manual segmentation and tracking results showing that our motion estimates closely agree with those generated by neurobiology experts.

  13. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  14. Meanie3D - a mean-shift based, multivariate, multi-scale clustering and tracking algorithm

    NASA Astrophysics Data System (ADS)

    Simon, Jürgen-Lorenz; Malte, Diederich; Silke, Troemel

    2014-05-01

    Project OASE is the one of 5 work groups at the HErZ (Hans Ertel Centre for Weather Research), an ongoing effort by the German weather service (DWD) to further research at Universities concerning weather prediction. The goal of project OASE is to gain an object-based perspective on convective events by identifying them early in the onset of convective initiation and follow then through the entire lifecycle. The ability to follow objects in this fashion requires new ways of object definition and tracking, which incorporate all the available data sets of interest, such as Satellite imagery, weather Radar or lightning counts. The Meanie3D algorithm provides the necessary tool for this purpose. Core features of this new approach to clustering (object identification) and tracking are the ability to identify objects using the mean-shift algorithm applied to a multitude of variables (multivariate), as well as the ability to detect objects on various scales (multi-scale) using elements of Scale-Space theory. The algorithm works in 2D as well as 3D without modifications. It is an extension of a method well known from the field of computer vision and image processing, which has been tailored to serve the needs of the meteorological community. In spite of the special application to be demonstrated here (like convective initiation), the algorithm is easily tailored to provide clustering and tracking for a wide class of data sets and problems. In this talk, the demonstration is carried out on two of the OASE group's own composite sets. One is a 2D nationwide composite of Germany including C-Band Radar (2D) and Satellite information, the other a 3D local composite of the Bonn/Jülich area containing a high-resolution 3D X-Band Radar composite.

  15. 3D-wall motion tracking: a new tool for myocardial contractility analysis.

    PubMed

    Perez de Isla, Leopoldo; Montes, Cesar; Monzón, Tania; Herrero, José; Saltijeral, Adriana; Balcones, David Vivas; de Agustin, Alberto; Nuñez-Gil, Ivan; Fernández-Golfín, Covadonga; Almería, Carlos; Rodrigo, José Luis; Marcos-Alberca, Pedro; Macaya, Carlos; Zamorano, Jose

    2010-10-16

    BACKGROUND: Left-ventricular ejection fraction (LVEF), the most frequently used parameter to evaluate left ventricular (LV) systolic function, depends not only on LV contractility, but also on different variables such as pre-load and after-load. Three-dimensional wall motion tracking echocardiography (3D-WMT) is a new technique that provides information regarding different new parameters of LV systolic function. Our aim was to evaluate whether the new 3D-WMT-derived LV systolic function parameters are less dependent on load conditions than LVEF. METHODS: In order to modify the load conditions to study the dependence of the different LV systolic function parameters on them, a group of renal failure patients under chronic hemodialysis treatment was selected. The echocardiographic studies, including the 3D-WMT analysis, were performed immediately before and immediately after the hemodialysis session. RESULTS: Thirty-one consecutive patients were enrolled (mean age 65.5 ± 17.0 years; 74.2% men). There was a statistically significant change in predialysis and postdialysis, pre-load and after-load conditions (E/È ratio and systolic blood pressure) and in the LV end-diastolic volume and LVEF. Nevertheless, the findings did not show any significant change before and after dialysis in the 3D-WMT-derived parameters. CONCLUSIONS: LV 3D-wall motion tracking-derived systolic function parameters are less dependent on load conditions than LVEF. They might measure myocardial contractility in a more direct way than LVEF. Thus, hypothetically, they might be useful to detect early and subtle contractility impairments in a wide number of cardiac patients and they could help to optimize the clinical management of such patients.

  16. A brain-computer interface method combined with eye tracking for 3D interaction.

    PubMed

    Lee, Eui Chul; Woo, Jin Cheol; Kim, Jong Hwa; Whang, Mincheol; Park, Kang Ryoung

    2010-07-15

    With the recent increase in the number of three-dimensional (3D) applications, the need for interfaces to these applications has increased. Although the eye tracking method has been widely used as an interaction interface for hand-disabled persons, this approach cannot be used for depth directional navigation. To solve this problem, we propose a new brain computer interface (BCI) method in which the BCI and eye tracking are combined to analyze depth navigation, including selection and two-dimensional (2D) gaze direction, respectively. The proposed method is novel in the following five ways compared to previous works. First, a device to measure both the gaze direction and an electroencephalogram (EEG) pattern is proposed with the sensors needed to measure the EEG attached to a head-mounted eye tracking device. Second, the reliability of the BCI interface is verified by demonstrating that there is no difference between the real and the imaginary movements for the same work in terms of the EEG power spectrum. Third, depth control for the 3D interaction interface is implemented by an imaginary arm reaching movement. Fourth, a selection method is implemented by an imaginary hand grabbing movement. Finally, for the independent operation of gazing and the BCI, a mode selection method is proposed that measures a user's concentration by analyzing the pupil accommodation speed, which is not affected by the operation of gazing and the BCI. According to experimental results, we confirmed the feasibility of the proposed 3D interaction method using eye tracking and a BCI. Copyright 2010 Elsevier B.V. All rights reserved.

  17. Tracking-by-Detection of 3D Human Shapes: from Surfaces to Volumes.

    PubMed

    Huang, Chun-Hao; Allain, Benjamin; Boyer, Edmond; Franco, Jean-Sebastien; Tombari, Federico; Navab, Nassir; Ilic, Slobodan

    2017-08-15

    3D Human shape tracking consists in fitting a template model to temporal sequences of visual observations. It usually comprises an association step, that finds correspondences between the model and the input data, and a deformation step, that fits the model to the observations given correspondences. Most current approaches follow the Iterative-Closest-Point (ICP) paradigm, where the association step is carried out by searching for the nearest neighbors. It fails when large deformations occur and errors in the association tend to propagate over time. In this paper, we propose a discriminative alternative for the association, that leverages random forests to infer correspondences in one shot. Regardless the choice of shape parameterizations, being surface or volumetric meshes, we convert 3D shapes to volumetric distance fields and thereby design features to train the forest. We investigate two ways to draw volumetric samples: voxels of regular grids and cells from Centroidal Voronoi Tessellation (CVT). While the former consumes considerable memory and in turn limits us to learn only subject-specific correspondences, the latter yields much less memory footprint by compactly tessellating the interior space of a shape with optimal discretization. This facilitates the use of larger cross-subject training databases, generalizes to different human subjects and hence results in less overfitting and better detection. The discriminative correspondences are successfully integrated to both surface and volumetric deformation frameworks that recover human shape poses, which we refer to as 'tracking-bydetection of 3D human shapes.' It allows for large deformations and prevents tracking errors from being accumulated. When combined with ICP for refinement, it proves to yield better accuracy in registration and more stability when tracking over time. Evaluations on existing datasets demonstrate the benefits with respect to the state-of-the-art.

  18. Coordination of gaze and hand movements for tracking and tracing in 3D.

    PubMed

    Gielen, Constantinus C A M; Dijkstra, Tjeerd M H; Roozen, Irene J; Welten, Joke

    2009-03-01

    In this study we have investigated movements in three-dimensional space. Since most studies have investigated planar movements (like ellipses, cloverleaf shapes and "figure eights") we have compared two generalizations of the two-thirds power law to three dimensions. In particular we have tested whether the two-thirds power law could be best described by tangential velocity and curvature in a plane (compatible with the idea of planar segmentation) or whether tangential velocity and curvature should be calculated in three dimensions. We defined total curvature in three dimensions as the square root of the sum of curvature squared and torsion squared. The results demonstrate that most of the variance is explained by tangential velocity and total curvature. This indicates that all three orthogonal components of movements in 3D are equally important and that movements are truly 3D and do not reflect a concatenation of 2D planar movement segments. In addition, we have studied the coordination of eye and hand movements in 3D by measuring binocular eye movements while subjects move the finger along a curved path. The results show that the directional component and finger position almost superimpose when subjects track a target moving in 3D. However, the vergence component of gaze leads finger position by about 250msec. For drawing (tracing) the path of a visible 3D shape, the directional component of gaze leads finger position by about 225msec, and the vergence component leads finger position by about 400msec. These results are compatible with the idea that gaze leads hand position during drawing movement to assist prediction and planning of hand position in 3D space.

  19. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics.

    PubMed

    Gallo, Diego; Gülan, Utku; Di Stefano, Antonietta; Ponzini, Raffaele; Lüthi, Beat; Holzner, Markus; Morbiducci, Umberto

    2014-09-22

    Parallel to the massive use of image-based computational hemodynamics to study the complex flow establishing in the human aorta, the need for suitable experimental techniques and ad hoc cases for the validation and benchmarking of numerical codes has grown more and more. Here we present a study where the 3D pulsatile flow in an anatomically realistic phantom of human ascending aorta is investigated both experimentally and computationally. The experimental study uses 3D particle tracking velocimetry (PTV) to characterize the flow field in vitro, while finite volume method is applied to numerically solve the governing equations of motion in the same domain, under the same conditions. Our findings show that there is an excellent agreement between computational and measured flow fields during the forward flow phase, while the agreement is poorer during the reverse flow phase. In conclusion, here we demonstrate that 3D PTV is very suitable for a detailed study of complex unsteady flows as in aorta and for validating computational models of aortic hemodynamics. In a future step, it will be possible to take advantage from the ability of 3D PTV to evaluate velocity fluctuations and, for this reason, to gain further knowledge on the process of transition to turbulence occurring in the thoracic aorta.

  20. 3-D Flow Field Diagnostics and Validation Studies using Stereoscopic Tracking Velocimetry

    NASA Technical Reports Server (NTRS)

    Cha, Soyoung Stephen; Ramachandran, Narayanan; Whitaker, Ann F. (Technical Monitor)

    2002-01-01

    The measurement of 3-D three-component velocity fields is of great importance in both ground and space experiments for understanding materials processing and fluid physics. Here, we present the investigation results of stereoscopic tracking velocimetry (STV) for measuring 3-D velocity fields. The effort includes diagnostic technology development, experimental velocity measurement, and comparison with analytical and numerical computation. The advantages of STV stems from the system simplicity for building compact hardware and in software efficiency for continual near-real-time process monitoring. It also has illumination flexibility for observing volumetric flow fields from arbitrary directions. STV is based on stereoscopic CCD observations of particles seeded in a flow. Neural networks are used for data analysis. The developed diagnostic tool is tested with a simple directional solidification apparatus using Succinonitrile. The 3-D velocity field in the liquid phase is measured and compared with results from detailed numerical computations. Our theoretical, numerical, and experimental effort has shown STV to be a viable candidate for reliably quantifying the 3-D flow field in materials processing and fluids experiments.

  1. Methods for using 3-D ultrasound speckle tracking in biaxial mechanical testing of biological tissue samples.

    PubMed

    Yap, Choon Hwai; Park, Dae Woo; Dutta, Debaditya; Simon, Marc; Kim, Kang

    2015-04-01

    Being multilayered and anisotropic, biological tissues such as cardiac and arterial walls are structurally complex, making the full assessment and understanding of their mechanical behavior challenging. Current standard mechanical testing uses surface markers to track tissue deformations and does not provide deformation data below the surface. In the study described here, we found that combining mechanical testing with 3-D ultrasound speckle tracking could overcome this limitation. Rat myocardium was tested with a biaxial tester and was concurrently scanned with high-frequency ultrasound in three dimensions. The strain energy function was computed from stresses and strains using an iterative non-linear curve-fitting algorithm. Because the strain energy function consists of terms for the base matrix and for embedded fibers, spatially varying fiber orientation was also computed by curve fitting. Using finite-element simulations, we first validated the accuracy of the non-linear curve-fitting algorithm. Next, we compared experimentally measured rat myocardium strain energy function values with those in the literature and found a matching order of magnitude. Finally, we retained samples after the experiments for fiber orientation quantification using histology and found that the results satisfactorily matched those computed in the experiments. We conclude that 3-D ultrasound speckle tracking can be a useful addition to traditional mechanical testing of biological tissues and may provide the benefit of enabling fiber orientation computation.

  2. METHODS FOR USING 3-D ULTRASOUND SPECKLE TRACKING IN BIAXIAL MECHANICAL TESTING OF BIOLOGICAL TISSUE SAMPLES

    PubMed Central

    Yap, Choon Hwai; Park, Dae Woo; Dutta, Debaditya; Simon, Marc; Kim, Kang

    2014-01-01

    Being multilayered and anisotropic, biological tissues such as cardiac and arterial walls are structurally complex, making full assessment and understanding of their mechanical behavior challenging. Current standard mechanical testing uses surface markers to track tissue deformations and does not provide deformation data below the surface. In the study described here, we found that combining mechanical testing with 3-D ultrasound speckle tracking could overcome this limitation. Rat myocardium was tested with a biaxial tester and was concurrently scanned with high-frequency ultrasound in three dimensions. The strain energy function was computed from stresses and strains using an iterative non-linear curve-fitting algorithm. Because the strain energy function consists of terms for the base matrix and for embedded fibers, spatially varying fiber orientation was also computed by curve fitting. Using finite-element simulations, we first validated the accuracy of the non-linear curve-fitting algorithm. Next, we compared experimentally measured rat myocardium strain energy function values with those in the literature and found a matching order of magnitude. Finally, we retained samples after the experiments for fiber orientation quantification using histology and found that the results satisfactorily matched those computed in the experiments. We conclude that 3-D ultrasound speckle tracking can be a useful addition to traditional mechanical testing of biological tissues and may provide the benefit of enabling fiber orientation computation. PMID:25616585

  3. Detection, 3-D positioning, and sizing of small pore defects using digital radiography and tracking

    NASA Astrophysics Data System (ADS)

    Lindgren, Erik

    2014-12-01

    This article presents an algorithm that handles the detection, positioning, and sizing of submillimeter-sized pores in welds using radiographic inspection and tracking. The possibility to detect, position, and size pores which have a low contrast-to-noise ratio increases the value of the nondestructive evaluation of welds by facilitating fatigue life predictions with lower uncertainty. In this article, a multiple hypothesis tracker with an extended Kalman filter is used to track an unknown number of pore indications in a sequence of radiographs as an object is rotated. Each pore is not required to be detected in all radiographs. In addition, in the tracking step, three-dimensional (3-D) positions of pore defects are calculated. To optimize, set up, and pre-evaluate the algorithm, the article explores a design of experimental approach in combination with synthetic radiographs of titanium laser welds containing pore defects. The pre-evaluation on synthetic radiographs at industrially reasonable contrast-to-noise ratios indicate less than 1% false detection rates at high detection rates and less than 0.1 mm of positioning errors for more than 90% of the pores. A comparison between experimental results of the presented algorithm and a computerized tomography reference measurement shows qualitatively good agreement in the 3-D positions of approximately 0.1-mm diameter pores in 5-mm-thick Ti-6242.

  4. The CT-PPS tracking system with 3D pixel detectors

    NASA Astrophysics Data System (ADS)

    Ravera, F.

    2016-11-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) detector will be installed in Roman pots (RP) positioned on either side of CMS, at about 210 m from the interaction point. This detector will measure leading protons, allowing detailed studies of diffractive physics and central exclusive production in standard LHC running conditions. An essential component of the CT-PPS apparatus is the tracking system, which consists of two detector stations per arm equipped with six 3D silicon pixel-sensor modules, each read out by six PSI46dig chips. The front-end electronics has been designed to fulfill the mechanical constraints of the RP and to be compatible as much as possible with the readout chain of the CMS pixel detector. The tracking system is currently under construction and will be installed by the end of 2016. In this contribution the final design and the expected performance of the CT-PPS tracking system is presented. A summary of the studies performed, before and after irradiation, on the 3D detectors produced for CT-PPS is given.

  5. Experimental analysis of mechanical response of stabilized occipitocervical junction by 3D mark tracking technique

    NASA Astrophysics Data System (ADS)

    Germaneau, A.; Doumalin, P.; Dupré, J. C.; Brèque, C.; Brémand, F.; D'Houtaud, S.; Rigoard, P.

    2010-06-01

    This study is about a biomechanical comparison of some stabilization solutions for the occipitocervical junction. Four kinds of occipito-cervical fixations are analysed in this work: lateral plates fixed by two kinds of screws, lateral plates fixed by hooks and median plate. To study mechanical rigidity of each one, tests have been performed on human skulls by applying loadings and by studying mechanical response of fixations and bone. For this experimental analysis, a specific setup has been developed to impose a load corresponding to the flexion-extension physiological movements. 3D mark tracking technique is employed to measure 3D displacement fields on the bone and on the fixations. Observations of displacement evolution on the bone according to the fixation show different rigidities given by each solution.

  6. Oblique needle segmentation and tracking for 3D TRUS guided prostate brachytherapy

    SciTech Connect

    Wei Zhouping; Gardi, Lori; Downey, Donal B.; Fenster, Aaron

    2005-09-15

    An algorithm was developed in order to segment and track brachytherapy needles inserted along oblique trajectories. Three-dimensional (3D) transrectal ultrasound (TRUS) images of the rigid rod simulating the needle inserted into the tissue-mimicking agar and chicken breast phantoms were obtained to test the accuracy of the algorithm under ideal conditions. Because the robot possesses high positioning and angulation accuracies, we used the robot as a ''gold standard,'' and compared the results of algorithm segmentation to the values measured by the robot. Our testing results showed that the accuracy of the needle segmentation algorithm depends on the needle insertion distance into the 3D TRUS image and the angulations with respect to the TRUS transducer, e.g., at a 10 deg. insertion anglulation in agar phantoms, the error of the algorithm in determining the needle tip position was less than 1 mm when the insertion distance was greater than 15 mm. Near real-time needle tracking was achieved by scanning a small volume containing the needle. Our tests also showed that, the segmentation time was less than 60 ms, and the scanning time was less than 1.2 s, when the insertion distance into the 3D TRUS image was less than 55 mm. In our needle tracking tests in chicken breast phantoms, the errors in determining the needle orientation were less than 2 deg. in robot yaw and 0.7 deg. in robot pitch orientations, for up to 20 deg. needle insertion angles with the TRUS transducer in the horizontal plane when the needle insertion distance was greater than 15 mm.

  7. Study of a viewer tracking system with multiview 3D display

    NASA Astrophysics Data System (ADS)

    Yang, Jinn-Cherng; Wu, Chang-Shuo; Hsiao, Chuan-Heng; Yang, Ming-Chieh; Liu, Wen-Chieh; Hung, Yi-Ping

    2008-02-01

    An autostereoscopic display provides users great enjoyment of stereo visualization without uncomfortable and inconvenient drawbacks of wearing stereo glasses. However, bandwidth constraints of current multi-view 3D display severely restrict the number of views that can be simultaneously displayed without degrading resolution or increasing display cost unacceptably. An alternative to multiple view presentation is that the position of observer can be measured by using viewer-tracking sensor. It is a very important module of the viewer-tracking component for fluently rendering and accurately projecting the stereo video. In order to render stereo content with respect to user's view points and to optically project the content onto the left and right eyes of the user accurately, the real-time viewer tracking technique that allows the user to move around freely when watching the autostereoscopic display is developed in this study. It comprises the face detection by using multiple eigenspaces of various lighting conditions, fast block matching for tracking four motion parameters of the user's face region. The Edge Orientation Histogram (EOH) on Real AdaBoost to improve the performance of original AdaBoost algorithm is also applied in this study. The AdaBoost algorithm using Haar feature in OpenCV library developed by Intel to detect human face and enhance the accuracy performance with rotating image. The frame rate of viewer tracking process can achieve up to 15 Hz. Since performance of the viewer tracking autostereoscopic display is still influenced under variant environmental conditions, the accuracy, robustness and efficiency of the viewer-tracking system are evaluated in this study.

  8. The effect of object speed and direction on the performance of 3D speckle tracking using a 3D swept-volume ultrasound probe

    NASA Astrophysics Data System (ADS)

    Harris, Emma J.; Miller, Naomi R.; Bamber, Jeffrey C.; Symonds-Tayler, J. Richard N.; Evans, Philip M.

    2011-11-01

    Three-dimensional (3D) soft tissue tracking using 3D ultrasound is of interest for monitoring organ motion during therapy. Previously we demonstrated feature tracking of respiration-induced liver motion in vivo using a 3D swept-volume ultrasound probe. The aim of this study was to investigate how object speed affects the accuracy of tracking ultrasonic speckle in the absence of any structural information, which mimics the situation in homogenous tissue for motion in the azimuthal and elevational directions. For object motion prograde and retrograde to the sweep direction of the transducer, the spatial sampling frequency increases or decreases with object speed, respectively. We examined the effect object motion direction of the transducer on tracking accuracy. We imaged a homogenous ultrasound speckle phantom whilst moving the probe with linear motion at a speed of 0-35 mm s-1. Tracking accuracy and precision were investigated as a function of speed, depth and direction of motion for fixed displacements of 2 and 4 mm. For the azimuthal direction, accuracy was better than 0.1 and 0.15 mm for displacements of 2 and 4 mm, respectively. For a 2 mm displacement in the elevational direction, accuracy was better than 0.5 mm for most speeds. For 4 mm elevational displacement with retrograde motion, accuracy and precision reduced with speed and tracking failure was observed at speeds of greater than 14 mm s-1. Tracking failure was attributed to speckle de-correlation as a result of decreasing spatial sampling frequency with increasing speed of retrograde motion. For prograde motion, tracking failure was not observed. For inter-volume displacements greater than 2 mm, only prograde motion should be tracked which will decrease temporal resolution by a factor of 2. Tracking errors of the order of 0.5 mm for prograde motion in the elevational direction indicates that using the swept probe technology speckle tracking accuracy is currently too poor to track homogenous tissue over

  9. Swimming Behavior of Pseudomonas aeruginosa Studied by Holographic 3D Tracking

    PubMed Central

    Vater, Svenja M.; Weiße, Sebastian; Maleschlijski, Stojan; Lotz, Carmen; Koschitzki, Florian; Schwartz, Thomas; Obst, Ursula; Rosenhahn, Axel

    2014-01-01

    Holographic 3D tracking was applied to record and analyze the swimming behavior of Pseudomonas aeruginosa. The obtained trajectories allow to qualitatively and quantitatively analyze the free swimming behavior of the bacterium. This can be classified into five distinct swimming patterns. In addition to the previously reported smooth and oscillatory swimming motions, three additional patterns are distinguished. We show that Pseudomonas aeruginosa performs helical movements which were so far only described for larger microorganisms. Occurrence of the swimming patterns was determined and transitions between the patterns were analyzed. PMID:24498187

  10. Longitudinal Measurement of Extracellular Matrix Rigidity in 3D Tumor Models Using Particle-tracking Microrheology

    PubMed Central

    El-Hamidi, Hamid; Celli, Jonathan P.

    2014-01-01

    The mechanical microenvironment has been shown to act as a crucial regulator of tumor growth behavior and signaling, which is itself remodeled and modified as part of a set of complex, two-way mechanosensitive interactions. While the development of biologically-relevant 3D tumor models have facilitated mechanistic studies on the impact of matrix rheology on tumor growth, the inverse problem of mapping changes in the mechanical environment induced by tumors remains challenging. Here, we describe the implementation of particle-tracking microrheology (PTM) in conjunction with 3D models of pancreatic cancer as part of a robust and viable approach for longitudinally monitoring physical changes in the tumor microenvironment, in situ. The methodology described here integrates a system of preparing in vitro 3D models embedded in a model extracellular matrix (ECM) scaffold of Type I collagen with fluorescently labeled probes uniformly distributed for position- and time-dependent microrheology measurements throughout the specimen. In vitro tumors are plated and probed in parallel conditions using multiwell imaging plates. Drawing on established methods, videos of tracer probe movements are transformed via the Generalized Stokes Einstein Relation (GSER) to report the complex frequency-dependent viscoelastic shear modulus, G*(ω). Because this approach is imaging-based, mechanical characterization is also mapped onto large transmitted-light spatial fields to simultaneously report qualitative changes in 3D tumor size and phenotype. Representative results showing contrasting mechanical response in sub-regions associated with localized invasion-induced matrix degradation as well as system calibration, validation data are presented. Undesirable outcomes from common experimental errors and troubleshooting of these issues are also presented. The 96-well 3D culture plating format implemented in this protocol is conducive to correlation of microrheology measurements with therapeutic

  11. A portable instrument for 3-D dynamic robot measurements using triangulation and laser tracking

    SciTech Connect

    Mayer, J.R.R. . Mechanical Engineering Dept.); Parker, G.A. . Dept. of Mechanical Engineering)

    1994-08-01

    The paper describes the development and validation of a 3-D measurement instrument capable of determining the static and dynamic performance of industrial robots to ISO standards. Using two laser beams to track an optical target attached to the robot end-effector, the target position coordinates may be estimated, relative to the instrument coordinate frame, to a high accuracy using triangulation principles. The effect of variations in the instrument geometry from the nominal model is evaluated through a kinematic model of the tracking head. Significant improvements of the measurement accuracy are then obtained by a simple adjustment of the main parameters. Extensive experimental test results are included to demonstrate the instrument performance. Finally typical static and dynamic measurement results for an industrial robot are presented to illustrate the effectiveness and usefulness of the instrument.

  12. An automated tool for 3D tracking of single molecules in living cells

    NASA Astrophysics Data System (ADS)

    Gardini, L.; Capitanio, M.; Pavone, F. S.

    2015-07-01

    Recently, tremendous improvements have been achieved in the precision of localization of single fluorescent molecules, allowing localization and tracking of biomolecules at the nm level. Since the behaviour of proteins and biological molecules is tightly influenced by the cell's environment, a growing number of microscopy techniques are moving from in vitro to live cell experiments. Looking at both diffusion and active transportation processes inside a cell requires three-dimensional localization over a few microns range, high SNR images and high temporal resolution (ms order of magnitude). To satisfy these requirements we developed an automated routine that allow 3D tracking of single fluorescent molecules in living cells with nanometer accuracy, by exploiting the properties of the point-spread-function of out-of-focus Quantum Dots bound to the protein of interest.

  13. Passive Markers for Tracking Surgical Instruments in Real-Time 3-D Ultrasound Imaging

    PubMed Central

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E.

    2013-01-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts. PMID:22042148

  14. Passive markers for tracking surgical instruments in real-time 3-D ultrasound imaging.

    PubMed

    Stoll, Jeffrey; Ren, Hongliang; Dupont, Pierre E

    2012-03-01

    A family of passive echogenic markers is presented by which the position and orientation of a surgical instrument can be determined in a 3-D ultrasound volume, using simple image processing. Markers are attached near the distal end of the instrument so that they appear in the ultrasound volume along with the instrument tip. They are detected and measured within the ultrasound image, thus requiring no external tracking device. This approach facilitates imaging instruments and tissue simultaneously in ultrasound-guided interventions. Marker-based estimates of instrument pose can be used in augmented reality displays or for image-based servoing. Design principles for marker shapes are presented that ensure imaging system and measurement uniqueness constraints are met. An error analysis is included that can be used to guide marker design and which also establishes a lower bound on measurement uncertainty. Finally, examples of marker measurement and tracking algorithms are presented along with experimental validation of the concepts.

  15. Quantifying the 3D Odorant Concentration Field Used by Actively Tracking Blue Crabs

    NASA Astrophysics Data System (ADS)

    Webster, D. R.; Dickman, B. D.; Jackson, J. L.; Weissburg, M. J.

    2007-11-01

    Blue crabs and other aquatic organisms locate food and mates by tracking turbulent odorant plumes. The odorant concentration fluctuates unpredictably due to turbulent transport, and many characteristics of the fluctuation pattern have been hypothesized as useful cues for orienting to the odorant source. To make a direct linkage between tracking behavior and the odorant concentration signal, we developed a measurement system based the laser induced fluorescence technique to quantify the instantaneous 3D concentration field surrounding actively tracking blue crabs. The data suggest a correlation between upstream walking speed and the concentration of the odorant signal arriving at the antennule chemosensors, which are located near the mouth region. More specifically, we note an increase in upstream walking speed when high concentration bursts arrive at the antennules location. We also test hypotheses regarding the ability of blue crabs to steer relative to the plume centerline based on the signal contrast between the chemosensors located on their leg appendages. These chemosensors are located much closer to the substrate compared to the antennules and are separated by the width of the blue crab. In this case, it appears that blue crabs use the bilateral signal comparison to track along the edge of the plume.

  16. Adaptive Kalman snake for semi-autonomous 3D vessel tracking.

    PubMed

    Lee, Sang-Hoon; Lee, Sanghoon

    2015-10-01

    In this paper, we propose a robust semi-autonomous algorithm for 3D vessel segmentation and tracking based on an active contour model and a Kalman filter. For each computed tomography angiography (CTA) slice, we use the active contour model to segment the vessel boundary and the Kalman filter to track position and shape variations of the vessel boundary between slices. For successful segmentation via active contour, we select an adequate number of initial points from the contour of the first slice. The points are set manually by user input for the first slice. For the remaining slices, the initial contour position is estimated autonomously based on segmentation results of the previous slice. To obtain refined segmentation results, an adaptive control spacing algorithm is introduced into the active contour model. Moreover, a block search-based initial contour estimation procedure is proposed to ensure that the initial contour of each slice can be near the vessel boundary. Experiments were performed on synthetic and real chest CTA images. Compared with the well-known Chan-Vese (CV) model, the proposed algorithm exhibited better performance in segmentation and tracking. In particular, receiver operating characteristic analysis on the synthetic and real CTA images demonstrated the time efficiency and tracking robustness of the proposed model. In terms of computational time redundancy, processing time can be effectively reduced by approximately 20%.

  17. 3D Fluorescent and Reflective Imaging of Whole Stardust Tracks in Aerogel

    SciTech Connect

    Greenberg, M.; Ebel, D.S.

    2011-11-07

    The NASA Stardust mission returned to earth in 2006 with the cometary collector having captured over 1,000 particles in an aerogel medium at a relative velocity of 6.1 km/s. Particles captured in aerogel were heated, disaggregated and dispersed along 'tracks' or cavities in aerogel, singular tracks representing a history of one capture event. It has been our focus to chemically and morphologically characterize whole tracks in 3-dimensions, utilizing solely non-destructive methods. To this end, we have used a variety of methods: 3D Laser Scanning Confocal Microscopy (LSCM), synchrotron X-ray fluorescence (SXRF), and synchrotron X-ray diffraction (SXRD). In the past months we have developed two new techniques to aid in data collection. (1) We have received a new confocal microscope which has enabled autofluorescent and spectral imaging of aerogel samples. (2) We have developed a stereo-SXRF technique to chemically identify large grains in SXRF maps in 3-space. The addition of both of these methods to our analytic abilities provides a greater understanding of the mechanisms and results of track formation.

  18. Designing a high accuracy 3D auto stereoscopic eye tracking display, using a common LCD monitor

    NASA Astrophysics Data System (ADS)

    Taherkhani, Reza; Kia, Mohammad

    2012-09-01

    This paper describes the design and building of a low cost and practical stereoscopic display that does not need to wear special glasses, and uses eye tracking to give a large degree of freedom to viewer (or viewer's) movement while displaying the minimum amount of information. The parallax barrier technique is employed to turn a LCD into an auto-stereoscopic display. The stereo image pair is screened on the usual liquid crystal display simultaneously but in different columns of pixels. Controlling of the display in red-green-blue sub pixels increases the accuracy of light projecting direction to less than 2 degrees without losing too much LCD's resolution and an eye-tracking system determines the correct angle to project the images along the viewer's eye pupils and an image processing system puts the 3D images data in correct R-G-B sub pixels. 1.6 degree of light direction controlling achieved in practice. The 3D monitor is just made by applying some simple optical materials on a usual LCD display with normal resolution. [Figure not available: see fulltext.

  19. Nonintrusive viewpoint tracking for 3D for perception in smart video conference

    NASA Astrophysics Data System (ADS)

    Desurmont, Xavier; Martinez-Ponte, Isabel; Meessen, Jerome; Delaigle, Jean-François

    2006-02-01

    Globalisation of people's interaction in the industrial world and ecological cost of transport make video-conference an interesting solution for collaborative work. However, the lack of immersive perception makes video-conference not appealing. TIFANIS tele-immersion system was conceived to let users interact as if they were physically together. In this paper, we focus on an important feature of the immersive system: the automatic tracking of the user's point of view in order to render correctly in his display the scene from the ther site. Viewpoint information has to be computed in a very short time and the detection system should be no intrusive, otherwise it would become cumbersome for the user, i.e. he would lose the feeling of "being there". The viewpoint detection system consists of several modules. First, an analysis module identifies and follows regions of interest (ROI) where faces are detected. We will show the cooperative approach between spatial detection and temporal tracking. Secondly, an eye detector finds the position of the eyes within faces. Then, the 3D positions of the eyes are deduced using stereoscopic images from a binocular camera. Finally, the 3D scene is rendered in real-time according to the new point of view.

  20. 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction.

    PubMed

    Verrier, Nicolas; Fournier, Corinne; Fournel, Thierry

    2015-06-01

    In-line digital holography is a valuable tool for sizing, locating, and tracking micro- or nano-objects in a volume. When a parametric imaging model is available, inverse problem approaches provide a straightforward estimate of the object parameters by fitting data with the model, thereby allowing accurate reconstruction. As recently proposed and demonstrated, combining pixel super-resolution techniques with inverse problem approaches improves the estimation of particle size and 3D position. Here, we demonstrate the accurate tracking of colloidal particles in Brownian motion. Particle size and 3D position are jointly optimized from video holograms acquired with a digital holographic microscopy setup based on a low-end microscope objective (×20, NA 0.5). Exploiting information redundancy makes it possible to characterize particles with a standard deviation of 15 nm in size and a theoretical resolution of 2×2×5  nm3 for position under additive white Gaussian noise assumption.

  1. 3D Microfluidic model for evaluating immunotherapy efficacy by tracking dendritic cell behaviour toward tumor cells.

    PubMed

    Parlato, Stefania; De Ninno, Adele; Molfetta, Rosa; Toschi, Elena; Salerno, Debora; Mencattini, Arianna; Romagnoli, Giulia; Fragale, Alessandra; Roccazzello, Lorenzo; Buoncervello, Maria; Canini, Irene; Bentivegna, Enrico; Falchi, Mario; Bertani, Francesca Romana; Gerardino, Annamaria; Martinelli, Eugenio; Natale, Corrado; Paolini, Rossella; Businaro, Luca; Gabriele, Lucia

    2017-04-24

    Immunotherapy efficacy relies on the crosstalk within the tumor microenvironment between cancer and dendritic cells (DCs) resulting in the induction of a potent and effective antitumor response. DCs have the specific role of recognizing cancer cells, taking up tumor antigens (Ags) and then migrating to lymph nodes for Ag (cross)-presentation to naïve T cells. Interferon-α-conditioned DCs (IFN-DCs) exhibit marked phagocytic activity and the special ability of inducing Ag-specific T-cell response. Here, we have developed a novel microfluidic platform recreating tightly interconnected cancer and immune systems with specific 3D environmental properties, for tracking human DC behaviour toward tumor cells. By combining our microfluidic platform with advanced microscopy and a revised cell tracking analysis algorithm, it was possible to evaluate the guided efficient motion of IFN-DCs toward drug-treated cancer cells and the succeeding phagocytosis events. Overall, this platform allowed the dissection of IFN-DC-cancer cell interactions within 3D tumor spaces, with the discovery of major underlying factors such as CXCR4 involvement and underscored its potential as an innovative tool to assess the efficacy of immunotherapeutic approaches.

  2. Looking Beyond the Simple Scenarios: Combining Learners and Optimizers in 3D Temporal Tracking.

    PubMed

    Tan, David Joseph; Navab, Nassir; Tombari, Federico

    2017-11-01

    3D object temporal trackers estimate the 3D rotation and 3D translation of a rigid object by propagating the transformation from one frame to the next. To confront this task, algorithms either learn the transformation between two consecutive frames or optimize an energy function to align the object to the scene. The motivation behind our approach stems from a consideration on the nature of learners and optimizers. Throughout the evaluation of different types of objects and working conditions, we observe their complementary nature - on one hand, learners are more robust when undergoing challenging scenarios, while optimizers are prone to tracking failures due to the entrapment at local minima; on the other, optimizers can converge to a better accuracy and minimize jitter. Therefore, we propose to bridge the gap between learners and optimizers to attain a robust and accurate RGB-D temporal tracker that runs at approximately 2 ms per frame using one CPU core. Our work is highly suitable for Augmented Reality (AR), Mixed Reality (MR) and Virtual Reality (VR) applications due to its robustness, accuracy, efficiency and low latency. Aiming at stepping beyond the simple scenarios used by current systems, often constrained by having a single object in the absence of clutter, averting to touch the object to prevent close-range partial occlusion or selecting brightly colored objects to easily segment them individually, we demonstrate the capacity to handle challenging cases under clutter, partial occlusion and varying lighting conditions.

  3. The role of 3D and speckle tracking echocardiography in cardiac amyloidosis: a case report.

    PubMed

    Nucci, E M; Lisi, M; Cameli, M; Baldi, L; Puccetti, L; Mondillo, S; Favilli, R; Lunghetti, S

    2014-01-01

    Cardiac amyloidosis (CA) is a disorder characterized by amyloid fibrils deposition in cardiac interstitium; it results in a restrictive cardiomyopathy with heart failure (HF) and conduction abnormalities. The "gold standard" for diagnosis of CA is myocardial biopsy but possible sampling errors and procedural risks, limit it's use. Magnetic resonance (RMN) offers more information than traditional echocardiography and allows diagnosis of CA but often it's impossible to perform. We report the case of a man with HF and symptomatic bradyarrhythmia that required an urgent pacemaker implant. Echocardiography was strongly suggestive of CA but wasn't impossible to perform an RMN to confirm this hypothesis because the patient was implanted with a definitive pacemaker. So was performed a Speckle Tracking Echocardiography (STE) and a 3D echocardiography: STE allows to differentiate CA from others hypertrophic cardiomyopathy by longitudinal strain value < 12% and 3D echocardiography shows regional left ventricular dyssynchrony with a characteristic temporal pattern of dispersion of regional volume systolic change. On the basis of these results, finally was performed an endomyocardial biopsy that confirmed the diagnosis of CA. This case underlines the importance of news, noninvasive techniques such as eco 3D and STE for early diagnosis of CA, especially when RMN cannot be performed.

  4. Real-time 3D target tracking in MRI guided focused ultrasound ablations in moving tissues.

    PubMed

    Ries, Mario; de Senneville, Baudouin Denis; Roujol, Sébastien; Berber, Yasmina; Quesson, Bruno; Moonen, Chrit

    2010-12-01

    Magnetic resonance imaging-guided high intensity focused ultrasound is a promising method for the noninvasive ablation of pathological tissue in abdominal organs such as liver and kidney. Due to the high perfusion rates of these organs, sustained sonications are required to achieve a sufficiently high temperature elevation to induce necrosis. However, the constant displacement of the target due to the respiratory cycle render continuous ablations challenging, since dynamic repositioning of the focal point is required. This study demonstrates subsecond 3D high intensity focused ultrasound-beam steering under magnetic resonance-guidance for the real-time compensation of respiratory motion. The target is observed in 3D space by coupling rapid 2D magnetic resonance-imaging with prospective slice tracking based on pencil-beam navigator echoes. The magnetic resonance-data is processed in real-time by a computationally efficient reconstruction pipeline, which provides the position, the temperature and the thermal dose on-the-fly, and which feeds corrections into the high intensity focused ultrasound-ablator. The effect of the residual update latency is reduced by using a 3D Kalman-predictor for trajectory anticipation. The suggested method is characterized with phantom experiments and verified in vivo on porcine kidney. The results show that for update frequencies of more than 10 Hz and latencies of less then 114 msec, temperature elevations can be achieved, which are comparable to static experiments. Copyright © 2010 Wiley-Liss, Inc.

  5. Measuring anisotropy as a function of scale in turbulence using 3D particle tracking

    NASA Astrophysics Data System (ADS)

    Wijesinghe, Susantha; Voth, Greg

    2012-02-01

    We report the first full 3D experimental measurements of anisotropy as a function of scale in turbulence. From 3D particle tracks obtained with stereoscpic high speed video, we measure the Eulerian structure functions and decompose them into irreducible representation of SO(3) rotation group. This method allows us to quantify the anisotropy in different sectors, specified by j and m of the spherical harmonics Yjm(,), at all scales in the flow. We study a turbulent flow between two oscillating grids in an octagonal tank filled with 1100 l of water with Rλ=265. An image compression system processes high-speed video from four cameras in real-time allowing us to acquire huge data sets required for full 3D measurement of anisotropy as a function of scale. Careful selection of a sample of measurements with isotropic orientations is necessary to ensure that anisotropy of the measurement system does not affect the measured anisotropy of the flow. Increasing j sectors show faster decay of anisotropy as scale decreases, consistent with the idea that the small scales should become isotropic at very high Reynolds number. However, conditioning the measured anisotropy on the instantaneous velocity reveals that characterization of anisotropy in an inhom

  6. A Hidden Markov Model for 3D Catheter Tip Tracking with 2D X-ray Catheterization Sequence and 3D Rotational Angiography.

    PubMed

    Ambrosini, Pierre; Smal, Ihor; Ruijters, Daniel; Niessen, Wiro; Moelker, Adriaan; van Walsum, Theo

    2016-11-07

    In minimal invasive image guided catheterization procedures, physicians require information of the catheter position with respect to the patient's vasculature. However, in fluoroscopic images, visualization of the vasculature requires toxic contrast agent. Static vasculature roadmapping, which can reduce the usage of iodine contrast, is hampered by the breathing motion in abdominal catheterization. In this paper, we propose a method to track the catheter tip inside the patient's 3D vessel tree using intra-operative single-plane 2D X-ray image sequences and a peri-operative 3D rotational angiography (3DRA). The method is based on a hidden Markov model (HMM) where states of the model are the possible positions of the catheter tip inside the 3D vessel tree. The transitions from state to state model the probabilities for the catheter tip to move from one position to another. The HMM is updated following the observation scores, based on the registration between the 2D catheter centerline extracted from the 2D X-ray image, and the 2D projection of 3D vessel tree centerline extracted from the 3DRA. The method is extensively evaluated on simulated and clinical datasets acquired during liver abdominal catheterization. The evaluations show a median 3D tip tracking error of 2.3 mm with optimal settings in simulated data. The registered vessels close to the tip have a median distance error of 4.7 mm with angiographic data and optimal settings. Such accuracy is sufficient to help the physicians with an up-to-date roadmapping. The method tracks in real-time the catheter tip and enables roadmapping during catheterization procedures.

  7. On the holographic 3D tracking of in vitro cells characterized by a highly-morphological change.

    PubMed

    Memmolo, Pasquale; Iannone, Maria; Ventre, Maurizio; Netti, Paolo Antonio; Finizio, Andrea; Paturzo, Melania; Ferraro, Pietro

    2012-12-17

    Digital Holography (DH) in microscopic configuration is a powerful tool for the imaging of micro-objects contained into a three dimensional (3D) volume, by a single-shot image acquisition. Many studies report on the ability of DH to track particle, microorganism and cells in 3D. However, very few investigations are performed with objects that change severely their morphology during the observation period. Here we study DH as a tool for 3D tracking an osteosarcoma cell line for which extensive changes in cell morphology are associated to cell motion. Due to the great unpredictable morphological change, retrieving cell's position in 3D can become a complicated issue. We investigate and discuss in this paper how the tridimensional position can be affected by the continuous change of the cells. Moreover we propose and test some strategies to afford the problems and compare it with others approaches. Finally, results on the 3D tracking and comments are reported and illustrated.

  8. Robust object tracking techniques for vision-based 3D motion analysis applications

    NASA Astrophysics Data System (ADS)

    Knyaz, Vladimir A.; Zheltov, Sergey Y.; Vishnyakov, Boris V.

    2016-04-01

    Automated and accurate spatial motion capturing of an object is necessary for a wide variety of applications including industry and science, virtual reality and movie, medicine and sports. For the most part of applications a reliability and an accuracy of the data obtained as well as convenience for a user are the main characteristics defining the quality of the motion capture system. Among the existing systems for 3D data acquisition, based on different physical principles (accelerometry, magnetometry, time-of-flight, vision-based), optical motion capture systems have a set of advantages such as high speed of acquisition, potential for high accuracy and automation based on advanced image processing algorithms. For vision-based motion capture accurate and robust object features detecting and tracking through the video sequence are the key elements along with a level of automation of capturing process. So for providing high accuracy of obtained spatial data the developed vision-based motion capture system "Mosca" is based on photogrammetric principles of 3D measurements and supports high speed image acquisition in synchronized mode. It includes from 2 to 4 technical vision cameras for capturing video sequences of object motion. The original camera calibration and external orientation procedures provide the basis for high accuracy of 3D measurements. A set of algorithms as for detecting, identifying and tracking of similar targets, so for marker-less object motion capture is developed and tested. The results of algorithms' evaluation show high robustness and high reliability for various motion analysis tasks in technical and biomechanics applications.

  9. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy.

    PubMed

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-03-06

    Many real-time imaging techniques have been developed to localize the target in 3D space or in 2D beam's eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting on average only <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem during 2D BEV tracking.

  10. Comparison of 2D and 3D modeled tumor motion estimation/prediction for dynamic tumor tracking during arc radiotherapy

    NASA Astrophysics Data System (ADS)

    Liu, Wu; Ma, Xiangyu; Yan, Huagang; Chen, Zhe; Nath, Ravinder; Li, Haiyun

    2017-05-01

    Many real-time imaging techniques have been developed to localize a target in 3D space or in a 2D beam’s eye view (BEV) plane for intrafraction motion tracking in radiation therapy. With tracking system latency, the 3D-modeled method is expected to be more accurate even in terms of 2D BEV tracking error. No quantitative analysis, however, has been reported. In this study, we simulated co-planar arc deliveries using respiratory motion data acquired from 42 patients to quantitatively compare the accuracy between 2D BEV and 3D-modeled tracking in arc therapy and to determine whether 3D information is needed for motion tracking. We used our previously developed low kV dose adaptive MV-kV imaging and motion compensation framework as a representative of 3D-modeled methods. It optimizes the balance between additional kV imaging dose and 3D tracking accuracy and solves the MLC blockage issue. With simulated Gaussian marker detection errors (zero mean and 0.39 mm standard deviation) and ~155/310/460 ms tracking system latencies, the mean percentage of time that the target moved  >2 mm from the predicted 2D BEV position are 1.1%/4.0%/7.8% and 1.3%/5.8%/11.6% for the 3D-modeled and 2D-only tracking, respectively. The corresponding average BEV RMS errors are 0.67/0.90/1.13 mm and 0.79/1.10/1.37 mm. Compared to the 2D method, the 3D method reduced the average RMS unresolved motion along the beam direction from ~3 mm to ~1 mm, resulting in on average only  <1% dosimetric advantage in the depth direction. Only for a small fraction of the patients, when tracking latency is long, the 3D-modeled method showed significant improvement of BEV tracking accuracy, indicating potential dosimetric advantage. However, if the tracking latency is short (~150 ms or less), those improvements are limited. Therefore, 2D BEV tracking has sufficient targeting accuracy for most clinical cases. The 3D technique is, however, still important in solving the MLC blockage problem

  11. Desynchronization of Cartesian k-space sampling and periodic motion for improved retrospectively self-gated 3D lung MRI using quasi-random numbers.

    PubMed

    Weick, Stefan; Völker, Michael; Hemberger, Kathrin; Meyer, Cord; Ehses, Philipp; Polat, Bülent; Breuer, Felix A; Blaimer, Martin; Fink, Christian; Schad, Lothar R; Sauer, Otto A; Flentje, Michael; Jakob, Peter M

    2017-02-01

    To demonstrate that desynchronization between Cartesian k-space sampling and periodic motion in free-breathing lung MRI improves the robustness and efficiency of retrospective respiratory self-gating. Desynchronization was accomplished by reordering the phase (ky ) and partition (kz ) encoding of a three-dimensional FLASH sequence according to two-dimensional, quasi-random (QR) numbers. For retrospective respiratory self-gating, the k-space center signal (DC signal) was acquired separately after each encoded k-space line. QR sampling results in a uniform distribution of k-space lines after gating. Missing lines resulting from the gating process were reconstructed using iterative GRAPPA. Volunteer measurements were performed to compare quasi-random with conventional sampling. Patient measurements were performed to demonstrate the feasibility of QR sampling in a clinical setting. The uniformly sampled k-space after retrospective gating allows for a more stable iterative GRAPPA reconstruction and improved ghost artifact reduction compared with conventional sampling. It is shown that this stability can either be used to reduce the total scan time or to reconstruct artifact-free data sets in different respiratory phases, both resulting in an improved efficiency of retrospective respiratory self-gating. QR sampling leads to desynchronization between repeated data acquisition and periodic respiratory motion. This results in an improved motion artifact reduction in shorter scan time. Magn Reson Med 77:787-793, 2017. © 2016 International Society for Magnetic Resonance in Medicine. © 2016 International Society for Magnetic Resonance in Medicine.

  12. Cartesian beams.

    PubMed

    Bandres, Miguel A; Gutiérrez-Vega, Julio C

    2007-12-01

    A new and very general beam solution of the paraxial wave equation in Cartesian coordinates is presented. We call such a field a Cartesian beam. The complex amplitude of the Cartesian beams is described by either the parabolic cylinder functions or the confluent hypergeometric functions, and the beams are characterized by three parameters that are complex in the most general situation. The propagation through complex ABCD optical systems and the conditions for square integration are studied in detail. Applying the general expression of the Cartesian beams, we also derive two new and meaningful beam structures that, to our knowledge, have not yet been reported in the literature. Special cases of the Cartesian beams are the standard, elegant, and generalized Hermite-Gauss beams, the cosine-Gauss beams, the Lorentz beams, and the fractional order beams.

  13. Nondestructive 3D confocal laser imaging with deconvolution of seven whole stardust tracks with complementary XRF and quantitative analysis

    SciTech Connect

    Greenberg, M.; Ebel, D.S.

    2009-03-19

    We present a nondestructive 3D system for analysis of whole Stardust tracks, using a combination of Laser Confocal Scanning Microscopy and synchrotron XRF. 3D deconvolution is used for optical corrections, and results of quantitative analyses of several tracks are presented. The Stardust mission to comet Wild 2 trapped many cometary and ISM particles in aerogel, leaving behind 'tracks' of melted silica aerogel on both sides of the collector. Collected particles and their tracks range in size from submicron to millimeter scale. Interstellar dust collected on the obverse of the aerogel collector is thought to have an average track length of {approx}15 {micro}m. It has been our goal to perform a total non-destructive 3D textural and XRF chemical analysis on both types of tracks. To that end, we use a combination of Laser Confocal Scanning Microscopy (LCSM) and X Ray Florescence (XRF) spectrometry. Utilized properly, the combination of 3D optical data and chemical data provides total nondestructive characterization of full tracks, prior to flattening or other destructive analysis methods. Our LCSM techniques allow imaging at 0.075 {micro}m/pixel, without the use of oil-based lenses. A full textural analysis on track No.82 is presented here as well as analysis of 6 additional tracks contained within 3 keystones (No.128, No.129 and No.140). We present a method of removing the axial distortion inherent in LCSM images, by means of a computational 3D Deconvolution algorithm, and present some preliminary experiments with computed point spread functions. The combination of 3D LCSM data and XRF data provides invaluable information, while preserving the integrity of the samples for further analysis. It is imperative that these samples, the first extraterrestrial solids returned since the Apollo era, be fully mapped nondestructively in 3D, to preserve the maximum amount of information prior to other, destructive analysis.

  14. Segmentation and Tracking of Adherens Junctions in 3D for the Analysis of Epithelial Tissue Morphogenesis

    PubMed Central

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-01-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT) PMID:25884654

  15. Segmentation and tracking of adherens junctions in 3D for the analysis of epithelial tissue morphogenesis.

    PubMed

    Cilla, Rodrigo; Mechery, Vinodh; Hernandez de Madrid, Beatriz; Del Signore, Steven; Dotu, Ivan; Hatini, Victor

    2015-04-01

    Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT).

  16. Simulations of Coalescence and Breakup of Interfaces Using a 3D Front-tracking Method

    NASA Astrophysics Data System (ADS)

    Lu, Jiacai; Tryggvason, Gretar

    2015-11-01

    Direct Numerical Simulations (DNS) of complex multiphase flows with coalescing and breaking-up of interfaces are conducted using a 3D front-tracking method. Front-tracking method has been successfully used in DNS of turbulent channel bubbly flows and many other multiphase flows, but as the void fraction increases changes in the interface topology, though coalescence and breakup, become more common and have to be accounted for. Topology changes have often been identified as a challenge for front tracking, where the interface is represented using a triangular mesh, but here we present an efficient algorithm to change the topology of triangular elements of interfaces. In the current implementation we have not included any small-scale attractive forces so thin films coalesce either at prescribed times or when their thickness reaches a given value. Simulations of the collisions of two drops and comparisons with experimental results have been used to validate the algorithm but the main applications have been to flow regime transitions in gas-liquid flows in pressure driven channel flows. The evolution of flow, including flow rate, wall shear, projected interface areas, pseudo-turbulence, and the average size of the various flow structures, is examined as the topology of the interface changes through coalescence and breakup. Research supported by DOE (CASL).

  17. Clinical feasibility and validation of 3D principal strain analysis from cine MRI: comparison to 2D strain by MRI and 3D speckle tracking echocardiography.

    PubMed

    Satriano, Alessandro; Heydari, Bobak; Narous, Mariam; Exner, Derek V; Mikami, Yoko; Attwood, Monica M; Tyberg, John V; Lydell, Carmen P; Howarth, Andrew G; Fine, Nowell M; White, James A

    2017-07-06

    Two-dimensional (2D) strain analysis is constrained by geometry-dependent reference directions of deformation (i.e. radial, circumferential, and longitudinal) following the assumption of cylindrical chamber architecture. Three-dimensional (3D) principal strain analysis may overcome such limitations by referencing intrinsic (i.e. principal) directions of deformation. This study aimed to demonstrate clinical feasibility of 3D principal strain analysis from routine 2D cine MRI with validation to strain from 2D tagged cine analysis and 3D speckle tracking echocardiography. Thirty-one patients undergoing cardiac MRI were studied. 3D strain was measured from routine, multi-planar 2D cine SSFP images using custom software designed to apply 4D deformation fields to 3D cardiac models to derive principal strain. Comparisons of strain estimates versus those by 2D tagged cine, 2D non-tagged cine (feature tracking), and 3D speckle tracking echocardiography (STE) were performed. Mean age was 51 ± 14 (36% female). Mean LV ejection fraction was 66 ± 10% (range 37-80%). 3D principal strain analysis was feasible in all subjects and showed high inter- and intra-observer reproducibility (ICC range 0.83-0.97 and 0.83-0.98, respectively-p < 0.001 for all directions). Strong correlations of minimum and maximum principal strain were respectively observed versus the following: 3D STE estimates of longitudinal (r = 0.81 and r = -0.64), circumferential (r = 0.76 and r = -0.58) and radial (r = -0.80 and r = 0.63) strain (p < 0.001 for all); 2D tagged cine estimates of longitudinal (r = 0.81 and r = -0.81), circumferential (r = 0.87 and r = -0.85), and radial (r = -0.76 and r = 0.81) strain (p < 0.0001 for all); and 2D cine (feature tracking) estimates of longitudinal (r = 0.85 and -0.83), circumferential (r = 0.88 and r = -0.87), and radial strain (r = -0.79 and r = 0.84, p < 0.0001 for all). 3D

  18. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  19. Analysis of a vibrating interventional device to improve 3-D colormark tracking.

    PubMed

    Fronheiser, Matthew P; Smith, Stephen W

    2007-08-01

    Ultrasound guidance of interventional devices during minimally invasive surgical procedures has been investigated by many researchers. Previously, we extended the methods used by the Colormark tracking system to several interventional devices using a real-time, three-dimensional (3-D) ultrasound system. These results showed that we needed to improve the efficiency and reliability of the tracking. In this paper, we describe an analytical model to predict the transverse vibrations along the length of an atrial septal puncture needle to enable design improvements of the tracking system. We assume the needle can be modeled as a hollow bar with a circular cross section with a fixed proximal end and a free distal end that is suspended vertically to ignore gravity effects. The initial results show an ability to predict the natural nodes and antinodes along the needle using the characteristic equation for free vibrations. Simulations show that applying a forcing function to the device at a natural antinode yields an order of magnitude larger vibration than when driving the device at a node. Pulsed wave spectral Doppler data was acquired along the distal portion of the needle in a water tank using a 2-D matrix array transesophageal echocardiography probe. This data was compared to simulations of forced vibrations from the model. These initial results suggest that the model is a good first order approximation of the vibrating device in a water tank. It is our belief that knowing the location of the natural nodes and antinodes will improve our ability to drive the device to ensure the vibrations at the proximal end will reach the tip of the device, which in turn should improve our ability to track the device in vivo.

  20. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  1. Application of 3D hydrodynamic and particle tracking models for better environmental management of finfish culture

    NASA Astrophysics Data System (ADS)

    Moreno Navas, Juan; Telfer, Trevor C.; Ross, Lindsay G.

    2011-04-01

    Hydrographic conditions, and particularly current speeds, have a strong influence on the management of fish cage culture. These hydrodynamic conditions can be used to predict particle movement within the water column and the results used to optimise environmental conditions for effective site selection, setting of environmental quality standards, waste dispersion, and potential disease transfer. To this end, a 3D hydrodynamic model, MOHID, has been coupled to a particle tracking model to study the effects of mean current speed, quiescent water periods and bulk water circulation in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the aquaculture industry. A Lagangrian method simulated the instantaneous release of "particles" emulating discharge from finfish cages to show the behaviour of waste in terms of water circulation and water exchange. The 3D spatial models were used to identify areas of mixed and stratified water using a version of the Simpson-Hunter criteria, and to use this in conjunction with models of current flow for appropriate site selection for salmon aquaculture. The modelled outcomes for stratification were in good agreement with the direct measurements of water column stratification based on observed density profiles. Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay was potentially stratified with a well mixed region over the shallow channels where the water is faster flowing. The fjard was characterised by areas of both very low and high mean current speeds, with some areas having long periods of quiescent water. The residual current and the particle tracking animations created through the models revealed an anticlockwise eddy that may influence waste dispersion and potential for disease transfer, among salmon cages and which ensures that the retention time of waste substances from cages is extended. The hydrodynamic model results were incorporated into the ArcView TM GIS

  2. Using an automated 3D-tracking system to record individual and shoals of adult zebrafish.

    PubMed

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2013-12-05

    Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.

  3. Defragmented image based autostereoscopic 3D displays with dynamic eye tracking

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Yoon, Ki-Hyuk; Yoon, Seon Kyu; Ju, Heongkyu

    2015-12-01

    We studied defragmented image based autostereoscopic 3D displays with dynamic eye tracking. Specifically, we examined the impact of parallax barrier (PB) angular orientation on their image quality. The 3D display system required fine adjustment of PB angular orientation with respect to a display panel. This was critical for both image color balancing and minimizing image resolution mismatch between horizontal and vertical directions. For evaluating uniformity of image brightness, we applied optical ray tracing simulations. The simulations took effects of PB orientation misalignment into account. The simulation results were then compared with recorded experimental data. Our optimal simulated system produced significantly enhanced image uniformity at around sweet spots in viewing zones. However this was contradicted by real experimental results. We offer quantitative treatment of illuminance uniformity of view images to estimate misalignment of PB orientation, which could account for brightness non-uniformity observed experimentally. Our study also shows that slight imperfection in the adjustment of PB orientation due to practical restrictions of adjustment accuracy can induce substantial non-uniformity of view images' brightness. We find that image brightness non-uniformity critically depends on misalignment of PB angular orientation, for example, as slight as ≤ 0.01 ° in our system. This reveals that reducing misalignment of PB angular orientation from the order of 10-2 to 10-3 degrees can greatly improve the brightness uniformity.

  4. Towards free 3D end-point control for robotic-assisted human reaching using binocular eye tracking.

    PubMed

    Maimon-Dror, Roni O; Fernandez-Quesada, Jorge; Zito, Giuseppe A; Konnaris, Charalambos; Dziemian, Sabine; Faisal, A Aldo

    2017-07-01

    Eye-movements are the only directly observable behavioural signals that are highly correlated with actions at the task level, and proactive of body movements and thus reflect action intentions. Moreover, eye movements are preserved in many movement disorders leading to paralysis (or amputees) from stroke, spinal cord injury, Parkinson's disease, multiple sclerosis, and muscular dystrophy among others. Despite this benefit, eye tracking is not widely used as control interface for robotic interfaces in movement impaired patients due to poor human-robot interfaces. We demonstrate here how combining 3D gaze tracking using our GT3D binocular eye tracker with custom designed 3D head tracking system and calibration method enables continuous 3D end-point control of a robotic arm support system. The users can move their own hand to any location of the workspace by simple looking at the target and winking once. This purely eye tracking based system enables the end-user to retain free head movement and yet achieves high spatial end point accuracy in the order of 6 cm RMSE error in each dimension and standard deviation of 4 cm. 3D calibration is achieved by moving the robot along a 3 dimensional space filling Peano curve while the user is tracking it with their eyes. This results in a fully automated calibration procedure that yields several thousand calibration points versus standard approaches using a dozen points, resulting in beyond state-of-the-art 3D accuracy and precision.

  5. A new method for automatic tracking of facial landmarks in 3D motion captured images (4D).

    PubMed

    Al-Anezi, T; Khambay, B; Peng, M J; O'Leary, E; Ju, X; Ayoub, A

    2013-01-01

    The aim of this study was to validate the automatic tracking of facial landmarks in 3D image sequences. 32 subjects (16 males and 16 females) aged 18-35 years were recruited. 23 anthropometric landmarks were marked on the face of each subject with non-permanent ink using a 0.5mm pen. The subjects were asked to perform three facial animations (maximal smile, lip purse and cheek puff) from rest position. Each animation was captured by the 3D imaging system. A single operator manually digitised the landmarks on the 3D facial models and their locations were compared with those of the automatically tracked ones. To investigate the accuracy of manual digitisation, the operator re-digitised the same set of 3D images of 10 subjects (5 male and 5 female) at 1 month interval. The discrepancies in x, y and z coordinates between the 3D position of the manual digitised landmarks and that of the automatic tracked facial landmarks were within 0.17mm. The mean distance between the manually digitised and the automatically tracked landmarks using the tracking software was within 0.55 mm. The automatic tracking of facial landmarks demonstrated satisfactory accuracy which would facilitate the analysis of the dynamic motion during facial animations.

  6. Spatial and temporal performance of 3D optical surface imaging for real-time head position tracking.

    PubMed

    Wiersma, Rodney D; Tomarken, S L; Grelewicz, Zachary; Belcher, Andrew H; Kang, Hyejoo

    2013-11-01

    The spatial and temporal tracking performance of a commercially available 3D optical surface imaging system is evaluated for its potential use in frameless stereotactic radiosurgery head tracking applications. Both 3D surface and infrared (IR) marker tracking were performed simultaneously on a head phantom mounted on an xyz motion stage and on four human subjects. To allow spatial and temporal comparison on human subjects, three points were simultaneously monitored, including the upper facial region (3D surface), a dental plate (IR markers), and upper forehead (IR markers). For both static and dynamic phantom studies, the 3D surface tracker was found to have a root mean squared error (RMSE) of approximately 0.30 mm for region-of-interest (ROI) surface sizes greater than 1000 vertex points. Although, the processing period (1/fps) of the 3D surface system was found to linearly increase as a function of the number of ROI vertex points, the tracking accuracy was found to be independent of ROI size provided that the ROI was sufficiently large and contained features for registration. For human subjects, the RMSE between 3D surface tracking and IR marker tracking modalities was 0.22 mm left-right (x-axis), 0.44 mm superior-inferior (y-axis), 0.27 mm anterior-posterior (z-axis), 0.29° pitch (around x-axis), 0.18° roll (around y-axis), and 0.15° yaw (around z-axis). 3D surface imaging has the potential to provide submillimeter level head motion tracking. This is provided that a highly accurate camera-to-LINAC frame of reference calibration can be performed and that the reference ROI is of sufficient size and contains suitable surface features for registration.

  7. The systematic and random errors determination using realtime 3D surface tracking system in breast cancer

    NASA Astrophysics Data System (ADS)

    Kanphet, J.; Suriyapee, S.; Dumrongkijudom, N.; Sanghangthum, T.; Kumkhwao, J.; Wisetrintong, M.

    2016-03-01

    The purpose of this study to determine the patient setup uncertainties in deep inspiration breath-hold (DIBH) radiation therapy for left breast cancer patients using real-time 3D surface tracking system. The six breast cancer patients treated by 6 MV photon beams from TrueBeam linear accelerator were selected. The patient setup errors and motion during treatment were observed and calculated for interfraction and intrafraction motions. The systematic and random errors were calculated in vertical, longitudinal and lateral directions. From 180 images tracking before and during treatment, the maximum systematic error of interfraction and intrafraction motions were 0.56 mm and 0.23 mm, the maximum random error of interfraction and intrafraction motions were 1.18 mm and 0.53 mm, respectively. The interfraction was more pronounce than the intrafraction, while the systematic error was less impact than random error. In conclusion the intrafraction motion error from patient setup uncertainty is about half of interfraction motion error, which is less impact due to the stability in organ movement from DIBH. The systematic reproducibility is also half of random error because of the high efficiency of modern linac machine that can reduce the systematic uncertainty effectively, while the random errors is uncontrollable.

  8. Real-time 3D motion tracking for small animal brain PET

    NASA Astrophysics Data System (ADS)

    Kyme, A. Z.; Zhou, V. W.; Meikle, S. R.; Fulton, R. R.

    2008-05-01

    High-resolution positron emission tomography (PET) imaging of conscious, unrestrained laboratory animals presents many challenges. Some form of motion correction will normally be necessary to avoid motion artefacts in the reconstruction. The aim of the current work was to develop and evaluate a motion tracking system potentially suitable for use in small animal PET. This system is based on the commercially available stereo-optical MicronTracker S60 which we have integrated with a Siemens Focus-220 microPET scanner. We present measured performance limits of the tracker and the technical details of our implementation, including calibration and synchronization of the system. A phantom study demonstrating motion tracking and correction was also performed. The system can be calibrated with sub-millimetre accuracy, and small lightweight markers can be constructed to provide accurate 3D motion data. A marked reduction in motion artefacts was demonstrated in the phantom study. The techniques and results described here represent a step towards a practical method for rigid-body motion correction in small animal PET. There is scope to achieve further improvements in the accuracy of synchronization and pose measurements in future work.

  9. Automatic alignment of standard views in 3D echocardiograms using real-time tracking

    NASA Astrophysics Data System (ADS)

    Orderud, Fredrik; Torp, Hans; Rabben, Stein Inge

    2009-02-01

    In this paper, we present an automatic approach for alignment of standard apical and short-axis slices, and correcting them for out-of-plane motion in 3D echocardiography. This is enabled by using real-time Kalman tracking to perform automatic left ventricle segmentation using a coupled deformable model, consisting of a left ventricle model, as well as structures for the right ventricle and left ventricle outflow tract. Landmark points from the segmented model are then used to generate standard apical and short-axis slices. The slices are automatically updated after tracking in each frame to correct for out-of-plane motion caused by longitudinal shortening of the left ventricle. Results from a dataset of 35 recordings demonstrate the potential for automating apical slice initialization and dynamic short-axis slices. Apical 4-chamber, 2-chamber and long-axis slices are generated based on an assumption of fixed angle between the slices, and short-axis slices are generated so that they follow the same myocardial tissue over the entire cardiac cycle. The error compared to manual annotation was 8.4 +/- 3.5 mm for apex, 3.6 +/- 1.8 mm for mitral valve and 8.4 +/- 7.4 for apical 4-chamber view. The high computational efficiency and automatic behavior of the method enables it to operate in real-time, potentially during image acquisition.

  10. Infrared tomographic PIV and 3D motion tracking system applied to aquatic predator-prey interaction

    NASA Astrophysics Data System (ADS)

    Adhikari, Deepak; Longmire, Ellen K.

    2013-02-01

    Infrared tomographic PIV and 3D motion tracking are combined to measure evolving volumetric velocity fields and organism trajectories during aquatic predator-prey interactions. The technique was used to study zebrafish foraging on both non-evasive and evasive prey species. Measurement volumes of 22.5 mm × 10.5 mm × 12 mm were reconstructed from images captured on a set of four high-speed cameras. To obtain accurate fluid velocity vectors within each volume, fish were first masked out using an automated visual hull method. Fish and prey locations were identified independently from the same image sets and tracked separately within the measurement volume. Experiments demonstrated that fish were not influenced by the infrared laser illumination or the tracer particles. Results showed that the zebrafish used different strategies, suction and ram feeding, for successful capture of non-evasive and evasive prey, respectively. The two strategies yielded different variations in fluid velocity between the fish mouth and the prey. In general, the results suggest that the local flow field, the direction of prey locomotion with respect to the predator and the relative accelerations and speeds of the predator and prey may all be significant in determining predation success.

  11. Eulerian and Lagrangian methods for vortex tracking in 2D and 3D flows

    NASA Astrophysics Data System (ADS)

    Huang, Yangzi; Green, Melissa

    2014-11-01

    Coherent structures are a key component of unsteady flows in shear layers. Improvement of experimental techniques has led to larger amounts of data and requires of automated procedures for vortex tracking. Many vortex criteria are Eulerian, and identify the structures by an instantaneous local swirling motion in the field, which are indicated by closed or spiral streamlines or pathlines in a reference frame. Alternatively, a Lagrangian Coherent Structures (LCS) analysis is a Lagrangian method based on the quantities calculated along fluid particle trajectories. In the current work, vortex detection is demonstrated on data from the simulation of two cases: a 2D flow with a flat plate undergoing a 45 ° pitch-up maneuver and a 3D wall-bounded turbulence channel flow. Vortices are visualized and tracked by their centers and boundaries using Γ1, the Q criterion, and LCS saddle points. In the cases of 2D flow, saddle points trace showed a rapid acceleration of the structure which indicates the shedding from the plate. For channel flow, saddle points trace shows that average structure convection speed exhibits a similar trend as a function of wall-normal distance as the mean velocity profile, and leads to statistical quantities of vortex dynamics. Dr. Jeff Eldredge and his research group at UCLA are gratefully acknowledged for sharing the database of simulation for the current research. This work was supported by the Air Force Office of Scientific Research under AFOSR Award No. FA9550-14-1-0210.

  12. More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs

    PubMed Central

    Gai, Jiading; Obeid, Nady; Holtrop, Joseph L.; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P.; Hwu, Wen-mei W.; Liang, Zhi-Pei; Sutton, Bradley P.

    2013-01-01

    Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code. PMID:23682203

  13. More IMPATIENT: A Gridding-Accelerated Toeplitz-based Strategy for Non-Cartesian High-Resolution 3D MRI on GPUs.

    PubMed

    Gai, Jiading; Obeid, Nady; Holtrop, Joseph L; Wu, Xiao-Long; Lam, Fan; Fu, Maojing; Haldar, Justin P; Hwu, Wen-Mei W; Liang, Zhi-Pei; Sutton, Bradley P

    2013-05-01

    Several recent methods have been proposed to obtain significant speed-ups in MRI image reconstruction by leveraging the computational power of GPUs. Previously, we implemented a GPU-based image reconstruction technique called the Illinois Massively Parallel Acquisition Toolkit for Image reconstruction with ENhanced Throughput in MRI (IMPATIENT MRI) for reconstructing data collected along arbitrary 3D trajectories. In this paper, we improve IMPATIENT by removing computational bottlenecks by using a gridding approach to accelerate the computation of various data structures needed by the previous routine. Further, we enhance the routine with capabilities for off-resonance correction and multi-sensor parallel imaging reconstruction. Through implementation of optimized gridding into our iterative reconstruction scheme, speed-ups of more than a factor of 200 are provided in the improved GPU implementation compared to the previous accelerated GPU code.

  14. Model based 3D CS-catheter tracking from 2D X-ray projections: binary versus attenuation models.

    PubMed

    Haase, Christian; Schäfer, Dirk; Dössel, Olaf; Grass, Michael

    2014-04-01

    Tracking the location of medical devices in interventional X-ray data solves different problems. For example the motion information of the devices is used to determine cardiac or respiratory motion during X-ray guided procedures or device features are used as landmarks to register images. In this publication an approach using a 3D deformable catheter model is presented and used to track a coronary sinus (CS) catheter in 3D plus time through a complete rotational angiography sequence. The benefits of using voxel based models with attenuation information for 2D/3D registration are investigated in comparison to binary catheter models. The 2D/3D registration of the model allows to extract a 3D catheter shape from every individual 2D projection. The tracking accuracy is evaluated on simulated and clinical rotational angiography data of the contrast enhanced left atrium. The quantitative evaluation of the experiments delivers an average registration accuracy for all catheter electrodes of 0.23 mm in 2D and 0.95 mm in 3D when using an attenuation model of the catheter. The overall tracking accuracy is lower when using binary catheter models. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. A photogrammetric approach for real-time 3D localization and tracking of pedestrians in monocular infrared imagery

    NASA Astrophysics Data System (ADS)

    Kundegorski, Mikolaj E.; Breckon, Toby P.

    2014-10-01

    Target tracking within conventional video imagery poses a significant challenge that is increasingly being addressed via complex algorithmic solutions. The complexity of this problem can be fundamentally attributed to the ambiguity associated with actual 3D scene position of a given tracked object in relation to its observed position in 2D image space. We propose an approach that challenges the current trend in complex tracking solutions by addressing this fundamental ambiguity head-on. In contrast to prior work in the field, we leverage the key advantages of thermal-band infrared (IR) imagery for the pedestrian localization to show that robust localization and foreground target separation, afforded via such imagery, facilities accurate 3D position estimation to within the error bounds of conventional Global Position System (GPS) positioning. This work investigates the accuracy of classical photogrammetry, within the context of current target detection and classification techniques, as a means of recovering the true 3D position of pedestrian targets within the scene. Based on photogrammetric estimation of target position, we then illustrate the efficiency of regular Kalman filter based tracking operating on actual 3D pedestrian scene trajectories. We present both a statistical and experimental analysis of the associated errors of this approach in addition to real-time 3D pedestrian tracking using monocular infrared (IR) imagery from a thermal-band camera.

  16. Evaluation and comparison of current biopsy needle localization and tracking methods using 3D ultrasound.

    PubMed

    Zhao, Yue; Shen, Yi; Bernard, Adeline; Cachard, Christian; Liebgott, Hervé

    2017-01-01

    This article compares four different biopsy needle localization algorithms in both 3D and 4D situations to evaluate their accuracy and execution time. The localization algorithms were: Principle component analysis (PCA), random Hough transform (RHT), parallel integral projection (PIP) and ROI-RK (ROI based RANSAC and Kalman filter). To enhance the contrast of the biopsy needle and background tissue, a line filtering pre-processing step was implemented. To make the PCA, RHT and PIP algorithms comparable with the ROI-RK method, a region of interest (ROI) strategy was added. Simulated and ex-vivo data were used to evaluate the performance of the different biopsy needle localization algorithms. The resolutions of the sectorial and cylindrical volumes were 0.3mm×0.4mm×0.6mmand0.1mm×0.1mm×0.2mm (axial×lateral×azimuthal) respectively. In so far as the simulation and experimental results show, the ROI-RK method successfully located and tracked the biopsy needle in both 3D and 4D situations. The tip localization error was within 1.5mm and the axis accuracy was within 1.6mm. To the best of our knowledge, considering both localization accuracy and execution time, the ROI-RK was the most stable and time-saving method. Normally, accuracy comes at the expense of time. However, the ROI-RK method was able to locate the biopsy needle with high accuracy in real time, which makes it a promising method for clinical applications.

  17. Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs

    NASA Astrophysics Data System (ADS)

    Daly, D.; Zilioli, A.; Tan, N.; Buttenschoen, K.; Chikkanna, B.; Reynolds, J.; Marsden, B.; Hughes, C.

    2016-03-01

    We present results of the development of a non-contacting instrument, called fScan, based on scanning confocal fluorometry for assessing the diffusion of materials through a tissue matrix. There are many areas in healthcare diagnostics and screening where it is now widely accepted that the need for new quantitative monitoring technologies is a major pinch point in patient diagnostics and in vitro testing. With the increasing need to interpret 3D responses this commonly involves the need to track the diffusion of compounds, pharma-active species and cells through a 3D matrix of tissue. Methods are available but to support the advances that are currently only promised, this monitoring needs to be real-time, non-invasive, and economical. At the moment commercial meters tend to be invasive and usually require a sample of the medium to be removed and processed prior to testing. This methodology clearly has a number of significant disadvantages. fScan combines a fiber based optical arrangement with a compact, free space optical front end that has been integrated so that the sample's diffusion can be measured without interference. This architecture is particularly important due to the "wet" nature of the samples. fScan is designed to measure constructs located within standard well plates and a 2-D motion stage locates the required sample with respect to the measurement system. Results are presented that show how the meter has been used to evaluate movements of samples through collagen constructs in situ without disturbing their kinetic characteristics. These kinetics were little understood prior to these measurements.

  18. Automated 3D motion tracking using Gabor filter bank, robust point matching, and deformable models.

    PubMed

    Chen, Ting; Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2010-01-01

    Tagged magnetic resonance imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the robust point matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of 1) through-plane motion and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the moving least square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  19. Automated 3D Motion Tracking using Gabor Filter Bank, Robust Point Matching, and Deformable Models

    PubMed Central

    Wang, Xiaoxu; Chung, Sohae; Metaxas, Dimitris; Axel, Leon

    2013-01-01

    Tagged Magnetic Resonance Imaging (tagged MRI or tMRI) provides a means of directly and noninvasively displaying the internal motion of the myocardium. Reconstruction of the motion field is needed to quantify important clinical information, e.g., the myocardial strain, and detect regional heart functional loss. In this paper, we present a three-step method for this task. First, we use a Gabor filter bank to detect and locate tag intersections in the image frames, based on local phase analysis. Next, we use an improved version of the Robust Point Matching (RPM) method to sparsely track the motion of the myocardium, by establishing a transformation function and a one-to-one correspondence between grid tag intersections in different image frames. In particular, the RPM helps to minimize the impact on the motion tracking result of: 1) through-plane motion, and 2) relatively large deformation and/or relatively small tag spacing. In the final step, a meshless deformable model is initialized using the transformation function computed by RPM. The model refines the motion tracking and generates a dense displacement map, by deforming under the influence of image information, and is constrained by the displacement magnitude to retain its geometric structure. The 2D displacement maps in short and long axis image planes can be combined to drive a 3D deformable model, using the Moving Least Square method, constrained by the minimization of the residual error at tag intersections. The method has been tested on a numerical phantom, as well as on in vivo heart data from normal volunteers and heart disease patients. The experimental results show that the new method has a good performance on both synthetic and real data. Furthermore, the method has been used in an initial clinical study to assess the differences in myocardial strain distributions between heart disease (left ventricular hypertrophy) patients and the normal control group. The final results show that the proposed method

  20. 3-D geometry calibration and markerless electromagnetic tracking with a mobile C-arm

    NASA Astrophysics Data System (ADS)

    Cheryauka, Arvi; Barrett, Johnny; Wang, Zhonghua; Litvin, Andrew; Hamadeh, Ali; Beaudet, Daniel

    2007-03-01

    The design of mobile X-ray C-arm equipment with image tomography and surgical guidance capabilities involves the retrieval of repeatable gantry positioning in three-dimensional space. Geometry misrepresentations can cause degradation of the reconstruction results with the appearance of blurred edges, image artifacts, and even false structures. It may also amplify surgical instrument tracking errors leading to improper implant placement. In our prior publications we have proposed a C-arm 3D positioner calibration method comprising separate intrinsic and extrinsic geometry calibration steps. Following this approach, in the present paper, we extend the intrinsic geometry calibration of C-gantry beyond angular positions in the orbital plane into angular positions on a unit sphere of isocentric rotation. Our method makes deployment of markerless interventional tool guidance with use of high-resolution fluoro images and electromagnetic tracking feasible at any angular position of the tube-detector assembly. Variations of the intrinsic parameters associated with C-arm motion are measured off-line as functions of orbital and lateral angles. The proposed calibration procedure provides better accuracy, and prevents unnecessary workflow steps for surgical navigation applications. With a slight modification, the Misalignment phantom, a tool for intrinsic geometry calibration, is also utilized to obtain an accurate 'image-to-sensor' mapping. We show simulation results, image quality and navigation accuracy estimates, and feasibility data acquired with the prototype system. The experimental results show the potential of high-resolution CT imaging (voxel size below 0.5 mm) and confident navigation in an interventional surgery setting with a mobile C-arm.

  1. Real-time 2D/3D registration for tumor motion tracking during radiotherapy

    NASA Astrophysics Data System (ADS)

    Furtado, H.; Gendrin, C.; Bloch, C.; Spoerk, J.; Pawiro, S. A.; Weber, C.; Figl, M.; Stock, M.; Georg, D.; Bergmann, H.; Birkfellner, W.

    2012-02-01

    Organ motion during radiotherapy is one of causes of uncertainty in dose delivery. To cope with this, the planned target volume (PTV) has to be larger than needed to guarantee full tumor irradiation. Existing methods deal with the problem by performing tumor tracking using implanted fiducial markers or magnetic sensors. In this work, we investigate the feasibility of using x-ray based real time 2D/3D registration for non-invasive tumor motion tracking during radiotherapy. Our method uses purely intensity based techniques, thus avoiding markers or fiducials. X-rays are acquired during treatment at a rate of 5.4Hz. We iteratively compare each x-ray with a set of digitally reconstructed radiographs (DRR) generated from the planning volume dataset, finding the optimal match between the x-ray and one of the DRRs. The DRRs are generated using a ray-casting algorithm, implemented using general purpose computation on graphics hardware (GPGPU) programming techniques using CUDA for greater performance. Validation is conducted off-line using a phantom and five clinical patient data sets. The registration is performed on a region of interest (ROI) centered around the PTV. The phantom motion is measured with an rms error of 2.1 mm and mean registration time is 220 ms. For the patient data sets, a sinusoidal movement that clearly correlates to the breathing cycle is seen. Mean registration time is always under 105 ms which is well suited for our purposes. These results demonstrate that real-time organ motion monitoring using image based markerless registration is feasible.

  2. Twin-beams digital holography for 3D tracking and quantitative phase-contrast microscopy in microfluidics.

    PubMed

    Memmolo, Pasquale; Finizio, Andrea; Paturzo, Melania; Miccio, Lisa; Ferraro, Pietro

    2011-12-05

    We report on a compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms with twofold functionality. The novel configuration allows 3D tracking of micro-particles and, at same time, can simultaneously furnish Quantitative Phase-contrast maps of tracked micro-objects by interference microscopy, without changing the configuration. Experimental demonstration is given on for in vitro cells in a microfluidic environment.

  3. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  4. Mapping 3D Strains with Ultrasound Speckle Tracking: Method Validation and Initial Results in Porcine Scleral Inflation.

    PubMed

    Cruz Perez, Benjamin; Pavlatos, Elias; Morris, Hugh J; Chen, Hong; Pan, Xueliang; Hart, Richard T; Liu, Jun

    2016-07-01

    This study aimed to develop and validate a high frequency ultrasound method for measuring distributive, 3D strains in the sclera during elevations of intraocular pressure. A 3D cross-correlation based speckle-tracking algorithm was implemented to compute the 3D displacement vector and strain tensor at each tracking point. Simulated ultrasound radiofrequency data from a sclera-like structure at undeformed and deformed states with known strains were used to evaluate the accuracy and signal-to-noise ratio (SNR) of strain estimation. An experimental high frequency ultrasound (55 MHz) system was built to acquire 3D scans of porcine eyes inflated from 15 to 17 and then 19 mmHg. Simulations confirmed good strain estimation accuracy and SNR (e.g., the axial strains had less than 4.5% error with SNRs greater than 16.5 for strains from 0.005 to 0.05). Experimental data in porcine eyes showed increasing tensile, compressive, and shear strains in the posterior sclera during inflation, with a volume ratio close to one suggesting near-incompressibility. This study established the feasibility of using high frequency ultrasound speckle tracking for measuring 3D tissue strains and its potential to characterize physiological deformations in the posterior eye.

  5. Tracking of cracks in bridges using GPR: a 3D approach

    NASA Astrophysics Data System (ADS)

    Benedetto, A.

    2012-04-01

    Corrosion associated with reinforcing bars is the most significant contributor to bridge deficiencies. The corrosion is usually caused by moisture and chloride ion exposure. In particular, corrosion products FeO, Fe2O3, Fe3O4 and other oxides along reinforcement bars. The reinforcing bars are attacked by corrosion and yield expansive corrosion products. These oxidation products occupy a larger volume than the original intact steel and internal expansive stresses lead to cracking and debonding. There are some conventional inspection methods for detection of reinforcing bar corrosion but they can be invasive and destructive, often laborious, lane closures is required and it is difficult or unreliable any quantification of corrosion. For these reasons, bridge engineers are always more preferring to use the Ground Penetrating Radar (GPR) technique. In this work a novel numerical approach for three dimensional tracking and mapping of cracks in the bridge is proposed. The work starts from some interesting results based on the use of the 3D imaging technique in order to improve the potentiality of GPR to detect voids, cracks or buried object. The numerical approach has been tested on data acquired on some bridges using a pulse GPR system specifically designed for bridge deck and pavement inspection that is called RIS Hi Bright. The equipment integrates two arrays of Ultra Wide Band ground coupled antennas, having a main working frequency of 2 GHz. The two arrays within the RIS Hi Bright are using antennas arranged with different polarization. One array includes sensors with parallel polarization with respect to the scanning direction (VV array), the other has sensors in orthogonal polarization (HH array). Overall the system collects 16 profiles within a single scan (8 HH + 8 VV). The cracks, associated often to moisture increasing and higher values of the dielectric constant, produce a not negligible increasing of the signal amplitude. Following this, the algorithm

  6. 3-D phantom and in vivo cardiac speckle tracking using a matrix array and raw echo data.

    PubMed

    Byram, Brett; Holley, Greg; Giannantonio, Doug; Trahey, Gregg

    2010-04-01

    Cardiac motion has been tracked using various methods, which vary in their invasiveness and dimensionality. One such noninvasive modality for cardiac motion tracking is ultrasound. Three-dimensional ultrasound motion tracking has been demonstrated using detected data at low volume rates. However, the effects of volume rate, kernel size, and data type (raw and detected) have not been sufficiently explored. First comparisons are made within the stated variables for 3-D speckle tracking. Volumetric data were obtained in a raw, baseband format using a matrix array attached to a high parallel receive beam count scanner. The scanner was used to acquire phantom and human in vivo cardiac volumetric data at 1000-Hz volume rates. Motion was tracked using phase-sensitive normalized cross-correlation. Subsample estimation in the lateral and elevational dimensions used the grid-slopes algorithm. The effects of frame rate, kernel size, and data type on 3-D tracking are shown. In general, the results show improvement of motion estimates at volume rates up to 200 Hz, above which they become stable. However, peak and pixel hopping continue to decrease at volume rates higher than 200 Hz. The tracking method and data show, qualitatively, good temporal and spatial stability (for independent kernels) at high volume rates.

  7. 3-D Phantom and In Vivo Cardiac Speckle Tracking Using a Matrix Array and Raw Echo Data

    PubMed Central

    Byram, Brett C.; Holley, Greg; Giannantonio, Doug M.; Trahey, Gregg E.

    2012-01-01

    Cardiac motion has been tracked using various methods, which vary in their invasiveness and dimensionality. One such noninvasive modality for cardiac motion tracking is ultrasound. Three-dimensional ultrasound motion tracking has been demonstrated using detected data at low volume rates. However, the effects of volume rate, kernel size, and data type (raw and detected) have not been sufficiently explored. First comparisons are made within the stated variables for 3-D speckle tracking. Volumetric data were obtained in a raw, baseband format using a matrix array attached to a high parallel receive beam count scanner. The scanner was used to acquire phantom and human in vivo cardiac volumetric data at 1000-Hz volume rates. Motion was tracked using phase-sensitive normalized cross-correlation. Subsample estimation in the lateral and elevational dimensions used the grid-slopes algorithm. The effects of frame rate, kernel size, and data type on 3-D tracking are shown. In general, the results show improvement of motion estimates at volume rates up to 200 Hz, above which they become stable. However, peak and pixel hopping continue to decrease at volume rates higher than 200 Hz. The tracking method and data show, qualitatively, good temporal and spatial stability (for independent kernels) at high volume rates. PMID:20378447

  8. Rapid, High-Throughput Tracking of Bacterial Motility in 3D via Phase-Contrast Holographic Video Microscopy

    PubMed Central

    Cheong, Fook Chiong; Wong, Chui Ching; Gao, YunFeng; Nai, Mui Hoon; Cui, Yidan; Park, Sungsu; Kenney, Linda J.; Lim, Chwee Teck

    2015-01-01

    Tracking fast-swimming bacteria in three dimensions can be extremely challenging with current optical techniques and a microscopic approach that can rapidly acquire volumetric information is required. Here, we introduce phase-contrast holographic video microscopy as a solution for the simultaneous tracking of multiple fast moving cells in three dimensions. This technique uses interference patterns formed between the scattered and the incident field to infer the three-dimensional (3D) position and size of bacteria. Using this optical approach, motility dynamics of multiple bacteria in three dimensions, such as speed and turn angles, can be obtained within minutes. We demonstrated the feasibility of this method by effectively tracking multiple bacteria species, including Escherichia coli, Agrobacterium tumefaciens, and Pseudomonas aeruginosa. In addition, we combined our fast 3D imaging technique with a microfluidic device to present an example of a drug/chemical assay to study effects on bacterial motility. PMID:25762336

  9. Integrating eye tracking and motion sensor on mobile phone for interactive 3D display

    NASA Astrophysics Data System (ADS)

    Sun, Yu-Wei; Chiang, Chen-Kuo; Lai, Shang-Hong

    2013-09-01

    In this paper, we propose an eye tracking and gaze estimation system for mobile phone. We integrate an eye detector, cornereye center and iso-center to improve pupil detection. The optical flow information is used for eye tracking. We develop a robust eye tracking system that integrates eye detection and optical-flow based image tracking. In addition, we further incorporate the orientation sensor information from the mobile phone to improve the eye tracking for accurate gaze estimation. We demonstrate the accuracy of the proposed eye tracking and gaze estimation system through experiments on some public video sequences as well as videos acquired directly from mobile phone.

  10. MetaTracker: integration and abstraction of 3D motion tracking data from multiple hardware systems

    NASA Astrophysics Data System (ADS)

    Kopecky, Ken; Winer, Eliot

    2014-06-01

    Motion tracking has long been one of the primary challenges in mixed reality (MR), augmented reality (AR), and virtual reality (VR). Military and defense training can provide particularly difficult challenges for motion tracking, such as in the case of Military Operations in Urban Terrain (MOUT) and other dismounted, close quarters simulations. These simulations can take place across multiple rooms, with many fast-moving objects that need to be tracked with a high degree of accuracy and low latency. Many tracking technologies exist, such as optical, inertial, ultrasonic, and magnetic. Some tracking systems even combine these technologies to complement each other. However, there are no systems that provide a high-resolution, flexible, wide-area solution that is resistant to occlusion. While frameworks exist that simplify the use of tracking systems and other input devices, none allow data from multiple tracking systems to be combined, as if from a single system. In this paper, we introduce a method for compensating for the weaknesses of individual tracking systems by combining data from multiple sources and presenting it as a single tracking system. Individual tracked objects are identified by name, and their data is provided to simulation applications through a server program. This allows tracked objects to transition seamlessly from the area of one tracking system to another. Furthermore, it abstracts away the individual drivers, APIs, and data formats for each system, providing a simplified API that can be used to receive data from any of the available tracking systems. Finally, when single-piece tracking systems are used, those systems can themselves be tracked, allowing for real-time adjustment of the trackable area. This allows simulation operators to leverage limited resources in more effective ways, improving the quality of training.

  11. 3D Ultrasonic Needle Tracking with a 1.5D Transducer Array for Guidance of Fetal Interventions

    PubMed Central

    West, Simeon J.; Mari, Jean-Martial; Ourselin, Sebastien; David, Anna L.; Desjardins, Adrien E.

    2016-01-01

    Ultrasound image guidance is widely used in minimally invasive procedures, including fetal surgery. In this context, maintaining visibility of medical devices is a significant challenge. Needles and catheters can readily deviate from the ultrasound imaging plane as they are inserted. When the medical device tips are not visible, they can damage critical structures, with potentially profound consequences including loss of pregnancy. In this study, we performed 3D ultrasonic tracking of a needle using a novel probe with a 1.5D array of transducer elements that was driven by a commercial ultrasound system. A fiber-optic hydrophone integrated into the needle received transmissions from the probe, and data from this sensor was processed to estimate the position of the hydrophone tip in the coordinate space of the probe. Golay coding was used to increase the signal-to-noise (SNR). The relative tracking accuracy was better than 0.4 mm in all dimensions, as evaluated using a water phantom. To obtain a preliminary indication of the clinical potential of 3D ultrasonic needle tracking, an intravascular needle insertion was performed in an in vivo pregnant sheep model. The SNR values ranged from 12 to 16 at depths of 20 to 31 mm and at an insertion angle of 49° relative to the probe surface normal. The results of this study demonstrate that 3D ultrasonic needle tracking with a fiber-optic hydrophone sensor and a 1.5D array is feasible in clinically realistic environments. PMID:28111644

  12. A Framework for 3D Model-Based Visual Tracking Using a GPU-Accelerated Particle Filter.

    PubMed

    Brown, J A; Capson, D W

    2012-01-01

    A novel framework for acceleration of particle filtering approaches to 3D model-based, markerless visual tracking in monocular video is described. Specifically, we present a methodology for partitioning and mapping the computationally expensive weight-update stage of a particle filter to a graphics processing unit (GPU) to achieve particle- and pixel-level parallelism. Nvidia CUDA and Direct3D are employed to harness the massively parallel computational power of modern GPUs for simulation (3D model rendering) and evaluation (segmentation, feature extraction, and weight calculation) of hundreds of particles at high speeds. The proposed framework addresses the computational intensity that is intrinsic to all particle filter approaches, including those that have been modified to minimize the number of particles required for a particular task. Performance and tracking quality results for rigid object and articulated hand tracking experiments demonstrate markerless, model-based visual tracking on consumer-grade graphics hardware with pixel-level accuracy up to 95 percent at 60+ frames per second. The framework accelerates particle evaluation up to 49 times over a comparable CPU-only implementation, providing an increased particle count while maintaining real-time frame rates.

  13. Model-based lasso catheter tracking in monoplane fluoroscopy for 3D breathing motion compensation during EP procedures

    NASA Astrophysics Data System (ADS)

    Liao, Rui

    2010-02-01

    Radio-frequency catheter ablation (RFCA) of the pulmonary veins (PVs) attached to the left atrium (LA) is usually carried out under fluoroscopy guidance. Overlay of detailed anatomical structures via 3-D CT and/or MR volumes onto the fluoroscopy helps visualization and navigation in electrophysiology procedures (EP). Unfortunately, respiratory motion may impair the utility of static overlay of the volume with fluoroscopy for catheter navigation. In this paper, we propose a B-spline based method for tracking the circumferential catheter (lasso catheter) in monoplane fluoroscopy. The tracked motion can be used for the estimation of the 3-D trajectory of breathing motion and for subsequent motion compensation. A lasso catheter is typically used during EP procedures and is pushed against the ostia of the PVs to be ablated. Hence this method does not require additional instruments, and achieves motion estimation right at the site of ablation. The performance of the proposed tracking algorithm was evaluated on 340 monoplane frames with an average error of 0.68 +/- 0.36 mms. Our contributions in this work are twofold. First and foremost, we show how to design an effective, practical, and workflow-friendly 3-D motion compensation scheme for EP procedures in a monoplane setup. In addition, we develop an efficient and accurate method for model-based tracking of the circumferential lasso catheter in the low-dose EP fluoroscopy.

  14. The 3D Tele Motion Tracking for the Orthodontic Facial Analysis

    PubMed Central

    Nota, Alessandro; Marchetti, Enrico; Padricelli, Giuseppe; Marzo, Giuseppe

    2016-01-01

    Aim. This study aimed to evaluate the reliability of 3D-TMT, previously used only for dynamic testing, in a static cephalometric evaluation. Material and Method. A group of 40 patients (20 males and 20 females; mean age 14.2 ± 1.2 years; 12–18 years old) was included in the study. The measurements obtained by the 3D-TMT cephalometric analysis with a conventional frontal cephalometric analysis were compared for each subject. Nine passive markers reflectors were positioned on the face skin for the detection of the profile of the patient. Through the acquisition of these points, corresponding plans for three-dimensional posterior-anterior cephalometric analysis were found. Results. The cephalometric results carried out with 3D-TMT and with traditional posterior-anterior cephalometric analysis showed the 3D-TMT system values are slightly higher than the values measured on radiographs but statistically significant; nevertheless their correlation is very high. Conclusion. The recorded values obtained using the 3D-TMT analysis were correlated to cephalometric analysis, with small but statistically significant differences. The Dahlberg errors resulted to be always lower than the mean difference between the 2D and 3D measurements. A clinician should use, during the clinical monitoring of a patient, always the same method, to avoid comparing different millimeter magnitudes. PMID:28044130

  15. An Active Particle-based Tracking Framework for 2D and 3D Time-lapse Microscopy Images

    PubMed Central

    Hossain, M. Julius; Whelan, Paul F.; Czirok, Andras; Ghita, Ovidiu

    2014-01-01

    The process required to track cellular structures is a key task in the study of cell migration. This allows the accurate estimation of motility indicators that help in the understanding of mechanisms behind various biological processes. This paper reports a particle-based fully automatic tracking framework that is able to quantify the motility of living cells in time-lapse images. Contrary to the standard tracking methods based on predefined motion models, in this paper we reformulate the tracking mechanism as a data driven optimization process to remove its reliance on a priory motion models. The proposed method has been evaluated using 2D and 3D deconvolved epifluorescent in-vivo image sequences that describe the development of the quail embryo. PMID:22255855

  16. Accurate and high-performance 3D position measurement of fiducial marks by stereoscopic system for railway track inspection

    NASA Astrophysics Data System (ADS)

    Gorbachev, Alexey A.; Serikova, Mariya G.; Pantyushina, Ekaterina N.; Volkova, Daria A.

    2016-04-01

    Modern demands for railway track measurements require high accuracy (about 2-5 mm) of rails placement along the track to ensure smooth, safe and fast transportation. As a mean for railways geometry measurements we suggest a stereoscopic system which measures 3D position of fiducial marks arranged along the track by image processing algorithms. The system accuracy was verified during laboratory tests by comparison with precise laser tracker indications. The accuracy of +/-1.5 mm within a measurement volume 150×400×5000 mm was achieved during the tests. This confirmed that the stereoscopic system demonstrates good measurement accuracy and can be potentially used as fully automated mean for railway track inspection.

  17. Application of 3D digital image correlation to track displacements and strains of canvas paintings exposed to relative humidity changes.

    PubMed

    Malowany, Krzysztof; Tymińska-Widmer, Ludmiła; Malesa, Marcin; Kujawińska, Małgorzata; Targowski, Piotr; Rouba, Bogumiła J

    2014-03-20

    This paper introduces a methodology for tracking displacements in canvas paintings exposed to relative humidity changes. Displacements are measured by means of the 3D digital image correlation method that is followed by a postprocessing of displacement data, which allows the separation of local displacements from global displacement maps. The applicability of this methodology is tested on measurements of a model painting on canvas with introduced defects causing local inhomogeneity. The method allows the evaluation of conservation methods used for repairing canvas supports.

  18. Atmospheric Motion Vectors from INSAT-3D: Initial quality assessment and its impact on track forecast of cyclonic storm NANAUK

    NASA Astrophysics Data System (ADS)

    Deb, S. K.; Kishtawal, C. M.; Kumar, Prashant; Kiran Kumar, A. S.; Pal, P. K.; Kaushik, Nitesh; Sangar, Ghansham

    2016-03-01

    The advanced Indian meteorological geostationary satellite INSAT-3D was launched on 26 July 2013 with an improved imager and an infrared sounder and is placed at 82°E over the Indian Ocean region. With the advancement in retrieval techniques of different atmospheric parameters and with improved imager data have enhanced the scope for better understanding of the different tropical atmospheric processes over this region. The retrieval techniques and accuracy of one such parameter, Atmospheric Motion Vectors (AMV) has improved significantly with the availability of improved spatial resolution data along with more options of spectral channels in the INSAT-3D imager. The present work is mainly focused on providing brief descriptions of INSAT-3D data and AMV derivation processes using these data. It also discussed the initial quality assessment of INSAT-3D AMVs for a period of six months starting from 01 February 2014 to 31 July 2014 with other independent observations: i) Meteosat-7 AMVs available over this region, ii) in-situ radiosonde wind measurements, iii) cloud tracked winds from Multi-angle Imaging Spectro-Radiometer (MISR) and iv) numerical model analysis. It is observed from this study that the qualities of newly derived INSAT-3D AMVs are comparable with existing two versions of Meteosat-7 AMVs over this region. To demonstrate its initial application, INSAT-3D AMVs are assimilated in the Weather Research and Forecasting (WRF) model and it is found that the assimilation of newly derived AMVs has helped in reduction of track forecast errors of the recent cyclonic storm NANAUK over the Arabian Sea. Though, the present study is limited to its application to one case study, however, it will provide some guidance to the operational agencies for implementation of this new AMV dataset for future applications in the Numerical Weather Prediction (NWP) over the south Asia region.

  19. Shape measurement by a multi-view methodology based on the remote tracking of a 3D optical scanner

    NASA Astrophysics Data System (ADS)

    Barone, Sandro; Paoli, Alessandro; Viviano Razionale, Armando

    2012-03-01

    Full field optical techniques can be reliably used for 3D measurements of complex shapes by multi-view processes, which require the computation of transformation parameters relating different views into a common reference system. Although, several multi-view approaches have been proposed, the alignment process is still the crucial step of a shape reconstruction. In this paper, a methodology to automatically align 3D views has been developed by integrating a stereo vision system and a full field optical scanner. In particular, the stereo vision system is used to remotely track the optical scanner within a working volume. The tracking system uses stereo images to detect the 3D coordinates of retro-reflective infrared markers rigidly connected to the scanner. Stereo correspondences are established by a robust methodology based on combining the epipolar geometry with an image spatial transformation constraint. The proposed methodology has been validated by experimental tests regarding both the evaluation of the measurement accuracy and the 3D reconstruction of an industrial shape.

  20. Correlation and 3D-tracking of objects by pointing sensors

    DOEpatents

    Griesmeyer, J. Michael

    2017-04-04

    A method and system for tracking at least one object using a plurality of pointing sensors and a tracking system are disclosed herein. In a general embodiment, the tracking system is configured to receive a series of observation data relative to the at least one object over a time base for each of the plurality of pointing sensors. The observation data may include sensor position data, pointing vector data and observation error data. The tracking system may further determine a triangulation point using a magnitude of a shortest line connecting a line of sight value from each of the series of observation data from each of the plurality of sensors to the at least one object, and perform correlation processing on the observation data and triangulation point to determine if at least two of the plurality of sensors are tracking the same object. Observation data may also be branched, associated and pruned using new incoming observation data.

  1. 3D tracking and phase-contrast imaging by twin-beams digital holographic microscope in microfluidics

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Finizio, A.; Paturzo, M.; Merola, F.; Grilli, S.; Ferraro, P.

    2012-06-01

    A compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms is presented. The devise has two functionalities, as explained in the follow, and can be easily integrated in microfluidic chip. The configuration allows 3D tracking of micro-particles and, at same time, furnishes Quantitative Phase-Contrast maps of tracked micro-objects by interference microscopy. Experimental demonstration of its effectiveness and compatibility with biological field is given on for in vitro cells in microfluidic environment. Nowadays, several microfluidic configuration exist and many of them are commercially available, their development is due to the possibility for manipulating droplets, handling micro and nano-objects, visualize and quantify processes occurring in small volumes and, clearly, for direct applications on lab-on-a chip devices. In microfluidic research field, optical/photonics approaches are the more suitable ones because they have various advantages as to be non-contact, full-field, non-invasive and can be packaged thanks to the development of integrable optics. Moreover, phase contrast approaches, adapted to a lab-on-a-chip configurations, give the possibility to get quantitative information with remarkable lateral and vertical resolution directly in situ without the need to dye and/or kill cells. Furthermore, numerical techniques for tracking of micro-objects needs to be developed for measuring velocity fields, trajectories patterns, motility of cancer cell and so on. Here, we present a compact holographic microscope that can ensure, by the same configuration and simultaneously, accurate 3D tracking and quantitative phase-contrast analysis. The system, simple and solid, is based on twin laser beams coming from a single laser source. Through a easy conceptual design, we show how these two different functionalities can be accomplished by the same optical setup. The working principle, the optical setup and the mathematical

  2. Non-iterative double-frame 2D/3D particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Fuchs, Thomas; Hain, Rainer; Kähler, Christian J.

    2017-09-01

    In recent years, the detection of individual particle images and their tracking over time to determine the local flow velocity has become quite popular for planar and volumetric measurements. Particle tracking velocimetry has strong advantages compared to the statistical analysis of an ensemble of particle images by means of cross-correlation approaches, such as particle image velocimetry. Tracking individual particles does not suffer from spatial averaging and therefore bias errors can be avoided. Furthermore, the spatial resolution can be increased up to the sub-pixel level for mean fields. A maximization of the spatial resolution for instantaneous measurements requires high seeding concentrations. However, it is still challenging to track particles at high seeding concentrations, if no time series is available. Tracking methods used under these conditions are typically very complex iterative algorithms, which require expert knowledge due to the large number of adjustable parameters. To overcome these drawbacks, a new non-iterative tracking approach is introduced in this letter, which automatically analyzes the motion of the neighboring particles without requiring to specify any parameters, except for the displacement limits. This makes the algorithm very user friendly and also offers unexperienced users to use and implement particle tracking. In addition, the algorithm enables measurements of high speed flows using standard double-pulse equipment and estimates the flow velocity reliably even at large particle image densities.

  3. Vision-Based 3D Motion Estimation for On-Orbit Proximity Satellite Tracking and Navigation

    DTIC Science & Technology

    2015-06-01

    Network .....................................................................................58 3. Telemetry Computer...screenshot of the telemetry software and the SSH terminals. ...........61 Figure 25. View of the VICON cameras above the granite flat floor of the FSS...point-wise kinematic models. The pose of the 3D structure is then estimated using a dual quaternion method [19]. The robustness and validity of this

  4. Computer Vision Tracking Using Particle Filters for 3D Position Estimation

    DTIC Science & Technology

    2014-03-27

    5 2.2 Photogrammetry ...focus on particle filters. 2.2 Photogrammetry Photogrammetry is the process of determining 3-D coordinates through images. The mathematical underpinnings...of photogrammetry are rooted in the 1480s with Leonardo da Vinci’s study of perspectives [8, p. 1]. However, digital photogrammetry did not emerge

  5. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks.

    PubMed

    Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P

    2017-01-07

    The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot

  6. 3D Visual Tracking of an Articulated Robot in Precision Automated Tasks

    PubMed Central

    Alzarok, Hamza; Fletcher, Simon; Longstaff, Andrew P.

    2017-01-01

    The most compelling requirements for visual tracking systems are a high detection accuracy and an adequate processing speed. However, the combination between the two requirements in real world applications is very challenging due to the fact that more accurate tracking tasks often require longer processing times, while quicker responses for the tracking system are more prone to errors, therefore a trade-off between accuracy and speed, and vice versa is required. This paper aims to achieve the two requirements together by implementing an accurate and time efficient tracking system. In this paper, an eye-to-hand visual system that has the ability to automatically track a moving target is introduced. An enhanced Circular Hough Transform (CHT) is employed for estimating the trajectory of a spherical target in three dimensions, the colour feature of the target was carefully selected by using a new colour selection process, the process relies on the use of a colour segmentation method (Delta E) with the CHT algorithm for finding the proper colour of the tracked target, the target was attached to the six degree of freedom (DOF) robot end-effector that performs a pick-and-place task. A cooperation of two Eye-to Hand cameras with their image Averaging filters are used for obtaining clear and steady images. This paper also examines a new technique for generating and controlling the observation search window in order to increase the computational speed of the tracking system, the techniques is named Controllable Region of interest based on Circular Hough Transform (CRCHT). Moreover, a new mathematical formula is introduced for updating the depth information of the vision system during the object tracking process. For more reliable and accurate tracking, a simplex optimization technique was employed for the calculation of the parameters for camera to robotic transformation matrix. The results obtained show the applicability of the proposed approach to track the moving robot

  7. 3D shape tracking of minimally invasive medical instruments using optical frequency domain reflectometry

    NASA Astrophysics Data System (ADS)

    Parent, Francois; Kanti Mandal, Koushik; Loranger, Sebastien; Watanabe Fernandes, Eric Hideki; Kashyap, Raman; Kadoury, Samuel

    2016-03-01

    We propose here a new alternative to provide real-time device tracking during minimally invasive interventions using a truly-distributed strain sensor based on optical frequency domain reflectometry (OFDR) in optical fibers. The guidance of minimally invasive medical instruments such as needles or catheters (ex. by adding a piezoelectric coating) has been the focus of extensive research in the past decades. Real-time tracking of instruments in medical interventions facilitates image guidance and helps the user to reach a pre-localized target more precisely. Image-guided systems using ultrasound imaging and shape sensors based on fiber Bragg gratings (FBG)-embedded optical fibers can provide retroactive feedback to the user in order to reach the targeted areas with even more precision. However, ultrasound imaging with electro-magnetic tracking cannot be used in the magnetic resonance imaging (MRI) suite, while shape sensors based on FBG embedded in optical fibers provides discrete values of the instrument position, which requires approximations to be made to evaluate its global shape. This is why a truly-distributed strain sensor based on OFDR could enhance the tracking accuracy. In both cases, since the strain is proportional to the radius of curvature of the fiber, a strain sensor can provide the three-dimensional shape of medical instruments by simply inserting fibers inside the devices. To faithfully follow the shape of the needle in the tracking frame, 3 fibers glued in a specific geometry are used, providing 3 degrees of freedom along the fiber. Near real-time tracking of medical instruments is thus obtained offering clear advantages for clinical monitoring in remotely controlled catheter or needle guidance. We present results demonstrating the promising aspects of this approach as well the limitations of using the OFDR technique.

  8. Feasibility of low-dose single-view 3D fiducial tracking concurrent with external beam delivery.

    PubMed

    Speidel, Michael A; Wilfley, Brian P; Hsu, Annie; Hristov, Dimitre

    2012-04-01

    In external-beam radiation therapy, existing on-board x-ray imaging chains orthogonal to the delivery beam cannot recover 3D target trajectories from a single view in real-time. This limits their utility for real-time motion management concurrent with beam delivery. To address this limitation, the authors propose a novel concept for on-board imaging based on the inverse-geometry Scanning-Beam Digital X-ray (SBDX) system and evaluate its feasibility for single-view 3D intradelivery fiducial tracking. A chest phantom comprising a posterior wall, a central lung volume, and an anterior wall was constructed. Two fiducials were placed along the mediastinal ridge between the lung cavities: a 1.5 mm diameter steel sphere superiorly and a gold cylinder (2.6 mm length × 0.9 mm diameter) inferiorly. The phantom was placed on a linear motion stage that moved sinusoidally. Fiducial motion was along the source-detector (z) axis of the SBDX system with ±10 mm amplitude and a programmed period of either 3.5 s or 5 s. The SBDX system was operated at 15 frames per second, 100 kVp, providing good apparent conspicuity of the fiducials. With the stage moving, detector data were acquired and subsequently reconstructed into 15 planes with a 12 mm plane-to-plane spacing using digital tomosynthesis. A tracking algorithm was applied to the image planes for each temporal frame to determine the position of each fiducial in (x,y,z)-space versus time. A 3D time-sinusoidal motion model was fit to the measured 3D coordinates and root mean square (RMS) deviations about the fitted trajectory were calculated. Tracked motion was sinusoidal and primarily along the source-detector (z) axis. The RMS deviation of the tracked z-coordinate ranged from 0.53 to 0.71 mm. The motion amplitude derived from the model fit agreed with the programmed amplitude to within 0.28 mm for the steel sphere and within -0.77 mm for the gold seed. The model fit periods agreed with the programmed periods to within 7

  9. Prediction of 3D internal organ position from skin surface motion: results from electromagnetic tracking studies

    NASA Astrophysics Data System (ADS)

    Wong, Kenneth H.; Tang, Jonathan; Zhang, Hui J.; Varghese, Emmanuel; Cleary, Kevin R.

    2005-04-01

    An effective treatment method for organs that move with respiration (such as the lungs, pancreas, and liver) is a major goal of radiation medicine. In order to treat such tumors, we need (1) real-time knowledge of the current location of the tumor, and (2) the ability to adapt the radiation delivery system to follow this constantly changing location. In this study, we used electromagnetic tracking in a swine model to address the first challenge, and to determine if movement of a marker attached to the skin could accurately predict movement of an internal marker embedded in an organ. Under approved animal research protocols, an electromagnetically tracked needle was inserted into a swine liver and an electromagnetically tracked guidewire was taped to the abdominal skin of the animal. The Aurora (Northern Digital Inc., Waterloo, Canada) electromagnetic tracking system was then used to monitor the position of both of these sensors every 40 msec. Position readouts from the sensors were then tested to see if any of the movements showed correlation. The strongest correlations were observed between external anterior-posterior motion and internal inferior-superior motion, with many other axes exhibiting only weak correlation. We also used these data to build a predictive model of internal motion by taking segments from the data and using them to derive a general functional relationship between the internal needle and the external guidewire. For the axis with the strongest correlation, this model enabled us to predict internal organ motion to within 1 mm.

  10. Defense Additive Manufacturing: DOD Needs to Systematically Track Department-wide 3D Printing Efforts

    DTIC Science & Technology

    2015-10-01

    shipping parts . According to Army officials, additive manufacturing offers customers the opportunity to enhance value when the lead time needed to...additive manufacturing for design and prototyping and for some production, such as parts for medical applications; and it is conducting research to...qualifying materials and certifying parts . However, DOD does not systematically track additive manufacturing efforts, to include (1) all activities

  11. Improvements to the ShipIR/NTCS adaptive track gate algorithm and 3D flare particle model

    NASA Astrophysics Data System (ADS)

    Ramaswamy, Srinivasan; Vaitekunas, David A.; Gunter, Willem H.; February, Faith J.

    2017-05-01

    A key component in any image-based tracking system is the adaptive tracking algorithm used to segment the image into potential targets, rank-and-select the best candidate target, and gate the selected target to further improve tracker performance. Similarly, a key component in any soft-kill response to an incoming guided missile is the flare/chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes the recent improvements to the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR). Efforts to analyse and match the 3D flare particle model against actual IR measurements of the Chemring TALOS IR round resulted in further refinement of the 3D flare particle distribution. The changes in the flare model characteristics were significant enough to require an overhaul to the adaptive track gate (ATG) algorithm in the way it detects the presence of flare decoys and reacquires the target after flare separation. A series of test scenarios are used to demonstrate the impact of the new flare and ATG on IR tactics simulation.

  12. A maximum likelihood approach to diffeomorphic speckle tracking for 3D strain estimation in echocardiography.

    PubMed

    Curiale, Ariel H; Vegas-Sánchez-Ferrero, Gonzalo; Bosch, Johan G; Aja-Fernández, Santiago

    2015-08-01

    The strain and strain-rate measures are commonly used for the analysis and assessment of regional myocardial function. In echocardiography (EC), the strain analysis became possible using Tissue Doppler Imaging (TDI). Unfortunately, this modality shows an important limitation: the angle between the myocardial movement and the ultrasound beam should be small to provide reliable measures. This constraint makes it difficult to provide strain measures of the entire myocardium. Alternative non-Doppler techniques such as Speckle Tracking (ST) can provide strain measures without angle constraints. However, the spatial resolution and the noisy appearance of speckle still make the strain estimation a challenging task in EC. Several maximum likelihood approaches have been proposed to statistically characterize the behavior of speckle, which results in a better performance of speckle tracking. However, those models do not consider common transformations to achieve the final B-mode image (e.g. interpolation). This paper proposes a new maximum likelihood approach for speckle tracking which effectively characterizes speckle of the final B-mode image. Its formulation provides a diffeomorphic scheme than can be efficiently optimized with a second-order method. The novelty of the method is threefold: First, the statistical characterization of speckle generalizes conventional speckle models (Rayleigh, Nakagami and Gamma) to a more versatile model for real data. Second, the formulation includes local correlation to increase the efficiency of frame-to-frame speckle tracking. Third, a probabilistic myocardial tissue characterization is used to automatically identify more reliable myocardial motions. The accuracy and agreement assessment was evaluated on a set of 16 synthetic image sequences for three different scenarios: normal, acute ischemia and acute dyssynchrony. The proposed method was compared to six speckle tracking methods. Results revealed that the proposed method is the most

  13. Development of a computer controlled 3-d braiding machine

    SciTech Connect

    Yan Jianhua; Li Jialu

    1994-12-31

    This paper deals with development of a large size, multiuse, controlled 3-D cartesian grid braiding machine, its function and application. The 180 column and 120 tracks, the flexible and low power consuming driving system, the error detector systems and the computer controlling system are the major parts of the machine. The machine can produce wide variety of size. shape and pattern of fabrics and can also produce several fabrics at a time.

  14. Impact of area strain by 3D speckle tracking on clinical outcome in patients after acute myocardial infarction.

    PubMed

    Shin, Sung-Hee; Suh, Young Ju; Baek, Yong-Soo; Lee, Man-Jong; Park, Sang-Don; Kwon, Sung-Woo; Woo, Seong-Ill; Kim, Dae-Hyeok; Park, Keum-Soo; Kwan, Jun

    2016-12-01

    Three-dimensional (3D) speckle tracking echocardiography (STE) has been developed to overcome the limitations of two-dimensional (2D) STE and has been applied in the several clinical settings. However, no data exist about the prognostic value of 3DSTE-based strain on clinical outcome after myocardial infarction (MI). This study was designed to investigate the prognostic value of area strain (AS) by 3D speckle tracking in predicting clinical outcome after acute MI. We assessed 96 patients (62±14 years, 72% male) with acute MI and who had undergone a coronary angiography. Clinical parameters and conventional echocardiographic measurements including the left atrial (LA) size and tissue Doppler measurements were evaluated. The global left ventricular (LV) AS was measured using 3D speckle tracking software. The relationship between the AS and clinical outcome of death or hospitalization for heart failure (HF) was assessed. During a median follow-up of 33±10 months, primary endpoint of death or HF occurred in 12 patients (12.5%). AS was predictive of death or HF after adjustment for age, gender, peak CK-MB, LA volume, LV end-systolic volume, LV mass, the ratio of early mitral inflow velocity to early mitral annular velocity, and LV ejection fraction in a multivariate Cox model (HR 1.23, 95% CI 1.02-1.47, P=.03). In addition, AS added incremental value in predicting death or heart failure on a model based on clinical and standard echocardiographic measures (P=.008). AS is independently associated with increased risk of death or HF after acute MI, suggesting that it can be a useful prognostic parameter in the patients following MI. © 2016, Wiley Periodicals, Inc.

  15. Laetoli’s lost tracks: 3D generated mean shape and missing footprints

    PubMed Central

    Bennett, M. R.; Reynolds, S. C.; Morse, S. A.; Budka, M.

    2016-01-01

    The Laetoli site (Tanzania) contains the oldest known hominin footprints, and their interpretation remains open to debate, despite over 35 years of research. The two hominin trackways present are parallel to one another, one of which is a composite formed by at least two individuals walking in single file. Most researchers have focused on the single, clearly discernible G1 trackway while the G2/3 trackway has been largely dismissed due to its composite nature. Here we report the use of a new technique that allows us to decouple the G2 and G3 tracks for the first time. In so doing we are able to quantify the mean footprint topology of the G3 trackway and render it useable for subsequent data analyses. By restoring the effectively ‘lost’ G3 track, we have doubled the available data on some of the rarest traces directly associated with our Pliocene ancestors. PMID:26902912

  16. 3D environment modeling and location tracking using off-the-shelf components

    NASA Astrophysics Data System (ADS)

    Luke, Robert H.

    2016-05-01

    The remarkable popularity of smartphones over the past decade has led to a technological race for dominance in market share. This has resulted in a flood of new processors and sensors that are inexpensive, low power and high performance. These sensors include accelerometers, gyroscope, barometers and most importantly cameras. This sensor suite, coupled with multicore processors, allows a new community of researchers to build small, high performance platforms for low cost. This paper describes a system using off-the-shelf components to perform position tracking as well as environment modeling. The system relies on tracking using stereo vision and inertial navigation to determine movement of the system as well as create a model of the environment sensed by the system.

  17. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE PAGES

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; ...

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  18. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  19. Tracking immune-related cell responses to drug delivery microparticles in 3D dense collagen matrix.

    PubMed

    Obarzanek-Fojt, Magdalena; Curdy, Catherine; Loggia, Nicoletta; Di Lena, Fabio; Grieder, Kathrin; Bitar, Malak; Wick, Peter

    2016-10-01

    Beyond the therapeutic purpose, the impact of drug delivery microparticles on the local tissue and inflammatory responses remains to be further elucidated specifically for reactions mediated by the host immune cells. Such immediate and prolonged reactions may adversely influence the release efficacy and intended therapeutic pathway. The lack of suitable in vitro platforms limits our ability to gain insight into the nature of immune responses at a single cell level. In order to establish an in vitro 3D system mimicking the connective host tissue counterpart, we utilized reproducible, compressed, rat-tail collagen polymerized matrices. THP1 cells (human acute monocytic leukaemia cells) differentiated into macrophage-like cells were chosen as cell model and their functionality was retained in the dense rat-tail collagen matrix. Placebo microparticles were later combined in the immune cell seeded system during collagen polymerization and secreted pro-inflammatory factors: TNFα and IL-8 were used as immune response readout (ELISA). Our data showed an elevated TNFα and IL-8 secretion by macrophage THP1 cells indicating that Placebo microparticles trigger certain immune cell responses under 3D in vivo like conditions. Furthermore, we have shown that the system is sensitive to measure the differences in THP1 macrophage pro-inflammatory responses to Active Pharmaceutical Ingredient (API) microparticles with different API release kinetics. We have successfully developed a tissue-like, advanced, in vitro system enabling selective "readouts" of specific responses of immune-related cells. Such system may provide the basis of an advanced toolbox enabling systemic evaluation and prediction of in vivo microparticle reactions on human immune-related cells.

  20. Visualizing and Tracking Evolving Features in 3D Unstructured and Adaptive Datasets

    SciTech Connect

    Silver, D.; Zabusky, N.

    2002-08-01

    The massive amounts of time-varying datasets being generated demand new visualization and quantification techniques. Visualization alone is not sufficient. Without proper measurement information/computations real science cannot be done. Our focus is this work was to combine visualization with quantification of the data to allow for advanced querying and searching. As part of this proposal, we have developed a feature extraction adn tracking methodology which allows researcher to identify features of interest and follow their evolution over time. The implementation is distributed and operates over data In-situ: where it is stored and when it was computed.

  1. Real-time tracking of the left ventricle in 3D echocardiography using a state estimation approach.

    PubMed

    Orderud, Fredrik; Hansgård, Jøger; Rabben, Stein I

    2007-01-01

    In this paper we present a framework for real-time tracking of deformable contours in volumetric datasets. The framework supports composite deformation models, controlled by parameters for contour shape in addition to global pose. Tracking is performed in a sequential state estimation fashion, using an extended Kalman filter, with measurement processing in information space to effectively predict and update contour deformations in real-time. A deformable B-spline surface coupled with a global pose transform is used to model shape changes of the left ventricle of the heart. Successful tracking of global motion and local shape changes without user intervention is demonstrated on a dataset consisting of 21 3D echocardiography recordings. Real-time tracking using the proposed approach requires a modest CPU load of 13% on a modern computer. The segmented volumes compare to a semi-automatic segmentation tool with 95% limits of agreement in the interval 4.1 +/- 24.6 ml (r = 0.92).

  2. A smart homecage system with 3D tracking for long-term behavioral experiments.

    PubMed

    Byunghun Lee; Kiani, Mehdi; Ghovanloo, Maysam

    2014-01-01

    A wirelessly-powered homecage system, called the EnerCage-HC, that is equipped with multi-coil wireless power transfer, closed-loop power control, optical behavioral tracking, and a graphic user interface (GUI) is presented for long-term electrophysiology experiments. The EnerCage-HC system can wirelessly power a mobile unit attached to a small animal subject and also track its behavior in real-time as it is housed inside a standard homecage. The EnerCage-HC system is equipped with one central and four overlapping slanted wire-wound coils (WWCs) with optimal geometries to form 3-and 4-coil power transmission links while operating at 13.56 MHz. Utilizing multi-coil links increases the power transfer efficiency (PTE) compared to conventional 2-coil links and also reduces the number of power amplifiers (PAs) to only one, which significantly reduces the system complexity, cost, and dissipated heat. A Microsoft Kinect installed 90 cm above the homecage localizes the animal position and orientation with 1.6 cm accuracy. An in vivo experiment was conducted on a freely behaving rat by continuously delivering 24 mW to the mobile unit for > 7 hours inside a standard homecage.

  3. Multisensor 3D tracking for counter small unmanned air vehicles (CSUAV)

    NASA Astrophysics Data System (ADS)

    Vasquez, Juan R.; Tarplee, Kyle M.; Case, Ellen E.; Zelnio, Anne M.; Rigling, Brian D.

    2008-04-01

    A variety of unmanned air vehicles (UAVs) have been developed for both military and civilian use. The typical large UAV is typically state owned, whereas small UAVs (SUAVs) may be in the form of remote controlled aircraft that are widely available. The potential threat of these SUAVs to both the military and civilian populace has led to research efforts to counter these assets via track, ID, and attack. Difficulties arise from the small size and low radar cross section when attempting to detect and track these targets with a single sensor such as radar or video cameras. In addition, clutter objects make accurate ID difficult without very high resolution data, leading to the use of an acoustic array to support this function. This paper presents a multi-sensor architecture that exploits sensor modes including EO/IR cameras, an acoustic array, and future inclusion of a radar. A sensor resource management concept is presented along with preliminary results from three of the sensors.

  4. Catheter tracking in asynchronous biplane fluoroscopy images by 3D B-snakes

    NASA Astrophysics Data System (ADS)

    Schenderlein, Marcel; Stierlin, Susanne; Manzke, Robert; Rasche, Volker; Dietmayer, Klaus

    2010-02-01

    Minimally invasive catheter ablation procedures are guided by biplane fluoroscopy images visualising the interventional scene from two different orientations. However, these images do not provide direct access to their inherent spatial information. A three-dimensional reconstruction and visualisation of the catheters from such projections has the potential to support quick and precise catheter navigation. It enhances the perception of the interventional situation and provides means of three-dimensional catheter pose documentation. In this contribution we develop an algorithm for tracking the three-dimensional pose of electro-physiological catheters in biplane fluoroscopy images. It is based on the B-Snake algorithm which had to be adapted to the biplane and in particular the asynchronous image acquisition situation. A three-dimensional B-spline curve is transformed so that its projections are consistent with the catheter path enhancing feature images, while the information from the missing image caused by the asynchronous acquisition is interpolated from its sequence neighbours. In order to analyse the three-dimensional precision, virtual images were created from patient data sets and threedimensional ground truth catheter paths. The evaluation of the three-dimensional catheter pose reconstruction by means of our algorithm on 33 of such virtual image sets indicated a mean catheter pose error of 1.26 mm and a mean tip deviation of 3.28 mm. The tracking capability of the algorithm was evaluated on 10 patient data sets. In 94 % of all images our algorithm followed the catheter projections.

  5. Lagrangian 3D particle tracking in high-speed flows: Shake-The-Box for multi-pulse systems

    NASA Astrophysics Data System (ADS)

    Novara, Matteo; Schanz, Daniel; Reuther, Nico; Kähler, Christian J.; Schröder, Andreas

    2016-08-01

    The Shake-The-Box (STB) particle tracking technique, recently introduced for time-resolved 3D particle image velocimetry (PIV) images, is applied here to data from a multi-pulse investigation of a turbulent boundary layer flow with adverse pressure gradient in air at 36 m/s ( Re τ = 10,650). The multi-pulse acquisition strategy allows for the recording of four-pulse long time-resolved sequences with a time separation of a few microseconds. The experimental setup consists of a dual-imaging system and a dual-double-cavity laser emitting orthogonal polarization directions to separate the four pulses. The STB particle triangulation and tracking strategy is adapted here to cope with the limited amount of realizations available along the time sequence and to take advantage of the ghost track reduction offered by the use of two independent imaging systems. Furthermore, a correction scheme to compensate for camera vibrations is discussed, together with a method to accurately identify the position of the wall within the measurement domain. Results show that approximately 80,000 tracks can be instantaneously reconstructed within the measurement volume, enabling the evaluation of both dense velocity fields, suitable for spatial gradients evaluation, and highly spatially resolved boundary layer profiles. Turbulent boundary layer profiles obtained from ensemble averaging of the STB tracks are compared to results from 2D-PIV and long-range micro particle tracking velocimetry; the comparison shows the capability of the STB approach in delivering accurate results across a wide range of scales.

  6. The birth of a dinosaur footprint: Subsurface 3D motion reconstruction and discrete element simulation reveal track ontogeny

    PubMed Central

    2014-01-01

    Locomotion over deformable substrates is a common occurrence in nature. Footprints represent sedimentary distortions that provide anatomical, functional, and behavioral insights into trackmaker biology. The interpretation of such evidence can be challenging, however, particularly for fossil tracks recovered at bedding planes below the originally exposed surface. Even in living animals, the complex dynamics that give rise to footprint morphology are obscured by both foot and sediment opacity, which conceals animal–substrate and substrate–substrate interactions. We used X-ray reconstruction of moving morphology (XROMM) to image and animate the hind limb skeleton of a chicken-like bird traversing a dry, granular material. Foot movement differed significantly from walking on solid ground; the longest toe penetrated to a depth of ∼5 cm, reaching an angle of 30° below horizontal before slipping backward on withdrawal. The 3D kinematic data were integrated into a validated substrate simulation using the discrete element method (DEM) to create a quantitative model of limb-induced substrate deformation. Simulation revealed that despite sediment collapse yielding poor quality tracks at the air–substrate interface, subsurface displacements maintain a high level of organization owing to grain–grain support. Splitting the substrate volume along “virtual bedding planes” exposed prints that more closely resembled the foot and could easily be mistaken for shallow tracks. DEM data elucidate how highly localized deformations associated with foot entry and exit generate specific features in the final tracks, a temporal sequence that we term “track ontogeny.” This combination of methodologies fosters a synthesis between the surface/layer-based perspective prevalent in paleontology and the particle/volume-based perspective essential for a mechanistic understanding of sediment redistribution during track formation. PMID:25489092

  7. Dynamic tracking of a deformable tissue based on 3D-2D MR-US image registration

    NASA Astrophysics Data System (ADS)

    Marami, Bahram; Sirouspour, Shahin; Fenster, Aaron; Capson, David W.

    2014-03-01

    Real-time registration of pre-operative magnetic resonance (MR) or computed tomography (CT) images with intra-operative Ultrasound (US) images can be a valuable tool in image-guided therapies and interventions. This paper presents an automatic method for dynamically tracking the deformation of a soft tissue based on registering pre-operative three-dimensional (3D) MR images to intra-operative two-dimensional (2D) US images. The registration algorithm is based on concepts in state estimation where a dynamic finite element (FE)- based linear elastic deformation model correlates the imaging data in the spatial and temporal domains. A Kalman-like filtering process estimates the unknown deformation states of the soft tissue using the deformation model and a measure of error between the predicted and the observed intra-operative imaging data. The error is computed based on an intensity-based distance metric, namely, modality independent neighborhood descriptor (MIND), and no segmentation or feature extraction from images is required. The performance of the proposed method is evaluated by dynamically deforming 3D pre-operative MR images of a breast phantom tissue based on real-time 2D images obtained from an US probe. Experimental results on different registration scenarios showed that deformation tracking converges in a few iterations. The average target registration error on the plane of 2D US images for manually selected fiducial points was between 0.3 and 1.5 mm depending on the size of deformation.

  8. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks.

    SciTech Connect

    Nishimura, K

    2012-07-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ~450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ~2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ~1.5 mrad angular resolution and muon energy of Emuon greater than 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  9. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    SciTech Connect

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G.S.; Va'vra, J.; Vavra, Jerry; /SLAC

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  10. Probe localization for freehand 3D ultrasound by tracking skin features.

    PubMed

    Sun, Shih-Yu; Gilbertson, Matthew; Anthony, Brian W

    2014-01-01

    Ultrasound probe localization with respect to the patient's body is essential for freehand three-dimensional ultrasound and image-guided intervention. However, current methods for probe localization generally involve bulky and expensive equipment. In this paper, a highly cost-effective and miniature-mobile system is described for 6-DoF probe localization that is robust to rigid patient motion. In this system, skin features in the scan region are recorded at each ultrasound scan acquisition by a lightweight camera rigidly mounted to the probe. A skin map is built based on the skin features and optimal probe poses are estimated in a Bayesian probabilistic framework that incorporates a prior motion model, camera frames, and ultrasound scans. Through freehand scanning on three different body parts, it is shown that on average, for every probe travel distance of 10 mm, the translational and rotational errors are 0.91 ± 0.49 mm and 0.55 degrees ± 0.17 degrees, respectively. The 3D reconstructions were also validated by comparison with real ultrasound scans.

  11. Readily Accessible Multiplane Microscopy: 3D Tracking the HIV-1 Genome in Living Cells.

    PubMed

    Itano, Michelle S; Bleck, Marina; Johnson, Daniel S; Simon, Sanford M

    2016-02-01

    Human immunodeficiency virus (HIV)-1 infection and the associated disease AIDS are a major cause of human death worldwide with no vaccine or cure available. The trafficking of HIV-1 RNAs from sites of synthesis in the nucleus, through the cytoplasm, to sites of assembly at the plasma membrane are critical steps in HIV-1 viral replication, but are not well characterized. Here we present a broadly accessible microscopy method that captures multiple focal planes simultaneously, which allows us to image the trafficking of HIV-1 genomic RNAs with high precision. This method utilizes a customization of a commercial multichannel emission splitter that enables high-resolution 3D imaging with single-macromolecule sensitivity. We show with high temporal and spatial resolution that HIV-1 genomic RNAs are most mobile in the cytosol, and undergo confined mobility at sites along the nuclear envelope and in the nucleus and nucleolus. These provide important insights regarding the mechanism by which the HIV-1 RNA genome is transported to the sites of assembly of nascent virions.

  12. Automatic Tracking Of Markers From 3D-Measurement Of Human Body Movements During Walking

    NASA Astrophysics Data System (ADS)

    Elsner, Thomas; Meier, G.; Baumann, Juerg U.

    1989-04-01

    For human motion analysis, the spatio-temporal resolution of cinematographic registrations of body marker positions is still higher than the results of the best opto electronic systems available for this purpose today. So far, the need for manual digitization of several thousand marker positions per tested person has made this method unpractical for regular applications. An interactive and largely automated system for marker recognition and tracking from 16 mm film images based on progress in digital image processing has been developed and tested. Projected pictures are digitized with a high-resolution CCD-camera (1320x1035 pixel), processed, analyzed and serially evaluated with an interactive image analysis system SIGNUM IS200.

  13. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    SciTech Connect

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; Gable, Carl W.; Karra, Satish

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates mass balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.

  14. Particle tracking approach for transport in three-dimensional discrete fracture networks: Particle tracking in 3-D DFNs

    DOE PAGES

    Makedonska, Nataliia; Painter, Scott L.; Bui, Quan M.; ...

    2015-09-16

    The discrete fracture network (DFN) model is a method to mimic discrete pathways for fluid flow through a fractured low-permeable rock mass, and may be combined with particle tracking simulations to address solute transport. However, experience has shown that it is challenging to obtain accurate transport results in three-dimensional DFNs because of the high computational burden and difficulty in constructing a high-quality unstructured computational mesh on simulated fractures. We present a new particle tracking capability, which is adapted to control volume (Voronoi polygons) flow solutions on unstructured grids (Delaunay triangulations) on three-dimensional DFNs. The locally mass-conserving finite-volume approach eliminates massmore » balance-related problems during particle tracking. The scalar fluxes calculated for each control volume face by the flow solver are used to reconstruct a Darcy velocity at each control volume centroid. The groundwater velocities can then be continuously interpolated to any point in the domain of interest. The control volumes at fracture intersections are split into four pieces, and the velocity is reconstructed independently on each piece, which results in multiple groundwater velocities at the intersection, one for each fracture on each side of the intersection line. This technique enables detailed particle transport representation through a complex DFN structure. Verified for small DFNs, the new simulation capability enables numerical experiments on advective transport in large DFNs to be performed. As a result, we demonstrate this particle transport approach on a DFN model using parameters similar to those of crystalline rock at a proposed geologic repository for spent nuclear fuel in Forsmark, Sweden.« less

  15. Ultra-high-speed 3D astigmatic particle tracking velocimetry: application to particle-laden supersonic impinging jets

    NASA Astrophysics Data System (ADS)

    Buchmann, N. A.; Cierpka, C.; Kähler, C. J.; Soria, J.

    2014-11-01

    The paper demonstrates ultra-high-speed three-component, three-dimensional (3C3D) velocity measurements of micron-sized particles suspended in a supersonic impinging jet flow. Understanding the dynamics of individual particles in such flows is important for the design of particle impactors for drug delivery or cold gas dynamic spray processing. The underexpanded jet flow is produced via a converging nozzle, and micron-sized particles ( d p = 110 μm) are introduced into the gas flow. The supersonic jet impinges onto a flat surface, and the particle impact velocity and particle impact angle are studied for a range of flow conditions and impingement distances. The imaging system consists of an ultra-high-speed digital camera (Shimadzu HPV-1) capable of recording rates of up to 1 Mfps. Astigmatism particle tracking velocimetry (APTV) is used to measure the 3D particle position (Cierpka et al., Meas Sci Technol 21(045401):13, 2010) by coding the particle depth location in the 2D images by adding a cylindrical lens to the high-speed imaging system. Based on the reconstructed 3D particle positions, the particle trajectories are obtained via a higher-order tracking scheme that takes advantage of the high temporal resolution to increase robustness and accuracy of the measurement. It is shown that the particle velocity and impingement angle are affected by the gas flow in a manner depending on the nozzle pressure ratio and stand-off distance where higher pressure ratios and stand-off distances lead to higher impact velocities and larger impact angles.

  16. DLP technology application: 3D head tracking and motion correction in medical brain imaging

    NASA Astrophysics Data System (ADS)

    Olesen, Oline V.; Wilm, Jakob; Paulsen, Rasmus R.; Højgaard, Liselotte; Larsen, Rasmus

    2014-03-01

    In this paper we present a novel sensing system, robust Near-infrared Structured Light Scanning (NIRSL) for three-dimensional human model scanning application. Human model scanning due to its nature of various hair and dress appearance and body motion has long been a challenging task. Previous structured light scanning methods typically emitted visible coded light patterns onto static and opaque objects to establish correspondence between a projector and a camera for triangulation. In the success of these methods rely on scanning objects with proper reflective surface for visible light, such as plaster, light colored cloth. Whereas for human model scanning application, conventional methods suffer from low signal to noise ratio caused by low contrast of visible light over the human body. The proposed robust NIRSL, as implemented with the near infrared light, is capable of recovering those dark surfaces, such as hair, dark jeans and black shoes under visible illumination. Moreover, successful structured light scan relies on the assumption that the subject is static during scanning. Due to the nature of body motion, it is very time sensitive to keep this assumption in the case of human model scan. The proposed sensing system, by utilizing the new near-infrared capable high speed LightCrafter DLP projector, is robust to motion, provides accurate and high resolution three-dimensional point cloud, making our system more efficient and robust for human model reconstruction. Experimental results demonstrate that our system is effective and efficient to scan real human models with various dark hair, jeans and shoes, robust to human body motion and produces accurate and high resolution 3D point cloud.

  17. Real-Time, Multiple, Pan/Tilt/Zoom, Computer Vision Tracking, and 3D Position Estimating System for Unmanned Aerial System Metrology

    DTIC Science & Technology

    2013-10-18

    2012. 136. Zhang, J., Y. Wang, J. Chen, and K. Xue. “A framework of surveillance system using a PTZ camera,” Computer Science and Information Technology...Real-Time, Multiple, Pan/Tilt/Zoom, Computer Vision Tracking, and 3D Position Estimating System for Small Unmanned Aircraft System Metrology...United States Government. AFIT-ENY-DS-13-D- Real-Time, Multiple, Pan/Tilt/Zoom, Computer Vision Tracking, and 3D Position Estimating System for Small

  18. 3D track reconstruction capability of a silicon hybrid active pixel detector

    NASA Astrophysics Data System (ADS)

    Bergmann, Benedikt; Pichotka, Martin; Pospisil, Stanislav; Vycpalek, Jiri; Burian, Petr; Broulim, Pavel; Jakubek, Jan

    2017-06-01

    Timepix3 detectors are the latest generation of hybrid active pixel detectors of the Medipix/Timepix family. Such detectors consist of an active sensor layer which is connected to the readout ASIC (application specific integrated circuit), segmenting the detector into a square matrix of 256 × 256 pixels (pixel pitch 55 μm). Particles interacting in the active sensor material create charge carriers, which drift towards the pixelated electrode, where they are collected. In each pixel, the time of the interaction (time resolution 1.56 ns) and the amount of created charge carriers are measured. Such a device was employed in an experiment in a 120 GeV/c pion beam. It is demonstrated, how the drift time information can be used for "4D" particle tracking, with the three spatial dimensions and the energy losses along the particle trajectory (dE/dx). Since the coordinates in the detector plane are given by the pixelation ( x, y), the x- and y-resolution is determined by the pixel pitch (55 μm). A z-resolution of 50.4 μm could be achieved (for a 500 μm thick silicon sensor at 130 V bias), whereby the drift time model independent z-resolution was found to be 28.5 μm.

  19. Prospective motion correction for 3D pseudo-continuous arterial spin labeling using an external optical tracking system.

    PubMed

    Aksoy, Murat; Maclaren, Julian; Bammer, Roland

    2017-06-01

    Head motion is an unsolved problem in magnetic resonance imaging (MRI) studies of the brain. Real-time tracking using a camera has recently been proposed as a way to prevent head motion artifacts. As compared to navigator-based approaches that use MRI data to detect and correct motion, optical motion correction works independently of the MRI scanner, thus providing low-latency real-time motion updates without requiring any modifications to the pulse sequence. The purpose of this study was two-fold: 1) to demonstrate that prospective optical motion correction using an optical camera mitigates artifacts from head motion in three-dimensional pseudo-continuous arterial spin labeling (3D PCASL) acquisitions and 2) to assess the effect of latency differences between real-time optical motion tracking and navigator-style approaches (such as PROMO). An optical motion correction system comprising a single camera and a marker attached to the patient's forehead was used to track motion at a rate of 60fps. In the presence of motion, continuous tracking data from the optical system was used to update the scan plane in real-time during the 3D-PCASL acquisition. Navigator-style correction was simulated by using the tracking data from the optical system and performing updates only once per repetition time. Three normal volunteers and a patient were instructed to perform continuous and discrete head motion throughout the scan. Optical motion correction yielded superior image quality compared to uncorrected images or images using navigator-style correction. The standard deviations of pixel-wise CBF differences between reference and non-corrected, navigator-style-corrected and optical-corrected data were 14.28, 14.35 and 11.09mL/100g/min for continuous motion, and 12.42, 12.04 and 9.60mL/100g/min for discrete motion. Data obtained from the patient revealed that motion can obscure pathology and that application of optical prospective correction can successfully reveal the underlying

  20. Superplot3d: an open source GUI tool for 3d trajectory visualisation and elementary processing.

    PubMed

    Whitehorn, Luke J; Hawkes, Frances M; Dublon, Ian An

    2013-09-30

    When acquiring simple three-dimensional (3d) trajectory data it is common to accumulate large coordinate data sets. In order to examine integrity and consistency of object tracking, it is often necessary to rapidly visualise these data. Ordinarily, to achieve this the user must either execute 3d plotting functions in a numerical computing environment or manually inspect data in two dimensions, plotting each individual axis.Superplot3d is an open source MATLAB script which takes tab delineated Cartesian data points in the form x, y, z and time and generates an instant visualization of the object's trajectory in free-rotational three dimensions. Whole trajectories may be instantly presented, allowing for rapid inspection. Executable from the MATLAB command line (or deployable as a compiled standalone application) superplot3d also provides simple GUI controls to obtain rudimentary trajectory information, allow specific visualization of trajectory sections and perform elementary processing.Superplot3d thus provides a framework for non-programmers and programmers alike, to recreate recently acquired 3d object trajectories in rotatable 3d space. It is intended, via the use of a preference driven menu to be flexible and work with output from multiple tracking software systems. Source code and accompanying GUIDE .fig files are provided for deployment and further development.

  1. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    PubMed Central

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-01-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a region-of-interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance. PMID:27375314

  2. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    NASA Astrophysics Data System (ADS)

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-03-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a regionof- interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance.

  3. A novel approach to determining the three-dimensional location of microscopic objects with applications to 3D particle tracking

    NASA Astrophysics Data System (ADS)

    Ram, Sripad; Chao, Jerry; Prabhat, Prashant; Ward, E. Sally; Ober, Raimund J.

    2007-02-01

    Recent technological advances have rendered widefield fluorescence microscopy as an invaluable tool to image fast dynamics of trafficking events in two dimensions (i.e., in the plane of focus). Three-dimensional trafficking events are studied by sequentially imaging different planes within the specimen by moving the plane of focus with a focusing device. However, these devices are typically slow and hence when the cell is being imaged at one focal plane, important events could be missed at other focal planes. To overcome this limitation, we recently developed a novel imaging technique called multifocal plane microscopy that enables the simultaneous imaging of multiple focal planes within the sample. Here, by using tools of information theory, we present a quantitative evaluation of this technique in the context of 3D particle tracking. We calculate the Fisher information matrix for the problem of determining the 3D location of an object that is imaged on a multifocal plane setup. In this way, we derive a lower bound on the accuracy with which the object can be localized in 3D. We illustrate our results by considering the object of interest to be a single molecule. It is well known that a conventional wide.eld microscope has poor depth discrimination capability and therefore there exists signi.cant uncertainty in determining the axial location of the object, especially when it is close to the plane of focus. Our results predict that the multifocal plane microscope setup offers improved accuracy in determining the axial location of objects than a conventional widefield microscope.

  4. VHDL token-based performance modeling for 2D and 3D infrared search and track processing

    NASA Astrophysics Data System (ADS)

    Pauer, Eric K.; Pettigrew, Mark N.; Myers, Cory S.; Madisetti, Vijay K.

    1998-10-01

    This study develops and evaluates a new VHDL-based performance modeling capability for multiprocessor systems. The framework for this methodology involved modeling the following system aspects: processor characterization, and data set size. Initially, all aspects are specified at an abstract level, and eventually become specified at a detailed level through the process of verification and refinement of design assumptions. Processor characterization involves modeling the processor's speed, instruction set, and memory hierarchy. Task modeling is concerned with the execution time and instruction mix of software tasks within the systems Network characterization models bus protocols, topology, and bandwidths. Data set size refers to how much data is represented by the tokens used in the models. In this study, we applied and evaluated this methodology using both 2D and 3D IR search and track (IRST) algorithms. Two different candidate processors were investigated: IBM PowerPC 604 and Texas Instruments TMS320C80. For the 2D IRST algorithm, the abstract and detailed performance modeling results were obtained for both processors using partitioned data and pipelined algorithmic approaches. For the 3D IRST algorithm, abstract performance models for pipelined and parallelized implementations on the PowerPC were developed. These models examined the feasibility of the implementations, the potential risk areas, and laid the groundwork for detailed performance modeling.

  5. A 3D-printed polymer micro-gripper with self-defined electrical tracks and thermal actuator

    NASA Astrophysics Data System (ADS)

    Alblalaihid, Khalid; Overton, James; Lawes, Simon; Kinnell, Peter

    2017-04-01

    This paper presents a simple fabrication process that allows for isolated metal tracks to be easily defined on the surface of 3D printed micro-scale polymer components. The process makes use of a standard low cost conformal sputter coating system to quickly deposit thin film metal layers on to the surface of 3D printed polymer micro parts. The key novelty lies in the inclusion of inbuilt masking features, on the surface of the polymer parts, to ensure that the conformal metal layer can be effectively broken to create electrically isolated metal features. The presented process is extremely flexible, and it is envisaged that it may be applied to a wide range of sensor and actuator applications. To demonstrate the process a polymer micro-scale gripper with an inbuilt thermal actuator is designed and fabricated. In this work the design methodology for creating the micro-gripper is presented, illustrating how the rapid and flexible manufacturing process allows for fast cycle time design iterations to be performed. In addition the compatibility of this approach with traditional design and analysis techniques such as basic finite element simulation is also demonstrated with simulation results in reasonable agreement with experimental performance data for the micro-gripper.

  6. µ-Particle tracking velocimetry and computational fluid dynamics study of cell seeding within a 3D porous scaffold.

    PubMed

    Marin, A Campos; Grossi, T; Bianchi, E; Dubini, G; Lacroix, D

    2017-08-03

    Cell seeding of 3D scaffolds is a critical step in tissue engineering since the final tissue properties are related to the initial cell distribution and density within the scaffold unit. Perfusion systems can transport cells to the scaffold however; the fact that cells flow inside the scaffold pores does not guarantee cell deposition onto the scaffold substrate and cell attachment. The aim of this study was to investigate how fluid flow conditions modulate cell motion and deposition during perfusion. For such a purpose, a multiphase-based computational fluid dynamics (CFD) model was developed in conjunction with particle tracking velocimetry experiments (PTV) which for the first time were applied to observe cell seeding inside a 3D scaffold. CFD and PTV results showed the strong effect of gravity for lower flow rates leading to cell sedimentation and poor transport of cells to the scaffold. Higher flow rates help overcome the effect of gravity so more cells travelling inside the scaffold were found. Nonetheless, fluid flow drags cells along the fluid streamlines without intercepting the scaffold substrate. As a consequence, if cells do not deposit into the scaffold substrate, cell adhesion cannot occur. Therefore, cell-scaffold interception should be promoted and the present computational model which predicts the effect of gravity and fluid drag on cells trajectories could serve to optimise bioreactors and enhance cell seeding efficiency. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    PubMed Central

    Afik, Eldad

    2015-01-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection. PMID:26329642

  8. A quantitative study of 3D-scanning frequency and Δd of tracking points on the tooth surface

    PubMed Central

    Li, Hong; Lyu, Peijun; Sun, Yuchun; Wang, Yong; Liang, Xiaoyue

    2015-01-01

    Micro-movement of human jaws in the resting state might influence the accuracy of direct three-dimensional (3D) measurement. Providing a reference for sampling frequency settings of intraoral scanning systems to overcome this influence is important. In this study, we measured micro-movement, or change in distance (∆d), as the change in position of a single tracking point from one sampling time point to another in five human subjects. ∆d of tracking points on incisors at 7 sampling frequencies was judged against the clinical accuracy requirement to select proper sampling frequency settings. The curve equation was then fit quantitatively between ∆d median and the sampling frequency to predict the trend of ∆d with increasing f. The difference of ∆d among the subjects and the difference between upper and lower incisor feature points of the same subject were analyzed by a non-parametric test (α = 0.05). Significant differences of incisor feature points were noted among different subjects and between upper and lower jaws of the same subject (P < 0.01). Overall, ∆d decreased with increasing frequency. When the frequency was 60 Hz, ∆d nearly reached the clinical accuracy requirement. Frequencies higher than 60 Hz did not significantly decrease Δd further. PMID:26400112

  9. Robust and highly performant ring detection algorithm for 3d particle tracking using 2d microscope imaging

    NASA Astrophysics Data System (ADS)

    Afik, Eldad

    2015-09-01

    Three-dimensional particle tracking is an essential tool in studying dynamics under the microscope, namely, fluid dynamics in microfluidic devices, bacteria taxis, cellular trafficking. The 3d position can be determined using 2d imaging alone by measuring the diffraction rings generated by an out-of-focus fluorescent particle, imaged on a single camera. Here I present a ring detection algorithm exhibiting a high detection rate, which is robust to the challenges arising from ring occlusion, inclusions and overlaps, and allows resolving particles even when near to each other. It is capable of real time analysis thanks to its high performance and low memory footprint. The proposed algorithm, an offspring of the circle Hough transform, addresses the need to efficiently trace the trajectories of many particles concurrently, when their number in not necessarily fixed, by solving a classification problem, and overcomes the challenges of finding local maxima in the complex parameter space which results from ring clusters and noise. Several algorithmic concepts introduced here can be advantageous in other cases, particularly when dealing with noisy and sparse data. The implementation is based on open-source and cross-platform software packages only, making it easy to distribute and modify. It is implemented in a microfluidic experiment allowing real-time multi-particle tracking at 70 Hz, achieving a detection rate which exceeds 94% and only 1% false-detection.

  10. Cartesian Grid Methods for Moving Geometries

    DTIC Science & Technology

    2006-07-27

    Technology transfer is facilitated by our Cart3D code, which is used by over 100 groups around the country. Introduction Cartesian grids have proven themselves...efforts are summarized below. Limiters for Finite Volume Schemes The Cart3D steady state flow solver has some stalling of convergence due to cut... Cart3D by my collaborator Scott Murman. One-dimensional Model Problem The simplest setting to study the accuracy and stability of flow with a moving

  11. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.

    PubMed

    Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang

    2016-01-12

    Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude.

  12. Exploring single-molecule interactions through 3D optical trapping and tracking: From thermal noise to protein refolding

    NASA Astrophysics Data System (ADS)

    Wong, Wesley Philip

    The focus of this thesis is the development and application of a novel technique for investigating the structure and dynamics of weak interactions between and within single-molecules. This approach is designed to explore unusual features in bi-directional transitions near equilibrium. The basic idea is to infer molecular events by observing changes in the three-dimensional Brownian fluctuations of a functionalized microsphere held weakly near a reactive substrate. Experimentally, I have developed a unique optical tweezers system that combines an interference technique for accurate 3D tracking (˜1 nm vertically, and ˜2-3 nm laterally) with a continuous autofocus system which stabilizes the trap height to within 1-2 mn over hours. A number of different physical and biological systems were investigated with this instrument. Data interpretation was assisted by a multi-scale Brownian Dynamics simulation that I have developed. I have explored the 3D signatures of different molecular tethers, distinguishing between single and multiple attachments, as well as between stiff and soft linkages. As well, I have developed a technique for measuring the force-dependent compliance of molecular tethers from thermal noise fluctuations and demonstrated this with a short ssDNA oligomer. Another practical approach that I have developed for extracting information from fluctuation measurements is Inverse Brownian Dynamics, which yields the underlying potential of mean force and position dependent diffusion coefficient from the Brownian motion of a particle. I have also developed a new force calibration method that takes into account video motion blur, and that uses this information to measure bead dynamics. Perhaps most significantly, I have trade the first direct observations of the refolding of spectrin repeats under mechanical force, and investigated the force-dependent kinetics of this transition.

  13. Prospective motion correction of 3D echo-planar imaging data for functional MRI using optical tracking.

    PubMed

    Todd, Nick; Josephs, Oliver; Callaghan, Martina F; Lutti, Antoine; Weiskopf, Nikolaus

    2015-06-01

    We evaluated the performance of an optical camera based prospective motion correction (PMC) system in improving the quality of 3D echo-planar imaging functional MRI data. An optical camera and external marker were used to dynamically track the head movement of subjects during fMRI scanning. PMC was performed by using the motion information to dynamically update the sequence's RF excitation and gradient waveforms such that the field-of-view was realigned to match the subject's head movement. Task-free fMRI experiments on five healthy volunteers followed a 2 × 2 × 3 factorial design with the following factors: PMC on or off; 3.0mm or 1.5mm isotropic resolution; and no, slow, or fast head movements. Visual and motor fMRI experiments were additionally performed on one of the volunteers at 1.5mm resolution comparing PMC on vs PMC off for no and slow head movements. Metrics were developed to quantify the amount of motion as it occurred relative to k-space data acquisition. The motion quantification metric collapsed the very rich camera tracking data into one scalar value for each image volume that was strongly predictive of motion-induced artifacts. The PMC system did not introduce extraneous artifacts for the no motion conditions and improved the time series temporal signal-to-noise by 30% to 40% for all combinations of low/high resolution and slow/fast head movement relative to the standard acquisition with no prospective correction. The numbers of activated voxels (p<0.001, uncorrected) in both task-based experiments were comparable for the no motion cases and increased by 78% and 330%, respectively, for PMC on versus PMC off in the slow motion cases. The PMC system is a robust solution to decrease the motion sensitivity of multi-shot 3D EPI sequences and thereby overcome one of the main roadblocks to their widespread use in fMRI studies. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  14. Development and testing of displacement inversion to track electrode movements on 3-D electrical resistivity tomography monitoring grids

    NASA Astrophysics Data System (ADS)

    Wilkinson, Paul B.; Uhlemann, Sebastian; Chambers, Jonathan E.; Meldrum, Philip I.; Loke, Meng Heng

    2015-03-01

    Electrodes installed on active landslides and vulnerable earthworks to monitor changes in resistivity associated with moisture dynamics can be subject to movement. This affects the geoelectrical data and leads to errors in the resulting electrical resistivity tomography (ERT) images. This paper demonstrates the selection of appropriate ERT measurements to provide sensitivity to electrode displacements in both directions on a surface grid. Combinations of linear and equatorial dipole-dipole measurements are considered, which permit use on rectangular grids of any aspect ratio. A Gauss-Newton inversion scheme, initially based on simple homogeneous resistivity model calculations, is developed that allows for the incorporation of constraints based on the magnitude and direction of movement. The effects of the constraints are demonstrated with synthetic data, which are also used to show that displacement inversion can track electrodes positions during movement as a function of time. The conclusions of these simulations are subsequently confirmed by analogous experiments in a laboratory tank. The results show that tracking the positions of the electrodes is possible with sufficient accuracy, even in the presence of realistic subsurface resistivity structures, to correct the majority of distortions and resistivity anomalies caused by using the wrong electrode locations in ERT inversion. By incorporating estimates of the resistivity structure into the forward response modelling, the accuracy of the recovered displacements is improved. This also enables an iterative displacement and resistivity inversion to be developed that, for the first time, demonstrates the principle of using 3-D ERT data to monitor both subsurface geoelectrical properties and surface movements simultaneously.

  15. Improvement of the size estimation of 3D tracked droplets using digital in-line holography with joint estimation reconstruction

    NASA Astrophysics Data System (ADS)

    Verrier, N.; Grosjean, N.; Dib, E.; Méès, L.; Fournier, C.; Marié, J.-L.

    2016-04-01

    Digital holography is a valuable tool for three-dimensional information extraction. Among existing configurations, the originally proposed set-up (i.e. Gabor, or in-line holography), is reasonably immune to variations in the experimental environment making it a method of choice for studies of fluid dynamics. Nevertheless, standard hologram reconstruction techniques, based on numerical light back-propagation are prone to artifacts such as twin images or aliases that limit both the quality and quantity of information extracted from the acquired holograms. To get round this issue, the hologram reconstruction as a parametric inverse problem has been shown to accurately estimate 3D positions and the size of seeding particles directly from the hologram. To push the bounds of accuracy on size estimation still further, we propose to fully exploit the information redundancy of a hologram video sequence using joint estimation reconstruction. Applying this approach in a bench-top experiment, we show that it led to a relative precision of 0.13% (for a 60 μm diameter droplet) for droplet size estimation, and a tracking precision of {σx}× {σy}× {σz}=0.15× 0.15× 1~\\text{pixels} .

  16. Fast-track development of an in vitro 3D lung/immune cell model to study Aspergillus infections.

    PubMed

    Chandorkar, P; Posch, W; Zaderer, V; Blatzer, M; Steger, M; Ammann, C G; Binder, U; Hermann, M; Hörtnagl, P; Lass-Flörl, C; Wilflingseder, D

    2017-09-14

    To study interactions of airborne pathogens, e.g. Aspergillus (A.) fumigatus with upper and lower respiratory tract epithelial and immune cells, we set up a perfused 3D human bronchial and small airway epithelial cell system. Culturing of normal human bronchial or small airway epithelial (NHBE, SAE) cells under air liquid interphase (ALI) and perfusion resulted in a significantly accelerated development of the lung epithelia associated with higher ciliogenesis, cilia movement, mucus-production and improved barrier function compared to growth under static conditions. Following the accelerated differentiation under perfusion, epithelial cells were transferred into static conditions and antigen-presenting cells (APCs) added to study their functionality upon infection with A. fumigatus. Fungi were efficiently sensed by apically applied macrophages or basolaterally adhered dendritic cells (DCs), as illustrated by phagocytosis, maturation and migration characteristics. We illustrate here that perfusion greatly improves differentiation of primary epithelial cells in vitro, which enables fast-track addition of primary immune cells and significant shortening of experimental procedures. Additionally, co-cultured primary DCs and macrophages were fully functional and fulfilled their tasks of sensing and sampling fungal pathogens present at the apical surface of epithelial cells, thereby promoting novel possibilities to study airborne infections under conditions mimicking the in vivo situation.

  17. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose

    NASA Astrophysics Data System (ADS)

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-01

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required with the

  18. Hybrid MV-kV 3D respiratory motion tracking during radiation therapy with low imaging dose.

    PubMed

    Yan, Huagang; Li, Haiyun; Liu, Zhixiang; Nath, Ravinder; Liu, Wu

    2012-12-21

    A novel real-time adaptive MV-kV imaging framework for image-guided radiation therapy is developed to reduce the thoracic and abdominal tumor targeting uncertainty caused by respiration-induced intrafraction motion with ultra-low patient imaging dose. In our method, continuous stereoscopic MV-kV imaging is used at the beginning of a radiation therapy delivery for several seconds to measure the implanted marker positions. After this stereoscopic imaging period, the kV imager is switched off except for the times when no fiducial marker is detected in the cine-MV images. The 3D time-varying marker positions are estimated by combining the MV 2D projection data and the motion correlations between directional components of marker motion established from the stereoscopic imaging period and updated afterwards; in particular, the most likely position is assumed to be the position on the projection line that has the shortest distance to the first principal component line segment constructed from previous trajectory points. An adaptive windowed auto-regressive prediction is utilized to predict the marker position a short time later (310 ms and 460 ms in this study) to allow for tracking system latency. To demonstrate the feasibility and evaluate the accuracy of the proposed method, computer simulations were performed for both arc and fixed-gantry deliveries using 66 h of retrospective tumor motion data from 42 patients treated for thoracic or abdominal cancers. The simulations reveal that using our hybrid approach, a smaller than 1.2 mm or 1.5 mm root-mean-square tracking error can be achieved at a system latency of 310 ms or 460 ms, respectively. Because the kV imaging is only used for a short period of time in our method, extra patient imaging dose can be reduced by an order of magnitude compared to continuous MV-kV imaging, while the clinical tumor targeting accuracy for thoracic or abdominal cancers is maintained. Furthermore, no additional hardware is required

  19. Direct comparison of cardiac magnetic resonance feature tracking and 2D/3D echocardiography speckle tracking for evaluation of global left ventricular strain.

    PubMed

    Obokata, Masaru; Nagata, Yasufumi; Wu, Victor Chien-Chia; Kado, Yuichiro; Kurabayashi, Masahiko; Otsuji, Yutaka; Takeuchi, Masaaki

    2016-05-01

    Cardiac magnetic resonance (CMR) feature tracking (FT) with steady-state free precession (SSFP) has advantages over traditional myocardial tagging to analyse left ventricular (LV) strain. However, direct comparisons of CMRFT and 2D/3D echocardiography speckle tracking (2/3DEST) for measurement of LV strain are limited. The aim of this study was to investigate the feasibility and reliability of CMRFT and 2D/3DEST for measurement of global LV strain. We enrolled 106 patients who agreed to undergo both CMR and 2D/3DE on the same day. SSFP images at multiple short-axis and three apical views were acquired. 2DE images from three levels of short-axis, three apical views, and 3D full-volume datasets were also acquired. Strain data were expressed as absolute values. Feasibility was highest in CMRFT, followed by 2DEST and 3DEST. Analysis time was shortest in 3DEST, followed by CMRFT and 2DEST. There was good global longitudinal strain (GLS) correlation between CMRFT and 2D/3DEST (r = 0.83 and 0.87, respectively) with the limit of agreement (LOA) ranged from ±3.6 to ±4.9%. Excellent global circumferential strain (GCS) correlation between CMRFT and 2D/3DEST was observed (r = 0.90 and 0.88) with LOA of ±6.8-8.5%. Global radial strain showed fair correlations (r = 0.69 and 0.82, respectively) with LOA ranged from ±12.4 to ±16.3%. CMRFT GCS showed least observer variability with highest intra-class correlation. Although not interchangeable, the high GLS and GCS correlation between CMRFT and 2D/3DEST makes CMRFT a useful modality for quantification of global LV strain in patients, especially those with suboptimal echo image quality. Published on behalf of the European Society of Cardiology. All rights reserved. © The Author 2015. For permissions please email: journals.permissions@oup.com.

  20. Crosstalk minimization in autostereoscopic multiveiw 3D display by eye tracking and fusion (overlapping) of viewing zones

    NASA Astrophysics Data System (ADS)

    Kim, Sung-Kyu; Yoon, Seon-Kyu; Yoon, Ki-Hyuk

    2012-06-01

    An autostereoscopic 3D display provides the binocular perception without eye glasses, but induces the low 3D effect and dizziness due to the crosstalk effect. The crosstalk related problems give the deterioration of 3D effect, clearness, and reality of 3D image. A novel method of reducing the crosstalk is designed and tested; the method is based on the fusion of viewing zones and the real time eye position. It is shown experimentally that the crosstalk is effectively reduced at any position around the optimal viewing distance.

  1. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers.

    PubMed

    Chan, Mark K H; Kwong, Dora L W; Ng, Sherry C Y; Tong, Anthony S M; Tam, Eric K W

    2013-04-01

    Due to the complexity of 4D target tracking radiotherapy, the accuracy of this treatment strategy should be experimentally validated against established standard 3D technique. This work compared the accuracy of 3D and 4D dose calculations in respiration tracking stereotactic body radiotherapy (SBRT). Using the 4D planning module of the CyberKnife treatment planning system, treatment plans for a moving target and a static off-target cord structure were created on different four-dimensional computed tomography (4D-CT) datasets of a thorax phantom moving in different ranges. The 4D planning system used B-splines deformable image registrations (DIR) to accumulate dose distributions calculated on different breathing geometries, each corresponding to a static 3D-CT image of the 4D-CT dataset, onto a reference image to compose a 4D dose distribution. For each motion, 4D optimization was performed to generate a 4D treatment plan of the moving target. For comparison with standard 3D planning, each 4D plan was copied to the reference end-exhale images and a standard 3D dose calculation was followed. Treatment plans of the off-target structure were first obtained by standard 3D optimization on the end-exhale images. Subsequently, they were applied to recalculate the 4D dose distributions using DIRs. All dose distributions that were initially obtained using the ray-tracing algorithm with equivalent path-length heterogeneity correction (3D EPL and 4D EPL) were recalculated by a Monte Carlo algorithm (3D MC and 4D MC) to further investigate the effects of dose calculation algorithms. The calculated 3D EPL, 3D MC, 4D EPL, and 4D MC dose distributions were compared to measurements by Gafchromic EBT2 films in the axial and coronal planes of the moving target object, and the coronal plane for the static off-target object based on the γ metric at 5%/3mm criteria (γ5%/3mm). Treatment plans were considered acceptable if the percentage of pixels passing γ5%/3mm (Pγ<1) ≥ 90%. The

  2. On the comparison of visual discomfort generated by S3D and 2D content based on eye-tracking features

    NASA Astrophysics Data System (ADS)

    Iatsun, Iana; Larabi, Mohamed-Chaker; Fernandez-Maloigne, Christine

    2014-03-01

    The changing of TV systems from 2D to 3D mode is the next expected step in the telecommunication world. Some works have already been done to perform this progress technically, but interaction of the third dimension with humans is not yet clear. Previously, it was found that any increased load of visual system can create visual fatigue, like prolonged TV watching, computer work or video gaming. But watching S3D can cause another nature of visual fatigue, since all S3D technologies creates illusion of the third dimension based on characteristics of binocular vision. In this work we propose to evaluate and compare the visual fatigue from watching 2D and S3D content. This work shows the difference in accumulation of visual fatigue and its assessment for two types of content. In order to perform this comparison eye-tracking experiments using six commercially available movies were conducted. Healthy naive participants took part into the test and gave their answers feeling the subjective evaluation. It was found that watching stereo 3D content induce stronger feeling of visual fatigue than conventional 2D, and the nature of video has an important effect on its increase. Visual characteristics obtained by using eye-tracking were investigated regarding their relation with visual fatigue.

  3. Expansion method of the three-dimensional viewing freedom of autostereoscopic 3D display with dynamic merged viewing zone (MVZ) under eye tracking

    NASA Astrophysics Data System (ADS)

    Yoon, Ki-Hyuk; Kim, Sung-Kyu

    2017-05-01

    We studied expansion method of the three-dimensional viewing freedom of autostereoscopic 3D display with dynamic MVZ under tracking of viewer's eye. The dynamic MVZ technique can provide three dimensional images with minimized crosstalk when observer move at optimal viewing distance (OVD). In order to be extended to movement in the depth direction of the observer of this technology, it is provided a new pixel mapping method of the left eye and the right eye images at the time of the depth direction movement of the observer. When this pixel mapping method is applied to common autostereoscopic 3D display, the image of the 3D display as viewed from the observer position has the nonuniformed brightness distribution of a constant period in the horizontal direction depending on depth direction distance from OVD. It makes it difficult to provide a three-dimensional image of good quality to the observer who deviates from OVD. In this study, it is simulated brightness distribution formed by the proposed pixel mapping when it is moved in the depth direction away OVD and confirmed the characteristics with the captured photos of two cameras on observer position to simulated two eyes of viewer using a developed 3D display system. As a result, we found that observer can perceive 3D images of same quality as OVD position even when he moves away from it in the developed 3D display system.

  4. Three-dimensional echocardiography and 2D-3D speckle-tracking imaging in chronic pulmonary hypertension: diagnostic accuracy in detecting hemodynamic signs of right ventricular (RV) failure.

    PubMed

    Vitarelli, Antonio; Mangieri, Enrico; Terzano, Claudio; Gaudio, Carlo; Salsano, Felice; Rosato, Edoardo; Capotosto, Lidia; D'Orazio, Simona; Azzano, Alessia; Truscelli, Giovanni; Cocco, Nino; Ashurov, Rasul

    2015-03-19

    Our aim was to compare three-dimensional (3D) and 2D and 3D speckle-tracking (2D-STE, 3D-STE) echocardiographic parameters with conventional right ventricular (RV) indexes in patients with chronic pulmonary hypertension (PH), and investigate whether these techniques could result in better correlation with hemodynamic variables indicative of heart failure. Seventy-three adult patients (mean age, 53±13 years; 44% male) with chronic PH of different etiologies were studied by echocardiography and cardiac catheterization (25 precapillary PH from pulmonary arterial hypertension, 23 obstructive pulmonary heart disease, and 23 postcapillary PH from mitral regurgitation). Thirty healthy subjects (mean age, 54±15 years; 43% male) served as controls. Standard 2D measurements (RV-fractional area change-tricuspid annular plane systolic excursion) and mitral and tricuspid tissue Doppler annular velocities were obtained. RV 3D volumes and global and regional ejection fraction (3D-RVEF) were determined. RV strains were calculated by 2D-STE and 3D-STE. RV 3D global-free-wall longitudinal strain (3DGFW-RVLS), 2D global-free-wall longitudinal strain (GFW-RVLS), apical-free-wall longitudinal strain, basal-free-wall longitudinal strain, and 3D-RVEF were lower in patients with precapillary PH (P<0.0001) and postcapillary PH (P<0.01) compared to controls. 3DGFW-RVLS (hazard ratio 4.6, 95% CI 2.79 to 8.38, P=0.004) and 3D-RVEF (hazard ratio 5.3, 95% CI 2.85 to 9.89, P=0.002) were independent predictors of mortality. Receiver operating characteristic curves showed that the thresholds offering an adequate compromise between sensitivity and specificity for detecting hemodynamic signs of RV failure were 39% for 3D-RVEF (AUC 0.89), -17% for 3DGFW-RVLS (AUC 0.88), -18% for GFW-RVLS (AUC 0.88), -16% for apical-free-wall longitudinal strain (AUC 0.85), 16 mm for tricuspid annular plane systolic excursion (AUC 0.67), and 38% for RV-FAC (AUC 0.62). In chronic PH, 3D, 2D-STE and 3D-STE parameters

  5. Unstructured grids in 3D and 4D for a time-dependent interface in front tracking with improved accuracy

    SciTech Connect

    Glimm, J.; Grove, J. W.; Li, X. L.; Li, Y.; Xu, Z.

    2002-01-01

    Front tracking traces the dynamic evolution of an interface separating differnt materials or fluid components. In this paper, they describe three types of the grid generation methods used in the front tracking method. One is the unstructured surface grid. The second is a structured grid-based reconstruction method. The third is a time-space grid, also grid based, for a conservative tracking algorithm with improved accuracy.

  6. Detailed Measurement of Wall Strain with 3D Speckle Tracking in the Aortic Root: A Case of Bionic Support for Clinical Decision Making

    PubMed Central

    Vogt, Sebastian; Karatolios, Konstantinos; Wittek, Andreas; Blasé, Christopher; Ramaswamy, Anette; Mirow, Nikolas; Moosdorf, Rainer

    2016-01-01

    Three-dimensional (3D) wall motion tracking (WMT) based on ultrasound imaging enables estimation of aortic wall motion and deformation. It provides insights into changes in vascular compliance and vessel wall properties essential for understanding the pathogenesis and progression of aortic diseases. In this report, we employed the novel 3D WMT analysis on the ascending aorta aneurysm (AA) to estimate local aortic wall motion and strain in case of a patient scheduled for replacement of the aortic root. Although progression of the diameter indicates surgical therapy, at present we addressed the question for optimal surgical time point. According to the data, AA in our case has enlarged diameter and subsequent reduced circumferential wall strain, but area tracking data reveals almost normal elastic properties. Virtual remodeling of the aortic root opens a play list for different loading conditions to determine optimal surgical intervention in time. PMID:28018834

  7. Accuracy of real-time single- and multi-beat 3-d speckle tracking echocardiography in vitro.

    PubMed

    Hjertaas, Johannes Just; Fosså, Henrik; Dybdahl, Grete Lunestad; Grüner, Renate; Lunde, Per; Matre, Knut

    2013-06-01

    With little data published on the accuracy of cardiac 3-D strain measurements, we investigated the agreement between 3-D echocardiography and sonomicrometry in an in vitro model with a polyvinyl alcohol phantom. A cardiac scanner with a 3-D probe was used to acquire recordings at 15 different stroke volumes at a heart rate of 60 beats/min, and eight different stroke volumes at a heart rate of 120 beats/min. Sonomicrometry was used as a reference, monitoring longitudinal, circumferential and radial lengths. Both single- and multi-beat acquisitions were recorded. Strain values were compared with sonomicrometer strain using linear correlation coefficients and Bland-Altman analysis. Multi-beat acquisition showed good agreement, whereas real-time images showed less agreement. The best correlation was obtained for a heart rate 60 of beats/min at a volume rate 36.6 volumes/s.

  8. Assessment of left ventricular systolic function by deformation imaging derived from speckle tracking: a comparison between 2D and 3D echo modalities.

    PubMed

    Altman, Mikhail; Bergerot, Cyrille; Aussoleil, Alexandra; Davidsen, Einar S; Sibellas, Franck; Ovize, Michel; Bonnefoy-Cudraz, Eric; Thibault, Hélène; Derumeaux, Geneviève

    2014-03-01

    Deformation imaging is undergoing continuous development with the emergence of new technologies allowing the evaluation of the different components of strain simultaneously in three dimensions. Assessment of all global strain parameters in 2D and 3D modes and comparison with LVEF have been the focus of our study. Out of 166 patients, 147 were evaluated with the use of both 2D and 3D speckle-tracking echocardiography (STE). Global strain parameters including longitudinal (GLS), circumferential (GCS), radial (GRS) and area strain (AS), as well as left ventricular volumes and ejection fraction were examined. Analysis of strain with 3D STE was faster than with 2D STE (7 ± 2 vs. 24 ± 4 min, P < 0.05). GLS values were similar between 2D and 3D modes (-14 ± 4 vs. -13 ± 3, NS), while slight differences were observed for GCS (-24 ± 7 vs. -27 ± 7, P < 0.05) and GRS (27 ± 9 vs. 24 ± 9, P < 0.05). All 2D and 3D strain parameters showed good accuracy in the identification of 2D-LVEF <55% with AS demonstrating superiority over GCS and GRS but not GLS. Three-dimensional STE allows accurate and faster analysis of deformation when compared with 2D STE and might represent a viable alternative in the evaluation of global LV function.

  9. Accuracy and precision of a custom camera-based system for 2-d and 3-d motion tracking during speech and nonspeech motor tasks.

    PubMed

    Feng, Yongqiang; Max, Ludo

    2014-04-01

    PURPOSE Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and submillimeter accuracy. METHOD The authors examined the accuracy and precision of 2-D and 3-D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially available computer software (APAS, Ariel Dynamics), and a custom calibration device. RESULTS Overall root-mean-square error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3- vs. 6-mm diameter) was negligible at all frame rates for both 2-D and 3-D data. CONCLUSION Motion tracking with consumer-grade digital cameras and the APAS software can achieve submillimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes.

  10. Accuracy and precision of a custom camera-based system for 2D and 3D motion tracking during speech and nonspeech motor tasks

    PubMed Central

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories, and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable alternative, provided that they offer high temporal resolution and sub-millimeter accuracy. Method We examined the accuracy and precision of 2D and 3D data recorded with a system that combines consumer-grade digital cameras capturing 60, 120, or 240 frames per second (fps), retro-reflective markers, commercially-available computer software (APAS, Ariel Dynamics), and a custom calibration device. Results Overall mean error (RMSE) across tests was 0.15 mm for static tracking and 0.26 mm for dynamic tracking, with corresponding precision (SD) values of 0.11 and 0.19 mm, respectively. The effect of frame rate varied across conditions, but, generally, accuracy was reduced at 240 fps. The effect of marker size (3 vs. 6 mm diameter) was negligible at all frame rates for both 2D and 3D data. Conclusion Motion tracking with consumer-grade digital cameras and the APAS software can achieve sub-millimeter accuracy at frame rates that are appropriate for kinematic analyses of lip/jaw movements for both research and clinical purposes. PMID:24686484

  11. Position tracking of moving liver lesion based on real-time registration between 2D ultrasound and 3D preoperative images

    SciTech Connect

    Weon, Chijun; Hyun Nam, Woo; Lee, Duhgoon; Ra, Jong Beom; Lee, Jae Young

    2015-01-15

    Purpose: Registration between 2D ultrasound (US) and 3D preoperative magnetic resonance (MR) (or computed tomography, CT) images has been studied recently for US-guided intervention. However, the existing techniques have some limits, either in the registration speed or the performance. The purpose of this work is to develop a real-time and fully automatic registration system between two intermodal images of the liver, and subsequently an indirect lesion positioning/tracking algorithm based on the registration result, for image-guided interventions. Methods: The proposed position tracking system consists of three stages. In the preoperative stage, the authors acquire several 3D preoperative MR (or CT) images at different respiratory phases. Based on the transformations obtained from nonrigid registration of the acquired 3D images, they then generate a 4D preoperative image along the respiratory phase. In the intraoperative preparatory stage, they properly attach a 3D US transducer to the patient’s body and fix its pose using a holding mechanism. They then acquire a couple of respiratory-controlled 3D US images. Via the rigid registration of these US images to the 3D preoperative images in the 4D image, the pose information of the fixed-pose 3D US transducer is determined with respect to the preoperative image coordinates. As feature(s) to use for the rigid registration, they may choose either internal liver vessels or the inferior vena cava. Since the latter is especially useful in patients with a diffuse liver disease, the authors newly propose using it. In the intraoperative real-time stage, they acquire 2D US images in real-time from the fixed-pose transducer. For each US image, they select candidates for its corresponding 2D preoperative slice from the 4D preoperative MR (or CT) image, based on the predetermined pose information of the transducer. The correct corresponding image is then found among those candidates via real-time 2D registration based on a

  12. Using virtual reality technology and hand tracking technology to create software for training surgical skills in 3D game

    NASA Astrophysics Data System (ADS)

    Zakirova, A. A.; Ganiev, B. A.; Mullin, R. I.

    2015-11-01

    The lack of visible and approachable ways of training surgical skills is one of the main problems in medical education. Existing simulation training devices are not designed to teach students, and are not available due to the high cost of the equipment. Using modern technologies such as virtual reality and hands movements fixation technology we want to create innovative method of learning the technics of conducting operations in 3D game format, which can make education process interesting and effective. Creating of 3D format virtual simulator will allow to solve several conceptual problems at once: opportunity of practical skills improvement unlimited by the time without the risk for patient, high realism of environment in operational and anatomic body structures, using of game mechanics for information perception relief and memorization of methods acceleration, accessibility of this program.

  13. Creation of 3D digital anthropomorphic phantoms which model actual patient non-rigid body motion as determined from MRI and position tracking studies of volunteers

    NASA Astrophysics Data System (ADS)

    Connolly, C. M.; Konik, A.; Dasari, P. K. R.; Segars, P.; Zheng, S.; Johnson, K. L.; Dey, J.; King, M. A.

    2011-03-01

    Patient motion can cause artifacts, which can lead to difficulty in interpretation. The purpose of this study is to create 3D digital anthropomorphic phantoms which model the location of the structures of the chest and upper abdomen of human volunteers undergoing a series of clinically relevant motions. The 3D anatomy is modeled using the XCAT phantom and based on MRI studies. The NURBS surfaces of the XCAT are interactively adapted to fit the MRI studies. A detailed XCAT phantom is first developed from an EKG triggered Navigator acquisition composed of sagittal slices with a 3 x 3 x 3 mm voxel dimension. Rigid body motion states are then acquired at breath-hold as sagittal slices partially covering the thorax, centered on the heart, with 9 mm gaps between them. For non-rigid body motion requiring greater sampling, modified Navigator sequences covering the entire thorax with 3 mm gaps between slices are obtained. The structures of the initial XCAT are then adapted to fit these different motion states. Simultaneous to MRI imaging the positions of multiple reflective markers on stretchy bands about the volunteer's chest and abdomen are optically tracked in 3D via stereo imaging. These phantoms with combined position tracking will be used to investigate both imaging-data-driven and motion-tracking strategies to estimate and correct for patient motion. Our initial application will be to cardiacperfusion SPECT imaging where the XCAT phantoms will be used to create patient activity and attenuation distributions for each volunteer with corresponding motion tracking data from the markers on the body-surface. Monte Carlo methods will then be used to simulate SPECT acquisitions, which will be used to evaluate various motion estimation and correction strategies.

  14. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    NASA Astrophysics Data System (ADS)

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-06-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation.

  15. Longitudinal, label-free, quantitative tracking of cell death and viability in a 3D tumor model with OCT

    PubMed Central

    Jung, Yookyung; Klein, Oliver J.; Wang, Hequn; Evans, Conor L.

    2016-01-01

    Three-dimensional in vitro tumor models are highly useful tools for studying tumor growth and treatment response of malignancies such as ovarian cancer. Existing viability and treatment assessment assays, however, face shortcomings when applied to these large, complex, and heterogeneous culture systems. Optical coherence tomography (OCT) is a noninvasive, label-free, optical imaging technique that can visualize live cells and tissues over time with subcellular resolution and millimeters of optical penetration depth. Here, we show that OCT is capable of carrying out high-content, longitudinal assays of 3D culture treatment response. We demonstrate the usage and capability of OCT for the dynamic monitoring of individual and combination therapeutic regimens in vitro, including both chemotherapy drugs and photodynamic therapy (PDT) for ovarian cancer. OCT was validated against the standard LIVE/DEAD Viability/Cytotoxicity Assay in small tumor spheroid cultures, showing excellent correlation with existing standards. Importantly, OCT was shown to be capable of evaluating 3D spheroid treatment response even when traditional viability assays failed. OCT 3D viability imaging revealed synergy between PDT and the standard-of-care chemotherapeutic carboplatin that evolved over time. We believe the efficacy and accuracy of OCT in vitro drug screening will greatly contribute to the field of cancer treatment and therapy evaluation. PMID:27248849

  16. 3D documentation of footwear impressions and tyre tracks in snow with high resolution optical surface scanning.

    PubMed

    Buck, Ursula; Albertini, Nicola; Naether, Silvio; Thali, Michael J

    2007-09-13

    The three-dimensional documentation of footwear and tyre impressions in snow offers an opportunity to capture additional fine detail for the identification as present photographs. For this approach, up to now, different casting methods have been used. Casting of footwear impressions in snow has always been a difficult assignment. This work demonstrates that for the three-dimensional documentation of impressions in snow the non-destructive method of 3D optical surface scanning is suitable. The new method delivers more detailed results of higher accuracy than the conventional casting techniques. The results of this easy to use and mobile 3D optical surface scanner were very satisfactory in different meteorological and snow conditions. The method is also suitable for impressions in soil, sand or other materials. In addition to the side by side comparison, the automatic comparison of the 3D models and the computation of deviations and accuracy of the data simplify the examination and delivers objective and secure results. The results can be visualized efficiently. Data exchange between investigating authorities at a national or an international level can be achieved easily with electronic data carriers.

  17. UmUTracker: A versatile MATLAB program for automated particle tracking of 2D light microscopy or 3D digital holography data

    NASA Astrophysics Data System (ADS)

    Zhang, Hanqing; Stangner, Tim; Wiklund, Krister; Rodriguez, Alvaro; Andersson, Magnus

    2017-10-01

    We present a versatile and fast MATLAB program (UmUTracker) that automatically detects and tracks particles by analyzing video sequences acquired by either light microscopy or digital in-line holographic microscopy. Our program detects the 2D lateral positions of particles with an algorithm based on the isosceles triangle transform, and reconstructs their 3D axial positions by a fast implementation of the Rayleigh-Sommerfeld model using a radial intensity profile. To validate the accuracy and performance of our program, we first track the 2D position of polystyrene particles using bright field and digital holographic microscopy. Second, we determine the 3D particle position by analyzing synthetic and experimentally acquired holograms. Finally, to highlight the full program features, we profile the microfluidic flow in a 100 μm high flow chamber. This result agrees with computational fluid dynamic simulations. On a regular desktop computer UmUTracker can detect, analyze, and track multiple particles at 5 frames per second for a template size of 201 ×201 in a 1024 × 1024 image. To enhance usability and to make it easy to implement new functions we used object-oriented programming. UmUTracker is suitable for studies related to: particle dynamics, cell localization, colloids and microfluidic flow measurement. Program Files doi : http://dx.doi.org/10.17632/fkprs4s6xp.1 Licensing provisions : Creative Commons by 4.0 (CC by 4.0) Programming language : MATLAB Nature of problem: 3D multi-particle tracking is a common technique in physics, chemistry and biology. However, in terms of accuracy, reliable particle tracking is a challenging task since results depend on sample illumination, particle overlap, motion blur and noise from recording sensors. Additionally, the computational performance is also an issue if, for example, a computationally expensive process is executed, such as axial particle position reconstruction from digital holographic microscopy data. Versatile

  18. Experimental evaluations of the accuracy of 3D and 4D planning in robotic tracking stereotactic body radiotherapy for lung cancers

    SciTech Connect

    Chan, Mark K. H.; Kwong, Dora L. W.; Ng, Sherry C. Y.; Tong, Anthony S. M.; Tam, Eric K. W.

    2013-04-15

    Purpose: Due to the complexity of 4D target tracking radiotherapy, the accuracy of this treatment strategy should be experimentally validated against established standard 3D technique. This work compared the accuracy of 3D and 4D dose calculations in respiration tracking stereotactic body radiotherapy (SBRT). Methods: Using the 4D planning module of the CyberKnife treatment planning system, treatment plans for a moving target and a static off-target cord structure were created on different four-dimensional computed tomography (4D-CT) datasets of a thorax phantom moving in different ranges. The 4D planning system used B-splines deformable image registrations (DIR) to accumulate dose distributions calculated on different breathing geometries, each corresponding to a static 3D-CT image of the 4D-CT dataset, onto a reference image to compose a 4D dose distribution. For each motion, 4D optimization was performed to generate a 4D treatment plan of the moving target. For comparison with standard 3D planning, each 4D plan was copied to the reference end-exhale images and a standard 3D dose calculation was followed. Treatment plans of the off-target structure were first obtained by standard 3D optimization on the end-exhale images. Subsequently, they were applied to recalculate the 4D dose distributions using DIRs. All dose distributions that were initially obtained using the ray-tracing algorithm with equivalent path-length heterogeneity correction (3D{sub EPL} and 4D{sub EPL}) were recalculated by a Monte Carlo algorithm (3D{sub MC} and 4D{sub MC}) to further investigate the effects of dose calculation algorithms. The calculated 3D{sub EPL}, 3D{sub MC}, 4D{sub EPL}, and 4D{sub MC} dose distributions were compared to measurements by Gafchromic EBT2 films in the axial and coronal planes of the moving target object, and the coronal plane for the static off-target object based on the {gamma} metric at 5%/3mm criteria ({gamma}{sub 5%/3mm}). Treatment plans were considered

  19. Performance and suitability assessment of a real-time 3D electromagnetic needle tracking system for interstitial brachytherapy

    PubMed Central

    Boutaleb, Samir; Fillion, Olivier; Bonillas, Antonio; Hautvast, Gilion; Binnekamp, Dirk; Beaulieu, Luc

    2015-01-01

    Purpose Accurate insertion and overall needle positioning are key requirements for effective brachytherapy treatments. This work aims at demonstrating the accuracy performance and the suitability of the Aurora® V1 Planar Field Generator (PFG) electromagnetic tracking system (EMTS) for real-time treatment assistance in interstitial brachytherapy procedures. Material and methods The system's performance was characterized in two distinct studies. First, in an environment free of EM disturbance, the boundaries of the detection volume of the EMTS were characterized and a tracking error analysis was performed. Secondly, a distortion analysis was conducted as a means of assessing the tracking accuracy performance of the system in the presence of potential EM disturbance generated by the proximity of standard brachytherapy components. Results The tracking accuracy experiments showed that positional errors were typically 2 ± 1 mm in a zone restricted to the first 30 cm of the detection volume. However, at the edges of the detection volume, sensor position errors of up to 16 mm were recorded. On the other hand, orientation errors remained low at ± 2° for most of the measurements. The EM distortion analysis showed that the presence of typical brachytherapy components in vicinity of the EMTS had little influence on tracking accuracy. Position errors of less than 1 mm were recorded with all components except with a metallic arm support, which induced a mean absolute error of approximately 1.4 mm when located 10 cm away from the needle sensor. Conclusions The Aurora® V1 PFG EMTS possesses a great potential for real-time treatment assistance in general interstitial brachytherapy. In view of our experimental results, we however recommend that the needle axis remains as parallel as possible to the generator surface during treatment and that the tracking zone be restricted to the first 30 cm from the generator surface. PMID:26622231

  20. Quantification of Coupled Stiffness and Fiber Orientation Remodeling in Hypertensive Rat Right-Ventricular Myocardium Using 3D Ultrasound Speckle Tracking with Biaxial Testing

    PubMed Central

    Park, Dae Woo; Sebastiani, Andrea; Yap, Choon Hwai; Simon, Marc A.; Kim, Kang

    2016-01-01

    Mechanical and structural changes of right ventricular (RV) in response to pulmonary hypertension (PH) are inadequately understood. While current standard biaxial testing provides information on the mechanical behavior of RV tissues using surface markers, it is unable to fully assess structural and mechanical properties across the full tissue thickness. In this study, the mechanical and structural properties of normotensive and pulmonary hypertension right ventricular (PHRV) myocardium through its full thickness were examined using mechanical testing combined with 3D ultrasound speckle tracking (3D-UST). RV pressure overload was induced in Sprague–Dawley rats by pulmonary artery (PA) banding. The second Piola–Kirchhoff stress tensors and Green-Lagrangian strain tensors were computed in the RV myocardium using the biaxial testing combined with 3D-UST. A previously established non-linear curve-fitting algorithm was applied to fit experimental data to a Strain Energy Function (SEF) for computation of myofiber orientation. The fiber orientations obtained by the biaxial testing with 3D-UST compared well with the fiber orientations computed from the histology. In addition, the re-orientation of myofiber in the right ventricular free wall (RVFW) along longitudinal direction (apex-to-outflow-tract direction) was noticeable in response to PH. For normotensive RVFW samples, the average fiber orientation angles obtained by 3D-UST with biaxial test spiraled from 20° at the endo-cardium to -42° at the epi-cardium (Δ = 62°). For PHRV samples, the average fiber orientation angles obtained by 3D-UST with biaxial test had much less spiral across tissue thickness: 3° at endo-cardium to -7° at epi-cardium (Δ = 10°, P<0.005 compared to normotensive). PMID:27780271

  1. Use of MV and kV imager correlation for maintaining continuous real-time 3D internal marker tracking during beam interruptions.

    PubMed

    Wiersma, R D; Riaz, N; Dieterich, Sonja; Suh, Yelin; Xing, L

    2009-01-07

    The integration of onboard kV imaging together with a MV electronic portal imaging device (EPID) on linear accelerators (LINAC) can provide an easy to implement real-time 3D organ position monitoring solution for treatment delivery. Currently, real-time MV-kV tracking has only been demonstrated by simultaneous imagining by both MV and kV imaging devices. However, modalities such as step-and-shoot IMRT (SS-IMRT), which inherently contain MV beam interruptions, can lead to loss of target information necessary for 3D localization. Additionally, continuous kV imaging throughout the treatment delivery can lead to high levels of imaging dose to the patient. This work demonstrates for the first time how full 3D target tracking can be maintained even in the presence of such beam interruption, or MV/kV beam interleave, by use of a relatively simple correlation model together with MV-kV tracking. A moving correlation model was constructed using both present and prior positions of the marker in the available MV or kV image to compute the position of the marker on the interrupted imager. A commercially available radiotherapy system, equipped with both MV and kV imaging devices, was used to deliver typical SS-IMRT lung treatment plans to a 4D phantom containing internally embedded metallic markers. To simulate actual lung tumor motion, previous recorded 4D lung patient motion data were used. Lung tumor motion data of five separate patients were inputted into the 4D phantom, and typical SS-IMRT lung plans were delivered to simulate actual clinical deliveries. Application of the correlation model to SS-IMRT lung treatment deliveries was found to be an effective solution for maintaining continuous 3D tracking during 'step' beam interruptions. For deliveries involving five or more gantry angles with 50 or more fields per plan, the positional errors were found to have < or =1 mm root mean squared error (RMSE) in all three spatial directions. In addition to increasing the robustness

  2. Use of MV and kV imager correlation for maintaining continuous real-time 3D internal marker tracking during beam interruptions

    NASA Astrophysics Data System (ADS)

    Wiersma, R. D.; Riaz, N.; Dieterich, Sonja; Suh, Yelin; Xing, L.

    2009-01-01

    The integration of onboard kV imaging together with a MV electronic portal imaging device (EPID) on linear accelerators (LINAC) can provide an easy to implement real-time 3D organ position monitoring solution for treatment delivery. Currently, real-time MV-kV tracking has only been demonstrated by simultaneous imagining by both MV and kV imaging devices. However, modalities such as step-and-shoot IMRT (SS-IMRT), which inherently contain MV beam interruptions, can lead to loss of target information necessary for 3D localization. Additionally, continuous kV imaging throughout the treatment delivery can lead to high levels of imaging dose to the patient. This work demonstrates for the first time how full 3D target tracking can be maintained even in the presence of such beam interruption, or MV/kV beam interleave, by use of a relatively simple correlation model together with MV-kV tracking. A moving correlation model was constructed using both present and prior positions of the marker in the available MV or kV image to compute the position of the marker on the interrupted imager. A commercially available radiotherapy system, equipped with both MV and kV imaging devices, was used to deliver typical SS-IMRT lung treatment plans to a 4D phantom containing internally embedded metallic markers. To simulate actual lung tumor motion, previous recorded 4D lung patient motion data were used. Lung tumor motion data of five separate patients were inputted into the 4D phantom, and typical SS-IMRT lung plans were delivered to simulate actual clinical deliveries. Application of the correlation model to SS-IMRT lung treatment deliveries was found to be an effective solution for maintaining continuous 3D tracking during 'step' beam interruptions. For deliveries involving five or more gantry angles with 50 or more fields per plan, the positional errors were found to have <=1 mm root mean squared error (RMSE) in all three spatial directions. In addition to increasing the robustness of

  3. 3D visualisation of the stochastic patterns of the radial dose in nano-volumes by a Monte Carlo simulation of HZE ion track structure.

    PubMed

    Plante, Ianik; Ponomarev, Artem; Cucinotta, Francis A

    2011-02-01

    The description of energy deposition by high charge and energy (HZE) nuclei is of importance for space radiation risk assessment and due to their use in hadrontherapy. Such ions deposit a large fraction of their energy within the so-called core of the track and a smaller proportion in the penumbra (or track periphery). We study the stochastic patterns of the radial dependence of energy deposition using Monte Carlo track structure codes RITRACKS and RETRACKS, that were used to simulate HZE tracks and calculate energy deposition in voxels of 40 nm. The simulation of a (56)Fe(26+) ion of 1 GeV u(-1) revealed zones of high-energy deposition which maybe found as far as a few millimetres away from the track core in some simulations. The calculation also showed that ∼43 % of the energy was deposited in the penumbra. These 3D stochastic simulations combined with a visualisation interface are a powerful tool for biophysicists which may be used to study radiation-induced biological effects such as double strand breaks and oxidative damage and the subsequent cellular and tissue damage processing and signalling.

  4. Real-time target tracking of soft tissues in 3D ultrasound images based on robust visual information and mechanical simulation.

    PubMed

    Royer, Lucas; Krupa, Alexandre; Dardenne, Guillaume; Le Bras, Anthony; Marchand, Eric; Marchal, Maud

    2017-01-01

    In this paper, we present a real-time approach that allows tracking deformable structures in 3D ultrasound sequences. Our method consists in obtaining the target displacements by combining robust dense motion estimation and mechanical model simulation. We perform evaluation of our method through simulated data, phantom data, and real-data. Results demonstrate that this novel approach has the advantage of providing correct motion estimation regarding different ultrasound shortcomings including speckle noise, large shadows and ultrasound gain variation. Furthermore, we show the good performance of our method with respect to state-of-the-art techniques by testing on the 3D databases provided by MICCAI CLUST'14 and CLUST'15 challenges.

  5. Tracking time interval changes of pulmonary nodules on follow-up 3D CT images via image-based risk score of lung cancer

    NASA Astrophysics Data System (ADS)

    Kawata, Y.; Niki, N.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.; Moriyama, N.

    2013-03-01

    In this paper, we present a computer-aided follow-up (CAF) scheme to support physicians to track interval changes of pulmonary nodules on three dimensional (3D) CT images and to decide the treatment strategies without making any under or over treatment. Our scheme involves analyzing CT histograms to evaluate the volumetric distribution of CT values within pulmonary nodules. A variational Bayesian mixture modeling framework translates the image-derived features into an image-based risk score for predicting the patient recurrence-free survival. Through applying our scheme to follow-up 3D CT images of pulmonary nodules, we demonstrate the potential usefulness of the CAF scheme which can provide the trajectories that can characterize time interval changes of pulmonary nodules.

  6. Applications of 3D hydrodynamic and particle tracking models in the San Francisco bay-delta estuary

    USGS Publications Warehouse

    Smith, P.E.; Donovan, J.M.; Wong, H.F.N.

    2005-01-01

    Three applications of three-dimensional hydrodynamic and particle-tracking models are currently underway by the United States Geological Survey in the San Francisco Bay-Delta Estuary. The first application is to the San Francisco Bay and a portion of the coastal ocean. The second application is to an important, gated control channel called the Delta Cross Channel, located within the northern portion of the Sacramento-San Joaquin River Delta. The third application is to a reach of the San Joaquin River near Stockton, California where a significant dissolved oxygen problem exists due, in part, to conditions associated with the deep-water ship channel for the Port of Stockton, California. This paper briefly discusses the hydrodynamic and particle tracking models being used and the three applications. Copyright ASCE 2005.

  7. 3D tracking of single nanoparticles and quantum dots in living cells by out-of-focus imaging with diffraction pattern recognition

    PubMed Central

    Gardini, Lucia; Capitanio, Marco; Pavone, Francesco S.

    2015-01-01

    Live cells are three-dimensional environments where biological molecules move to find their targets and accomplish their functions. However, up to now, most single molecule investigations have been limited to bi-dimensional studies owing to the complexity of 3d-tracking techniques. Here, we present a novel method for three-dimensional localization of single nano-emitters based on automatic recognition of out-of-focus diffraction patterns. Our technique can be applied to track the movements of single molecules in living cells using a conventional epifluorescence microscope. We first demonstrate three-dimensional localization of fluorescent nanobeads over 4 microns depth with accuracy below 2 nm in vitro. Remarkably, we also establish three-dimensional tracking of Quantum Dots, overcoming their anisotropic emission, by adopting a ligation strategy that allows rotational freedom of the emitter combined with proper pattern recognition. We localize commercially available Quantum Dots in living cells with accuracy better than 7 nm over 2 microns depth. We validate our technique by tracking the three-dimensional movements of single protein-conjugated Quantum Dots in living cell. Moreover, we find that important localization errors can occur in off-focus imaging when improperly calibrated and we give indications to avoid them. Finally, we share a Matlab script that allows readily application of our technique by other laboratories. PMID:26526410

  8. 3D tracking of single nanoparticles and quantum dots in living cells by out-of-focus imaging with diffraction pattern recognition.

    PubMed

    Gardini, Lucia; Capitanio, Marco; Pavone, Francesco S

    2015-11-03

    Live cells are three-dimensional environments where biological molecules move to find their targets and accomplish their functions. However, up to now, most single molecule investigations have been limited to bi-dimensional studies owing to the complexity of 3d-tracking techniques. Here, we present a novel method for three-dimensional localization of single nano-emitters based on automatic recognition of out-of-focus diffraction patterns. Our technique can be applied to track the movements of single molecules in living cells using a conventional epifluorescence microscope. We first demonstrate three-dimensional localization of fluorescent nanobeads over 4 microns depth with accuracy below 2 nm in vitro. Remarkably, we also establish three-dimensional tracking of Quantum Dots, overcoming their anisotropic emission, by adopting a ligation strategy that allows rotational freedom of the emitter combined with proper pattern recognition. We localize commercially available Quantum Dots in living cells with accuracy better than 7 nm over 2 microns depth. We validate our technique by tracking the three-dimensional movements of single protein-conjugated Quantum Dots in living cell. Moreover, we find that important localization errors can occur in off-focus imaging when improperly calibrated and we give indications to avoid them. Finally, we share a Matlab script that allows readily application of our technique by other laboratories.

  9. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum.

    PubMed

    Lehéricy, Stéphane; Ducros, Mathieu; Krainik, Alexandre; Francois, Chantal; Van de Moortele, Pierre-François; Ugurbil, Kamil; Kim, Dae-Shik

    2004-12-01

    Studies in non-human primates have shown that medial premotor projections to the striatum are characterized as a set of distinct circuits conveying different type of information. This study assesses the anatomical projections from the supplementary motor area (SMA), pre-SMA and motor cortex (MC) to the human striatum using diffusion tensor imaging (DTI) axonal tracking. Eight right-handed volunteers were studied at 1.5 T using DTI axonal tracking. A connectivity matrix was computed, which tested for connections between cortical areas (MC, SMA and pre-SMA) and subcortical areas (posterior, middle and anterior putamen and the head of the caudate nucleus) in each hemisphere. Pre-SMA projections to the striatum were located rostral to SMA projections to the striatum. The SMA and the MC were similarly connected to the posterior and middle putamen and not to the anterior striatum. These data show that the MC and SMA have connections with similar parts of the sensorimotor compartment of the human striatum, whereas the pre-SMA sends connections to more rostral parts of the striatum, including the associative compartment.

  10. 3-D Particle Tracking in a Two-Photon Microscope: Application to the Study of Molecular Dynamics in Cells

    PubMed Central

    Levi, Valeria; Ruan, QiaoQiao; Gratton, Enrico

    2005-01-01

    We developed a method for tracking particles in three dimensions designed for a two-photon microscope, which holds great promise to study cellular processes because of low photodamage, efficient background rejection, and improved depth discrimination. During a standard cycle of the tracking routine (32 ms), the laser beam traces four circular orbits surrounding the particle in two z planes above and below the particle. The radius of the orbits is half of the x,y-width of the point spread function, and the distance between the z planes is the z-width of the point spread function. The z-position is adjusted by moving the objective with a piezoelectric-nanopositioner. The particle position is calculated on the fly from the intensity profile obtained during the cycle, and these coordinates are used to set the scanning center for the next cycle. Applying this method, we were able to follow the motion of 500-nm diameter fluorescent polystyrene microspheres moved by a nanometric stage in either steps of 20–100 nm or sine waves of 0.1–10 μm amplitude with 20 nm precision. We also measured the diffusion coefficient of fluorospheres in glycerol solutions and recovered the values expected according to the Stokes-Einstein relationship for viscosities higher than 3.7 cP. The feasibility of this method for live cell measurements is demonstrated studying the phagocytosis of protein-coated fluorospheres by fibroblasts. PMID:15653748

  11. A method for fast 3D tracking using tuned fiducial markers and a limited projection reconstruction FISP (LPR-FISP) sequence.

    PubMed

    Flask, C; Elgort, D; Wong, E; Shankaranarayanan, A; Lewin, J; Wendt, M; Duerk, J L

    2001-11-01

    This work demonstrates the feasibility of using wireless, tuned fiducial markers with a limited projection reconstruction-fast imaging with steady-state free precession sequence (LPR-FISP) to accurately obtain tracking information necessary for interactive scan plane selection in magnetic resonance imaging (MRI). The position and orientation of a rigid interventional device can be uniquely determined from the 3D coordinates of three fiducial markers mounted in a known configuration on the device. Three fiducial markers were tuned to the proton resonant frequency in a 0.2T open MR scanner and mounted to the surface of a cylindrical water phantom. An LPR-FISP sequence was developed to suppress the water phantom signal while preserving that of the fiducial markers through a nonselective low-tip-angle excitation and a dephaser gradient applied prior to data acquisition. A localization algorithm was developed to accurately calculate the 3D coordinates of the fiducial markers using four LPR-FISP projections in two orthogonal scan planes. The sequence repetition time (TR = 21 msec) and the limited projection set resulted in fast LPR-FISP coordinate acquisition times of approximately 170 msec with an accuracy (max error) of 3 mm on a 0.2T MR system. This fast, accurate tracking method provides the fundamental technology for interactive MRI scan plane definition for rigid interventional devices without the need for stereotactic cameras or reference frames. Copyright 2001 Wiley-Liss, Inc.

  12. Validation of 4D dose calculation using an independent motion monitoring by the calypso tracking system and 3D polymer gel dosimetry

    NASA Astrophysics Data System (ADS)

    Mann, P.; Saito, N.; Lang, C.; Runz, A.; Johnen, W.; Witte, M.; Schmitt, D.; Karger, C. P.

    2017-05-01

    This study aims to evaluate an in-house developed 4D dose calculation algorithm that uses Calypso motion tracking data and to compare the results against 3D polymer gel dosimetry measurements. For this, a cylindrical water phantom was constructed that allows to insert (i) the polymer gel, (ii) a PinPoint ® ionization chamber and (iii) Calypso beacons™ for motion tracking. A treatment plan covering a gel flask in the center of the static phantom plus a 1 mm margin homogeneously with dose was generated. During irradiation, however, the phantom was moved periodically by means of a robot with a peak-to-peak amplitude of 2.5 cm. The results of the 4D dose calculations show good agreement with the gel-dosimetric measurements in most of the volume. Remaining small deviations have to be evaluated in further experiments. The developed experimental setup allows for 3D-dosimetric validation of 4D dose calculations algorithms prior to application in patients.

  13. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    NASA Astrophysics Data System (ADS)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the

  14. A comprehensive method for magnetic sensor calibration: a precise system for 3-D tracking of the tongue movements.

    PubMed

    Farajidavar, Aydin; Block, Jacob M; Ghovanloo, Maysam

    2012-01-01

    Magnetic localization has been used in a variety of applications, including the medical field. Small magnetic tracers are often modeled as dipoles and localization has been achieved by solving well-defined dipole equations. However, in practice, the precise calculation of the tracer location not only depends on solving the highly nonlinear dipole equations through numerical algorithms but also on the precision of the magnetic sensor, accuracy of the tracer magnetization, and the earth magnetic field (EMF) measurements. We have developed and implemented a comprehensive calibration method that addresses all of the aforementioned factors. We evaluated this method in a bench-top setting by moving the tracer along controlled trajectories. We also conducted several experiments to track the tongue movement in a human subject.

  15. 3D-localization microscopy and tracking of FoF1-ATP synthases in living bacteria

    NASA Astrophysics Data System (ADS)

    Renz, Anja; Renz, Marc; Klütsch, Diana; Deckers-Hebestreit, Gabriele; Börsch, Michael

    2015-03-01

    FoF1-ATP synthases are membrane-embedded protein machines that catalyze the synthesis of adenosine triphosphate. Using photoactivation-based localization microscopy (PALM) in TIR-illumination as well as structured illumination microscopy (SIM), we explore the spatial distribution and track single FoF1-ATP synthases in living E. coli cells under physiological conditions at different temperatures. For quantitative diffusion analysis by mean-squared-displacement measurements, the limited size of the observation area in the membrane with its significant membrane curvature has to be considered. Therefore, we applied a 'sliding observation window' approach (M. Renz et al., Proc. SPIE 8225, 2012) and obtained the one-dimensional diffusion coefficient of FoF1-ATP synthase diffusing on the long axis in living E. coli cells.

  16. Development of the 3-D Track Imager for Medium and High-Energy Gamma-Ray Telescopes

    NASA Technical Reports Server (NTRS)

    Hunter, Stanley D.

    2006-01-01

    The Advanced Compton Telescope (ACT) and Advanced Pair Telescope (APT) are envisioned as the next medium (0.3 ^ 50 MeV) and high-energy (30 MeV - greater than 100 GeV) gamma-ray missions. These missions will address many research focus areas of the Structure and Evolution of the Universe Roadmap. These areas include: element formation, matter, energy, & magnetic field interactions in galaxies, AGN & GRB emission, and behavior of matter in extreme environments of black holes & pulsars. Achieving these science goals requires a substantial increases in telescope sensitivity and angular resolution. This talk will discuss how these goals can be met with the three-dimensional track imager (3-DTI), a large volume, low density, time projection chamber with two-dimensional micro-well detector readout and report on our development of a 10 cm x 10 cm x 30 prototype instrument.

  17. FFT integration of instantaneous 3D pressure gradient fields measured by Lagrangian particle tracking in turbulent flows

    NASA Astrophysics Data System (ADS)

    Huhn, F.; Schanz, D.; Gesemann, S.; Schröder, A.

    2016-09-01

    Pressure gradient fields in unsteady flows can be estimated through flow measurements of the material acceleration in the fluid and the assumption of the governing momentum equation. In order to derive pressure from its gradient, almost exclusively two numerical methods have been used to spatially integrate the pressure gradient until now: first, direct path integration in the spatial domain, and second, the solution of the Poisson equation for pressure. Instead, we propose an alternative third method that integrates the pressure gradient field in Fourier space. Using a FFT function, the method is fast and easy to implement in programming languages for scientific computing. We demonstrate the accuracy of the integration scheme on a synthetic pressure field and apply it to an experimental example based on time-resolved material acceleration data from high-resolution Lagrangian particle tracking with the Shake-The-Box method.

  18. Improved image guidance technique for minimally invasive mitral valve repair using real-time tracked 3D ultrasound

    NASA Astrophysics Data System (ADS)

    Rankin, Adam; Moore, John; Bainbridge, Daniel; Peters, Terry

    2016-03-01

    In the past ten years, numerous new surgical and interventional techniques have been developed for treating heart valve disease without the need for cardiopulmonary bypass. Heart valve repair is now being performed in a blood-filled environment, reinforcing the need for accurate and intuitive imaging techniques. Previous work has demonstrated how augmenting ultrasound with virtual representations of specific anatomical landmarks can greatly simplify interventional navigation challenges and increase patient safety. These techniques often complicate interventions by requiring additional steps taken to manually define and initialize virtual models. Furthermore, overlaying virtual elements into real-time image data can also obstruct the view of salient image information. To address these limitations, a system was developed that uses real-time volumetric ultrasound alongside magnetically tracked tools presented in an augmented virtuality environment to provide a streamlined navigation guidance platform. In phantom studies simulating a beating-heart navigation task, procedure duration and tool path metrics have achieved comparable performance to previous work in augmented virtuality techniques, and considerable improvement over standard of care ultrasound guidance.

  19. A 3D front-tracking approach for simulation of a two-phase fluid with insoluble surfactant

    NASA Astrophysics Data System (ADS)

    de Jesus, Wellington C.; Roma, Alexandre M.; Pivello, Márcio R.; Villar, Millena M.; da Silveira-Neto, Aristeu

    2015-01-01

    Surface active agents play a significant role in interfacial dynamics of multiphase systems.While the understanding of their behavior is crucial to many important practical applications, realistic mathematical modeling and computer simulation represent an extraordinary task. By employing a front-tracking method with Eulerian adaptive mesh refinement capabilities in concert with a finite volume scheme for solving an advection-diffusion equation constrained to a moving and deforming interface, the numerical challenges posed by the full three-dimensional computer simulation of transient, incompressible two-phase flows with an insoluble surfactant are efficiently and accurately tackled in the present work. The individual numerical components forming the resulting methodology are here combined and applied for the first time. Verification tests to check the accuracy and the simulation of the deformation of a droplet in simple shear flow in the presence of an insoluble surfactant are performed, the results being compared to laboratory experiments as well as to other numerical data. In all the cases considered, the methodology presents excellent conservation properties for the total surfactant mass (even to machine precision under certain circumstances).

  20. Combining 3D tracking and surgical instrumentation to determine the stiffness of spinal motion segments: a validation study.

    PubMed

    Reutlinger, C; Gédet, P; Büchler, P; Kowal, J; Rudolph, T; Burger, J; Scheffler, K; Hasler, C

    2011-04-01

    The spine is a complex structure that provides motion in three directions: flexion and extension, lateral bending and axial rotation. So far, the investigation of the mechanical and kinematic behavior of the basic unit of the spine, a motion segment, is predominantly a domain of in vitro experiments on spinal loading simulators. Most existing approaches to measure spinal stiffness intraoperatively in an in vivo environment use a distractor. However, these concepts usually assume a planar loading and motion. The objective of our study was to develop and validate an apparatus, that allows to perform intraoperative in vivo measurements to determine both the applied force and the resulting motion in three dimensional space. The proposed setup combines force measurement with an instrumented distractor and motion tracking with an optoelectronic system. As the orientation of the applied force and the three dimensional motion is known, not only force-displacement, but also moment-angle relations could be determined. The validation was performed using three cadaveric lumbar ovine spines. The lateral bending stiffness of two motion segments per specimen was determined with the proposed concept and compared with the stiffness acquired on a spinal loading simulator which was considered to be gold standard. The mean values of the stiffness computed with the proposed concept were within a range of ±15% compared to data obtained with the spinal loading simulator under applied loads of less than 5 Nm.

  1. Tracking Down the Causes of Recent Induced and Natural Intraplate Earthquakes with 3D Seismological Analyses in Northwest Germany

    NASA Astrophysics Data System (ADS)

    Uta, P.; Brandes, C.; Boennemann, C.; Plenefisch, T.; Winsemann, J.

    2015-12-01

    Northwest Germany is a typical low strain intraplate region with a low seismic activity. Nevertheless, 58 well documented earthquakes with magnitudes of 0.5 - 4.3 affected the area in the last 40 years. Most of the epicenters were located in the vicinity of active natural gas fields and some inside. Accordingly, the earthquakes were interpreted as a consequence of hydrocarbon recovery (e.g. Dahm et al. 2007, Bischoff et al. 2013) and classified as induced events in the bulletins of the Federal Institute for Geosciences and Natural Resources (BGR). The two major ones have magnitudes of 4.3 and 4.0. They are the strongest earthquakes ever recorded in Northern Germany. Consequently, these events raise the question whether the ongoing extraction itself can cause them or if other natural tectonic processes like glacial isostatic adjustment may considerably contribute to their initiation. Recent studies of Brandes et al. (2012) imply that lithospheric stress changes due to post glacial isostatic adjustment might be also a potential natural cause for earthquakes in Central Europe. In order to better analyse the earthquakes and to test this latter hypothesis we performed a relocalization of the events with the NonLinLoc (Lomax et al. 2000) program package and two differently scaled 3D P-wave velocity models. Depending on the station coverage for a distinct event, either a fine gridded local model (88 x 73 x 15 km, WEG-model, made available by the industry) or a coarse regional model (1600 x 1600 x 45 km, data from CRUST1.0, Laske et al. 2013) and for some cases a combination of both models was used for the relocalization. The results confirm the trend of the older routine analysis: The majority of the events are located at the margins of the natural gas fields, some of them are now located closer to them. Focal depths mostly vary between 3.5 km and 10 km. However, for some of the events, especially for the older events with relatively bad station coverage, the error bars

  2. Three‐Dimensional Echocardiography and 2D‐3D Speckle‐Tracking Imaging in Chronic Pulmonary Hypertension: Diagnostic Accuracy in Detecting Hemodynamic Signs of Right Ventricular (RV) Failure

    PubMed Central

    Vitarelli, Antonio; Mangieri, Enrico; Terzano, Claudio; Gaudio, Carlo; Salsano, Felice; Rosato, Edoardo; Capotosto, Lidia; D'Orazio, Simona; Azzano, Alessia; Truscelli, Giovanni; Cocco, Nino; Ashurov, Rasul

    2015-01-01

    Background Our aim was to compare three‐dimensional (3D) and 2D and 3D speckle‐tracking (2D‐STE, 3D‐STE) echocardiographic parameters with conventional right ventricular (RV) indexes in patients with chronic pulmonary hypertension (PH), and investigate whether these techniques could result in better correlation with hemodynamic variables indicative of heart failure. Methods and Results Seventy‐three adult patients (mean age, 53±13 years; 44% male) with chronic PH of different etiologies were studied by echocardiography and cardiac catheterization (25 precapillary PH from pulmonary arterial hypertension, 23 obstructive pulmonary heart disease, and 23 postcapillary PH from mitral regurgitation). Thirty healthy subjects (mean age, 54±15 years; 43% male) served as controls. Standard 2D measurements (RV–fractional area change–tricuspid annular plane systolic excursion) and mitral and tricuspid tissue Doppler annular velocities were obtained. RV 3D volumes and global and regional ejection fraction (3D‐RVEF) were determined. RV strains were calculated by 2D‐STE and 3D‐STE. RV 3D global‐free‐wall longitudinal strain (3DGFW‐RVLS), 2D global‐free‐wall longitudinal strain (GFW‐RVLS), apical‐free‐wall longitudinal strain, basal‐free‐wall longitudinal strain, and 3D‐RVEF were lower in patients with precapillary PH (P<0.0001) and postcapillary PH (P<0.01) compared to controls. 3DGFW‐RVLS (hazard ratio 4.6, 95% CI 2.79 to 8.38, P=0.004) and 3D‐RVEF (hazard ratio 5.3, 95% CI 2.85 to 9.89, P=0.002) were independent predictors of mortality. Receiver operating characteristic curves showed that the thresholds offering an adequate compromise between sensitivity and specificity for detecting hemodynamic signs of RV failure were 39% for 3D‐RVEF (AUC 0.89), −17% for 3DGFW‐RVLS (AUC 0.88), −18% for GFW‐RVLS (AUC 0.88), −16% for apical‐free‐wall longitudinal strain (AUC 0.85), 16 mm for tricuspid annular plane systolic

  3. Software for Automated Generation of Cartesian Meshes

    NASA Technical Reports Server (NTRS)

    Aftosmis, Michael J.; Melton, John E.; Berger, Marshal J.

    2006-01-01

    Cart3D is a collection of computer programs for generating Cartesian meshes [for computational fluid dynamics (CFD) and other applications] in volumes bounded by solid objects. Aspects of Cart3D at earlier stages of development were reported in "Robust and Efficient Generation of Cartesian Meshes for CFD" (ARC-14275), NASA Tech Briefs, Vol. 23, No. 8 (August 1999), page 30. The geometric input to Cart3D comprises surface triangulations like those commonly generated by computer-aided-design programs. Complexly shaped objects can be represented as assemblies of simpler ones. Cart3D deletes all portions of such an assembled object that are not on the exterior surface. Intersections between components are preserved in the resulting triangulation. A tie-breaking routine unambiguously resolves geometric degeneracies. Then taking the intersected surface triangulation as input, the volume mesh is generated through division of cells of an initially coarse hexahedral grid. Cells are subdivided to refine the grid in regions of increased surface curvature and/or increased flow gradients. Cells that become split into multiple unconnected regions by thin pieces of surface are identified.

  4. Surface Generation and Cartesian Mesh Support

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    2004-01-01

    This document serves as the final report for the grant titled Surface Generation and Cartesian Mesh Support . This completed work was in algorithmic research into automatically generating surface triangulations from CAD geometries. NASA's OVERFLOW and Cart3D simulation packages use surface triangulations as an underlying geometry description and the ability to automatically generate these from CAD files (without translation) substantially reduces both the wall-clock time and expertise required to get geometry out of CAD and into mesh generation. This surface meshing was exercised greatly during the Shuttle investigation during the last year with success. The secondary efforts performed in this grant involve work on a visualization system cut-cell handling for Cartesian Meshes with embedded boundaries.

  5. Fast intra-operative non-linear registration of 3D-CT to tracked, selected 2D-ultrasound slices

    NASA Astrophysics Data System (ADS)

    Olesch, Janine; Beuthien, Björn; Heldmann, Stefan; Papenberg, Nils; Fischer, Bernd

    2011-03-01

    In navigated liver surgery it is an important task to align intra-operative data to pre-operative planning data. This work describes a method to register pre-operative 3D-CT-data to tracked intra-operative 2D US-slices. Instead of reconstructing a 3D-volume out of the two-dimensional US-slice sequence we directly apply the registration scheme to the 2D-slices. The advantage of this approach is manyfold. We circumvent the time consuming compounding process, we use only known information, and the complexity of the scheme reduces drastically. As the liver is a non-rigid organ, we apply non-linear techniques to take care of deformations occurring during the intervention. During the surgery, computing time is a crucial issue. As the complexity of the scheme is proportional to the number of acquired slices, we devise a scheme which starts out by selecting a few "key-slices" to be used in the non-linear registration scheme. This step is followed by multi-level/multi-scale strategies and fast optimization techniques. In this abstract we briefly describe the new method and show first convincing results.

  6. Three-Dimensional Rotation, Twist and Torsion Analyses Using Real-Time 3D Speckle Tracking Imaging: Feasibility, Reproducibility, and Normal Ranges in Pediatric Population

    PubMed Central

    Han, Wei; Gao, Jun; He, Lin; Yang, Yali; Yin, Ping; Xie, Mingxing; Ge, Shuping

    2016-01-01

    Background and Objective The specific aim of this study was to evaluate the feasibility, reproducibility and maturational changes of LV rotation, twist and torsion variables by real-time 3D speckle-tracking echocardiography (RT3DSTE) in children. Methods A prospective study was conducted in 347 consecutive healthy subjects (181 males/156 females, mean age 7.12 ± 5.3 years, and range from birth to 18-years) using RT 3D echocardiography (3DE). The LV rotation, twist and torsion measurements were made off-line using TomTec software. Manual landmark selection and endocardial border editing were performed in 3 planes (apical “2”-, “4”-, and “3”- chamber views) and semi-automated tracking yielded LV rotation, twist and torsion measurements. LV rotation, twist and torsion analysis by RT 3DSTE were feasible in 307 out of 347 subjects (88.5%). Results There was no correlation between rotation or twist and age, height, weight, BSA or heart rate, respectively. However, there was statistically significant, but very modest correlation between LV torsion and age (R2 = 0.036, P< 0.001). The normal ranges were defined for rotation and twist in this cohort, and for torsion for each age group. The intra-observer and inter-observer variabilities for apical and basal rotation, twist and torsion ranged from 7.3% ± 3.8% to 12.3% ± 8.8% and from 8.8% ± 4.6% to 15.7% ± 10.1%, respectively. Conclusions We conclude that analysis of LV rotation, twist and torsion by this new RT3D STE is feasible and reproducible in pediatric population. There is no maturational change in rotation and twist, but torsion decreases with age in this cohort. Further refinement is warranted to validate the utility of this new methodology in more sensitive and quantitative evaluation of congenital and acquired heart diseases in children. PMID:27427968

  7. MRI - 3D Ultrasound - X-ray Image Fusion with Electromagnetic Tracking for Transendocardial Therapeutic Injections: In-vitro Validation and In-vivo Feasibility

    PubMed Central

    Hatt, Charles R.; Jain, Ameet K.; Parthasarathy, Vijay; Lang, Andrew; Raval, Amish N.

    2014-01-01

    Myocardial infarction (MI) is one of the leading causes of death in the world. Small animal studies have shown that stem-cell therapy offers dramatic functional improvement post-MI. An endomyocardial catheter injection approach to therapeutic agent delivery has been proposed to improve efficacy through increased cell retention. Accurate targeting is critical for reaching areas of greatest therapeutic potential while avoiding a life-threatening myocardial perforation. Multimodal image fusion has been proposed as a way to improve these procedures by augmenting traditional intra-operative imaging modalities with high resolution pre-procedural images. Previous approaches have suffered from a lack of real-time tissue imaging and dependence on X-ray imaging to track devices, leading to increased ionizing radiation dose. In this paper, we present a new image fusion system for catheter-based targeted delivery of therapeutic agents. The system registers real-time 3D echocardiography, magnetic resonance, X-ray, and electromagnetic sensor tracking within a single flexible framework. All system calibrations and registrations were validated and found to have target registration errors less than 5 mm in the worst case. Injection accuracy was validated in a motion enabled cardiac injection phantom, where targeting accuracy ranged from 0.57 to 3.81 mm. Clinical feasibility was demonstrated with in-vivo swine experiments, where injections were successfully made into targeted regions of the heart. PMID:23561056

  8. Real-time intensity based 2D/3D registration using kV-MV image pairs for tumor motion tracking in image guided radiotherapy

    NASA Astrophysics Data System (ADS)

    Furtado, H.; Steiner, E.; Stock, M.; Georg, D.; Birkfellner, W.

    2014-03-01

    Intra-fractional respiratorymotion during radiotherapy is one of themain sources of uncertainty in dose application creating the need to extend themargins of the planning target volume (PTV). Real-time tumormotion tracking by 2D/3D registration using on-board kilo-voltage (kV) imaging can lead to a reduction of the PTV. One limitation of this technique when using one projection image, is the inability to resolve motion along the imaging beam axis. We present a retrospective patient study to investigate the impact of paired portal mega-voltage (MV) and kV images, on registration accuracy. We used data from eighteen patients suffering from non small cell lung cancer undergoing regular treatment at our center. For each patient we acquired a planning CT and sequences of kV and MV images during treatment. Our evaluation consisted of comparing the accuracy of motion tracking in 6 degrees-of-freedom(DOF) using the anterior-posterior (AP) kV sequence or the sequence of kV-MV image pairs. We use graphics processing unit rendering for real-time performance. Motion along cranial-caudal direction could accurately be extracted when using only the kV sequence but in AP direction we obtained large errors. When using kV-MV pairs, the average error was reduced from 3.3 mm to 1.8 mm and the motion along AP was successfully extracted. The mean registration time was of 190+/-35ms. Our evaluation shows that using kVMV image pairs leads to improved motion extraction in 6 DOF. Therefore, this approach is suitable for accurate, real-time tumor motion tracking with a conventional LINAC.

  9. Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV-kV imaging.

    PubMed

    Liu, W; Wiersma, R D; Mao, W; Luxton, G; Xing, L

    2008-12-21

    To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from approximately 0.5 mm for the normal adult breathing pattern to approximately 1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general

  10. Real-time 3D internal marker tracking during arc radiotherapy by the use of combined MV kV imaging

    NASA Astrophysics Data System (ADS)

    Liu, W.; Wiersma, R. D.; Mao, W.; Luxton, G.; Xing, L.

    2008-12-01

    To minimize the adverse dosimetric effect caused by tumor motion, it is desirable to have real-time knowledge of the tumor position throughout the beam delivery process. A promising technique to realize the real-time image guided scheme in external beam radiation therapy is through the combined use of MV and onboard kV beam imaging. The success of this MV-kV triangulation approach for fixed-gantry radiation therapy has been demonstrated. With the increasing acceptance of modern arc radiotherapy in the clinics, a timely and clinically important question is whether the image guidance strategy can be extended to arc therapy to provide the urgently needed real-time tumor motion information. While conceptually feasible, there are a number of theoretical and practical issues specific to the arc delivery that need to be resolved before clinical implementation. The purpose of this work is to establish a robust procedure of system calibration for combined MV and kV imaging for internal marker tracking during arc delivery and to demonstrate the feasibility and accuracy of the technique. A commercially available LINAC equipped with an onboard kV imager and electronic portal imaging device (EPID) was used for the study. A custom built phantom with multiple ball bearings was used to calibrate the stereoscopic MV-kV imaging system to provide the transformation parameters from imaging pixels to 3D world coordinates. The accuracy of the fiducial tracking system was examined using a 4D motion phantom capable of moving in accordance with a pre-programmed trajectory. Overall, spatial accuracy of MV-kV fiducial tracking during the arc delivery process for normal adult breathing amplitude and period was found to be better than 1 mm. For fast motion, the results depended on the imaging frame rates. The RMS error ranged from ~0.5 mm for the normal adult breathing pattern to ~1.5 mm for more extreme cases with a low imaging frame rate of 3.4 Hz. In general, highly accurate real

  11. WE-A-17A-10: Fast, Automatic and Accurate Catheter Reconstruction in HDR Brachytherapy Using An Electromagnetic 3D Tracking System

    SciTech Connect

    Poulin, E; Racine, E; Beaulieu, L; Binnekamp, D

    2014-06-15

    Purpose: In high dose rate brachytherapy (HDR-B), actual catheter reconstruction protocols are slow and errors prompt. The purpose of this study was to evaluate the accuracy and robustness of an electromagnetic (EM) tracking system for improved catheter reconstruction in HDR-B protocols. Methods: For this proof-of-principle, a total of 10 catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a Philips-design 18G biopsy needle (used as an EM stylet) and the second generation Aurora Planar Field Generator from Northern Digital Inc. The Aurora EM system exploits alternating current technology and generates 3D points at 40 Hz. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical CT system with a resolution of 0.089 mm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, 5 catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 seconds or less. This would imply that for a typical clinical implant of 17 catheters, the total reconstruction time would be less than 3 minutes. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.92 ± 0.37 mm and 1.74 ± 1.39 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be significantly more accurate (unpaired t-test, p < 0.05). A mean difference of less than 0.5 mm was found between successive EM reconstructions. Conclusion: The EM reconstruction was found to be faster, more accurate and more robust than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators. We would like to disclose that the equipments, used in this study, is coming from a collaboration with Philips Medical.

  12. An Automated Pipeline for Dendrite Spine Detection and Tracking of 3D Optical Microscopy Neuron Images of In Vivo Mouse Models

    PubMed Central

    Fan, Jing; Zhou, Xiaobo; Dy, Jennifer G.; Zhang, Yong; Wong, Stephen T. C.

    2009-01-01

    The variations in dendritic branch morphology and spine density provide insightful information about the brain function and possible treatment to neurodegenerative disease, for example investigating structural plasticity during the course of Alzheimer's disease. Most automated image processing methods aiming at analyzing these problems are developed for in vitro data. However, in vivo neuron images provide real time information and direct observation of the dynamics of a disease process in a live animal model. This paper presents an automated approach for detecting spines and tracking spine evolution over time with in vivo image data in an animal model of Alzheimer's disease. We propose an automated pipeline starting with curvilinear structure detection to determine the medial axis of the dendritic backbone and spines connected to the backbone. We, then, propose the adaptive local binary fitting (aLBF) energy level set model to accurately locate the boundary of dendritic structures using the central line of curvilinear structure as initialization. To track the growth or loss of spines, we present a maximum likelihood based technique to find the graph homomorphism between two image graph structures at different time points. We employ dynamic programming to search for the optimum solution. The pipeline enables us to extract dynamically changing information from real time in vivo data. We validate our proposed approach by comparing with manual results generated by neurologists. In addition, we discuss the performance of 3D based segmentation and conclude that our method is more accurate in identifying weak spines. Experiments show that our approach can quickly and accurately detect and quantify spines of in vivo neuron images and is able to identify spine elimination and formation. PMID:19434521

  13. Electronic Absolute Cartesian Autocollimator

    NASA Technical Reports Server (NTRS)

    Leviton, Douglas B.

    2006-01-01

    An electronic absolute Cartesian autocollimator performs the same basic optical function as does a conventional all-optical or a conventional electronic autocollimator but differs in the nature of its optical target and the manner in which the position of the image of the target is measured. The term absolute in the name of this apparatus reflects the nature of the position measurement, which, unlike in a conventional electronic autocollimator, is based absolutely on the position of the image rather than on an assumed proportionality between the position and the levels of processed analog electronic signals. The term Cartesian in the name of this apparatus reflects the nature of its optical target. Figure 1 depicts the electronic functional blocks of an electronic absolute Cartesian autocollimator along with its basic optical layout, which is the same as that of a conventional autocollimator. Referring first to the optical layout and functions only, this or any autocollimator is used to measure the compound angular deviation of a flat datum mirror with respect to the optical axis of the autocollimator itself. The optical components include an illuminated target, a beam splitter, an objective or collimating lens, and a viewer or detector (described in more detail below) at a viewing plane. The target and the viewing planes are focal planes of the lens. Target light reflected by the datum mirror is imaged on the viewing plane at unit magnification by the collimating lens. If the normal to the datum mirror is parallel to the optical axis of the autocollimator, then the target image is centered on the viewing plane. Any angular deviation of the normal from the optical axis manifests itself as a lateral displacement of the target image from the center. The magnitude of the displacement is proportional to the focal length and to the magnitude (assumed to be small) of the angular deviation. The direction of the displacement is perpendicular to the axis about which the

  14. Tracking Efficiency And Charge Sharing of 3D Silicon Sensors at Different Angles in a 1.4T Magnetic Field

    SciTech Connect

    Gjersdal, H.; Bolle, E.; Borri, M.; Da Via, C.; Dorholt, O.; Fazio, S.; Grenier, P.; Grinstein, S. Hansson, P.; Hasi, J.; Hugging, F.; Jackson, P.; Kenney, C.; Kocian, M.; La Rosa, A.; Mastroberardino, A.; Nordahl, P.; Rivero, F.; Rohne, O.; Sandaker, H.; Sjobaek, K.; /Oslo U. /Prague, Tech. U. /SLAC /Bonn U. /SUNY, Stony Brook /Bonn U. /SLAC

    2012-05-07

    A 3D silicon sensor fabricated at Stanford with electrodes penetrating throughout the entire silicon wafer and with active edges was tested in a 1.4 T magnetic field with a 180 GeV/c pion beam at the CERN SPS in May 2009. The device under test was bump-bonded to the ATLAS pixel FE-I3 readout electronics chip. Three readout electrodes were used to cover the 400 {micro}m long pixel side, this resulting in a p-n inter-electrode distance of {approx} 71 {micro}m. Its behavior was confronted with a planar sensor of the type presently installed in the ATLAS inner tracker. Time over threshold, charge sharing and tracking efficiency data were collected at zero and 15{sup o} angles with and without magnetic field. The latest is the angular configuration expected for the modules of the Insertable B-Layer (IBL) currently under study for the LHC phase 1 upgrade expected in 2014.

  15. On the local acceleration and flow trajectory of jet flows from circular and semi-circular pipes via 3D particle tracking velocimetry

    NASA Astrophysics Data System (ADS)

    Kim, Jin-Tae; Liberzon, Alex; Chamorro, Leonardo P.

    2015-11-01

    The distinctive differences between two jet flows that share the same hydraulic diameter dh = 0.01 m and Re ~ 6000, but different (nozzle) shape are explored via 3D Particle Tracking Velocimetry using OpenPTV (http://www.openptv.net). The two jets are formed from circular and semicircular pipes and released in a quiescent water tank of 40 dh height, 40 dh wide, and 200 dh long. The recirculating system is seeded with 100 μm particles, where flow measurements are performed in the intermediate flow field (14.5 < x /dh <18.5) at 550Hz for a total of ~ 30,000 frames. Analysis is focused on the spatial distribution of the local flow acceleration and curvature of the Lagrangian trajectories. The velocity and acceleration of particles are estimated by low-pass filtering their position with a moving cubic spline fitting, while the curvature is obtained from the Frenet-Serret equations. Probability density functions (p.d.f.) of these quantities are obtained at various sub-volumes containing a given streamwise velocity range, and compared between the two cases to evaluate the memory effects in the intermediate flow field.

  16. Eye-tracking and EMG supported 3D Virtual Reality - an integrated tool for perceptual and motor development of children with severe physical disabilities: a research concept.

    PubMed

    Pulay, Márk Ágoston

    2015-01-01

    Letting children with severe physical disabilities (like Tetraparesis spastica) to get relevant motional experiences of appropriate quality and quantity is now the greatest challenge for us in the field of neurorehabilitation. These motional experiences may establish many cognitive processes, but may also cause additional secondary cognitive dysfunctions such as disorders in body image, figure invariance, visual perception, auditory differentiation, concentration, analytic and synthetic ways of thinking, visual memory etc. Virtual Reality is a technology that provides a sense of presence in a real environment with the help of 3D pictures and animations formed in a computer environment and enable the person to interact with the objects in that environment. One of our biggest challenges is to find a well suited input device (hardware) to let the children with severe physical disabilities to interact with the computer. Based on our own experiences and a thorough literature review we have come to the conclusion that an effective combination of eye-tracking and EMG devices should work well.

  17. A 2D/3D image analysis system to track fluorescently labeled structures in rod-shaped cells: application to measure spindle pole asymmetry during mitosis.

    PubMed

    Schmitter, Daniel; Wachowicz, Paulina; Sage, Daniel; Chasapi, Anastasia; Xenarios, Ioannis; Simanis; Unser, Michael

    2013-01-01

    The yeast Schizosaccharomyces pombe is frequently used as a model for studying the cell cycle. The cells are rod-shaped and divide by medial fission. The process of cell division, or cytokinesis, is controlled by a network of signaling proteins called the Septation Initiation Network (SIN); SIN proteins associate with the SPBs during nuclear division (mitosis). Some SIN proteins associate with both SPBs early in mitosis, and then display strongly asymmetric signal intensity at the SPBs in late mitosis, just before cytokinesis. This asymmetry is thought to be important for correct regulation of SIN signaling, and coordination of cytokinesis and mitosis. In order to study the dynamics of organelles or large protein complexes such as the spindle pole body (SPB), which have been labeled with a fluorescent protein tag in living cells, a number of the image analysis problems must be solved; the cell outline must be detected automatically, and the position and signal intensity associated with the structures of interest within the cell must be determined. We present a new 2D and 3D image analysis system that permits versatile and robust analysis of motile, fluorescently labeled structures in rod-shaped cells. We have designed an image analysis system that we have implemented as a user-friendly software package allowing the fast and robust image-analysis of large numbers of rod-shaped cells. We have developed new robust algorithms, which we combined with existing methodologies to facilitate fast and accurate analysis. Our software permits the detection and segmentation of rod-shaped cells in either static or dynamic (i.e. time lapse) multi-channel images. It enables tracking of two structures (for example SPBs) in two different image channels. For 2D or 3D static images, the locations of the structures are identified, and then intensity values are extracted together with several quantitative parameters, such as length, width, cell orientation, background fluorescence and

  18. RHOCUBE: 3D density distributions modeling code

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  19. Thromboembolic risk in atrial fibrillation: association between left atrium mechanics and risk scores. A study based on 3D wall-motion tracking technology.

    PubMed

    Islas, Fabián; Olmos, Carmen; Vieira, Catarina; De Agustín, José A; Marcos-Alberca, Pedro; Saltijeral, Adriana; Almería, Carlos; Rodrigo, José L; García Fernández, Miguel A; Macaya, Carlos; Pérez de Isla, Leopoldo

    2015-04-01

    Atrial fibrillation (AF) is the most common cardiac arrhythmia and is associated with a significantly high risk of stroke and systemic embolism. The aim of our study was to assess the association between left atrium (LA) mechanics measured by 3D wall-motion tracking (3DWMT) technology and the most common thromboembolic risk scores (CHADS2, CHA2DS2-VASc). A total of 101 consecutive patients with permanent AF referred were included. Conventional bidimensional (2D) LA parameters, and LA mechanics by means of 3DWMT were studied. Association between LA 2D and 3DWMT parameters and both risk scores was evaluated as well as its correlation with every component of the score individually. Mean age was 78 ± 10 years. Mean CHADS2 was 2.7 ± 1.3 and mean CHA2DS2-VASc was 4.4 ± 1.7. Values of 2D and 3DWTM LA parameters were: 2D area 26.4 ± 9.7 cm(2) , 2D volume index 49.4 ± 10.1 mL/m(2) , 3DWMT left atrial emptying fraction (LAEF) 15.9 ± 8.4%, longitudinal strain 9.1 ± 4.5% and area strain 14.9 ± 8.8%. Linear regression analysis showed statistically significant correlation between LA longitudinal strain and LAEF with CHADS2 and CHA2DS2-VASc scores. For each 10% variation in longitudinal strain, CHADS2 and CHA2DS2-VASc scores change in 0.7 and 0.8 points, respectively. Left atrial longitudinal strain and emptying fraction assessed by 3D WMT technology have correlation with both CHADS2 and CHA2DS2-VASc scores. Each 10% of variation in longitudinal strain represents a 0.7 and 0.8 points change in those risk scores. LA mechanics evaluation might provide additional value to risk scores and could be considered to be a predictor of stroke in patients with AF. © 2014, Wiley Periodicals, Inc.

  20. Quantitative Evaluation of 3D Mouse Behaviors and Motor Function in the Open-Field after Spinal Cord Injury Using Markerless Motion Tracking

    PubMed Central

    Sheets, Alison L.; Lai, Po-Lun; Fisher, Lesley C.; Basso, D. Michele

    2013-01-01

    Thousands of scientists strive to identify cellular mechanisms that could lead to breakthroughs in developing ameliorative treatments for debilitating neural and muscular conditions such as spinal cord injury (SCI). Most studies use rodent models to test hypotheses, and these are all limited by the methods available to evaluate animal motor function. This study’s goal was to develop a behavioral and locomotor assessment system in a murine model of SCI that enables quantitative kinematic measurements to be made automatically in the open-field by applying markerless motion tracking approaches. Three-dimensional movements of eight naïve, five mild, five moderate, and four severe SCI mice were recorded using 10 cameras (100 Hz). Background subtraction was used in each video frame to identify the animal’s silhouette, and the 3D shape at each time was reconstructed using shape-from-silhouette. The reconstructed volume was divided into front and back halves using k-means clustering. The animal’s front Center of Volume (CoV) height and whole-body CoV speed were calculated and used to automatically classify animal behaviors including directed locomotion, exploratory locomotion, meandering, standing, and rearing. More detailed analyses of CoV height, speed, and lateral deviation during directed locomotion revealed behavioral differences and functional impairments in animals with mild, moderate, and severe SCI when compared with naïve animals. Naïve animals displayed the widest variety of behaviors including rearing and crossing the center of the open-field, the fastest speeds, and tallest rear CoV heights. SCI reduced the range of behaviors, and decreased speed (r = .70 p<.005) and rear CoV height (r = .65 p<.01) were significantly correlated with greater lesion size. This markerless tracking approach is a first step toward fundamentally changing how rodent movement studies are conducted. By providing scientists with sensitive, quantitative measurement

  1. Left Atrial Deformation Analysis in Patients with Corrected Tetralogy of Fallot by 3D Speckle-Tracking Echocardiography (from the MAGYAR-Path Study)

    PubMed Central

    Havasi, Kálmán; Domsik, Péter; Kalapos, Anita; McGhie, Jackie S.; Roos-Hesselink, Jolien W.; Forster, Tamás; Nemes, Attila

    2017-01-01

    Background Three-dimensional (3D) echocardiography coupled with speckle-tracking echocardiographic (STE) capability is a novel methodology which has been demontrated to be useful for the assessment of left atrial (LA) volumes and functional properties. There is increased scientific interest on myocardial deformation analysis in adult patients with corrected tetralogy of Fallot (cTOF). Objectives To compare LA volumes, volume-based functional properties and strain parameters between cTOF patients and age- and gender-matched healthy controls. Methods The study population consisted of 19 consecutive adult patients with cTOF in sinus rhythm nursing at the University of Szeged, Hungary (mean age: 37.9 ± 11.3 years, 8 men, who had repair at the age of 4.1 ± 2.5 years). They all had undergone standard transthoracic two-dimensional Doppler echocardiographic study extended with 3DSTE. Their results were compared to 23 age- and gender-matched healthy controls (mean age: 39.2 ± 10.6 years, 14 men). Results Increased LA volumes and reduced LA emptying fractions respecting cardiac cycle could be demonstrated in cTOF patients compared to controls. LA stroke volumes featuring all LA functions showed no differences between the 2 groups examined. LA global and mean segmental uni- and multidirectional peak strains featuring LA reservoir function were found to be diminished in adult patients with cTOF as compared to controls. Similarly to peak strains reduced global and mean segmental LA strains at atrial contraction characterizing atrial booster pump function could be demonstrated in cTOF patients as compared to controls. Conclusions Significant deterioration of all LA functions could be demonstrated in adult patients with cTOF late after repair. PMID:28327874

  2. Left Atrial Deformation Analysis in Patients with Corrected Tetralogy of Fallot by 3D Speckle-Tracking Echocardiography (from the MAGYAR-Path Study).

    PubMed

    Havasi, Kálmán; Domsik, Péter; Kalapos, Anita; McGhie, Jackie S; Roos-Hesselink, Jolien W; Forster, Tamás; Nemes, Attila

    2017-02-01

    Three-dimensional (3D) echocardiography coupled with speckle-tracking echocardiographic (STE) capability is a novel methodology which has been demontrated to be useful for the assessment of left atrial (LA) volumes and functional properties. There is increased scientific interest on myocardial deformation analysis in adult patients with corrected tetralogy of Fallot (cTOF). To compare LA volumes, volume-based functional properties and strain parameters between cTOF patients and age- and gender-matched healthy controls. The study population consisted of 19 consecutive adult patients with cTOF in sinus rhythm nursing at the University of Szeged, Hungary (mean age: 37.9 ± 11.3 years, 8 men, who had repair at the age of 4.1 ± 2.5 years). They all had undergone standard transthoracic two-dimensional Doppler echocardiographic study extended with 3DSTE. Their results were compared to 23 age- and gender-matched healthy controls (mean age: 39.2 ± 10.6 years, 14 men). Increased LA volumes and reduced LA emptying fractions respecting cardiac cycle could be demonstrated in cTOF patients compared to controls. LA stroke volumes featuring all LA functions showed no differences between the 2 groups examined. LA global and mean segmental uni- and multidirectional peak strains featuring LA reservoir function were found to be diminished in adult patients with cTOF as compared to controls. Similarly to peak strains reduced global and mean segmental LA strains at atrial contraction characterizing atrial booster pump function could be demonstrated in cTOF patients as compared to controls. Significant deterioration of all LA functions could be demonstrated in adult patients with cTOF late after repair.

  3. Self consistent particles dynamics in/out of the cusp region by using back tracking technics; a global 3D PIC simulation approach

    NASA Astrophysics Data System (ADS)

    Esmaeili, A.; Cai, D.; Lembege, B.; Nishikawa, K.

    2013-12-01

    Large scale three dimensionbal PIC (particle in cell) simulations are presently used in order to analyze the global solar wind-terrestrial magnetosphere intreraction within a full self-consistent approach, and where both electrons and ions are treated as an assembly of individual particles. This 3D kinetic approach allows us to analyze in particular the dynamics and the fine structures of the cusp region when including self consistently not only its whole neighborhood (in the terrestrial magnetosphere) but also the impact of the solar wind and the interplanetary field (IMF) features. Herein, we focuss our attention on the cusp region and in particular on the acceleration and precipitation of particles (both ions and electrons) within the cusp. In present simulations, the IMF is chosen northward, (i.e. where the X -reconnection region is just above the cusp, in the meridian plane). Back-trackings of self-consistent particles are analyzed in details in order to determine (i) which particles (just above the cusp) are precipitated deeply into the cusp, (ii) which populations are injected from the cusp into the nearby tail, (iii) where the particles suffer the largest energisation along their self-consistent trajectories, (iv) where these populations accumulate, and (v) where the most energetic particles are originally coming from. This approach allows to make a traking of particles within the scenario "solar wind-magnetosheath- cusp -nearbytail"; moreover it strongly differs from the standard test particles technics and allows to provide informations not accessible when using full MHD approach. Keywords: Tracing Particles, Particle In Cell (PIC) simulation, double cusp, test particles method, IMF, Solar wind, Magnetosphere

  4. GSRP/David Marshall: Fully Automated Cartesian Grid CFD Application for MDO in High Speed Flows

    NASA Technical Reports Server (NTRS)

    2003-01-01

    With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.

  5. Extending the functionalities of Cartesian grid solvers: Viscous effects modeling and MPI parallelization

    NASA Astrophysics Data System (ADS)

    Marshall, David D.

    With the renewed interest in Cartesian gridding methodologies for the ease and speed of gridding complex geometries in addition to the simplicity of the control volumes used in the computations, it has become important to investigate ways of extending the existing Cartesian grid solver functionalities. This includes developing methods of modeling the viscous effects in order to utilize Cartesian grids solvers for accurate drag predictions and addressing the issues related to the distributed memory parallelization of Cartesian solvers. This research presents advances in two areas of interest in Cartesian grid solvers, viscous effects modeling and MPI parallelization. The development of viscous effects modeling using solely Cartesian grids has been hampered by the widely varying control volume sizes associated with the mesh refinement and the cut cells associated with the solid surface. This problem is being addressed by using physically based modeling techniques to update the state vectors of the cut cells and removing them from the finite volume integration scheme. This work is performed on a new Cartesian grid solver, NASCART-GT, with modifications to its cut cell functionality. The development of MPI parallelization addresses issues associated with utilizing Cartesian solvers on distributed memory parallel environments. This work is performed on an existing Cartesian grid solver, CART3D, with modifications to its parallelization methodology.

  6. High-resolution 3D coronary vessel wall imaging with near 100% respiratory efficiency using epicardial fat tracking: reproducibility and comparison with standard methods.

    PubMed

    Scott, Andrew D; Keegan, Jennifer; Firmin, David N

    2011-01-01

    To quantitatively assess the performance and reproducibility of 3D spiral coronary artery wall imaging with beat-to-beat respiratory-motion-correction (B2B-RMC) compared to navigator gated 2D spiral and turbo-spin-echo (TSE) acquisitions. High-resolution (0.7 × 0.7 mm) cross-sectional right coronary wall acquisitions were performed in 10 subjects using four techniques (B2B-RMC 3D spiral with alternate (2RR) and single (1RR) R-wave gating, navigator-gated 2D spiral (2RR) and navigator-gated 2D TSE (2RR)) on two occasions. Wall thickness measurements were compared with repeated measures analysis of variance (ANOVA). Reproducibility was assessed with the intraclass correlation coefficient (ICC). In all, 91% (73/80) of acquisitions were successful (failures: four TSE, two 3D spiral (1RR) and one 3D spiral (2RR)). Respiratory efficiency of the B2B-RMC was less variable and substantially higher than for navigator gating (99.6 ± 1.2% vs. 39.0 ± 7.5%, P < 0.0001). Coronary wall thicknesses (± standard deviation [SD]) were not significantly different: 1.10 ± 0.14 mm (3D spiral (2RR)), 1.20 ± 0.16 mm (3D spiral (1RR)), 1.14 ± 0.15 mm (2D spiral), and 1.21 ± 0.17 mm (TSE). Wall thickness reproducibility ranged from good (ICC = 0.65, 3D spiral (1RR)) to excellent (ICC = 0.87, 3D spiral (2RR)). High-resolution 3D spiral imaging with B2B-RMC permits coronary vessel wall assessment over multiple thin contiguous slices in a clinically feasible duration. Excellent reproducibility of the technique potentially enables studies of disease progression/regression. Copyright © 2010 Wiley-Liss, Inc.

  7. Beamtracking in cylindrical and cartesian coordinates

    SciTech Connect

    Schillinger, B.; Weiland, T.

    1997-02-01

    For the design of devices with circular optical axes, e.g. bending magnets or spectrometers, the use of cylindrical coordinates for field calculations could be favourable. Additionally, in case of applications like bending systems with nonorthogonal entry and exit faces, the coupling of cylindrical and cartesian coordinates improves the simulation of fringe fields. In this context we have implemented a consistent coupling between the two coordinate systems and have extended the tracking code of the electromagnetic simulator MAFIA to cylindrical coordinates. This extensions could be of interest for the calculation of transfer maps of ionoptical devices using the tracked particle orbit as reference trajectory and including fringe field effects in a more general manner. We will give a short introduction to the extensions and show some examples for bending systems with nonorthogonal entries. {copyright} {ital 1997 American Institute of Physics.}

  8. Beamtracking in cylindrical and cartesian coordinates

    SciTech Connect

    Schillinger, B.; Weiland, T.

    1997-02-01

    For the design of devices with circular optical axes, e.g. bending magnets or spectrometers, the use of cylindrical coordinates for field calculations could be favourable. Additionally, in case of applications like bending systems with nonorthogonal entry and exit faces, the coupling of cylindrical and cartesian coordinates improves the simulation of fringe fields. In this context we have implemented a consistent coupling between the two coordinate systems and have extended the tracking code of the electromagnetic simulator MAFIA to cylindrical coordinates. This extensions could be of interest for the calculation of transfer maps of ionoptical devices using the tracked particle orbit as reference trajectory and including fringe field effects in a more general manner. We will give a short introduction to the extensions and show some examples for bending systems with nonorthogonal entries.

  9. A general time element using Cartesian coordinates: Eccentric orbit integration

    NASA Technical Reports Server (NTRS)

    Janin, G.

    1980-01-01

    A general time element, valid with any arbitrary independent variables, and used with Cartesian coordinates for the integration of the elliptic motion in orbits, is examined. The derivation of the time element from a set of canonical elements of the Delaunay type, developed in the extended phase space, is presented. The application of the method using an example of a transfer orbit for a geosynchronous mission is presented. The eccentric and elliptic anomaly are utilized as the independent variable. The reduction of the in track error resulting from using Cartesian coordinates with the time element is reported.

  10. Dual-color multiple-particle tracking at 50-nm localization and over 100-µm range in 3D with temporal focusing two-photon microscopy

    PubMed Central

    Ding, Yu; Li, Chunqiang

    2016-01-01

    Nanoscale particle tracking in three dimensions is crucial to directly observe dynamics of molecules and nanoparticles in living cells. Here we present a three-dimensional particle tracking method based on temporally focused two-photon excitation. Multiple particles are imaged at 30 frames/s in volume up to 180 × 180 × 100 µm3. The spatial localization precision can reach 50 nm. We demonstrate its capability of tracking fast swimming microbes at speed of ~200 µm/s. Two-photon dual-color tracking is achieved by simultaneously exciting two kinds of fluorescent beads at 800 nm to demonstrate its potential in molecular interaction studies. Our method provides a simple wide-field fluorescence imaging approach for deep multiple-particle tracking. PMID:27867724

  11. Nursing research methodology: transcending Cartesianism.

    PubMed

    Walters, A J

    1996-06-01

    Nurses involved in research are concerned with methodological issues. This paper explores the Cartesian debate that has polarized the discourse on nursing research methodology. It is argued that methodologies exclusively based on objectivism, one pole of the Cartesian debate, or subjectivism, the other, do not provide nurses with adequate research foundations to understand the complexity of the lifeworld of nursing practice. This paper provides nurse researchers with an alternative methodological perspective, Gadamerian hermeneutics, which is in harmony with the clinical world of nursing practice.

  12. Image based cardiac acceleration map using statistical shape and 3D+t myocardial tracking models; in-vitro study on heart phantom

    NASA Astrophysics Data System (ADS)

    Pashaei, Ali; Piella, Gemma; Planes, Xavier; Duchateau, Nicolas; de Caralt, Teresa M.; Sitges, Marta; Frangi, Alejandro F.

    2013-03-01

    It has been demonstrated that the acceleration signal has potential to monitor heart function and adaptively optimize Cardiac Resynchronization Therapy (CRT) systems. In this paper, we propose a non-invasive method for computing myocardial acceleration from 3D echocardiographic sequences. Displacement of the myocardium was estimated using a two-step approach: (1) 3D automatic segmentation of the myocardium at end-diastole using 3D Active Shape Models (ASM); (2) propagation of this segmentation along the sequence using non-rigid 3D+t image registration (temporal di eomorphic free-form-deformation, TDFFD). Acceleration was obtained locally at each point of the myocardium from local displacement. The framework has been tested on images from a realistic physical heart phantom (DHP-01, Shelley Medical Imaging Technologies, London, ON, CA) in which the displacement of some control regions was known. Good correlation has been demonstrated between the estimated displacement function from the algorithms and the phantom setup. Due to the limited temporal resolution, the acceleration signals are sparse and highly noisy. The study suggests a non-invasive technique to measure the cardiac acceleration that may be used to improve the monitoring of cardiac mechanics and optimization of CRT.

  13. A novel class of machine-learning-driven real-time 2D/3D tracking methods: texture model registration (TMR)

    NASA Astrophysics Data System (ADS)

    Steininger, Philipp; Neuner, Markus; Fritscher, Karl; Sedlmayer, Felix; Deutschmann, Heinrich

    2011-03-01

    We present a novel view on 2D/3D image registration by introducing a generic algorithmic framework that is based on supervised machine learning (SML). First and foremost, this class of algorithms, referred to as texture model registration (TMR), aims at making 2D/3D registration applicable for time-critical image guided medical procedures. TMR methods are two-stage. In a first offline pre-computational stage, a prediction rule is derived from a pre-interventional 3D image and according geometric constraints. This is achieved by computing digitally reconstructed radiographs, pre-processing them, extracting their texture, and applying SML methods. In a second online stage, the inferred rule is used for predicting the spatial rigid transformation of unseen intrainterventional 2D images. A first simple concrete TMR implementation, referred to as TMR-PCR, is introduced. This approach involves principal component regression (PCR) and simple intermediate pre-processing steps. Using TMR-PCR, first experimental results on five clinical IGRT 3D data sets and synthetic intra-interventional images are presented. The implementation showed an average registration rate of 48 Hz over 40000 registrations, and succeeded in the majority of cases with a mean target registration error smaller than 2 mm. Finally, the potential and characteristics of the proposed methodical framework are discussed.

  14. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  15. Unstructured Cartesian/prismatic grid generation for complex geometries

    NASA Technical Reports Server (NTRS)

    Karman, Steve L., Jr.

    1995-01-01

    The generation of a hybrid grid system for discretizing complex three dimensional (3D) geometries is described. The primary grid system is an unstructured Cartesian grid automatically generated using recursive cell subdivision. This grid system is sufficient for computing Euler solutions about extremely complex 3D geometries. A secondary grid system, using triangular-prismatic elements, may be added for resolving the boundary layer region of viscous flows near surfaces of solid bodies. This paper describes the grid generation processes used to generate each grid type. Several example grids are shown, demonstrating the ability of the method to discretize complex geometries, with very little pre-processing required by the user.

  16. Two-Liquid Cartesian Diver

    ERIC Educational Resources Information Center

    Planinsic, G.; Kos, M.; Jerman, R.

    2004-01-01

    It is quite easy to make a version of the well known Cartesian diver experiment that uses two immiscible liquids. This allows students to test their knowledge of density and pressure in explaining the diver's behaviour. Construction details are presented here together with a mathematical model to explain the observations.

  17. Two-Liquid Cartesian Diver

    ERIC Educational Resources Information Center

    Planinsic, G.; Kos, M.; Jerman, R.

    2004-01-01

    It is quite easy to make a version of the well known Cartesian diver experiment that uses two immiscible liquids. This allows students to test their knowledge of density and pressure in explaining the diver's behaviour. Construction details are presented here together with a mathematical model to explain the observations.

  18. Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3D-guidance device: A preliminary performance study

    SciTech Connect

    Zhou Jun; Sebastian, Evelyn; Mangona, Victor; Yan Di

    2013-02-15

    Purpose: In order to increase the accuracy and speed of catheter reconstruction in a high-dose-rate (HDR) prostate implant procedure, an automatic tracking system has been developed using an electromagnetic (EM) device (trakSTAR, Ascension Technology, VT). The performance of the system, including the accuracy and noise level with various tracking parameters and conditions, were investigated. Methods: A direct current (dc) EM transmitter (midrange model) and a sensor with diameter of 1.3 mm (Model 130) were used in the trakSTAR system for tracking catheter position during HDR prostate brachytherapy. Localization accuracy was assessed under both static and dynamic analyses conditions. For the static analysis, a calibration phantom was used to investigate error dependency on operating room (OR) table height (bottom vs midposition vs top), sensor position (distal tip of catheter vs connector end of catheter), direction [left-right (LR) vs anterior-posterior (AP) vs superior-inferior (SI)], sampling frequency (40 vs 80 vs 120 Hz), and interference from OR equipment (present vs absent). The mean and standard deviation of the localization offset in each direction and the corresponding error vectors were calculated. For dynamic analysis, the paths of five straight catheters were tracked to study the effects of directions, sampling frequency, and interference of EM field. Statistical analysis was conducted to compare the results in different configurations. Results: When interference was present in the static analysis, the error vectors were significantly higher at the top table position (3.3 {+-} 1.3 vs 1.8 {+-} 0.9 mm at bottom and 1.7 {+-} 1.0 mm at middle, p < 0.001), at catheter end position (3.1 {+-} 1.1 vs 1.4 {+-} 0.7 mm at the tip position, p < 0.001), and at 40 Hz sampling frequency (2.6 {+-} 1.1 vs 2.4 {+-} 1.5 mm at 80 Hz and 1.8 {+-} 1.1 at 160 Hz, p < 0.001). So did the mean offset errors in the LR direction (-1.7 {+-} 1.4 vs 0.4 {+-} 0.5 mm in AP and 0

  19. Real-time catheter tracking for high-dose-rate prostate brachytherapy using an electromagnetic 3D-guidance device: a preliminary performance study.

    PubMed

    Zhou, Jun; Sebastian, Evelyn; Mangona, Victor; Yan, Di

    2013-02-01

    In order to increase the accuracy and speed of catheter reconstruction in a high-dose-rate (HDR) prostate implant procedure, an automatic tracking system has been developed using an electromagnetic (EM) device (trakSTAR, Ascension Technology, VT). The performance of the system, including the accuracy and noise level with various tracking parameters and conditions, were investigated. A direct current (dc) EM transmitter (midrange model) and a sensor with diameter of 1.3 mm (Model 130) were used in the trakSTAR system for tracking catheter position during HDR prostate brachytherapy. Localization accuracy was assessed under both static and dynamic analyses conditions. For the static analysis, a calibration phantom was used to investigate error dependency on operating room (OR) table height (bottom vs midposition vs top), sensor position (distal tip of catheter vs connector end of catheter), direction [left-right (LR) vs anterior-posterior (AP) vs superior-inferior (SI)], sampling frequency (40 vs 80 vs 120 Hz), and interference from OR equipment (present vs absent). The mean and standard deviation of the localization offset in each direction and the corresponding error vectors were calculated. For dynamic analysis, the paths of five straight catheters were tracked to study the effects of directions, sampling frequency, and interference of EM field. Statistical analysis was conducted to compare the results in different configurations. When interference was present in the static analysis, the error vectors were significantly higher at the top table position (3.3 ± 1.3 vs 1.8 ± 0.9 mm at bottom and 1.7 ± 1.0 mm at middle, p < 0.001), at catheter end position (3.1 ± 1.1 vs 1.4 ± 0.7 mm at the tip position, p < 0.001), and at 40 Hz sampling frequency (2.6 ± 1.1 vs 2.4 ± 1.5 mm at 80 Hz and 1.8 ± 1.1 at 160 Hz, p < 0.001). So did the mean offset errors in the LR direction (-1.7 ± 1.4 vs 0.4 ± 0.5 mm in AP and 0.8 ± 0.8 mm in SI directions, p < 0.001). The error

  20. Accuracy and Precision of a Custom Camera-Based System for 2-D and 3-D Motion Tracking during Speech and Nonspeech Motor Tasks

    ERIC Educational Resources Information Center

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose: Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable…

  1. Accuracy and Precision of a Custom Camera-Based System for 2-D and 3-D Motion Tracking during Speech and Nonspeech Motor Tasks

    ERIC Educational Resources Information Center

    Feng, Yongqiang; Max, Ludo

    2014-01-01

    Purpose: Studying normal or disordered motor control requires accurate motion tracking of the effectors (e.g., orofacial structures). The cost of electromagnetic, optoelectronic, and ultrasound systems is prohibitive for many laboratories and limits clinical applications. For external movements (lips, jaw), video-based systems may be a viable…

  2. Real time planning, guidance and validation of surgical acts using 3D segmentations, augmented reality projections and surgical tools video tracking

    NASA Astrophysics Data System (ADS)

    Osorio, Angel; Galan, Juan-Antonio; Nauroy, Julien; Donars, Patricia

    2010-02-01

    When performing laparoscopies and punctures, the precise anatomic localizations are required. Current techniques very often rely on the mapping between the real situation and preoperative images. The PC based software we present realizes 3D segmentations of regions of interest from CT or MR slices. It allows the planning of punctures or trocars insertion trajectories, taking anatomical constraints into account. Geometrical transformations allow the projection over the patient's body of the organs and lesions shapes, realistically reconstructed, using a standard video projector in the operating room. We developed specific image processing software which automatically segments and registers images of a webcam used in the operating room to give feedback to the user.

  3. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  4. Particle Tracking Facilitates Real Time Capable Motion Correction in 2D or 3D Two-Photon Imaging of Neuronal Activity.

    PubMed

    Aghayee, Samira; Winkowski, Daniel E; Bowen, Zachary; Marshall, Erin E; Harrington, Matt J; Kanold, Patrick O; Losert, Wolfgang

    2017-01-01

    The application of 2-photon laser scanning microscopy (TPLSM) techniques to measure the dynamics of cellular calcium signals in populations of neurons is an extremely powerful technique for characterizing neural activity within the central nervous system. The use of TPLSM on awake and behaving subjects promises new insights into how neural circuit elements cooperatively interact to form sensory perceptions and generate behavior. A major challenge in imaging such preparations is unavoidable animal and tissue movement, which leads to shifts in the imaging location (jitter). The presence of image motion can lead to artifacts, especially since quantification of TPLSM images involves analysis of fluctuations in fluorescence intensities for each neuron, determined from small regions of interest (ROIs). Here, we validate a new motion correction approach to compensate for motion of TPLSM images in the superficial layers of auditory cortex of awake mice. We use a nominally uniform fluorescent signal as a secondary signal to complement the dynamic signals from genetically encoded calcium indicators. We tested motion correction for single plane time lapse imaging as well as multiplane (i.e., volume) time lapse imaging of cortical tissue. Our procedure of motion correction relies on locating the brightest neurons and tracking their positions over time using established techniques of particle finding and tracking. We show that our tracking based approach provides subpixel resolution without compromising speed. Unlike most established methods, our algorithm also captures deformations of the field of view and thus can compensate e.g., for rotations. Object tracking based motion correction thus offers an alternative approach for motion correction, one that is well suited for real time spike inference analysis and feedback control, and for correcting for tissue distortions.

  5. A Cartesian cut cell method for rarefied flow simulations around moving obstacles

    SciTech Connect

    Dechristé, G.; Mieussens, L.

    2016-06-01

    For accurate simulations of rarefied gas flows around moving obstacles, we propose a cut cell method on Cartesian grids: it allows exact conservation and accurate treatment of boundary conditions. Our approach is designed to treat Cartesian cells and various kinds of cut cells by the same algorithm, with no need to identify the specific shape of each cut cell. This makes the implementation quite simple, and allows a direct extension to 3D problems. Such simulations are also made possible by using an adaptive mesh refinement technique and a hybrid parallel implementation. This is illustrated by several test cases, including a 3D unsteady simulation of the Crookes radiometer.

  6. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  7. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  8. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  9. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  10. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  11. Robust patella motion tracking using intensity-based 2D-3D registration on dynamic bi-plane fluoroscopy: towards quantitative assessment in MPFL reconstruction surgery

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Esnault, Matthieu; Grupp, Robert; Kosugi, Shinichi; Sato, Yoshinobu

    2016-03-01

    The determination of in vivo motion of multiple-bones using dynamic fluoroscopic images and computed tomography (CT) is useful for post-operative assessment of orthopaedic surgeries such as medial patellofemoral ligament reconstruction. We propose a robust method to measure the 3D motion of multiple rigid objects with high accuracy using a series of bi-plane fluoroscopic images and a multi-resolution, intensity-based, 2D-3D registration. A Covariance Matrix Adaptation Evolution Strategy (CMA-ES) optimizer was used with a gradient correlation similarity metric. Four approaches to register three rigid objects (femur, tibia-fibula and patella) were implemented: 1) an individual bone approach registering one bone at a time, each with optimization of a six degrees of freedom (6DOF) parameter, 2) a sequential approach registering one bone at a time but using the previous bone results as the background in DRR generation, 3) a simultaneous approach registering all the bones together (18DOF) and 4) a combination of the sequential and the simultaneous approaches. These approaches were compared in experiments using simulated images generated from the CT of a healthy volunteer and measured fluoroscopic images. Over the 120 simulated frames of motion, the simultaneous approach showed improved registration accuracy compared to the individual approach: with less than 0.68mm root-mean-square error (RMSE) for translation and less than 1.12° RMSE for rotation. A robustness evaluation was conducted with 45 trials of a randomly perturbed initialization showed that the sequential approach improved robustness significantly (74% success rate) compared to the individual bone approach (34% success) for patella registration (femur and tibia-fibula registration had a 100% success rate with each approach).

  12. Non-Cartesian Parallel Imaging Reconstruction

    PubMed Central

    Wright, Katherine L.; Hamilton, Jesse I.; Griswold, Mark A.; Gulani, Vikas; Seiberlich, Nicole

    2014-01-01

    Non-Cartesian parallel imaging has played an important role in reducing data acquisition time in MRI. The use of non-Cartesian trajectories can enable more efficient coverage of k-space, which can be leveraged to reduce scan times. These trajectories can be undersampled to achieve even faster scan times, but the resulting images may contain aliasing artifacts. Just as Cartesian parallel imaging can be employed to reconstruct images from undersampled Cartesian data, non-Cartesian parallel imaging methods can mitigate aliasing artifacts by using additional spatial encoding information in the form of the non-homogeneous sensitivities of multi-coil phased arrays. This review will begin with an overview of non-Cartesian k-space trajectories and their sampling properties, followed by an in-depth discussion of several selected non-Cartesian parallel imaging algorithms. Three representative non-Cartesian parallel imaging methods will be described, including Conjugate Gradient SENSE (CG SENSE), non-Cartesian GRAPPA, and Iterative Self-Consistent Parallel Imaging Reconstruction (SPIRiT). After a discussion of these three techniques, several potential promising clinical applications of non-Cartesian parallel imaging will be covered. PMID:24408499

  13. 3-D Animation of Typhoon Bopha

    NASA Image and Video Library

    This 3-D animation of NASA's TRMM satellite data showed Typhoon Bopha tracking over the Philippines on Dec. 3 and moving into the Sulu Sea on Dec. 4, 2012. TRMM saw heavy rain (red) was falling at ...

  14. A 3d-3d appetizer

    NASA Astrophysics Data System (ADS)

    Pei, Du; Ye, Ke

    2016-11-01

    We test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 "Lens space theory" T [ L( p, 1)] and the partition function of complex Chern-Simons theory on L( p, 1). In particular, for p = 1, we show how the familiar S 3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[ L( p, 1)] becomes a constant independent of p. In addition, we study T[ L( p, 1)] on the squashed three-sphere S b 3 . This enables us to see clearly, at the level of partition function, to what extent G ℂ complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  15. Monte-Carlo Simulation of Heavy Ion Track Structure Calculation of Local Dose and 3D Time Evolution of Radiolytic Species

    NASA Technical Reports Server (NTRS)

    Plante, Ianik; Cucinotta, Francis A.

    2010-01-01

    Heavy ions have gained considerable importance in radiotherapy due to their advantageous dose distribution profile and high Relative Biological Effectiveness (RBE). Heavy ions are difficult to produce on Earth, but they are present in space and it is impossible at this moment to completely shield astronauts from them. The risk of these radiations is poorly understood, which is a concern for a 3-years Mars mission. The effects of radiation are mainly due to DNA damage such as DNA double-strand breaks (DSBs), although non-targeted effects are also very important. DNA can be damaged by the direct interaction of radiation and by reactions with chemical species produced by the radiolysis of water. The energy deposition is of crucial importance to understand biological effects of radiation. Therefore, much effort has been done recently to improve models of radiation tracks.

  16. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  17. 3d-3d correspondence revisited

    SciTech Connect

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  18. Sink or Swim: The Cartesian Diver.

    ERIC Educational Resources Information Center

    Pinkerton, K. David

    2001-01-01

    Presents the activity of Cartesian divers which demonstrates the relationship between pressure, temperature, volume, and buoyancy. Includes both instructor information and student activity sheet. (YDS)

  19. Sink or Swim: The Cartesian Diver.

    ERIC Educational Resources Information Center

    Pinkerton, K. David

    2001-01-01

    Presents the activity of Cartesian divers which demonstrates the relationship between pressure, temperature, volume, and buoyancy. Includes both instructor information and student activity sheet. (YDS)

  20. Time-Dependent Lattice Methods for Ion-Atom Collisions in Cartesian and Cylindrical Coordinate Systems

    SciTech Connect

    Pindzola, Michael S; Schultz, David Robert

    2008-01-01

    Time-dependent lattice methods in both Cartesian and cylindrical coordinates are applied to calculate excitation cross sections for p+H collisions at 40 keV incident energy. The time-dependent Schroedinger equation is solved using a previously formulated Cartesian coordinate single-channel method on a full 3D lattice and a newly formulated cylindrical coordinate multichannel method on a set of coupled 2D lattices. Cartesian coordinate single-channel and cylindrical coordinate five-channel calculations are found to be in reasonable agreement for excitation cross sections from the 1s ground state to the 2s, 2p, 3s, 3p, and 3d excited states. For extension of the time-dependent lattice method to handle the two electron dynamics found in p+He collisions, the cylindrical coordinate multichannel method appears promising due to the reduced dimensionality of its lattice.

  1. Description of an evaluation system for knee kinematics in ligament lesions, by means of optical tracking and 3D tomography☆☆☆

    PubMed Central

    Fernandes, Tiago Lazzaretti; Ribeiro, Douglas Badillo; da Rocha, Diogo Cristo; Albuquerque, Cyro; Pereira, César Augusto Martins; Pedrinelli, André; Hernandez, Arnaldo José

    2014-01-01

    Objective To describe and demonstrate the viability of a method for evaluating knee kinematics, by means of a continuous passive motion (CPM) machine, before and after anterior cruciate ligament (ACL) injury. Methods This study was conducted on a knee from a cadaver, in a mechanical pivot-shift simulator, with evaluations using optical tracking, and also using computed tomography. Results This study demonstrated the viability of a protocol for measuring the rotation and translation of the knee, using reproducible and objective tools (error < 0.2 mm). The mechanized provocation system of the pivot-shift test was independent of the examiner and always allowed the same angular velocity and traction of 20 N throughout the movement. Conclusion The clinical relevance of this method lies in making inferences about the in vivo behavior of a knee with an ACL injury and providing greater methodological quality in future studies for measuring surgical techniques with grafts in relatively close positions. PMID:26229854

  2. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  3. Association of pulse pressure with left ventricular geometry and function in elderly nonhypertensive patients with diabetes: A 3D speckle tracking echocardiography study.

    PubMed

    Wang, Qingqing; Tan, Kaibin; Xia, Hongmei; Gao, Yunhua

    2017-09-01

    The aims of this study were to investigate and compare the left ventricular (LV) geometry and function in elderly nonhypertensive type 2 diabetic patients with normal (NPP, <60 mm Hg) and with high (HPP, ≥60 mmHg) 24-hour pulse pressure, and to explore the independent predictors of LV strain values in these patients. A total of 76 elderly nonhypertensive type 2 diabetic patients with normal (≥55%) LV ejection fraction (LVEF) were included, 36 of whom had HPP. The control group included 40 age- and sex-matched healthy volunteers with normal NPP. Conventional echocardiography and three-dimensional speckle-tracking echocardiography (3DSTE) were performed and LV global longitudinal strain (GLS), global circumferential strain (GCS), global area strain (GAS), and global radial strain (GRS) were measured. Significant differences in the two-dimensional LV geometry were found among the three groups (p = 0.015), and concentric geometry was most prevalent in the diabetic patients with HPP. The diabetic patients with NPP only showed significantly lower GLS than the controls (p < 0.05). However, the diabetic patients with HPP showed significantly lower LVEF and severely lower strain values in all directions than the controls and the diabetic patients with NPP (p < 0.01or p < 0.05 or p < 0.001). Fasting plasma glucose, HPP, and body mass index were independently associated with all strain parameters in diabetic patients. The combination of conventional echocardiography and 3DSTE could detect LV subclinical abnormalities in nonhypertensive type 2 diabetic patients with NPP and HPP. © 2017 Wiley Periodicals, Inc. J Clin Ultrasound 45:416-425, 2017. © 2017 Wiley Periodicals, Inc.

  4. Extracting full-field dynamic strain on a wind turbine rotor subjected to arbitrary excitations using 3D point tracking and a modal expansion technique

    NASA Astrophysics Data System (ADS)

    Baqersad, Javad; Niezrecki, Christopher; Avitabile, Peter

    2015-09-01

    Health monitoring of rotating structures such as wind turbines and helicopter rotors is generally performed using conventional sensors that provide a limited set of data at discrete locations near or on the hub. These sensors usually provide no data on the blades or inside them where failures might occur. Within this paper, an approach was used to extract the full-field dynamic strain on a wind turbine assembly subject to arbitrary loading conditions. A three-bladed wind turbine having 2.3-m long blades was placed in a semi-built-in boundary condition using a hub, a machining chuck, and a steel block. For three different test cases, the turbine was excited using (1) pluck testing, (2) random impacts on blades with three impact hammers, and (3) random excitation by a mechanical shaker. The response of the structure to the excitations was measured using three-dimensional point tracking. A pair of high-speed cameras was used to measure displacement of optical targets on the structure when the blades were vibrating. The measured displacements at discrete locations were expanded and applied to the finite element model of the structure to extract the full-field dynamic strain. The results of the paper show an excellent correlation between the strain predicted using the proposed approach and the strain measured with strain-gages for each of the three loading conditions. The approach used in this paper to predict the strain showed higher accuracy than the digital image correlation technique. The new expansion approach is able to extract dynamic strain all over the entire structure, even inside the structure beyond the line of sight of the measurement system. Because the method is based on a non-contacting measurement approach, it can be readily applied to a variety of structures having different boundary and operating conditions, including rotating blades.

  5. Refined 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Alday, Luis F.; Genolini, Pietro Benetti; Bullimore, Mathew; van Loon, Mark

    2017-04-01

    We explore aspects of the correspondence between Seifert 3-manifolds and 3d N = 2 supersymmetric theories with a distinguished abelian flavour symmetry. We give a prescription for computing the squashed three-sphere partition functions of such 3d N = 2 theories constructed from boundary conditions and interfaces in a 4d N = 2∗ theory, mirroring the construction of Seifert manifold invariants via Dehn surgery. This is extended to include links in the Seifert manifold by the insertion of supersymmetric Wilson-'t Hooft loops in the 4d N = 2∗ theory. In the presence of a mass parameter cfor the distinguished flavour symmetry, we recover aspects of refined Chern-Simons theory with complex gauge group, and in particular construct an analytic continuation of the S-matrix of refined Chern-Simons theory.

  6. Cartesian Meshing Impacts for PWR Assemblies in Multigroup Monte Carlo and Sn Transport

    NASA Astrophysics Data System (ADS)

    Manalo, K.; Chin, M.; Sjoden, G.

    2014-06-01

    Hybrid methods of neutron transport have increased greatly in use, for example, in applications of using both Monte Carlo and deterministic transport to calculate quantities of interest, such as flux and eigenvalue in a nuclear reactor. Many 3D parallel Sn codes apply a Cartesian mesh, and thus for nuclear reactors the representation of curved fuels (cylinder, sphere, etc.) are impacted in the representation of proper fuel inventory (both in deviation of mass and exact geometry representation). For a PWR assembly eigenvalue problem, we explore the errors associated with this Cartesian discrete mesh representation, and perform an analysis to calculate a slope parameter that relates the pcm to the percent areal/volumetric deviation (areal corresponds to 2D and volumetric to 3D, respectively). Our initial analysis demonstrates a linear relationship between pcm change and areal/volumetric deviation using Multigroup MCNP on a PWR assembly compared to a reference exact combinatorial MCNP geometry calculation. For the same multigroup problems, we also intend to characterize this linear relationship in discrete ordinates (3D PENTRAN) and discuss issues related to transport cross-comparison. In addition, we discuss auto-conversion techniques with our 3D Cartesian mesh generation tools to allow for full generation of MCNP5 inputs (Cartesian mesh and Multigroup XS) from a basis PENTRAN Sn model.

  7. Studies of Grounding Line Migration Over Rutofrd Ice Stream Using 3D Short Repeat-Time Series From Multi-Track InSAR Acquisitions.

    NASA Astrophysics Data System (ADS)

    Milillo, P.; Minchew, B. M.; Riel, B. V.; Simons, M.; Gardner, A. S.; Agram, P. S.

    2015-12-01

    It has long been known that basal mechanics of ice streams are sensitive to short- timescale hourly to seasonal forcings, such as water pressure fluctuations and tidal loading as well as long-timescale (yearly to decadal) thinning. Designing SAR short repeat time observations to cover nearly an entire test-site in Antarctica from ascending and descending orbital directions, using every available SAR satellite is fundamental for understanding a new class of phenomena, underlying the physics of glaciers and ice streams. Understanding grounding-line dynamics is necessary for predictions of long-term ice-sheet stability. However, despite growing observations of the tidal influence on grounding-line migration, this short-timescale migration is poorly understood, with most modeling attempts assuming beam theory to calculate displacements. Knowing the position of the grounding line with accuracy is important for the global mass balance of ice sheets or for quantitatively modeling the mechanical interaction between ice shelves and ice sheets. Here we present a general method for retrieving three dimensional displacement vector given a set of multiple tracks, multiple geometry SAR acquisitions. The algorithm extends the single line of sight mathematical framework to the four spatial and temporal dimensions including both range and azimuth measurements. We designed COSMO-SkyMed (CSK) observations of Rutford Ice Stream to cover nearly the grounding zone from ascending and descending orbital directions using every available CSK satellite This spatially comprehensive observational scheme allowed us to derive time series of the 3-dimensional surface displacement for the grounding zone, facilitating studies of ice stream mechanics and tidally induced grounding line migrations with unprecedented spatial extent and temporal resolution. Having a constellation with occasional 1- day repeat time and an average 4-days repeat time is beneficial when looking at displacements of more than

  8. A 3d-3d appetizer

    DOE PAGES

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us tomore » see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.« less

  9. A 3d-3d appetizer

    SciTech Connect

    Pei, Du; Ye, Ke

    2016-11-02

    Here, we test the 3d-3d correspondence for theories that are labeled by Lens spaces. We find a full agreement between the index of the 3d N=2 “Lens space theory” T [L(p, 1)] and the partition function of complex Chern-Simons theory on L(p, 1). In particular, for p = 1, we show how the familiar S3 partition function of Chern-Simons theory arises from the index of a free theory. For large p, we find that the index of T[L(p, 1)] becomes a constant independent of p. In addition, we study T[L(p, 1)] on the squashed three-sphere Sb3. This enables us to see clearly, at the level of partition function, to what extent GC complex Chern-Simons theory can be thought of as two copies of Chern-Simons theory with compact gauge group G.

  10. Transient molecular electro-optics Cartesian rotation vector versus Eulerian angles.

    PubMed

    Evensen, Tom Richard; Elgsaeter, Arnljot; Naess, Stine Nalum

    2007-04-15

    Comparing the Euler angles, the classical choice of generalized coordinates describing the three rotational degrees of freedom of a rigid body, and the Cartesian rotation vector, we show that they both have their advantages and disadvantages in kinetic theory and Brownian dynamics analysis of molecular electro-optics. The Eulerian angles often yield relatively simple, yet singular, equations of motion, while their counterparts expressed in terms of Cartesian rotation vector are non-singular but more complex. In a special case, we show that the generalized force associated with the Cartesian rotation vector equals the torque. In addition, we introduce a new graphical approach to qualitatively track how changes in the Eulerian angles affect the Cartesian rotation vector.

  11. The Evolution of the "Cartesian Connection"

    ERIC Educational Resources Information Center

    Anderson, Gail M.

    2008-01-01

    Students often struggle with the connection between algebraic and graphical representations of functions. This overview of the history of the Cartesian coordinate system helps the classroom teacher consider new ways to aid students in making the "Cartesian connection." (Contains 7 figures.)

  12. Creation operators for Cartesian and circular beams.

    PubMed

    Siguenza-Torres, Anibal; Gutiérrez-Vega, Julio C

    2016-05-01

    Creation operators of fractional order, to derive the general Cartesian beams and circular beams from the lowest-order Gaussian beam, are introduced and discussed. Finding the creation operator for these general cases is a way to find the creation operator of all the special cases of Cartesian and circular beams.

  13. Intraoperative Image-based Multiview 2D/3D Registration for Image-Guided Orthopaedic Surgery: Incorporation of Fiducial-Based C-Arm Tracking and GPU-Acceleration

    PubMed Central

    Armand, Mehran; Armiger, Robert S.; Kutzer, Michael D.; Basafa, Ehsan; Kazanzides, Peter; Taylor, Russell H.

    2012-01-01

    Intraoperative patient registration may significantly affect the outcome of image-guided surgery (IGS). Image-based registration approaches have several advantages over the currently dominant point-based direct contact methods and are used in some industry solutions in image-guided radiation therapy with fixed X-ray gantries. However, technical challenges including geometric calibration and computational cost have precluded their use with mobile C-arms for IGS. We propose a 2D/3D registration framework for intraoperative patient registration using a conventional mobile X-ray imager combining fiducial-based C-arm tracking and graphics processing unit (GPU)-acceleration. The two-stage framework 1) acquires X-ray images and estimates relative pose between the images using a custom-made in-image fiducial, and 2) estimates the patient pose using intensity-based 2D/3D registration. Experimental validations using a publicly available gold standard dataset, a plastic bone phantom and cadaveric specimens have been conducted. The mean target registration error (mTRE) was 0.34 ± 0.04 mm (success rate: 100%, registration time: 14.2 s) for the phantom with two images 90° apart, and 0.99 ± 0.41 mm (81%, 16.3 s) for the cadaveric specimen with images 58.5° apart. The experimental results showed the feasibility of the proposed registration framework as a practical alternative for IGS routines. PMID:22113773

  14. Intraoperative image-based multiview 2D/3D registration for image-guided orthopaedic surgery: incorporation of fiducial-based C-arm tracking and GPU-acceleration.

    PubMed

    Otake, Yoshito; Armand, Mehran; Armiger, Robert S; Kutzer, Michael D; Basafa, Ehsan; Kazanzides, Peter; Taylor, Russell H

    2012-04-01

    Intraoperative patient registration may significantly affect the outcome of image-guided surgery (IGS). Image-based registration approaches have several advantages over the currently dominant point-based direct contact methods and are used in some industry solutions in image-guided radiation therapy with fixed X-ray gantries. However, technical challenges including geometric calibration and computational cost have precluded their use with mobile C-arms for IGS. We propose a 2D/3D registration framework for intraoperative patient registration using a conventional mobile X-ray imager combining fiducial-based C-arm tracking and graphics processing unit (GPU)-acceleration. The two-stage framework 1) acquires X-ray images and estimates relative pose between the images using a custom-made in-image fiducial, and 2) estimates the patient pose using intensity-based 2D/3D registration. Experimental validations using a publicly available gold standard dataset, a plastic bone phantom and cadaveric specimens have been conducted. The mean target registration error (mTRE) was 0.34 ± 0.04 mm (success rate: 100%, registration time: 14.2 s) for the phantom with two images 90° apart, and 0.99 ± 0.41 mm (81%, 16.3 s) for the cadaveric specimen with images 58.5° apart. The experimental results showed the feasibility of the proposed registration framework as a practical alternative for IGS routines.

  15. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  16. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  17. Diamond in 3-D

    NASA Image and Video Library

    2004-08-20

    This 3-D, microscopic imager mosaic of a target area on a rock called Diamond Jenness was taken after NASA Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time. 3D glasses are necessary.

  18. High Energy Boundary Conditions for a Cartesian Mesh Euler Solver

    NASA Technical Reports Server (NTRS)

    Pandya, Shishir; Murman, Scott; Aftosmis, Michael

    2003-01-01

    Inlets and exhaust nozzles are common place in the world of flight. Yet, many aerodynamic simulation packages do not provide a method of modelling such high energy boundaries in the flow field. For the purposes of aerodynamic simulation, inlets and exhausts are often fared over and it is assumed that the flow differences resulting from this assumption are minimal. While this is an adequate assumption for the prediction of lift, the lack of a plume behind the aircraft creates an evacuated base region thus effecting both drag and pitching moment values. In addition, the flow in the base region is often mis-predicted resulting in incorrect base drag. In order to accurately predict these quantities, a method for specifying inlet and exhaust conditions needs to be available in aerodynamic simulation packages. A method for a first approximation of a plume without accounting for chemical reactions is added to the Cartesian mesh based aerodynamic simulation package CART3D. The method consists of 3 steps. In the first step, a components approach where each triangle is assigned a component number is used. Here, a method for marking the inlet or exhaust plane triangles as separate components is discussed. In step two, the flow solver is modified to accept a reference state for the components marked inlet or exhaust. In the third step, the flow solver uses these separated components and the reference state to compute the correct flow condition at that triangle. The present method is implemented in the CART3D package which consists of a set of tools for generating a Cartesian volume mesh from a set of component triangulations. The Euler equations are solved on the resulting unstructured Cartesian mesh. The present methods is implemented in this package and its usefulness is demonstrated with two validation cases. A generic missile body is also presented to show the usefulness of the method on a real world geometry.

  19. Real and virtual explorations of the environment and interactive tracking of movable objects for the blind on the basis of tactile-acoustical maps and 3D environment models.

    PubMed

    Hub, Andreas; Hartter, Tim; Kombrink, Stefan; Ertl, Thomas

    2008-01-01

    PURPOSE.: This study describes the development of a multi-functional assistant system for the blind which combines localisation, real and virtual navigation within modelled environments and the identification and tracking of fixed and movable objects. The approximate position of buildings is determined with a global positioning sensor (GPS), then the user establishes exact position at a specific landmark, like a door. This location initialises indoor navigation, based on an inertial sensor, a step recognition algorithm and map. Tracking of movable objects is provided by another inertial sensor and a head-mounted stereo camera, combined with 3D environmental models. This study developed an algorithm based on shape and colour to identify objects and used a common face detection algorithm to inform the user of the presence and position of others. The system allows blind people to determine their position with approximately 1 metre accuracy. Virtual exploration of the environment can be accomplished by moving one's finger on a touch screen of a small portable tablet PC. The name of rooms, building features and hazards, modelled objects and their positions are presented acoustically or in Braille. Given adequate environmental models, this system offers blind people the opportunity to navigate independently and safely, even within unknown environments. Additionally, the system facilitates education and rehabilitation by providing, in several languages, object names, features and relative positions.

  20. Coil Compression for Accelerated Imaging with Cartesian Sampling

    PubMed Central

    Zhang, Tao; Pauly, John M.; Vasanawala, Shreyas S.; Lustig, Michael

    2012-01-01

    MRI using receiver arrays with many coil elements can provide high signal-to-noise ratio and increase parallel imaging acceleration. At the same time, the growing number of elements results in larger datasets and more computation in the reconstruction. This is of particular concern in 3D acquisitions and in iterative reconstructions. Coil compression algorithms are effective in mitigating this problem by compressing data from many channels into fewer virtual coils. In Cartesian sampling there often are fully sampled k-space dimensions. In this work, a new coil compression technique for Cartesian sampling is presented that exploits the spatially varying coil sensitivities in these non-subsampled dimensions for better compression and computation reduction. Instead of directly compressing in k-space, coil compression is performed separately for each spatial location along the fully-sampled directions, followed by an additional alignment process that guarantees the smoothness of the virtual coil sensitivities. This important step provides compatibility with autocalibrating parallel imaging techniques. Its performance is not susceptible to artifacts caused by a tight imaging fieldof-view. High quality compression of in-vivo 3D data from a 32 channel pediatric coil into 6 virtual coils is demonstrated. PMID:22488589

  1. A Deformable Generic 3D Model of Haptoral Anchor of Monogenean

    PubMed Central

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903

  2. A deformable generic 3D model of haptoral anchor of Monogenean.

    PubMed

    Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan

    2013-01-01

    In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.

  3. 3D Plasmon Ruler

    SciTech Connect

    2011-01-01

    In this animation of a 3D plasmon ruler, the plasmonic assembly acts as a transducer to deliver optical information about the structural dynamics of an attached protein. (courtesy of Paul Alivisatos group)

  4. Prominent Rocks - 3-D

    NASA Image and Video Library

    1997-07-13

    Many prominent rocks near the Sagan Memorial Station are featured in this image from NASA Mars Pathfinder. Shark, Half-Dome, and Pumpkin are at center 3D glasses are necessary to identify surface detail.

  5. 3D Laser System

    NASA Image and Video Library

    2015-09-16

    NASA Glenn's Icing Research Tunnel 3D Laser System used for digitizing ice shapes created in the wind tunnel. The ice shapes are later utilized for characterization, analysis, and software development.

  6. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  7. A Cartesian Adaptive Level Set Method for Two-Phase Flows

    NASA Technical Reports Server (NTRS)

    Ham, F.; Young, Y.-N.

    2003-01-01

    In the present contribution we develop a level set method based on local anisotropic Cartesian adaptation as described in Ham et al. (2002). Such an approach should allow for the smallest possible Cartesian grid capable of resolving a given flow. The remainder of the paper is organized as follows. In section 2 the level set formulation for free surface calculations is presented and its strengths and weaknesses relative to the other free surface methods reviewed. In section 3 the collocated numerical method is described. In section 4 the method is validated by solving the 2D and 3D drop oscilation problem. In section 5 we present some results from more complex cases including the 3D drop breakup in an impulsively accelerated free stream, and the 3D immiscible Rayleigh-Taylor instability. Conclusions are given in section 6.

  8. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  9. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  10. Cartesian-coordinate dimensioning for plumbing systems

    NASA Technical Reports Server (NTRS)

    Buirgy, P. A.

    1971-01-01

    Nonprogressive dimensioning method specifies Cartesian coordinates for each critical point in detail drawings of precision plumbing and ducting components to avoid tolerance accumulation. Method permits direct fabrication of tubing shapes without necessitating generation of a preproduction tubing mockup.

  11. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  12. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  13. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  14. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  15. Medical 3-D Printing.

    PubMed

    Furlow, Bryant

    2017-05-01

    Three-dimensional printing is used in the manufacturing industry, medical and pharmaceutical research, drug production, clinical medicine, and dentistry, with implications for precision and personalized medicine. This technology is advancing the development of patient-specific prosthetics, stents, splints, and fixation devices and is changing medical education, treatment decision making, and surgical planning. Diagnostic imaging modalities play a fundamental role in the creation of 3-D printed models. Although most 3-D printed objects are rigid, flexible soft-tissue-like prosthetics also can be produced. ©2017 American Society of Radiologic Technologists.

  16. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  17. Coolant side heat transfer with rotation: User manual for 3D-TEACH with rotation

    NASA Technical Reports Server (NTRS)

    Syed, S. A.; James, R. H.

    1989-01-01

    This program solves the governing transport equations in Reynolds average form for the flow of a 3-D, steady state, viscous, heat conducting, multiple species, single phase, Newtonian fluid with combustion. The governing partial differential equations are solved in physical variables in either a Cartesian or cylindrical coordinate system. The effects of rotation on the momentum and enthalpy calculations modeled in Cartesian coordinates are examined. The flow of the fluid should be confined and subsonic with a maximum Mach number no larger than 0.5. This manual describes the operating procedures and input details for executing a 3D-TEACH computation.

  18. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  19. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  20. Cartesian path control of a two-degree-of-freedom robot manipulator

    NASA Technical Reports Server (NTRS)

    Nguyen, Charles C.; Pooran, Farhad J.

    1988-01-01

    The problem of cartesian trajectory control of a closed-kinematic chain mechanism robot manipulator with possible space station applications is considered. The study was performed by both computer simulation and experimentation for tracking of three different paths: a straight line, a sinusoid and a circle. Linearization and pole placement methods are employed to design controller gains. Results show that the controllers are robust and there are good agreements between simulation and experimentation. Excellent tracking quality and small overshoots are also evident.

  1. Moment-of-fluid analytic reconstruction on 2D Cartesian grids

    NASA Astrophysics Data System (ADS)

    Lemoine, Antoine; Glockner, Stéphane; Breil, Jérôme

    2017-01-01

    Moment-of-Fluid (MoF) is a piecewise linear interface reconstruction method that tracks fluid through its volume fraction and centroid, which are deduced from the zeroth and first moments. We present a method that replaces the original minimization stage by an analytic reconstruction algorithm on bi-dimensional Cartesian grids. This algorithm provides accurate results for a lower computational cost than the original minimization algorithm. When more than two fluids are involved, this algorithm can be used coupled with the minimization algorithm. Although this paper deals with Cartesian grids, everything remains valid for any meshes that are made of rectangular cells.

  2. Novel Approaches in 3D Sensing, Imaging, and Visualization

    NASA Astrophysics Data System (ADS)

    Schulein, Robert; Daneshpanah, M.; Cho, M.; Javidi, B.

    Three-dimensional (3D) imaging systems are being researched extensively for purposes of sensing and visualization in fields as diverse as defense, medical, art, and entertainment. When compared to traditional 2D imaging techniques, 3D imaging offers advantages in ranging, robustness to scene occlusion, and target recognition performance. Amongst the myriad 3D imaging techniques, 3D multiperspective imaging technologies have received recent attention due to the technologies' relatively low cost, scalability, and passive sensing capabilities. Multiperspective 3D imagers collect 3D scene information by recording 2D intensity information from multiple perspectives, thus retaining both ray intensity and angle information. Three novel developments in 3D sensing, imaging, and visualization systems are presented: 3D imaging with axially distributed sensing, 3D optical profilometry, and occluded 3D object tracking.

  3. 3-D Grab!

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Modern technologies in imaging greatly extend the potential to present visual information. With recently developed software tools, the perception of the third dimension can not only dramatically enhance presentation, but also allow spatial data to be better encoded. 3-D images can be taken for many subjects with only one camera, carefully moved to generate a stereo pair. Color anaglyph viewing now can be very effective using computer screens, and active filter technologies can enhance visual effects with ever-decreasing cost. We will present various novel results of 3-D imaging, including those from the auroral observations of the new twinned Athabasca University Geophysical Observatories.; Single camera stereo image for viewing with red/cyan glasses.

  4. Validation of 3D RANS-SA Calculations on Strand/Cartesian Meshes

    DTIC Science & Technology

    2014-01-07

    as an official Department of the Army position, policy or decision, unless so designated by other documentation. 9. SPONSORING/MONITORING AGENCY NAME...applications used for engineering analysis. I. Introduction As computational fluid dynamics (CFD) becomes a more integral part of the engineering design ...automation that they are now used regularly by design engineers for analysis of new conceptual designs . The availability of automated adjoint-based

  5. Unoriented 3d TFTs

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Lakshya

    2017-05-01

    This paper generalizes two facts about oriented 3d TFTs to the unoriented case. On one hand, it is known that oriented 3d TFTs having a topological boundary condition admit a state-sum construction known as the Turaev-Viro construction. This is related to the string-net construction of fermionic phases of matter. We show how Turaev-Viro construction can be generalized to unoriented 3d TFTs. On the other hand, it is known that the "fermionic" versions of oriented TFTs, known as Spin-TFTs, can be constructed in terms of "shadow" TFTs which are ordinary oriented TFTs with an anomalous ℤ 2 1-form symmetry. We generalize this correspondence to Pin+-TFTs by showing that they can be constructed in terms of ordinary unoriented TFTs with anomalous ℤ 2 1-form symmetry having a mixed anomaly with time-reversal symmetry. The corresponding Pin+-TFT does not have any anomaly for time-reversal symmetry however and hence it can be unambiguously defined on a non-orientable manifold. In case a Pin+-TFT admits a topological boundary condition, one can combine the above two statements to obtain a Turaev-Viro-like construction of Pin+-TFTs. As an application of these ideas, we construct a large class of Pin+-SPT phases.

  6. Counter-sniper 3D laser radar

    NASA Astrophysics Data System (ADS)

    Shepherd, Orr; LePage, Andrew J.; Wijntjes, Geert J.; Zehnpfennig, Theodore F.; Sackos, John T.; Nellums, Robert O.

    1999-01-01

    Visidyne, Inc., teaming with Sandia National Laboratories, has developed the preliminary design for an innovative scannerless 3-D laser radar capable of acquiring, tracking, and determining the coordinates of small caliber projectiles in flight with sufficient precision, so their origin can be established by back projecting their tracks to their source. The design takes advantage of the relatively large effective cross-section of a bullet at optical wavelengths. Kay to its implementation is the use of efficient, high- power laser diode arrays for illuminators and an imaging laser receiver using a unique CCD imager design, that acquires the information to establish x, y (angle-angle) and range coordinates for each bullet at very high frame rates. The detection process achieves a high degree of discrimination by using the optical signature of the bullet, solar background mitigation, and track detection. Field measurements and computer simulations have been used to provide the basis for a preliminary design of a robust bullet tracker, the Counter Sniper 3-D Laser Radar. Experimental data showing 3-D test imagery acquired by a lidar with architecture similar to that of the proposed Counter Sniper 3-D Lidar are presented. A proposed Phase II development would yield an innovative, compact, and highly efficient bullet-tracking laser radar. Such a device would meet the needs of not only the military, but also federal, state, and local law enforcement organizations.

  7. Fast volume reconstruction for 3D PIV

    NASA Astrophysics Data System (ADS)

    Bajpayee, Abhishek; Techet, Alexandra H.

    2017-08-01

    Presented is a memory-efficient and highly parallelizable method for reconstructing volumes, based on a homography fit synthetic aperture refocusing method. This technique facilitates rapid processing of very large amounts of data, such as that recorded using high-speed cameras, for the purpose of conducting 3D particle imaging velocimetry and particle tracking velocimetry.

  8. Turing instabilities on Cartesian product networks

    PubMed Central

    Asllani, Malbor; Busiello, Daniel M.; Carletti, Timoteo; Fanelli, Duccio; Planchon, Gwendoline

    2015-01-01

    The problem of Turing instabilities for a reaction-diffusion system defined on a complex Cartesian product network is considered. To this end we operate in the linear regime and expand the time dependent perturbation on a basis formed by the tensor product of the eigenvectors of the discrete Laplacian operators, associated to each of the individual networks that build the Cartesian product. The dispersion relation which controls the onset of the instability depends on a set of discrete wavelengths, the eigenvalues of the aforementioned Laplacians. Patterns can develop on the Cartesian network, if they are supported on at least one of its constitutive sub-graphs. Multiplex networks are also obtained under specific prescriptions. In this case, the criteria for the instability reduce to compact explicit formulae. Numerical simulations carried out for the Mimura-Murray reaction kinetics confirm the adequacy of the proposed theory. PMID:26245138

  9. A parallel performance study of the Cartesian method for partial differential equations on a sphere

    SciTech Connect

    Drake, J.B.; Coddington, M.P.

    1997-04-01

    A 3-D Cartesian method for integration of partial differential equations on a spherical surface is developed for parallel computation. The target computer architectures are distributed memory, message passing computers such as the Intel Paragon. The parallel algorithms are described along with mesh partitioning strategies. Performance of the algorithms is considered for a standard test case of the shallow water equations on the sphere. The authors find the computation time scale well with increasing numbers of processors.

  10. Euler calculations for wings using Cartesian grids

    NASA Technical Reports Server (NTRS)

    Gaffney, R. L., Jr.; Hassan, H. A.; Salas, M. D.

    1987-01-01

    A method is presented for the calculation of transonic flows past wings using Cartesian grids. The calculations are based on a finite volume formulation of the Euler equations. Results are presented for a rectangular wing with a flat tip and the ONERA M6 wing. In general, the results are in good agreement with other computations and available experiment. However, Cartesian grids require a greater number of points than body fitted grids in order to resolve the flow properties near the leading edge of a swept wing.

  11. ... And now a suspended Cartesian diver

    NASA Astrophysics Data System (ADS)

    Fakhruddin, Hasan

    2011-01-01

    A Cartesian diver can be held suspended in a liquid in which there is a density gradient decreasing from bottom to the top if the density of the diver is between those of the liquid at the top and the bottom. This article adds to a number of Cartesian diver activities published in TPT. In a tall beaker of water, a large amount of sugar is added to the bottom. As the sugar dissolves at the bottom, a density gradient, decreasing from bottom to the top, is set up.

  12. Transonic airfoil flowfield analysis using Cartesian coordinates

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1975-01-01

    A numerical technique for analyzing transonic airfoils is presented. The method employs the basic features of Jameson's iterative solution for the full potential equation, except that Cartesian coordinates are used rather than a grid which fits the airfoil, such as the conformal circle-plane or 'sheared parabolic' coordinates which were used previously. Comparison with previous results shows that it is not necessary to match the computational grid to the airfoil surface, and that accurate results can be obtained with a Cartesian grid for lifting supercritical airfoils.

  13. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  14. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  15. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  16. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  17. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  19. First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic particle imaging.

    PubMed

    Werner, F; Gdaniec, N; Knopp, T

    2017-05-07

    Magnetic particle imaging (MPI) is a quantitative imaging modality that allows us to determine the distribution of superparamagnetic nanoparticles. Sampling is achieved by moving a field-free point (FFP) along a specific trajectory through the volume of interest. The magnetic material that lies along the path or in the close vicinity of the FFP changes its magnetization and induces a voltage in the surrounding receiver coils. Various trajectories for the FFP are conceivable, but most experimental MPI scanners either use a Cartesian or a Lissajous sampling trajectory. For the first time, this study compares both sampling methods experimentally using an MPI scanner that allows us to implement both sampling patterns. By default, the scanner is capable of scanning 2D and 3D field of views using a Lissajous trajectory. But since it also has a 1D mode, it is possible to perform Cartesian measurements by shifting the 1D scan line in a perpendicular direction to the FFP movement using the focus field. These line scans are jointly reconstructed to obtain a 2D image. In a further step, the unidirectional Cartesian trajectory is improved by interchanging the excitation and the focus-field direction leading to a bidirectional Cartesian trajectory. Our findings reveal similar results for the bidirectional Cartesian and Lissajous trajectory concerning the overall image quality and sensitivity. In a more detailed view, the bidirectional Cartesian trajectory achieves a slightly higher spatial center resolution, whereas the Lissajous trajectory is more efficient regarding the temporal resolution since less acquisition time is needed to reach an adequate image quality.

  20. First experimental comparison between the Cartesian and the Lissajous trajectory for magnetic particle imaging

    NASA Astrophysics Data System (ADS)

    Werner, F.; Gdaniec, N.; Knopp, T.

    2017-05-01

    Magnetic particle imaging (MPI) is a quantitative imaging modality that allows us to determine the distribution of superparamagnetic nanoparticles. Sampling is achieved by moving a field-free point (FFP) along a specific trajectory through the volume of interest. The magnetic material that lies along the path or in the close vicinity of the FFP changes its magnetization and induces a voltage in the surrounding receiver coils. Various trajectories for the FFP are conceivable, but most experimental MPI scanners either use a Cartesian or a Lissajous sampling trajectory. For the first time, this study compares both sampling methods experimentally using an MPI scanner that allows us to implement both sampling patterns. By default, the scanner is capable of scanning 2D and 3D field of views using a Lissajous trajectory. But since it also has a 1D mode, it is possible to perform Cartesian measurements by shifting the 1D scan line in a perpendicular direction to the FFP movement using the focus field. These line scans are jointly reconstructed to obtain a 2D image. In a further step, the unidirectional Cartesian trajectory is improved by interchanging the excitation and the focus-field direction leading to a bidirectional Cartesian trajectory. Our findings reveal similar results for the bidirectional Cartesian and Lissajous trajectory concerning the overall image quality and sensitivity. In a more detailed view, the bidirectional Cartesian trajectory achieves a slightly higher spatial center resolution, whereas the Lissajous trajectory is more efficient regarding the temporal resolution since less acquisition time is needed to reach an adequate image quality.

  1. Simulations of 3D LPI's relevant to IFE using the PIC code OSIRIS

    NASA Astrophysics Data System (ADS)

    Tsung, F. S.; Mori, W. B.; Winjum, B. J.

    2014-10-01

    We will study three dimensional effects of laser plasma instabilities, including backward raman scattering, the high frequency hybrid instability, and the two plasmon instability using OSIRIS in 3D Cartesian geometry and cylindrical 2D OSIRIS with azimuthal mode decompositions. With our new capabilities we hope to demonstrate that we are capable of studying single speckle physics relevant to IFE in an efficent manner.

  2. 3D Spray Droplet Distributions in Sneezes

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia

    2015-11-01

    3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.

  3. Stable boundary conditions for Cartesian grid calculations

    NASA Technical Reports Server (NTRS)

    Berger, M. J.; Leveque, R. J.

    1990-01-01

    The inviscid Euler equations in complicated geometries are solved using a Cartesian grid. This requires solid wall boundary conditions in the irregular grid cells near the boundary. Since these cells may be orders of magnitude smaller than the regular grid cells, stability is a primary concern. An approach to this problem is presented and its use is illustrated.

  4. The Cartesian Heritage of Bloom's Taxonomy

    ERIC Educational Resources Information Center

    Bertucio, Brett

    2017-01-01

    This essay seeks to contribute to the critical reception of "Bloom's Taxonomy of Educational Objectives" by tracing the Taxonomy's underlying philosophical assumptions. Identifying Bloom's work as consistent with the legacy of Cartesian thought, I argue that its hierarchy of behavioral objectives provides a framework for certainty and…

  5. A general time element for orbit integration in Cartesian coordinates

    NASA Technical Reports Server (NTRS)

    Janin, G.; Bond, V. R.

    1981-01-01

    Two techniques are discussed for increasing the accuracy of the numerical integration of eccentric orbits in Cartesian coordinates. One involves the use of an independent variable different from time; this increases the efficiency of the numerical integration. The other uses a time element, which reduces the in-track error. A general expression is given of a time element valid for an arbitrary independent variable. It is pointed out that this time element makes it possible to switch the independent variable merely by applying a scaling factor; there is no need to change the differential equations of the motion. Eccentric, true, and elliptic anomalies are used as independent variables in the case of a transfer orbit for a geosynchronous orbit. The elliptic anomaly is shown to perform much better than the other classical anomalies.

  6. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  7. Pluto in 3-D

    NASA Image and Video Library

    2015-10-23

    Global stereo mapping of Pluto surface is now possible, as images taken from multiple directions are downlinked from NASA New Horizons spacecraft. Stereo images will eventually provide an accurate topographic map of most of the hemisphere of Pluto seen by New Horizons during the July 14 flyby, which will be key to understanding Pluto's geological history. This example, which requires red/blue stereo glasses for viewing, shows a region 180 miles (300 kilometers) across, centered near longitude 130 E, latitude 20 N (the red square in the global context image). North is to the upper left. The image shows an ancient, heavily cratered region of Pluto, dotted with low hills and cut by deep fractures, which indicate extension of Pluto's crust. Analysis of these stereo images shows that the steep fracture in the upper left of the image is about 1 mile (1.6 kilometers) deep, and the craters in the lower right part of the image are up to 1.3 miles (2.1 km) deep. Smallest visible details are about 0.4 miles (0.6 kilometers) across. You will need 3D glasses to view this image showing an ancient, heavily cratered region of Pluto. http://photojournal.jpl.nasa.gov/catalog/PIA20032

  8. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  9. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  10. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  11. 3D Printing and 3D Bioprinting in Pediatrics

    PubMed Central

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-01-01

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics. PMID:28952542

  12. 3D Printing and 3D Bioprinting in Pediatrics.

    PubMed

    Vijayavenkataraman, Sanjairaj; Fuh, Jerry Y H; Lu, Wen Feng

    2017-07-13

    Additive manufacturing, commonly referred to as 3D printing, is a technology that builds three-dimensional structures and components layer by layer. Bioprinting is the use of 3D printing technology to fabricate tissue constructs for regenerative medicine from cell-laden bio-inks. 3D printing and bioprinting have huge potential in revolutionizing the field of tissue engineering and regenerative medicine. This paper reviews the application of 3D printing and bioprinting in the field of pediatrics.

  13. Static Aeroelastic Analysis with an Inviscid Cartesian Method

    NASA Technical Reports Server (NTRS)

    Rodriguez, David L.; Aftosmis, Michael J.; Nemec, Marian; Smith, Stephen C.

    2014-01-01

    An embedded-boundary Cartesian-mesh flow solver is coupled with a three degree-offreedom structural model to perform static, aeroelastic analysis of complex aircraft geometries. The approach solves the complete system of aero-structural equations using a modular, loosely-coupled strategy which allows the lower-fidelity structural model to deform the highfidelity CFD model. The approach uses an open-source, 3-D discrete-geometry engine to deform a triangulated surface geometry according to the shape predicted by the structural model under the computed aerodynamic loads. The deformation scheme is capable of modeling large deflections and is applicable to the design of modern, very-flexible transport wings. The interface is modular so that aerodynamic or structural analysis methods can be easily swapped or enhanced. This extended abstract includes a brief description of the architecture, along with some preliminary validation of underlying assumptions and early results on a generic 3D transport model. The final paper will present more concrete cases and validation of the approach. Preliminary results demonstrate convergence of the complete aero-structural system and investigate the accuracy of the approximations used in the formulation of the structural model.

  14. Arbitrary order permanent Cartesian multipolar electrostatic interactions

    NASA Astrophysics Data System (ADS)

    Boateng, H. A.; Todorov, I. T.

    2015-01-01

    Recently, there has been a concerted effort to implement advanced classical potential energy surfaces by adding higher order multipoles to fixed point charge electrostatics in a bid to increase the accuracy of simulations of condensed phase systems. One major hurdle is the unwieldy nature of the expressions which in part has limited developers mostly to including only dipoles and quadrupoles. In this paper, we present a generalization of the Cartesian formulation of electrostatic multipolar interactions that enables the specification of an arbitrary order of multipoles. Specifically, we derive formulas for arbitrary order implementation of the particle mesh Ewald method and give a closed form formula for the stress tensor in the reciprocal space. In addition, we provide recurrence relations for common electrostatic potentials employed in molecular simulations, which allows for the generalization to arbitrary order and guarantees a computational cost that scales as O(p3) for Cartesian multipole interactions of order p.

  15. Transonic airfoil design using Cartesian coordinates

    NASA Technical Reports Server (NTRS)

    Carlson, L. A.

    1976-01-01

    A numerical technique for designing transonic airfoils having a prescribed pressure distribution (the inverse problem) is presented. The method employs the basic features of Jameson's iterative solution for the full potential equation, except that inverse boundary conditions and Cartesian coordinates are used. The method is a direct-inverse approach that controls trailing-edge closure. Examples show the application of the method to design aft-cambered and other airfoils specifically for transonic flight.

  16. DNS of Sheared Particulate Flows with a 3D Explicit Finite-Difference Scheme

    NASA Astrophysics Data System (ADS)

    Perrin, Andrew; Hu, Howard

    2007-11-01

    A 3D explicit finite-difference code for direct simulation of the motion of solid particulates in fluids has been developed, and a periodic boundary condition implemented to study the effective viscosity of suspensions in shear. The code enforces the no-slip condition on the surface of spherical particles in a uniform Cartesian grid with a special particle boundary condition based on matching the Stokes flow solutions next to the particle surface with a numerical solution away from it. The method proceeds by approximating the flow next to the particle surface as a Stokes flow in the particle's local coordinates, which is then matched to the finite difference update in the bulk fluid on a ``cage'' of grid points near the particle surface. (The boundary condition is related to the PHYSALIS method (2003), but modified for explicit schemes and with an iterative process removed.) Advantages of the method include superior accuracy of the scheme on a relatively coarse grid for intermediate particle Reynolds numbers, ease of implementation, and the elimination of the need to track the particle surface. For the sheared suspension, the effects of fluid and solid inertia and solid volume fraction on effective viscosity at moderate particle Reynolds numbers and concentrated suspensions will be discussed.

  17. Higher Order Lagrange Finite Elements In M3D

    SciTech Connect

    J. Chen; H.R. Strauss; S.C. Jardin; W. Park; L.E. Sugiyama; G. Fu; J. Breslau

    2004-12-17

    The M3D code has been using linear finite elements to represent multilevel MHD on 2-D poloidal planes. Triangular higher order elements, up to third order, are constructed here in order to provide M3D the capability to solve highly anisotropic transport problems. It is found that higher order elements are essential to resolve the thin transition layer characteristic of the anisotropic transport equation, particularly when the strong anisotropic direction is not aligned with one of the Cartesian coordinates. The transition layer is measured by the profile width, which is zero for infinite anisotropy. It is shown that only higher order schemes have the ability to make this layer converge towards zero when the anisotropy gets stronger and stronger. Two cases are considered. One has the strong transport direction partially aligned with one of the element edges, the other doesn't have any alignment. Both cases have the strong transport direction misaligned with the grid line by some angles.

  18. Wave-CAIPI for highly accelerated 3D imaging.

    PubMed

    Bilgic, Berkin; Gagoski, Borjan A; Cauley, Stephen F; Fan, Audrey P; Polimeni, Jonathan R; Grant, P Ellen; Wald, Lawrence L; Setsompop, Kawin

    2015-06-01

    To introduce the wave-CAIPI (controlled aliasing in parallel imaging) acquisition and reconstruction technique for highly accelerated 3D imaging with negligible g-factor and artifact penalties. The wave-CAIPI 3D acquisition involves playing sinusoidal gy and gz gradients during the readout of each kx encoding line while modifying the 3D phase encoding strategy to incur interslice shifts as in 2D-CAIPI acquisitions. The resulting acquisition spreads the aliasing evenly in all spatial directions, thereby taking full advantage of 3D coil sensitivity distribution. By expressing the voxel spreading effect as a convolution in image space, an efficient reconstruction scheme that does not require data gridding is proposed. Rapid acquisition and high-quality image reconstruction with wave-CAIPI is demonstrated for high-resolution magnitude and phase imaging and quantitative susceptibility mapping. Wave-CAIPI enables full-brain gradient echo acquisition at 1 mm isotropic voxel size and R = 3 × 3 acceleration with maximum g-factors of 1.08 at 3T and 1.05 at 7T. Relative to the other advanced Cartesian encoding strategies (2D-CAIPI and bunched phase encoding) wave-CAIPI yields up to two-fold reduction in maximum g-factor for nine-fold acceleration at both field strengths. Wave-CAIPI allows highly accelerated 3D acquisitions with low artifact and negligible g-factor penalties, and may facilitate clinical application of high-resolution volumetric imaging. © 2014 Wiley Periodicals, Inc.

  19. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  20. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  1. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  2. Quasi-Cartesian finite-difference computation of seismic wave propagation for a three-dimensional sub-global model

    NASA Astrophysics Data System (ADS)

    Takenaka, Hiroshi; Komatsu, Masanao; Toyokuni, Genti; Nakamura, Takeshi; Okamoto, Taro

    2017-05-01

    A simple and efficient finite-difference scheme is developed to calculate seismic wave propagation in a partial spherical shell model of a three-dimensionally (3-D) heterogeneous global Earth structure for modeling on regional or sub-global scales where the effects of the Earth's spherical geometry cannot be ignored. This scheme solves the elastodynamic equation in the quasi- Cartesian coordinate form similar to the local Cartesian one, instead of the spherical polar coordinate form, with a staggered-grid finite-difference method in time domain (FDTD) that is one of the most popular numerical methods in seismic-motion simulations for local-scale models. The proposed scheme may be a local-friendly approach for modeling on a sub-global scale to link regional-scale and local-scale simulations. It can be easily implemented using an available 3-D Cartesian FDTD local-scale modeling code by changing a very small part of the code. We implement the scheme in an existing Cartesian FDTD code and demonstrate the accuracy and validity of the present scheme and the feasibility to apply it to real large simulations through numerical examples.[Figure not available: see fulltext.

  3. 3D Imaging Millimeter Wave Circular Synthetic Aperture Radar

    PubMed Central

    Zhang, Renyuan; Cao, Siyang

    2017-01-01

    In this paper, a new millimeter wave 3D imaging radar is proposed. The user just needs to move the radar along a circular track, and high resolution 3D imaging can be generated. The proposed radar uses the movement of itself to synthesize a large aperture in both the azimuth and elevation directions. It can utilize inverse Radon transform to resolve 3D imaging. To improve the sensing result, the compressed sensing approach is further investigated. The simulation and experimental result further illustrated the design. Because a single transceiver circuit is needed, a light, affordable and high resolution 3D mmWave imaging radar is illustrated in the paper. PMID:28629140

  4. Stochastic diffusion processes on Cartesian meshes

    PubMed Central

    Meinecke, Lina; Lötstedt, Per

    2015-01-01

    Diffusion of molecules is simulated stochastically by letting them jump between voxels in a Cartesian mesh. The jump coefficients are first derived using finite difference, finite element, and finite volume approximations of the Laplacian on the mesh. An alternative is to