Science.gov

Sample records for 3d cloud resolving

  1. 3D Atmospheric Radiative Transfer for Cloud System-Resolving Models: Forward Modelling and Observations

    SciTech Connect

    Howard Barker; Jason Cole

    2012-05-17

    Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.

  2. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  3. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional singlecolumn models in simulating various types of clouds and cloud systems from Merent geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloudscale model (termed a super-parameterization or multiscale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameteridon NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production nms will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  4. Tropical Oceanic Precipitation Processes over Warm Pool: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.- K.; Johnson, D.

    1998-01-01

    stratiform regions; (3) the cloud (upward-downward) mass fluxes in convective and stratiform regions; (4) characteristics of clouds (such as cloud size, updraft intensity and cloud lifetime) and the comparison of clouds with Radar observations. Differences and similarities in organization of convection between simulated 2D and 3D cloud systems. Preliminary results indicated that there is major differences between 2D and 3D simulated stratiform rainfall amount and convective updraft and downdraft mass fluxes.

  5. Precipitation processes developed during TOGA COARE (1992), GATE (1974), SCSMEX (1998), and KWAJEX (1999): 3D Cloud Resolving Model Simulation

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.

    2006-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research (NCAR), NOAA GFDL, the U.K. Met. Office, Colorado State University and NASA Goddard Space Flight Center. An improved 3D Goddard Cumulus Ensemble (GCE) model was recently used to simulate periods during TOGA COARE (December 19-27, 1992), GATE (september 1-7, 1974), SCSMEX (May 18-26, June 2-11, 1998) and KWAJEX (August 7-13, August 18-21, and August 29-September 12, 1999) using a 512 by 512 km domain and 41 vertical layers. The major objectives of this paper are: (1) to identify the differences and similarities in the simulated precipitation processes and their associated surface and water energy budgets in TOGA COARE, GATE, KWAJEX, and SCSMEX, and (2) to asses the impact of microphysics, radiation budget and surface fluxes on the organization of convection in tropics.

  6. Precipitation Processes Developed During ARM (1997), TOGA COARE (1992) GATE (1974), SCSMEX (1998), and KWAJEX (1999): Consistent 3D, Semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D) have been used to study the response of clouds to large-scale forcing. IN these 3D simulators, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical clouds systems with large horizontal domains at the National Center of Atmospheric Research (NCAR) and at NASA Goddard Space Center. At Goddard, a 3D cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, GATE, SCSMEX, ARM, and KWAJEX using a 512 by 512 km domain (with 2-km resolution). The result indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulation. The major objective of this paper are: (1) to assess the performance of the super-parametrization technique, (2) calculate and examine the surface energy (especially radiation) and water budget, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  7. Momentum Transport: 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2001-01-01

    The major objective of this study is to investigate the momentum budgets associated with several convective systems that developed during the TOGA COARE IOP (west Pacific warm pool region) and GATE (east Atlantic region). The tool for this study is the improved Goddard Cumulas Ensemble (GCE) model which includes a 3-class ice-phase microphysical scheme, explicit cloud radiative interactive processes and air-sea interactive surface processes. The model domain contains 256 x 256 grid points (with 2 km resolution) in the horizontal and 38 grid points (to a depth of 22 km) in the vertical. The 2D domain has 1024 grid points. The simulations were performed over a 7-day time period (December 19-26, 1992, for TOGA COARE and September 1-7, 1994 for GATE). Cyclic literal boundary conditions are required for this type of long-term integration. Two well organized squall systems (TOGA, COARE February 22, 1993, and GATE September 12, 1994) were also simulated using the 3D GCE model. Only 9 h simulations were required to cover the life time of the squall systems. the lateral boundary conditions were open for these two squall systems simulations. the following will be examined: (1) the momentum budgets in the convective and stratiform regions, (2) the relationship between momentum transport and cloud organization (i.e., well organized squall lines versus less organized convective), (3) the differences and similarities in momentum transport between 2D and 3D simulated convective systems, and (4) the differences and similarities in momentum budgets between cloud systems simulated with open and cyclic lateral boundary conditions. Preliminary results indicate that there are only small differences between 2D and 3D simulated momentum budgets. Major differences occur, however, between momentum budgets associated with squall systems simulated using different lateral boundary conditions.

  8. Ice formation in Arctic mixed-phase clouds: Insights from a 3-D cloud-resolving model with size-resolved aerosol and cloud microphysics

    NASA Astrophysics Data System (ADS)

    Fan, Jiwen; Ovtchinnikov, Mikhail; Comstock, Jennifer M.; McFarlane, Sally A.; Khain, Alexander

    2009-02-01

    The single-layer mixed-phase clouds observed during the Atmospheric Radiation Measurement (ARM) program's Mixed-Phase Arctic Cloud Experiment (MPACE) are simulated with a three-dimensional cloud-resolving model, the System for Atmospheric Modeling (SAM), coupled with an explicit bin microphysics scheme and a radar simulator. By implementing an aerosol-dependent and a temperature- and supersaturation-dependent ice nucleation scheme and treating IN size distribution prognostically, the link between ice crystal and aerosol properties is established to study aerosol indirect effects. Two possible ice enhancement mechanisms, activation of droplet evaporation residues by condensation followed by freezing and droplet evaporation freezing by contact freezing inside out, are scrutinized by extensive comparisons with the in situ and remote sensing measurements. Simulations with either mechanism agree well with the in situ and remote sensing measurements of ice microphysical properties but liquid water content is slightly underpredicted. These two mechanisms give similar cloud properties, although ice nucleation occurs at very different rates and locations. Ice nucleation from activation of evaporation nuclei occurs mostly near cloud top areas, while ice nucleation from the drop freezing during evaporation has no significant location preference. Both ice enhancement mechanisms contribute dramatically to ice formation with ice particle concentration of 10-15 times higher relative to the simulation without either of them. Ice nuclei (IN) recycling from ice sublimation contributes significantly to maintaining concentrations of IN and ice particles in this case, implying an important role to maintain the observed long-term existence of mixed-phase clouds. Cloud can be very sensitive to IN initially but become much less sensitive as cloud evolves to a steady mixed-phase condition.

  9. Precipitation Processes developed during ARM (1997), TOGA COARE (1992), GATE (1974), SCSMEX (1998), and KWAJEX (1999), Consistent 2D, semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Hou, A.; Atlas, R.; Starr, D.; Sud, Y.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique (i.e. is 2D or semi-3D CRM appropriate for the super-parameterization?); (2) calculate and examine the surface energy (especially radiation) and water budgets; (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  10. Precipitation Processes Developed During ARM (1997), TOGA COARE (1992), GATE (1974), SCSMEX (1998), and KWAJEX (1999): Consistent 2D, Semi-3D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W-K.

    2003-01-01

    Real clouds and cloud systems are inherently three-dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud systems with large horizontal domains at the National Center for Atmospheric Research (NACAR) and at NASA Goddard Space Flight Center . At Goddard, a 3D Goddard Cumulus Ensemble (GCE) model was used to simulate periods during TOGA COARE, SCSMEX and KWAJEX using 512 by 512 km domain (with 2 km resolution). The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D GCE model simulations. The reason for the strong similarity between the 2D and 3D CRM simulations is that the same observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main focusing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used at CSU showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this paper are: (1) to assess the performance of the super-parameterization technique, (2) calculate and examine the surface energy (especially radiation) and water budgets, and (3) identify the differences and similarities in the organization and entrainment rates of convection between simulated 2D and 3D cloud systems.

  11. Precipitation Processes developed during ARM (1997), TOGA COARE(1992), GATE(1 974), SCSMEX(1998) and KWAJEX(1999): Consistent 2D and 3D Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Shie, C.-H.; Simpson, J.; Starr, D.; Johnson, D.; Sud, Y.

    2003-01-01

    Real clouds and clouds systems are inherently three dimensional (3D). Because of the limitations in computer resources, however, most cloud-resolving models (CRMs) today are still two-dimensional (2D). A few 3D CRMs have been used to study the response of clouds to large-scale forcing. In these 3D simulations, the model domain was small, and the integration time was 6 hours. Only recently have 3D experiments been performed for multi-day periods for tropical cloud system with large horizontal domains at the National Center for Atmospheric Research. The results indicate that surface precipitation and latent heating profiles are very similar between the 2D and 3D simulations of these same cases. The reason for the strong similarity between the 2D and 3D CRM simulations is that the observed large-scale advective tendencies of potential temperature, water vapor mixing ratio, and horizontal momentum were used as the main forcing in both the 2D and 3D models. Interestingly, the 2D and 3D versions of the CRM used in CSU and U.K. Met Office showed significant differences in the rainfall and cloud statistics for three ARM cases. The major objectives of this project are to calculate and axamine: (1)the surface energy and water budgets, (2) the precipitation processes in the convective and stratiform regions, (3) the cloud upward and downward mass fluxes in the convective and stratiform regions; (4) cloud characteristics such as size, updraft intensity and lifetime, and (5) the entrainment and detrainment rates associated with clouds and cloud systems that developed in TOGA COARE, GATE, SCSMEX, ARM and KWAJEX. Of special note is that the analyzed (model generated) data sets are all produced by the same current version of the GCE model, i.e. consistent model physics and configurations. Trajectory analyse and inert tracer calculation will be conducted to identify the differences and similarities in the organization of convection between simulated 2D and 3D cloud systems.

  12. Simulated KWAJEX Convective Systems Using a 2D and 3D Cloud Resolving Model and Their Comparisons with Radar Observations

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    The 1999 Kwajalein Atoll field experiment (KWAJEX), one of several major TRMM (Tropical Rainfall Measuring Mission) field experiments, has successfully obtained a wealth of information and observation data on tropical convective systems over the western Central Pacific region. In this paper, clouds and convective systems that developed during three active periods (Aug 7-12, Aug 17-21, and Aug 29-Sep 13) around Kwajalein Atoll site are simulated using both 2D and 3D Goddard Cumulus Ensemble (GCE) models. Based on numerical results, the clouds and cloud systems are generally unorganized and short lived. These features are validated by radar observations that support the model results. Both the 2D and 3D simulated rainfall amounts and their stratiform contribution as well as the heat, water vapor, and moist static energy budgets are examined for the three convective episodes. Rainfall amounts are quantitatively similar between the two simulations, but the stratiform contribution is considerably larger in the 2D simulation. Regardless of dimension, fo all three cases, the large-scale forcing and net condensation are the two major physical processes that account for the evolution of the budgets with surface latent heat flux and net radiation solar and long-wave radiation)being secondary processes. Quantitative budget differences between 2D and 3D as well as between various episodes will be detailed.Morover, simulated radar signatures and Q1/Q2 fields from the three simulations are compared to each other and with radar and sounding observations.

  13. A Coupled fcGCM-GCE Modeling System: A 3D Cloud Resolving Model and a Regional Scale Model

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and ore sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicity calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A Brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), (3) A discussion on the Goddard WRF version (its developments and applications), and (4) The characteristics of the four-dimensional cloud data

  14. The Neighboring Column Approximation (NCA) - A fast approach for the calculation of 3D thermal heating rates in cloud resolving models

    NASA Astrophysics Data System (ADS)

    Klinger, Carolin; Mayer, Bernhard

    2016-01-01

    Due to computational costs, radiation is usually neglected or solved in plane parallel 1D approximation in today's numerical weather forecast and cloud resolving models. We present a fast and accurate method to calculate 3D heating and cooling rates in the thermal spectral range that can be used in cloud resolving models. The parameterization considers net fluxes across horizontal box boundaries in addition to the top and bottom boundaries. Since the largest heating and cooling rates occur inside the cloud, close to the cloud edge, the method needs in first approximation only the information if a grid box is at the edge of a cloud or not. Therefore, in order to calculate the heating or cooling rates of a specific grid box, only the directly neighboring columns are used. Our so-called Neighboring Column Approximation (NCA) is an analytical consideration of cloud side effects which can be considered a convolution of a 1D radiative transfer result with a kernel or radius of 1 grid-box (5 pt stencil) and which does usually not break the parallelization of a cloud resolving model. The NCA can be easily applied to any cloud resolving model that includes a 1D radiation scheme. Due to the neglect of horizontal transport of radiation further away than one model column, the NCA works best for model resolutions of about 100 m or lager. In this paper we describe the method and show a set of applications of LES cloud field snap shots. Correction terms, gains and restrictions of the NCA are described. Comprehensive comparisons to the 3D Monte Carlo Model MYSTIC and a 1D solution are shown. In realistic cloud fields, the full 3D simulation with MYSTIC shows cooling rates up to -150 K/d (100 m resolution) while the 1D solution shows maximum coolings of only -100 K/d. The NCA is capable of reproducing the larger 3D cooling rates. The spatial distribution of the heating and cooling is improved considerably. Computational costs are only a factor of 1.5-2 higher compared to a 1D

  15. Time Resolved 3-D Mapping of Atmospheric Aerosols and Clouds During the Recent ARM Water Vapor IOP

    NASA Technical Reports Server (NTRS)

    Schwemmer, Geary; Miller, David; Wilkerson, Thomas; Andrus, Ionio; Starr, David OC. (Technical Monitor)

    2001-01-01

    The HARLIE lidar was deployed at the ARM SGP site in north central Oklahoma and recorded over 100 hours of data on 16 days between 17 September and 6 October 2000 during the recent Water Vapor Intensive Operating Period (IOP). Placed in a ground-based trailer for upward looking scanning measurements of clouds and aerosols, HARLIE provided a unique record of time-resolved atmospheric backscatter at 1 micron wavelength. The conical scanning lidar images atmospheric backscatter along the surface of an inverted 90 degree (full angle) cone up to an altitude of 20 km. 360 degree scans having spatial resolutions of 20 meters in the vertical and 1 degree in azimuth were obtained every 36 seconds. Various boundary layer and cloud parameters are derived from the lidar data, as well as atmospheric wind vectors where there is Sufficiently resolved structure that can be traced moving through the surface described by the scanning laser beam. Comparison of HARLIE measured winds with radiosonde measured winds validates the accuracy of this new technique for remotely measuring atmospheric winds without Doppler information.

  16. A cloud chemistry module for the 3-D cloud-resolving mesoscale model Meso-NH with application to idealized cases

    NASA Astrophysics Data System (ADS)

    Leriche, M.; Pinty, J.-P.; Mari, C.; Gazen, D.

    2013-08-01

    A complete chemical module has been developed for use in the Meso-NH three-dimensional cloud resolving mesoscale model. This module includes gaseous- and aqueous-phase chemical reactions that are analysed by a pre-processor generating the Fortran90 code automatically. The kinetic solver is based on a Rosenbrock algorithm, which is robust and accurate for integrating stiff systems and especially multiphase chemistry. The exchange of chemical species between the gas phase and cloud droplets and raindrops is computed kinetically by mass transfers considering non-equilibrium between the gas- and the condensed phases. Microphysical transfers of chemical species are considered for the various cloud microphysics schemes available, which are based on one-moment or two-moment schemes. The pH of the droplets and of the raindrops is diagnosed separately as the root of a high order polynomial equation. The chemical concentrations in the ice phase are modelled in a single phase encompassing the two categories of precipitating ice particles (snow and graupel) of the microphysical scheme. The only process transferring chemical species in ice is retention during freezing or riming of liquid hydrometeors. Three idealized simulations are reported, which highlight the sensitivity of scavenging efficiency to the choice of the microphysical scheme and the retention coefficient in the ice phase. A two-dimensional warm, shallow convection case is used to compare the impact of the microphysical schemes on the temporal evolution and rates of acid precipitation. Acid wet deposition rates are shown to be overestimated when a one-moment microphysics scheme is used compared to a two-moment scheme. The difference is induced by a better prediction of raindrop radius and raindrop number concentration in the latter scheme. A two-dimensional mixed-phase squall line and a three-dimensional mixed-phase supercell were simulated to test the sensitivity of cloud vertical transport to the retention

  17. A cloud chemistry module for the 3-D cloud-resolving mesoscale model Meso-NH with application to idealized cases

    NASA Astrophysics Data System (ADS)

    Leriche, M.; Pinty, J.-P.; Mari, C.; Gazen, D.

    2013-02-01

    A complete chemical module has been developed for use in the Meso-NH three-dimensional cloud resolving mesoscale model. This module includes gaseous and aqueous phase chemical reactions that are analysed by a pre-processor generating the Fortran90 code automatically. The kinetic solver is based on a Rosenbrock algorithm, which is robust and accurate for integrating stiff systems and especially multiphase chemistry. The exchange of chemical species between the gas phase and cloud droplets and raindrops is computed kinetically by mass transfers considering non-equilibrium between the gas and the condensed phases. Microphysical transfers of chemical species are considered for the various cloud microphysics schemes available, which are based on one-moment or two-moment schemes. The pH of the droplets and of the raindrops is diagnosed separately as the root of a high order polynomial equation. The chemical concentrations in the ice phase are modelled in a single phase encompassing the two categories of precipitating ice particles (snow and graupel) of the microphysical scheme. The only process transferring chemical species in ice is retention during freezing or riming of liquid hydrometeors. Three idealized simulations are reported, which highlight the sensitivity of scavenging efficiency to the choice of the microphysical scheme and the retention coefficient in the ice phase. A two-dimensional warm, shallow convection case is used to compare the impact of the microphysical schemes on the temporal evolution and rates of acid precipitation. Acid wet deposition rates are shown to be overestimated when a one-moment microphysics scheme is used compared to a two-moment scheme. The difference is induced by a better prediction of raindrop radius and raindrop number concentration in the latter scheme. A two-dimensional mixed-phase squall line and a three-dimensional mixed-phase supercell were simulated to test the sensitivity of cloud vertical transport to the retention

  18. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  19. Dust density measurements in 3D dust clouds by tomography

    NASA Astrophysics Data System (ADS)

    Melzer, Andre

    2014-10-01

    Dusty plasmas usually consist of (micron-sized) dust particles trapped in a gaseous discharge plasma. Volume-filling dust clouds can be generated in the laboratory by thermophoretic levitation of the particles against gravity or under the microgravity conditions of parabolic flights. In these discharges, the dust density is typically so high that together with the high charge on the particles, the dust charge density can compete with the ion and electron (charge) density indicating a regime of charge depletion. Here, we present a technique that allows to measure the spatially resolved 3D dust density in such dusty discharges. For that purpose, the dust cloud is transilluminated by a homogeneous light source and the transilluminated cloud is measured under different angles in a tomographic-like manner. This allows to reconstruct the full 3D dust density within the discharge volume and further to deduce the force balance for the dust component. Supported by DLR 50 WM 1138.

  20. Cloud Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    One of the most promising methods to test the representation of cloud processes used in climate models is to use observations together with cloud-resolving models (CRMs). CRMs use more sophisticated and realistic representations of cloud microphysical processes, and they can reasonably well resolve the time evolution, structure, and life cycles of clouds and cloud systems (with sizes ranging from about 2-200 km). CRMs also allow for explicit interaction between clouds, outgoing longwave (cooling) and incoming solar (heating) radiation, and ocean and land surface processes. Observations are required to initialize CRMs and to validate their results. This paper provides a brief discussion and review of the main characteristics of CRMs as well as some of their major applications. These include the use of CRMs to improve our understanding of: (1) convective organization, (2) cloud temperature and water vapor budgets, and convective momentum transport, (3) diurnal variation of precipitation processes, (4) radiative-convective quasi-equilibrium states, (5) cloud-chemistry interaction, (6) aerosol-precipitation interaction, and (7) improving moist processes in large-scale models. In addition, current and future developments and applications of CRMs will be presented.

  1. Alignment of continuous video onto 3D point clouds.

    PubMed

    Zhao, Wenyi; Nister, David; Hsu, Steve

    2005-08-01

    We propose a general framework for aligning continuous (oblique) video onto 3D sensor data. We align a point cloud computed from the video onto the point cloud directly obtained from a 3D sensor. This is in contrast to existing techniques where the 2D images are aligned to a 3D model derived from the 3D sensor data. Using point clouds enables the alignment for scenes full of objects that are difficult to model; for example, trees. To compute 3D point clouds from video, motion stereo is used along with a state-of-the-art algorithm for camera pose estimation. Our experiments with real data demonstrate the advantages of the proposed registration algorithm for texturing models in large-scale semiurban environments. The capability to align video before a 3D model is built from the 3D sensor data offers new practical opportunities for 3D modeling. We introduce a novel modeling-through-registration approach that fuses 3D information from both the 3D sensor and the video. Initial experiments with real data illustrate the potential of the proposed approach.

  2. Cloud Property Retrieval and 3D Radiative Transfer

    NASA Technical Reports Server (NTRS)

    Cahalan, Robert F.

    2003-01-01

    Cloud thickness and photon mean-free-path together determine the scale of "radiative smoothing" of cloud fluxes and radiances. This scale is observed as a change in the spatial spectrum of cloud radiances, and also as the "halo size" seen by off beam lidar such as THOR and WAIL. Such of beam lidar returns are now being used to retrieve cloud layer thickness and vertical scattering extinction profile. We illustrate with recent measurements taken at the Oklahoma ARM site, comparing these to the-dependent 3D simulations. These and other measurements sensitive to 3D transfer in clouds, coupled with Monte Carlo and other 3D transfer methods, are providing a better understanding of the dependence of radiation on cloud inhomogeneity, and to suggest new retrieval algorithms appropriate for inhomogeneous clouds. The international "Intercomparison of 3D Radiation Codes" or I3RC, program is coordinating and evaluating the variety of 3D radiative transfer methods now available, and to make them more widely available. Information is on the Web at: http://i3rc.gsfc.nasa.gov/. Input consists of selected cloud fields derived from data sources such as radar, microwave and satellite, and from models involved in the GEWEX Cloud Systems Studies. Output is selected radiative quantities that characterize the large-scale properties of the fields of radiative fluxes and heating. Several example cloud fields will be used to illustrate. I3RC is currently implementing an "open source" 3d code capable of solving the baseline cases. Maintenance of this effort is one of the goals of a new 3DRT Working Group under the International Radiation Commission. It is hoped that the 3DRT WG will include active participation by land and ocean modelers as well, such as 3D vegetation modelers participating in RAMI.

  3. 3D reconstruction of tropospheric cirrus clouds

    NASA Astrophysics Data System (ADS)

    Kouahla, M. N.; Faivre, M.; Moreels, G.; Seridi, H.

    2016-10-01

    In this paper, we present a series of results from stereo-imagery of cirrus clouds in the troposphere. These clouds are either of natural origin or are created by aircraft exhausts. They are presently considered to be a major cause for the climate change. Two observation campaigns were conducted in France in 2013 and 2014. The observing sites were located in Marnay (47°17‧31.5″ N, 5°44‧58.8″ E; altitude 275 m) and in Mont Poupet (46°58‧31.5″ N, 5°52‧22.7″ E; altitude 600 m). The distance between both sites was 36 km. We used numeric CMOS photographic cameras. The image processing sequence included a contrast enhancement and a perspective inversion to obtain a satellite-type view. Finally, the triangulation procedure was used in an area that is a common part of both fields of view.

  4. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  5. 3D Viewer Platform of Cloud Clustering Management System: Google Map 3D

    NASA Astrophysics Data System (ADS)

    Choi, Sung-Ja; Lee, Gang-Soo

    The new management system of framework for cloud envrionemnt is needed by the platfrom of convergence according to computing environments of changes. A ISV and small business model is hard to adapt management system of platform which is offered from super business. This article suggest the clustering management system of cloud computing envirionments for ISV and a man of enterprise in small business model. It applies the 3D viewer adapt from map3D & earth of google. It is called 3DV_CCMS as expand the CCMS[1].

  6. Point Cloud Visualization in AN Open Source 3d Globe

    NASA Astrophysics Data System (ADS)

    De La Calle, M.; Gómez-Deck, D.; Koehler, O.; Pulido, F.

    2011-09-01

    During the last years the usage of 3D applications in GIS is becoming more popular. Since the appearance of Google Earth, users are familiarized with 3D environments. On the other hand, nowadays computers with 3D acceleration are common, broadband access is widespread and the public information that can be used in GIS clients that are able to use data from the Internet is constantly increasing. There are currently several libraries suitable for this kind of applications. Based on these facts, and using libraries that are already developed and connected to our own developments, we are working on the implementation of a real 3D GIS with analysis capabilities. Since a 3D GIS such as this can be very interesting for tasks like LiDAR or Laser Scanner point clouds rendering and analysis, special attention is given to get an optimal handling of very large data sets. Glob3 will be a multidimensional GIS in which 3D point clouds could be explored and analysed, even if they are consist of several million points.The latest addition to our visualization libraries is the development of a points cloud server that works regardless of the cloud's size. The server receives and processes petitions from a 3d client (for example glob3, but could be any other, such as one based on WebGL) and delivers the data in the form of pre-processed tiles, depending on the required level of detail.

  7. a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud

    NASA Astrophysics Data System (ADS)

    Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng

    2016-06-01

    This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.

  8. The Feasibility of 3d Point Cloud Generation from Smartphones

    NASA Astrophysics Data System (ADS)

    Alsubaie, N.; El-Sheimy, N.

    2016-06-01

    This paper proposes a new technique for increasing the accuracy of direct geo-referenced image-based 3D point cloud generated from low-cost sensors in smartphones. The smartphone's motion sensors are used to directly acquire the Exterior Orientation Parameters (EOPs) of the captured images. These EOPs, along with the Interior Orientation Parameters (IOPs) of the camera/ phone, are used to reconstruct the image-based 3D point cloud. However, because smartphone motion sensors suffer from poor GPS accuracy, accumulated drift and high signal noise, inaccurate 3D mapping solutions often result. Therefore, horizontal and vertical linear features, visible in each image, are extracted and used as constraints in the bundle adjustment procedure. These constraints correct the relative position and orientation of the 3D mapping solution. Once the enhanced EOPs are estimated, the semi-global matching algorithm (SGM) is used to generate the image-based dense 3D point cloud. Statistical analysis and assessment are implemented herein, in order to demonstrate the feasibility of 3D point cloud generation from the consumer-grade sensors in smartphones.

  9. 3D Building Reconstruction Using Dense Photogrammetric Point Cloud

    NASA Astrophysics Data System (ADS)

    Malihi, S.; Valadan Zoej, M. J.; Hahn, M.; Mokhtarzade, M.; Arefi, H.

    2016-06-01

    Three dimensional models of urban areas play an important role in city planning, disaster management, city navigation and other applications. Reconstruction of 3D building models is still a challenging issue in 3D city modelling. Point clouds generated from multi view images of UAV is a novel source of spatial data, which is used in this research for building reconstruction. The process starts with the segmentation of point clouds of roofs and walls into planar groups. By generating related surfaces and using geometrical constraints plus considering symmetry, a 3d model of building is reconstructed. In a refinement step, dormers are extracted, and their models are reconstructed. The details of the 3d reconstructed model are in LoD3 level, with respect to modelling eaves, fractions of roof and dormers.

  10. Temperature Resolved 3-D Submillimeter Spectroscopy of Astronomical `WEEDs'.

    NASA Astrophysics Data System (ADS)

    Fortman, Sarah M.; Medvedev, Ivan R.; Neese, Christopher F.; De Lucia, Frank C.

    2009-06-01

    We have previously reported on the experimental spectroscopic approach that makes possible the calculation of lower state energy levels and transition strengths without the need for spectral assignment. Analysis of the temperature dependent measurements significantly improves the estimate of the lower state energy, recovered by division of temperature dependent spectral intensities. Also, this approach provides results both in the standard astronomical catalog form (frequency, line strength, lower state energy) and as experimental temperature dependent spectra. We are reporting on temperature resolved 3-D spectroscopy of ethyl cyanide -- a well known astronomical `weed'. "An experimental approach to the prediction of complete millimeter and submillimeter spectra at astrophysical temperatures: Applications to confusion-limited astrophysical observations," I. R. Medvedev and F. C. De Lucia, Ap. J. 656, 621-628 (2007).

  11. Performance testing of 3D point cloud software

    NASA Astrophysics Data System (ADS)

    Varela-González, M.; González-Jorge, H.; Riveiro, B.; Arias, P.

    2013-10-01

    LiDAR systems are being used widely in recent years for many applications in the engineering field: civil engineering, cultural heritage, mining, industry and environmental engineering. One of the most important limitations of this technology is the large computational requirements involved in data processing, especially for large mobile LiDAR datasets. Several software solutions for data managing are available in the market, including open source suites, however, users often unknown methodologies to verify their performance properly. In this work a methodology for LiDAR software performance testing is presented and four different suites are studied: QT Modeler, VR Mesh, AutoCAD 3D Civil and the Point Cloud Library running in software developed at the University of Vigo (SITEGI). The software based on the Point Cloud Library shows better results in the loading time of the point clouds and CPU usage. However, it is not as strong as commercial suites in working set and commit size tests.

  12. Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering

    NASA Astrophysics Data System (ADS)

    Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.

    2016-06-01

    This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.

  13. 3D reconstruction of tropospheric cirrus clouds by stereovision system

    NASA Astrophysics Data System (ADS)

    Nadjib Kouahla, Mohamed; Moreels, Guy; Seridi, Hamid

    2016-07-01

    A stereo imaging method is applied to measure the altitude of cirrus clouds and provide a 3D map of the altitude of the layer centroid. They are located in the high troposphere and, sometimes in the lower stratosphere, between 6 and 10 km high. Two simultaneous images of the same scene are taken with Canon cameras (400D) in two sites distant of 37 Km. Each image processed in order to invert the perspective effect and provide a satellite-type view of the layer. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a correlation coefficient (ZNCC: Zero mean Normalized Cross-correlation or ZSSD: as Zero mean Sum of Squared Differences). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in June 2014 in France. The images were taken simultaneously at Marnay (47°17'31.5" N, 5°44'58.8" E; altitude 275 m) 25 km northwest of Besancon and in Mont poupet (46°58'31.5" N, 5°52'22.7" E; altitude 600 m) southwest of Besancon at 43 km. 3D maps of the Natural cirrus clouds and artificial like "aircraft trails" are retrieved. They are compared with pseudo-relief intensity maps of the same region. The mean altitude of the cirrus barycenter is located at 8.5 ± 1km on June 11.

  14. 3-D Object Recognition from Point Cloud Data

    NASA Astrophysics Data System (ADS)

    Smith, W.; Walker, A. S.; Zhang, B.

    2011-09-01

    The market for real-time 3-D mapping includes not only traditional geospatial applications but also navigation of unmanned autonomous vehicles (UAVs). Massively parallel processes such as graphics processing unit (GPU) computing make real-time 3-D object recognition and mapping achievable. Geospatial technologies such as digital photogrammetry and GIS offer advanced capabilities to produce 2-D and 3-D static maps using UAV data. The goal is to develop real-time UAV navigation through increased automation. It is challenging for a computer to identify a 3-D object such as a car, a tree or a house, yet automatic 3-D object recognition is essential to increasing the productivity of geospatial data such as 3-D city site models. In the past three decades, researchers have used radiometric properties to identify objects in digital imagery with limited success, because these properties vary considerably from image to image. Consequently, our team has developed software that recognizes certain types of 3-D objects within 3-D point clouds. Although our software is developed for modeling, simulation and visualization, it has the potential to be valuable in robotics and UAV applications. The locations and shapes of 3-D objects such as buildings and trees are easily recognizable by a human from a brief glance at a representation of a point cloud such as terrain-shaded relief. The algorithms to extract these objects have been developed and require only the point cloud and minimal human inputs such as a set of limits on building size and a request to turn on a squaring option. The algorithms use both digital surface model (DSM) and digital elevation model (DEM), so software has also been developed to derive the latter from the former. The process continues through the following steps: identify and group 3-D object points into regions; separate buildings and houses from trees; trace region boundaries; regularize and simplify boundary polygons; construct complex roofs. Several case

  15. A 3D Cloud-Construction Algorithm for the EarthCARE Satellite Mission

    NASA Technical Reports Server (NTRS)

    Barker, H. W.; Jerg, M. P.; Wehr, T.; Kato, S.; Donovan, D. P.; Hogan, R. J.

    2011-01-01

    This article presents and assesses an algorithm that constructs 3D distributions of cloud from passive satellite imagery and collocated 2D nadir profiles of cloud properties inferred synergistically from lidar, cloud radar and imager data.

  16. The medial scaffold of 3D unorganized point clouds.

    PubMed

    Leymarie, Frederic F; Kimia, Benjamin B

    2007-02-01

    We introduce the notion of the medial scaffold, a hierarchical organization of the medial axis of a 3D shape in the form of a graph constructed from special medial curves connecting special medial points. A key advantage of the scaffold is that it captures the qualitative aspects of shape in a hierarchical and tightly condensed representation. We propose an efficient and exact method for computing the medial scaffold based on a notion of propagation along the scaffold itself, starting from initial sources of the flow and constructing the scaffold during the propagation. We examine this method specifically in the context of an unorganized cloud of points in 3D, e.g., as obtained from laser range finders, which typically involve hundreds of thousands of points, but the ideas are generalizable to data arising from geometrically described surface patches. The computational bottleneck in the propagation-based scheme is in finding the initial sources of the flow. We thus present several ideas to avoid the unnecessary consideration of pairs of points which cannot possibly form a medial point source, such as the "visibility" of a point from another given a third point and the interaction of clusters of points. An application of using the medial scaffold for the representation of point samplings of real-life objects is also illustrated.

  17. Scanning Cloud Radar Observations at Azores: Preliminary 3D Cloud Products

    SciTech Connect

    Kollias, P.; Johnson, K.; Jo, I.; Tatarevic, A.; Giangrande, S.; Widener, K.; Bharadwaj, N.; Mead, J.

    2010-03-15

    The deployment of the Scanning W-Band ARM Cloud Radar (SWACR) during the AMF campaign at Azores signals the first deployment of an ARM Facility-owned scanning cloud radar and offers a prelude for the type of 3D cloud observations that ARM will have the capability to provide at all the ARM Climate Research Facility sites by the end of 2010. The primary objective of the deployment of Scanning ARM Cloud Radars (SACRs) at the ARM Facility sites is to map continuously (operationally) the 3D structure of clouds and shallow precipitation and to provide 3D microphysical and dynamical retrievals for cloud life cycle and cloud-scale process studies. This is a challenging task, never attempted before, and requires significant research and development efforts in order to understand the radar's capabilities and limitations. At the same time, we need to look beyond the radar meteorology aspects of the challenge and ensure that the hardware and software capabilities of the new systems are utilized for the development of 3D data products that address the scientific needs of the new Atmospheric System Research (ASR) program. The SWACR observations at Azores provide a first look at such observations and the challenges associated with their analysis and interpretation. The set of scan strategies applied during the SWACR deployment and their merit is discussed. The scan strategies were adjusted for the detection of marine stratocumulus and shallow cumulus that were frequently observed at the Azores deployment. Quality control procedures for the radar reflectivity and Doppler products are presented. Finally, preliminary 3D-Active Remote Sensing of Cloud Locations (3D-ARSCL) products on a regular grid will be presented, and the challenges associated with their development discussed. In addition to data from the Azores deployment, limited data from the follow-up deployment of the SWACR at the ARM SGP site will be presented. This effort provides a blueprint for the effort required for the

  18. Evaluating Clouds in Long-Term Cloud-Resolving Model Simulations with Observational Data

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Peters-Lidard, Christa; Lang, Stephen; Simpson, Joanne; Kumar, Sujay; Xie, Shaocheng; Eastman, Joseph L.; Shie, Chung-Lin; Geiger, James V.

    2006-01-01

    Two 20-day, continental midlatitude cases are simulated with a three-dimensional (3D) cloud-resolving model (CRM) and compared to Atmospheric Radiation Measurement (ARM) data. This evaluation of long-term cloud-resolving model simulations focuses on the evaluation of clouds and surface fluxes. All numerical experiments, as compared to observations, simulate surface precipitation well but over-predict clouds, especially in the upper troposphere. The sensitivity of cloud properties to dimensionality and other factors is studied to isolate the origins of the over prediction of clouds. Due to the difference in buoyancy damping between 2D and 3D models, surface precipitation fluctuates rapidly with time, and spurious dehumidification occurs near the tropopause in the 2D CRM. Surface fluxes from a land data assimilation system are compared with ARM observations. They are used in place of the ARM surface fluxes to test the sensitivity of simulated clouds to surface fluxes. Summertime simulations show that surface fluxes from the assimilation system bring about a better simulation of diurnal cloud variation in the lower troposphere.

  19. Do Fractal Models of Clouds Produces the Right 3D Radiative Effects?

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Stochastic fractal models of clouds are often used to study 3D radiative effects and their influence on the remote sensing of cloud properties. Since it is important that the cloud models produce a correct radiative response, some researchers require the model parameters to match observed cloud properties such as scale-independent optical thickness variability. Unfortunately, matching these properties does not necessarily imply that the cloud models will cause the right 3D radiative effects. First, the matched properties alone only influence the 3D effects but do not completely determine them. Second, in many cases the retrieved cloud properties have been already biased by 3D radiative effects, and so the models may not match the true real clouds. Finally, the matched cloud properties cannot be considered independent from the scales at which they have been retrieved. This paper proposes an approach that helps ensure that fractal cloud models are realistic and produce the right 3D effects. The technique compares the results of radiative transfer simulations for the model clouds to new direct observations of 3D radiative effects in satellite images.

  20. Parameterization and analysis of 3-D radiative transfer in clouds

    SciTech Connect

    Varnai, Tamas

    2012-03-16

    This report provides a summary of major accomplishments from the project. The project examines the impact of radiative interactions between neighboring atmospheric columns, for example clouds scattering extra sunlight toward nearby clear areas. While most current cloud models don't consider these interactions and instead treat sunlight in each atmospheric column separately, the resulting uncertainties have remained unknown. This project has provided the first estimates on the way average solar heating is affected by interactions between nearby columns. These estimates have been obtained by combining several years of cloud observations at three DOE Atmospheric Radiation Measurement (ARM) Climate Research Facility sites (in Alaska, Oklahoma, and Papua New Guinea) with simulations of solar radiation around the observed clouds. The importance of radiative interactions between atmospheric columns was evaluated by contrasting simulations that included the interactions with those that did not. This study provides lower-bound estimates for radiative interactions: It cannot consider interactions in cross-wind direction, because it uses two-dimensional vertical cross-sections through clouds that were observed by instruments looking straight up as clouds drifted aloft. Data from new DOE scanning radars will allow future radiative studies to consider the full three-dimensional nature of radiative processes. The results reveal that two-dimensional radiative interactions increase overall day-and-night average solar heating by about 0.3, 1.2, and 4.1 Watts per meter square at the three sites, respectively. This increase grows further if one considers that most large-domain cloud simulations have resolutions that cannot specify small-scale cloud variability. For example, the increases in solar heating mentioned above roughly double for a fairly typical model resolution of 1 km. The study also examined the factors that shape radiative interactions between atmospheric columns and

  1. Extension of RCC Topological Relations for 3d Complex Objects Components Extracted from 3d LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Xing, Xu-Feng; Abolfazl Mostafavia, Mir; Wang, Chen

    2016-06-01

    Topological relations are fundamental for qualitative description, querying and analysis of a 3D scene. Although topological relations for 2D objects have been extensively studied and implemented in GIS applications, their direct extension to 3D is very challenging and they cannot be directly applied to represent relations between components of complex 3D objects represented by 3D B-Rep models in R3. Herein we present an extended Region Connection Calculus (RCC) model to express and formalize topological relations between planar regions for creating 3D model represented by Boundary Representation model in R3. We proposed a new dimension extended 9-Intersection model to represent the basic relations among components of a complex object, including disjoint, meet and intersect. The last element in 3*3 matrix records the details of connection through the common parts of two regions and the intersecting line of two planes. Additionally, this model can deal with the case of planar regions with holes. Finally, the geometric information is transformed into a list of strings consisting of topological relations between two planar regions and detailed connection information. The experiments show that the proposed approach helps to identify topological relations of planar segments of point cloud automatically.

  2. Unlocking the scientific potential of complex 3D point cloud dataset : new classification and 3D comparison methods

    NASA Astrophysics Data System (ADS)

    Lague, D.; Brodu, N.; Leroux, J.

    2012-12-01

    Ground based lidar and photogrammetric techniques are increasingly used to track the evolution of natural surfaces in 3D at an unprecedented resolution and precision. The range of applications encompass many type of natural surfaces with different geometries and roughness characteristics (landslides, cliff erosion, river beds, bank erosion,....). Unravelling surface change in these contexts requires to compare large point clouds in 2D or 3D. The most commonly used method in geomorphology is based on a 2D difference of the gridded point clouds. Yet this is hardly adapted to many 3D natural environments such as rivers (with horizontal beds and vertical banks), while gridding complex rough surfaces is a complex task. On the other hand, tools allowing to perform 3D comparison are scarce and may require to mesh the point clouds which is difficult on rough natural surfaces. Moreover, existing 3D comparison tools do not provide an explicit calculation of confidence intervals that would factor in registration errors, roughness effects and instrument related position uncertainties. To unlock this problem, we developed the first algorithm combining a 3D measurement of surface change directly on point clouds with an estimate of spatially variable confidence intervals (called M3C2). The method has two steps : (1) surface normal estimation and orientation in 3D at a scale consistent with the local roughness ; (2) measurement of mean surface change along the normal direction with explicit calculation of a local confidence interval. Comparison with existing 3D methods based on a closest-point calculation demonstrates the higher precision of the M3C2 method when mm changes needs to be detected. The M3C2 method is also simple to use as it does not require surface meshing or gridding, and is not sensitive to missing data or change in point density. We also present a 3D classification tool (CANUPO) for vegetation removal based on a new geometrical measure: the multi

  3. Extending 3D Near-Cloud Corrections from Shorter to Longer Wavelengths

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Evans, K. Frank; Varnai, Tamas; Guoyong, Wen

    2014-01-01

    Satellite observations have shown a positive correlation between cloud amount and aerosol optical thickness (AOT) that can be explained by the humidification of aerosols near clouds, and/or by cloud contamination by sub-pixel size clouds and the cloud adjacency effect. The last effect may substantially increase reflected radiation in cloud-free columns, leading to overestimates in the retrieved AOT. For clear-sky areas near boundary layer clouds the main contribution to the enhancement of clear sky reflectance at shorter wavelengths comes from the radiation scattered into clear areas by clouds and then scattered to the sensor by air molecules. Because of the wavelength dependence of air molecule scattering, this process leads to a larger reflectance increase at shorter wavelengths, and can be corrected using a simple two-layer model. However, correcting only for molecular scattering skews spectral properties of the retrieved AOT. Kassianov and Ovtchinnikov proposed a technique that uses spectral reflectance ratios to retrieve AOT in the vicinity of clouds; they assumed that the cloud adjacency effect influences the spectral ratio between reflectances at two wavelengths less than it influences the reflectances themselves. This paper combines the two approaches: It assumes that the 3D correction for the shortest wavelength is known with some uncertainties, and then it estimates the 3D correction for longer wavelengths using a modified ratio method. The new approach is tested with 3D radiances simulated for 26 cumulus fields from Large-Eddy Simulations, supplemented with 40 aerosol profiles. The results showed that (i) for a variety of cumulus cloud scenes and aerosol profiles over ocean the 3D correction due to cloud adjacency effect can be extended from shorter to longer wavelengths and (ii) the 3D corrections for longer wavelengths are not very sensitive to unbiased random uncertainties in the 3D corrections at shorter wavelengths.

  4. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect

    Alexander Marshak; Warren Wiscombe; Yuri Knyazikhin; Christine Chiu

    2011-05-24

    We proposed a variety of tasks centered on the following question: what can we learn about 3D cloud-radiation processes and aerosol-cloud interaction from rapid-sampling ARM measurements of spectral zenith radiance? These ARM measurements offer spectacular new and largely unexploited capabilities in both the temporal and spectral domains. Unlike most other ARM instruments, which average over many seconds or take samples many seconds apart, the new spectral zenith radiance measurements are fast enough to resolve natural time scales of cloud change and cloud boundaries as well as the transition zone between cloudy and clear areas. In the case of the shortwave spectrometer, the measurements offer high time resolution and high spectral resolution, allowing new discovery-oriented science which we intend to pursue vigorously. Research objectives are, for convenience, grouped under three themes: • Understand radiative signature of the transition zone between cloud-free and cloudy areas using data from ARM shortwave radiometers, which has major climatic consequences in both aerosol direct and indirect effect studies. • Provide cloud property retrievals from the ARM sites and the ARM Mobile Facility for studies of aerosol-cloud interactions. • Assess impact of 3D cloud structures on aerosol properties using passive and active remote sensing techniques from both ARM and satellite measurements.

  5. The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models

    NASA Astrophysics Data System (ADS)

    Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain

    2014-05-01

    The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail

  6. Overlap Properties of Clouds Generated by a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Oreopoulos, L.; Khairoutdinov, M.

    2002-01-01

    In order for General Circulation Models (GCMs), one of our most important tools to predict future climate, to correctly describe the propagation of solar and thermal radiation through the cloudy atmosphere a realistic description of the vertical distribution of cloud amount is needed. Actually, one needs not only the cloud amounts at different levels of the atmosphere, but also how these cloud amounts are related, in other words, how they overlap. Currently GCMs make some idealized assumptions about cloud overlap, for example that contiguous cloud layers overlap maximally and non-contiguous cloud layers overlap in a random fashion. Since there are difficulties in obtaining the vertical profile of cloud amount from observations, the realism of the overlap assumptions made in GCMs has not been yet rigorously investigated. Recently however, cloud observations from a relatively new type of ground radar have been used to examine the vertical distribution of cloudiness. These observations suggest that the GCM overlap assumptions are dubious. Our study uses cloud fields from sophisticated models dedicated to simulate cloud formation, maintenance, and dissipation called Cloud Resolving Models . These models are generally considered capable of producing realistic three-dimensional representation of cloudiness. Using numerous cloud fields produced by such a CRM we show that the degree of overlap between cloud layers is a function of their separation distance, and is in general described by a combination of the maximum and random overlap assumption, with random overlap dominating as separation distances increase. We show that it is possible to parameterize this behavior in a way that can eventually be incorporated in GCMs. Our results seem to have a significant resemblance to the results from the radar observations despite the completely different nature of the datasets. This consistency is encouraging and will promote development of new radiative transfer codes that will

  7. Automated Mosaicking of Multiple 3d Point Clouds Generated from a Depth Camera

    NASA Astrophysics Data System (ADS)

    Kim, H.; Yoon, W.; Kim, T.

    2016-06-01

    In this paper, we propose a method for automated mosaicking of multiple 3D point clouds generated from a depth camera. A depth camera generates depth data by using ToF (Time of Flight) method and intensity data by using intensity of returned signal. The depth camera used in this paper was a SR4000 from MESA Imaging. This camera generates a depth map and intensity map of 176 x 44 pixels. Generated depth map saves physical depth data with mm of precision. Generated intensity map contains texture data with many noises. We used texture maps for extracting tiepoints and depth maps for assigning z coordinates to tiepoints and point cloud mosaicking. There are four steps in the proposed mosaicking method. In the first step, we acquired multiple 3D point clouds by rotating depth camera and capturing data per rotation. In the second step, we estimated 3D-3D transformation relationships between subsequent point clouds. For this, 2D tiepoints were extracted automatically from the corresponding two intensity maps. They were converted into 3D tiepoints using depth maps. We used a 3D similarity transformation model for estimating the 3D-3D transformation relationships. In the third step, we converted local 3D-3D transformations into a global transformation for all point clouds with respect to a reference one. In the last step, the extent of single depth map mosaic was calculated and depth values per mosaic pixel were determined by a ray tracing method. For experiments, 8 depth maps and intensity maps were used. After the four steps, an output mosaicked depth map of 454x144 was generated. It is expected that the proposed method would be useful for developing an effective 3D indoor mapping method in future.

  8. Comparison of 3D interest point detectors and descriptors for point cloud fusion

    NASA Astrophysics Data System (ADS)

    Hänsch, R.; Weber, T.; Hellwich, O.

    2014-08-01

    The extraction and description of keypoints as salient image parts has a long tradition within processing and analysis of 2D images. Nowadays, 3D data gains more and more importance. This paper discusses the benefits and limitations of keypoints for the task of fusing multiple 3D point clouds. For this goal, several combinations of 3D keypoint detectors and descriptors are tested. The experiments are based on 3D scenes with varying properties, including 3D scanner data as well as Kinect point clouds. The obtained results indicate that the specific method to extract and describe keypoints in 3D data has to be carefully chosen. In many cases the accuracy suffers from a too strong reduction of the available points to keypoints.

  9. Parameterization and Analysis of 3-D Solar Radiative Transfer in Clouds: Final Report

    SciTech Connect

    Jerry Y. Harrington

    2012-09-21

    This document reports on the research that we have done over the course of our two-year project. The report also covers the research done on this project during a 1 year no-cost extension of the grant. Our work has had two main, inter-related thrusts: The first thrust was to characterize the response of stratocumulus cloud structure and dynamics to systematic changes in cloud infrared radiative cooling and solar heating using one-dimensional radiative transfer models. The second was to couple a three-dimensional (3-D) solar radiative transfer model to the Large Eddy Simulation (LES) model that we use to simulate stratocumulus. The purpose of the studies with 3-D radiative transfer was to examine the possible influences of 3-D photon transport on the structure, evolution, and radiative properties of stratocumulus. While 3-D radiative transport has been examined in static cloud environments, few studies have attempted to examine whether the 3-D nature of radiative absorption and emission influence the structure and evolution of stratocumulus. We undertook this dual approach because only a small number of LES simulations with the 3-D radiative transfer model are possible due to the high computational costs. Consequently, LES simulations with a 1-D radiative transfer solver were used in order to examine the portions of stratocumulus parameter space that may be most sensitive to perturbations in the radiative fields. The goal was then to explore these sensitive regions with LES using full 3-D radiative transfer. Our overall goal was to discover whether 3-D radiative processes alter cloud structure and evolution, and whether this may have any indirect implications for cloud radiative properties. In addition, we collaborated with Dr. Tamas Varni, providing model output fields for his attempt at parameterizing 3-D radiative effects for cloud models.

  10. 3D Aerosol-Cloud Radiative Interaction Observed in Collocated MODIS and ASTER Images of Cumulus Cloud Fields

    NASA Technical Reports Server (NTRS)

    Wen, Guoyong; Marshak, Alexander; Cahalan, Robert F.; Remer, Lorraine A.; Kleidman, Richard G.

    2007-01-01

    3D aerosol-cloud interaction is examined by analyzing two images containing cumulus clouds in biomass burning regions in Brazil. The research consists of two parts. The first part focuses on identifying 3D clo ud impacts on the reflectance of pixel selected for the MODIS aerosol retrieval based purely on observations. The second part of the resea rch combines the observations with radiative transfer computations to identify key parameters in 3D aerosol-cloud interaction. We found that 3D cloud-induced enhancement depends on optical properties of nearb y clouds as well as wavelength. The enhancement is too large to be ig nored. Associated biased error in 1D aerosol optical thickness retrie val ranges from 50% to 140% depending on wavelength and optical prope rties of nearby clouds as well as aerosol optical thickness. We caution the community to be prudent when applying 1D approximations in comp uting solar radiation in dear regions adjacent to clouds or when usin g traditional retrieved aerosol optical thickness in aerosol indirect effect research.

  11. Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Zinner, Tobias; Ackerman, S.

    2008-01-01

    Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.

  12. PhotoCloud: Interactive remote exploration of joint 2D and 3D datasets.

    PubMed

    Brivio, Paolo; Benedetti, Luca; Tarini, Marco; Ponchio, Federico; Cignoni, Paolo; Scopigno, Roberto

    2013-01-01

    PhotoCloud is a real-time client-server system for interactive visualization and exploration of large datasets comprising thousands of calibrated 2D photographs of a scene and a complex 3D description of the scene. The system isn't tailored to any specific data acquisition process; it aims at generality and flexibility. PhotoCloud achieves scalability through a multiresolution dynamic hierarchical representation of the data, which is remotely stored and accessed by the client through an efficient cache system. The system includes a compact image browser and a multiresolution model renderer. PhotoCloud employs iconic visualization of the images in the 3D space and projects images onto the 3D scene on the fly. Users can navigate the 2D and 3D spaces with smooth, integrated, seamless transitions between them. A study with differently skilled users confirms PhotoCloud's effectiveness and communication power. The Web extras at http://www.youtube.com/playlist?list=PLHJB2bhmgB7cmYD0ST9CEDMRv1JlX4xPH are videos demonstrating PhotoCloud, a real-time client-server system for interactive exploration of large datasets comprising 2D photos and 3D models.

  13. Dynamic mineral clouds on HD 189733b. I. 3D RHD with kinetic, non-equilibrium cloud formation

    NASA Astrophysics Data System (ADS)

    Lee, G.; Dobbs-Dixon, I.; Helling, Ch.; Bognar, K.; Woitke, P.

    2016-10-01

    Context. Observations of exoplanet atmospheres have revealed the presence of cloud particles in their atmospheres. 3D modelling of cloud formation in atmospheres of extrasolar planets coupled to the atmospheric dynamics has long been a challenge. Aims: We investigate the thermo-hydrodynamic properties of cloud formation processes in the atmospheres of hot Jupiter exoplanets. Methods: We simulate the dynamic atmosphere of HD 189733b with a 3D model that couples 3D radiative-hydrodynamics with a kinetic, microphysical mineral cloud formation module designed for RHD/GCM exoplanet atmosphere simulations. Our simulation includes the feedback effects of cloud advection and settling, gas phase element advection and depletion/replenishment and the radiative effects of cloud opacity. We model the cloud particles as a mix of mineral materials which change in size and composition as they travel through atmospheric thermo-chemical environments. All local cloud properties such as number density, grain size and material composition are time-dependently calculated. Gas phase element depletion as a result of cloud formation is included in the model. In situ effective medium theory and Mie theory is applied to calculate the wavelength dependent opacity of the cloud component. Results: We present a 3D cloud structure of a chemically complex, gaseous atmosphere of the hot Jupiter HD 189733b. Mean cloud particle sizes are typically sub-micron (0.01-0.5 μm) at pressures less than 1 bar with hotter equatorial regions containing the smallest grains. Denser cloud structures occur near terminator regions and deeper (~1 bar) atmospheric layers. Silicate materials such as MgSiO3[s] are found to be abundant at mid-high latitudes, while TiO2[s] and SiO2[s] dominate the equatorial regions. Elements involved in the cloud formation can be depleted by several orders of magnitude. Conclusions: The interplay between radiative-hydrodynamics and cloud kinetics leads to an inhomogeneous, wavelength

  14. 3D campus modeling using LiDAR point cloud data

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Yoshii, Satoshi; Funatsu, Yukihiro; Takemata, Kazuya

    2012-10-01

    The importance of having a 3D urban city model is recognized in many applications, such as management offices of risk and disaster, the offices for city planning and developing and others. As an example of urban model, we reconstructed 3D KIT campus manually in this study, by utilizing airborne LiDAR point cloud data. The automatic extraction of building shapes was left in future work.

  15. Dense 3d Point Cloud Generation from Uav Images from Image Matching and Global Optimazation

    NASA Astrophysics Data System (ADS)

    Rhee, S.; Kim, T.

    2016-06-01

    3D spatial information from unmanned aerial vehicles (UAV) images is usually provided in the form of 3D point clouds. For various UAV applications, it is important to generate dense 3D point clouds automatically from over the entire extent of UAV images. In this paper, we aim to apply image matching for generation of local point clouds over a pair or group of images and global optimization to combine local point clouds over the whole region of interest. We tried to apply two types of image matching, an object space-based matching technique and an image space-based matching technique, and to compare the performance of the two techniques. The object space-based matching used here sets a list of candidate height values for a fixed horizontal position in the object space. For each height, its corresponding image point is calculated and similarity is measured by grey-level correlation. The image space-based matching used here is a modified relaxation matching. We devised a global optimization scheme for finding optimal pairs (or groups) to apply image matching, defining local match region in image- or object- space, and merging local point clouds into a global one. For optimal pair selection, tiepoints among images were extracted and stereo coverage network was defined by forming a maximum spanning tree using the tiepoints. From experiments, we confirmed that through image matching and global optimization, 3D point clouds were generated successfully. However, results also revealed some limitations. In case of image-based matching results, we observed some blanks in 3D point clouds. In case of object space-based matching results, we observed more blunders than image-based matching ones and noisy local height variations. We suspect these might be due to inaccurate orientation parameters. The work in this paper is still ongoing. We will further test our approach with more precise orientation parameters.

  16. Efficient Structure-Aware Selection Techniques for 3D Point Cloud Visualizations with 2DOF Input.

    PubMed

    Yu, Lingyun; Efstathiou, K; Isenberg, P; Isenberg, T

    2012-12-01

    Data selection is a fundamental task in visualization because it serves as a pre-requisite to many follow-up interactions. Efficient spatial selection in 3D point cloud datasets consisting of thousands or millions of particles can be particularly challenging. We present two new techniques, TeddySelection and CloudLasso, that support the selection of subsets in large particle 3D datasets in an interactive and visually intuitive manner. Specifically, we describe how to spatially select a subset of a 3D particle cloud by simply encircling the target particles on screen using either the mouse or direct-touch input. Based on the drawn lasso, our techniques automatically determine a bounding selection surface around the encircled particles based on their density. This kind of selection technique can be applied to particle datasets in several application domains. TeddySelection and CloudLasso reduce, and in some cases even eliminate, the need for complex multi-step selection processes involving Boolean operations. This was confirmed in a formal, controlled user study in which we compared the more flexible CloudLasso technique to the standard cylinder-based selection technique. This study showed that the former is consistently more efficient than the latter - in several cases the CloudLasso selection time was half that of the corresponding cylinder-based selection.

  17. Towards 3D Matching of Point Clouds Derived from Oblique and Nadir Airborne Imagery

    NASA Astrophysics Data System (ADS)

    Zhang, Ming

    Because of the low-expense high-efficient image collection process and the rich 3D and texture information presented in the images, a combined use of 2D airborne nadir and oblique images to reconstruct 3D geometric scene has a promising market for future commercial usage like urban planning or first responders. The methodology introduced in this thesis provides a feasible way towards fully automated 3D city modeling from oblique and nadir airborne imagery. In this thesis, the difficulty of matching 2D images with large disparity is avoided by grouping the images first and applying the 3D registration afterward. The procedure starts with the extraction of point clouds using a modified version of the RIT 3D Extraction Workflow. Then the point clouds are refined by noise removal and surface smoothing processes. Since the point clouds extracted from different image groups use independent coordinate systems, there are translation, rotation and scale differences existing. To figure out these differences, 3D keypoints and their features are extracted. For each pair of point clouds, an initial alignment and a more accurate registration are applied in succession. The final transform matrix presents the parameters describing the translation, rotation and scale requirements. The methodology presented in the thesis has been shown to behave well for test data. The robustness of this method is discussed by adding artificial noise to the test data. For Pictometry oblique aerial imagery, the initial alignment provides a rough alignment result, which contains a larger offset compared to that of test data because of the low quality of the point clouds themselves, but it can be further refined through the final optimization. The accuracy of the final registration result is evaluated by comparing it to the result obtained from manual selection of matched points. Using the method introduced, point clouds extracted from different image groups could be combined with each other to build a

  18. Graph-Based Compression of Dynamic 3D Point Cloud Sequences.

    PubMed

    Thanou, Dorina; Chou, Philip A; Frossard, Pascal

    2016-04-01

    This paper addresses the problem of compression of 3D point cloud sequences that are characterized by moving 3D positions and color attributes. As temporally successive point cloud frames share some similarities, motion estimation is key to effective compression of these sequences. It, however, remains a challenging problem as the point cloud frames have varying numbers of points without explicit correspondence information. We represent the time-varying geometry of these sequences with a set of graphs, and consider 3D positions and color attributes of the point clouds as signals on the vertices of the graphs. We then cast motion estimation as a feature-matching problem between successive graphs. The motion is estimated on a sparse set of representative vertices using new spectral graph wavelet descriptors. A dense motion field is eventually interpolated by solving a graph-based regularization problem. The estimated motion is finally used for removing the temporal redundancy in the predictive coding of the 3D positions and the color characteristics of the point cloud sequences. Experimental results demonstrate that our method is able to accurately estimate the motion between consecutive frames. Moreover, motion estimation is shown to bring a significant improvement in terms of the overall compression performance of the sequence. To the best of our knowledge, this is the first paper that exploits both the spatial correlation inside each frame (through the graph) and the temporal correlation between the frames (through the motion estimation) to compress the color and the geometry of 3D point cloud sequences in an efficient way.

  19. Coherent Microscopy for 3-D Movement Monitoring and Super-Resolved Imaging

    NASA Astrophysics Data System (ADS)

    Beiderman, Yevgeny; Amsel, Avigail; Tzadka, Yaniv; Fixler, Dror; Teicher, Mina; Micó, Vicente; Garcí, Javier; Javidi, Bahram; DaneshPanah, Mehdi; Moon, Inkyu; Zalevsky, Zeev

    In this chapter we present three types of microscopy-related configurations while the first one is used for 3-D movement monitoring of the inspected samples, the second one is used for super-resolved 3-D imaging, and the last one presents an overview digital holographic microscopy applications. The first configuration is based on temporal tracking of secondary reflected speckles when imaged by properly defocused optics. We validate the proposed scheme by using it to monitor 3-D spontaneous contraction of rat's cardiac muscle cells while allowing nanometric tracking accuracy without interferometric recording. The second configuration includes projection of temporally varying speckle patterns on top of the sample and by proper decoding exceeding the diffraction as well as the geometrical-related lateral resolution limitation. In the final part of the chapter, we overview applications of digital holographic microscopy (DHM) for real-time non-invasive 3-D sensing, tracking, and recognition of living microorganisms such as single- or multiple-cell organisms and bacteria.

  20. Fast Probabilistic Fusion of 3d Point Clouds via Occupancy Grids for Scene Classification

    NASA Astrophysics Data System (ADS)

    Kuhn, Andreas; Huang, Hai; Drauschke, Martin; Mayer, Helmut

    2016-06-01

    High resolution consumer cameras on Unmanned Aerial Vehicles (UAVs) allow for cheap acquisition of highly detailed images, e.g., of urban regions. Via image registration by means of Structure from Motion (SfM) and Multi View Stereo (MVS) the automatic generation of huge amounts of 3D points with a relative accuracy in the centimeter range is possible. Applications such as semantic classification have a need for accurate 3D point clouds, but do not benefit from an extremely high resolution/density. In this paper, we, therefore, propose a fast fusion of high resolution 3D point clouds based on occupancy grids. The result is used for semantic classification. In contrast to state-of-the-art classification methods, we accept a certain percentage of outliers, arguing that they can be considered in the classification process when a per point belief is determined in the fusion process. To this end, we employ an octree-based fusion which allows for the derivation of outlier probabilities. The probabilities give a belief for every 3D point, which is essential for the semantic classification to consider measurement noise. For an example point cloud with half a billion 3D points (cf. Figure 1), we show that our method can reduce runtime as well as improve classification accuracy and offers high scalability for large datasets.

  1. Image-Based Airborne LiDAR Point Cloud Encoding for 3d Building Model Retrieval

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Chen; Lin, Chao-Hung

    2016-06-01

    With the development of Web 2.0 and cyber city modeling, an increasing number of 3D models have been available on web-based model-sharing platforms with many applications such as navigation, urban planning, and virtual reality. Based on the concept of data reuse, a 3D model retrieval system is proposed to retrieve building models similar to a user-specified query. The basic idea behind this system is to reuse these existing 3D building models instead of reconstruction from point clouds. To efficiently retrieve models, the models in databases are compactly encoded by using a shape descriptor generally. However, most of the geometric descriptors in related works are applied to polygonal models. In this study, the input query of the model retrieval system is a point cloud acquired by Light Detection and Ranging (LiDAR) systems because of the efficient scene scanning and spatial information collection. Using Point clouds with sparse, noisy, and incomplete sampling as input queries is more difficult than that by using 3D models. Because that the building roof is more informative than other parts in the airborne LiDAR point cloud, an image-based approach is proposed to encode both point clouds from input queries and 3D models in databases. The main goal of data encoding is that the models in the database and input point clouds can be consistently encoded. Firstly, top-view depth images of buildings are generated to represent the geometry surface of a building roof. Secondly, geometric features are extracted from depth images based on height, edge and plane of building. Finally, descriptors can be extracted by spatial histograms and used in 3D model retrieval system. For data retrieval, the models are retrieved by matching the encoding coefficients of point clouds and building models. In experiments, a database including about 900,000 3D models collected from the Internet is used for evaluation of data retrieval. The results of the proposed method show a clear superiority

  2. Dense point-cloud creation using superresolution for a monocular 3D reconstruction system

    NASA Astrophysics Data System (ADS)

    Diskin, Yakov; Asari, Vijayan K.

    2012-05-01

    We present an enhanced 3D reconstruction algorithm designed to support an autonomously navigated unmanned aerial system (UAS). The algorithm presented focuses on the 3D reconstruction of a scene using only a single moving camera. In this way, the system can be used to construct a point cloud model of its unknown surroundings. The original reconstruction process, resulting with a point cloud was computed based on feature matching and depth triangulation analysis. Although dense, this original model was hindered due to its low disparity resolution. As feature points were matched from frame to frame, the resolution of the input images and the discrete nature of disparities limited the depth computations within a scene. With the recent addition of the preprocessing steps of nonlinear super resolution, the accuracy of the point cloud which relies on precise disparity measurement has significantly increased. Using a pixel by pixel approach, the super resolution technique computes the phase congruency of each pixel's neighborhood and produces nonlinearly interpolated high resolution input frames. Thus, a feature point travels a more precise discrete disparity. Also, the quantity of points within the 3D point cloud model is significantly increased since the number of features is directly proportional to the resolution and high frequencies of the input image. The contribution of the newly added preprocessing steps is measured by evaluating the density and accuracy of the reconstructed point cloud for autonomous navigation and mapping tasks within unknown environments.

  3. 3DVEM Software Modules for Efficient Management of Point Clouds and Photorealistic 3d Models

    NASA Astrophysics Data System (ADS)

    Fabado, S.; Seguí, A. E.; Cabrelles, M.; Navarro, S.; García-De-San-Miguel, D.; Lerma, J. L.

    2013-07-01

    Cultural heritage managers in general and information users in particular are not usually used to deal with high-technological hardware and software. On the contrary, information providers of metric surveys are most of the times applying latest developments for real-life conservation and restoration projects. This paper addresses the software issue of handling and managing either 3D point clouds or (photorealistic) 3D models to bridge the gap between information users and information providers as regards the management of information which users and providers share as a tool for decision-making, analysis, visualization and management. There are not many viewers specifically designed to handle, manage and create easily animations of architectural and/or archaeological 3D objects, monuments and sites, among others. 3DVEM - 3D Viewer, Editor & Meter software will be introduced to the scientific community, as well as 3DVEM - Live and 3DVEM - Register. The advantages of managing projects with both sets of data, 3D point cloud and photorealistic 3D models, will be introduced. Different visualizations of true documentation projects in the fields of architecture, archaeology and industry will be presented. Emphasis will be driven to highlight the features of new userfriendly software to manage virtual projects. Furthermore, the easiness of creating controlled interactive animations (both walkthrough and fly-through) by the user either on-the-fly or as a traditional movie file will be demonstrated through 3DVEM - Live.

  4. Facets : a Cloudcompare Plugin to Extract Geological Planes from Unstructured 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Dewez, T. J. B.; Girardeau-Montaut, D.; Allanic, C.; Rohmer, J.

    2016-06-01

    Geological planar facets (stratification, fault, joint…) are key features to unravel the tectonic history of rock outcrop or appreciate the stability of a hazardous rock cliff. Measuring their spatial attitude (dip and strike) is generally performed by hand with a compass/clinometer, which is time consuming, requires some degree of censoring (i.e. refusing to measure some features judged unimportant at the time), is not always possible for fractures higher up on the outcrop and is somewhat hazardous. 3D virtual geological outcrop hold the potential to alleviate these issues. Efficiently segmenting massive 3D point clouds into individual planar facets, inside a convenient software environment was lacking. FACETS is a dedicated plugin within CloudCompare v2.6.2 (http://cloudcompare.org/ ) implemented to perform planar facet extraction, calculate their dip and dip direction (i.e. azimuth of steepest decent) and report the extracted data in interactive stereograms. Two algorithms perform the segmentation: Kd-Tree and Fast Marching. Both divide the point cloud into sub-cells, then compute elementary planar objects and aggregate them progressively according to a planeity threshold into polygons. The boundaries of the polygons are adjusted around segmented points with a tension parameter, and the facet polygons can be exported as 3D polygon shapefiles towards third party GIS software or simply as ASCII comma separated files. One of the great features of FACETS is the capability to explore planar objects but also 3D points with normals with the stereogram tool. Poles can be readily displayed, queried and manually segmented interactively. The plugin blends seamlessly into CloudCompare to leverage all its other 3D point cloud manipulation features. A demonstration of the tool is presented to illustrate these different features. While designed for geological applications, FACETS could be more widely applied to any planar

  5. Estimation of 3-D Cloud Effects on TOMS Satellite Retrieval of Surface UV Irradiance

    NASA Technical Reports Server (NTRS)

    Krotkov, Nickolay A.; Geogdzhayev, I.; Herman, J. R.

    1998-01-01

    To improve surface UV irradiance retrieval from the Total Ozone Mapping Spectrometer (TOMS) we simulate errors of the TOMS cloud correction algorithm for summertime broken cloud conditions. Cloud scenes (50 km by 50 km) are modeled by a normal random (Gaussian) field with a fixed lower boundary and conservative scattering. The model relates stochastic field characteristics with the cloud amount, mean cloud diameter and aspect ratio. Clouds are embedded into Rayleigh atmosphere with standard ozone profile. Radiative transfer calculations of the radiance at the top of the atmosphere and irradiance at the surface were performed using 3-D Monte Carlo (MC) code. The results are averaged over the satellite field of view on the surface (50 km by 50 km) and compared with TOMS predicted surface irradiance for the same scene reflectance. The TOMS algorithm assumes horizontally homogeneous Cl-type cloud between 3 km and 5.5 km. The effective optical depth is determined by fitting observed (MC) radiance at 380 nm. Having the same radiance at the satellite the homogeneous and broken cloud models predict different average irradiances at the surface. This is due to the differences in Bidirectional Reflection Distribution Function (BRDF) for homogeneous and broken cloud scenes with the same hemispherical albedo. For typical TOMS observational geometry at mid-latitudes the simulated single pixels errors may be as large as +/- 20%. Qualitatively these errors are due to the dominance of the non-horizontal cloud surfaces, which are not accounted for in the homogeneous cloud model. However, due to high variability of the real cloud shapes and types it is unclear how these single pixel errors would affect TOMS time-integrated UV exposure over extended periods (weeks to months) for different regions.

  6. Retrieval of cloud microphysical parameters from INSAT-3D: a feasibility study using radiative transfer simulations

    NASA Astrophysics Data System (ADS)

    Jinya, John; Bipasha, Paul S.

    2016-05-01

    Clouds strongly modulate the Earths energy balance and its atmosphere through their interaction with the solar and terrestrial radiation. They interact with radiation in various ways like scattering, emission and absorption. By observing these changes in radiation at different wavelength, cloud properties can be estimated. Cloud properties are of utmost importance in studying different weather and climate phenomena. At present, no satellite provides cloud microphysical parameters over the Indian region with high temporal resolution. INSAT-3D imager observations in 6 spectral channels from geostationary platform offer opportunity to study continuous cloud properties over Indian region. Visible (0.65 μm) and shortwave-infrared (1.67 μm) channel radiances can be used to retrieve cloud microphysical parameters such as cloud optical thickness (COT) and cloud effective radius (CER). In this paper, we have carried out a feasibility study with the objective of cloud microphysics retrieval. For this, an inter-comparison of 15 globally available radiative transfer models (RTM) were carried out with the aim of generating a Look-up- Table (LUT). SBDART model was chosen for the simulations. The sensitivity of each spectral channel to different cloud properties was investigated. The inputs to the RT model were configured over our study region (50°S - 50°N and 20°E - 130°E) and a large number of simulations were carried out using random input vectors to generate the LUT. The determination of cloud optical thickness and cloud effective radius from spectral reflectance measurements constitutes the inverse problem and is typically solved by comparing the measured reflectances with entries in LUT and searching for the combination of COT and CER that gives the best fit. The products are available on the website www.mosdac.gov.in

  7. Comparison Between Two Generic 3d Building Reconstruction Approaches - Point Cloud Based VS. Image Processing Based

    NASA Astrophysics Data System (ADS)

    Dahlke, D.; Linkiewicz, M.

    2016-06-01

    This paper compares two generic approaches for the reconstruction of buildings. Synthesized and real oblique and vertical aerial imagery is transformed on the one hand into a dense photogrammetric 3D point cloud and on the other hand into photogrammetric 2.5D surface models depicting a scene from different cardinal directions. One approach evaluates the 3D point cloud statistically in order to extract the hull of structures, while the other approach makes use of salient line segments in 2.5D surface models, so that the hull of 3D structures can be recovered. With orders of magnitudes more analyzed 3D points, the point cloud based approach is an order of magnitude more accurate for the synthetic dataset compared to the lower dimensioned, but therefor orders of magnitude faster, image processing based approach. For real world data the difference in accuracy between both approaches is not significant anymore. In both cases the reconstructed polyhedra supply information about their inherent semantic and can be used for subsequent and more differentiated semantic annotations through exploitation of texture information.

  8. Extracting valley-ridge lines from point-cloud-based 3D fingerprint models.

    PubMed

    Pang, Xufang; Song, Zhan; Xie, Wuyuan

    2013-01-01

    3D fingerprinting is an emerging technology with the distinct advantage of touchless operation. More important, 3D fingerprint models contain more biometric information than traditional 2D fingerprint images. However, current approaches to fingerprint feature detection usually must transform the 3D models to a 2D space through unwrapping or other methods, which might introduce distortions. A new approach directly extracts valley-ridge features from point-cloud-based 3D fingerprint models. It first applies the moving least-squares method to fit a local paraboloid surface and represent the local point cloud area. It then computes the local surface's curvatures and curvature tensors to facilitate detection of the potential valley and ridge points. The approach projects those points to the most likely valley-ridge lines, using statistical means such as covariance analysis and cross correlation. To finally extract the valley-ridge lines, it grows the polylines that approximate the projected feature points and removes the perturbations between the sampled points. Experiments with different 3D fingerprint models demonstrate this approach's feasibility and performance.

  9. 3D change detection at street level using mobile laser scanning point clouds and terrestrial images

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Gruen, Armin

    2014-04-01

    Automatic change detection and geo-database updating in the urban environment are difficult tasks. There has been much research on detecting changes with satellite and aerial images, but studies have rarely been performed at the street level, which is complex in its 3D geometry. Contemporary geo-databases include 3D street-level objects, which demand frequent data updating. Terrestrial images provides rich texture information for change detection, but the change detection with terrestrial images from different epochs sometimes faces problems with illumination changes, perspective distortions and unreliable 3D geometry caused by the lack of performance of automatic image matchers, while mobile laser scanning (MLS) data acquired from different epochs provides accurate 3D geometry for change detection, but is very expensive for periodical acquisition. This paper proposes a new method for change detection at street level by using combination of MLS point clouds and terrestrial images: the accurate but expensive MLS data acquired from an early epoch serves as the reference, and terrestrial images or photogrammetric images captured from an image-based mobile mapping system (MMS) at a later epoch are used to detect the geometrical changes between different epochs. The method will automatically mark the possible changes in each view, which provides a cost-efficient method for frequent data updating. The methodology is divided into several steps. In the first step, the point clouds are recorded by the MLS system and processed, with data cleaned and classified by semi-automatic means. In the second step, terrestrial images or mobile mapping images at a later epoch are taken and registered to the point cloud, and then point clouds are projected on each image by a weighted window based z-buffering method for view dependent 2D triangulation. In the next step, stereo pairs of the terrestrial images are rectified and re-projected between each other to check the geometrical

  10. 3D Cloud Effects in OCO-2 Observations - Evidence and Mitigation

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Massie, Steven; Iwabuchi, Hironobu; Okamura, Rintaro; Crisp, David

    2016-04-01

    In July 2014, the NASA Orbiting Carbon Observatory (OCO-2) satellite was inserted into the 705-km Afternoon Constellation (A-Train). OCO-2 provides estimates of column-averaged CO2 dry air mixing ratios (XCO2), based on high spectral resolution radiance observations of reflected sunlight in the O2 A-band and in the weak and strong absorption CO2 bands at 1.6 and 2.1 μm. The accuracy requirement for OCO-2 XCO2 retrievals is 1 ppmv on regional scales (> 1000 km). At the single sounding level, inhomogeneous clouds, surface albedo, and aerosols introduce wavelength-dependent perturbations into the sensed radiance fields, affecting the retrieval products. Scattering and shadowing by clouds outside of the field of view (FOV) may be a leading source of error for clear-sky XCO2 retrievals in partially cloudy regions. To understand these effects, we developed a 3D OCO-2 simulator, which uses observations by MODIS (also in the A-Train) and other scene information as input to simulate OCO-2 radiance spectra at the full wavelength resolution of the three bands. It is based on MCARaTS (Monte Carlo Atmospheric Radiative Transfer Simulator) as the 3D radiative transfer solver. The OCO-2 3D simulator was applied to an observed scene near a Total Carbon Column Observing Network (TCCON) station. The 3D calculations reproduced the OCO-2 radiances, including the perturbations due to clouds, at the single sounding level. The analysis further suggests that clouds near an OCO-2 footprint leave systematic spectral imprints on the radiances, which could be parameterized to be included in the retrieval state vector. If successful, this new state vector element could account for 3D effects without the need for operational 3D radiative transfer calculations. This may be the starting point not only for the improved screening of low-level broken boundary layer clouds, but also for mitigating the effects of nearby clouds at the radiance level, thus improving the accuracy of retrievals in

  11. Small-scale effects of underwater bubble clouds on ocean reflectance: 3-D modeling results.

    PubMed

    Piskozub, Jacek; Stramski, Dariusz; Terrill, Eric; Melville, W Kendall

    2009-07-01

    We examined the effect of individual bubble clouds on remote-sensing reflectance of the ocean with a 3-D Monte Carlo model of radiative transfer. The concentrations and size distribution of bubbles were defined based on acoustical measurements of bubbles in the surface ocean. The light scattering properties of bubbles for various void fractions were calculated using Mie scattering theory. We show how the spatial pattern, magnitude, and spectral behavior of remote-sensing reflectance produced by modeled bubble clouds change due to variations in their geometric and optical properties as well as the background optical properties of the ambient water. We also determined that for realistic sizes of bubble clouds, a plane-parallel horizontally homogeneous geometry (1-D radiative transfer model) is inadequate for modeling water-leaving radiance above the cloud.

  12. 3D MODELING OF GJ1214b's ATMOSPHERE: FORMATION OF INHOMOGENEOUS HIGH CLOUDS AND OBSERVATIONAL IMPLICATIONS

    SciTech Connect

    Charnay, B.; Meadows, V.; Misra, A.; Arney, G.; Leconte, J.

    2015-11-01

    The warm sub-Neptune GJ1214b has a featureless transit spectrum that may be due to the presence of high and thick clouds or haze. Here, we simulate the atmosphere of GJ1214b with a 3D General Circulation Model for cloudy hydrogen-dominated atmospheres, including cloud radiative effects. We show that the atmospheric circulation is strong enough to transport micrometric cloud particles to the upper atmosphere and generally leads to a minimum of cloud at the equator. By scattering stellar light, clouds increase the planetary albedo to 0.4–0.6 and cool the atmosphere below 1 mbar. However, the heating by ZnS clouds leads to the formation of a stratospheric thermal inversion above 10 mbar, with temperatures potentially high enough on the dayside to evaporate KCl clouds. We show that flat transit spectra consistent with Hubble Space Telescope observations are possible if cloud particle radii are around 0.5 μm, and that such clouds should be optically thin at wavelengths >3 μm. Using simulated cloudy atmospheres that fit the observed spectra we generate transit, emission, and reflection spectra and phase curves for GJ1214b. We show that a stratospheric thermal inversion would be readily accessible in near- and mid-infrared atmospheric spectral windows. We find that the amplitude of the thermal phase curves is strongly dependent on metallicity, but only slightly impacted by clouds. Our results suggest that primary and secondary eclipses and phase curves observed by the James Webb Space Telescope in the near- to mid-infrared should provide strong constraints on the nature of GJ1214b's atmosphere and clouds.

  13. Evaluation of Partially Overlapping 3D Point Cloud's Registration by using ICP variant and CloudCompare.

    NASA Astrophysics Data System (ADS)

    Rajendra, Y. D.; Mehrotra, S. C.; Kale, K. V.; Manza, R. R.; Dhumal, R. K.; Nagne, A. D.; Vibhute, A. D.

    2014-11-01

    Terrestrial Laser Scanners (TLS) are used to get dense point samples of large object's surface. TLS is new and efficient method to digitize large object or scene. The collected point samples come into different formats and coordinates. Different scans are required to scan large object such as heritage site. Point cloud registration is considered as important task to bring different scans into whole 3D model in one coordinate system. Point clouds can be registered by using one of the three ways or combination of them, Target based, feature extraction, point cloud based. For the present study we have gone through Point Cloud Based registration approach. We have collected partially overlapped 3D Point Cloud data of Department of Computer Science & IT (DCSIT) building located in Dr. Babasaheb Ambedkar Marathwada University, Aurangabad. To get the complete point cloud information of the building we have taken 12 scans, 4 scans for exterior and 8 scans for interior façade data collection. There are various algorithms available in literature, but Iterative Closest Point (ICP) is most dominant algorithms. The various researchers have developed variants of ICP for better registration process. The ICP point cloud registration algorithm is based on the search of pairs of nearest points in a two adjacent scans and calculates the transformation parameters between them, it provides advantage that no artificial target is required for registration process. We studied and implemented three variants Brute Force, KDTree, Partial Matching of ICP algorithm in MATLAB. The result shows that the implemented version of ICP algorithm with its variants gives better result with speed and accuracy of registration as compared with CloudCompare Open Source software.

  14. Adaptive noise suppression technique for dense 3D point cloud reconstructions from monocular vision

    NASA Astrophysics Data System (ADS)

    Diskin, Yakov; Asari, Vijayan K.

    2012-10-01

    Mobile vision-based autonomous vehicles use video frames from multiple angles to construct a 3D model of their environment. In this paper, we present a post-processing adaptive noise suppression technique to enhance the quality of the computed 3D model. Our near real-time reconstruction algorithm uses each pair of frames to compute the disparities of tracked feature points to translate the distance a feature has traveled within the frame in pixels into real world depth values. As a result these tracked feature points are plotted to form a dense and colorful point cloud. Due to the inevitable small vibrations in the camera and the mismatches within the feature tracking algorithm, the point cloud model contains a significant amount of misplaced points appearing as noise. The proposed noise suppression technique utilizes the spatial information of each point to unify points of similar texture and color into objects while simultaneously removing noise dissociated with any nearby objects. The noise filter combines all the points of similar depth into 2D layers throughout the point cloud model. By applying erosion and dilation techniques we are able to eliminate the unwanted floating points while retaining points of larger objects. To reverse the compression process, we transform the 2D layer back into the 3D model allowing points to return to their original position without the attached noise components. We evaluate the resulting noiseless point cloud by utilizing an unmanned ground vehicle to perform obstacle avoidance tasks. The contribution of the noise suppression technique is measured by evaluating the accuracy of the 3D reconstruction.

  15. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.

    PubMed

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame.

  16. Sloped Terrain Segmentation for Autonomous Drive Using Sparse 3D Point Cloud

    PubMed Central

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  17. Sloped terrain segmentation for autonomous drive using sparse 3D point cloud.

    PubMed

    Cho, Seoungjae; Kim, Jonghyun; Ikram, Warda; Cho, Kyungeun; Jeong, Young-Sik; Um, Kyhyun; Sim, Sungdae

    2014-01-01

    A ubiquitous environment for road travel that uses wireless networks requires the minimization of data exchange between vehicles. An algorithm that can segment the ground in real time is necessary to obtain location data between vehicles simultaneously executing autonomous drive. This paper proposes a framework for segmenting the ground in real time using a sparse three-dimensional (3D) point cloud acquired from undulating terrain. A sparse 3D point cloud can be acquired by scanning the geography using light detection and ranging (LiDAR) sensors. For efficient ground segmentation, 3D point clouds are quantized in units of volume pixels (voxels) and overlapping data is eliminated. We reduce nonoverlapping voxels to two dimensions by implementing a lowermost heightmap. The ground area is determined on the basis of the number of voxels in each voxel group. We execute ground segmentation in real time by proposing an approach to minimize the comparison between neighboring voxels. Furthermore, we experimentally verify that ground segmentation can be executed at about 19.31 ms per frame. PMID:25093204

  18. Applying focal spot unsharpness to resolve ambiguity in 3D reconstruction from biplane coronary angiograms

    NASA Astrophysics Data System (ADS)

    Slump, Cornelis H.; Schrijver, Marc; Storm, Corstiaan J.

    2001-05-01

    In our research program that aims to quantify the functional relevance of partly occluded coronary vessels, we need in one of the approaches to the problem, the 3D structure of the pertinent vessels. The use of standard biplane projection angiograms is limited by the ambiguity about the orientation not resolved by the two projections. In this paper we study to solve the orientation ambiguity based upon the geometrical unsharpness due to the focal spot of the X-ray tube. We describe the influence of the focal spot on the imaging MTF. We present the analysis of the biplane projection geometry based upon fan beam and focal spot. We derive the analytical equation of the MTF due to focal spot and geometrical magnification. We also analyze and indicate practical situations of coronaries from real angiograms.

  19. vPresent: A cloud based 3D virtual presentation environment for interactive product customization

    NASA Astrophysics Data System (ADS)

    Nan, Xiaoming; Guo, Fei; He, Yifeng; Guan, Ling

    2013-09-01

    In modern society, many companies offer product customization services to their customers. There are two major issues in providing customized products. First, product manufacturers need to effectively present their products to the customers who may be located in any geographical area. Second, customers need to be able to provide their feedbacks on the product in real-time. However, the traditional presentation approaches cannot effectively convey sufficient information for the product or efficiently adjust product design according to customers' real-time feedbacks. In order to address these issues, we propose vPresent , a cloud based 3D virtual presentation environment, in this paper. In vPresent, the product expert can show the 3D virtual product to the remote customers and dynamically customize the product based on customers' feedbacks, while customers can provide their opinions in real time when they are viewing a vivid 3D visualization of the product. Since the proposed vPresent is a cloud based system, the customers are able to access the customized virtual products from anywhere at any time, via desktop, laptop, or even smart phone. The proposed vPresent is expected to effectively deliver 3D visual information to customers and provide an interactive design platform for the development of customized products.

  20. 3-D earthquake surface displacements from differencing pre- and post-event LiDAR point clouds

    NASA Astrophysics Data System (ADS)

    Krishnan, A. K.; Nissen, E.; Arrowsmith, R.; Saripalli, S.

    2012-12-01

    The explosion in aerial LiDAR surveying along active faults across the western United States and elsewhere provides a high-resolution topographic baseline against which to compare repeat LiDAR datasets collected after future earthquakes. We present a new method for determining 3-D coseismic surface displacements and rotations by differencing pre- and post-earthquake LiDAR point clouds using an adaptation of the Iterative Closest Point (ICP) algorithm, a point set registration technique widely used in medical imaging, computer vision and graphics. There is no need for any gridding or smoothing of the LiDAR data and the method works well even with large mismatches in the density of the two point clouds. To explore the method's performance, we simulate pre- and post-event point clouds using real ("B4") LiDAR data on the southern San Andreas Fault perturbed with displacements of known magnitude. For input point clouds with ~2 points per square meter, we are able to reproduce displacements with a 50 m grid spacing and with horizontal and vertical accuracies of ~20 cm and ~4 cm. In the future, finer grids and improved precisions should be possible with higher shot densities and better survey geo-referencing. By capturing near-fault deformation in 3-D, LiDAR differencing with ICP will complement satellite-based techniques such as InSAR which map only certain components of the surface deformation and which often break down close to surface faulting or in areas of dense vegetation. It will be especially useful for mapping shallow fault slip and rupture zone deformation, helping inform paleoseismic studies and better constrain fault zone rheology. Because ICP can image rotations directly, the technique will also help resolve the detailed kinematics of distributed zones of faulting where block rotations may be common.

  1. Street curb recognition in 3d point cloud data using morphological operations

    NASA Astrophysics Data System (ADS)

    Rodríguez-Cuenca, Borja; Concepción Alonso-Rodríguez, María; García-Cortés, Silverio; Ordóñez, Celestino

    2015-04-01

    Accurate and automatic detection of cartographic-entities saves a great deal of time and money when creating and updating cartographic databases. The current trend in remote sensing feature extraction is to develop methods that are as automatic as possible. The aim is to develop algorithms that can obtain accurate results with the least possible human intervention in the process. Non-manual curb detection is an important issue in road maintenance, 3D urban modeling, and autonomous navigation fields. This paper is focused on the semi-automatic recognition of curbs and street boundaries using a 3D point cloud registered by a mobile laser scanner (MLS) system. This work is divided into four steps. First, a coordinate system transformation is carried out, moving from a global coordinate system to a local one. After that and in order to simplify the calculations involved in the procedure, a rasterization based on the projection of the measured point cloud on the XY plane was carried out, passing from the 3D original data to a 2D image. To determine the location of curbs in the image, different image processing techniques such as thresholding and morphological operations were applied. Finally, the upper and lower edges of curbs are detected by an unsupervised classification algorithm on the curvature and roughness of the points that represent curbs. The proposed method is valid in both straight and curved road sections and applicable both to laser scanner and stereo vision 3D data due to the independence of its scanning geometry. This method has been successfully tested with two datasets measured by different sensors. The first dataset corresponds to a point cloud measured by a TOPCON sensor in the Spanish town of Cudillero. That point cloud comprises more than 6,000,000 points and covers a 400-meter street. The second dataset corresponds to a point cloud measured by a RIEGL sensor in the Austrian town of Horn. That point cloud comprises 8,000,000 points and represents a

  2. Accelerating 3D radiative transfer for realistic OCO-2 cloud-aerosol scenes

    NASA Astrophysics Data System (ADS)

    Schmidt, S.; Massie, S. T.; Platnick, S. E.; Song, S.

    2014-12-01

    The recently launched NASA OCO-2 satellite is expected to provide important information about the carbon dioxide distribution in the troposphere down to Earth's surface. Among the challenges in accurately retrieving CO2 concentration from the hyperspectral observations in each of the three OCO-2 bands are cloud and aerosol impacts on the observed radiances. Preliminary studies based on idealized cloud fields have shown that they can lead to spectrally dependent radiance perturbations which differ from band to band and may lead to biases in the derived products. Since OCO-2 was inserted into the A-Train, it is only natural to capitalize on sensor synergies with other instruments, in this case on the cloud and aerosol scene context that is provided by MODIS and CALIOP. Our approach is to use cloud imagery (especially for inhomogeneous scenes) for predicting the hyperspectral observations within a collocated OCO-2 footprint and comparing with the observations, which allows a systematic assessment of the causes for biases in the retrievals themselves, and their manifestation in spectral residuals for various different cloud types and distributions. Simulating a large number of cases with line-by-line calculations using a 3D code is computationally prohibitive even on large parallel computers. Therefore, we developed a number of acceleration approaches. In this contribution, we will analyze them in terms of their speed and accuracy, using cloud fields from airborne imagery collected during a recent NASA field experiment (SEAC4RS) as proxy for different types of inhomogeneous cloud fields. The broader goal of this effort is to improve OCO-2 retrievals in the vicinity of cloud fields, and to extend the range of conditions under which the instrument will provide useful results.

  3. Parameter Estimation of Fossil Oysters from High Resolution 3D Point Cloud and Image Data

    NASA Astrophysics Data System (ADS)

    Djuricic, Ana; Harzhauser, Mathias; Dorninger, Peter; Nothegger, Clemens; Mandic, Oleg; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2014-05-01

    A unique fossil oyster reef was excavated at Stetten in Lower Austria, which is also the highlight of the geo-edutainment park 'Fossilienwelt Weinviertel'. It provides the rare opportunity to study the Early Miocene flora and fauna of the Central Paratethys Sea. The site presents the world's largest fossil oyster biostrome formed about 16.5 million years ago in a tropical estuary of the Korneuburg Basin. About 15,000 up to 80-cm-long shells of Crassostrea gryphoides cover a 400 m2 large area. Our project 'Smart-Geology for the World's largest fossil oyster reef' combines methods of photogrammetry, geology and paleontology to document, evaluate and quantify the shell bed. This interdisciplinary approach will be applied to test hypotheses on the genesis of the taphocenosis (e.g.: tsunami versus major storm) and to reconstruct pre- and post-event processes. Hence, we are focusing on using visualization technologies from photogrammetry in geology and paleontology in order to develop new methods for automatic and objective evaluation of 3D point clouds. These will be studied on the basis of a very dense surface reconstruction of the oyster reef. 'Smart Geology', as extension of the classic discipline, exploits massive data, automatic interpretation, and visualization. Photogrammetry provides the tools for surface acquisition and objective, automated interpretation. We also want to stress the economic aspect of using automatic shape detection in paleontology, which saves manpower and increases efficiency during the monitoring and evaluation process. Currently, there are many well known algorithms for 3D shape detection of certain objects. We are using dense 3D laser scanning data from an instrument utilizing the phase shift measuring principle, which provides accurate geometrical basis < 3 mm. However, the situation is difficult in this multiple object scenario where more than 15,000 complete or fragmentary parts of an object with random orientation are found. The goal

  4. Automated extraction and analysis of rock discontinuity characteristics from 3D point clouds

    NASA Astrophysics Data System (ADS)

    Bianchetti, Matteo; Villa, Alberto; Agliardi, Federico; Crosta, Giovanni B.

    2016-04-01

    A reliable characterization of fractured rock masses requires an exhaustive geometrical description of discontinuities, including orientation, spacing, and size. These are required to describe discontinuum rock mass structure, perform Discrete Fracture Network and DEM modelling, or provide input for rock mass classification or equivalent continuum estimate of rock mass properties. Although several advanced methodologies have been developed in the last decades, a complete characterization of discontinuity geometry in practice is still challenging, due to scale-dependent variability of fracture patterns and difficult accessibility to large outcrops. Recent advances in remote survey techniques, such as terrestrial laser scanning and digital photogrammetry, allow a fast and accurate acquisition of dense 3D point clouds, which promoted the development of several semi-automatic approaches to extract discontinuity features. Nevertheless, these often need user supervision on algorithm parameters which can be difficult to assess. To overcome this problem, we developed an original Matlab tool, allowing fast, fully automatic extraction and analysis of discontinuity features with no requirements on point cloud accuracy, density and homogeneity. The tool consists of a set of algorithms which: (i) process raw 3D point clouds, (ii) automatically characterize discontinuity sets, (iii) identify individual discontinuity surfaces, and (iv) analyse their spacing and persistence. The tool operates in either a supervised or unsupervised mode, starting from an automatic preliminary exploration data analysis. The identification and geometrical characterization of discontinuity features is divided in steps. First, coplanar surfaces are identified in the whole point cloud using K-Nearest Neighbor and Principal Component Analysis algorithms optimized on point cloud accuracy and specified typical facet size. Then, discontinuity set orientation is calculated using Kernel Density Estimation and

  5. Grammar-Supported 3d Indoor Reconstruction from Point Clouds for As-Built Bim

    NASA Astrophysics Data System (ADS)

    Becker, S.; Peter, M.; Fritsch, D.

    2015-03-01

    The paper presents a grammar-based approach for the robust automatic reconstruction of 3D interiors from raw point clouds. The core of the approach is a 3D indoor grammar which is an extension of our previously published grammar concept for the modeling of 2D floor plans. The grammar allows for the modeling of buildings whose horizontal, continuous floors are traversed by hallways providing access to the rooms as it is the case for most office buildings or public buildings like schools, hospitals or hotels. The grammar is designed in such way that it can be embedded in an iterative automatic learning process providing a seamless transition from LOD3 to LOD4 building models. Starting from an initial low-level grammar, automatically derived from the window representations of an available LOD3 building model, hypotheses about indoor geometries can be generated. The hypothesized indoor geometries are checked against observation data - here 3D point clouds - collected in the interior of the building. The verified and accepted geometries form the basis for an automatic update of the initial grammar. By this, the knowledge content of the initial grammar is enriched, leading to a grammar with increased quality. This higher-level grammar can then be applied to predict realistic geometries to building parts where only sparse observation data are available. Thus, our approach allows for the robust generation of complete 3D indoor models whose quality can be improved continuously as soon as new observation data are fed into the grammar-based reconstruction process. The feasibility of our approach is demonstrated based on a real-world example.

  6. Automatic extraction of discontinuity orientation from rock mass surface 3D point cloud

    NASA Astrophysics Data System (ADS)

    Chen, Jianqin; Zhu, Hehua; Li, Xiaojun

    2016-10-01

    This paper presents a new method for extracting discontinuity orientation automatically from rock mass surface 3D point cloud. The proposed method consists of four steps: (1) automatic grouping of discontinuity sets using an improved K-means clustering method, (2) discontinuity segmentation and optimization, (3) discontinuity plane fitting using Random Sample Consensus (RANSAC) method, and (4) coordinate transformation of discontinuity plane. The method is first validated by the point cloud of a small piece of a rock slope acquired by photogrammetry. The extracted discontinuity orientations are compared with measured ones in the field. Then it is applied to a publicly available LiDAR data of a road cut rock slope at Rockbench repository. The extracted discontinuity orientations are compared with the method proposed by Riquelme et al. (2014). The results show that the presented method is reliable and of high accuracy, and can meet the engineering needs.

  7. Observing molecular dynamics with time-resolved 3D momentum imaging

    NASA Astrophysics Data System (ADS)

    Sturm, F. P.; Wright, T.; Bocharova, I.; Ray, D.; Shivaram, N.; Cryan, J.; Belkacem, A.; Weber, T.; Dörner, R.

    2014-05-01

    Photo-excitation and ionization trigger rich dynamics in molecular systems which play a key role in many important processes in nature such as vision, photosynthesis or photoprotection. Observing those reactions in real-time without significantly disturbing the molecules by a strong electric field has been a great challenge. Recent experiments using Time-of-Flight and Velocity Map Imaging techniques have revealed important information on the dynamics of small molecular systems upon photo-excitation. We have developed an apparatus for time-resolved momentum imaging of electrons and ions in all three spatial dimensions that employs two-color femtosecond laser pulses in the vacuum and extreme ultraviolet (VUV, XUV) for probing molecular dynamics. Our COLTRIMS style reaction microscope can measure electrons and ions in coincidence and reconstruct the momenta of the reaction fragments in 3D. We use a high power 800 nm laser in a loose focusing geometry gas cell to efficinetly drive High Harmonic Generation. The resulting photon flux is sufficient to perform 2-photon pump-probe experiments using VUV and XUV pulses for both pump and probe. With this setup we investigate non-Born-Oppenheimer dynamics in small molecules such as C2H4 and CO2 on a femtosecond time scale. Supported by Chemical Sciences, Geosciences and Biosciences division of BES/DOE.

  8. Deriving 3d Point Clouds from Terrestrial Photographs - Comparison of Different Sensors and Software

    NASA Astrophysics Data System (ADS)

    Niederheiser, Robert; Mokroš, Martin; Lange, Julia; Petschko, Helene; Prasicek, Günther; Oude Elberink, Sander

    2016-06-01

    Terrestrial photogrammetry nowadays offers a reasonably cheap, intuitive and effective approach to 3D-modelling. However, the important choice, which sensor and which software to use is not straight forward and needs consideration as the choice will have effects on the resulting 3D point cloud and its derivatives. We compare five different sensors as well as four different state-of-the-art software packages for a single application, the modelling of a vegetated rock face. The five sensors represent different resolutions, sensor sizes and price segments of the cameras. The software packages used are: (1) Agisoft PhotoScan Pro (1.16), (2) Pix4D (2.0.89), (3) a combination of Visual SFM (V0.5.22) and SURE (1.2.0.286), and (4) MicMac (1.0). We took photos of a vegetated rock face from identical positions with all sensors. Then we compared the results of the different software packages regarding the ease of the workflow, visual appeal, similarity and quality of the point cloud. While PhotoScan and Pix4D offer the user-friendliest workflows, they are also "black-box" programmes giving only little insight into their processing. Unsatisfying results may only be changed by modifying settings within a module. The combined workflow of Visual SFM, SURE and CloudCompare is just as simple but requires more user interaction. MicMac turned out to be the most challenging software as it is less user-friendly. However, MicMac offers the most possibilities to influence the processing workflow. The resulting point-clouds of PhotoScan and MicMac are the most appealing.

  9. Simulation of subgrid orographic precipitation with an embedded 2-D cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Jung, Joon-Hee; Arakawa, Akio

    2016-03-01

    By explicitly resolving cloud-scale processes with embedded two-dimensional (2-D) cloud-resolving models (CRMs), superparameterized global atmospheric models have successfully simulated various atmospheric events over a wide range of time scales. Up to now, however, such models have not included the effects of topography on the CRM grid scale. We have used both 3-D and 2-D CRMs to simulate the effects of topography with prescribed "large-scale" winds. The 3-D CRM is used as a benchmark. The results show that the mean precipitation can be simulated reasonably well by using a 2-D representation of topography as long as the statistics of the topography such as the mean and standard deviation are closely represented. It is also shown that the use of a set of two perpendicular 2-D grids can significantly reduce the error due to a 2-D representation of topography.

  10. 3D Modeling of Building Indoor Spaces and Closed Doors from Imagery and Point Clouds

    PubMed Central

    Díaz-Vilariño, Lucía; Khoshelham, Kourosh; Martínez-Sánchez, Joaquín; Arias, Pedro

    2015-01-01

    3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. PMID:25654723

  11. 3D modeling of building indoor spaces and closed doors from imagery and point clouds.

    PubMed

    Díaz-Vilariño, Lucía; Khoshelham, Kourosh; Martínez-Sánchez, Joaquín; Arias, Pedro

    2015-02-03

    3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction.

  12. Indoor Navigation from Point Clouds: 3d Modelling and Obstacle Detection

    NASA Astrophysics Data System (ADS)

    Díaz-Vilariño, L.; Boguslawski, P.; Khoshelham, K.; Lorenzo, H.; Mahdjoubi, L.

    2016-06-01

    In the recent years, indoor modelling and navigation has become a research of interest because many stakeholders require navigation assistance in various application scenarios. The navigational assistance for blind or wheelchair people, building crisis management such as fire protection, augmented reality for gaming, tourism or training emergency assistance units are just some of the direct applications of indoor modelling and navigation. Navigational information is traditionally extracted from 2D drawings or layouts. Real state of indoors, including opening position and geometry for both windows and doors, and the presence of obstacles is commonly ignored. In this work, a real indoor-path planning methodology based on 3D point clouds is developed. The value and originality of the approach consist on considering point clouds not only for reconstructing semantically-rich 3D indoor models, but also for detecting potential obstacles in the route planning and using these for readapting the routes according to the real state of the indoor depictured by the laser scanner.

  13. 3D modeling of building indoor spaces and closed doors from imagery and point clouds.

    PubMed

    Díaz-Vilariño, Lucía; Khoshelham, Kourosh; Martínez-Sánchez, Joaquín; Arias, Pedro

    2015-01-01

    3D models of indoor environments are increasingly gaining importance due to the wide range of applications to which they can be subjected: from redesign and visualization to monitoring and simulation. These models usually exist only for newly constructed buildings; therefore, the development of automatic approaches for reconstructing 3D indoors from imagery and/or point clouds can make the process easier, faster and cheaper. Among the constructive elements defining a building interior, doors are very common elements and their detection can be very useful either for knowing the environment structure, to perform an efficient navigation or to plan appropriate evacuation routes. The fact that doors are topologically connected to walls by being coplanar, together with the unavoidable presence of clutter and occlusions indoors, increases the inherent complexity of the automation of the recognition process. In this work, we present a pipeline of techniques used for the reconstruction and interpretation of building interiors based on point clouds and images. The methodology analyses the visibility problem of indoor environments and goes in depth with door candidate detection. The presented approach is tested in real data sets showing its potential with a high door detection rate and applicability for robust and efficient envelope reconstruction. PMID:25654723

  14. A method of 3D object recognition and localization in a cloud of points

    NASA Astrophysics Data System (ADS)

    Bielicki, Jerzy; Sitnik, Robert

    2013-12-01

    The proposed method given in this article is prepared for analysis of data in the form of cloud of points directly from 3D measurements. It is designed for use in the end-user applications that can directly be integrated with 3D scanning software. The method utilizes locally calculated feature vectors (FVs) in point cloud data. Recognition is based on comparison of the analyzed scene with reference object library. A global descriptor in the form of a set of spatially distributed FVs is created for each reference model. During the detection process, correlation of subsets of reference FVs with FVs calculated in the scene is computed. Features utilized in the algorithm are based on parameters, which qualitatively estimate mean and Gaussian curvatures. Replacement of differentiation with averaging in the curvatures estimation makes the algorithm more resistant to discontinuities and poor quality of the input data. Utilization of the FV subsets allows to detect partially occluded and cluttered objects in the scene, while additional spatial information maintains false positive rate at a reasonably low level.

  15. PointCloudExplore 2: Visual exploration of 3D gene expression

    SciTech Connect

    International Research Training Group Visualization of Large and Unstructured Data Sets, University of Kaiserslautern, Germany; Institute for Data Analysis and Visualization, University of California, Davis, CA; Computational Research Division, Lawrence Berkeley National Laboratory , Berkeley, CA; Genomics Division, LBNL; Computer Science Department, University of California, Irvine, CA; Computer Science Division,University of California, Berkeley, CA; Life Sciences Division, LBNL; Department of Molecular and Cellular Biology and the Center for Integrative Genomics, University of California, Berkeley, CA; Ruebel, Oliver; Rubel, Oliver; Weber, Gunther H.; Huang, Min-Yu; Bethel, E. Wes; Keranen, Soile V.E.; Fowlkes, Charless C.; Hendriks, Cris L. Luengo; DePace, Angela H.; Simirenko, L.; Eisen, Michael B.; Biggin, Mark D.; Hagen, Hand; Malik, Jitendra; Knowles, David W.; Hamann, Bernd

    2008-03-31

    To better understand how developmental regulatory networks are defined inthe genome sequence, the Berkeley Drosophila Transcription Network Project (BDNTP)has developed a suite of methods to describe 3D gene expression data, i.e.,the output of the network at cellular resolution for multiple time points. To allow researchersto explore these novel data sets we have developed PointCloudXplore (PCX).In PCX we have linked physical and information visualization views via the concept ofbrushing (cell selection). For each view dedicated operations for performing selectionof cells are available. In PCX, all cell selections are stored in a central managementsystem. Cells selected in one view can in this way be highlighted in any view allowingfurther cell subset properties to be determined. Complex cell queries can be definedby combining different cell selections using logical operations such as AND, OR, andNOT. Here we are going to provide an overview of PointCloudXplore 2 (PCX2), thelatest publicly available version of PCX. PCX2 has shown to be an effective tool forvisual exploration of 3D gene expression data. We discuss (i) all views available inPCX2, (ii) different strategies to perform cell selection, (iii) the basic architecture ofPCX2., and (iv) illustrate the usefulness of PCX2 using selected examples.

  16. Progress in Understanding the Impacts of 3-D Cloud Structure on MODIS Cloud Property Retrievals for Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Werner, Frank; Miller, Daniel; Platnick, Steven; Ackerman, Andrew; DiGirolamo, Larry; Meyer, Kerry; Marshak, Alexander; Wind, Galina; Zhao, Guangyu

    2016-01-01

    Theory: A novel framework based on 2-D Tayler expansion for quantifying the uncertainty in MODIS retrievals caused by sub-pixel reflectance inhomogeneity. (Zhang et al. 2016). How cloud vertical structure influences MODIS LWP retrievals. (Miller et al. 2016). Observation: Analysis of failed MODIS cloud property retrievals. (Cho et al. 2015). Cloud property retrievals from 15m resolution ASTER observations. (Werner et al. 2016). Modeling: LES-Satellite observation simulator (Zhang et al. 2012, Miller et al. 2016).

  17. Biview learning for human posture segmentation from 3D points cloud.

    PubMed

    Qiao, Maoying; Cheng, Jun; Bian, Wei; Tao, Dacheng

    2014-01-01

    Posture segmentation plays an essential role in human motion analysis. The state-of-the-art method extracts sufficiently high-dimensional features from 3D depth images for each 3D point and learns an efficient body part classifier. However, high-dimensional features are memory-consuming and difficult to handle on large-scale training dataset. In this paper, we propose an efficient two-stage dimension reduction scheme, termed biview learning, to encode two independent views which are depth-difference features (DDF) and relative position features (RPF). Biview learning explores the complementary property of DDF and RPF, and uses two stages to learn a compact yet comprehensive low-dimensional feature space for posture segmentation. In the first stage, discriminative locality alignment (DLA) is applied to the high-dimensional DDF to learn a discriminative low-dimensional representation. In the second stage, canonical correlation analysis (CCA) is used to explore the complementary property of RPF and the dimensionality reduced DDF. Finally, we train a support vector machine (SVM) over the output of CCA. We carefully validate the effectiveness of DLA and CCA utilized in the two-stage scheme on our 3D human points cloud dataset. Experimental results show that the proposed biview learning scheme significantly outperforms the state-of-the-art method for human posture segmentation.

  18. PointCloudXplore: a visualization tool for 3D gene expressiondata

    SciTech Connect

    Rubel, Oliver; Weber, Gunther H.; Keranen, Soile V.E.; Fowlkes,Charles C.; Luengo Hendriks, Cristian L.; Simirenko, Lisa; Shah, NameetaY.; Eisen, Michael B.; Biggn, Mark D.; Hagen, Hans; Sudar, Damir J.; Malik, Jitendra; Knowles, David W.; Hamann, Bernd

    2006-10-01

    The Berkeley Drosophila Transcription Network Project (BDTNP) has developed a suite of methods that support quantitative, computational analysis of three-dimensional (3D) gene expression patterns with cellular resolution in early Drosophila embryos, aiming at a more in-depth understanding of gene regulatory networks. We describe a new tool, called PointCloudXplore (PCX), that supports effective 3D gene expression data exploration. PCX is a visualization tool that uses the established visualization techniques of multiple views, brushing, and linking to support the analysis of high-dimensional datasets that describe many genes' expression. Each of the views in PointCloudXplore shows a different gene expression data property. Brushing is used to select and emphasize data associated with defined subsets of embryo cells within a view. Linking is used to show in additional views the expression data for a group of cells that have first been highlighted as a brush in a single view, allowing further data subset properties to be determined. In PCX, physical views of the data are linked to abstract data displays such as parallel coordinates. Physical views show the spatial relationships between different genes' expression patterns within an embryo. Abstract gene expression data displays on the other hand allow for an analysis of relationships between different genes directly in the gene expression space. We discuss on parallel coordinates as one example abstract data view currently available in PCX. We have developed several extensions to standard parallel coordinates to facilitate brushing and the visualization of 3D gene expression data.

  19. Time-resolved fuel injector flow characterisation based on 3D laser Doppler vibrometry

    NASA Astrophysics Data System (ADS)

    Crua, Cyril; Heikal, Morgan R.

    2014-12-01

    Hydrodynamic turbulence and cavitation are known to play a significant role in high-pressure atomizers, but the small geometries and extreme operating conditions hinder the understanding of the flow’s characteristics. Diesel internal flow experiments are generally conducted using x-ray techniques or on transparent, and often enlarged, nozzles with different orifice geometries and surface roughness to those found in production injectors. In order to enable investigations of the fuel flow inside unmodified injectors, we have developed a new experimental approach to measure time-resolved vibration spectra of diesel nozzles using a 3D laser vibrometer. The technique we propose is based on the triangulation of the vibrometer and fuel pressure transducer signals, and enables the quantitative characterisation of quasi-cyclic internal flows without requiring modifications to the injector, the working fluid, or limiting the fuel injection pressure. The vibrometer, which uses the Doppler effect to measure the velocity of a vibrating object, was used to scan injector nozzle tips during the injection event. The data were processed using a discrete Fourier transform to provide time-resolved spectra for valve-closed-orifice, minisac and microsac nozzle geometries, and injection pressures ranging from 60 to 160 MPa, hence offering unprecedented insight into cyclic cavitation and internal mechanical dynamic processes. A peak was consistently found in the spectrograms between 6 and 7.5 kHz for all nozzles and injection pressures. Further evidence of a similar spectral peak was obtained from the fuel pressure transducer and a needle lift sensor mounted into the injector body. Evidence of propagation of the nozzle oscillations to the liquid sprays was obtained by recording high-speed videos of the near-nozzle diesel jet, and computing the fast Fourier transform for a number of pixel locations at the interface of the jets. This 6-7.5 kHz frequency peak is proposed to be the

  20. Dynamic 3-D chemical agent cloud mapping using a sensor constellation deployed on mobile platforms

    NASA Astrophysics Data System (ADS)

    Cosofret, Bogdan R.; Konno, Daisei; Rossi, David; Marinelli, William J.; Seem, Pete

    2014-05-01

    The need for standoff detection technology to provide early Chem-Bio (CB) threat warning is well documented. Much of the information obtained by a single passive sensor is limited to bearing and angular extent of the threat cloud. In order to obtain absolute geo-location, range to threat, 3-D extent and detailed composition of the chemical threat, fusion of information from multiple passive sensors is needed. A capability that provides on-the-move chemical cloud characterization is key to the development of real-time Battlespace Awareness. We have developed, implemented and tested algorithms and hardware to perform the fusion of information obtained from two mobile LWIR passive hyperspectral sensors. The implementation of the capability is driven by current Nuclear, Biological and Chemical Reconnaissance Vehicle operational tactics and represents a mission focused alternative of the already demonstrated 5-sensor static Range Test Validation System (RTVS).1 The new capability consists of hardware for sensor pointing and attitude information which is made available for streaming and aggregation as part of the data fusion process for threat characterization. Cloud information is generated using 2-sensor data ingested into a suite of triangulation and tomographic reconstruction algorithms. The approaches are amenable to using a limited number of viewing projections and unfavorable sensor geometries resulting from mobile operation. In this paper we describe the system architecture and present an analysis of results obtained during the initial testing of the system at Dugway Proving Ground during BioWeek 2013.

  1. Fast Semantic Segmentation of 3d Point Clouds with Strongly Varying Density

    NASA Astrophysics Data System (ADS)

    Hackel, Timo; Wegner, Jan D.; Schindler, Konrad

    2016-06-01

    We describe an effective and efficient method for point-wise semantic classification of 3D point clouds. The method can handle unstructured and inhomogeneous point clouds such as those derived from static terrestrial LiDAR or photogammetric reconstruction; and it is computationally efficient, making it possible to process point clouds with many millions of points in a matter of minutes. The key issue, both to cope with strong variations in point density and to bring down computation time, turns out to be careful handling of neighborhood relations. By choosing appropriate definitions of a point's (multi-scale) neighborhood, we obtain a feature set that is both expressive and fast to compute. We evaluate our classification method both on benchmark data from a mobile mapping platform and on a variety of large, terrestrial laser scans with greatly varying point density. The proposed feature set outperforms the state of the art with respect to per-point classification accuracy, while at the same time being much faster to compute.

  2. Reconstruction of 3D Shapes of Opaque Cumulus Clouds from Airborne Multiangle Imaging: A Proof-of-Concept

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; Bal, G.; Chen, J.

    2015-12-01

    Operational remote sensing of microphysical and optical cloud properties is invariably predicated on the assumption of plane-parallel slab geometry for the targeted cloud. The sole benefit of this often-questionable assumption about the cloud is that it leads to one-dimensional (1D) radiative transfer (RT)---a textbook, computationally tractable model. We present new results as evidence that, thanks to converging advances in 3D RT, inverse problem theory, algorithm implementation, and computer hardware, we are at the dawn of a new era in cloud remote sensing where we can finally go beyond the plane-parallel paradigm. Granted, the plane-parallel/1D RT assumption is reasonable for spatially extended stratiform cloud layers, as well as the smoothly distributed background aerosol layers. However, these 1D RT-friendly scenarios exclude cases that are critically important for climate physics. 1D RT---whence operational cloud remote sensing---fails catastrophically for cumuliform clouds that have fully 3D outer shapes and internal structures driven by shallow or deep convection. For these situations, the first order of business in a robust characterization by remote sensing is to abandon the slab geometry framework and determine the 3D geometry of the cloud, as a first step toward bone fide 3D cloud tomography. With this specific goal in mind, we deliver a proof-of-concept for an entirely new kind of remote sensing applicable to 3D clouds. It is based on highly simplified 3D RT and exploits multi-angular suites of cloud images at high spatial resolution. Airborne sensors like AirMSPI readily acquire such data. The key element of the reconstruction algorithm is a sophisticated solution of the nonlinear inverse problem via linearization of the forward model and an iteration scheme supported, where necessary, by adaptive regularization. Currently, the demo uses a 2D setting to show how either vertical profiles or horizontal slices of the cloud can be accurately reconstructed

  3. Simulated Long-term Cloud Systems Using a Cloud Resolving Model

    NASA Astrophysics Data System (ADS)

    Shie, C.; Tao, W.; Hou, A.; Zeng, X.; Lin, X.; Zhou, Y.; Olson, W.; Juang, H.

    2006-05-01

    The GCE (Goddard Cumulus Ensemble) model, which has been developed and improved at NASA/Goddard Space Flight Center over the past two decades, is considered as one of the finer and state-of-the-art CRMs (Cloud Resolving Models) in the research community. As the chosen CRM for a NASA Interdisciplinary Science Project, GCE has recently been successfully upgraded into an MPI (Message Passing Interface) version with which great improvement has been achieved in computational efficiency, scalability, and portability. By basically using the large-scale temperature and moisture advective forcing, as well as the temperature, water vapor and wind fields obtained from TRMM (Tropical Rainfall Measuring Mission) field campaigns such as SCSMEX (South China Sea Monsoon Experiment) and KWAJEX (Kwajalein Experiment), our recent 2-D and 3-D GCE simulations were able to capture detailed convective systems typical of the targeted (simulated) regions. The GEOS-3 [Goddard EOS (Earth Observing System) Version-3] reanalysis data have also been proposed and successfully implemented for usage in the proposed/performed GCE long- term simulations (i.e., aiming at producing massive simulated cloud data -- "Cloud Library") in compensating the scarcity of real field campaign data in both time and location. Both 2-D and 3-D modeled results using GEOS-3 data generally show good qualitative agreement, yet with some quantitative difference, with the respective numerical results using sounding observations. There are three major objectives to this study. The first objective is to understand and elaborate on the physical processes associated with the tropical and extra-tropical energy and hydrological cycle by simulating the targeted cloud systems at different geographic locations (i.e., Tropics and subtropics; marine and continent). Our second goal is then to provide the large-scale modeling communities with CRM cloud products, specifically for use in developing and improving cumulus parameterization

  4. An adaptive learning approach for 3-D surface reconstruction from point clouds.

    PubMed

    Junior, Agostinho de Medeiros Brito; Neto, Adrião Duarte Dória; de Melo, Jorge Dantas; Goncalves, Luiz Marcos Garcia

    2008-06-01

    In this paper, we propose a multiresolution approach for surface reconstruction from clouds of unorganized points representing an object surface in 3-D space. The proposed method uses a set of mesh operators and simple rules for selective mesh refinement, with a strategy based on Kohonen's self-organizing map (SOM). Basically, a self-adaptive scheme is used for iteratively moving vertices of an initial simple mesh in the direction of the set of points, ideally the object boundary. Successive refinement and motion of vertices are applied leading to a more detailed surface, in a multiresolution, iterative scheme. Reconstruction was experimented on with several point sets, including different shapes and sizes. Results show generated meshes very close to object final shapes. We include measures of performance and discuss robustness.

  5. Status of the phenomena representation, 3D modeling, and cloud-based software architecture development

    SciTech Connect

    Smith, Curtis L.; Prescott, Steven; Kvarfordt, Kellie; Sampath, Ram; Larson, Katie

    2015-09-01

    Early in 2013, researchers at the Idaho National Laboratory outlined a technical framework to support the implementation of state-of-the-art probabilistic risk assessment to predict the safety performance of advanced small modular reactors. From that vision of the advanced framework for risk analysis, specific tasks have been underway in order to implement the framework. This report discusses the current development of a several tasks related to the framework implementation, including a discussion of a 3D physics engine that represents the motion of objects (including collision and debris modeling), cloud-based analysis tools such as a Bayesian-inference engine, and scenario simulations. These tasks were performed during 2015 as part of the technical work associated with the Advanced Reactor Technologies Program.

  6. Self-Consistent 3D Modeling of Electron Cloud Dynamics and Beam Response

    SciTech Connect

    Furman, Miguel; Furman, M.A.; Celata, C.M.; Kireeff-Covo, M.; Sonnad, K.G.; Vay, J.-L.; Venturini, M.; Cohen, R.; Friedman, A.; Grote, D.; Molvik, A.; Stoltz, P.

    2007-04-02

    We present recent advances in the modeling of beam electron-cloud dynamics, including surface effects such as secondary electron emission, gas desorption, etc, and volumetric effects such as ionization of residual gas and charge-exchange reactions. Simulations for the HCX facility with the code WARP/POSINST will be described and their validity demonstrated by benchmarks against measurements. The code models a wide range of physical processes and uses a number of novel techniques, including a large-timestep electron mover that smoothly interpolates between direct orbit calculation and guiding-center drift equations, and a new computational technique, based on a Lorentz transformation to a moving frame, that allows the cost of a fully 3D simulation to be reduced to that of a quasi-static approximation.

  7. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging

    PubMed Central

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-01-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm. PMID:27375935

  8. Astigmatic multifocus microscopy enables deep 3D super-resolved imaging.

    PubMed

    Oudjedi, Laura; Fiche, Jean-Bernard; Abrahamsson, Sara; Mazenq, Laurent; Lecestre, Aurélie; Calmon, Pierre-François; Cerf, Aline; Nöllmann, Marcelo

    2016-06-01

    We have developed a 3D super-resolution microscopy method that enables deep imaging in cells. This technique relies on the effective combination of multifocus microscopy and astigmatic 3D single-molecule localization microscopy. We describe the optical system and the fabrication process of its key element, the multifocus grating. Then, two strategies for localizing emitters with our imaging method are presented and compared with a previously described deep 3D localization algorithm. Finally, we demonstrate the performance of the method by imaging the nuclear envelope of eukaryotic cells reaching a depth of field of ~4µm.

  9. 3D Cloud Radiative Effects on Aerosol Optical Thickness Retrievals in Cumulus Cloud Fields in the Biomass Burning Region in Brazil

    NASA Technical Reports Server (NTRS)

    Wen, Guo-Yong; Marshak, Alexander; Cahalan, Robert F.

    2004-01-01

    Aerosol amount in clear regions of a cloudy atmosphere is a critical parameter in studying the interaction between aerosols and clouds. Since the global cloud cover is about 50%, cloudy scenes are often encountered in any satellite images. Aerosols are more or less transparent, while clouds are extremely reflective in the visible spectrum of solar radiation. The radiative transfer in clear-cloudy condition is highly three- dimensional (3D). This paper focuses on estimating the 3D effects on aerosol optical thickness retrievals using Monte Carlo simulations. An ASTER image of cumulus cloud fields in the biomass burning region in Brazil is simulated in this study. The MODIS products (i-e., cloud optical thickness, particle effective radius, cloud top pressure, surface reflectance, etc.) are used to construct the cloud property and surface reflectance fields. To estimate the cloud 3-D effects, we assume a plane-parallel stratification of aerosol properties in the 60 km x 60 km ASTER image. The simulated solar radiation at the top of the atmosphere is compared with plane-parallel calculations. Furthermore, the 3D cloud radiative effects on aerosol optical thickness retrieval are estimated.

  10. Recognizing objects in 3D point clouds with multi-scale local features.

    PubMed

    Lu, Min; Guo, Yulan; Zhang, Jun; Ma, Yanxin; Lei, Yinjie

    2014-01-01

    Recognizing 3D objects from point clouds in the presence of significant clutter and occlusion is a highly challenging task. In this paper, we present a coarse-to-fine 3D object recognition algorithm. During the phase of offline training, each model is represented with a set of multi-scale local surface features. During the phase of online recognition, a set of keypoints are first detected from each scene. The local surfaces around these keypoints are further encoded with multi-scale feature descriptors. These scene features are then matched against all model features to generate recognition hypotheses, which include model hypotheses and pose hypotheses. Finally, these hypotheses are verified to produce recognition results. The proposed algorithm was tested on two standard datasets, with rigorous comparisons to the state-of-the-art algorithms. Experimental results show that our algorithm was fully automatic and highly effective. It was also very robust to occlusion and clutter. It achieved the best recognition performance on all of these datasets, showing its superiority compared to existing algorithms.

  11. Evaluation of Methods for Coregistration and Fusion of Rpas-Based 3d Point Clouds and Thermal Infrared Images

    NASA Astrophysics Data System (ADS)

    Hoegner, L.; Tuttas, S.; Xu, Y.; Eder, K.; Stilla, U.

    2016-06-01

    This paper discusses the automatic coregistration and fusion of 3d point clouds generated from aerial image sequences and corresponding thermal infrared (TIR) images. Both RGB and TIR images have been taken from a RPAS platform with a predefined flight path where every RGB image has a corresponding TIR image taken from the same position and with the same orientation with respect to the accuracy of the RPAS system and the inertial measurement unit. To remove remaining differences in the exterior orientation, different strategies for coregistering RGB and TIR images are discussed: (i) coregistration based on 2D line segments for every single TIR image and the corresponding RGB image. This method implies a mainly planar scene to avoid mismatches; (ii) coregistration of both the dense 3D point clouds from RGB images and from TIR images by coregistering 2D image projections of both point clouds; (iii) coregistration based on 2D line segments in every single TIR image and 3D line segments extracted from intersections of planes fitted in the segmented dense 3D point cloud; (iv) coregistration of both the dense 3D point clouds from RGB images and from TIR images using both ICP and an adapted version based on corresponding segmented planes; (v) coregistration of both image sets based on point features. The quality is measured by comparing the differences of the back projection of homologous points in both corrected RGB and TIR images.

  12. Comparative analysis of video processing and 3D rendering for cloud video games using different virtualization technologies

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Alcaraz-Calero, Jose M.; Wang, Qi; Grecos, Christos

    2014-05-01

    This paper describes a comprehensive empirical performance evaluation of 3D video processing employing the physical/virtual architecture implemented in a cloud environment. Different virtualization technologies, virtual video cards and various 3D benchmarks tools have been utilized in order to analyse the optimal performance in the context of 3D online gaming applications. This study highlights 3D video rendering performance under each type of hypervisors, and other factors including network I/O, disk I/O and memory usage. Comparisons of these factors under well-known virtual display technologies such as VNC, Spice and Virtual 3D adaptors reveal the strengths and weaknesses of the various hypervisors with respect to 3D video rendering and streaming.

  13. Comparison of 3D point clouds produced by LIDAR and UAV photoscan in the Rochefort cave (Belgium)

    NASA Astrophysics Data System (ADS)

    Watlet, Arnaud; Triantafyllou, Antoine; Kaufmann, Olivier; Le Mouelic, Stéphane

    2016-04-01

    Amongst today's techniques that are able to produce 3D point clouds, LIDAR and UAV (Unmanned Aerial Vehicle) photogrammetry are probably the most commonly used. Both methods have their own advantages and limitations. LIDAR scans create high resolution and high precision 3D point clouds, but such methods are generally costly, especially for sporadic surveys. Compared to LIDAR, UAV (e.g. drones) are cheap and flexible to use in different kind of environments. Moreover, the photogrammetric processing workflow of digital images taken with UAV becomes easier with the rise of many affordable software packages (e.g. Agisoft, PhotoModeler3D, VisualSFM). We present here a challenging study made at the Rochefort Cave Laboratory (South Belgium) comprising surface and underground surveys. The site is located in the Belgian Variscan fold-and-thrust belt, a region that shows many karstic networks within Devonian limestone units. A LIDAR scan has been acquired in the main chamber of the cave (~ 15000 m³) to spatialize 3D point cloud of its inner walls and infer geological beds and structures. Even if the use of LIDAR instrument was not really comfortable in such caving environment, the collected data showed a remarkable precision according to few control points geometry. We also decided to perform another challenging survey of the same cave chamber by modelling a 3D point cloud using photogrammetry of a set of DSLR camera pictures taken from the ground and UAV pictures. The aim was to compare both techniques in terms of (i) implementation of data acquisition and processing, (ii) quality of resulting 3D points clouds (points density, field vs cloud recovery and points precision), (iii) their application for geological purposes. Through Rochefort case study, main conclusions are that LIDAR technique provides higher density point clouds with slightly higher precision than photogrammetry method. However, 3D data modeled by photogrammetry provide visible light spectral information

  14. An Evaluation of the Observational Capabilities of A Scanning 95-GHz Radar in Studying the 3D Structures of Marine Stratocumulus Clouds

    NASA Astrophysics Data System (ADS)

    Bowley, Kevin

    the radar. Well-defined streaking patterns in the drizzle field (reflectivity greater than -15 dBZ) at cloud base were concluded to be concomitant with the formation of boundary layer rolls. Sounding data for these well-defined (unbroken) rolls revealed a mean sub-cloud layer wind exceeding 3.9 ms -1, sub-cloud layer shear exceeding 7.5 x 10-3 s-1, and a majority of streaks oriented within 20° of the mean sub-cloud layer wind, satisfying many boundary layer roll criteria proposed in past studies. Attempts to reconstruct the 3D cloud liquid water content and 2D column liquid water path across the scanning radar domain using Z (Reflectivity) vs. LWC (Liquid Water Content) regressions trained using the zenith measurements were proved ineffective due to the overall extent of drizzle at Graciosa, and errors associated with sensitivity loss at range. Despite some difficulties, the SWACR satisfied ARM metrics for success by proving effective at detecting weak clouds for extended time periods across a 10 km plane, and drizzle across a 20 km range, at high spatial resolutions. Difficulties in resolving accurate vertical velocity patterns also suggest the need for an adaptive sampling strategy to most effectively remove horizontal wind components.

  15. Cloud-resolving chemistry simulation of a Hector thunderstorm

    NASA Astrophysics Data System (ADS)

    Cummings, K. A.; Huntemann, T. L.; Pickering, K. E.; Barth, M. C.; Skamarock, W. C.; Höller, H.; Betz, H.-D.; Volz-Thomas, A.; Schlager, H.

    2012-07-01

    Cloud chemistry simulations are performed for a Hector storm observed on 16 November 2005 during the SCOUT-O3/ACTIVE campaigns based in Darwin, Australia, with the primary objective of estimating the average production of NO per lightning flash during the storm which occurred in a tropical environment. The 3-D WRF-AqChem model (Barth et al., 2007a) containing the WRF nonhydrostatic cloud-resolving model, online gas- and aqueous-phase chemistry, and a lightning-NOx production algorithm is used for these calculations. An idealized early morning sounding of temperature, water vapor, and winds is used to initialize the model. Surface heating of the Tiwi Islands is simulated in the model to induce convection. Aircraft observations from air undisturbed by the storm are used to construct composite initial condition chemical profiles. The idealized model storm has many characteristics similar to the observed storm. Convective transport in the idealized simulated storm is evaluated using tracer species, such as CO and O3. The convective transport of CO from the boundary layer to the anvil region was well represented in the model, with a small overestimate of the increase of CO at anvil altitudes. Lightning flashes observed by the LIghtning detection NETwork (LINET) are input to the model and a lightning placement scheme is used to inject the resulting NO into the simulated cloud. We find that a lightning NO production scenario of 500 moles per flash for both CG and IC flashes yields anvil NOx mixing ratios that match aircraft observations well for this storm. These values of NO production nearly match the mean values for CG and IC flashes obtained from similar modeling analyses conducted for several midlatitude and subtropical convective events and are larger than most other estimates for tropical thunderstorms. Approximately 85% of the lightning NOx mass was located at altitudes greater than 7 km in the later stages of the storm, which is an amount greater than found for

  16. X-Ray Phase Nanotomography Resolves the 3D Human Bone Ultrastructure

    PubMed Central

    Suhonen, Heikki; Grimal, Quentin; Cloetens, Peter; Peyrin, Françoise

    2012-01-01

    Bone strength and failure are increasingly thought to be due to ultrastructural properties, such as the morphology of the lacuno-canalicular network, the collagen fiber orientation and the mineralization on the nanoscale. However, these properties have not been studied in 3D so far. Here we report the investigation of the human bone ultrastructure with X-ray phase nanotomography, which now provides the required sensitivity, spatial resolution and field of view. The 3D organization of the lacuno-canalicular network is studied in detail over several cells in osteonal and interstitial tissue. Nanoscale density variations are revealed and show that the cement line separating these tissues is hypermineralized. Finally, we show that the collagen fibers are organized as a twisted plywood structure in 3D. PMID:22952569

  17. Architecture of web services in the enhancement of real-time 3D video virtualization in cloud environment

    NASA Astrophysics Data System (ADS)

    Bada, Adedayo; Wang, Qi; Alcaraz-Calero, Jose M.; Grecos, Christos

    2016-04-01

    This paper proposes a new approach to improving the application of 3D video rendering and streaming by jointly exploring and optimizing both cloud-based virtualization and web-based delivery. The proposed web service architecture firstly establishes a software virtualization layer based on QEMU (Quick Emulator), an open-source virtualization software that has been able to virtualize system components except for 3D rendering, which is still in its infancy. The architecture then explores the cloud environment to boost the speed of the rendering at the QEMU software virtualization layer. The capabilities and inherent limitations of Virgil 3D, which is one of the most advanced 3D virtual Graphics Processing Unit (GPU) available, are analyzed through benchmarking experiments and integrated into the architecture to further speed up the rendering. Experimental results are reported and analyzed to demonstrate the benefits of the proposed approach.

  18. Hyperspectrally-Resolved Surface Emissivity Derived Under Optically Thin Clouds

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu; Smith, William L.; Strow, L. Larrabee; Yang, Ping

    2010-01-01

    Surface spectral emissivity derived from current and future satellites can and will reveal critical information about the Earth s ecosystem and land surface type properties, which can be utilized as a means of long-term monitoring of global environment and climate change. Hyperspectrally-resolved surface emissivities are derived with an algorithm utilizes a combined fast radiative transfer model (RTM) with a molecular RTM and a cloud RTM accounting for both atmospheric absorption and cloud absorption/scattering. Clouds are automatically detected and cloud microphysical parameters are retrieved; and emissivity is retrieved under clear and optically thin cloud conditions. This technique separates surface emissivity from skin temperature by representing the emissivity spectrum with eigenvectors derived from a laboratory measured emissivity database; in other words, using the constraint as a means for the emissivity to vary smoothly across atmospheric absorption lines. Here we present the emissivity derived under optically thin clouds in comparison with that under clear conditions.

  19. A continuous surface reconstruction method on point cloud captured from a 3D surface photogrammetry system

    SciTech Connect

    Liu, Wenyang; Cheung, Yam; Sabouri, Pouya; Arai, Tatsuya J.; Sawant, Amit; Ruan, Dan

    2015-11-15

    achieved submillimeter reconstruction RMSE under different configurations, demonstrating quantitatively the faith of the proposed method in preserving local structural properties of the underlying surface in the presence of noise and missing measurements, and its robustness toward variations of such characteristics. On point clouds from the human subject, the proposed method successfully reconstructed all patient surfaces, filling regions where raw point coordinate readings were missing. Within two comparable regions of interest in the chest area, similar mean curvature distributions were acquired from both their reconstructed surface and CT surface, with mean and standard deviation of (μ{sub recon} = − 2.7 × 10{sup −3} mm{sup −1}, σ{sub recon} = 7.0 × 10{sup −3} mm{sup −1}) and (μ{sub CT} = − 2.5 × 10{sup −3} mm{sup −1}, σ{sub CT} = 5.3 × 10{sup −3} mm{sup −1}), respectively. The agreement of local geometry properties between the reconstructed surfaces and the CT surface demonstrated the ability of the proposed method in faithfully representing the underlying patient surface. Conclusions: The authors have integrated and developed an accurate level-set based continuous surface reconstruction method on point clouds acquired by a 3D surface photogrammetry system. The proposed method has generated a continuous representation of the underlying phantom and patient surfaces with good robustness against noise and missing measurements. It serves as an important first step for further development of motion tracking methods during radiotherapy.

  20. Evaluation of a GCM subgrid cloud-radiation interaction parameterization using cloud-resolving model simulations

    NASA Astrophysics Data System (ADS)

    Liang, Xin-Zhong; Wu, Xiaoqing

    2005-03-01

    The mosaic approach of Liang and Wang (1997) for the general circulation model (GCM) parameterization of subgrid cloud-radiation interactions is evaluated against the validated cloud-resolving model (CRM) simulation of the Atmospheric Radiation Measurement (ARM) intensive observation period (IOP, June 22-July 17, 1997) at the Southern Great Plains (SGP) site. The CRM-generated cloud statistics determines the required characteristic structure differences between three primary cloud genera (convective, anvil and stratiform). It is demonstrated that the mosaic approach with the CRM cloud statistics well simulates the CRM domain-averaged radiative quantities. The result indicates that the mosaic approach of the cloud overlap based on the cloud genera differing in formation mechanisms and of the optical inhomogeneity by cloud water path scaling can capture, respectively, the dominant effects of the cloud geometric association and optical property variability within a GCM grid.

  1. Automatic 3D Building Detection and Modeling from Airborne LiDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Sun, Shaohui

    Urban reconstruction, with an emphasis on man-made structure modeling, is an active research area with broad impact on several potential applications. Urban reconstruction combines photogrammetry, remote sensing, computer vision, and computer graphics. Even though there is a huge volume of work that has been done, many problems still remain unsolved. Automation is one of the key focus areas in this research. In this work, a fast, completely automated method to create 3D watertight building models from airborne LiDAR (Light Detection and Ranging) point clouds is presented. The developed method analyzes the scene content and produces multi-layer rooftops, with complex rigorous boundaries and vertical walls, that connect rooftops to the ground. The graph cuts algorithm is used to separate vegetative elements from the rest of the scene content, which is based on the local analysis about the properties of the local implicit surface patch. The ground terrain and building rooftop footprints are then extracted, utilizing the developed strategy, a two-step hierarchical Euclidean clustering. The method presented here adopts a "divide-and-conquer" scheme. Once the building footprints are segmented from the terrain and vegetative areas, the whole scene is divided into individual pendent processing units which represent potential points on the rooftop. For each individual building region, significant features on the rooftop are further detected using a specifically designed region-growing algorithm with surface smoothness constraints. The principal orientation of each building rooftop feature is calculated using a minimum bounding box fitting technique, and is used to guide the refinement of shapes and boundaries of the rooftop parts. Boundaries for all of these features are refined for the purpose of producing strict description. Once the description of the rooftops is achieved, polygonal mesh models are generated by creating surface patches with outlines defined by detected

  2. Knowledge guided object detection and identification in 3D point clouds

    NASA Astrophysics Data System (ADS)

    Karmacharya, A.; Boochs, F.; Tietz, B.

    2015-05-01

    Modern instruments like laser scanner and 3D cameras or image based techniques like structure from motion produce huge point clouds as base for further object analysis. This has considerably changed the way of data compilation away from selective manually guided processes towards automatic and computer supported strategies. However it's still a long way to achieve the quality and robustness of manual processes as data sets are mostly very complex. Looking at existing strategies 3D data processing for object detections and reconstruction rely heavily on either data driven or model driven approaches. These approaches come with their limitation on depending highly on the nature of data and inability to handle any deviation. Furthermore, the lack of capabilities to integrate other data or information in between the processing steps further exposes their limitations. This restricts the approaches to be executed with strict predefined strategy and does not allow deviations when and if new unexpected situations arise. We propose a solution that induces intelligence in the processing activities through the usage of semantics. The solution binds the objects along with other related knowledge domains to the numerical processing to facilitate the detection of geometries and then uses experts' inference rules to annotate them. The solution was tested within the prototypical application of the research project "Wissensbasierte Detektion von Objekten in Punktwolken für Anwendungen im Ingenieurbereich (WiDOP)". The flexibility of the solution is demonstrated through two entirely different USE Case scenarios: Deutsche Bahn (German Railway System) for the outdoor scenarios and Fraport (Frankfort Airport) for the indoor scenarios. Apart from the difference in their environments, they provide different conditions, which the solution needs to consider. While locations of the objects in Fraport were previously known, that of DB were not known at the beginning.

  3. A 3D view of the outflow in the Orion Molecular Cloud 1 (OMC-1)

    NASA Astrophysics Data System (ADS)

    Nissen, H. D.; Cunningham, N. J.; Gustafsson, M.; Bally, J.; Lemaire, J.-L.; Favre, C.; Field, D.

    2012-04-01

    Context. Stars whose mass is an order of magnitude greater than the Sun play a prominent role in the evolution of galaxies, exploding as supernovae, triggering bursts of star formation and spreading heavy elements about their host galaxies. A fundamental aspect of star formation is the creation of an outflow. The fast outflow emerging from a region associated with massive star formation in the Orion Molecular Cloud 1 (OMC-1), located behind the Orion Nebula, appears to have been set in motion by an explosive event. Aims: We study the structure and dynamics of outflows in OMC-1. We combine radial velocity and proper motion data for near-IR emission of molecular hydrogen to obtain the first 3-dimensional (3D) structure of the OMC-1 outflow. Our work illustrates a new diagnostic tool for studies of star formation that will be exploited in the near future with the advent of high spatial resolution spectro-imaging in particular with data from the Atacama Large Millimeter Array (ALMA). Methods: We used published radial and proper motion velocities obtained from the shock-excited vibrational emission in the H2 v = 1-0 S(1) line at 2.122 μm obtained with the GriF instrument on the Canada-France-Hawaii Telescope, the Apache Point Observatory, the Anglo-Australian Observatory, and the Subaru Telescope. Results: These data give the 3D velocity of ejecta yielding a 3D reconstruction of the outflows. This allows one to view the material from different vantage points in space giving considerable insight into the geometry. Our analysis indicates that the ejection occurred ≲720 years ago from a distorted ring-like structure of ~15″ (6000 AU) in diameter centered on the proposed point of close encounter of the stars BN, source I and maybe also source n. We propose a simple model involving curvature of shock trajectories in magnetic fields through which the origin of the explosion and the center defined by extrapolated proper motions of BN, I and n may be brought into spatial

  4. CAST: Effective and Efficient User Interaction for Context-Aware Selection in 3D Particle Clouds.

    PubMed

    Yu, Lingyun; Efstathiou, Konstantinos; Isenberg, Petra; Isenberg, Tobias

    2016-01-01

    We present a family of three interactive Context-Aware Selection Techniques (CAST) for the analysis of large 3D particle datasets. For these datasets, spatial selection is an essential prerequisite to many other analysis tasks. Traditionally, such interactive target selection has been particularly challenging when the data subsets of interest were implicitly defined in the form of complicated structures of thousands of particles. Our new techniques SpaceCast, TraceCast, and PointCast improve usability and speed of spatial selection in point clouds through novel context-aware algorithms. They are able to infer a user's subtle selection intention from gestural input, can deal with complex situations such as partially occluded point clusters or multiple cluster layers, and can all be fine-tuned after the selection interaction has been completed. Together, they provide an effective and efficient tool set for the fast exploratory analysis of large datasets. In addition to presenting Cast, we report on a formal user study that compares our new techniques not only to each other but also to existing state-of-the-art selection methods. Our results show that Cast family members are virtually always faster than existing methods without tradeoffs in accuracy. In addition, qualitative feedback shows that PointCast and TraceCast were strongly favored by our participants for intuitiveness and efficiency.

  5. 3-D Numerical Modeling Perspectives on Lightning Generation in Volcanic Eruption Clouds

    NASA Astrophysics Data System (ADS)

    Van Eaton, A. R.; Behnke, S. A.; Herzog, M.

    2014-12-01

    Although numerous charging mechanisms have been implicated in the formation of volcanic lightning, recent insights from lightning mapping arrays indicate that vent charging (produced at or near the volcanic source) creates electrical discharges that are distinct from lightning initiated in the airborne plume during transport away from the vent. Previous work has suggested that turbulent structure and formation of hydrometeors, including rain, graupel and ash aggregates, are likely to play important roles in the plume charging process. We examine these phenomena with 3D large-eddy simulations of volcanic plume development that include cloud microphysics, using the Active Tracer High-resolution Atmospheric Model (ATHAM). Three relatively recent eruptions are targeted, each with different plume heights, degrees of wind interaction, and amounts of surface water interaction. We have compared the simulated evolution of turbulence and precipitation formation with data from lightning mapping arrays to address the following question - what can lightning tell us about the initiation and development of a volcanic plume in near-real time?

  6. Use of the ARM Measurement of Spectral Zenith Radiance For Better Understanding Of 3D Cloud-Radiation Processes and Aerosol-Cloud Interaction

    SciTech Connect

    Chiu, Jui-Yuan

    2010-10-19

    Our proposal focuses on cloud-radiation processes in a general 3D cloud situation, with particular emphasis on cloud optical depth and effective particle size. We also focus on zenith radiance measurements, both active and passive. The proposal has three main parts. Part One exploits the "solar-background" mode of ARM lidars to allow them to retrieve cloud optical depth not just for thin clouds but for all clouds. This also enables the study of aerosol cloud interactions with a single instrument. Part Two exploits the large number of new wavelengths offered by ARM's zenith-pointing ShortWave Spectrometer (SWS), especially during CLASIC, to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also propose to take advantage of the SWS's 1 Hz sampling to study the "twilight zone" around clouds where strong aerosol-cloud interactions are taking place. Part Three involves continuing our cloud optical depth and cloud fraction retrieval research with ARM's 2NFOV instrument by, first, analyzing its data from the AMF-COPS/CLOWD deployment, and second, making our algorithms part of ARM's operational data processing.

  7. Semi-automated extraction and delineation of 3D roads of street scene from mobile laser scanning point clouds

    NASA Astrophysics Data System (ADS)

    Yang, Bisheng; Fang, Lina; Li, Jonathan

    2013-05-01

    Accurate 3D road information is important for applications such as road maintenance and virtual 3D modeling. Mobile laser scanning (MLS) is an efficient technique for capturing dense point clouds that can be used to construct detailed road models for large areas. This paper presents a method for extracting and delineating roads from large-scale MLS point clouds. The proposed method partitions MLS point clouds into a set of consecutive "scanning lines", which each consists of a road cross section. A moving window operator is used to filter out non-ground points line by line, and curb points are detected based on curb patterns. The detected curb points are tracked and refined so that they are both globally consistent and locally similar. To evaluate the validity of the proposed method, experiments were conducted using two types of street-scene point clouds captured by Optech's Lynx Mobile Mapper System. The completeness, correctness, and quality of the extracted roads are over 94.42%, 91.13%, and 91.3%, respectively, which proves the proposed method is a promising solution for extracting 3D roads from MLS point clouds.

  8. Reactor safety issues resolved by the 2D/3D Program. International Agreement Report

    SciTech Connect

    Damerell, P.S.; Simons, J.W.

    1993-07-01

    The 2D/3D Program studied multidimensional thermal-hydraulics in a PWR core and primary system during the end-of-blowdown and post-blowdown phases of a large-break LOCA (LBLOCA), and during selected small-break LOCA (SBLOCA) transients. The program included tests at the Cylindrical Core Test Facility (CCTF), the Slab Core Test Facility (SCTF), and the Upper Plenum Test Facility (UPTF), and computer analyses using TRAC. Tests at CCTF investigated core thermal-hydraulics and overall system behavior while tests at SCTF concentrated on multidimensional core thermal-hydraulics. The UPTF tests investigated two-phase flow behavior in the downcomer, upper plenum, tie plate region, and primary loops. TRAC analyses evaluated thermal-hydraulic behavior throughout the primary system in tests as well as in PWRs. This report summarizes the test and analysis results in each of the main areas where improved information was obtained in the 2D/3D Program. The discussion is organized in terms of the reactor safety issues investigated.

  9. 3D Cloud Tomography, Followed by Mean Optical and Microphysical Properties, with Multi-Angle/Multi-Pixel Data

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; von Allmen, P. A.; Marshak, A.; Bal, G.

    2010-12-01

    The geometrical assumption in all operational cloud remote sensing algorithms is that clouds are plane-parallel slabs, which applies relatively well to the most uniform stratus layers. Its benefit is to justify using classic 1D radiative transfer (RT) theory, where angular details (solar, viewing, azimuthal) are fully accounted for and precise phase functions can be used, to generate the look-up tables used in the retrievals. Unsurprisingly, these algorithms catastrophically fail when applied to cumulus-type clouds, which are highly 3D. This is unfortunate for the cloud-process modeling community that may thrive on in situ airborne data, but would very much like to use satellite data for more than illustrations in their presentations and publications. So, how can we obtain quantitative information from space-based observations of finite aspect ratio clouds? Cloud base/top heights, vertically projected area, mean liquid water content (LWC), and volume-averaged droplet size would be a good start. Motivated by this science need, we present a new approach suitable for sparse cumulus fields where we turn the tables on the standard procedure in cloud remote sensing. We make no a priori assumption about cloud shape, save an approximately flat base, but use brutal approximations about the RT that is necessarily 3D. Indeed, the first order of business is to roughly determine the cloud's outer shape in one of two ways, which we will frame as competing initial guesses for the next phase of shape refinement and volume-averaged microphysical parameter estimation. Both steps use multi-pixel/multi-angle techniques amenable to MISR data, the latter adding a bi-spectral dimension using collocated MODIS data. One approach to rough cloud shape determination is to fit the multi-pixel/multi-angle data with a geometric primitive such as a scalene hemi-ellipsoid with 7 parameters (translation in 3D space, 3 semi-axes, 1 azimuthal orientation); for the radiometry, a simple radiosity

  10. Super-resolved position and orientation estimation of fluorescent dipoles using 3-D steerable filters

    NASA Astrophysics Data System (ADS)

    Geissbuehler, S.; Aguet, F.; Maerki, I.; Lasser, T.

    2010-02-01

    The diffraction patterns of fixed fluorophores are characteristic of the orientation of the molecules' underlying dipole. Fluorescence localization microscopy techniques such as PALM and STORM achieve super-resolution by sequentially imaging sparse subsets of fluorophores, which are localized by means of Gaussian-based localization. This approach is based on the assumption of isotropic emitters, where the diffraction pattern corresponds to a section of the point spread function. Applied to fixed fluorophores, it can lead to an estimation bias in the range of 5-20nm. We introduce a method for the joint estimation of position and orientation of single fluorophores, based on an accurate image formation model expressed as a 3-D steerable filter. We demonstrate experimental estimation accuracies of 5 nm for position and 2 degrees for orientation.

  11. Anisotropy-resolving models for predicting separation in 3--D asymmetric diffusers

    NASA Astrophysics Data System (ADS)

    Jeyapaul, Elbert; Durbin, Paul

    2011-11-01

    All linear eddy-viscosity models are qualitatively incorrect in predicting separation in 3-D asymmetric diffusers. The failure to predict normal stress and shear stress anisotropy at high production-dissipation ratios is the cause. The Explicit algebraic Reynolds stress model (Wallin and Johansson, 2000) predicts the mean flow field in the diffuser accurately, but not the wall pressure and Reynolds stresses. Recalibrating the coefficients of the rapid part of pressure-strain model improves the wall pressure prediction. Including the convective, diffusive, streamline curvature effects on anisotropy has not been beneficial. The model has been tested using a family of diffusers having the same nominal streamwise pressure gradient, LES data is used as a reference. Professor

  12. Evaluation of a 3D point cloud tetrahedral tomographic reconstruction method

    PubMed Central

    Pereira, N F; Sitek, A

    2011-01-01

    Tomographic reconstruction on an irregular grid may be superior to reconstruction on a regular grid. This is achieved through an appropriate choice of the image space model, the selection of an optimal set of points and the use of any available prior information during the reconstruction process. Accordingly, a number of reconstruction-related parameters must be optimized for best performance. In this work, a 3D point cloud tetrahedral mesh reconstruction method is evaluated for quantitative tasks. A linear image model is employed to obtain the reconstruction system matrix and five point generation strategies are studied. The evaluation is performed using the recovery coefficient, as well as voxel- and template-based estimates of bias and variance measures, computed over specific regions in the reconstructed image. A similar analysis is performed for regular grid reconstructions that use voxel basis functions. The maximum likelihood expectation maximization reconstruction algorithm is used. For the tetrahedral reconstructions, of the five point generation methods that are evaluated, three use image priors. For evaluation purposes, an object consisting of overlapping spheres with varying activity is simulated. The exact parallel projection data of this object are obtained analytically using a parallel projector, and multiple Poisson noise realizations of these exact data are generated and reconstructed using the different point generation strategies. The unconstrained nature of point placement in some of the irregular mesh-based reconstruction strategies has superior activity recovery for small, low-contrast image regions. The results show that, with an appropriately generated set of mesh points, the irregular grid reconstruction methods can out-perform reconstructions on a regular grid for mathematical phantoms, in terms of the performance measures evaluated. PMID:20736496

  13. Extraction and refinement of building faces in 3D point clouds

    NASA Astrophysics Data System (ADS)

    Pohl, Melanie; Meidow, Jochen; Bulatov, Dimitri

    2013-10-01

    In this paper, we present an approach to generate a 3D model of an urban scene out of sensor data. The first milestone on that way is to classify the sensor data into the main parts of a scene, such as ground, vegetation, buildings and their outlines. This has already been accomplished within our previous work. Now, we propose a four-step algorithm to model the building structure, which is assumed to consist of several dominant planes. First, we extract small elevated objects, like chimneys, using a hot-spot detector and handle the detected regions separately. In order to model the variety of roof structures precisely, we split up complex building blocks into parts. Two different approaches are used: To act on the assumption of underlying 2D ground polygons, we use geometric methods to divide them into sub-polygons. Without polygons, we use morphological operations and segmentation methods. In the third step, extraction of dominant planes takes place, by using either RANSAC or J-linkage algorithm. They operate on point clouds of sufficient confidence within the previously separated building parts and give robust results even with noisy, outlier-rich data. Last, we refine the previously determined plane parameters using geometric relations of the building faces. Due to noise, these expected properties of roofs and walls are not fulfilled. Hence, we enforce them as hard constraints and use the previously extracted plane parameters as initial values for an optimization method. To test the proposed workflow, we use both several data sets, including noisy data from depth maps and data computed by laser scanning.

  14. Evaluation of Cloud Microphysical Parameterizations in Cloud Resolving Model Simulations using the ARM observations

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Muhlbauer, A.; Ackerman, T. P.

    2011-12-01

    Clouds modulate the distribution of energy and water within the atmosphere and regulate the hydrological cycle. Cloud microphysical parameterizations are critical for the representation of cloud microphysical properties in both cloud-resolving and climate models. In this study, we analyze the capabilities of a cloud-resolving model (CRM) with advanced bulk microphysics schemes to simulate the microphysical properties and evolution of convective clouds and anvil cirrus over the Southern Great Plains (SGP) site in the mid-latitudes and Kwajalein Atoll in the tropics. For evaluating simulated cloud properties, we use observations from the Atmospheric Radiation Measurement (ARM) Program 1997 summer Intensive Observations Period at the SGP site and the Kwajalein Experiment (KWAJEX) field campaign. The CRM simulations are evaluated with the ARM and KWAJEX observations, in particular using precipitation records, radiative fluxes, and radar reflectivity values observed by the ARM millimeter wavelength cloud radar (MMCR) and the Kwajalein precipitation radar. Preliminary analysis of the ARM SGP case shows that although the precipitation events during this period are well captured by the model, the outgoing longwave radiation (OLR) is considerably underestimated and the model generates too much high cloud, which is inconsistent with the MMCR observations. In our study we especially focus on the causes of the overproduction of ice and high clouds in the CRM simulations. Improvements of the ice microphysics scheme and resulting impacts on the simulation are presented.

  15. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  16. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  17. Fast segmentation of stained nuclei in terabyte-scale, time resolved 3D microscopy image stacks.

    PubMed

    Stegmaier, Johannes; Otte, Jens C; Kobitski, Andrei; Bartschat, Andreas; Garcia, Ariel; Nienhaus, G Ulrich; Strähle, Uwe; Mikut, Ralf

    2014-01-01

    Automated analysis of multi-dimensional microscopy images has become an integral part of modern research in life science. Most available algorithms that provide sufficient segmentation quality, however, are infeasible for a large amount of data due to their high complexity. In this contribution we present a fast parallelized segmentation method that is especially suited for the extraction of stained nuclei from microscopy images, e.g., of developing zebrafish embryos. The idea is to transform the input image based on gradient and normal directions in the proximity of detected seed points such that it can be handled by straightforward global thresholding like Otsu's method. We evaluate the quality of the obtained segmentation results on a set of real and simulated benchmark images in 2D and 3D and show the algorithm's superior performance compared to other state-of-the-art algorithms. We achieve an up to ten-fold decrease in processing times, allowing us to process large data sets while still providing reasonable segmentation results.

  18. Depth-resolved 3D visualization of coronary microvasculature with optical microangiography

    NASA Astrophysics Data System (ADS)

    Qin, Wan; Roberts, Meredith A.; Qi, Xiaoli; Murry, Charles E.; Zheng, Ying; Wang, Ruikang K.

    2016-11-01

    In this study, we propose a novel implementation of optical coherence tomography-based angiography combined with ex vivo perfusion of fixed hearts to visualize coronary microvascular structure and function. The extracorporeal perfusion of Intralipid solution allows depth-resolved angiographic imaging, control of perfusion pressure, and high-resolution optical microangiography. The imaging technique offers new opportunities for microcirculation research in the heart, which has been challenging due to motion artifacts and the lack of independent control of pressure and flow. With the ability to precisely quantify structural and functional features, this imaging platform has broad potential for the study of the pathophysiology of microvasculature in the heart as well as other organs.

  19. 3D super-resolved in vitro multiphoton microscopy by saturation of excitation.

    PubMed

    Nguyen, Anh Dung; Duport, François; Bouwens, Arno; Vanholsbeeck, Frédérique; Egrise, Dominique; Van Simaeys, Gaetan; Emplit, Philippe; Goldman, Serge; Gorza, Simon-Pierre

    2015-08-24

    We demonstrate a significant resolution enhancement beyond the conventional limit in multiphoton microscopy (MPM) using saturated excitation of fluorescence. Our technique achieves super-resolved imaging by temporally modulating the excitation laser-intensity and demodulating the higher harmonics from the saturated fluorescence signal. The improvement of the lateral and axial resolutions is measured on a sample of fluorescent microspheres. While the third harmonic already provides an enhanced resolution, we show that a further improvement can be obtained with an appropriate linear combination of the demodulated harmonics. Finally, we present in vitro imaging of fluorescent microspheres incorporated in HeLa cells to show that this technique performs well in biological samples. PMID:26368235

  20. Microphysical sensitivities of cloud-resolving model simulations of KWAJEX

    NASA Astrophysics Data System (ADS)

    Blossey, P. N.; Bretherton, C. S.

    2005-05-01

    Cloud-resolving model simulations of the conditions around Kwajalein Island during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX), July 24--September 15, 1999, are performed to understand the sensitivities of the results to changes in the model's microphysics and radiation parameterizations. An extensive set of observations were collected during KWAJEX, including high quality estimates of precipitation by an S-band ground validation radar. Large-scale forcings for the simulations --- which use cyclic boundary conditions --- have been derived from the observations by Minghua Zhang. The cloud-resolving model used here is the System for Atmospheric Modeling (SAM), developed by Marat Khairoutdinov at Colorado State University, to which the authors have added a second microphysical package (Fu et al 1995) and radiation scheme (from CAM3.0). While the alternate microphysics represents all hydrometeor interactions and has prognostic equations for water vapor, rain, snow, graupel, cloud water and cloud ice, SAM's default microphysics uses temperature to partition the condensate and precipitate among the phases and has prognostic equations only for total water (vapor+cloud) and precipitating water. The simulations are able to track the observed conditions over the full 52 day period without nudging. The different versions of the model generally reproduce the observed precipitation rate, temperature and relative humidity profiles, with mean temperature biases of less than 2K below the tropopause. However, detailed comparisons of simulated ISCCP cloud amounts and radar reflectivities with observations from ISCCP and the ground validation radar reveal important differences that are also reflected in the top-of-atmosphere radiative fluxes. Such discrepancies are strongest in the suppressed periods during KWAJEX, and these are explored in detail to reveal factors that contribute to model biases. The different microphysical and radiation

  1. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    PubMed

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  2. Numerical simulations of altocumulus with a cloud resolving model

    SciTech Connect

    Liu, S.; Krueger, S.K.

    1996-04-01

    Altocumulus and altostratus clouds together cover approximately 22% of the earth`s surface. They play an important role in the earth`s energy budget through their effect on solar and infrared radiation. However, there has been little altocumulus cloud investigation by either modelers or observational programs. Starr and Cox (SC) (1985a,b) simulated an altostratus case as part of the same study in which they modeled a thin layer of cirrus. Although this calculation was originally described as representing altostratus, it probably better represents altocumulus stratiformis. In this paper, we simulate altocumulus cloud with a cloud resolving model (CRM). We simply describe the CRM first. We calculate the same middle-level cloud case as SC to compare our results with theirs. We will look at the role of cloud-scale processes in response to large-scale forcing. We will also discuss radiative effects by simulating diurnal and nocturnal cases. Finally, we discuss the utility of a 1D model by comparing 1D simulations and 2D simulations.

  3. Road Signs Detection and Recognition Utilizing Images and 3d Point Cloud Acquired by Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Li, Y. H.; Shinohara, T.; Satoh, T.; Tachibana, K.

    2016-06-01

    High-definition and highly accurate road maps are necessary for the realization of automated driving, and road signs are among the most important element in the road map. Therefore, a technique is necessary which can acquire information about all kinds of road signs automatically and efficiently. Due to the continuous technical advancement of Mobile Mapping System (MMS), it has become possible to acquire large number of images and 3d point cloud efficiently with highly precise position information. In this paper, we present an automatic road sign detection and recognition approach utilizing both images and 3D point cloud acquired by MMS. The proposed approach consists of three stages: 1) detection of road signs from images based on their color and shape features using object based image analysis method, 2) filtering out of over detected candidates utilizing size and position information estimated from 3D point cloud, region of candidates and camera information, and 3) road sign recognition using template matching method after shape normalization. The effectiveness of proposed approach was evaluated by testing dataset, acquired from more than 180 km of different types of roads in Japan. The results show a very high success in detection and recognition of road signs, even under the challenging conditions such as discoloration, deformation and in spite of partial occlusions.

  4. Cloud-System Resolving Models: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncreiff, Mitch

    2008-01-01

    Cloud-system resolving models (CRM), which are based on the nonhydrostatic equations of motion and typically have a grid-spacing of about a kilometer, originated as cloud-process models in the 1970s. This paper reviews the status and prospects of CRMs across a wide range of issues, such as microphysics and precipitation; interaction between clouds and radiation; and the effects of boundary-layer and surface-processes on cloud systems. Since CRMs resolve organized convection, tropical waves and the large-scale circulation, there is the prospect for several advances in both basic knowledge of scale-interaction requisite to parameterizing mesoscale processes in climate models. In superparameterization, CRMs represent convection, explicitly replacing many of the assumptions necessary in contemporary parameterization. Global CRMs have been run on an experimental basis, giving prospect to a new generation of climate weather prediction in a decade, and climate models due course. CRMs play a major role in the retrieval of surface-rain and latent heating from satellite measurements. Finally, enormous wide dynamic ranges of CRM simulations present new challenges for model validation against observations.

  5. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    SciTech Connect

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together into larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.

  6. 3D cloud detection and tracking system for solar forecast using multiple sky imagers

    DOE PAGESBeta

    Peng, Zhenzhou; Yu, Dantong; Huang, Dong; Heiser, John; Yoo, Shinjae; Kalb, Paul

    2015-06-23

    We propose a system for forecasting short-term solar irradiance based on multiple total sky imagers (TSIs). The system utilizes a novel method of identifying and tracking clouds in three-dimensional space and an innovative pipeline for forecasting surface solar irradiance based on the image features of clouds. First, we develop a supervised classifier to detect clouds at the pixel level and output cloud mask. In the next step, we design intelligent algorithms to estimate the block-wise base height and motion of each cloud layer based on images from multiple TSIs. Thus, this information is then applied to stitch images together intomore » larger views, which are then used for solar forecasting. We examine the system’s ability to track clouds under various cloud conditions and investigate different irradiance forecast models at various sites. We confirm that this system can 1) robustly detect clouds and track layers, and 2) extract the significant global and local features for obtaining stable irradiance forecasts with short forecast horizons from the obtained images. Finally, we vet our forecasting system at the 32-megawatt Long Island Solar Farm (LISF). Compared with the persistent model, our system achieves at least a 26% improvement for all irradiance forecasts between one and fifteen minutes.« less

  7. On the Sensitivity of Atmospheric Ensembles to Cloud Microphysics in Long-Term Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Lang, Stephen; Hou, Arthur Y.; Zhang, Minghua; Simpson, Joanne

    2008-01-01

    Month-long large-scale forcing data from two field campaigns are used to drive a cloud-resolving model (CRM) and produce ensemble simulations of clouds and precipitation. Observational data are then used to evaluate the model results. To improve the model results, a new parameterization of the Bergeron process is proposed that incorporates the number concentration of ice nuclei (IN). Numerical simulations reveal that atmospheric ensembles are sensitive to IN concentration and ice crystal multiplication. Two- (2D) and three-dimensional (3D) simulations are carried out to address the sensitivity of atmospheric ensembles to model dimensionality. It is found that the ensembles with high IN concentration are more sensitive to dimensionality than those with low IN concentration. Both the analytic solutions of linear dry models and the CRM output show that there are more convective cores with stronger updrafts in 3D simulations than in 2D, which explains the differing sensitivity of the ensembles to dimensionality at different IN concentrations.

  8. Evaluation of high-level clouds in cloud resolving model simulations with ARM and KWAJEX observations

    NASA Astrophysics Data System (ADS)

    Liu, Zheng; Muhlbauer, Andreas; Ackerman, Thomas

    2015-12-01

    In this study, we evaluate high-level clouds in a cloud resolving model during two convective cases, ARM9707 and KWAJEX. The simulated joint histograms of cloud occurrence and radar reflectivity compare well with cloud radar and satellite observations when using a two-moment microphysics scheme. However, simulations performed with a single moment microphysical scheme exhibit low biases of approximately 20 dB. During convective events, two-moment microphysical overestimate the amount of high-level cloud and one-moment microphysics precipitate too readily and underestimate the amount and height of high-level cloud. For ARM9707, persistent large positive biases in high-level cloud are found, which are not sensitive to changes in ice particle fall velocity and ice nuclei number concentration in the two-moment microphysics. These biases are caused by biases in large-scale forcing and maintained by the periodic lateral boundary conditions. The combined effects include significant biases in high-level cloud amount, radiation, and high sensitivity of cloud amount to nudging time scale in both convective cases. The high sensitivity of high-level cloud amount to the thermodynamic nudging time scale suggests that thermodynamic nudging can be a powerful "tuning" parameter for the simulated cloud and radiation but should be applied with caution. The role of the periodic lateral boundary conditions in reinforcing the biases in cloud and radiation suggests that reducing the uncertainty in the large-scale forcing in high levels is important for similar convective cases and has far reaching implications for simulating high-level clouds in super-parameterized global climate models such as the multiscale modeling framework.

  9. Microphysical Timescales in Clouds and their Application in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Simpson, Joanne

    2007-01-01

    Independent prognostic variables in cloud-resolving modeling are chosen on the basis of the analysis of microphysical timescales in clouds versus a time step for numerical integration. Two of them are the moist entropy and the total mixing ratio of airborne water with no contributions from precipitating particles. As a result, temperature can be diagnosed easily from those prognostic variables, and cloud microphysics be separated (or modularized) from moist thermodynamics. Numerical comparison experiments show that those prognostic variables can work well while a large time step (e.g., 10 s) is used for numerical integration.

  10. Comparison of 3D point clouds obtained by photogrammetric UAVs and TLS to determine the attitude of dolerite outcrops discontinuities.

    NASA Astrophysics Data System (ADS)

    Duarte, João; Gonçalves, Gil; Duarte, Diogo; Figueiredo, Fernando; Mira, Maria

    2015-04-01

    Photogrammetric Unmanned Aerial Vehicles (UAVs) and Terrestrial Laser Scanners (TLS) are two emerging technologies that allows the production of dense 3D point clouds of the sensed topographic surfaces. Although image-based stereo-photogrammetric point clouds could not, in general, compete on geometric quality over TLS point clouds, fully automated mapping solutions based on ultra-light UAVs (or drones) have recently become commercially available at very reasonable accuracy and cost for engineering and geological applications. The purpose of this paper is to compare the two point clouds generated by these two technologies, in order to automatize the manual process tasks commonly used to detect and represent the attitude of discontinuities (Stereographic projection: Schmidt net - Equal area). To avoid the difficulties of access and guarantee the data survey security conditions, this fundamental step in all geological/geotechnical studies, applied to the extractive industry and engineering works, has to be replaced by a more expeditious and reliable methodology. This methodology will allow, in a more actuated clear way, give answers to the needs of evaluation of rock masses, by mapping the structures present, which will reduce considerably the associated risks (investment, structures dimensioning, security, etc.). A case study of a dolerite outcrop locate in the center of Portugal (the dolerite outcrop is situated in the volcanic complex of Serra de Todo-o-Mundo, Casais Gaiola, intruded in Jurassic sandstones) will be used to assess this methodology. The results obtained show that the 3D point cloud produced by the Photogrammetric UAV platform has the appropriate geometric quality for extracting the parameters that define the discontinuities of the dolerite outcrops. Although, they are comparable to the manual extracted parameters, their quality is inferior to parameters extracted from the TLS point cloud.

  11. Towards Realistic Cumulus Cloud Resolving Simulations at Supersites

    NASA Astrophysics Data System (ADS)

    van Laar, T.; Schemann, V.; Neggers, R.

    2015-12-01

    Realistic fine-scale shallow cumulus cloud resolving simulations are performed to improve our understanding of the interactions between surface heterogeneity and boundary-layer cloud fields. For this purpose we apply the ICON (ICOsahedral Non-hydrostatic) model on a regional domain. ICON has been partly developed by the ongoing project HD(CP)2 (High Definition Clouds and Precipitation for Climate Prediction), which has the aim of getting a better grip on cloud and precipitation processes and their implication for climate prediction. The model domain is centred around JOYCE, an observational supersite in Jülich (Germany). To optimize the realism of the simulation, use is made of heterogeneous surface forcings and non-periodic boundary conditions. A number of prototype cumulus days is simulated, the results of which are evaluated against observations. The focus lies on bulk cloud properties and the vertical structure of the boundary layer. The ICON results are intercompared with available idealized LES results. Sensitivity of the results to the model set-up (e.g. resolution) is assessed.

  12. Attribute-based point cloud visualization in support of 3-D classification

    NASA Astrophysics Data System (ADS)

    Zlinszky, András; Otepka, Johannes; Kania, Adam

    2016-04-01

    Despite the rich information available in LIDAR point attributes through full waveform recording, radiometric calibration and advanced texture metrics, LIDAR-based classification is mostly done in the raster domain. Point-based analyses such as noise removal or terrain filtering are often carried out without visual investigation of the point cloud attributes used. This is because point cloud visualization software usually handle only a limited number of pre-defined point attributes and only allow colorizing the point cloud with one of these at a time. Meanwhile, point cloud classification is rapidly evolving, and uses not only the individual attributes but combinations of these. In order to understand input data and output results better, more advanced methods for visualization are needed. Here we propose an algorithm of the OPALS software package that handles visualization of the point cloud together with its attributes. The algorithm is based on the .odm (OPALS data manager) file format that efficiently handles a large number of pre-defined point attributes and also allows the user to generate new ones. Attributes of interest can be visualized individually, by applying predefined or user-generated palettes in a simple .xml format. The colours of the palette are assigned to the points by setting the respective Red, Green and Blue attributes of the point to result in the colour pre-defined by the palette for the corresponding attribute value. The algorithm handles scaling and histogram equalization based on the distribution of the point attribute to be considered. Additionally, combinations of attributes can be visualized based on RBG colour mixing. The output dataset can be in any standard format where RGB attributes are supported and visualized with conventional point cloud viewing software. Viewing the point cloud together with its attributes allows efficient selection of filter settings and classification parameters. For already classified point clouds, a large

  13. Three-dimensional turbulence-resolving modeling of the Venusian cloud layer and associated gravity waves

    NASA Astrophysics Data System (ADS)

    Lefevre, Maxence; Spiga, Aymeric; Lebonnois, Sebastien

    2016-10-01

    One of the main questions that remains unclear about the dynamics of the atmosphere of Venus and its interaction with the photochemistry is the characterization of the cloud convective layer which mixes momentum, heat, chemical species and generates gravity waves observed by Venus Express. This dynamical forcing induced by the cloud layer has been proposed as a significant contribution to the maintenance of the super-rotation. However these waves develop from regional to local scales and can not be resolved by global circulation models (GCM) developed insofar. Therefore we developed an unprecedented 3D Venusian mesoscale model based on the Martian mesoscale model using the Weather Research and Forecast terrestrial model. We report the first application of this model : simulating convection in the Venusian cloud layer and associated gravity waves by 3D turbulent-resolving simulations (Large-Eddy Simulations). The model employs an offline radiative forcing based on heating rates extracted from the LMD Venus GCM consisting of three distinct kind of rates. Two radiative ones for short wave (solar) and long wave (IR) and one for the adiabatic cooling/warming due to the global dynamics of the atmosphere (mainly the Hadley cell) with 2 different cloud models. Therefore we are able to characterize the convection and associated gravity waves in function of latitude and local time. To assess the impact of the general circulation on the convection we ran simulations with forcing from a 1D radiative model.The resolved convective layer takes place between 1.0 105 and 3.8 104 Pa with vertical wind between ± 3 m/s, is organized as polygonal closed cells of about 8x8km2, and emits gravity waves on either side with temperature perturbations of about 0.5 K with vertical wavelength of 1 km and horizontal wavelength from 1 to almost 20 km. The order of magnitude of the resolved plumes is consistent with observations though underestimated.We are working on coupling the model with a

  14. Evaluating the Potential of Rtk-Uav for Automatic Point Cloud Generation in 3d Rapid Mapping

    NASA Astrophysics Data System (ADS)

    Fazeli, H.; Samadzadegan, F.; Dadrasjavan, F.

    2016-06-01

    During disaster and emergency situations, 3D geospatial data can provide essential information for decision support systems. The utilization of geospatial data using digital surface models as a basic reference is mandatory to provide accurate quick emergency response in so called rapid mapping activities. The recipe between accuracy requirements and time restriction is considered critical in this situations. UAVs as alternative platforms for 3D point cloud acquisition offer potentials because of their flexibility and practicability combined with low cost implementations. Moreover, the high resolution data collected from UAV platforms have the capabilities to provide a quick overview of the disaster area. The target of this paper is to experiment and to evaluate a low-cost system for generation of point clouds using imagery collected from a low altitude small autonomous UAV equipped with customized single frequency RTK module. The customized multi-rotor platform is used in this study. Moreover, electronic hardware is used to simplify user interaction with the UAV as RTK-GPS/Camera synchronization, and beside the synchronization, lever arm calibration is done. The platform is equipped with a Sony NEX-5N, 16.1-megapixel camera as imaging sensor. The lens attached to camera is ZEISS optics, prime lens with F1.8 maximum aperture and 24 mm focal length to deliver outstanding images. All necessary calibrations are performed and flight is implemented over the area of interest at flight height of 120 m above the ground level resulted in 2.38 cm GSD. Earlier to image acquisition, 12 signalized GCPs and 20 check points were distributed in the study area and measured with dualfrequency GPS via RTK technique with horizontal accuracy of σ = 1.5 cm and vertical accuracy of σ = 2.3 cm. results of direct georeferencing are compared to these points and experimental results show that decimeter accuracy level for 3D points cloud with proposed system is achievable, that is suitable

  15. Geometric and topological feature extraction of linear segments from 2D cross-section data of 3D point clouds

    NASA Astrophysics Data System (ADS)

    Ramamurthy, Rajesh; Harding, Kevin; Du, Xiaoming; Lucas, Vincent; Liao, Yi; Paul, Ratnadeep; Jia, Tao

    2015-05-01

    Optical measurement techniques are often employed to digitally capture three dimensional shapes of components. The digital data density output from these probes range from a few discrete points to exceeding millions of points in the point cloud. The point cloud taken as a whole represents a discretized measurement of the actual 3D shape of the surface of the component inspected to the measurement resolution of the sensor. Embedded within the measurement are the various features of the part that make up its overall shape. Part designers are often interested in the feature information since those relate directly to part function and to the analytical models used to develop the part design. Furthermore, tolerances are added to these dimensional features, making their extraction a requirement for the manufacturing quality plan of the product. The task of "extracting" these design features from the point cloud is a post processing task. Due to measurement repeatability and cycle time requirements often automated feature extraction from measurement data is required. The presence of non-ideal features such as high frequency optical noise and surface roughness can significantly complicate this feature extraction process. This research describes a robust process for extracting linear and arc segments from general 2D point clouds, to a prescribed tolerance. The feature extraction process generates the topology, specifically the number of linear and arc segments, and the geometry equations of the linear and arc segments automatically from the input 2D point clouds. This general feature extraction methodology has been employed as an integral part of the automated post processing algorithms of 3D data of fine features.

  16. D Geological Outcrop Characterization: Automatic Detection of 3d Planes (azimuth and Dip) Using LiDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Anders, K.; Hämmerle, M.; Miernik, G.; Drews, T.; Escalona, A.; Townsend, C.; Höfle, B.

    2016-06-01

    Terrestrial laser scanning constitutes a powerful method in spatial information data acquisition and allows for geological outcrops to be captured with high resolution and accuracy. A crucial aspect for numerous geologic applications is the extraction of rock surface orientations from the data. This paper focuses on the detection of planes in rock surface data by applying a segmentation algorithm directly to a 3D point cloud. Its performance is assessed considering (1) reduced spatial resolution of data and (2) smoothing in the course of data pre-processing. The methodology is tested on simulations of progressively reduced spatial resolution defined by varying point cloud density. Smoothing of the point cloud data is implemented by modifying the neighborhood criteria during normals estima-tion. The considerable alteration of resulting planes emphasizes the influence of smoothing on the plane detection prior to the actual segmentation. Therefore, the parameter needs to be set in accordance with individual purposes and respective scales of studies. Fur-thermore, it is concluded that the quality of segmentation results does not decline even when the data volume is significantly reduced down to 10%. The azimuth and dip values of individual segments are determined for planes fit to the points belonging to one segment. Based on these results, azimuth and dip as well as strike character of the surface planes in the outcrop are assessed. Thereby, this paper contributes to a fully automatic and straightforward workflow for a comprehensive geometric description of outcrops in 3D.

  17. A closed-form expression of the positional uncertainty for 3D point clouds.

    PubMed

    Bae, Kwang-Ho; Belton, David; Lichti, Derek D

    2009-04-01

    We present a novel closed-form expression of positional uncertainty measured by a near-monostatic and time-of-flight laser range finder with consideration of its measurement uncertainties. An explicit form of the angular variance of the estimated surface normal vector is also derived. This expression is useful for the precise estimation of the surface normal vector and the outlier detection for finding correspondence in order to register multiple three-dimensional point clouds. Two practical algorithms using these expressions are presented: a method for finding optimal local neighbourhood size which minimizes the variance of the estimated normal vector and a resampling method of point clouds.

  18. The 3D Hough Transform for plane detection in point clouds: A review and a new accumulator design

    NASA Astrophysics Data System (ADS)

    Borrmann, Dorit; Elseberg, Jan; Lingemann, Kai; Nüchter, Andreas

    2011-03-01

    The Hough Transform is a well-known method for detecting parameterized objects. It is the de facto standard for detecting lines and circles in 2-dimensional data sets. For 3D it has attained little attention so far. Even for the 2D case high computational costs have lead to the development of numerous variations for the Hough Transform. In this article we evaluate different variants of the Hough Transform with respect to their applicability to detect planes in 3D point clouds reliably. Apart from computational costs, the main problem is the representation of the accumulator. Usual implementations favor geometrical objects with certain parameters due to uneven sampling of the parameter space. We present a novel approach to design the accumulator focusing on achieving the same size for each cell and compare it to existing designs. [Figure not available: see fulltext.

  19. Status report on the 'Merging' of the Electron-Cloud Code POSINST with the 3-D Accelerator PIC CODE WARP

    SciTech Connect

    Vay, J.-L.; Furman, M.A.; Azevedo, A.W.; Cohen, R.H.; Friedman, A.; Grote, D.P.; Stoltz, P.H.

    2004-04-19

    We have integrated the electron-cloud code POSINST [1] with WARP [2]--a 3-D parallel Particle-In-Cell accelerator code developed for Heavy Ion Inertial Fusion--so that the two can interoperate. Both codes are run in the same process, communicate through a Python interpreter (already used in WARP), and share certain key arrays (so far, particle positions and velocities). Currently, POSINST provides primary and secondary sources of electrons, beam bunch kicks, a particle mover, and diagnostics. WARP provides the field solvers and diagnostics. Secondary emission routines are provided by the Tech-X package CMEE.

  20. 3D dust clouds (Yukawa Balls) in strongly coupled dusty plasmas

    SciTech Connect

    Melzer, A.; Passvogel, M.; Miksch, T.; Ikkurthi, V. R.; Schneider, R.; Block, D.; Piel, A.

    2010-06-16

    Three-dimensional finite systems of charged dust particles confined to concentric spherical shells in a dusty plasma, so-called 'Yukawa balls', have been studied with respect to their static and dynamic properties. Here, we review the charging of particles in a dusty plasma discharge by computer simulations and the respective particle arrangements. The normal mode spectrum of Yukawa balls is measured from the 3D thermal Brownian motion of the dust particles around their equilibrium positions.

  1. Identification of damage in buildings based on gaps in 3D point clouds from very high resolution oblique airborne images

    NASA Astrophysics Data System (ADS)

    Vetrivel, Anand; Gerke, Markus; Kerle, Norman; Vosselman, George

    2015-07-01

    Point clouds generated from airborne oblique images have become a suitable source for detailed building damage assessment after a disaster event, since they provide the essential geometric and radiometric features of both roof and façades of the building. However, they often contain gaps that result either from physical damage or from a range of image artefacts or data acquisition conditions. A clear understanding of those reasons, and accurate classification of gap-type, are critical for 3D geometry-based damage assessment. In this study, a methodology was developed to delineate buildings from a point cloud and classify the present gaps. The building delineation process was carried out by identifying and merging the roof segments of single buildings from the pre-segmented 3D point cloud. This approach detected 96% of the buildings from a point cloud generated using airborne oblique images. The gap detection and classification methods were tested using two other data sets obtained with Unmanned Aerial Vehicle (UAV) images with a ground resolution of around 1-2 cm. The methods detected all significant gaps and correctly identified the gaps due to damage. The gaps due to damage were identified based on the surrounding damage pattern, applying Gabor wavelets and a histogram of gradient orientation features. Two learning algorithms - SVM and Random Forests were tested for mapping the damaged regions based on radiometric descriptors. The learning model based on Gabor features with Random Forests performed best, identifying 95% of the damaged regions. The generalization performance of the supervised model, however, was less successful: quality measures decreased by around 15-30%.

  2. A CANDELS-3D-HST synergy: Resolved star formation patterns at 0.7 < z < 1.5

    SciTech Connect

    Wuyts, Stijn; Förster Schreiber, Natascha M.; Genzel, Reinhard; Lutz, Dieter; Rosario, David; Nelson, Erica J.; Van Dokkum, Pieter G.; Momcheva, Ivelina; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Franx, Marijn; Fumagalli, Mattia; Kocevski, Dale D.; Lundgren, Britt; McGrath, Elizabeth J.; Skelton, Rosalind E.; and others

    2013-12-20

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multi-wavelength broadband imaging from CANDELS and Hα surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Hα morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Hα dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Hα/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called 'main sequence of star formation' established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced Hα equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Hα/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  3. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2009-05-01

    OPTRA is developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill.

  4. GS-3D Simulator: An Interactive IDL Widget Tool for Simulating Spatially Resolved Gyrosynchrotron Spectra Emitted by Solar Radio Bursts

    NASA Astrophysics Data System (ADS)

    Nita, Gelu M.; Fleishman, G. D.; Gary, D. E.

    2009-05-01

    An interactive IDL widget application intended to provide a flexible tool that allows the user to generate spatially resolved gyrosynchrotron spectra is presented. The object-based architecture of this application provides full 3D interaction with a user-specified magnetic loop geometry. Alternatively, the user may define and pass to the same interface arbitrary analytical or numerical models, including those derived from magnetic field extrapolation, provided that they inherit the generic properties of the base class defined in this package. The default code generating the GS emission from the input geometrical model was developed in FORTRAN based on the Petrosian-Klein approximation, and compiled as a DLL callable by IDL. However, the interactive interface allows interchanging this default library with any user-defined callable code. To illustrate the concept, a simple dipole magnetic loop object is analytically defined, and GS radio maps at 100 frequencies in the 1-100 GHz frequency range are produced. Similar maps produced by this tool were used as input test data in a forward-fitting algorithm that makes the subject of another presentation at this meeting (Fleishman et al. 09-D-83-SPD40). This work was supported by NSF grants AST-0607544 and ATM-0707319 and NASA grant NNG06GJ40G to New Jersey Institute of Technology.

  5. A Comprehensive Automated 3D Approach for Building Extraction, Reconstruction, and Regularization from Airborne Laser Scanning Point Clouds

    PubMed Central

    Dorninger, Peter; Pfeifer, Norbert

    2008-01-01

    Three dimensional city models are necessary for supporting numerous management applications. For the determination of city models for visualization purposes, several standardized workflows do exist. They are either based on photogrammetry or on LiDAR or on a combination of both data acquisition techniques. However, the automated determination of reliable and highly accurate city models is still a challenging task, requiring a workflow comprising several processing steps. The most relevant are building detection, building outline generation, building modeling, and finally, building quality analysis. Commercial software tools for building modeling require, generally, a high degree of human interaction and most automated approaches described in literature stress the steps of such a workflow individually. In this article, we propose a comprehensive approach for automated determination of 3D city models from airborne acquired point cloud data. It is based on the assumption that individual buildings can be modeled properly by a composition of a set of planar faces. Hence, it is based on a reliable 3D segmentation algorithm, detecting planar faces in a point cloud. This segmentation is of crucial importance for the outline detection and for the modeling approach. We describe the theoretical background, the segmentation algorithm, the outline detection, and the modeling approach, and we present and discuss several actual projects.

  6. a Semi-Automated Point Cloud Processing Methodology for 3d Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Kıvılcım, C. Ö.; Duran, Z.

    2016-06-01

    The preliminary phase in any architectural heritage project is to obtain metric measurements and documentation of the building and its individual elements. On the other hand, conventional measurement techniques require tremendous resources and lengthy project completion times for architectural surveys and 3D model production. Over the past two decades, the widespread use of laser scanning and digital photogrammetry have significantly altered the heritage documentation process. Furthermore, advances in these technologies have enabled robust data collection and reduced user workload for generating various levels of products, from single buildings to expansive cityscapes. More recently, the use of procedural modelling methods and BIM relevant applications for historic building documentation purposes has become an active area of research, however fully automated systems in cultural heritage documentation still remains open. In this paper, we present a semi-automated methodology, for 3D façade modelling of cultural heritage assets based on parametric and procedural modelling techniques and using airborne and terrestrial laser scanning data. We present the contribution of our methodology, which we implemented in an open source software environment using the example project of a 16th century early classical era Ottoman structure, Sinan the Architect's Şehzade Mosque in Istanbul, Turkey.

  7. Historical Buildings Models and Their Handling via 3d Survey: from Points Clouds to User-Oriented Hbim

    NASA Astrophysics Data System (ADS)

    Chiabrando, F.; Sammartano, G.; Spanò, A.

    2016-06-01

    This paper retraces some research activities and application of 3D survey techniques and Building Information Modelling (BIM) in the environment of Cultural Heritage. It describes the diffusion of as-built BIM approach in the last years in Heritage Assets management, the so-called Built Heritage Information Modelling/Management (BHIMM or HBIM), that is nowadays an important and sustainable perspective in documentation and administration of historic buildings and structures. The work focuses the documentation derived from 3D survey techniques that can be understood like a significant and unavoidable knowledge base for the BIM conception and modelling, in the perspective of a coherent and complete management and valorisation of CH. It deepens potentialities, offered by 3D integrated survey techniques, to acquire productively and quite easilymany 3D information, not only geometrical but also radiometric attributes, helping the recognition, interpretation and characterization of state of conservation and degradation of architectural elements. From these data, they provide more and more high descriptive models corresponding to the geometrical complexity of buildings or aggregates in the well-known 5D (3D + time and cost dimensions). Points clouds derived from 3D survey acquisition (aerial and terrestrial photogrammetry, LiDAR and their integration) are reality-based models that can be use in a semi-automatic way to manage, interpret, and moderately simplify geometrical shapes of historical buildings that are examples, as is well known, of non-regular and complex geometry, instead of modern constructions with simple and regular ones. In the paper, some of these issues are addressed and analyzed through some experiences regarding the creation and the managing of HBIMprojects on historical heritage at different scales, using different platforms and various workflow. The paper focuses on LiDAR data handling with the aim to manage and extract geometrical information; on

  8. Recent advances in analysis and prediction of Rock Falls, Rock Slides, and Rock Avalanches using 3D point clouds

    NASA Astrophysics Data System (ADS)

    Abellan, A.; Carrea, D.; Jaboyedoff, M.; Riquelme, A.; Tomas, R.; Royan, M. J.; Vilaplana, J. M.; Gauvin, N.

    2014-12-01

    The acquisition of dense terrain information using well-established 3D techniques (e.g. LiDAR, photogrammetry) and the use of new mobile platforms (e.g. Unmanned Aerial Vehicles) together with the increasingly efficient post-processing workflows for image treatment (e.g. Structure From Motion) are opening up new possibilities for analysing, modeling and predicting rock slope failures. Examples of applications at different scales ranging from the monitoring of small changes at unprecedented level of detail (e.g. sub millimeter-scale deformation under lab-scale conditions) to the detection of slope deformation at regional scale. In this communication we will show the main accomplishments of the Swiss National Foundation project "Characterizing and analysing 3D temporal slope evolution" carried out at Risk Analysis group (Univ. of Lausanne) in close collaboration with the RISKNAT and INTERES groups (Univ. of Barcelona and Univ. of Alicante, respectively). We have recently developed a series of innovative approaches for rock slope analysis using 3D point clouds, some examples include: the development of semi-automatic methodologies for the identification and extraction of rock-slope features such as discontinuities, type of material, rockfalls occurrence and deformation. Moreover, we have been improving our knowledge in progressive rupture characterization thanks to several algorithms, some examples include the computing of 3D deformation, the use of filtering techniques on permanently based TLS, the use of rock slope failure analogies at different scales (laboratory simulations, monitoring at glacier's front, etc.), the modelling of the influence of external forces such as precipitation on the acceleration of the deformation rate, etc. We have also been interested on the analysis of rock slope deformation prior to the occurrence of fragmental rockfalls and the interaction of this deformation with the spatial location of future events. In spite of these recent advances

  9. Visualisation of Complex 3d City Models on Mobile Webbrowsers Using Cloud-Based Image Provisioning

    NASA Astrophysics Data System (ADS)

    Christen, M.; Nebiker, S.

    2015-08-01

    Rendering large city models with high polygon count and a vast amount of textures at interactive frame rates is a rather difficult to impossible task as it highly depends on the client hardware, which is often insufficient, even if out-of-core rendering techniques and level of detail approaches are used. Rendering complex city models on mobile devices is even more challenging. An approach of rendering and caching very large city models in the cloud using ray-tracing based image provisioning is introduced. This allows rendering large scenes efficiently, including on mobile devices. With this approach, it is possible to render cities with nearly unlimited number of polygons and textures.

  10. RESOLVED MAGNETIC FIELD MAPPING OF A MOLECULAR CLOUD USING GPIPS

    SciTech Connect

    Marchwinski, Robert C.; Pavel, Michael D.; Clemens, Dan P. E-mail: pavelmi@bu.edu

    2012-08-20

    We present the first resolved map of plane-of-sky magnetic field strength for a quiescent molecular cloud. GRSMC 45.60+0.30 subtends 40 Multiplication-Sign 10 pc at a distance of 1.88 kpc, masses 16,000 M{sub Sun }, and exhibits no star formation. Near-infrared background starlight polarizations were obtained for the Galactic Plane Infrared Polarization Survey using the 1.8 m Perkins telescope and the Mimir instrument. The cloud area of 0.78 deg{sup 2} contains 2684 significant starlight polarizations for Two Micron All Sky Survey matched stars brighter than 12.5 mag in the H band. Polarizations are generally aligned with the cloud's major axis, showing an average position angle dispersion of 15 {+-} 2 Degree-Sign and polarization of 1.8 {+-} 0.6%. The polarizations were combined with Galactic Ring Survey {sup 13}CO spectroscopy and the Chandrasekhar-Fermi method to estimate plane-of-sky magnetic field strengths, with an angular resolution of 100 arcsec. The average plane-of-sky magnetic field strength across the cloud is 5.40 {+-} 0.04 {mu}G. The magnetic field strength map exhibits seven enhancements or 'magnetic cores'. These cores show an average magnetic field strength of 8.3 {+-} 0.9 {mu}G, radius of 1.2 {+-} 0.2 pc, intercore spacing of 5.7 {+-} 0.9 pc, and exclusively subcritical mass-to-flux ratios, implying their magnetic fields continue to suppress star formation. The magnetic field strength shows a power-law dependence on gas volume density, with slope 0.75 {+-} 0.02 for n{sub H{sub 2}} {>=}10 cm{sup -3}. This power-law index is identical to those in studies at higher densities, but disagrees with predictions for the densities probed here.

  11. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Engel, James R.; Vaillancourt, Robert; Todd, Lori; Mottus, Kathleen

    2008-04-01

    OPTRA and University of North Carolina are developing an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach will be considered as a candidate referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize progress to date and overall system performance projections based on the instrument, spectroscopy, and tomographic reconstruction accuracy. We then present a preliminary optical design of the I-OP-FTIR.

  12. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    NASA Astrophysics Data System (ADS)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  13. Comparison of different techniques in optical trap for generating picokelvin 3D atom cloud in microgravity

    NASA Astrophysics Data System (ADS)

    Yao, Hepeng; Luan, Tian; Li, Chen; Zhang, Yin; Ma, Zhaoyuan; Chen, Xuzong

    2016-01-01

    Pursuing ultralow temperature 3D atom gas under microgravity conditions is one of the popular topics in the field of ultracold research. Many groups around the world are using, or are planning to use, delta-kick cooling (DKC) in microgravity. Our group has also proposed a two-stage crossed beam cooling (TSCBC) method that also provides a path to picokelvin temperatures. In this paper, we compare the characteristics of TSCBC and DKC for producing a picokelvin system in microgravity. Using a direct simulation Monte Carlo (DSMC) method, we simulate the cooling process of 87Rb using the two different cooling techniques. Under the same initial conditions, 87Rb can reach 7 pK in 15 s using TSCBC and 75 pK in 5.1 s with DKC. The simulation results show that TSCBC can reach lower temperatures compared with DKC, but needs more time and a more stable laser.

  14. Statistical analyses of satellite cloud object data from CERES: Comparison with cloud-resolving model simulations of tropical convective clouds

    NASA Astrophysics Data System (ADS)

    Luo, Y. L.

    The present study attempts to evaluate the ability of a cloud-resolving model CRM that is currently being implemented into a multi-scale modeling framework to simulate the physical properties of tropical deep convective cloud objects identified from a Clouds and the Earth s Radiant Energy System CERES data product The emphasis of this study is the comparisons among the small- medium- and large-size categories of cloud objects observed during March 1998 strong El Nino and the large-size category of cloud objects observed during March 2000 weak La Nina Results from the CRM simulations are analyzed in a way that is consistent with the CERES retrieval algorithm and matches with the average scale of the CERES satellite footprints Cloud physical properties are analyzed in terms of their summary histograms for each category Summary histograms of cloud optical depth and top-of-the-atmosphere TOA albedo from the CRM simulations of the large-size category of cloud objects do not differ significantly between the March 1998 and 2000 periods consistent with the CERES observations However the CRM is unable to reproduce the significant differences in the observed cloud top height while overestimates the moderate differences in the observed outgoing longwave radiation and cloud top temperature between the two periods Comparisons between the CRM results and the observations for most parameters in March 1998 show the same consistent larger differences between the large- and small-size categories than between the large- and medium-size or between the medium- and

  15. 3D polygonal representation of dense point clouds by triangulation, segmentation, and texture projection

    NASA Astrophysics Data System (ADS)

    Tajbakhsh, Touraj

    2010-02-01

    A basic concern of computer graphic is the modeling and realistic representation of three-dimensional objects. In this paper we present our reconstruction framework which determines a polygonal surface from a set of dense points such those typically obtained from laser scanners. We deploy the concept of adaptive blobs to achieve a first volumetric representation of the object. In the next step we estimate a coarse surface using the marching cubes method. We propose to deploy a depth-first search segmentation algorithm traversing a graph representation of the obtained polygonal mesh in order to identify all connected components. A so called supervised triangulation maps the coarse surfaces onto the dense point cloud. We optimize the mesh topology using edge exchange operations. For photo-realistic visualization of objects we finally synthesize optimal low-loss textures from available scene captures of different projections. We evaluate our framework on artificial data as well as real sensed data.

  16. Incremental Refinement of FAÇADE Models with Attribute Grammar from 3d Point Clouds

    NASA Astrophysics Data System (ADS)

    Dehbi, Y.; Staat, C.; Mandtler, L.; Pl¨umer, L.

    2016-06-01

    Data acquisition using unmanned aerial vehicles (UAVs) has gotten more and more attention over the last years. Especially in the field of building reconstruction the incremental interpretation of such data is a demanding task. In this context formal grammars play an important role for the top-down identification and reconstruction of building objects. Up to now, the available approaches expect offline data in order to parse an a-priori known grammar. For mapping on demand an on the fly reconstruction based on UAV data is required. An incremental interpretation of the data stream is inevitable. This paper presents an incremental parser of grammar rules for an automatic 3D building reconstruction. The parser enables a model refinement based on new observations with respect to a weighted attribute context-free grammar (WACFG). The falsification or rejection of hypotheses is supported as well. The parser can deal with and adapt available parse trees acquired from previous interpretations or predictions. Parse trees derived so far are updated in an iterative way using transformation rules. A diagnostic step searches for mismatches between current and new nodes. Prior knowledge on façades is incorporated. It is given by probability densities as well as architectural patterns. Since we cannot always assume normal distributions, the derivation of location and shape parameters of building objects is based on a kernel density estimation (KDE). While the level of detail is continuously improved, the geometrical, semantic and topological consistency is ensured.

  17. Calibration of an outdoor distributed camera network with a 3D point cloud.

    PubMed

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-07-29

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC).

  18. Calibration of an Outdoor Distributed Camera Network with a 3D Point Cloud

    PubMed Central

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H.; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-01-01

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC). PMID:25076221

  19. Calibration of an outdoor distributed camera network with a 3D point cloud.

    PubMed

    Ortega, Agustín; Silva, Manuel; Teniente, Ernesto H; Ferreira, Ricardo; Bernardino, Alexandre; Gaspar, José; Andrade-Cetto, Juan

    2014-01-01

    Outdoor camera networks are becoming ubiquitous in critical urban areas of the largest cities around the world. Although current applications of camera networks are mostly tailored to video surveillance, recent research projects are exploiting their use to aid robotic systems in people-assisting tasks. Such systems require precise calibration of the internal and external parameters of the distributed camera network. Despite the fact that camera calibration has been an extensively studied topic, the development of practical methods for user-assisted calibration that minimize user intervention time and maximize precision still pose significant challenges. These camera systems have non-overlapping fields of view, are subject to environmental stress, and are likely to suffer frequent recalibration. In this paper, we propose the use of a 3D map covering the area to support the calibration process and develop an automated method that allows quick and precise calibration of a large camera network. We present two cases of study of the proposed calibration method: one is the calibration of the Barcelona Robot Lab camera network, which also includes direct mappings (homographies) between image coordinates and world points in the ground plane (walking areas) to support person and robot detection and localization algorithms. The second case consist of improving the GPS positioning of geo-tagged images taken with a mobile device in the Facultat de Matemàtiques i Estadística (FME) patio at the Universitat Politècnica de Catalunya (UPC). PMID:25076221

  20. Structurally Resolved Abundances and Depletions in the Rho OPH Cloud

    NASA Astrophysics Data System (ADS)

    Seab, C.

    1995-07-01

    The mechanism that determines the pattern of depletion ofelements in the interstellar medium has been a problem for along time. It is clear that some of the most refractoryelements such as Si, Fe, and Mg, are heavily depleted onto theinterstellar grains. On the other hand, some elements such asS and Zn are normally either undepleted or very lightlydepleted. The difference between the two cases is notunderstood. We propose to address this question with adetailed study of the depletion patterns in the Rho Ophiuchicloud. This study is strongly based on a combination of thecapabilities of two modern instruments: the GHRS for high-resolution UV data, and the Ultra High Resolution Facility(UHRF) of the AAT. This instrument has been used to obtain NaI line profiles in the Rho Oph cloud with a resolution ofR=1,000,000. The combination of these two types of data willbe used to resolve the velocity structure of the elementdepletions in the cloud.

  1. Registration of 3D point clouds and meshes: a survey from rigid to nonrigid.

    PubMed

    Tam, Gary K L; Cheng, Zhi-Quan; Lai, Yu-Kun; Langbein, Frank C; Liu, Yonghuai; Marshall, David; Martin, Ralph R; Sun, Xian-Fang; Rosin, Paul L

    2013-07-01

    Three-dimensional surface registration transforms multiple three-dimensional data sets into the same coordinate system so as to align overlapping components of these sets. Recent surveys have covered different aspects of either rigid or nonrigid registration, but seldom discuss them as a whole. Our study serves two purposes: 1) To give a comprehensive survey of both types of registration, focusing on three-dimensional point clouds and meshes and 2) to provide a better understanding of registration from the perspective of data fitting. Registration is closely related to data fitting in which it comprises three core interwoven components: model selection, correspondences and constraints, and optimization. Study of these components 1) provides a basis for comparison of the novelties of different techniques, 2) reveals the similarity of rigid and nonrigid registration in terms of problem representations, and 3) shows how overfitting arises in nonrigid registration and the reasons for increasing interest in intrinsic techniques. We further summarize some practical issues of registration which include initializations and evaluations, and discuss some of our own observations, insights and foreseeable research trends.

  2. Exploratory cloud-resolving simulations of boundary-layer Arctic stratus clouds. Part I: Warm-season clouds

    NASA Astrophysics Data System (ADS)

    Olsson, Peter Q.; Harrington, Jerry Y.; Feingold, Graham; Cotton, William R.; Kreidenweis, Sonia M.

    Two-dimensional simulations of arctic stratus clouds (ASC) were conducted using a sophisticated cloud-resolving model with explicit microphysics and a two-stream radiative transfer model. The effects of varying cloud condensation nuclei (CCN) concentrations upon the subsequent cloud and its microphysical, radiative and dynamical structure were studied. In this study CCN concentrations were varied within the ranges found in warm-season arctic boundary layers (ABLs) to produce non-drizzling and weakly drizzling stratus decks. Experiments that included all model physics, no-drizzle, and no shortwave radiation were conducted to elucidate the effects of microphysics and radiation on the simulated stratus. Both simulations that did and that did not include the effects of drizzle showed that the higher CCN concentrations produced a cloud with larger reflectivity and absorptivity, but also produced eddies that were weaker than with lower CCN concentrations. Simulations that included the effects of drizzle showed a similar response to changes in CCN concentrations. Simulations with no drizzle produced more vigorous eddies than their drizzling counterparts because cooling due to evaporation below cloud tends to stabilize the ABL. The simulations without the effects of short-wave radiation produced very vigorous eddies that penetrated more deeply into the ABL. In this case, the simulation with higher CCN concentrations produced the most vigorous eddies. This resulted from a subtle interplay of microphysics, radiation, and dynamics.

  3. Nonhydrostatic icosahedral atmospheric model (NICAM) for global cloud resolving simulations

    NASA Astrophysics Data System (ADS)

    Satoh, M.; Matsuno, T.; Tomita, H.; Miura, H.; Nasuno, T.; Iga, S.

    2008-03-01

    A new type of ultra-high resolution atmospheric global circulation model is developed. The new model is designed to perform "cloud resolving simulations" by directly calculating deep convection and meso-scale circulations, which play key roles not only in the tropical circulations but in the global circulations of the atmosphere. Since cores of deep convection have a few km in horizontal size, they have not directly been resolved by existing atmospheric general circulation models (AGCMs). In order to drastically enhance horizontal resolution, a new framework of a global atmospheric model is required; we adopted nonhydrostatic governing equations and icosahedral grids to the new model, and call it Nonhydrostatic ICosahedral Atmospheric Model (NICAM). In this article, we review governing equations and numerical techniques employed, and present the results from the unique 3.5-km mesh global experiments—with O(10 9) computational nodes—using realistic topography and land/ocean surface thermal forcing. The results show realistic behaviors of multi-scale convective systems in the tropics, which have not been captured by AGCMs. We also argue future perspective of the roles of the new model in the next generation atmospheric sciences.

  4. A 3D clustering approach for point clouds to detect and quantify changes at a rock glacier front

    NASA Astrophysics Data System (ADS)

    Micheletti, Natan; Tonini, Marj; Lane, Stuart N.

    2016-04-01

    Terrestrial Laser Scanners (TLS) are extensively used in geomorphology to remotely-sense landforms and surfaces of any type and to derive digital elevation models (DEMs). Modern devices are able to collect many millions of points, so that working on the resulting dataset is often troublesome in terms of computational efforts. Indeed, it is not unusual that raw point clouds are filtered prior to DEM creation, so that only a subset of points is retained and the interpolation process becomes less of a burden. Whilst this procedure is in many cases necessary, it implicates a considerable loss of valuable information. First, and even without eliminating points, the common interpolation of points to a regular grid causes a loss of potentially useful detail. Second, it inevitably causes the transition from 3D information to only 2.5D data where each (x,y) pair must have a unique z-value. Vector-based DEMs (e.g. triangulated irregular networks) partially mitigate these issues, but still require a set of parameters to be set and a considerable burden in terms of calculation and storage. Because of the reasons above, being able to perform geomorphological research directly on point clouds would be profitable. Here, we propose an approach to identify erosion and deposition patterns on a very active rock glacier front in the Swiss Alps to monitor sediment dynamics. The general aim is to set up a semiautomatic method to isolate mass movements using 3D-feature identification directly from LiDAR data. An ultra-long range LiDAR RIEGL VZ-6000 scanner was employed to acquire point clouds during three consecutive summers. In order to isolate single clusters of erosion and deposition we applied the Density-Based Scan Algorithm with Noise (DBSCAN), previously successfully employed by Tonini and Abellan (2014) in a similar case for rockfall detection. DBSCAN requires two input parameters, strongly influencing the number, shape and size of the detected clusters: the minimum number of

  5. Combination of Tls Point Clouds and 3d Data from Kinect v2 Sensor to Complete Indoor Models

    NASA Astrophysics Data System (ADS)

    Lachat, E.; Landes, T.; Grussenmeyer, P.

    2016-06-01

    The combination of data coming from multiple sensors is more and more applied for remote sensing issues (multi-sensor imagery) but also in cultural heritage or robotics, since it often results in increased robustness and accuracy of the final data. In this paper, the reconstruction of building elements such as window frames or door jambs scanned thanks to a low cost 3D sensor (Kinect v2) is presented. Their combination within a global point cloud of an indoor scene acquired with a terrestrial laser scanner (TLS) is considered. If the added elements acquired with the Kinect sensor enable to reach a better level of detail of the final model, an adapted acquisition protocol may also provide several benefits as for example time gain. The paper aims at analyzing whether the two measurement techniques can be complementary in this context. The limitations encountered during the acquisition and reconstruction steps are also investigated.

  6. Satellite and Surface Data Synergy for Developing a 3D Cloud Structure and Properties Characterization Over the ARM SGP. Stage 1: Cloud Amounts, Optical Depths, and Cloud Heights Reconciliation

    NASA Technical Reports Server (NTRS)

    Genkova, I.; Long, C. N.; Heck, P. W.; Minnis, P.

    2003-01-01

    One of the primary Atmospheric Radiation Measurement (ARM) Program objectives is to obtain measurements applicable to the development of models for better understanding of radiative processes in the atmosphere. We address this goal by building a three-dimensional (3D) characterization of the cloud structure and properties over the ARM Southern Great Plains (SGP). We take the approach of juxtaposing the cloud properties as retrieved from independent satellite and ground-based retrievals, and looking at the statistics of the cloud field properties. Once these retrievals are well understood, they will be used to populate the 3D characterization database. As a first step we determine the relationship between surface fractional sky cover and satellite viewing angle dependent cloud fraction (CF). We elaborate on the agreement intercomparing optical depth (OD) datasets from satellite and ground using available retrieval algorithms with relation to the CF, cloud height, multi-layer cloud presence, and solar zenith angle (SZA). For the SGP Central Facility, where output from the active remote sensing cloud layer (ARSCL) valueadded product (VAP) is available, we study the uncertainty of satellite estimated cloud heights and evaluate the impact of this uncertainty for radiative studies.

  7. 3D hybrid simulations of the interaction of a magnetic cloud with a bow shock

    NASA Astrophysics Data System (ADS)

    Turc, L.; Fontaine, D.; Savoini, P.; Modolo, R.

    2015-08-01

    In this paper, we investigate the interaction of a magnetic cloud (MC) with a planetary bow shock using hybrid simulations. It is the first time to our knowledge that this interaction is studied using kinetic simulations which include self-consistently both the ion foreshock and the shock wave dynamics. We show that when the shock is in a quasi-perpendicular configuration, the MC's magnetic structure in the magnetosheath remains similar to that in the solar wind, whereas it is strongly altered downstream of a quasi-parallel shock. The latter can result in a reversal of the magnetic field north-south component in some parts of the magnetosheath. We also investigate how the MC affects in turn the outer parts of the planetary environment, i.e., from the foreshock to the magnetopause. We find the following: (i) The decrease of the Alfvén Mach number at the MC's arrival causes an attenuation of the foreshock region because of the weakening of the bow shock. (ii) The foreshock moves along the bow shock's surface, following the rotation of the MC's magnetic field. (iii) Owing to the low plasma beta, asymmetric flows arise inside the magnetosheath, due to the magnetic tension force which accelerates the particles in some parts of the magnetosheath and slows them down in others. (iv) The quasi-parallel region forms a depression in the shock's surface. Other deformations of the magnetopause and the bow shock are also highlighted. All these effects can contribute to significantly modify the solar wind/magnetosphere coupling during MC events.

  8. Analysis and numerical simulation of a real cell merger using a three-dimensional cloud resolving model

    NASA Astrophysics Data System (ADS)

    Karacostas, T.; Spiridonov, V.; Bampzelis, D.; Pytharoulis, I.; Tegoulias, I.; Tymbanidis, K.

    2016-03-01

    A three-dimensional cloud resolving model is used to study a real cell merger case that occurred on 10 August, 2008 over north-central Greece, causing heavy rainfall, hailfall and high-frequency lightning. Firstly, the storm is observed, analyzed and recorded using a C-band weather radar. Secondly, three distinct simulations are performed using a cloud resolving model. An unseeded simulation, in order to test the ability of the model to reproduce the structural and evolutionary properties of the storm and two seeded simulations in which seeding occurred before and after cell merging. Reflectivity fields are analyzed, horizontally and vertically, at different simulation times. The 3-D numerical simulations suggest that the merger process occurred by two or three isolated single-cells and formed during their SW-NE motion. The merging process apparently alters dynamical and microphysical properties through low and middle level forcing; increases cloud diameters and cloud depths, producing more graupel and ice particles and increases radar reflectivity values. Processed radar images depict a similar view of the storm structure, evolution and interactions of such merging processes. The model calculated maximum radar reflectivity values coincide with the recorded ones. Results indicate that seeding the cloud before its merging produces more positive effects on hail suppression than seeding after merging. These findings are quite important, in order to document the value of the cloud resolving model and its capability to simulate and reproduce the realistic storm processes and to provide a better understanding of the cloud dynamical and microphysical features related to different seeding approaches.

  9. Examining In-Cloud Convective Turbulence in Relation to Total Lightning and the 3D Wind Field of Severe Thunderstorms

    NASA Astrophysics Data System (ADS)

    Al-Momar, S. A.; Deierling, W.; Williams, J. K.; Hoffman, E. G.

    2014-12-01

    Convectively induced turbulence (CIT) is commonly listed as a cause or factor in weather-related commercial aviation accidents. In-cloud CIT is generated in part by shears between convective updrafts and downdrafts. Total lightning is also dependent on a robust updraft and the resulting storm electrification. The relationship between total lightning and turbulence could prove useful in operational aviation settings with the use of future measurements from the geostationary lightning mapper (GLM) onboard the GOES-R satellite. Providing nearly hemispheric coverage of total lightning, the GLM could help identify CIT in otherwise data-sparse locations. For a severe thunderstorm case on 7 June 2012 in northeast Colorado, in-cloud eddy dissipation rate estimates from the NCAR/NEXRAD Turbulence Detection Algorithm were compared with cloud electrification data from the Colorado Lightning Mapping Array and radar products from the Denver, Colorado WSR-88D. These comparisons showed that high concentrations of very high frequency (VHF) source densities emitted by lightning occurred near and downstream of the storm's convective core. Severe turbulence was also shown to occur near this area, extending near the melting level of the storm and spreading upward and outward. Additionally, increases/decreases in VHF sources and turbulence volumes occurred within a few minutes of each other; although, light turbulence was shown to increase near one storm's dissipation. This may be due to increased shear from the now downdraft dominate storm. The 3D wind field from this case, obtained by either a dual-Doppler or a Variational Doppler Radar Assimilation System (VDRAS) analysis, will also be examined to further study the relationships between total lightning and thunderstorm kinematics. If these results prove to be robust, lightning may serve as a strong indicator of the location of moderate or greater turbulence.

  10. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  11. A Scalable Cloud Library Empowering Big Data Management, Diagnosis, and Visualization of Cloud-Resolving Models

    NASA Astrophysics Data System (ADS)

    Zhou, S.; Tao, W. K.; Li, X.; Matsui, T.; Sun, X. H.; Yang, X.

    2015-12-01

    A cloud-resolving model (CRM) is an atmospheric numerical model that can numerically resolve clouds and cloud systems at 0.25~5km horizontal grid spacings. The main advantage of the CRM is that it can allow explicit interactive processes between microphysics, radiation, turbulence, surface, and aerosols without subgrid cloud fraction, overlapping and convective parameterization. Because of their fine resolution and complex physical processes, it is challenging for the CRM community to i) visualize/inter-compare CRM simulations, ii) diagnose key processes for cloud-precipitation formation and intensity, and iii) evaluate against NASA's field campaign data and L1/L2 satellite data products due to large data volume (~10TB) and complexity of CRM's physical processes. We have been building the Super Cloud Library (SCL) upon a Hadoop framework, capable of CRM database management, distribution, visualization, subsetting, and evaluation in a scalable way. The current SCL capability includes (1) A SCL data model enables various CRM simulation outputs in NetCDF, including the NASA-Unified Weather Research and Forecasting (NU-WRF) and Goddard Cumulus Ensemble (GCE) model, to be accessed and processed by Hadoop, (2) A parallel NetCDF-to-CSV converter supports NU-WRF and GCE model outputs, (3) A technique visualizes Hadoop-resident data with IDL, (4) A technique subsets Hadoop-resident data, compliant to the SCL data model, with HIVE or Impala via HUE's Web interface, (5) A prototype enables a Hadoop MapReduce application to dynamically access and process data residing in a parallel file system, PVFS2 or CephFS, where high performance computing (HPC) simulation outputs such as NU-WRF's and GCE's are located. We are testing Apache Spark to speed up SCL data processing and analysis.With the SCL capabilities, SCL users can conduct large-domain on-demand tasks without downloading voluminous CRM datasets and various observations from NASA Field Campaigns and Satellite data to a

  12. Automatic reconstruction of 3D urban landscape by computing connected regions and assigning them an average altitude from LiDAR point cloud image

    NASA Astrophysics Data System (ADS)

    Kawata, Yoshiyuki; Koizumi, Kohei

    2014-10-01

    The demand of 3D city modeling has been increasing in many applications such as urban planing, computer gaming with realistic city environment, car navigation system with showing 3D city map, virtual city tourism inviting future visitors to a virtual city walkthrough and others. We proposed a simple method for reconstructing a 3D urban landscape from airborne LiDAR point cloud data. The automatic reconstruction method of a 3D urban landscape was implemented by the integration of all connected regions, which were extracted and extruded from the altitude mask images. These mask images were generated from the gray scale LiDAR image by the altitude threshold ranges. In this study we demonstrated successfully in the case of Kanazawa city center scene by applying the proposed method to the airborne LiDAR point cloud data.

  13. Semi-automatic characterization of fractured rock masses using 3D point clouds: discontinuity orientation, spacing and SMR geomechanical classification

    NASA Astrophysics Data System (ADS)

    Riquelme, Adrian; Tomas, Roberto; Abellan, Antonio; Cano, Miguel; Jaboyedoff, Michel

    2015-04-01

    Investigation of fractured rock masses for different geological applications (e.g. fractured reservoir exploitation, rock slope instability, rock engineering, etc.) requires a deep geometric understanding of the discontinuity sets affecting rock exposures. Recent advances in 3D data acquisition using photogrammetric and/or LiDAR techniques currently allow a quick and an accurate characterization of rock mass discontinuities. This contribution presents a methodology for: (a) use of 3D point clouds for the identification and analysis of planar surfaces outcropping in a rocky slope; (b) calculation of the spacing between different discontinuity sets; (c) semi-automatic calculation of the parameters that play a capital role in the Slope Mass Rating geomechanical classification. As for the part a) (discontinuity orientation), our proposal identifies and defines the algebraic equations of the different discontinuity sets of the rock slope surface by applying an analysis based on a neighbouring points coplanarity test. Additionally, the procedure finds principal orientations by Kernel Density Estimation and identifies clusters (Riquelme et al., 2014). As a result of this analysis, each point is classified with a discontinuity set and with an outcrop plane (cluster). Regarding the part b) (discontinuity spacing) our proposal utilises the previously classified point cloud to investigate how different outcropping planes are linked in space. Discontinuity spacing is calculated for each pair of linked clusters within the same discontinuity set, and then spacing values are analysed calculating their statistic values. Finally, as for the part c) the previous results are used to calculate parameters F_1, F2 and F3 of the Slope Mass Rating geomechanical classification. This analysis is carried out for each discontinuity set using their respective orientation extracted in part a). The open access tool SMRTool (Riquelme et al., 2014) is then used to calculate F1 to F3 correction

  14. Toward GEOS-6, A Global Cloud System Resolving Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Putman, William M.

    2010-01-01

    NASA is committed to observing and understanding the weather and climate of our home planet through the use of multi-scale modeling systems and space-based observations. Global climate models have evolved to take advantage of the influx of multi- and many-core computing technologies and the availability of large clusters of multi-core microprocessors. GEOS-6 is a next-generation cloud system resolving atmospheric model that will place NASA at the forefront of scientific exploration of our atmosphere and climate. Model simulations with GEOS-6 will produce a realistic representation of our atmosphere on the scale of typical satellite observations, bringing a visual comprehension of model results to a new level among the climate enthusiasts. In preparation for GEOS-6, the agency's flagship Earth System Modeling Framework [JDl] has been enhanced to support cutting-edge high-resolution global climate and weather simulations. Improvements include a cubed-sphere grid that exposes parallelism; a non-hydrostatic finite volume dynamical core, and algorithm designed for co-processor technologies, among others. GEOS-6 represents a fundamental advancement in the capability of global Earth system models. The ability to directly compare global simulations at the resolution of spaceborne satellite images will lead to algorithm improvements and better utilization of space-based observations within the GOES data assimilation system

  15. A Cloud Resolving Simulation of a Polar Low Over the Labrador Sea

    NASA Astrophysics Data System (ADS)

    Moore, K.; Maesaka, T.; Liu, A.; Tsuboki, K.; Renfrew, I.

    2005-05-01

    Polar lows, high latitude mesoscale marine cyclones, remain one of the most enigmatic of meteorological phenomena. They can be often observed on satellite imagery as spiral cloud systems whose striking organization belies the significant threat they represent to maritime activity as a result of the hurricane force associated with them. Their small horizontal scale, often less than 500km, short life time, typically less than 24 hours, and their tendency to form in data sparse regions make them a challenge to forecast. Polar lows are often associated with significant fluxes of heat and moisture between the atmosphere and ocean that act to modify both fluids. In the atmosphere, the fluxes act to warm and moisten the boundary layer resulting in the formation of 2D roll and 3D cellular convection. In the ocean, fluxes act to densify the surface waters and may contribute to the preconditioning phase of deep ocean convection. The presence of sea ice often introduces a spatial heterogeneity into the air-sea flux fields, In this talk, we will present a numerical simulation of a polar low that formed over the Labrador Sea on February 8 1997 during the Labrador Sea Deep Ocean Convection Experiment. A flight on that date with an instrumented aircraft collected data on the cloud-scale structure of the polar low and its associated air-sea interaction. The simulation was performed with a cloud resolving mesoscale forecast model in a domain with a horizontal scale of 500 km by 400 km at a horizontal resolution of 500m. The high spatial resolution and large domain allowed for an explicit representation of both the cloud-scale and larger-scale circulations associated with the polar low. In addition, the model included an explicit representation of the heterogeneity associated with the Labrador Sea's marginal ice zone. A comparison with satellite and in-situ observations indicate that the simulation is able to capture many of the cloud-scale and large-scale features of this polar low

  16. Comparing Cirrus Cloud Formation and Evolution Using in Situ Aircraft Observations and a Cloud Resolving Model

    NASA Astrophysics Data System (ADS)

    Diao, M.; Jensen, J. B.; Bryan, G. H.; Morrison, H.; Stern, D. P.

    2014-12-01

    Cirrus clouds, covering ~30% of the Earth, play important roles in Earth's climate and weather. As a major uncertainty in climate models, cirrus clouds' radiative forcing (cooling or warming) is influenced by both the microphysical properties (such as ice crystal concentration and size) and the larger scale structure (such as horizontal and vertical extent). Recent studies (Diao et al. 2013; Diao et al. 2014), based on in situ observations with ~200 m horizontal resolution, showed that the initial conditions of cirrus formation - ice supersaturated regions (ISSRs, where ISS is spatially continuous) - occur mostly at horizontal scales around 1 km, in contrast to the ~100 km scales by previous observations (Gierens et al. 2000). Yet it is still unknown whether current cloud resolving models can capture these small-scale ISSR features. In this work, we compare the observed characteristics of the ice supersaturation (ISS) with an idealized, cloud-resolving simulation of a squall line (Bryan and Morrison, 2012). The model (CM1) was run with 250 m grid spacing using a double-moment microphysics scheme (Morrison et al. 2005). Our comparisons show that the CM1 model has captured the majority of the small-scale ISSRs (~1 km). In addition, the simulated ISSRs are dominated by water vapor horizontal heterogeneities (~90%) as opposed to temperature heterogeneities (~10%). This result is comparable to the observed values of ~88% and ~9%, respectively. However, when comparing the evolution phases of cirrus clouds (clear-sky ISS, nucleation/freezing, growth and sedimentation/sublimation; Diao et al. 2013), the CM1 simulation does not have sufficient amount of ISS in clear-sky and nucleation phases. This disagreement indicates a shortcoming of the idealized model setup. Overall, the observations show more ISS at higher magnitude (up to ~150% of RHi) than CM1 (~up to 130% of RHi). Also the largest ISSRs in the observations are up to ~100 km, compared with those in CM1 of up to ~10

  17. Forecasting Lightning Threat using Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, E. W., Jr.; Goodman, S. J.; LaCasse, K. M.; Cecil, D. J.

    2009-01-01

    As numerical forecasts capable of resolving individual convective clouds become more common, it is of interest to see if quantitative forecasts of lightning flash rate density are possible, based on fields computed by the numerical model. Previous observational research has shown robust relationships between observed lightning flash rates and inferred updraft and large precipitation ice fields in the mixed phase regions of storms, and that these relationships might allow simulated fields to serve as proxies for lightning flash rate density. It is shown in this paper that two simple proxy fields do indeed provide reasonable and cost-effective bases for creating time-evolving maps of predicted lightning flash rate density, judging from a series of diverse simulation case study events in North Alabama for which Lightning Mapping Array data provide ground truth. One method is based on the product of upward velocity and the mixing ratio of precipitating ice hydrometeors, modeled as graupel only, in the mixed phase region of storms at the -15\\dgc\\ level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domainwide statistics of the peak values of simulated flash rate proxy fields against domainwide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. A blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Weather Research and Forecast Model simulations of selected North Alabama cases show that this model can distinguish the general character and intensity of most convective events, and that the proposed methods show promise as a means of generating

  18. Forecasting Lightning Threat using Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    McCaul, Eugene W., Jr.; Goodman, Steven J.; LaCasse, Katherine M.; Cecil, Daniel J.

    2008-01-01

    Two new approaches are proposed and developed for making time and space dependent, quantitative short-term forecasts of lightning threat, and a blend of these approaches is devised that capitalizes on the strengths of each. The new methods are distinctive in that they are based entirely on the ice-phase hydrometeor fields generated by regional cloud-resolving numerical simulations, such as those produced by the WRF model. These methods are justified by established observational evidence linking aspects of the precipitating ice hydrometeor fields to total flash rates. The methods are straightforward and easy to implement, and offer an effective near-term alternative to the incorporation of complex and costly cloud electrification schemes into numerical models. One method is based on upward fluxes of precipitating ice hydrometeors in the mixed phase region at the-15 C level, while the second method is based on the vertically integrated amounts of ice hydrometeors in each model grid column. Each method can be calibrated by comparing domain-wide statistics of the peak values of simulated flash rate proxy fields against domain-wide peak total lightning flash rate density data from observations. Tests show that the first method is able to capture much of the temporal variability of the lightning threat, while the second method does a better job of depicting the areal coverage of the threat. Our blended solution is designed to retain most of the temporal sensitivity of the first method, while adding the improved spatial coverage of the second. Exploratory tests for selected North Alabama cases show that, because WRF can distinguish the general character of most convective events, our methods show promise as a means of generating quantitatively realistic fields of lightning threat. However, because the models tend to have more difficulty in predicting the instantaneous placement of storms, forecasts of the detailed location of the lightning threat based on single

  19. 3D modelling of the early martian climate under a denser CO2 atmosphere: Temperatures and CO2 ice clouds

    NASA Astrophysics Data System (ADS)

    Forget, F.; Wordsworth, R.; Millour, E.; Madeleine, J.-B.; Kerber, L.; Leconte, J.; Marcq, E.; Haberle, R. M.

    2013-01-01

    On the basis of geological evidence, it is often stated that the early martian climate was warm enough for liquid water to flow on the surface thanks to the greenhouse effect of a thick atmosphere. We present 3D global climate simulations of the early martian climate performed assuming a faint young Sun and a CO2 atmosphere with surface pressure between 0.1 and 7 bars. The model includes a detailed radiative transfer model using revised CO2 gas collision induced absorption properties, and a parameterisation of the CO2 ice cloud microphysical and radiative properties. A wide range of possible climates is explored using various values of obliquities, orbital parameters, cloud microphysic parameters, atmospheric dust loading, and surface properties. Unlike on present day Mars, for pressures higher than a fraction of a bar, surface temperatures vary with altitude because of the adiabatic cooling and warming of the atmosphere when it moves vertically. In most simulations, CO2 ice clouds cover a major part of the planet. Previous studies had suggested that they could have warmed the planet thanks to their scattering greenhouse effect. However, even assuming parameters that maximize this effect, it does not exceed +15 K. Combined with the revised CO2 spectroscopy and the impact of surface CO2 ice on the planetary albedo, we find that a CO2 atmosphere could not have raised the annual mean temperature above 0 °C anywhere on the planet. The collapse of the atmosphere into permanent CO2 ice caps is predicted for pressures higher than 3 bar, or conversely at pressure lower than 1 bar if the obliquity is low enough. Summertime diurnal mean surface temperatures above 0 °C (a condition which could have allowed rivers and lakes to form) are predicted for obliquity larger than 40° at high latitudes but not in locations where most valley networks or layered sedimentary units are observed. In the absence of other warming mechanisms, our climate model results are thus consistent

  20. What's the Point of a Raster ? Advantages of 3D Point Cloud Processing over Raster Based Methods for Accurate Geomorphic Analysis of High Resolution Topography.

    NASA Astrophysics Data System (ADS)

    Lague, D.

    2014-12-01

    High Resolution Topographic (HRT) datasets are predominantly stored and analyzed as 2D raster grids of elevations (i.e., Digital Elevation Models). Raster grid processing is common in GIS software and benefits from a large library of fast algorithms dedicated to geometrical analysis, drainage network computation and topographic change measurement. Yet, all instruments or methods currently generating HRT datasets (e.g., ALS, TLS, SFM, stereo satellite imagery) output natively 3D unstructured point clouds that are (i) non-regularly sampled, (ii) incomplete (e.g., submerged parts of river channels are rarely measured), and (iii) include 3D elements (e.g., vegetation, vertical features such as river banks or cliffs) that cannot be accurately described in a DEM. Interpolating the raw point cloud onto a 2D grid generally results in a loss of position accuracy, spatial resolution and in more or less controlled interpolation. Here I demonstrate how studying earth surface topography and processes directly on native 3D point cloud datasets offers several advantages over raster based methods: point cloud methods preserve the accuracy of the original data, can better handle the evaluation of uncertainty associated to topographic change measurements and are more suitable to study vegetation characteristics and steep features of the landscape. In this presentation, I will illustrate and compare Point Cloud based and Raster based workflows with various examples involving ALS, TLS and SFM for the analysis of bank erosion processes in bedrock and alluvial rivers, rockfall statistics (including rockfall volume estimate directly from point clouds) and the interaction of vegetation/hydraulics and sedimentation in salt marshes. These workflows use 2 recently published algorithms for point cloud classification (CANUPO) and point cloud comparison (M3C2) now implemented in the open source software CloudCompare.

  1. Detecting and Analyzing Corrosion Spots on the Hull of Large Marine Vessels Using Colored 3d LIDAR Point Clouds

    NASA Astrophysics Data System (ADS)

    Aijazi, A. K.; Malaterre, L.; Tazir, M. L.; Trassoudaine, L.; Checchin, P.

    2016-06-01

    This work presents a new method that automatically detects and analyzes surface defects such as corrosion spots of different shapes and sizes, on large ship hulls. In the proposed method several scans from different positions and viewing angles around the ship are registered together to form a complete 3D point cloud. The R, G, B values associated with each scan, obtained with the help of an integrated camera are converted into HSV space to separate out the illumination invariant color component from the intensity. Using this color component, different surface defects such as corrosion spots of different shapes and sizes are automatically detected, within a selected zone, using two different methods depending upon the level of corrosion/defects. The first method relies on a histogram based distribution whereas the second on adaptive thresholds. The detected corrosion spots are then analyzed and quantified to help better plan and estimate the cost of repair and maintenance. Results are evaluated on real data using different standard evaluation metrics to demonstrate the efficacy as well as the technical strength of the proposed method.

  2. Cloud-resolving and single-column simulations of a warm-frontal cloud system: Implications for the parameterization of layered clouds in GCMs

    NASA Astrophysics Data System (ADS)

    Szeto, Kit K.; Lohmann, Urike

    A winter oceanic cyclonic cloud system was simulated by using both a cloud-resolving model (CRM) and two single-column models (SCMs) utilizing different approaches to parameterize layer clouds. When driven with advective forcing derived from the CRM, the SCMs can capture the general developments of the large-scale cloud field during the warm-frontal passage. However, the vertical cloud structures differed significantly among the models. Some of the differences in the model cloud structures can be attributed to the lack of, or inappropriateness of the parameterizations of some cloud microphysical processes and subgrid cloudiness in current GCM prognostic cloud schemes. The high resolution CRM results will be valuable in identifying such deficiencies in current GCM cloud schemes and in the future developments and calibrations of these schemes.

  3. Efficient data IO for a Parallel Global Cloud Resolving Model

    SciTech Connect

    Palmer, Bruce J.; Koontz, Annette S.; Schuchardt, Karen L.; Heikes, Ross P.; Randall, David A.

    2011-11-26

    Execution of a Global Cloud Resolving Model (GCRM) at target resolutions of 2-4 km will generate, at a minimum, 10s of Gigabytes of data per variable per snapshot. Writing this data to disk without creating a serious bottleneck in the execution of the GCRM code while also supporting efficient post-execution data analysis is a significant challenge. This paper discusses an Input/Output (IO) application programmer interface (API) for the GCRM that efficiently moves data from the model to disk while maintaining support for community standard formats, avoiding the creation of very large numbers of files, and supporting efficient analysis. Several aspects of the API will be discussed in detail. First, we discuss the output data layout which linearizes the data in a consistent way that is independent of the number of processors used to run the simulation and provides a convenient format for subsequent analyses of the data. Second, we discuss the flexible API interface that enables modelers to easily add variables to the output stream by specifying where in the GCRM code these variables are located and to flexibly configure the choice of outputs and distribution of data across files. The flexibility of the API is designed to allow model developers to add new data fields to the output as the model develops and new physics is added and also provides a mechanism for allowing users of the GCRM code itself to adjust the output frequency and the number of fields written depending on the needs of individual calculations. Third, we describe the mapping to the NetCDF data model with an emphasis on the grid description. Fourth, we describe our messaging algorithms and IO aggregation strategies that are used to achieve high bandwidth while simultaneously writing concurrently from many processors to shared files. We conclude with initial performance results.

  4. Using DOE-ARM and Space-Based Assets to Assess the Quality of Air Force Weather 3D Cloud Analysis and Forecast Products

    NASA Astrophysics Data System (ADS)

    Nobis, T. E.

    2015-12-01

    Air Force Weather (AFW) has documented requirements for global cloud analysis and forecasting to support DoD missions around the world. To meet these needs, AFW utilizes a number of cloud products. Cloud analyses are constructed using 17 different near real time satellite sources. Products include analysis of the individual satellite transmissions at native satellite resolution and an hourly global merge of all 17 sources on a 24km grid. AFW has also recently started creation of a time delayed global cloud reanalysis to produce a 'best possible' analysis for climatology and verification purposes. Forecasted cloud products include global short-range cloud forecasts created using advection techniques as well as statistically post processed cloud forecast products derived from various global and regional numerical weather forecast models. All of these cloud products cover different spatial and temporal resolutions and are produced on a number of different grid projections. The longer term vision of AFW is to consolidate these various approaches into uniform global numerical weather modeling (NWM) system using advanced cloudy-data assimilation processes to construct the analysis and a licensed version of UKMO's Unified Model to produce the various cloud forecast products. In preparation for this evolution in cloud modeling support, AFW has started to aggressively benchmark the performance of their current capabilities. Cloud information collected from so called 'active' sensors on the ground at the DOE-ARM sites and from space by such instruments as CloudSat, CALIPSO and CATS are being utilized to characterize the performance of AFW products derived largely by passive means. The goal is to understand the performance of the 3D cloud analysis and forecast products of today to help shape the requirements and standards for the future NWM driven system.This presentation will present selected results from these benchmarking efforts and highlight insights and observations

  5. Various Numerical Applications on Tropical Convective Systems Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Simpson, J.

    2003-01-01

    model. The modeled cloud generated from such an approach is termed continuously forced convection or continuous large-scale forced convection. A third study, which focuses on the respective impact of atmospheric components on upper Ocean heat and salt budgets, will be presented in the end. Unlike the two previous 2-D studies, this study employs the 3-D GCE-simulated diabatic source terms (using TOGA COARE observations) - radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the Ocean mixed-layer (OML) model.

  6. A Test of the Simulation of Tropical Convective Cloudiness by a Cloud-Resolving Model

    NASA Astrophysics Data System (ADS)

    Hartmann, D. L.

    2007-12-01

    The distribution of tropical high clouds produced by a doubly periodic three-dimensional cloud-resolving model is compared with satellite observations. The model is forced with steady forcing characteristic of tropical Pacific convective regions, and the model clouds are compared with satellite observations for the same regions. Clouds are divided into categories that represent convective cores, moderately thick anvil clouds and thin high clouds. The statistics of these clouds and their relationship to the precipitation rate are computed in a similar way for the model data and for observations from the MODIS and AMSR instruments on the Aqua Satellite. The model produces a good simulation of the relationship between the precipitation rate and optically thick cold clouds that represent convective cores. The model also does a reasonable job of simulating the abundance of thin cold clouds in the East and West Pacific ITCZ regions. The model produces too little anvil cloud by a factor of about 4, however. The observations show probability density functions for OLR and albedo with maxima that correspond to extended upper level cold clouds, whereas the model does not. The sensitivity to model parameters of the simulation of anvil cloud area per unit of precipitation is explored using a two-dimensional model. A set of cloud physics parameters is found that produces anvil cloud with realistic amounts and sensitivity to the precipitation rate, while preserving the good simulation of thick and thin cloud.

  7. Evaluation and improvement of the cloud resolving model component of the multi-scale modeling framework

    SciTech Connect

    Xu, Kuan-Man; Cheng, Anning

    2009-10-01

    Developed, implemented and tested an improved Colorado State University (CSU) SAM (System for Atmospheric Modeling) cloud-resolving model (CRM) with the advanced third-order turbulence closure (IPHOC).

  8. A New Approach to using a Cloud-Resolving Model to Study the Interactions between Clouds, Precipitation and Aerosols

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Numerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 kilometers, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. Over the past generation, voluminous datasets on atmospheric convection have been accumulated from radar, instrumented aircraft, satellites, and rawinsonde measurements in field campaigns, enabling the detailed evaluation of models. Improved numerical methods have resulted in more accurate and efficient dynamical cores in models. Improvements have been made in the parameterizations of microphysical processes, radiation, boundary-layer effects, and turbulence; however, microphysical parameterizations remain a major source of uncertainty in all classes of atmospheric models. In recent years, exponentially increasing computer power has extended cloud-resolving-model integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-kilometer scales are resolved in horizontal domains as large as 10,000 kilometers in two dimensions, and 1,000 x 1,000 square kilometers in three-dimensions. Cloud models now provide statistical information useful for developing more realistic physically-based parameterizations for climate models and numerical weather prediction models. A review of developments and applications of cloud models in the past, present and future will be presented in

  9. A New Approach to Using a Cloud-resolving Model to Study the Interactions Between Clouds, Precipitation and Aerosols

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Numerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 km, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. Over the past generation, voluminous datasets on atmospheric convection have been accumulated from radar, instrumented aircraft, satellites, and rawinsonde measurements in field campaigns, enabling the detailed evaluation of models. Improved numerical methods have resulted in more accurate and efficient dynamical cores in models. Improvements have been made in the parameterizations of microphysical processes, radiation, boundary-layer effects, and turbulence; however, microphysical parameterizations remain a major source of uncertainty in all classes of atmospheric models. In recent years, exponentially increasing computer power has extended cloud-resolving-model integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as l0,OOO km in two-dimensions, and 1,OOO x 1,OOO km2 in three-dimensions. Cloud models now provide statistical information useful for developing more realistic physically-based parameterizations for climate models and numerical weather prediction models. A review of developments and applications of cloud models in the past, present and future will be presented in this talk. In particular, a new

  10. A New Approach to using a Cloud-Resolving Model to Study the Interactions between Clouds, Precipitation and Aerosols

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Numerical cloud models, which are based the non-hydrostatic equations of motion, have been extensively applied to cloud-scale and mesoscale processes during the past four decades. Because cloud-scale dynamics are treated explicitly, uncertainties stemming from convection that have to be parameterized in (hydrostatic) large-scale models are obviated, or at least mitigated, in cloud models. Global models will use the non-hydrostatic framework when their horizontal resolution becomes about 10 km, the theoretical limit for the hydrostatic approximation. This juncture will be reached one to two decades from now. Over the past generation, voluminous datasets on atmospheric convection have been accumulated from radar, instrumented aircraft, satellites, and rawinsonde measurements in field campaigns, enabling the detailed evaluation of models. Improved numerical methods have resulted in more accurate and efficient dynamical cores in models. Improvements have been made in the parameterizations of microphysical processes, radiation, boundary-layer effects, and turbulence; however, microphysical parameterizations remain a major source of uncertainty in all classes of atmospheric models. In recent years, exponentially increasing computer power has extended cloud-resolving-model integrations from hours to months, the number of computational grid points from less than a thousand to close to ten million. Three-dimensional models are now more prevalent. Much attention is devoted to precipitating cloud systems where the crucial 1-km scales are resolved in horizontal domains as large as 10,000 km in two-dimensions, and 1,000 x 1,000 square kilometers in three-dimensions. Cloud models now provide statistical information useful for developing more realistic physically-based parameterizations for climate models and numerical weather prediction models. A review of developments and applications of cloud models in the past, present and future will be presented in this talk. In particular

  11. A Comparison of TWP-ICE Observational Data with Cloud-Resolving Model Results

    SciTech Connect

    Fridlind, A. M.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Grabowski, Wojciech W.; Hill, A.; Jones, T. R.; Khaiyer, M. M.; Liu, G.; Minnis, Patrick; Morrison, H.; Nguyen, L.; Park, S.; Petch, Jon C.; Pinty, Jean-Pierre; Schumacher, Courtney; Shipway, Ben; Varble, A. C.; Wu, Xiaoqing; Xie, Shaocheng; Zhang, Minghua

    2012-03-13

    Observations made during the TWP-ICE campaign are used to drive and evaluate thirteen cloud-resolving model simulations with periodic lateral boundary conditions. The simulations employ 2D and 3D dynamics, one- and two-moment microphysics, several variations on large-scale forcing, and the use of observationally derived aerosol properties to prognose droplet numbers. When domain means are averaged over a 6-day active monsoon period, all simulations reproduce observed surface precipitation rate but not its structural distribution. Simulated fractional areas covered by convective and stratiform rain are uncorrelated with one another, and are both variably overpredicted by up to a factor of {approx}2. Stratiform area fractions are strongly anticorrelated with outgoing longwave radiation (OLR) but are negligibly correlated with ice water path (IWP), indicating that ice spatial distribution controls OLR more than mean IWP. Overpredictions of OLR tend to be accompanied by underpredictions of reflected shortwave radiation (RSR). When there are two simulations differing only in microphysics scheme or large-scale forcing, the one with smaller stratiform area tends to exhibit greater OLR and lesser RSR by similar amounts. After {approx}10 days, simulations reach a suppressed monsoon period with a wide range of mean precipitable water vapor, attributable in part to varying overprediction of cloud-modulated radiative flux divergence compared with observationally derived values. Differences across the simulation ensemble arise from multiple sources, including dynamics, microphysics, and radiation treatments. Close agreement of spatial and temporal averages with observations may not be expected, but the wide spreads of predicted stratiform fraction and anticorrelated OLR indicate a need for more rigorous observation-based evaluation of the underlying micro- and macrophysical properties of convective and stratiform structures.

  12. Experimental electronic structure and Fermi-surface instability of the correlated 3d sulphide BaVS3 : High-resolution angle-resolved photoemission spectroscopy

    NASA Astrophysics Data System (ADS)

    Mitrovic, S.; Fazekas, P.; Søndergaard, C.; Ariosa, D.; Barišić, N.; Berger, H.; Cloëtta, D.; Forró, L.; Höchst, H.; Kupčić, I.; Pavuna, D.; Margaritondo, G.

    2007-04-01

    The correlated 3d sulphide BaVS3 exhibits an interesting coexistence of one-dimensional and three-dimensional properties. Our experiments determine the electronic band structure and shed light on this puzzle. High-resolution angle-resolved photoemission measurements in a 4-eV -wide range below the Fermi energy level uncover and investigate the coexistence of a1g wide-band and eg narrow-band d electrons, which lead to the complicated electronic properties of this material. We explore the effects of strong correlations and the Fermi surface instability associated with the metal-insulator transition.

  13. Terrestrial laser scanning point clouds time series for the monitoring of slope movements: displacement measurement using image correlation and 3D feature tracking

    NASA Astrophysics Data System (ADS)

    Bornemann, Pierrick; Jean-Philippe, Malet; André, Stumpf; Anne, Puissant; Julien, Travelletti

    2016-04-01

    Dense multi-temporal point clouds acquired with terrestrial laser scanning (TLS) have proved useful for the study of structure and kinematics of slope movements. Most of the existing deformation analysis methods rely on the use of interpolated data. Approaches that use multiscale image correlation provide a precise and robust estimation of the observed movements; however, for non-rigid motion patterns, these methods tend to underestimate all the components of the movement. Further, for rugged surface topography, interpolated data introduce a bias and a loss of information in some local places where the point cloud information is not sufficiently dense. Those limits can be overcome by using deformation analysis exploiting directly the original 3D point clouds assuming some hypotheses on the deformation (e.g. the classic ICP algorithm requires an initial guess by the user of the expected displacement patterns). The objective of this work is therefore to propose a deformation analysis method applied to a series of 20 3D point clouds covering the period October 2007 - October 2015 at the Super-Sauze landslide (South East French Alps). The dense point clouds have been acquired with a terrestrial long-range Optech ILRIS-3D laser scanning device from the same base station. The time series are analyzed using two approaches: 1) a method of correlation of gradient images, and 2) a method of feature tracking in the raw 3D point clouds. The estimated surface displacements are then compared with GNSS surveys on reference targets. Preliminary results tend to show that the image correlation method provides a good estimation of the displacement fields at first order, but shows limitations such as the inability to track some deformation patterns, and the use of a perspective projection that does not maintain original angles and distances in the correlated images. Results obtained with 3D point clouds comparison algorithms (C2C, ICP, M3C2) bring additional information on the

  14. [An automatic extraction algorithm for individual tree crown projection area and volume based on 3D point cloud data].

    PubMed

    Xu, Wei-Heng; Feng, Zhong-Ke; Su, Zhi-Fang; Xu, Hui; Jiao, You-Quan; Deng, Ou

    2014-02-01

    fixed angles to estimate crown projections, and (2) different regular volume formula to simulate crown volume according to the tree crown shapes. Based on the high-resolution 3D LIDAR point cloud data of individual tree, tree crown structure was reconstructed at a high rate of speed with high accuracy, and crown projection and volume of individual tree were extracted by this automatical untouched method, which can provide a reference for tree crown structure studies and be worth to popularize in the field of precision forestry.

  15. Probing the 3D structure of cornea-like collagen liquid crystals with polarization-resolved SHG microscopy.

    PubMed

    Teulon, Claire; Tidu, Aurélien; Portier, François; Mosser, Gervaise; Schanne-Klein, Marie-Claire

    2016-07-11

    This work aims at characterizing the three-dimensional organization of liquid crystals composed of collagen, in order to determine the physico-chemical conditions leading to highly organized structures found in biological tissues such as cornea. To that end, we use second-harmonic generation (SHG) microscopy, since aligned collagen structures have been shown to exhibit intrinsic SHG signals. We combine polarization-resolved SHG experiments (P-SHG) with the theoretical derivation of the SHG signal of collagen molecules tilted with respect to the focal plane. Our P-SHG images exhibit striated patterns with variable contrast, as expected from our analytical and numerical calculations for plywood-like nematic structures similar to the ones found in the cornea. This study demonstrates the benefits of P-SHG microscopy for in situ characterization of highly organized biopolymers at micrometer scale, and the unique sensitivity of this nonlinear optical technique to the orientation of collagen molecules. PMID:27410876

  16. Uav-Based Acquisition of 3d Point Cloud - a Comparison of a Low-Cost Laser Scanner and Sfm-Tools

    NASA Astrophysics Data System (ADS)

    Mader, D.; Blaskow, R.; Westfeld, P.; Maas, H.-G.

    2015-08-01

    The Project ADFEX (Adaptive Federative 3D Exploration of Multi Robot System) pursues the goal to develop a time- and cost-efficient system for exploration and monitoring task of unknown areas or buildings. A fleet of unmanned aerial vehicles equipped with appropriate sensors (laser scanner, RGB camera, near infrared camera, thermal camera) were designed and built. A typical operational scenario may include the exploration of the object or area of investigation by an UAV equipped with a laser scanning range finder to generate a rough point cloud in real time to provide an overview of the object on a ground station as well as an obstacle map. The data about the object enables the path planning for the robot fleet. Subsequently, the object will be captured by a RGB camera mounted on the second flying robot for the generation of a dense and accurate 3D point cloud by using of structure from motion techniques. In addition, the detailed image data serves as basis for a visual damage detection on the investigated building. This paper focuses on our experience with use of a low-cost light-weight Hokuyo laser scanner onboard an UAV. The hardware components for laser scanner based 3D point cloud acquisition are discussed, problems are demonstrated and analyzed, and a quantitative analysis of the accuracy potential is shown as well as in comparison with structure from motion-tools presented.

  17. Use of the ARM Measurements of Spectral Zenith Radiance for Better Understanding of 3D Cloud-Radiation Processes & Aerosol-Cloud Interaction

    SciTech Connect

    Chiu, Jui-Yuan Christine

    2014-04-10

    This project focuses on cloud-radiation processes in a general three-dimensional cloud situation, with particular emphasis on cloud optical depth and effective particle size. The proposal has two main parts. Part one exploits the large number of new wavelengths offered by the Atmospheric Radiation Measurement (ARM) zenith-pointing ShortWave Spectrometer (SWS), to develop better retrievals not only of cloud optical depth but also of cloud particle size. We also take advantage of the SWS’ high sampling resolution to study the “twilight zone” around clouds where strong aerosol-cloud interactions are taking place. Part two involves continuing our cloud optical depth and cloud fraction retrieval research with ARM’s 2-channel narrow vield-of-view radiometer and sunphotometer instrument by, first, analyzing its data from the ARM Mobile Facility deployments, and second, making our algorithms part of ARM’s operational data processing.

  18. Using cloud resolving model simulations of deep convection to inform cloud parameterizations in large-scale models

    SciTech Connect

    Klein, Stephen A.; Pincus, Robert; Xu, Kuan-man

    2003-06-23

    Cloud parameterizations in large-scale models struggle to address the significant non-linear effects of radiation and precipitation that arise from horizontal inhomogeneity in cloud properties at scales smaller than the grid box size of the large-scale models. Statistical cloud schemes provide an attractive framework to self-consistently predict the horizontal inhomogeneity in radiation and microphysics because the probability distribution function (PDF) of total water contained in the scheme can be used to calculate these non-linear effects. Statistical cloud schemes were originally developed for boundary layer studies so extending them to a global model with many different environments is not straightforward. For example, deep convection creates abundant cloudiness and yet little is known about how deep convection alters the PDF of total water or how to parameterize these impacts. These issues are explored with data from a 29 day simulation by a cloud resolving model (CRM) of the July 1997 ARM Intensive Observing Period at the Southern Great Plains site. The simulation is used to answer two questions: (a) how well can the beta distribution represent the PDFs of total water relative to saturation resolved by the CRM? (b) how can the effects of convection on the PDF be parameterized? In addition to answering these questions, additional sections more fully describe the proposed statistical cloud scheme and the CRM simulation and analysis methods.

  19. Clinical performance of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast-enhanced pediatric abdominal MR angiography

    PubMed Central

    Yousaf, Ufra; Hsiao, Albert; Cheng, Joseph Y.; Alley, Marcus T.; Lustig, Michael; Pauly, John M.; Vasanawala, Shreyas S.

    2015-01-01

    Background Pediatric contrast-enhanced MR angiography is often limited by respiration, other patient motion and compromised spatiotemporal resolution. Objective To determine the reliability of a free-breathing spatiotemporally accelerated 3-D time-resolved contrast enhanced MR angiography method for depicting abdominal arterial anatomy in young children. Materials and methods With IRB approval and informed consent, we retrospectively identified 27 consecutive children (16 males and 11 females; mean age: 3.8 years, range: 14 days to 8.4 years) referred for contrast enhanced MR angiography at our institution, who had undergone free-breathing spatiotemporally accelerated time-resolved contrast enhanced MR angiography studies. An radio-frequency-spoiled gradient echo sequence with Cartesian variable density k-space sampling and radial view ordering, intrinsic motion navigation and intermittent fat suppression was developed. Images were reconstructed with soft-gated parallel imaging locally low-rank method to achieve both motion correction and high spatiotemporal resolution. Quality of delineation of 13 abdominal arteries in the reconstructed images was assessed independently by two radiologists on a five-point scale. Ninety-five percent confidence intervals of the proportion of diagnostically adequate cases were calculated. Interobserver agreements were also analyzed. Results Eleven out of 13 arteries achieved acceptable image quality (mean score range: 3.9–5.0) for both readers. Fair to substantial interobserver agreement was reached on nine arteries. Conclusion Free-breathing spatiotemporally accelerated 3-D time-resolved contrast enhanced MR angiography frequently yields diagnostic image quality for most abdominal arteries for pediatric contrast enhanced MR angiography. PMID:26040509

  20. A cloud resolving model as a cloud parameterization in the NCAR Community Climate System Model: Preliminary results

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, Marat F.; Randall, David A.

    Preliminary results of a short climate simulation with a 2-D cloud resolving model (CRM) installed into each grid column of an NCAR Community Climate System Model (CCSM) are presented. The CRM replaces the conventional convective and stratiform cloud parameterizations, and allows for explicit computation of the global cloud fraction distribution for radiation computations. The extreme computational cost of the combined CCSM/CRM model has thus far limited us to a two-month long climate simulation (December-January) using 2.8° × 2.8° resolution. The simulated geographical distributions of the total rainfall, precipitable water, cloud cover, and Earth radiation budget, for the month of January, look very reasonable.

  1. Use of High-Resolution Satellite Observations to Evaluate Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Tao, W.; Hou, A. Y.; Zeng, X.; Shie, C.

    2007-12-01

    The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model for different environmental conditions, i.e., the South China Sea Monsoon Experiment (SCSMEX), CRYSTAL-FACE, and KAWJEX are compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and as well as cloud observations from the Earth's Radiant Energy System (CERES) and the Moderate Resolution Imaging Spectroradiometer (MODIS) instruments. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. The model presents large discrepancies in rain spectrum and vertical hydrometer profiles. The discrepancy in the precipitation field is also consistent with the cloud and radiation observations. The study will focus on the effects of large scale forcing and microphysics to the simulated model- observation discrepancies.

  2. Production of Lightning NO(x) and its Vertical Distribution Calculated from 3-D Cloud-scale Chemical Transport Model Simulations

    NASA Technical Reports Server (NTRS)

    Ott, Lesley; Pickering, Kenneth; Stenchikov, Georgiy; Allen, Dale; DeCaria, Alex; Ridley, Brian; Lin, Ruei-Fong; Lang, Steve; Tao, Wei-Kuo

    2009-01-01

    A 3-D cloud scale chemical transport model that includes a parameterized source of lightning NO(x), based on observed flash rates has been used to simulate six midlatitude and subtropical thunderstorms observed during four field projects. Production per intracloud (P(sub IC) and cloud-to-ground (P(sub CG)) flash is estimated by assuming various values of P(sub IC) and P(sub CG) for each storm and determining which production scenario yields NO(x) mixing ratios that compare most favorably with in-cloud aircraft observations. We obtain a mean P(sub CG) value of 500 moles NO (7 kg N) per flash. The results of this analysis also suggest that on average, P(sub IC) may be nearly equal to P(sub CG), which is contrary to the common assumption that intracloud flashes are significantly less productive of NO than are cloud-to-ground flashes. This study also presents vertical profiles of the mass of lightning NO(x), after convection based on 3-D cloud-scale model simulations. The results suggest that following convection, a large percentage of lightning NO(x), remains in the middle and upper troposphere where it originated, while only a small percentage is found near the surface. The results of this work differ from profiles calculated from 2-D cloud-scale model simulations with a simpler lightning parameterization that were peaked near the surface and in the upper troposphere (referred to as a "C-shaped" profile). The new model results (a backward C-shaped profile) suggest that chemical transport models that assume a C-shaped vertical profile of lightning NO(x) mass may place too much mass neat the surface and too little in the middle troposphere.

  3. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    DOE PAGESBeta

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-12

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and strongermore » entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning–afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m−2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over

  4. Wind speed response of marine non-precipitating stratocumulus clouds over a diurnal cycle in cloud-system resolving simulations

    NASA Astrophysics Data System (ADS)

    Kazil, Jan; Feingold, Graham; Yamaguchi, Takanobu

    2016-05-01

    Observed and projected trends in large-scale wind speed over the oceans prompt the question: how do marine stratocumulus clouds and their radiative properties respond to changes in large-scale wind speed? Wind speed drives the surface fluxes of sensible heat, moisture, and momentum and thereby acts on cloud liquid water path (LWP) and cloud radiative properties. We present an investigation of the dynamical response of non-precipitating, overcast marine stratocumulus clouds to different wind speeds over the course of a diurnal cycle, all else equal. In cloud-system resolving simulations, we find that higher wind speed leads to faster boundary layer growth and stronger entrainment. The dynamical driver is enhanced buoyant production of turbulence kinetic energy (TKE) from latent heat release in cloud updrafts. LWP is enhanced during the night and in the morning at higher wind speed, and more strongly suppressed later in the day. Wind speed hence accentuates the diurnal LWP cycle by expanding the morning-afternoon contrast. The higher LWP at higher wind speed does not, however, enhance cloud top cooling because in clouds with LWP ⪆ 50 g m-2, longwave emissions are insensitive to LWP. This leads to the general conclusion that in sufficiently thick stratocumulus clouds, additional boundary layer growth and entrainment due to a boundary layer moistening arises by stronger production of TKE from latent heat release in cloud updrafts, rather than from enhanced longwave cooling. We find that large-scale wind modulates boundary layer decoupling. At nighttime and at low wind speed during daytime, it enhances decoupling in part by faster boundary layer growth and stronger entrainment and in part because shear from large-scale wind in the sub-cloud layer hinders vertical moisture transport between the surface and cloud base. With increasing wind speed, however, in decoupled daytime conditions, shear-driven circulation due to large-scale wind takes over from buoyancy

  5. Numerical and Experimental Aspects of Data Acquisition and Processing in Application to Temperature Resolved 3-D Sub-Millimeter Spectroscopy for Astrophysics and Spectral Assignment.

    NASA Astrophysics Data System (ADS)

    Medvedev, Ivan R.; Fortman, Sarah M.; Neese, Christopher F.; De Lucia, Frank C.

    2009-06-01

    Experimental determination of the lower state energy for every transition in molecular spectra, made possible by temperature resolved 3-D spectroscopy, opens new frontiers in our ability to predict molecular spectra over a wide range of temperatures and to assign rotational spectra in many vibrational states. Our improved collisional cooling cell design extends temperature coverage of this technique to 77 K. This enhances our ability to simulate molecular spectra at temperatures of astronomical relevance. We are reporting on experimental and numerical aspects of dealing with exceptionally high information content of these spectra. New data reduction algorithms allow us to process this data in timely fashion in an attempt to make them available to astronomical community.

  6. Spin-Orbit Effects in Spin-Resolved L2,3 Core Level Photoemission of 3d Ferromagnetic Thin Films

    SciTech Connect

    Komesu, T; Waddill, G D; Yu, S W; Butterfield, M; Tobin, J G

    2007-10-02

    We present spin-resolved 2p core level photoemission for the 3d transition metal films of Fe and Co grown on Cu(100). We observe clear spin asymmetry in the main 2p core level photoemission peaks of Fe and Co films consistent with trends in the bulk magnetic moments. The spin polarization can be strongly enhanced, by variation of the experimental geometry, when the photoemission is undertaken with circularly polarized light, indicating that spin-orbit interaction can have a profound in spin polarized photoemission. Further spin polarized photoemission studies using variable circularly polarized light at high photon energies, high flux are indicated, underscoring the value of synchrotron measurements at facilities with increased beam stability.

  7. Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Wu, Xiaoqing; Zeng, Xiping; Mitovski, Toni

    2015-12-01

    The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.

  8. Estimation of convective entrainment properties from a cloud-resolving model simulation during TWP-ICE

    NASA Astrophysics Data System (ADS)

    Zhang, Guang J.; Wu, Xiaoqing; Zeng, Xiping; Mitovski, Toni

    2016-10-01

    The fractional entrainment rate in convective clouds is an important parameter in current convective parameterization schemes of climate models. In this paper, it is estimated using a 1-km-resolution cloud-resolving model (CRM) simulation of convective clouds from TWP-ICE (the Tropical Warm Pool-International Cloud Experiment). The clouds are divided into different types, characterized by cloud-top heights. The entrainment rates and moist static energy that is entrained or detrained are determined by analyzing the budget of moist static energy for each cloud type. Results show that the entrained air is a mixture of approximately equal amount of cloud air and environmental air, and the detrained air is a mixture of ~80 % of cloud air and 20 % of the air with saturation moist static energy at the environmental temperature. After taking into account the difference in moist static energy between the entrained air and the mean environment, the estimated fractional entrainment rate is much larger than those used in current convective parameterization schemes. High-resolution (100 m) large-eddy simulation of TWP-ICE convection was also analyzed to support the CRM results. It is shown that the characteristics of entrainment rates estimated using both the high-resolution data and CRM-resolution coarse-grained data are similar. For each cloud category, the entrainment rate is high near cloud base and top, but low in the middle of clouds. The entrainment rates are best fitted to the inverse of in-cloud vertical velocity by a second order polynomial.

  9. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2005-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds, Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.

  10. Statistical Analyses of Satellite Cloud Object Data from CERES. Part III; Comparison with Cloud-Resolving Model Simulations of Tropical Convective Clouds

    NASA Technical Reports Server (NTRS)

    Luo, Yali; Xu, Kuan-Man; Wielicki, Bruce A.; Wong, Takmeng; Eitzen, Zachary A.

    2007-01-01

    The present study evaluates the ability of a cloud-resolving model (CRM) to simulate the physical properties of tropical deep convective cloud objects identified from a Clouds and the Earth s Radiant Energy System (CERES) data product. The emphasis of this study is the comparisons among the small-, medium- and large-size categories of cloud objects observed during March 1998 and between the large-size categories of cloud objects observed during March 1998 (strong El Ni o) and March 2000 (weak La Ni a). Results from the CRM simulations are analyzed in a way that is consistent with the CERES retrieval algorithm and they are averaged to match the scale of the CERES satellite footprints. Cloud physical properties are analyzed in terms of their summary histograms for each category. It is found that there is a general agreement in the overall shapes of all cloud physical properties between the simulated and observed distributions. Each cloud physical property produced by the CRM also exhibits different degrees of disagreement with observations over different ranges of the property. The simulated cloud tops are generally too high and cloud top temperatures are too low except for the large-size category of March 1998. The probability densities of the simulated top-of-the-atmosphere (TOA) albedos for all four categories are underestimated for high albedos, while those of cloud optical depth are overestimated at its lowest bin. These disagreements are mainly related to uncertainties in the cloud microphysics parameterization and inputs such as cloud ice effective size to the radiation calculation. Summary histograms of cloud optical depth and TOA albedo from the CRM simulations of the large-size category of cloud objects do not differ significantly between the March 1998 and 2000 periods, consistent with the CERES observations. However, the CRM is unable to reproduce the significant differences in the observed cloud top height while it overestimates the differences in the

  11. A new methodology in fast and accurate matching of the 2D and 3D point clouds extracted by laser scanner systems

    NASA Astrophysics Data System (ADS)

    Torabi, M.; Mousavi G., S. M.; Younesian, D.

    2015-03-01

    Registration of the point clouds is a conventional challenge in computer vision related applications. As an application, matching of train wheel profiles extracted from two viewpoints is studied in this paper. The registration problem is formulated into an optimization problem. An error minimization function for registration of the two partially overlapping point clouds is presented. The error function is defined as the sum of the squared distance between the source points and their corresponding pairs which should be minimized. The corresponding pairs are obtained thorough Iterative Closest Point (ICP) variants. Here, a point-to-plane ICP variant is employed. Principal Component Analysis (PCA) is used to obtain tangent planes. Thus it is shown that minimization of the proposed objective function diminishes point-to-plane ICP variant. We utilized this algorithm to register point clouds of two partially overlapping profiles of wheel train extracted from two viewpoints in 2D. Also, a number of synthetic point clouds and a number of real point clouds in 3D are studied to evaluate the reliability and rate of convergence in our method compared with other registration methods.

  12. Effect of Clouds on Optical Imaging of the Space Shuttle During the Ascent Phase: A Statistical Analysis Based on a 3D Model

    NASA Technical Reports Server (NTRS)

    Short, David A.; Lane, Robert E., Jr.; Winters, Katherine A.; Madura, John T.

    2004-01-01

    Clouds are highly effective in obscuring optical images of the Space Shuttle taken during its ascent by ground-based and airborne tracking cameras. Because the imagery is used for quick-look and post-flight engineering analysis, the Columbia Accident Investigation Board (CAIB) recommended the return-to-flight effort include an upgrade of the imaging system to enable it to obtain at least three useful views of the Shuttle from lift-off to at least solid rocket booster (SRB) separation (NASA 2003). The lifetimes of individual cloud elements capable of obscuring optical views of the Shuttle are typically 20 minutes or less. Therefore, accurately observing and forecasting cloud obscuration over an extended network of cameras poses an unprecedented challenge for the current state of observational and modeling techniques. In addition, even the best numerical simulations based on real observations will never reach "truth." In order to quantify the risk that clouds would obscure optical imagery of the Shuttle, a 3D model to calculate probabilistic risk was developed. The model was used to estimate the ability of a network of optical imaging cameras to obtain at least N simultaneous views of the Shuttle from lift-off to SRB separation in the presence of an idealized, randomized cloud field.

  13. Jupiter’s Deep Cloud Structure Revealed Using Keck Observations of Spectrally Resolved Line Shapes

    NASA Astrophysics Data System (ADS)

    Bjoraker, G. L.; Wong, M. H.; de Pater, I.; Ádámkovics, M.

    2015-09-01

    Technique: We present a method to determine the pressure at which significant cloud opacity is present between 2 and 6 bars on Jupiter. We use (a) the strength of a Fraunhofer absorption line in a zone to determine the ratio of reflected sunlight to thermal emission, and (b) pressure-broadened line profiles of deuterated methane (CH3D) at 4.66 μm to determine the location of clouds. We use radiative transfer models to constrain the altitude region of both the solar and thermal components of Jupiter’s 5 μm spectrum. Results: For nearly all latitudes on Jupiter the thermal component is large enough to constrain the deep cloud structure even when upper clouds are present. We find that hot spots, belts, and high latitudes have broader line profiles than do zones. Radiative transfer models show that hot spots in the North Equatorial Belt and South Equatorial Belt (SEB) typically do not have opaque clouds at pressures greater than 2 bars. The South Tropical Zone (STZ) at 32{}^\\circ S has an opaque cloud top between 4 and 5 bars. From thermochemical models this must be a water cloud. We measured the variation of the equivalent width of CH3D with latitude for comparison with Jupiter’s belt-zone structure. We also constrained the vertical profile of H2O in an SEB hot spot and in the STZ. The hot spot is very dry for P < 4.5 bars and then follows the H2O profile observed by the Galileo Probe. The STZ has a saturated H2O profile above its cloud top between 4 and 5 bars.

  14. Numerical 3D analysis of cloud cavitation shedding frequency on a circular leading edge hydrofoil with a barotropic cavitation model

    NASA Astrophysics Data System (ADS)

    Blume, M.; Skoda, R.

    2015-12-01

    A compressible density-based time-explicit low Mach number consistent viscous flow solver is utilised in combination with a barotropic cavitation model for the analysis of cloud cavitation on a circular leading edge (CLE) hydrofoil. For 5° angle of attack, cloud structure and shedding frequency for different cavitation numbers are compared to experimental data. A strong grid sensitivity is found in particular for high cavitation numbers. On a fine grid, a very good agreement with validation data is achieved even without explicit turbulence model. The neglect of viscous effects as well as a two-dimensional set-up lead to a less realistic prediction of cloud structures and frequencies. Comparative simulations with the Sauer-Schnerr cavitation model and modified pre-factors of the mass transfer terms underestimate the measured shedding frequency.

  15. Initial Self-Consistent 3D Electron-Cloud Simulations of the LHC Beam with the Code WARP+POSINST

    SciTech Connect

    Vay, J; Furman, M A; Cohen, R H; Friedman, A; Grote, D P

    2005-10-11

    We present initial results for the self-consistent beam-cloud dynamics simulations for a sample LHC beam, using a newly developed set of modeling capability based on a merge [1] of the three-dimensional parallel Particle-In-Cell (PIC) accelerator code WARP [2] and the electron-cloud code POSINST [3]. Although the storage ring model we use as a test bed to contain the beam is much simpler and shorter than the LHC, its lattice elements are realistically modeled, as is the beam and the electron cloud dynamics. The simulated mechanisms for generation and absorption of the electrons at the walls are based on previously validated models available in POSINST [3, 4].

  16. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2008-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds [NRC, 2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path [Twomey, 1977] and the "semi-direct" effect on cloud coverage [e.g., Ackerman et al ., 2001]." Enhanced aerosol concentrations can also suppress warm rain processes by producing a narrow droplet spectrum that inhibits collision and coalescence processes [e.g., Squires and Twomey, 1961; Warner and Twomey, 1967; Warner, 1968; Rosenfeld, 19991. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect [Albrecht, 1989], is even more complex, especially for mixed-phase convective clouds. Table 1 summarizes the key observational studies identifying the microphysical properties, cloud characteristics, thermodynamics and dynamics associated with cloud systems from high-aerosol continental environments. For example, atmospheric aerosol concentrations can influence cloud droplet size distributions, warm-rain process, cold-rain process, cloud-top height, the depth of the mixed phase region, and occurrence of lightning. In addition, high aerosol concentrations in urban environments could affect precipitation variability by providing an enhanced source of cloud condensation nuclei (CCN). Hypotheses have been developed to explain the effect of urban regions on convection and precipitation [van den Heever and Cotton, 2007 and Shepherd, 2005

  17. How muscle relaxation and laterotrusion resolve open locks of the temporomandibular joint. Forward dynamic 3D-modeling of the human masticatory system.

    PubMed

    Tuijt, M; Koolstra, J H; Lobbezoo, F; Naeije, M

    2016-01-25

    Patients with symptomatic hypermobility of the temporomandibular joint report problems with the closing movement of their jaw. Some are even unable to close their mouth opening wide (open lock). Clinical experience suggests that relaxing the jaw muscles or performing a jaw movement to one side (laterotrusion) might be a solution. The aim of our study was to assess the potential of these strategies for resolving an open lock and we hypothesised that both strategies work equally well in resolving open locks. We assessed the interplay of muscle forces, joint reaction forces and their moments during closing of mouth, following maximal mouth opening. We used a 3D biomechanical model of the masticatory system with a joint shape and muscle orientation that predispose for an open lock. In a forward dynamics approach, the effect of relaxation and laterotrusion strategies was assessed. Performing a laterotrusion movement was predicted to release an open lock for a steeper anterior slope of the articular eminence than relaxing the jaw-closing muscles, herewith we rejected our hypothesis. Both strategies could provide a net jaw closing moment, but only the laterotrusion strategy was able to provide a net posterior force for steeper anterior slope angles. For both strategies, the temporalis muscle appeared pivotal to retrieve the mandibular condyles to the glenoid fossa, due to its' more dorsally oriented working lines. PMID:26726782

  18. Cloud-Resolving Model Intercomparison with the ARM Summer 1997 IOP Data

    SciTech Connect

    Xu, K-M; Johnson, D E; Tao, W-K; Krueger, S K; Khairoutdinov, M; Randall, D A; Donner, L J; Seman, C J; Petch, J C; Guichard, F; Cederwell, R T; Xie, S C; Yio, J J; Grabowski, W; Zhang, M-H

    2000-03-13

    The Atmospheric Radiation Measurement (ARM) Program's Single Column Model (SCM) working group conducted its intercomparison study of midlatitude summertime continental convection using the July 1995 Intensive Operational Period (IOP) data set (Ghan et al. 2000). Only one cloud-resolving model (CRM) participated in the study. On the other hand, several CRMs participated in the GEWEX (Global Energy and Water-cycle Experiment) Cloud System Study (GCSS) Working Group 4's intercomparison study of tropical deep convection (Krueger and Lazarus 1998; Redelsperger et al. 2000). Both groups decided to have a joint intercomparison project to maximize the resources and advance our understanding of midlatitude continental convection. This joint project compares the cloud-resolving and single-column simulations of summertime continental cumulus convection observed at the Southern Great Plains (SGP) Cloud and Radiation Testbed (CART) site during the ARM Summer 1997 IOP. This paper reports the findings and results of cloud-resolving simulations, while Cederwall et al. (2000) reports the SCM part of the project. Seven CRMs are participating in this project.

  19. Evaluation of the Convergence Region of an Automated Registration Method for 3D Laser Scanner Point Clouds.

    PubMed

    Bae, Kwang-Ho

    2009-01-01

    Using three dimensional point clouds from both simulated and real datasets from close and terrestrial laser scanners, the rotational and translational convergence regions of Geometric Primitive Iterative Closest Points (GP-ICP) are empirically evaluated. The results demonstrate the GP-ICP has a larger rotational convergence region than the existing methods, e.g., the Iterative Closest Point (ICP).

  20. Automatic differentiation as a tool for sensitivity analysis of a convective storm in a 3-D cloud model

    SciTech Connect

    Park, S.K.; Droegemeier, K.K.; Bischof, C.H.

    1996-10-01

    The ADIFOR automatic differentiation tool is applied to a 3-D storm-scale meteorological model to generate a sensitivity-enhanced code capable of providing derivatives of all model output variables and related diagnostic (derived) parameters as a function of specified control parameters. The tangent linear approximation, applied to a deep convective storm by the first of its kind using a full-physics compressible model, is valid up to 50 min for a 1% water vapor perturbations. The result is very encouraging considering the highly nonlinear and discontinuous properties of solutions. The ADIFOR-generated code has provided valuable sensitivity information on storm dynamics. Especially, it is very efficient and useful for investigating how a perturbation inserted at earlier time propagates through the model variables at later times. However, it is computationally very expensive to be applied to the variational data assimilation, especially for 3-D meteorological models, which potentially have a large number of input variables.

  1. Suppression of Arctic Air Formation by Cloud Radiative Effects in a Two-Dimensional Cloud Resolving Model

    NASA Astrophysics Data System (ADS)

    Cronin, T.; Li, H.

    2015-12-01

    To better understand equable paleoclimates, Arctic amplification of winter warming, and the high-latitude lapse-rate feedback, we investigate the process of Arctic air formation, wherein a high latitude maritime air mass is advected over land during polar night and strongly cooled from the surface up. We extend previous work done using a single-column model (Cronin and Tziperman, PNAS, in press) by performing two-dimensional idealized cloud-resolving simulations with the Weather Research and Forecasting (WRF) model. Quantitatively consistent with previous results, we find that as the initial atmospheric state is warmed, increases in low cloud amount reduce the average surface cooling over a 14-day period by roughly a degree for each degree of warming of the initial atmospheric state, with the feedback strength increasing with warming. This is primarily attributed to a monotonic increase in surface cloud radiative forcing of approximately 2 W m-2 for each degree that the initial atmospheric sounding is warmed. The use of a two-dimensional model as opposed to a single-column model shows that the lower-tropospheric cloud layer becomes more turbulent and dominated by cumulus clouds as the climate is warmed, yet the cloud fraction remains high owing to the continued prevalence of stratus and fog layers. These results are robust across a variety of cloud microphysics schemes and are not sensitive to the horizontal or vertical resolution of the model. We also explore the vertical structure and horizontal variability of the bulk horizontal flow, the sensitivity of the results to subsidence and atmospheric carbon dioxide concentration, and the contrasting roles of top-of-atmosphere and surface cloud radiative effects.

  2. Studies of 3D-cloud optical depth from small to very large values, and of the radiation and remote sensing impacts of larger-drop clustering

    SciTech Connect

    Wiscombe, Warren; Marshak, Alexander; Knyazikhin, Yuri; Chiu, Christine

    2007-05-04

    We have basically completed all the goals stated in the previous proposal and published or submitted journal papers thereon, the only exception being First-Principles Monte Carlo which has taken more time than expected. We finally finished the comprehensive book on 3D cloud radiative transfer (edited by Marshak and Davis and published by Springer), with many contributions by ARM scientists; this book was highlighted in the 2005 ARM Annual Report. We have also completed (for now) our pioneering work on new models of cloud drop clustering based on ARM aircraft FSSP data, with applications both to radiative transfer and to rainfall. This clustering work was highlighted in the FY07 “Our Changing Planet” (annual report of the US Climate Change Science Program). Our group published 22 papers, one book, and 5 chapters in that book, during this proposal period. All are listed at the end of this section. Below, we give brief highlights of some of those papers.

  3. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.

    2004-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles (i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail). Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low 'clean' concentration and a high 'dirty' concentration.

  4. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Khain, A.; Simpson, S.; Johnson, D.; Remer, L.

    2004-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, r d a U production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembe1 (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and platelike), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and in the mid-latitude continent with different concentrations of CCN: a low "c1ean"concentration and a high "dirty" concentration. In addition, differences and similarities between bulk microphysics and spectral-bin microphysical schemes will be examined and discussed.

  6. Chapter 25: Cloud-Resolving Modeling: ARM and the GCSS Story

    NASA Technical Reports Server (NTRS)

    Krueger, Steven K.; Morrison, Hugh; Fridlind, Ann M.

    2016-01-01

    The Global Energy and Water Cycle Experiment (GEWEX) Cloud System Study (GCSS) was created in 1992. As described by Browning et al., The focus of GCSS is on cloud systems spanning the mesoscale rather than on individual clouds. Observations from field programs will be used to develop and validate the cloud-resolving models, which in turn will be used as test-beds to develop the parameterizations for the large-scale models. The most important activities that GCSS promoted were the following: Identify key questions about cloud systems relating to parameterization issues and suggest approaches to address them, and Organize model intercomparison studies relevant to cloud parameterization. Four different cloud system types were chosen for GCSS to study: boundary layer, cirrus, frontal, and deep precipitating convective. A working group (WG) was formed for each of the cloud system types. The WGs organized model intercomparison studies and meetings to present results of the intercomparisons. The first such intercomparison study took place in 1994.

  7. Comparison of convective clouds observed by spaceborne W-band radar and simulated by cloud-resolving atmospheric models

    NASA Astrophysics Data System (ADS)

    Dodson, Jason B.

    Deep convective clouds (DCCs) play an important role in regulating global climate through vertical mass flux, vertical water transport, and radiation. For general circulation models (GCMs) to simulate the global climate realistically, they must simulate DCCs realistically. GCMs have traditionally used cumulus parameterizations (CPs). Much recent research has shown that multiple persistent unrealistic behaviors in GCMs are related to limitations of CPs. Two alternatives to CPs exist: the global cloud-resolving model (GCRM), and the multiscale modeling framework (MMF). Both can directly simulate the coarser features of DCCs because of their multi-kilometer horizontal resolutions, and can simulate large-scale meteorological processes more realistically than GCMs. However, the question of realistic behavior of simulated DCCs remains. How closely do simulated DCCs resemble observed DCCs? In this study I examine the behavior of DCCs in the Nonhydrostatic Icosahedral Atmospheric Model (NICAM) and Superparameterized Community Atmospheric Model (SP-CAM), the latter with both single-moment and double-moment microphysics. I place particular emphasis on the relationship between cloud vertical structure and convective environment. I also emphasize the transition between shallow clouds and mature DCCs. The spatial domains used are the tropical oceans and the contiguous United States (CONUS), the latter of which produces frequent vigorous convection during the summer. CloudSat is used to observe DCCs, and A-Train and reanalysis data are used to represent the large-scale environment in which the clouds form. The CloudSat cloud mask and radar reflectivity profiles for CONUS cumuliform clouds (defined as clouds with a base within the planetary boundary layer) during boreal summer are first averaged and compared. Both NICAM and SP-CAM greatly underestimate the vertical growth of cumuliform clouds. Then they are sorted by three large-scale environmental variables: total preciptable

  8. Cloud-resolving regional climate modeling approach in decade-long simulations

    NASA Astrophysics Data System (ADS)

    Ban, Nikolina; Schmidli, Jürg; Schär, Christoph

    2014-05-01

    The uncertainties in current global and regional climate model integrations are partly related to the representation of clouds, moist convection, and complex topography. Reducing the grid spacing down to some few kilometers and switching off the convection parameterization (cloud-resolving models) is thus an attractive approach. On climate time scales, cloud-resolving methods have been used for process studies, but application to long-term scenario simulations has been very limited. Here we present cloud-resolving simulations for 10-year-long periods integrated with the COSMO-CLM model and driven by reanalysis data (for present day climate) and a global climate model (control and scenario run). Two one-way nested grids are used with horizontal resolutions of 2.2 km for a cloud-resolving model (CRM) over an extended Alpine domain (1100 km x 1100 km), and 12 km for a cloud-parameterizing simulation (CPM) covering Europe. The CRM is driven by lateral boundary conditions from the CPM run, while the CPM run is driven by lateral boundary conditions from ERA-Interim reanalysis and the Earth-System Model of the Max-Planck-Institut (MPI-ESM-LR). Validation is conducted against high-resolution surface data. The CRM model strongly improves the simulation of the diurnal cycles of temperature and precipitation, while CPM has a poor diurnal cycle associated with the use of parameterized convection. The assessment of precipitation statistics reveals that both models adequately represent the frequency-intensity distribution for day-long events. For hourly events the CRM has a realistic representation of heavy precipitation events, while the CPM suffers from a strong underestimation. We also present results on the scaling of precipitation extremes with local daily-mean temperature and preliminary results on the projection of heavy precipitation events.

  9. Dependence of cloud properties derived from spectrally resolved visible satellite observations on surface temperature

    NASA Astrophysics Data System (ADS)

    Wagner, T.; Beirle, S.; Deutschmann, T.; Grzegorski, M.; Platt, U.

    2008-05-01

    Cloud climate feedback constitutes the most important uncertainty in climate modelling, and currently even its sign is still unknown. In the recently published report of the intergovernmental panel on climate change (IPCC), 6 out of 20 climate models showed a positive and 14 a negative cloud radiative feedback in a doubled CO2 scenario. The radiative budget of clouds has also been investigated by experimental methods, especially by studying the relation of satellite observed broad band shortwave and longwave radiation to sea surface temperature. Here we present a new method for the investigation of the dependence of cloud properties on temperature changes, derived from spectrally resolved satellite observations in the visible spectral range. Our study differs from previous investigations in three important ways: first, we directly extract cloud properties (effective cloud fraction and effective cloud top height) and relate them to surface temperature. Second, we retrieve the cloud altitude from the atmospheric O2 absorption instead from thermal IR radiation. Third, our correlation analysis is performed using 7.5 years of global monthly anomalies (with respect to the average of the same month for all years). For most parts of the globe (except the tropics) we find a negative correlation of effective cloud fraction versus surface-near temperature. In contrast, for the effective cloud top height a positive correlation is found for almost the whole globe. Both findings might serve as an indicator for an overall positive cloud radiative feedback. Another peculiarity of our study is that the cloud-temperature relationships are determined for fixed locations (instead to spatial variations over selected areas) and are based on the "natural" variability over several years (instead the anomaly for a strong El-Nino event). From a detailed comparison to cloud properties from the International Satellite Cloud Climatology Project (ISCCP), in general good agreement is found

  10. The simulation of a convective cloud in a 3D model with explicit microphysics. Part II: Dynamical and microphysical aspects of cloud merger

    SciTech Connect

    Kogan, Y.L.; Shapiro, A.

    1996-09-01

    The development and merger of pairs of convective clouds in a shear-free environment were simulated in an explicit microphysical cloud model. The occurrence or nonoccurrence of updraft merger and the timing of merger depended critically on the initial spacing of the thermal perturbations imposed in the model`s initialization. In the unmerged cases the presence of a neighbor cloud was detrimental to cloud development at all times. In the merged cases this negative interaction was still operating but only until the onset of updraft merger. Based on the visual form of the updraft merger, it was hypothesized that low-level merger was a consequence of mutual advection, that is, that each cloud caught its neighbor in its radial inflow and advected it inward. This low-level advection hypothesis was quantified by considering a potential flow induced by two line sinks whose strengths were set equal to the low-level mass flux into the numerically simulated clouds. The merger times obtained from the advection hypothesis were in good agreement with the merger times observed in the simulations. Moreover, if merger did not occur, the advection hypothesis suggested that merger should not have occurred. The merger process was accompanied by the presence of trimodal drop spectra at the upper levels of the cloud. It was shown that the drop size distribution depends not only on the autoconversion and accretion rates, but also on the nonlinear interaction between various source and sink terms affecting rain formation, particularly on the rates of condensation-evaporation, sedimentation, and breakup processes. The analysis of raindrop trajectories showed the details of rain formation in different cloud regions and the effect of dynamical conditions on the growth of rain particles. 41 refs., 17 figs., 1 tab.

  11. Improving representation of convective transport for scale-aware parameterization: 2. Analysis of cloud-resolving model simulations

    NASA Astrophysics Data System (ADS)

    Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.; Xu, Kuan-Man; Ghan, Steven J.

    2015-04-01

    Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the midlatitude continental and the tropical regions are conducted and evaluated, we examine the scale dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of midlatitude continental convection. We show that the single-updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as three updrafts can account for the internal variability of updrafts well. Based on the evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.

  12. Perturbed Physics Ensemble Simulations of Cirrus on the Cloud System-resolving Scale

    SciTech Connect

    Muhlbauer, Andreas; Berry, Elizabeth; Comstock, Jennifer M.; Mace, Gerald G.

    2014-04-16

    In this study, the effect of uncertainties in the parameterization of ice microphysical processes and initial conditions on the variability of cirrus microphysical and radiative properties are investigated in a series of cloud system-resolving perturbed physics ensemble (PPE) and initial condition ensemble (ICE) simulations. Three cirrus cases representative of mid-latitude, subtropical and tropical cirrus are examined. It is found that the variability in cirrus properties induced by perturbing uncertain parameters in ice microphysics parameterizations outweighs the variability induced by perturbing the initial conditions in midlatitude and subtropical cirrus. However, in tropical anvil cirrus the variability in the PPE and ICE simulations is about the same order of magnitude. The cirrus properties showing the largest sensitivity are ice water content (IWC) and cloud thickness whereas the averaged high cloud cover is only marginally affected. Changes in cirrus ice water path and outgoing longwave radiation are controlled primarily by changes in IWC and cloud thickness but not by changes is the averaged high cloud cover. The change in the vertical distribution of cloud fraction and cloud thickness is caused by changes in cirrus cloud base whereas cloud top is not sensitive to either perturbed physics or perturbed initial conditions. In all cirrus cases, the top three parameters controlling the microphysical variability and radiative impact of cirrus clouds are ice fall speeds, ice autoconversion size thresholds and heterogeneous ice nucleation. Changes in the ice deposition coefficient do not affect the ice water path and outgoing longwave radiation. Similarly, changes in the number concentration of aerosols available for homogeneous freezing have virtually no effect on the microphysical and radiative properties of midlatitude and subtropical cirrus but only little impact on tropical anvil cirrus. Overall, the sensitivity of cirrus microphysical and radiative

  13. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 2: Rain Microphysics

    SciTech Connect

    Varble, Adam; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher R.

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, co-located UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain published results showing a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rain water contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (μ) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes, but lower RWCs than observed. Two moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and thus, may have issues balancing raindrop formation, collision coalescence, and raindrop breakup. Assuming a μ of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing μ to have values greater than 0 may improve two-moment schemes. Under-predicted stratiform rain rates are associated with under-predicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. In addition to stronger convective updrafts than observed, limited domain size prevents a large, well-developed stratiform region from developing in CRMs, while a dry bias in ECMWF analyses does the same to the LAMs.

  14. Evaluation of Cloud-Resolving and Limited Area Model Intercomparison Simulations Using TWP-ICE Observations. Part 2 ; Precipitation Microphysics

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Zipser, Edward J.; Fridland, Ann M.; Zhu, Ping; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; Shipway, Ben; Williams, Christopher

    2014-01-01

    Ten 3-D cloud-resolving model (CRM) simulations and four 3-D limited area model (LAM) simulations of an intense mesoscale convective system observed on 23-24 January 2006 during the Tropical Warm Pool-International Cloud Experiment (TWP-ICE) are compared with each other and with observations and retrievals from a scanning polarimetric radar, colocated UHF and VHF vertical profilers, and a Joss-Waldvogel disdrometer in an attempt to explain a low bias in simulated stratiform rainfall. Despite different forcing methodologies, similar precipitation microphysics errors appear in CRMs and LAMs with differences that depend on the details of the bulk microphysics scheme used. One-moment schemes produce too many small raindrops, which biases Doppler velocities low, but produces rainwater contents (RWCs) that are similar to observed. Two-moment rain schemes with a gamma shape parameter (mu) of 0 produce excessive size sorting, which leads to larger Doppler velocities than those produced in one-moment schemes but lower RWCs. Two-moment schemes also produce a convective median volume diameter distribution that is too broad relative to observations and, thus, may have issues balancing raindrop formation, collision-coalescence, and raindrop breakup. Assuming a mu of 2.5 rather than 0 for the raindrop size distribution improves one-moment scheme biases, and allowing mu to have values greater than 0 may improve excessive size sorting in two-moment schemes. Underpredicted stratiform rain rates are associated with underpredicted ice water contents at the melting level rather than excessive rain evaporation, in turn likely associated with convective detrainment that is too high in the troposphere and mesoscale circulations that are too weak. A limited domain size also prevents a large, well-developed stratiform region like the one observed from developing in CRMs, although LAMs also fail to produce such a region.

  15. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Astrophysics Data System (ADS)

    Tao, W.; Li, X.; Khain, A.; Simpson, J.

    2004-12-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, in the sub-tropics (Florida) and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two

  16. 3D-Modeling of Vegetation from Lidar Point Clouds and Assessment of its Impact on Façade Solar Irradiation

    NASA Astrophysics Data System (ADS)

    Peronato, G.; Rey, E.; Andersen, M.

    2016-10-01

    The presence of vegetation can significantly affect the solar irradiation received on building surfaces. Due to the complex shape and seasonal variability of vegetation geometry, this topic has gained much attention from researchers. However, existing methods are limited to rooftops as they are based on 2.5D geometry and use simplified radiation algorithms based on view-sheds. This work contributes to overcoming some of these limitations, providing support for 3D geometry to include facades. Thanks to the use of ray-tracing-based simulations and detailed characterization of the 3D surfaces, we can also account for inter-reflections, which might have a significant impact on façade irradiation. In order to construct confidence intervals on our results, we modeled vegetation from LiDAR point clouds as 3D convex hulls, which provide the biggest volume and hence the most conservative obstruction scenario. The limits of the confidence intervals were characterized with some extreme scenarios (e.g. opaque trees and absence of trees). Results show that uncertainty can vary significantly depending on the characteristics of the urban area and the granularity of the analysis (sensor, building and group of buildings). We argue that this method can give us a better understanding of the uncertainties due to vegetation in the assessment of solar irradiation in urban environments, and therefore, the potential for the installation of solar energy systems.

  17. A CANDELS-3d-HST Synergy: Resolved Star Formation Patterns at 0.7 less than z less than 1.5

    NASA Technical Reports Server (NTRS)

    Wuyts, Stijn; Foerster Schreiber, Natascha M.; Nelson, Erica J.; Van Dokkum, Pieter G.; Brammer, Gabe; Chang, Yu-Yen; Faber, Sandra M.; Ferguson, Henry C.; Franx, Marijn; Fumagalli, Mattia; Genzel, Reinhard; Grogin, Norman A.; Kocevski, Dale D.; Koekemoer, Anton M.; Lundgren, Britt; Lutz, Dieter; McGrath, Elizabeth J.; Momcheva, Ivelina; Rosario, David; Skelton, Rosalind E.; Tacconi, Linda J.; Van der Wel, Arjen; Whitaker, Katherine E.

    2013-01-01

    We analyze the resolved stellar populations of 473 massive star-forming galaxies at 0.7 < z < 1.5, with multiwavelength broadband imaging from CANDELS andHalpha surface brightness profiles at the same kiloparsec resolution from 3D-HST. Together, this unique data set sheds light on how the assembled stellar mass is distributed within galaxies, and where new stars are being formed. We find the Halpha morphologies to resemble more closely those observed in the ACS I band than in the WFC3 H band, especially for the larger systems. We next derive a novel prescription for Halpha dust corrections, which accounts for extra extinction toward H II regions. The prescription leads to consistent star formation rate (SFR) estimates and reproduces the observed relation between the Halpha/UV luminosity ratio and visual extinction, on both a pixel-by-pixel and a galaxy-integrated level. We find the surface density of star formation to correlate with the surface density of assembled stellar mass for spatially resolved regions within galaxies, akin to the so-called "main sequence of star formation" established on a galaxy-integrated level. Deviations from this relation toward lower equivalent widths are found in the inner regions of galaxies. Clumps and spiral features, on the other hand, are associated with enhanced H alpha equivalent widths, bluer colors, and higher specific SFRs compared to the underlying disk. Their Halpha/UV luminosity ratio is lower than that of the underlying disk, suggesting that the ACS clump selection preferentially picks up those regions of elevated star formation activity that are the least obscured by dust. Our analysis emphasizes that monochromatic studies of galaxy structure can be severely limited by mass-to-light ratio variations due to dust and spatially inhomogeneous star formation histories.

  18. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral-bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e.,pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e. 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size categor, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low CCN case

  19. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Khain, A.; Simpson, S.; Johnson, D.; Li, X.; Remer, L.

    2003-01-01

    Cloud microphysics are inevitable affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distribution parameterized as spectral bin microphysics are needed to explicitly study the effect of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates convective clouds. Recently, two detailed spectral-bin microphysical schemes were implemented into the Goddard Cumulus Ensembel (GCE) model. The formulation for the explicit spectral-bim microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e., pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), groupel and frozen drops/hall] Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions.A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region and in the mid-latitude using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Besides the initial differences in aerosol concentration, preliminary results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CCN case but has less cloud water mass aloft. Because the spectral-bim model explicitly calculates and allows for the examination of both the mass and number concentration of cpecies in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for the two cases. It is shown that since the low

  20. Towards Realtime Assimilation of Doppler Radar Observations for Cloud-Resolving Hurricane Prediction

    NASA Astrophysics Data System (ADS)

    Weng, Y.; Zhang, F.; Gamache, J. F.; Marks, F. D.

    2008-12-01

    This study explores the feasibility and impacts of on-demand, real-time assimilation of Doppler radar observations straight from the planes with an ensemble Kalman filter (EnKF) to initialize a cloud-resolving hurricane prediction model. The NOAA P3 aircrafts have being flying into tropical cyclones to gather radar observations since 1994. These observations are significant in investigating and anglicizing hurricane's intensity, eye-wall structure and intensity changes, but the radar data has never been ingested into hurricane prediction models in real-time. Likely reasons are (1) insufficient model resolution due to inadequate computing resources for ingesting convective-scale details observed by the radar, (2) inadequacy of existing data assimilation method for operational models, and (3) lack of sufficient bandwidth in transmitting huge volume radar data to the ground in realtime. This work is built on our recent case studies of predicting the rapid formation and intensification of past hurricanes in assimilating both ground-base and/or airborne radial velocity into a cloud-resolving mesoscale model with EnKF. Under the auspices of NOAA Hurricane Forecasting Improvement Project (HFIP), we have access to the NSF-sponsored high-performance computing facility TACC at University of Texas at Austin that makes realtime cloud-resolving hurricane data assimilation and forecasting possible. We alleviate the requirement of large volume data transfer from the aircraft through developing a radar radial velocity data quality and thinning procedure (namely to produce superobervations or SOs) to significantly reduce the data size before being transferred. We have first conducted near realtime testing of the cloud-resolving data assimilation and forecasting with Weather Research and Forecast (WRF) model using 40.5, 13.5, 4.5 and 1.5 km grid spacings and movable nested grids for Hurricanes Dolly and Fay (2008). As of today, we have successfully demonstrated the feasibility, data

  1. A climate sensitivity test using a global cloud resolving model under an aqua planet condition

    NASA Astrophysics Data System (ADS)

    Miura, Hiroaki; Tomita, Hirofumi; Nasuno, Tomoe; Iga, Shin-ichi; Satoh, Masaki; Matsuno, Taroh

    2005-10-01

    A global Cloud Resolving Model (CRM) is used in a climate sensitivity test for an aqua planet in this first attempt to evaluate climate sensitivity without cumulus parameterizations. Results from a control experiment and an experiment with global sea surface temperature (SST) warmer by 2 K are examined. Notable features in the simulation with warmer SST include a wider region of active convection, a weaker Hadley circulation, mid-tropospheric moistening in the subtropics, and more clouds in the extratropics. Negative feedback from short-wave radiation reduces the climate sensitivity parameter compared to a result in a more conventional model with a cumulus parameterization.

  2. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Li, X.; Khain, A.; Mastsui, T.; Lang, S.; Simpson, J.

    2007-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 20011. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. ln this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific. In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection.

  3. MJO simulation in a cloud-system-resolving global ocean-atmosphere coupled model

    NASA Astrophysics Data System (ADS)

    Sasaki, Wataru; Onishi, Ryo; Fuchigami, Hiromitsu; Goto, Koji; Nishikawa, Shiro; Ishikawa, Yoichi; Takahashi, Keiko

    2016-09-01

    An observed Madden-Julian Oscillation (MJO) propagating from the central Indian Ocean to the western Pacific from 15 December 2006 to 10 January 2007 was successfully simulated by a cloud-system-resolving global ocean-atmosphere coupled model without parameterization of cumulus convection. We found that the ocean coupling has significant impacts on the MJO simulation, e.g., strength of the moisture convergence, and the timing and strength of the westerly wind burst over the Maritime Continent. The model also generally well simulated the decay of the MJO in the western Pacific, as well as the changes in sea surface temperature. These results demonstrate that the cloud-system-resolving global ocean-atmosphere coupled model can be used for realistic MJO simulation.

  4. Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study

    NASA Technical Reports Server (NTRS)

    Li, X; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.

  5. The Impact of Aerosols on Cloud and Precipitation Processes: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2012-01-01

    Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. Atmospheric aerosols are also described using number density size-distribution functions. A spectral-bin microphysical model is very expensive from a computational point of view and has only been implemented into the 2D version of the GCE at the present time. The model is tested by studying the evolution of deep tropical clouds in the west Pacific warm pool region and summertime convection over a mid-latitude continent with different concentrations of CCN: a low clean concentration and a high dirty concentration. The impact of atmospheric aerosol concentration on cloud and precipitation will be investigated.

  6. A Madden-Julian oscillation event realistically simulated by a global cloud-resolving model.

    PubMed

    Miura, Hiroaki; Satoh, Masaki; Nasuno, Tomoe; Noda, Akira T; Oouchi, Kazuyoshi

    2007-12-14

    A Madden-Julian Oscillation (MJO) is a massive weather event consisting of deep convection coupled with atmospheric circulation, moving slowly eastward over the Indian and Pacific Oceans. Despite its enormous influence on many weather and climate systems worldwide, it has proven very difficult to simulate an MJO because of assumptions about cumulus clouds in global meteorological models. Using a model that allows direct coupling of the atmospheric circulation and clouds, we successfully simulated the slow eastward migration of an MJO event. Topography, the zonal sea surface temperature gradient, and interplay between eastward- and westward-propagating signals controlled the timing of the eastward transition of the convective center. Our results demonstrate the potential making of month-long MJO predictions when global cloud-resolving models with realistic initial conditions are used.

  7. An ocean-atmosphere climate simulation with an embedded cloud resolving model

    NASA Astrophysics Data System (ADS)

    Stan, Cristiana; Khairoutdinov, Marat; DeMott, Charlotte A.; Krishnamurthy, V.; Straus, David M.; Randall, David A.; Kinter, James L.; Shukla, J.

    2010-01-01

    Mean climate and intraseasonal to interannual variability of two versions of the Community Climate System Model (CCSM) coupled atmosphere-ocean general circulation model (CGCM) are analyzed. The first version is the standard CCSM, in which cloud effects on the large-scale circulation are represented via parameterizations. The second version includes “super-parameterization” (SP) of convective processes by replacing parameterized cloud processes with a two-dimensional (2D) cloud-process resolving model (CRM) at each CGCM grid column. The SP-CCSM improves several shortcomings of the CCSM simulation, including mean precipitation patterns, equatorial SST cold tongue structure and associated double intertropical convergence zone (ITCZ), the Asian monsoon, periodicity of the El Niño-Southern Oscillation, and the intraseasonal Madden-Julian Oscillation. These improvements were obtained without the retuning of the coupled model, which is surprising in view of previous experience with other coupled models.

  8. Documenting a Complex Modern Heritage Building Using Multi Image Close Range Photogrammetry and 3d Laser Scanned Point Clouds

    NASA Astrophysics Data System (ADS)

    Vianna Baptista, M. L.

    2013-07-01

    Integrating different technologies and expertises help fill gaps when optimizing documentation of complex buildings. Described below is the process used in the first part of a restoration project, the architectural survey of Theatre Guaira Cultural Centre in Curitiba, Brazil. To diminish time on fieldwork, the two-person-field-survey team had to juggle, during three days, the continuous artistic activities and performers' intense schedule. Both technologies (high definition laser scanning and close-range photogrammetry) were used to record all details in the least amount of time without disturbing the artists' rehearsals and performances. Laser Scanning was ideal to record the monumental stage structure with all of its existing platforms, light fixtures, scenery walls and curtains. Although scanned with high-definition, parts of the exterior façades were also recorded using Close Range Photogrammetry. Tiny cracks on the marble plaques and mosaic tiles, not visible in the point clouds, were then able to be precisely documented in order to create the exterior façades textures and damages mapping drawings. The combination of technologies and the expertise of service providers, knowing how and what to document, and what to deliver to the client, enabled maximum benefits to the following restoration project.

  9. Evaluation of a Cloud Resolving Model Using TRMM Observations for Multiscale Modeling Applications

    NASA Technical Reports Server (NTRS)

    Posselt, Derek J.; L'Ecuyer, Tristan; Tao, Wei-Kuo; Hou, Arthur Y.; Stephens, Graeme L.

    2007-01-01

    The climate change simulation community is moving toward use of global cloud resolving models (CRMs), however, current computational resources are not sufficient to run global CRMs over the hundreds of years necessary to produce climate change estimates. As an intermediate step between conventional general circulation models (GCMs) and global CRMs, many climate analysis centers are embedding a CRM in each grid cell of a conventional GCM. These Multiscale Modeling Frameworks (MMFs) represent a theoretical advance over the use of conventional GCM cloud and convection parameterizations, but have been shown to exhibit an overproduction of precipitation in the tropics during the northern hemisphere summer. In this study, simulations of clouds, precipitation, and radiation over the South China Sea using the CRM component of the NASA Goddard MMF are evaluated using retrievals derived from the instruments aboard the Tropical Rainfall Measuring Mission (TRMM) satellite platform for a 46-day time period that spans 5 May - 20 June 1998. The NASA Goddard Cumulus Ensemble (GCE) model is forced with observed largescale forcing derived from soundings taken during the intensive observing period of the South China Sea Monsoon Experiment. It is found that the GCE configuration used in the NASA Goddard MMF responds too vigorously to the imposed large-scale forcing, accumulating too much moisture and producing too much cloud cover during convective phases, and overdrying the atmosphere and suppressing clouds during monsoon break periods. Sensitivity experiments reveal that changes to ice cloud microphysical parameters have a relatively large effect on simulated clouds, precipitation, and radiation, while changes to grid spacing and domain length have little effect on simulation results. The results motivate a more detailed and quantitative exploration of the sources and magnitude of the uncertainty associated with specified cloud microphysical parameters in the CRM components of MMFs.

  10. Integrated ray tracing simulation of annual variation of spectral bio-signatures from cloud free 3D optical Earth model

    NASA Astrophysics Data System (ADS)

    Ryu, Dongok; Kim, Sug-Whan; Kim, Dae Wook; Lee, Jae-Min; Lee, Hanshin; Park, Won Hyun; Seong, Sehyun; Ham, Sun-Jeong

    2010-09-01

    Understanding the Earth spectral bio-signatures provides an important reference datum for accurate de-convolution of collapsed spectral signals from potential earth-like planets of other star systems. This study presents a new ray tracing computation method including an improved 3D optical earth model constructed with the coastal line and vegetation distribution data from the Global Ecological Zone (GEZ) map. Using non-Lambertian bidirectional scattering distribution function (BSDF) models, the input earth surface model is characterized with three different scattering properties and their annual variations depending on monthly changes in vegetation distribution, sea ice coverage and illumination angle. The input atmosphere model consists of one layer with Rayleigh scattering model from the sea level to 100 km in altitude and its radiative transfer characteristics is computed for four seasons using the SMART codes. The ocean scattering model is a combination of sun-glint scattering and Lambertian scattering models. The land surface scattering is defined with the semi empirical parametric kernel method used for MODIS and POLDER missions. These three component models were integrated into the final Earth model that was then incorporated into the in-house built integrated ray tracing (IRT) model capable of computing both spectral imaging and radiative transfer performance of a hypothetical space instrument as it observes the Earth from its designated orbit. The IRT model simulation inputs include variation in earth orientation, illuminated phases, and seasonal sea ice and vegetation distribution. The trial simulation runs result in the annual variations in phase dependent disk averaged spectra (DAS) and its associated bio-signatures such as NDVI. The full computational details are presented together with the resulting annual variation in DAS and its associated bio-signatures.

  11. Study of Multi-Scale Cloud Processes Over the Tropical Western Pacific Using Cloud-Resolving Models Constrained by Satellite Data

    SciTech Connect

    Dudhia, Jimy

    2013-03-12

    Clouds in the tropical western Pacific are an integral part of the large scale environment. An improved understanding of the multi-scale structure of clouds and their interactions with the environment is critical to the ARM (Atmospheric Radiation Measurement) program for developing and evaluating cloud parameterizations, understanding the consequences of model biases, and providing a context for interpreting the observational data collected over the ARM Tropical Western Pacific (TWP) sites. Three-dimensional cloud resolving models (CRMs) are powerful tools for developing and evaluating cloud parameterizations. However, a significant challenge in using CRMs in the TWP is that the region lacks conventional data, so large uncertainty exists in defining the large-scale environment for clouds. This project links several aspects of the ARM program, from measurements to providing improved analyses, and from cloud-resolving modeling to climate-scale modeling and parameterization development, with the overall objective to improve the representations of clouds in climate models and to simulate and quantify resolved cloud effects on the large-scale environment. Our objectives will be achieved through a series of tasks focusing on the use of the Weather Research and Forecasting (WRF) model and ARM data. Our approach includes: -- Perform assimilation of COSMIC GPS radio occultation and other satellites products using the WRF Ensemble Kalman Filter assimilation system to represent the tropical large-scale environment at 36 km grid resolution. This high-resolution analysis can be used by the community to derive forcing products for single-column models or cloud-resolving models. -- Perform cloud-resolving simulations using WRF and its nesting capabilities, driven by the improved regional analysis and evaluate the simulations against ARM datasets such as from TWP-ICE to optimize the microphysics parameters for this region. A cirrus study (Mace and co-authors) already exists for

  12. Mean-state acceleration of cloud-resolving models and large eddy simulations

    DOE PAGESBeta

    Jones, C. R.; Bretherton, C. S.; Pritchard, M. S.

    2015-10-29

    In this study, large eddy simulations and cloud-resolving models (CRMs) are routinely used to simulate boundary layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. These models are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We develop a simple scheme to reduce this time scale separation to accelerate themore » evolution of the mean state. Using this approach we are able to accelerate the model evolution by a factor of 2–16 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. As a culminating test, we apply this technique to accelerate the embedded CRMs in the Superparameterized Community Atmosphere Model by a factor of 2, thereby showing that the method is robust and stable to realistic perturbations across spatial and temporal scales typical in a GCM.« less

  13. Mean-state acceleration of cloud-resolving models and large eddy simulations

    SciTech Connect

    Jones, C. R.; Bretherton, C. S.; Pritchard, M. S.

    2015-10-29

    In this study, large eddy simulations and cloud-resolving models (CRMs) are routinely used to simulate boundary layer and deep convective cloud processes, aid in the development of moist physical parameterization for global models, study cloud-climate feedbacks and cloud-aerosol interaction, and as the heart of superparameterized climate models. These models are computationally demanding, placing practical constraints on their use in these applications, especially for long, climate-relevant simulations. In many situations, the horizontal-mean atmospheric structure evolves slowly compared to the turnover time of the most energetic turbulent eddies. We develop a simple scheme to reduce this time scale separation to accelerate the evolution of the mean state. Using this approach we are able to accelerate the model evolution by a factor of 2–16 or more in idealized stratocumulus, shallow and deep cumulus convection without substantial loss of accuracy in simulating mean cloud statistics and their sensitivity to climate change perturbations. As a culminating test, we apply this technique to accelerate the embedded CRMs in the Superparameterized Community Atmosphere Model by a factor of 2, thereby showing that the method is robust and stable to realistic perturbations across spatial and temporal scales typical in a GCM.

  14. A Convective Vorticity Vector Associated With Tropical Convection: A 2D Cloud-Resolving Modeling Study

    NASA Technical Reports Server (NTRS)

    Gao, Shou-Ting; Ping, Fan; Li, Xiao-Fan; Tao, Wei-Kuo

    2004-01-01

    Although dry/moist potential vorticity is a useful physical quantity for meteorological analysis, it cannot be applied to the analysis of 2D simulations. A convective vorticity vector (CVV) is introduced in this study to analyze 2D cloud-resolving simulation data associated with 2D tropical convection. The cloud model is forced by the vertical velocity, zonal wind, horizontal advection, and sea surface temperature obtained from the TOGA COARE, and is integrated for a selected 10-day period. The CVV has zonal and vertical components in the 2D x-z frame. Analysis of zonally-averaged and mass-integrated quantities shows that the correlation coefficient between the vertical component of the CVV and the sum of the cloud hydrometeor mixing ratios is 0.81, whereas the correlation coefficient between the zonal component and the sum of the mixing ratios is only 0.18. This indicates that the vertical component of the CVV is closely associated with tropical convection. The tendency equation for the vertical component of the CVV is derived and the zonally-averaged and mass-integrated tendency budgets are analyzed. The tendency of the vertical component of the CVV is determined by the interaction between the vorticity and the zonal gradient of cloud heating. The results demonstrate that the vertical component of the CVV is a cloud-linked parameter and can be used to study tropical convection.

  15. Past, present, and future of the MISR height-resolved, cloud-track wind retrieval

    NASA Astrophysics Data System (ADS)

    Mueller, K. J.; Moroney, C. M.; Garay, M. J.; Jovanovic, V. M.

    2009-12-01

    MISR multi-angle measurements offer the unique capability of resolving position, altitude, and motion of clouds over a 7 minute interval, purely by image correspondence and geometric triangulation. Cloud motion is retrieved operationally at 70.4km x 70.4km horizontal resolution and packaged as part of the MISR standard suite of products. A consistent approach, requiring no a priori information and applied globally throughout MISR’s 10-year history, make this product suitable for reanalysis of wind in observation sparse regions such as the Poles or the Southern Ocean. Featuring far superior resolution (17.6km along satellite trajectory, 1.1km across), 2.5 times the coverage, and increased precision and accuracy, the upcoming MISR cloud motion product will extend scientific applicability to the mesoscale: including hurricane modeling, and marine stratocumulus organization. This product release will build upon a steady evolution of algorithm enhancements that have transformed cloud motion retrieval from a measurement first conceived as a means of calculating unbiased cloud height, into a first-class science product. Here we will review previous and upcoming milestones in this evolution. The accuracy, bias, and coverage of past and forthcoming algorithm revisions relative to standard wind validation datasets including rawinsonde retrievals and NCEP reanalysis will be reviewed.

  16. A Coupled GCM-Cloud Resolving Modeling System to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Chern, Jiundar; Atlas, Robert; Peters-Lidard, Christa; Hou, Arthur; Lin, Xin

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud resolving models (CRMs) agree with observations better than traditional single column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA Satellite and field campaign cloud related data sets can provide initial conditions as well as validation for both the MMF and CRMs. Also we have implemented a Land Information System (LIS that includes the CLM and NOAH land surface models into the MMF. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM) This modeling system has been applied and tested its performance for two different climate scenarios, El Nino (1998) and La Nina (1999). The coupled new modeling system produced more realistic propagation and intensity of tropical rainfall systems and intraseasonal oscillations, and diurnal variation of precipitation that are very difficult to forecast using even the state-of-the-art GCMs. In this talk I will present: (1) a brief review on GCE model and its applications on precipitation processes (both Microphysical and land processes) and (2) The Goddard MMF and the Major difference between two existing MMFs (CSU MMF and Goddard MMF) and preliminary results (the comparison with traditional GCMs).

  17. Cloud Modeling

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Moncrieff, Mitchell; Einaud, Franco (Technical Monitor)

    2001-01-01

    Numerical cloud models have been developed and applied extensively to study cloud-scale and mesoscale processes during the past four decades. The distinctive aspect of these cloud models is their ability to treat explicitly (or resolve) cloud-scale dynamics. This requires the cloud models to be formulated from the non-hydrostatic equations of motion that explicitly include the vertical acceleration terms since the vertical and horizontal scales of convection are similar. Such models are also necessary in order to allow gravity waves, such as those triggered by clouds, to be resolved explicitly. In contrast, the hydrostatic approximation, usually applied in global or regional models, does allow the presence of gravity waves. In addition, the availability of exponentially increasing computer capabilities has resulted in time integrations increasing from hours to days, domain grids boxes (points) increasing from less than 2000 to more than 2,500,000 grid points with 500 to 1000 m resolution, and 3-D models becoming increasingly prevalent. The cloud resolving model is now at a stage where it can provide reasonably accurate statistical information of the sub-grid, cloud-resolving processes poorly parameterized in climate models and numerical prediction models.

  18. Disentangling the history of complex multi-phased shell beds based on the analysis of 3D point cloud data

    NASA Astrophysics Data System (ADS)

    Harzhauser, Mathias; Djuricic, Ana; Mandic, Oleg; Dorninger, Peter; Nothegger, Clemens; Székely, Balázs; Molnár, Gábor; Pfeifer, Norbert

    2015-04-01

    Shell beds are key features in sedimentary records throughout the Phanerozoic. The interplay between burial rates and population productivity is reflected in distinct degrees of shelliness. Consequently, shell beds may provide informations on various physical processes, which led to the accumulation and preservation of hard parts. Many shell beds pass through a complex history of formation being shaped by more than one factor. In shallow marine settings, the composition of shell beds is often strongly influenced by winnowing, reworking and transport. These processes may cause considerable time averaging and the accumulation of specimens, which have lived thousands of years apart. In the best case, the environment remained stable during that time span and the mixing does not mask the overall composition. A major obstacle for the interpretation of shell beds, however, is the amalgamation of shell beds of several depositional units in a single concentration, as typically for tempestites and tsunamites. Disentangling such mixed assemblages requires deep understanding of the ecological requirements of the taxa involved - which is achievable for geologically young shell beds with living relatives - and a statistic approach to quantify the contribution by the various death assemblages. Furthermore it requires understanding of sedimentary processes potentially involved into their formation. Here we present the first attempt to describe and decipher such a multi-phase shell-bed based on a high resolution digital surface model (1 mm) combined with ortho-photos with a resolution of 0.5 mm per pixel. Documenting the oyster reef requires precisely georeferenced data; owing to high redundancy of the point cloud an accuracy of a few mm was achieved. The shell accumulation covers an area of 400 m2 with thousands of specimens, which were excavated by a three months campaign at Stetten in Lower Austria. Formed in an Early Miocene estuary of the Paratethys Sea it is mainly composed

  19. Evaluation of cloud resolving model simulations of midlatitude cirrus with ARM and A-Train observations

    NASA Astrophysics Data System (ADS)

    Muehlbauer, A. D.; Ackerman, T. P.; Lawson, P.; Xie, S.; Zhang, Y.

    2015-12-01

    This paper evaluates cloud resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration (NASA) A-train satellites. Vertical profiles of temperature, relative humidity and wind speeds are reasonably well simulated by the CSRM and CRM but there are remaining biases in the temperature, wind speeds and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in GCMs and in CSRM simulations with horizontal grid spacings on the order of 1km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating the microphysical, macrophysical and radiative properties of cirrus remains challenging. Comparing model simulations with observations from multiple instruments and observational platforms is important for revealing model deficiencies and for providing rigorous benchmarks. However, there still is considerable

  20. Reduction of radiation biases by incorporating the missing cloud variability by means of downscaling techniques: a study using the 3-D MoCaRT model

    NASA Astrophysics Data System (ADS)

    Gimeno García, S.; Trautmann, T.; Venema, V.

    2012-09-01

    reflectivity biases. Secondly, three-dimensional broadband fluxes in the presence of realistic inhomogeneous cloud fields sampled at high spatial resolutions are calculated and compared to their one-dimensional counterparts at coarser resolutions. We found that one-dimensional calculations at coarsely resolved cloudy atmospheres systematically overestimate broadband reflected and absorbed fluxes and underestimate transmitted ones.

  1. The Role of Atmospheric Aerosol Concentration on Deep Convective Precipitation: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, Xiaowen; Khain, Alexander; Matsui, Toshihisa; Lang, Stephen; Simpson, Joanne

    2010-01-01

    Aerosols and especially their effect on clouds are one of the key components of the climate system and the hydrological cycle [Ramanathan et al., 2001]. Yet, the aerosol effect on clouds remains largely unknown and the processes involved not well understood. A recent report published by the National Academy of Science states "The greatest uncertainty about the aerosol climate forcing - indeed, the largest of all the uncertainties about global climate forcing - is probably the indirect effect of aerosols on clouds NRC [2001]." The aerosol effect on Clouds is often categorized into the traditional "first indirect (i.e., Twomey)" effect on the cloud droplet sizes for a constant liquid water path and the "semi-direct" effect on cloud coverage. The aerosol effect on precipitation processes, also known as the second type of aerosol indirect effect, is even more complex, especially for mixed-phase convective clouds. In this paper, a cloud-resolving model (CRM) with detailed spectral-bin microphysics was used to examine the effect of aerosols on three different deep convective cloud systems that developed in different geographic locations: South Florida, Oklahoma and the Central Pacific, In all three cases, rain reaches the ground earlier for the low CCN (clean) case. Rain suppression is also evident in all three cases with high CCN (dirty) case. However, this suppression only occurs during the first hour of the simulations. During the mature stages of the simulations, the effects of increasing aerosol concentration range from rain suppression in the Oklahoma case, to almost no effect in the Florida case, to rain enhancement in the Pacific case. These results show the complexity of aerosol interactions with convection. The model results suggest that evaporative cooling is a key process in determining whether high CCN reduces or enhances precipitation. Stronger evaporative cooling can produce a stronger cold pool and thus stronger low-level convergence through interactions

  2. Improving Representation of Convective Transport for Scale-Aware Parameterization, Part II: Analysis of Cloud-Resolving Model Simulations

    SciTech Connect

    Liu, Yi-Chin; Fan, Jiwen; Zhang, Guang J.; Xu, Kuan-Man; Ghan, Steven J.

    2015-04-27

    Following Part I, in which 3-D cloud-resolving model (CRM) simulations of a squall line and mesoscale convective complex in the mid-latitude continental and the tropical regions are conducted and evaluated, we examine the scale-dependence of eddy transport of water vapor, evaluate different eddy transport formulations, and improve the representation of convective transport across all scales by proposing a new formulation that more accurately represents the CRM-calculated eddy flux. CRM results show that there are strong grid-spacing dependencies of updraft and downdraft fractions regardless of altitudes, cloud life stage, and geographical location. As for the eddy transport of water vapor, updraft eddy flux is a major contributor to total eddy flux in the lower and middle troposphere. However, downdraft eddy transport can be as large as updraft eddy transport in the lower atmosphere especially at the mature stage of 38 mid-latitude continental convection. We show that the single updraft approach significantly underestimates updraft eddy transport of water vapor because it fails to account for the large internal variability of updrafts, while a single downdraft represents the downdraft eddy transport of water vapor well. We find that using as few as 3 updrafts can account for the internal variability of updrafts well. Based on evaluation with the CRM simulated data, we recommend a simplified eddy transport formulation that considers three updrafts and one downdraft. Such formulation is similar to the conventional one but much more accurately represents CRM-simulated eddy flux across all grid scales.

  3. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    NASA Technical Reports Server (NTRS)

    Varble, Adam; Fridlind, Ann M.; Zipser, Edward J.; Ackerman, Andrew S.; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-01-01

    The Tropical Warm Pool.International Cloud Experiment (TWP ]ICE) provided extensive observational data sets designed to initialize, force, and constrain atmospheric model simulations. In this first of a two ]part study, precipitation and cloud structures within nine cloud ]resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Seven of nine simulations overestimate convective area by 20% or more leading to general overestimation of convective rainfall. This is balanced by underestimation of stratiform rainfall by 5% to 50% despite overestimation of stratiform area by up to 65% because of a preponderance of very low stratiform rain rates in all simulations. All simulations fail to reproduce observed radar reflectivity distributions above the melting level in convective regions and throughout the troposphere in stratiform regions. Observed precipitation ]sized ice reaches higher altitudes than simulated precipitation ]sized ice despite some simulations that predict lower than observed top ]of ]atmosphere infrared brightness temperatures. For the simulations that overestimate radar reflectivity aloft, graupel is the cause with one ]moment microphysics schemes whereas snow is the cause with two ]moment microphysics schemes. Differences in simulated radar reflectivity are more highly correlated with differences in mass mean melted diameter (Dm) than differences in ice water content. Dm is largely dependent on the mass ]dimension relationship and gamma size distribution parameters such as size intercept (N0) and shape parameter (m). Having variable density, variable N0, or m greater than zero produces radar reflectivities closest to those observed.

  4. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect

    Varble, Adam C.; Fridlind, Ann; Zipser, Ed; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-06-24

    The Tropical Warm Pool - International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. 29 In stratiform regions, there is a large spread in model results with none resembling 30 observed distributions. Above the melting level, observed radar reflectivity decreases 31 more gradually with height than simulated radar reflectivity. A few simulations produce 32 unrealistically uniform and cold 10.8-μm infrared brightness temperatures, but several 33 simulations produce distributions close to observed. Assumed ice particle size 34 distributions appear to play a larger role than ice water contents in producing incorrect 35 simulated radar reflectivity distributions aloft despite substantial differences in mean 36 graupel and snow water contents across models. 37

  5. Evaluation of Cloud-Resolving Model Intercomparison Simulations Using TWP-ICE Observations: Precipitation and Cloud Structure

    SciTech Connect

    Varble, Adam; Fridlind, Ann; Zipser, Edward J.; Ackerman, Andrew; Chaboureau, Jean-Pierre; Fan, Jiwen; Hill, Adrian; McFarlane, Sally A.; Pinty, Jean-Pierre; Shipway, Ben

    2011-10-04

    The Tropical Warm Pool – International Cloud Experiment (TWP-ICE) provided high quality model forcing and observational datasets through which detailed model and observational intercomparisons could be performed. In this first of a two part study, precipitation and cloud structures within nine cloud-resolving model simulations are compared with scanning radar reflectivity and satellite infrared brightness temperature observations during an active monsoon period from 19 to 25 January 2006. Most simulations slightly overestimate volumetric convective rainfall. Overestimation of simulated convective area by 50% or more in several simulations is somewhat offset by underestimation of mean convective rain rates. Stratiform volumetric rainfall is underestimated by 13% to 53% despite overestimation of stratiform area by up to 65% because stratiform rain rates in every simulation are much lower than observed. Although simulations match the peaked convective radar reflectivity distribution at low levels, they do not reproduce the peaked distributions observed above the melting level. Simulated radar reflectivity aloft in convective regions is too high in most simulations. In stratiform regions, there is a large spread in model results with none resembling observed distributions. Above the melting level, observed radar reflectivity decreases more gradually with height than simulated radar reflectivity. A few simulations produce unrealistically uniform and cold 10.8-μm infrared brightness temperatures, but several simulations produce distributions close to observed. Assumed ice particle size distributions appear to play a larger role than ice water contents in producing incorrect simulated radar reflectivity distributions aloft despite substantial differences in mean graupel and snow water contents across models.

  6. Advanced 3-D analysis, client-server systems, and cloud computing—Integration of cardiovascular imaging data into clinical workflows of transcatheter aortic valve replacement

    PubMed Central

    Zimmermann, Mathis; Falkner, Juergen

    2013-01-01

    Degenerative aortic stenosis is highly prevalent in the aging populations of industrialized countries and is associated with poor prognosis. Surgical valve replacement has been the only established treatment with documented improvement of long-term outcome. However, many of the older patients with aortic stenosis (AS) are high-risk or ineligible for surgery. For these patients, transcatheter aortic valve replacement (TAVR) has emerged as a treatment alternative. The TAVR procedure is characterized by a lack of visualization of the operative field. Therefore, pre- and intra-procedural imaging is critical for patient selection, pre-procedural planning, and intra-operative decision-making. Incremental to conventional angiography and 2-D echocardiography, multidetector computed tomography (CT) has assumed an important role before TAVR. The analysis of 3-D CT data requires extensive post-processing during direct interaction with the dataset, using advance analysis software. Organization and storage of the data according to complex clinical workflows and sharing of image information have become a critical part of these novel treatment approaches. Optimally, the data are integrated into a comprehensive image data file accessible to multiple groups of practitioners across the hospital. This creates new challenges for data management requiring a complex IT infrastructure, spanning across multiple locations, but is increasingly achieved with client-server solutions and private cloud technology. This article describes the challenges and opportunities created by the increased amount of patient-specific imaging data in the context of TAVR. PMID:24282750

  7. Integrated Modeling of Aerosol, Cloud, Precipitation and Land Processes at Satellite-Resolved Scales

    NASA Technical Reports Server (NTRS)

    Peters-Lidard, Christa; Tao, Wei-Kuo; Chin, Mian; Braun, Scott; Case, Jonathan; Hou, Arthur; Kumar, Anil; Kumar, Sujay; Lau, William; Matsui, Toshihisa; Miller, Tim; Santanello, Joseph, Jr.; Shi, Jainn; Starr, David; Tao, Qian; Zaitchik, Benjamin

    2012-01-01

    In this talk, I will present recent results from a project led at NASA/GSFC, in collaboration with NASA/MSFC and JHU, focused on the development and application of an observation-driven integrated modeling system that represents aerosol, cloud, precipitation and land processes at satellite-resolved scales. The project, known as the NASA Unified WRF (NU-WRF), is funded by NASA's Modeling and Analysis Program, and leverages prior investments from the Air Force Weather Agency and NASA's Earth Science Technology Office (ESTO). We define "satellite-resolved" scales as being within a typical mesoscale atmospheric modeling grid (roughly 1-25 km), although this work is designed to bridge the continuum between local (microscale), regional (mesoscale) and global (synoptic) processes. NU-WRF is a superset of the standard NCAR Advanced Research WRF model, achieved by fully integrating the GSFC Land Information System (LIS, already coupled to WRF), the WRF/Chem enabled version of the Goddard Chemistry Aerosols Radiation Transport (GOCART) model, the Goddard Satellite Data Simulation Unit (SDSU), and boundary/initial condition preprocessors for MERRA and GEOS-5 into a single software release (with source code available by agreement with NASA/GSFC). I will show examples where the full coupling between aerosol, cloud, precipitation and land processes is critical for predicting local, regional, and global water and energy cycles, including some high-impact phenomena such as floods, hurricanes, mesoscale convective systems, droughts, and monsoons.

  8. IO strategies and data services for petascale data sets from a global cloud resolving model

    SciTech Connect

    Schuchardt, Karen L.; Palmer, Bruce J.; Daily, Jeff; Elsethagen, Todd O.; Koontz, Annette S.

    2007-12-01

    Global cloud resolving models at 4km resolutions or less create significant challenges in generation of simulation data, data storage, data management, and post-simulation analysis and visualization. To support efficient model output as well as data analysis, new models for IO and data organization must be evaluated. The model we are supporting, the Global Cloud Resolving Model being developed at Colorado State University, uses a geodesic grid. The non-monotonic nature of the grid's coordinate variables requires enhancements to existing data processing tools and community standards for describing and manipulating grids. The resolution, size and extent of the data suggest the need for parallel analysis tools and allow for the possibility of new techniques in data mining, filtering and comparison to observations. We describe the challenges posed by various aspects of data generation, management, and analysis, our work exploring IO strategies for the model, and a preliminary architecture, web portal, and tool enhancements which, when complete, will enable broad community access to the data sets in a way that is familiar to the community.

  9. 10 Years of Height Resolved, Cloud-Track, Vector Winds from MISR

    NASA Astrophysics Data System (ADS)

    Garay, M. J.; Mueller, K. J.; Moroney, C. M.; Jovanovic, V.; Wu, D. L.; Diner, D. J.

    2009-12-01

    By utilizing multiple camera views and fast image matching algorithms to identify common features and determine feature motion, the MISR instrument on NASA’s Terra satellite has now collected nearly 10 years of height-resolved, cloud-track, vector winds using a single, globally consistent algorithm. The MISR cloud-track winds are reported globally on mesoscale domains of 70.4 km × 70.4 km and referenced to stereoscopically derived heights above the earth ellipsoid, which have a nominal vertical resolution of approximately 500 m. Importantly, from the standpoint of climate research, the stereo height assignment and wind retrieval are largely insensitive to instrument calibration changes because the pattern matcher relies only on relative brightness values, rather than the absolute magnitude of the brightness. We will describe comparisons with other wind datasets, including geostationary cloud drift winds, scatterometer surface winds, and reanalysis model winds, that demonstrate the quality of the MISR winds. We will also show the coverage and resolution advantages that MISR provides relative to these other datasets. Additionally, because the global winds are driven primarily by the global (im)balance of heating, monitoring variations in the winds over 10 years promises to yield important insights into the processes related to the hydrologic cycle and transport of heat and water vapor, such as the Madden-Julian Oscillation (MJO) and the El Niño Southern Oscillation (ENSO).

  10. Convective self-aggregation feedbacks in near-global cloud-resolving simulations of an aquaplanet

    NASA Astrophysics Data System (ADS)

    Bretherton, Christopher S.; Khairoutdinov, Marat F.

    2015-12-01

    Positive feedbacks between precipitable water, reduced radiative cooling and enhanced surface fluxes promote convective self-aggregation in limited-area cloud-resolving model (CRM) simulations over uniform sea-surface temperature (SST). Near-global aquaplanet simulations with 4 km horizontal grid spacing and no cumulus or boundary layer parameterization are used to test the importance of these feedbacks to realistically organized tropical convection. A 20,480 × 10,240 km equatorially centered channel with latitudinally varying SST is used. Realistic midlatitude and tropical cloud structures develop. The natural zonal variability of humidity and convection are studied in a 30 day control simulation. The temporal growth of a small white-noise humidity perturbation and intrinsic predictability implications are explored. Atmospheric column budgets of moist-static energy (MSE) quantify its covariation with precipitation, surface heat flux, and radiative energy loss. Zonal Fourier analysis partitions these budgets by length scale. Radiative feedbacks on MSE natural variability and perturbation growth are found to be positive, broadly similar across scales, and comparable to limited-area CRMs, capable of e-folding a column MSE perturbation in 6-14 days. Surface fluxes are highest in synoptic-scale dry intrusions, inhibiting aggregation by damping tropical MSE perturbations. Sub-4-day MSE variations are due mainly to advection. Both tropics and midlatitudes have large-scale intrinsic predictability horizons of 15-30 days. An identical simulation but with 20 km grid spacing has more mesoscale variability and low cloud.

  11. Convective Systems Over the Japan Sea: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Yoshizaki, Masanori; Shie, Chung-Lin; Kato, Teryuki

    2002-01-01

    Wintertime observations of MCSs (Mesoscale Convective Systems) over the Sea of Japan - 2001 (WMO-01) were collected from January 12 to February 1, 2001. One of the major objectives is to better understand and forecast snow systems and accompanying disturbances and the associated key physical processes involved in the formation and development of these disturbances. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, wind profilers, radiometers, etc.) during WMO-01 provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with winter storms over the Sea of Japan region. WMO-01 also provided estimates of the apparent heat source (Q1) and apparent moisture sink (Q2). The vertical integrals of Q1 and Q2 are equal to the surface precipitation rates. The horizontal and vertical adjective components of Q1 and Q2 can be used as large-scale forcing for the Cloud Resolving Models (CRMs). The Goddard Cumulus Ensemble (GCE) model is a CRM (typically run with a 1-km grid size). The GCE model has sophisticated microphysics and allows explicit interactions between clouds, radiation, and surface processes. It will be used to understand and quantify precipitation processes associated with wintertime convective systems over the Sea of Japan (using data collected during the WMO-01). This is the first cloud-resolving model used to simulate precipitation processes in this particular region. The GCE model-simulated WMO-01 results will also be compared to other GCE model-simulated weather systems that developed during other field campaigns (i.e., South China Sea, west Pacific warm pool region, eastern Atlantic region and central USA).

  12. Resolving Giant Molecular Clouds in NGC 300: A First Look with the Submillimeter Array

    NASA Astrophysics Data System (ADS)

    Faesi, Christopher M.; Lada, Charles J.; Forbrich, Jan

    2016-04-01

    We present the first high angular resolution study of giant molecular clouds (GMCs) in the nearby spiral galaxy NGC 300, based on observations from the Submillimeter Array (SMA). We target eleven 500 pc sized regions of active star formation within the galaxy in the 12CO(J = 2-1) line at 40 pc spatial and 1 km s-1 spectral resolution and identify 45 individual GMCs. We characterize the physical properties of these GMCs, and find that they are similar to GMCs in the disks of the Milky Way and other nearby spiral galaxies. For example, the GMC mass spectrum in our sample has a slope of 1.80 ± 0.07. Twelve clouds are spatially resolved by our observations, of which ten have virial mass estimates that agree to within a factor of two with mass estimates derived directly from 12CO integrated intensity, suggesting that the majority of these GMCs are bound. The resolved clouds show consistency with Larson’s fundamental relations between size, linewidth, and mass observed in the Milky Way. We find that the linewidth scales with the size as ΔV ∝ R0.52±0.20, and the median surface density in the subsample is 54 M⊙ pc-2. We detect 13CO in four GMCs and find a mean 12CO/13CO flux ratio of 6.2. Our interferometric observations recover between 30% and 100% of the integrated intensity from the APEX single dish 12CO observations of Faesi et al., suggesting the presence of low-mass GMCs and/or diffuse gas below our sensitivity limit. The fraction of APEX emission recovered increases with the SMA total intensity, as well as with the star formation rate.

  13. Evaluating Microphysics in Cloud-Resolving Models using TRMM and Ground-based Precipitation Radar Observations

    NASA Astrophysics Data System (ADS)

    Krueger, S. K.; Zulauf, M. A.; Li, Y.; Zipser, E. J.

    2005-05-01

    Global satellite datasets such as those produced by ISCCP, ERBE, and CERES provide strong observational constraints on cloud radiative properties. Such observations have been widely used for model evaluation, tuning, and improvement. Cloud radiative properties depend primarily on small, non-precipitating cloud droplets and ice crystals, yet the dynamical, microphysical and radiative processes which produce these small particles often involve large, precipitating hydrometeors. There now exists a global dataset of tropical cloud system precipitation feature (PF) properties, collected by TRMM and produced by Steve Nesbitt, that provides additional observational constraints on cloud system properties. We are using the TRMM PF dataset to evaluate the precipitation microphysics of two simulations of deep, precipitating, convective cloud systems: one is a 29-day summertime, continental case (ARM Summer 1997 SCM IOP, at the Southern Great Plains site); the second is a tropical maritime case: the Kwajalein MCS of 11-12 August 1999 (part of a 52-day simulation). Both simulations employed the same bulk, three-ice category microphysical parameterization (Krueger et al. 1995). The ARM simulation was executed using the UCLA/Utah 2D CRM, while the KWAJEX simulation was produced using the 3D CSU CRM (SAM). The KWAJEX simulation described above is compared with both the actual radar data and the TRMM statistics. For the Kwajalein MCS of 11 to 12 August 1999, there are research radar data available for the lifetime of the system. This particular MCS was large in size and rained heavily, but it was weak to average in measures of convective intensity, against the 5-year TRMM sample of 108. For the Kwajalein MCS simulation, the 20 dBZ contour is at 15.7 km and the 40 dBZ contour at 14.5 km! Of all 108 MCSs observed by TRMM, the highest value for the 40 dBZ contour is 8 km. Clearly, the high reflectivity cores are off scale compared with observed cloud systems in this area. A similar

  14. A Numerical Study of Tropical Sea-Air Interactions Using a Cloud Resolving Model Coupled with an Ocean Mixed-Layer Model

    NASA Technical Reports Server (NTRS)

    Shie, Chung-Lin; Tao, Wei-Kuo; Johnson, Dan; Simpson, Joanne; Li, Xiaofan; Sui, Chung-Hsiung; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Coupling a cloud resolving model (CRM) with an ocean mixed layer (OML) model can provide a powerful tool for better understanding impacts of atmospheric precipitation on sea surface temperature (SST) and salinity. The objective of this study is twofold. First, by using the three dimensional (3-D) CRM-simulated (the Goddard Cumulus Ensemble model, GCE) diabatic source terms, radiation (longwave and shortwave), surface fluxes (sensible and latent heat, and wind stress), and precipitation as input for the OML model, the respective impact of individual component on upper ocean heat and salt budgets are investigated. Secondly, a two-way air-sea interaction between tropical atmospheric climates (involving atmospheric radiative-convective processes) and upper ocean boundary layer is also examined using a coupled two dimensional (2-D) GCE and OML model. Results presented here, however, only involve the first aspect. Complete results will be presented at the conference.

  15. A Power Efficient Exaflop Computer Design for Global Cloud System Resolving Climate Models.

    NASA Astrophysics Data System (ADS)

    Wehner, M. F.; Oliker, L.; Shalf, J.

    2008-12-01

    Exascale computers would allow routine ensemble modeling of the global climate system at the cloud system resolving scale. Power and cost requirements of traditional architecture systems are likely to delay such capability for many years. We present an alternative route to the exascale using embedded processor technology to design a system optimized for ultra high resolution climate modeling. These power efficient processors, used in consumer electronic devices such as mobile phones, portable music players, cameras, etc., can be tailored to the specific needs of scientific computing. We project that a system capable of integrating a kilometer scale climate model a thousand times faster than real time could be designed and built in a five year time scale for US$75M with a power consumption of 3MW. This is cheaper, more power efficient and sooner than any other existing technology.

  16. CINDY2011/DYANMO MJO case simulated by a global cloud-system resolving model NICAM

    NASA Astrophysics Data System (ADS)

    Miyakawa, T.; Masaki, S.; Miura, H.; Tomita, H.; Yashiro, H.; Noda, A.; Yamada, Y.; Kodama, C.; Kimoto, M.; Yoneyama, K.

    2013-12-01

    An MJO case observed during CINDY2011/DYNAMO is simulated by a global cloud-system resolving model NICAM, as part as a large simulation series of Winter MJOs. A coherent convective envelope is apparent in the simulation. It travels eastward, accompanied with precipitation patterns and vertical structures that reasonably resemble the observed. This provides an opportunity to expand the scope of study and explore the evolution of the MJO with a virtual but full and broad dataset that complement the excellent dataset provided by CINDY2011/DYNAMO. Moisture and momentum budgets in the Indian Ocean are explored in relation with the development of the MJO convective envelope. Acknowledgements: This study is funded by SPIRE (Strategic Programs for Innovative Research) and JAMSTEC. Simulations were done on the K-computer (RIKEN AICS). Equatorial Hovmöller diagrams of OLR averaged over 5S - 5N, date starting from 15 Nov 2011. NOAA satellite (top) and NICAM (bottom).

  17. Spontaneous onset of a Madden-Julian oscillation event in a cloud-system-resolving simulation

    NASA Astrophysics Data System (ADS)

    Miura, Hiroaki; Satoh, Masaki; Katsumata, Masaki

    2009-07-01

    Spontaneous onset of a Madden-Julian Oscillation (MJO) event in November 2006 was reproduced at a proper location and time by a global cloud-resolving model (CRM) used with a relatively coarse horizontal grid. Preconditioning of moisture was simulated about 4-days prior to the onset in the Indian Ocean, which agreed with data obtained in an in-situ observation. To investigate influence of zonal Sea Surface Temperature (SST) gradient in the Indian Ocean, we conducted a sensitivity study comparing composites made from five ensemble simulations. It was found that the eastward-moving signal of this MJO event could be obscured if SST were zonally uniform in the western Indian Ocean. Zonal SST gradient has not been considered important in the previous studies about the MJO onset, but SST distribution locating cooler SST in the west side possibly help enhance convection in slow eastward-moving envelopes of the MJO.

  18. Convective and moist vorticity vectors associated with tropical oceanic convection: A three-dimensional cloud-resolving model simulation

    NASA Astrophysics Data System (ADS)

    Gao, Shouting; Li, Xiaofan; Tao, Wei-Kuo; Shie, Chung-Lin; Lang, Steve

    2007-01-01

    The relationships between cloud hydrometeors and convective/moist vorticity vectors are investigated using hourly data from a three-dimensional, 5-day cloud-resolving model (CRM) simulation during the Tropical Rainfall Measuring Mission (TRMM) Kwajalein Experiment (KWAJEX). Vertical components of convective and moist vorticity vectors are highly correlated with cloud hydrometeors. The vertical components represent the interaction between horizontal vorticity and horizontal moist potential temperature/specific humidity gradient. The vertical components of convective and moist vorticity vectors can be used to study tropical oceanic convection in both two-dimensional and three-dimensional frameworks.

  19. Mechanisms of diurnal precipitation over the US Great Plains: a cloud resolving model perspective

    NASA Astrophysics Data System (ADS)

    Lee, Myong-In; Choi, Ildae; Tao, Wei-Kuo; Schubert, Siegfried D.; Kang, In-Sik

    2010-02-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program’s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer

  20. Mechanisms of Diurnal Precipitation over the United States Great Plains: A Cloud-Resolving Model Simulation

    NASA Technical Reports Server (NTRS)

    Lee, M.-I.; Choi, I.; Tao, W.-K.; Schubert, S. D.; Kang, I.-K.

    2010-01-01

    The mechanisms of summertime diurnal precipitation in the US Great Plains were examined with the two-dimensional (2D) Goddard Cumulus Ensemble (GCE) cloud-resolving model (CRM). The model was constrained by the observed large-scale background state and surface flux derived from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Program s Intensive Observing Period (IOP) data at the Southern Great Plains (SGP). The model, when continuously-forced by realistic surface flux and large-scale advection, simulates reasonably well the temporal evolution of the observed rainfall episodes, particularly for the strongly forced precipitation events. However, the model exhibits a deficiency for the weakly forced events driven by diurnal convection. Additional tests were run with the GCE model in order to discriminate between the mechanisms that determine daytime and nighttime convection. In these tests, the model was constrained with the same repeating diurnal variation in the large-scale advection and/or surface flux. The results indicate that it is primarily the surface heat and moisture flux that is responsible for the development of deep convection in the afternoon, whereas the large-scale upward motion and associated moisture advection play an important role in preconditioning nocturnal convection. In the nighttime, high clouds are continuously built up through their interaction and feedback with long-wave radiation, eventually initiating deep convection from the boundary layer. Without these upper-level destabilization processes, the model tends to produce only daytime convection in response to boundary layer heating. This study suggests that the correct simulation of the diurnal variation in precipitation requires that the free-atmospheric destabilization mechanisms resolved in the CRM simulation must be adequately parameterized in current general circulation models (GCMs) many of which are overly sensitive to the parameterized boundary layer heating.

  1. A Discrete Constraint for Entropy Conservation and Sound Waves in Cloud-Resolving Modeling

    NASA Technical Reports Server (NTRS)

    Zeng, Xi-Ping; Tao, Wei-Kuo; Simpson, Joanne

    2003-01-01

    Ideal cloud-resolving models contain little-accumulative errors. When their domain is so large that synoptic large-scale circulations are accommodated, they can be used for the simulation of the interaction between convective clouds and the large-scale circulations. This paper sets up a framework for the models, using moist entropy as a prognostic variable and employing conservative numerical schemes. The models possess no accumulative errors of thermodynamic variables when they comply with a discrete constraint on entropy conservation and sound waves. Alternatively speaking, the discrete constraint is related to the correct representation of the large-scale convergence and advection of moist entropy. Since air density is involved in entropy conservation and sound waves, the challenge is how to compute sound waves efficiently under the constraint. To address the challenge, a compensation method is introduced on the basis of a reference isothermal atmosphere whose governing equations are solved analytically. Stability analysis and numerical experiments show that the method allows the models to integrate efficiently with a large time step.

  2. Tropical Convective Responses to Microphysical and Radiative Processes: A Sensitivity Study With a 2D Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Fan; Sui, C.-H.; Lau, K.-M.; Tao, W.-K.

    2004-01-01

    Prognostic cloud schemes are increasingly used in weather and climate models in order to better treat cloud-radiation processes. Simplifications are often made in such schemes for computational efficiency, like the scheme being used in the National Centers for Environment Prediction models that excludes some microphysical processes and precipitation-radiation interaction. In this study, sensitivity tests with a 2D cloud resolving model are carried out to examine effects of the excluded microphysical processes and precipitation-radiation interaction on tropical thermodynamics and cloud properties. The model is integrated for 10 days with the imposed vertical velocity derived from the Tropical Ocean Global Atmosphere Coupled Ocean-Atmosphere Response Experiment. The experiment excluding the depositional growth of snow from cloud ice shows anomalous growth of cloud ice and more than 20% increase of fractional cloud cover, indicating that the lack of the depositional snow growth causes unrealistically large mixing ratio of cloud ice. The experiment excluding the precipitation-radiation interaction displays a significant cooling and drying bias. The analysis of heat and moisture budgets shows that the simulation without the interaction produces more stable upper troposphere and more unstable mid and lower troposphere than does the simulation with the interaction. Thus, the suppressed growth of ice clouds in upper troposphere and stronger radiative cooling in mid and lower troposphere are responsible for the cooling bias, and less evaporation of rain associated with the large-scale subsidence induces the drying in mid and lower troposphere.

  3. Multi-Layer Arctic Mixed-Phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity Experiments

    NASA Technical Reports Server (NTRS)

    Luo, Yali; Xu, Kuan-Man; Morrison, Hugh; McFarquhar, Greg M.; Wang, Zhien; Zhang, Gong

    2007-01-01

    A cloud-resolving model (CRM) is used to simulate the multiple-layer mixed-phase stratiform (MPS) clouds that occurred during a three-and-a-half day subperiod of the Department of Energy-Atmospheric Radiation Measurement Program s Mixed-Phase Arctic Cloud Experiment (M-PACE). The CRM is implemented with an advanced two-moment microphysics scheme, a state-of-the-art radiative transfer scheme, and a complicated third-order turbulence closure. Concurrent meteorological, aerosol, and ice nucleus measurements are used to initialize the CRM. The CRM is prescribed by time-varying large-scale advective tendencies of temperature and moisture and surface turbulent fluxes of sensible and latent heat. The CRM reproduces the occurrences of the single- and double-layer MPS clouds as revealed by the M-PACE observations. However, the simulated first cloud layer is lower and the second cloud layer thicker compared to observations. The magnitude of the simulated liquid water path agrees with that observed, but its temporal variation is more pronounced than that observed. As in an earlier study of single-layer cloud, the CRM also captures the major characteristics in the vertical distributions and temporal variations of liquid water content (LWC), total ice water content (IWC), droplet number concentration and ice crystal number concentration (nis) as suggested by the aircraft observations. However, the simulated mean values differ significantly from the observed. The magnitude of nis is especially underestimated by one order of magnitude. Sensitivity experiments suggest that the lower cloud layer is closely related to the surface fluxes of sensible and latent heat; the upper cloud layer is probably initialized by the large-scale advective cooling/moistening and maintained through the strong longwave (LW) radiative cooling near the cloud top which enhances the dynamical circulation; artificially turning off all ice-phase microphysical processes results in an increase in LWP by a

  4. Using High-Resolution Satellite Observations for Evaluation of Cloud and Precipitation Statistics from Cloud-Resolving Model Simulations. Part I: South China Sea Monsoon Experiment

    NASA Astrophysics Data System (ADS)

    Zhou, Y.; Hou, A.; Lau, W. K.; Shie, C.; Tao, W.; Lin, X.; Chou, M.; Olson, W. S.; Grecu, M.

    2006-05-01

    The cloud and precipitation statistics simulated by 3D Goddard Cumulus Ensemble (GCE) model during the South China Sea Monsoon Experiment (SCSMEX) is compared with Tropical Rainfall Measuring Mission (TRMM) TMI and PR rainfall measurements and the Earth's Radiant Energy System (CERES) single scanner footprint (SSF) radiation and cloud retrievals. It is found that GCE is capable of simulating major convective system development and reproducing total surface rainfall amount as compared with rainfall estimated from the soundings. Mesoscale organization is adequately simulated except when environmental wind shear is very weak. The partitions between convective and stratiform rain are also close to TMI and PR classification. However, the model simulated rain spectrum is quite different from either TMI or PR measurements. The model produces more heavy rains and light rains (less than 0.1 mm/hr) than the observations. The model also produces heavier vertical hydrometer profiles of rain, graupel when compared with TMI retrievals and PR radar reflectivity. Comparing GCE simulated OLR and cloud properties with CERES measurements found that the model has much larger domain averaged OLR due to smaller total cloud fraction and a much skewed distribution of OLR and cloud top than CERES observations, indicating that the model's cloud field is not wide spread, consistent with the model's precipitation activity. These results will be used as guidance for improving the model's microphysics.

  5. 3D Radiative Transfer Effects in Multi-Angle/Multi-Spectral Radio-Polarimetric Signals from a Mixture of Clouds and Aerosols Viewed by a Non-Imaging Sensor

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Garay, Michael J.; Xu, Feng; Qu, Zheng; Emde, Claudia

    2013-01-01

    When observing a spatially complex mix of aerosols and clouds in a single relatively large field-of-view, nature entangles their signals non-linearly through polarized radiation transport processes that unfold in the 3D position and direction spaces. In contrast, any practical forward model in a retrieval algorithm will use only 1D vector radiative transfer (vRT) in a linear mixing technique. We assess the difference between the observed and predicted signals using synthetic data from a high-fidelity 3D vRT model with clouds generated using a Large Eddy Simulation model and an aerosol climatology. We find that this difference is signal--not noise--for the Aerosol Polarimetry Sensor (APS), an instrument developed by NASA. Moreover, the worst case scenario is also the most interesting case, namely, when the aerosol burden is large, hence hase the most impact on the cloud microphysics and dynamics. Based on our findings, we formulate a mitigation strategy for these unresolved cloud adjacency effects assuming that some spatial information is available about the structure of the clouds at higher resolution from "context" cameras, as was planned for NASA's ill-fated Glory mission that was to carry the APS but failed to reach orbit. Application to POLDER (POLarization and Directionality of Earth Reflectances) data from the period when PARASOL (Polarization and Anisotropy of Reflectances for Atmospheric Sciences coupled with Observations from a Lidar) was in the A-train is briefly discussed.

  6. Size-resolved observations of refractory black carbon particles in cloud droplets at a marine boundary layer site

    NASA Astrophysics Data System (ADS)

    Schroder, J. C.; Hanna, S. J.; Modini, R. L.; Corrigan, A. L.; Macdonald, A. M.; Noone, K. J.; Russell, L. M.; Leaitch, W. R.; Bertram, A. K.

    2014-05-01

    Size resolved observations of aerosol particles (including black carbon particles) and cloud residuals were studied at a marine boundary layer site (251 m a.m.s.l.) in La Jolla, CA during 2012. A counterflow virtual impactor was used to sample cloud residuals while a total inlet was used to sample both cloud residuals and interstitial particles. Two cloud events totaling ten hours of in-cloud sampling were analyzed. Since the CVI only sampled cloud droplets larger than ≈11 μm, less than 100% of the cloud droplets were sampled during the two cloud events (≈38% of the cloud droplets for the first cloud event and ≈24% of the cloud droplets for the second cloud were sampled). Back trajectories showed that air masses for both cloud events spent at least 96 h over the Pacific Ocean and traveled near, or over populated regions just before sampling. Based on bulk aerosol particle concentrations measured from the total inlet the two air masses sampled were classified as polluted marine air, a classification that was consistent with back trajectory analysis and the mass concentrations of refractory black carbon (rBC) measured from the total inlet. The activated fraction of rBC, estimated from the measurements, ranged from 0.01 to 0.1 for core diameters ranging from 70 to 220 nm. Since the fraction of cloud droplets sampled by the CVI was less than 100%, the measured activated fractions of rBC should be considered as lower limits to the total fraction of rBC activated during the two cloud events. Size distributions of rBC sampled from the residual inlet show that sub-100 nm rBC cores were incorporated into the droplets in both clouds. The coating analysis shows that the rBC cores had average coating thicknesses of 75 nm for core diameters of 70 nm and 29 nm for core diameters of 220 nm. The presence of sub-100 nm rBC cores in the cloud residuals is consistent with kappa-Köhler theory and the measured coating thicknesses of the rBC cores.

  7. Evaluating CloudSat Ice Water Retrievals Using a Cloud Resolving Model: Sensitivities to Frozen Particle Properties and Implications for Model-Data Comparisons

    NASA Astrophysics Data System (ADS)

    Woods, C. P.; Waliser, D.; Li, F.; Austin, R.; Stephens, G.; Vane, D.; Tao, W.; Tompkins, A.

    2007-12-01

    The sensitivities of CloudSat ice water content retrievals to frozen particle characteristics are tested by generating CloudSat-like retrievals from profiles of known ice water content. First, `truth' values of total ice water content are generated by a cloud-resolving model (MM5). The MM5 model profiles are generated using the Reisner- Thompson microphysical parameterization scheme, which allows for the existence of multiple types of frozen particles (cloud ice, snow and graupel). Next, a 94-GHz reflectivity simulator, called QuickBeam, is used to generate a CloudSat-like view of the model generated profiles. Since reflectivity is highly dependent on the characteristics of the scattering particles (e.g., density, size distribution), a set of tests are performed to determine the sensitivity of the reflectivity to the assumed properties of cloud ice and snow particles. Finally, the CloudSat ice water content retrieval algorithm is applied to the profiles of 94-GHz reflectivity, producing 'simulated retrieved' values of ice water content, which can be compared to the `truth' values. The comparisons suggest that CloudSat ice water content retrievals are sensitive to the frozen particle properties often parameterized in models (e.g., particle density, particle size distributions). The sensitivity tests provide a better understanding of how the different components of the frozen water mass impact the ice water content retrieved by CloudSat. Such information is important when comparing the measurements to modeled frozen water mass quantities, including those from various levels of sophistication in global climate models. Additionally, we demonstrate how information gained in this study may be used for improving the retrieval system. A simple height-based retrieval correction that effectively corrects for the vertically varying characteristics of frozen particles is examined.

  8. Simulated convective systems using a cloud resolving model: Impact of large-scale temperature and moisture forcing using observations and GEOS-3 reanalysis

    NASA Technical Reports Server (NTRS)

    Shie, C.-L.; Tao, W.-K.; Hou, A.; Lin, X.

    2006-01-01

    The GCE (Goddard Cumulus Ensemble) model, which has been developed and improved at NASA Goddard Space Flight Center over the past two decades, is considered as one of the finer and state-of-the-art CRMs (Cloud Resolving Models) in the research community. As the chosen CRM for a NASA Interdisciplinary Science (IDS) Project, GCE has recently been successfully upgraded into an MPI (Message Passing Interface) version with which great improvement has been achieved in computational efficiency, scalability, and portability. By basically using the large-scale temperature and moisture advective forcing, as well as the temperature, water vapor and wind fields obtained from TRMM (Tropical Rainfall Measuring Mission) field experiments such as SCSMEX (South China Sea Monsoon Experiment) and KWAJEX (Kwajalein Experiment), our recent 2-D and 3-D GCE simulations were able to capture detailed convective systems typical of the targeted (simulated) regions. The GEOS-3 [Goddard EOS (Earth Observing System) Version-3] reanalysis data have also been proposed and successfully implemented for usage in the proposed/performed GCE long-term simulations (i.e., aiming at producing massive simulated cloud data -- Cloud Library) in compensating the scarcity of real field experimental data in both time and space (location). Preliminary 2-D or 3-D pilot results using GEOS-3 data have generally showed good qualitative agreement (yet some quantitative difference) with the respective numerical results using the SCSMEX observations. The first objective of this paper is to ensure the GEOS-3 data quality by comparing the model results obtained from several pairs of simulations using the real observations and GEOS-3 reanalysis data. The different large-scale advective forcing obtained from these two kinds of resources (i.e., sounding observations and GEOS-3 reanalysis) has been considered as a major critical factor in producing various model results. The second objective of this paper is therefore to

  9. Idealized studies of convective summer precipitation in a cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Schlemmer, Linda; Hohenegger, Cathy; Bretherton, Christopher; Schmidli, Jürg; Schär, Christoph

    2010-05-01

    Climate change is expected to moisten the atmosphere and to intensify the hydrological cycle. In the global mean, precipitation is projected to increase, but for Europe climate models suggest that mean summer precipitation will decrease. However, despite this decrease in mean, heavy precipitation events are projected to occur more frequently. The credibility of these projections, with decreases in mean amounts but increases in peak intensity, is somewhat limited, as convection is parameterized in current climate models due to its small-scale nature. Differences between climate models are especially large in summer, when synoptic-scale forcing is weak and the chosen model formulation has a great influence. Here we investigate the sensitivity of convection to ambient temperature and humidity profiles in a cloud-resolving model (CRM), using a spatial resolution of 500 m - 2 km. The modeling strategy includes an idealized set-up with explicit convection and a full set of parameterizations. The variables are relaxed towards the prescribed profiles and soil conditions, but the relaxation is weak in the lower troposphere and upper soil, such as to allow the development of a diurnal boundary layer. The model is run for 30 days, after which the diurnal cycle approximately repeats itself. Analysis is conducted for the last 15 days of the simulations. A systematic set of experiments with different stratification and humidity profiles is performed. We confirm that the temperature stratification of the environment has a dominant influence on the amount of precipitation by modifying the stability of the atmosphere and thereby the depth and intensity of convection. A more unstable stratification leads to deeper convective clouds and increased amounts of precipitation. In a more stable atmosphere convection remains shallow and precipitation amounts are small. The moisture profile influences the timing and duration of the precipitation period. Simulations with a drier atmosphere

  10. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999).

  11. Evaluation of Cloud-resolving and Limited Area Model Intercomparison Simulations using TWP-ICE Observations. Part 1: Deep Convective Updraft Properties

    SciTech Connect

    Varble, A. C.; Zipser, Edward J.; Fridlind, Ann; Zhu, Ping; Ackerman, Andrew; Chaboureau, Jean-Pierre; Collis, Scott M.; Fan, Jiwen; Hill, Adrian; Shipway, Ben

    2014-12-27

    Ten 3D cloud-resolving model (CRM) simulations and four 3D limited area model (LAM) simulations of an intense mesoscale convective system observed on January 23-24, 2006 during the Tropical Warm Pool – International Cloud Experiment (TWP-ICE) are compared with each other and with observed radar reflectivity fields and dual-Doppler retrievals of vertical wind speeds in an attempt to explain published results showing a high bias in simulated convective radar reflectivity aloft. This high bias results from ice water content being large, which is a product of large, strong convective updrafts, although hydrometeor size distribution assumptions modulate the size of this bias. Snow reflectivity can exceed 40 dBZ in a two-moment scheme when a constant bulk density of 100 kg m-3 is used. Making snow mass more realistically proportional to area rather than volume should somewhat alleviate this problem. Graupel, unlike snow, produces high biased reflectivity in all simulations. This is associated with large amounts of liquid water above the freezing level in updraft cores. Peak vertical velocities in deep convective updrafts are greater than dual-Doppler retrieved values, especially in the upper troposphere. Freezing of large rainwater contents lofted above the freezing level in simulated updraft cores greatly contributes to these excessive upper tropospheric vertical velocities. Strong simulated updraft cores are nearly undiluted, with some showing supercell characteristics. Decreasing horizontal grid spacing from 900 meters to 100 meters weakens strong updrafts, but not enough to match observational retrievals. Therefore, overly intense simulated updrafts may partly be a product of interactions between convective dynamics, parameterized microphysics, and large-scale environmental biases that promote different convective modes and strengths than observed.

  12. TU-F-17A-04: Respiratory Phase-Resolved 3D MRI with Isotropic High Spatial Resolution: Determination of the Average Breathing Motion Pattern for Abdominal Radiotherapy Planning

    SciTech Connect

    Deng, Z; Pang, J; Yang, W; Yue, Y; Tuli, R; Fraass, B; Li, D; Fan, Z

    2014-06-15

    Purpose: To develop a retrospective 4D-MRI technique (respiratory phase-resolved 3D-MRI) for providing an accurate assessment of tumor motion secondary to respiration. Methods: A 3D projection reconstruction (PR) sequence with self-gating (SG) was developed for 4D-MRI on a 3.0T MRI scanner. The respiration-induced shift of the imaging target was recorded by SG signals acquired in the superior-inferior direction every 15 radial projections (i.e. temporal resolution 98 ms). A total of 73000 radial projections obtained in 8-min were retrospectively sorted into 10 time-domain evenly distributed respiratory phases based on the SG information. Ten 3D image sets were then reconstructed offline. The technique was validated on a motion phantom (gadolinium-doped water-filled box, frequency of 10 and 18 cycles/min) and humans (4 healthy and 2 patients with liver tumors). Imaging protocol included 8-min 4D-MRI followed by 1-min 2D-realtime (498 ms/frame) MRI as a reference. Results: The multiphase 3D image sets with isotropic high spatial resolution (1.56 mm) permits flexible image reformatting and visualization. No intra-phase motion-induced blurring was observed. Comparing to 2D-realtime, 4D-MRI yielded similar motion range (phantom: 10.46 vs. 11.27 mm; healthy subject: 25.20 vs. 17.9 mm; patient: 11.38 vs. 9.30 mm), reasonable displacement difference averaged over the 10 phases (0.74mm; 3.63mm; 1.65mm), and excellent cross-correlation (0.98; 0.96; 0.94) between the two displacement series. Conclusion: Our preliminary study has demonstrated that the 4D-MRI technique can provide high-quality respiratory phase-resolved 3D images that feature: a) isotropic high spatial resolution, b) a fixed scan time of 8 minutes, c) an accurate estimate of average motion pattern, and d) minimal intra-phase motion artifact. This approach has the potential to become a viable alternative solution to assess the impact of breathing on tumor motion and determine appropriate treatment margins

  13. A Simplified Land Model (SLM) for use in cloud-resolving models: Formulation and evaluation

    NASA Astrophysics Data System (ADS)

    Lee, Jungmin M.; Khairoutdinov, Marat

    2015-09-01

    A Simplified Land Model (SLM) that uses a minimalist set of parameters with a single-layer vegetation and multilevel soil structure has been developed distinguishing canopy and undercanopy energy budgets. The primary motivation has been to design a land model for use in the System for Atmospheric Modeling (SAM) cloud-resolving model to study land-atmosphere interactions with a sufficient level of realism. SLM uses simplified expressions for the transport of heat, moisture, momentum, and radiation in soil-vegetation system. The SLM performance has been evaluated over several land surface types using summertime tower observations of micrometeorological and biophysical data from three AmeriFlux sites, which include grassland, cropland, and deciduous-broadleaf forest. In general, the SLM captures the observed diurnal cycle of surface energy budget and soil temperature reasonably well, although reproducing the evolution of soil moisture, especially after rain events, has been challenging. The SLM coupled to SAM has been applied to the case of summertime shallow cumulus convection over land based on the Atmospheric Radiation Measurements (ARM) Southern Great Plain (SGP) observations. The simulated surface latent and sensible heat fluxes as well as the evolution of thermodynamic profiles in convective boundary layer agree well with the estimates based on the observations. Sensitivity of atmospheric boundary layer development to the soil moisture and different land cover types has been also examined.

  14. Simulation of Shallow Cumuli and Their Transition to Deep Convective Clouds by Cloud-resolving Models with Different Third-order Turbulence Closures

    NASA Technical Reports Server (NTRS)

    Cheng, Anning; Xu, Kuan-Man

    2006-01-01

    The abilities of cloud-resolving models (CRMs) with the double-Gaussian based and the single-Gaussian based third-order closures (TOCs) to simulate the shallow cumuli and their transition to deep convective clouds are compared in this study. The single-Gaussian based TOC is fully prognostic (FP), while the double-Gaussian based TOC is partially prognostic (PP). The latter only predicts three important third-order moments while the former predicts all the thirdorder moments. A shallow cumulus case is simulated by single-column versions of the FP and PP TOC models. The PP TOC improves the simulation of shallow cumulus greatly over the FP TOC by producing more realistic cloud structures. Large differences between the FP and PP TOC simulations appear in the cloud layer of the second- and third-order moments, which are related mainly to the underestimate of the cloud height in the FP TOC simulation. Sensitivity experiments and analysis of probability density functions (PDFs) used in the TOCs show that both the turbulence-scale condensation and higher-order moments are important to realistic simulations of the boundary-layer shallow cumuli. A shallow to deep convective cloud transition case is also simulated by the 2-D versions of the FP and PP TOC models. Both CRMs can capture the transition from the shallow cumuli to deep convective clouds. The PP simulations produce more and deeper shallow cumuli than the FP simulations, but the FP simulations produce larger and wider convective clouds than the PP simulations. The temporal evolutions of cloud and precipitation are closely related to the turbulent transport, the cold pool and the cloud-scale circulation. The large amount of turbulent mixing associated with the shallow cumuli slows down the increase of the convective available potential energy and inhibits the early transition to deep convective clouds in the PP simulation. When the deep convective clouds fully develop and the precipitation is produced, the cold pools

  15. New Optical Scanning Tomography using a rotating slicing for time-resolved measurements of 3D full field displacements in structures

    NASA Astrophysics Data System (ADS)

    Morandi, P.; Brémand, F.; Doumalin, P.; Germaneau, A.; Dupré, J. C.

    2014-07-01

    In this paper, a new optical tomography process is presented. It has been developed for time-resolved measurement of kinematic fields in the whole volume of structure. This new process is based on the scan of the specimen by a plane laser beam submitted to a motion of rotation. Calibration and reconstruction steps have been established and are described in this document. Acquisition is achieved by illuminating successive slices in the specimen using a rotating plane laser beam and data are recorded with a single CCD camera. The recorded volumes are analyzed by Digital Volume Correlation to measure the three displacement components in the bulk. This new acquisition process is assessed by performing sub-voxel rigid body translations along the three axes. We discuss the quality of a reconstructed volume and also the measurement accuracy in terms of mean error and standard deviation through rigid body displacement tests. Results are compared with those obtained using classical Optical Scanning Tomography (OST) and using X-ray Tomography.

  16. RESOLVED GIANT MOLECULAR CLOUDS IN NEARBY SPIRAL GALAXIES: INSIGHTS FROM THE CANON CO (1-0) SURVEY

    SciTech Connect

    Donovan Meyer, Jennifer; Koda, Jin; Mooney, Thomas; Momose, Rieko; Egusa, Fumi; Carty, Misty; Kennicutt, Robert; Kuno, Nario; Rebolledo, David; Wong, Tony; Sawada, Tsuyoshi; Scoville, Nick

    2013-08-01

    We resolve 182 individual giant molecular clouds (GMCs) larger than 2.5 Multiplication-Sign 10{sup 5} M{sub Sun} in the inner disks of 5 large nearby spiral galaxies (NGC 2403, NGC 3031, NGC 4736, NGC 4826, and NGC 6946) to create the largest such sample of extragalactic GMCs within galaxies analogous to the Milky Way. Using a conservatively chosen sample of GMCs most likely to adhere to the virial assumption, we measure cloud sizes, velocity dispersions, and {sup 12}CO (J = 1-0) luminosities and calculate cloud virial masses. The average conversion factor from CO flux to H{sub 2} mass (or X{sub CO}) for each galaxy is 1-2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}, all within a factor of two of the Milky Way disk value ({approx}2 Multiplication-Sign 10{sup 20} cm{sup -2} (K km s{sup -1}){sup -1}). We find GMCs to be generally consistent within our errors between the galaxies and with Milky Way disk GMCs; the intrinsic scatter between clouds is of order a factor of two. Consistent with previous studies in the Local Group, we find a linear relationship between cloud virial mass and CO luminosity, supporting the assumption that the clouds in this GMC sample are gravitationally bound. We do not detect a significant population of GMCs with elevated velocity dispersions for their sizes, as has been detected in the Galactic center. Though the range of metallicities probed in this study is narrow, the average conversion factors of these galaxies will serve to anchor the high metallicity end of metallicity-X{sub CO} trends measured using conversion factors in resolved clouds; this has been previously possible primarily with Milky Way measurements.

  17. The effect of convective life cycle stage on microwave brightness temperature/rainrate relations as determined from 3-D cloud model results

    NASA Technical Reports Server (NTRS)

    Adler, Robert F.; Tao, Wei-Kuo; Simpson, Joanne; Prasad, N.; Yeh, H.-Y. M.

    1990-01-01

    The relationship between the rain rate and the brightness temperature (Tb) was investigated using a cloud model/microwave radiative transfer model combination to obtain the rain-rate/Tb relations for four different frequencies: 10, 19, 37, and 86 GHz. The results at 19, 37, and 86 GHz were found to be significantly affected by ice in the modeled convective system, while the results at 10 GHz showed very little effect. Nonprecipitating cloud water was found to affect Tb in two ways. First, at low rain rates, the presence of significant cloud water produced higher Tb values than in cases with little cloud water. The second effects occurs at 19, 37, and 86 GHz at higher rainrates associated with significant ice formation; the scattering by ice lowered the Tb.

  18. A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Choularton, T. W.; Coe, H.; Held, G.

    2007-09-01

    Simulations of overshooting, tropical deep convection using a Cloud Resolving Model with bulk microphysics are presented in order to examine the effect on the water content of the TTL (Tropical Tropopause Layer) and lower stratosphere. This case study is a subproject of the HIBISCUS (Impact of tropical convection on the upper troposphere and lower stratosphere at global scale) campaign, which took place in Bauru, Brazil (22° S, 49° W), from the end of January to early March 2004. Comparisons between 2-D and 3-D simulations suggest that the use of 3-D dynamics is vital in order to capture the mixing between the overshoot and the stratospheric air, which caused evaporation of ice and resulted in an overall moistening of the lower stratosphere. In contrast, a dehydrating effect was predicted by the 2-D simulation due to the extra time, allowed by the lack of mixing, for the ice transported to the region to precipitate out of the overshoot air. Three different strengths of convection are simulated in 3-D by applying successively lower heating rates (used to initiate the convection) in the boundary layer. Moistening is produced in all cases, indicating that convective vigour is not a factor in whether moistening or dehydration is produced by clouds that penetrate the tropopause, since the weakest case only just did so. An estimate of the moistening effect of these clouds on an air parcel traversing a convective region is made based on the domain mean simulated moistening and the frequency of convective events observed by the IPMet (Instituto de Pesquisas Meteorológicas, Universidade Estadual Paulista) radar (S-band type at 2.8 Ghz) to have the same 10 dBZ echo top height as those simulated. These suggest a fairly significant mean moistening of 0.26, 0.13 and 0.05 ppmv in the strongest, medium and weakest cases, respectively, for heights between 16 and 17 km. Since the cold point and WMO (World Meteorological Organization) tropopause in this region lies at ~15.9 km

  19. Properties of the size-resolved and individual cloud droplets collected in western Japan during the Asian dust storm event

    NASA Astrophysics Data System (ADS)

    Ma, Chang-Jin; Tohno, Susumu; Kasahara, Mikio; Hayakawa, Shinjiro

    With the point of view of the removal mechanism of Asian dust storm particles, in order to study the physiochemical properties of clouds a field campaign was conducted in western Japan during the Asian dust storm event. The polymeric water absorbent film and collodion film replication techniques were employed in the measurements of size-fractionated precipitation cloud and individual cloud droplets, respectively. In addition, to investigate the source profiles of the elements retained in cloud samples, the original desert sand was collected. Particle-induced X-ray emission was applied for the elemental analysis of size-resolved cloud droplets and desert sand. Also for the quantification analysis of the ultra trace elements in residual particles in individual cloud droplets, the X-ray microprobe system equipped at Super Photon ring-8 GeV (SPring-8) BL-37XU was newly applied. Soil derived components like Si, Ca, and Fe show higher mass concentrations in small droplets (<6.4 μm) than in large droplets (>6.4 μm), while S and Cl dominate at droplet size larger than 20 μm. Three cloud samples have liquid water content ranging from 0.04 to 0.11 g m -3. The number size distribution of droplets collected at cloud base is monomodal with the maximum level around 15 μm. The size distribution of cloud droplets is widespread (up to 60 μm). The droplet residues mainly consisting of crustal components were successively reconstructed as elemental maps by the X-ray fluorescence (XRF) microprobe analytical technique. From these XRF elemental maps, it can be understood that crustal components are significantly distributed on and/or in the residual particles in individual cloud droplets. The plotting of enrichment factors calculated from the elemental composition of original desert sand in China not only indicates the good correlationship between elemental masses in residual particles of cloud base droplets and those of precipitation cloud, but also classify elements into soil

  20. Arctic Mixed-phase Clouds Simulated by a Cloud-Resolving Model: Comparison with ARM Observations and Sensitivity to Microphysics Parameterizations

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Luo, Yali; Morrison, Hugh; Mcfarquhar, G.M.

    2008-01-01

    Single-layer mixed-phase stratiform (MPS) Arctic clouds, which formed under conditions of large surface heat flux combined with general subsidence during a subperiod of the Atmospheric Radiation Measurement (ARM) Program Mixed-Phase Arctic Cloud Experiment (M-PACE), are simulated with a cloud resolving model (CRM). The CRM is implemented with either an advanced two-moment (M05) or a commonly used one-moment (L83) bulk microphysics scheme and a state-of-the-art radiative transfer scheme. The CONTROL simulation, that uses the M05 scheme and observed aerosol size distribution and ice nulei (IN) number concentration, reproduces the magnitudes and vertical structures of cloud liquid water content (LWC), total ice water content (IWC), number concentration and effective radius of cloud droplets as suggested by the M-PACE observations. It underestimates ice crystal number concentrations by an order of magnitude and overestimates effective radius of ice crystals by a factor of 2-3. The OneM experiment, that uses the L83 scheme, produces values of liquid water path (LWP) and ice plus snow water path (ISWP) that were about 30% and 4 times, respectively, of those produced by the CONTROL. Its vertical profile of IWC exhibits a bimodal distribution in contrast to the constant distribution of IWC produced in the CONTROL and observations.

  1. Toward Realistic Simulation of low-Level Clouds Using a Multiscale Modeling Framework With a Third-Order Turbulence Closure in its Cloud-Resolving Model Component

    NASA Technical Reports Server (NTRS)

    Xu, Kuan-Man; Cheng, Anning

    2010-01-01

    This study presents preliminary results from a multiscale modeling framework (MMF) with an advanced third-order turbulence closure in its cloud-resolving model (CRM) component. In the original MMF, the Community Atmosphere Model (CAM3.5) is used as the host general circulation model (GCM), and the System for Atmospheric Modeling with a first-order turbulence closure is used as the CRM for representing cloud processes in each grid box of the GCM. The results of annual and seasonal means and diurnal variability are compared between the modified and original MMFs and the CAM3.5. The global distributions of low-level cloud amounts and precipitation and the amounts of low-level clouds in the subtropics and middle-level clouds in mid-latitude storm track regions in the modified MMF show substantial improvement relative to the original MMF when both are compared to observations. Some improvements can also be seen in the diurnal variability of precipitation.

  2. Sensitivity of a Cloud-Resolving Model to the Bulk and Explicit Bin Microphysical Schemes

    NASA Technical Reports Server (NTRS)

    Li, Xiao-Wen; Tao, Wei-Kuo; Khain, Alexander P.; Simpson, Joanne

    2004-01-01

    A cloud-resolving model is used to study sensitivities of two different microphysical schemes, one is the traditional bulk type, and the other is an explicit bin scheme, in simulating a mid-latitude squall line case (PRE-STORM, June 10-1 1,1985). Simulations using different microphysical schemes are compared with each other and also with the observations. Both the bulk and bin models reproduce the general features during the developing and mature stage of the system. Furthermore, the observations and the well-proven bulk scheme simulation serve as validations for the newly incorporated bin scheme. However, it is also shown that the bulk and bin simulations have distinct differences, most notably in the stratiform region of the squall line system. Weak convective cells exist in the stratiform region in the bulk simulation, but not in the bin simulation. These weak convective cells in the stratiform region simulated in the bulk scheme model are remnants of the stronger convections previously at the leading edge of the system, sustained by horizontal vorticity generated by its own cool pool near the surface. The bin simulation, on the other hand, has a horizontally homogeneous stratiform cloud structure, which agrees better with the observations. Examinations of the downdraft core strength, the potential temperature perturbation, and the evaporative cooling rate show that the differences between the bulk and bin models are due mainly to the stronger low-level evaporative cooling in the convective zone simulated in the bulk microphysical scheme, which is unrealistic because of the assumptions made in raindrop size distribution. Further sensitivity tests that reduce the evaporation rate in bulk scheme artificially produce more upright convective core and less weak cores in stratiform region. However, they produce weaker upper level outflow and consequently less stratiform rain area. The addition of a more realistic raindrop breakup scheme in the bin scheme results more

  3. A Review of 3D Radiative Transfer in Atmospheric Science: History and Outlook

    NASA Astrophysics Data System (ADS)

    Wiscombe, W. J.

    2006-12-01

    3D radiative transfer has, until recently, remained a marginal subject within atmospheric science. While some measurement techniques like lidar and radar are inherently 3D, the simplifying assumptions made in the use of such data have alleviated any need to deal with 3D radiative transfer. Cloud scenes are obviously 3D, but the crude resolution of past atmospheric models (GCMs) required clouds to be treated as 1D. Measured radiative fluxes containing 3D cloud effects were simply time-averaged until all their 3D-ness was apparently beaten out of them. The main subject which has propelled 3D radiative transfer onto center stage is, nevertheless, clouds. This is because conventional GCMs are being challenged by GCMs that have their large-scale parametrizations of cloud-related processes replaced by explicit cloud-system-resolving models. Within these new GCMs, 3D radiative transfer cannot be ignored since cloud fluctuations are resolved explicitly down to scales where 1D and 3D radiative transfer can differ markedly. This talk will attempt to identify the high points in the development of the 3D cloud radiation field. My own career interleaved with much of this history, including the strong move away from just using computers and toward field observations, and also the effort to fit the new knowledge into climate models. The 3D cloud radiation field began in the 1970s, but attracted few adherents because of severe limitations on computer time and memory, and also because of ignorance of cloud structure (beyond the qualitative classifications which had ruled for 170 years). The earliest landmarks were Monte Carlo calcuations for cubic clouds, whose main point was the drastic errors incurred by ignoring cloud 3D-ness. This line of development ramified until the early 1990s, leading finally to randomly placed cubes with sizes drawn from a probability distribution. A parallel line of development began with the landmark paper of Lovejoy in 1982, which showed that cloud

  4. Cloud Properties Simulated by a Single-Column Model. Part II: Evaluation of Cumulus Detrainment and Ice-phase Microphysics Using a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Luo, Yali; Krueger, Steven K.; Xu, Kuan-Man

    2005-01-01

    This paper is the second in a series in which kilometer-scale-resolving observations from the Atmospheric Radiation Measurement program and a cloud-resolving model (CRM) are used to evaluate the single-column model (SCM) version of the National Centers for Environmental Prediction Global Forecast System model. Part I demonstrated that kilometer-scale cirrus properties simulated by the SCM significantly differ from the cloud radar observations while the CRM simulation reproduced most of the cirrus properties as revealed by the observations. The present study describes an evaluation, through a comparison with the CRM, of the SCM's representation of detrainment from deep cumulus and ice-phase microphysics in an effort to better understand the findings of Part I. It is found that detrainment occurs too infrequently at a single level at a time in the SCM, although the detrainment rate averaged over the entire simulation period is somewhat comparable to that of the CRM simulation. Relatively too much detrained ice is sublimated when first detrained. Snow falls over too deep of a layer due to the assumption that snow source and sink terms exactly balance within one time step in the SCM. These characteristics in the SCM parameterizations may explain many of the differences in the cirrus properties between the SCM and the observations (or between the SCM and the CRM). A possible improvement for the SCM consists of the inclusion of multiple cumulus cloud types as in the original Arakawa-Schubert scheme, prognostically determining the stratiform cloud fraction and snow mixing ratio. This would allow better representation of the detrainment from deep convection, better coupling of the volume of detrained air with cloud fraction, and better representation of snow field.

  5. An Intercomparison of Cloud-Resolving Models with the Atmospheric Radiation Measurement Summer 1997 Intensive Observation Period Data

    NASA Astrophysics Data System (ADS)

    Xu, Kuan-Man; Cederwall, Richard T.; Donner, Leo J.; Grabowski, Wojciech W.; Guichard, Francoise; Johnson, Daniel E.; Khairoutdinov, Marat; Krueger, Steven K.; Petch, Jon C.; Randall, David A.

    2002-01-01

    This paper reports an intercomparison study of midlatitude continental cumulus convection simulated by eight two-dimensional and two three-dimensional cloud-resolving models (CRMs), driven by observed large-scale advective temperature and moisture tendencies, surface turbulent fluxes, and radiative-heating profiles during three sub-periods of the summer 1997 Intensive Observation Period of the US Department of Energy's Atmospheric Radiation Measurement (ARM) program. Each sub-period includes two or three precipitation events of various intensities over a span of 4 or 5 days. The results can be summarized as follows. CRMs can reasonably simulate midlatitude continental summer convection observed at the ARM Cloud and Radiation Testbed site in terms of the intensity of convective activity, and the temperature and specific-humidity evolution. Delayed occurrences of the initial precipitation events are a common feature for all three sub-cases among the models. Cloud mass fluxes, condensate mixing ratios and hydrometeor fractions produced by all CRMs are similar. Some of the simulated cloud properties such as cloud liquid-water path and hydrometeor fraction are rather similar to available observations. All CRMs produce large downdraught mass fluxes with magnitudes similar to those of updraughts, in contrast to CRM results for tropical convection. Some inter-model differences in cloud properties are likely to be related to those in the parametrizations of microphysical processes. There is generally a good agreement between the CRMs and observations with CRMs being significantly better than single-column models (SCMs), suggesting that current results are suitable for use in improving parametrizations in SCMs. However, improvements can still be made in the CRM simulations; these include the proper initialization of the CRMs and a more proper method of diagnosing cloud boundaries in model outputs for comparison with satellite and radar cloud observations.

  6. A Coupled GCM-Cloud Resolving Modeling System, and A Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (21CE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generation regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  7. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2007-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a superparameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1998 and 1999). Also, at Goddard, we have implemented several Goddard microphysical schemes (2ICE, several 31CE), Goddard radiation (including explicitly calculated cloud optical properties), and Goddard Land Information (LIS, that includes the CLM and NOAH land surface models) into a next generatio11 regional scale model, WRF. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  8. Development and applications of a stochastic convective parameterization for a smooth transition to cloud resolving scales that includes aerosol interactions

    NASA Astrophysics Data System (ADS)

    Grell, Georg; Freitas, Saulo

    2013-04-01

    With the increasing availability of computing power many numerical weather prediction models now run at computational grids with resolution of dx < 10km, "gray scales" for convective parameterizations, where convective clouds may be resolved as well as unresolved. In addition Air Quality Research and Forecast (AQRF) models have continuously increasing complexity and can treat the interactions of aerosol and cloud microphysics. In this paper we will describe a new convective parameterization that allows for both, a smooth transition to cloud resolving scales as well as a parameterized interaction of aerosols with cloud microphysics (aerosol indirect effect). The parameterization also includes options for the transport of chemical constituents, wet deposition, and some aqueous phase chemistry. The parameterization is a modification of the Grell and Dvenyi (2002) scheme, and is used in version of the Weather Research and Forecast model (WRF and WRF-Chem), the Brazilian Regional Atmospheric Modeling system (B-RAMS) and the global Flow following finite volume Icosahedral Model (FIM and FIM-Chem).

  9. Viewpoint-independent 3D object segmentation for randomly stacked objects using optical object detection

    NASA Astrophysics Data System (ADS)

    Chen, Liang-Chia; Nguyen, Thanh-Hung; Lin, Shyh-Tsong

    2015-10-01

    This work proposes a novel approach to segmenting randomly stacked objects in unstructured 3D point clouds, which are acquired by a random-speckle 3D imaging system for the purpose of automated object detection and reconstruction. An innovative algorithm is proposed; it is based on a novel concept of 3D watershed segmentation and the strategies for resolving over-segmentation and under-segmentation problems. Acquired 3D point clouds are first transformed into a corresponding orthogonally projected depth map along the optical imaging axis of the 3D sensor. A 3D watershed algorithm based on the process of distance transformation is then performed to detect the boundary, called the edge dam, between stacked objects and thereby to segment point clouds individually belonging to two stacked objects. Most importantly, an object-matching algorithm is developed to solve the over- and under-segmentation problems that may arise during the watershed segmentation. The feasibility and effectiveness of the method are confirmed experimentally. The results reveal that the proposed method is a fast and effective scheme for the detection and reconstruction of a 3D object in a random stack of such objects. In the experiments, the precision of the segmentation exceeds 95% and the recall exceeds 80%.

  10. High Vertically Resolved Atmospheric and Surface/Cloud Parameters Retrieved with Infrared Atmospheric Sounding Interferometer (IASI)

    NASA Technical Reports Server (NTRS)

    Zhou, Daniel K.; Liu, Xu; Larar, Allen M.; Smith, WIlliam L.; Taylor, Jonathan P.; Schluessel, Peter; Strow, L. Larrabee; Mango, Stephen A.

    2008-01-01

    The Joint Airborne IASI Validation Experiment (JAIVEx) was conducted during April 2007 mainly for validation of the IASI on the MetOp satellite. IASI possesses an ultra-spectral resolution of 0.25/cm and a spectral coverage from 645 to 2760/cm. Ultra-spectral resolution infrared spectral radiance obtained from near nadir observations provide atmospheric, surface, and cloud property information. An advanced retrieval algorithm with a fast radiative transfer model, including cloud effects, is used for atmospheric profile and cloud parameter retrieval. This physical inversion scheme has been developed, dealing with cloudy as well as cloud-free radiance observed with ultraspectral infrared sounders, to simultaneously retrieve surface, atmospheric thermodynamic, and cloud microphysical parameters. A fast radiative transfer model, which applies to the cloud-free and/or clouded atmosphere, is used for atmospheric profile and cloud parameter retrieval. A one-dimensional (1-d) variational multi-variable inversion solution is used to improve an iterative background state defined by an eigenvector-regression-retrieval. The solution is iterated in order to account for non-linearity in the 1-d variational solution. It is shown that relatively accurate temperature and moisture retrievals are achieved below optically thin clouds. For optically thick clouds, accurate temperature and moisture profiles down to cloud top level are obtained. For both optically thin and thick cloud situations, the cloud top height can be retrieved with relatively high accuracy (i.e., error < 1 km). Preliminary retrievals of atmospheric soundings, surface properties, and cloud optical/microphysical properties with the IASI observations are obtained and presented. These retrievals will be further inter-compared with those obtained from airborne FTS system, such as the NPOESS Airborne Sounder Testbed - Interferometer (NAST-I), dedicated dropsondes, radiosondes, and ground based Raman Lidar. The

  11. 3D ADAPTIVE MESH REFINEMENT SIMULATIONS OF THE GAS CLOUD G2 BORN WITHIN THE DISKS OF YOUNG STARS IN THE GALACTIC CENTER

    SciTech Connect

    Schartmann, M.; Ballone, A.; Burkert, A.; Gillessen, S.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Plewa, P. M.; Ott, T.; George, E. M.; Habibi, M.

    2015-10-01

    The dusty, ionized gas cloud G2 is currently passing the massive black hole in the Galactic Center at a distance of roughly 2400 Schwarzschild radii. We explore the possibility of a starting point of the cloud within the disks of young stars. We make use of the large amount of new observations in order to put constraints on G2's origin. Interpreting the observations as a diffuse cloud of gas, we employ three-dimensional hydrodynamical adaptive mesh refinement (AMR) simulations with the PLUTO code and do a detailed comparison with observational data. The simulations presented in this work update our previously obtained results in multiple ways: (1) high resolution three-dimensional hydrodynamical AMR simulations are used, (2) the cloud follows the updated orbit based on the Brackett-γ data, (3) a detailed comparison to the observed high-quality position–velocity (PV) diagrams and the evolution of the total Brackett-γ luminosity is done. We concentrate on two unsolved problems of the diffuse cloud scenario: the unphysical formation epoch only shortly before the first detection and the too steep Brackett-γ light curve obtained in simulations, whereas the observations indicate a constant Brackett-γ luminosity between 2004 and 2013. For a given atmosphere and cloud mass, we find a consistent model that can explain both, the observed Brackett-γ light curve and the PV diagrams of all epochs. Assuming initial pressure equilibrium with the atmosphere, this can be reached for a starting date earlier than roughly 1900, which is close to apo-center and well within the disks of young stars.

  12. A study of the effect of overshooting deep convection on the water content of the TTL and lower stratosphere from Cloud Resolving Model simulations

    NASA Astrophysics Data System (ADS)

    Grosvenor, D. P.; Choularton, T. W.; Coe, H.; Held, G.

    2007-05-01

    Simulations of overshooting, tropical deep convection using a Cloud Resolving Model with bulk microphysics are presented in order to examine the effect on the water content of the TTL (Tropical Tropopause Layer) and lower stratosphere. This case study is a subproject of the HIBISUCS (Impact of tropical convection on the upper troposphere and lower stratosphere at global scale) campaign, which took place in Bauru, Brazil (22° S), from the end of January to early March 2004. Comparisons between 2-D and 3-D simulations suggest that the use of 3-D dynamics is vital in order to capture the mixing between the overshoot and the stratospheric air, which caused evaporation of ice and resulted in an overall moistening of the lower stratosphere. In contrast, a dehydrating effect was predicted by the 2-D simulation due to the extra time, allowed by the lack of mixing, for the ice transported to the region to precipitate out of the overshoot air. Three different strengths of convection are simulated in 3-D by applying successively lower heating rates (used to initiate the convection) in the boundary layer. Moistening is produced in all cases, indicating that convective vigour is not a factor in whether moistening or dehydration is predicted, since the weakest case only just penetrated the tropopause. An estimate of the moistening effect of these clouds on an air parcel traversing a convective region is made based on the domain mean simulated moistening and the frequency of convective events observed by the IPMet (Instituto de Pesquisas Meteorológicas, Universidade Estadual Paulista) radar to have the same 10 dBZ echo top height as those simulated. These suggest a fairly significant mean moistening of 0.26, 0.13 and 0.05 ppmv in the strongest, medium and weakest cases, respectively, for heights between 16 and 17 km. Since the tropopause in this region is thought to lie at ~15.9 km, this is likely to represent direct stratospheric moistening. Much more moistening is predicted

  13. 3-D TRMM Flyby of Hurricane Amanda

    NASA Video Gallery

    The TRMM satellite flew over Hurricane Amanda on Tuesday, May 27 at 1049 UTC (6:49 a.m. EDT) and captured rainfall rates and cloud height data that was used to create this 3-D simulated flyby. Cred...

  14. The Rossiter-McLaughlin effect reloaded: Probing the 3D spin-orbit geometry, differential stellar rotation, and the spatially-resolved stellar spectrum of star-planet systems

    NASA Astrophysics Data System (ADS)

    Cegla, H. M.; Lovis, C.; Bourrier, V.; Beeck, B.; Watson, C. A.; Pepe, F.

    2016-04-01

    When a planet transits its host star, it blocks regions of the stellar surface from view; this causes a distortion of the spectral lines and a change in the line-of-sight (LOS) velocities, known as the Rossiter-McLaughlin (RM) effect. Since the LOS velocities depend, in part, on the stellar rotation, the RM waveform is sensitive to the star-planet alignment (which provides information on the system's dynamical history). We present a new RM modelling technique that directly measures the spatially-resolved stellar spectrum behind the planet. This is done by scaling the continuum flux of the (HARPS) spectra by the transit light curve, and then subtracting the in- from the out-of-transit spectra to isolate the starlight behind the planet. This technique does not assume any shape for the intrinsic local profiles. In it, we also allow for differential stellar rotation and centre-to-limb variations in the convective blueshift. We apply this technique to HD 189733 and compare to 3D magnetohydrodynamic (MHD) simulations. We reject rigid body rotation with high confidence (>99% probability), which allows us to determine the occulted stellar latitudes and measure the stellar inclination. In turn, we determine both the sky-projected (λ ≈ -0.4 ± 0.2°) and true 3D obliquity (ψ ≈ 7+12-4°). We also find good agreement with the MHD simulations, with no significant centre-to-limb variations detectable in the local profiles. Hence, this technique provides a new powerful tool that can probe stellar photospheres, differential rotation, determine 3D obliquities, and remove sky-projection biases in planet migration theories. This technique can be implemented with existing instrumentation, but will become even more powerful with the next generation of high-precision radial velocity spectrographs.

  15. A Coupled GCM-Cloud Resolving Modeling System, and a Regional Scale Model to Study Precipitation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2006-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CFWs. The Goddard MMF is based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM), and it has started production runs with two years results (1 998 and 1999). In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes (microphysical and land processes), (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), and preliminary results (the comparison with traditional GCMs), and (3) A discussion on the Goddard WRF version (its developments and applications).

  16. Automatic determination of trunk diameter, crown base and height of scots pine (Pinus Sylvestris L.) Based on analysis of 3D point clouds gathered from multi-station terrestrial laser scanning. (Polish Title: Automatyczne okreslanie srednicy pnia, podstawy korony oraz wysokosci sosny zwyczajnej (Pinus Silvestris L.) Na podstawie analiz chmur punktow 3D pochodzacych z wielostanowiskowego naziemnego skanowania laserowego)

    NASA Astrophysics Data System (ADS)

    Ratajczak, M.; Wężyk, P.

    2015-12-01

    Rapid development of terrestrial laser scanning (TLS) in recent years resulted in its recognition and implementation in many industries, including forestry and nature conservation. The use of the 3D TLS point clouds in the process of inventory of trees and stands, as well as in the determination of their biometric features (trunk diameter, tree height, crown base, number of trunk shapes), trees and lumber size (volume of trees) is slowly becoming a practice. In addition to the measurement precision, the primary added value of TLS is the ability to automate the processing of the clouds of points 3D in the direction of the extraction of selected features of trees and stands. The paper presents the original software (GNOM) for the automatic measurement of selected features of trees, based on the cloud of points obtained by the ground laser scanner FARO. With the developed algorithms (GNOM), the location of tree trunks on the circular research surface was specified and the measurement was performed; the measurement covered the DBH (l: 1.3m), further diameters of tree trunks at different heights of the tree trunk, base of the tree crown and volume of the tree trunk (the selection measurement method), as well as the tree crown. Research works were performed in the territory of the Niepolomice Forest in an unmixed pine stand (Pinussylvestris L.) on the circular surface with a radius of 18 m, within which there were 16 pine trees (14 of them were cut down). It was characterized by a two-storey and even-aged construction (147 years old) and was devoid of undergrowth. Ground scanning was performed just before harvesting. The DBH of 16 pine trees was specified in a fully automatic way, using the algorithm GNOM with an accuracy of +2.1%, as compared to the reference measurement by the DBH measurement device. The medium, absolute measurement error in the cloud of points - using semi-automatic methods "PIXEL" (between points) and PIPE (fitting the cylinder) in the FARO Scene 5.x

  17. Accurate 3D point cloud comparison and volumetric change analysis of Terrestrial Laser Scan data in a hard rock coastal cliff environment

    NASA Astrophysics Data System (ADS)

    Earlie, C. S.; Masselink, G.; Russell, P.; Shail, R.; Kingston, K.

    2013-12-01

    Our understanding of the evolution of hard rock coastlines is limited due to the episodic nature and ';slow' rate at which changes occur. High-resolution surveying techniques, such as Terrestrial Laser Scanning (TLS), have just begun to be adopted as a method of obtaining detailed point cloud data to monitor topographical changes over short periods of time (weeks to months). However, the difficulties involved in comparing consecutive point cloud data sets in a complex three-dimensional plane, such as occlusion due to surface roughness and positioning of data capture point as a result of a consistently changing environment (a beach profile), mean that comparing data sets can lead to errors in the region of 10 - 20 cm. Meshing techniques are often used for point cloud data analysis for simple surfaces, but in surfaces such as rocky cliff faces, this technique has been found to be ineffective. Recession rates of hard rock coastlines in the UK are typically determined using aerial photography or airborne LiDAR data, yet the detail of the important changes occurring to the cliff face and toe are missed using such techniques. In this study we apply an algorithm (M3C2 - Multiscale Model to Model Cloud Comparison), initially developed for analysing fluvial morphological change, that directly compares point to point cloud data using surface normals that are consistent with surface roughness and measure the change that occurs along the normal direction (Lague et al., 2013). The surfaces changes are analysed using a set of user defined scales based on surface roughness and registration error. Once the correct parameters are defined, the volumetric cliff face changes are calculated by integrating the mean distance between the point clouds. The analysis has been undertaken at two hard rock sites identified for their active erosion located on the UK's south west peninsular at Porthleven in south west Cornwall and Godrevy in north Cornwall. Alongside TLS point cloud data, in

  18. Idealized studies of convective summer precipitation in a cloud-resolving model

    NASA Astrophysics Data System (ADS)

    Schlemmer, L.; Hohenegger, C.; Bretherton, C.; Schär, C.

    2009-04-01

    The expected global temperature increase will lead to an increase of the atmospheric humidity content and an intensification of the hydrological cycle. In the global mean, precipitation is projected to increase, but climate models suggest that mean summer precipitation over Europe will decrease. However, despite this decrease in mean, heavy precipitation events are projected to occur more frequently. Changes in extreme precipitation are important to understand, since they pose an enormous threat. Especially in mountainous regions like the Alps, they often imply great socio-economic impacts. The credibility of these projections, with decreases in mean amounts but increases in peak intensity, is somewhat limited, as convection is parameterized in current climate models due to its small-scale nature. Simulations of present-day and future climate performed with a range of regional climate models in the context of the PRUDENCE project have revealed a large spread of the amount and distribution of precipitation. Differences between climate models are especially large in summer, when synoptic-scale forcing is weak and the chosen model formulation has a great influence. The increasing computer power allows the use with finer grid-spacing in the horizontal, as well as in the vertical direction. The increased resolution enables a more realistic representation of topography and surface fields. Most importantly, the finer grid and the release of the hydrostatic assumption render possible an explicit treatment of convective processes. Here we investigate the response of convection to future climate changes in a cloud-resolving model (CRM) using an extremely high spatial resolution of 1- 2 km. This approach is still far too expensive for standard climate scenarios, but it is becoming feasible for process studies. Using a CRM in an idealized setting, we are trying to infer the response of convection to altered temperature and moisture profiles. The modeling strategy includes a

  19. Spatially resolved dusty torus toward the red supergiant WOH G64 in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Ohnaka, K.; Driebe, T.; Hofmann, K.-H.; Weigelt, G.; Wittkowski, M.

    2008-06-01

    Aims: We present N-band spectro-interferometric observations of the red supergiant WOH G64 in the Large Magellanic Cloud (LMC) using MIDI at the Very Large Telescope Interferometer (VLTI). While the very high luminosity (˜ 5 × 105 L⊙) previously estimated for WOH G64 suggests that it is a very massive star with an initial mass of ~40 M⊙, its low effective temperature (~3200 K) is in serious disagreement with the current stellar evolution theory. Methods: WOH G64 was observed with VLTI/MIDI using the UT2-UT3 and UT3-UT4 baseline configurations. Results: The dust envelope around WOH G64 has been spatially resolved with a baseline of ~60 m - the first MIDI observations to resolve an individual stellar source in an extragalactic system. The observed N-band visibilities show a slight decrease from 8 to ~10 μm and a gradual increase longward of ~10 μm, reflecting the 10 μm silicate feature in self-absorption. This translates into a steep increase of the uniform-disk diameter from 8 to 10 μm (from 18 to 26 mas) and a roughly constant diameter above 10 μm. The visibilities measured at four position angles differing by ~60° but at approximately the same baseline length (~60 m) do not show a noticeable difference, suggesting that the object appears nearly centrosymmetric. The observed N-band visibilities and spectral energy distribution can be reproduced by an optically and geometrically thick silicate torus model viewed close to pole-on. The luminosity of the central star is derived to be ˜ 2.8 × 105 L⊙, which is by a factor of 2 lower than the previous estimates based on spherical models. We also identify the H2O absorption features at 2.7 and 6 μm in the spectra obtained with the Infrared Space Observatory and the Spitzer Space Telescope. The 2.7 μm feature originates in the photosphere and/or the extended molecular layers, while the 6 μm feature is likely to be of circumstellar origin. Conclusions: The lower luminosity newly derived from our MIDI

  20. A Cloud-Resolving Modeling Intercomparison Study on Properties of Cloud Microphysics, Convection, and Precipitation for a Squall Line Cas

    NASA Astrophysics Data System (ADS)

    Fan, J.; Han, B.; Morrison, H.; Varble, A.; Mansell, E.; Milbrandt, J.; Wang, Y.; Lin, Y.; Dong, X.; Giangrande, S. E.; Jensen, M. P.; Collis, S. M.; North, K.; Kollias, P.

    2015-12-01

    The large spread in CRM model simulations of deep convection and aerosol effects on deep convective clouds (DCCs) makes it difficult (1) to further our understanding of deep convection and (2) to define "benchmarks" and recommendations for their use in parameterization developments. Past model intercomparison studies used different models with different complexities of dynamic-microphysics interactions, making it hard to isolate the causes of differences between simulations. In this intercomparison study, we employed a much more constrained approach - with the same model and same experiment setups for simulations with different cloud microphysics schemes (one-moment, two-moment, and bin models). Both the piggybacking and interactive approaches are employed to explore the major microphysical processes that control the model differences and the significance of their feedback to dynamics through latent heating/cooling and cold pool characteristics. Real-case simulations are conducted for the squall line case 20 May 2011 from the MC3E field campaign. Results from the piggybacking approach show substantially different responses of the microphysics schemes to the same dynamical fields. Although the interactive microphysics-dynamics simulations buffer some differences compared with those from the piggyback runs, large differences still exist and are mainly contributed by ice microphysical processes parameterizations. The presentation will include in-depth analyses of the major microphysical processes for the squall line case, the significance of the feedback of the processes to dynamics, and how those results differ in different cloud microphysics schemes.

  1. Comparison of UAV-Enabled Photogrammetry-Based 3D Point Clouds and Interpolated DSMs of Sloping Terrain for Rockfall Hazard Analysis

    NASA Astrophysics Data System (ADS)

    Manousakis, J.; Zekkos, D.; Saroglou, F.; Clark, M.

    2016-10-01

    UAVs are expected to be particularly valuable to define topography for natural slopes that may be prone to geological hazards, such as landslides or rockfalls. UAV-enabled imagery and aerial mapping can lead to fast and accurate qualitative and quantitative results for photo documentation as well as basemap 3D analysis that can be used for geotechnical stability analyses. In this contribution, the case study of a rockfall near Ponti village that was triggered during the November 17th 2015 Mw 6.5 earthquake in Lefkada, Greece is presented with a focus on feature recognition and 3D terrain model development for use in rockfall hazard analysis. A significant advantage of the UAV was the ability to identify from aerial views the rockfall trajectory along the terrain, the accuracy of which is crucial to subsequent geotechnical back-analysis. Fast static GPS control points were measured for optimizing internal and external camera parameters and model georeferencing. Emphasis is given on an assessment of the error associated with the basemap when fewer and poorly distributed ground control points are available. Results indicate that spatial distribution and image occurrences of control points throughout the mapped area and image block is essential in order to produce accurate geospatial data with minimum distortions.

  2. B4 2 After, 3D Deformation Field From Matching Pre- To Post-Event Aerial LiDAR Point Clouds, The 2010 El Mayor-Cucapah M7.2 Earthquake Case

    NASA Astrophysics Data System (ADS)

    Hinojosa-Corona, A.; Nissen, E.; Limon-Tirado, J. F.; Arrowsmith, R.; Krishnan, A.; Saripalli, S.; Oskin, M. E.; Glennie, C. L.; Arregui, S. M.; Fletcher, J. M.; Teran, O. J.

    2013-05-01

    Aerial LiDAR surveys reconstruct with amazing fidelity the sinuosity of terrain relief. In this research we explore the 3D deformation field at the surface after a big earthquake (M7.2) by comparing pre- to post-event aerial LiDAR point clouds. The April 4 2010 earthquake produced a NW-SE surface rupture ~110km long with right-lateral normal slip up to 3m in magnitude over a very favorable target: scarcely vegetated and unaltered desert mountain range, sierras El Mayor and Cucapah, in northern Baja California, close to the US-México border. It is a plate boundary region between the Pacific and North American plates. The pre-event LiDAR with lower point density (0.013-0.033 pts m-2) required filtering and post-processing before comparing with the denser (9-18 pts m-2) more accurate post event dataset. The 3D surface displacement field was determined using an adaptation of the Iterative Closest Point (ICP) algorithm, implemented in the open source Point Cloud Library (PCL). The LiDAR datasets are first split into a grid of windows, and for each one, ICP iteratively converges on the rigid body transformation (comprising translations and rotations) that best aligns the pre- to post-event points. Perturbing the pre- and post-event point clouds independently with a synthetic right lateral inverse displacements of known magnitude along a proposed fault, ICP recovered the synthetically introduced translations. Windows with dimensions of 100-200m gave the best results for datasets with these densities. The simplified surface rupture photo interpreted and mapped in the field, delineates very well the vertical displacements patterns unveiled by ICP. The method revealed block rotations, some with clockwise and others counter clockwise direction along the simplified surface rupture. As ground truth, displacements from ICP have similar values as those measured in the field along the main rupture by Fletcher and collaborators. The vertical component was better estimated than the

  3. Solar Radiation Transport in the Cloudy Atmosphere: A 3D Perspective on Observations and Climate Impacts

    NASA Technical Reports Server (NTRS)

    Davis, Anthony B.; Marshak, Alexander

    2010-01-01

    The interplay of sunlight with clouds is a ubiquitous and often pleasant visual experience, but it conjures up major challenges for weather, climate, environmental science and beyond. Those engaged in the characterization of clouds (and the clear air nearby) by remote sensing methods are even more confronted. The problem comes, on the one hand, from the spatial complexity of real clouds and, on the other hand, from the dominance of multiple scattering in the radiation transport. The former ingredient contrasts sharply with the still popular representation of clouds as homogeneous plane-parallel slabs for the purposes of radiative transfer computations. In typical cloud scenes the opposite asymptotic transport regimes of diffusion and ballistic propagation coexist. We survey the three-dimensional (3D) atmospheric radiative transfer literature over the past 50 years and identify three concurrent and intertwining thrusts: first, how to assess the damage (bias) caused by 3D effects in the operational 1D radiative transfer models? Second, how to mitigate this damage? Finally, can we exploit 3D radiative transfer phenomena to innovate observation methods and technologies? We quickly realize that the smallest scale resolved computationally or observationally may be artificial but is nonetheless a key quantity that separates the 3D radiative transfer solutions into two broad and complementary classes: stochastic and deterministic. Both approaches draw on classic and contemporary statistical, mathematical and computational physics.

  4. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  5. The Effects of Lightning NO(x) Production during the July 21 EULINOX Storm studied with a 3-D Cloud-scale Chemical Transport Model

    NASA Technical Reports Server (NTRS)

    Ott, Lesley E.; Pickering, Kenneth E.; Stenchikov, Georgiy L.; Huntrieser, Heidi; Schumann, Ulrich

    2006-01-01

    The July 21,1998 thunderstonn observed during the European Lightning Nitrogen Oxides Project (EULINOX) project was simulated using the three-dimensional Goddard Cumulus Ensemble (GCE) model. The simulation successfully reproduced a number of observed storm features including the splitting of the original cell into a southern cell which developed supercell characteristics, and a northern cell which became multicellular. Output from the GCE simulation was used to drive an offline cloud-scale chemical transport model which calculates tracer transport and includes a parameterization of lightning NO(x) production which uses observed flash rates as input. Estimates of lightning NO(x) production were deduced by assuming various values of production per intracloud and production per cloud-to-ground flash and comparing the results with in-cloud aircraft observations. The assumption that both types of flashes produce 360 moles of NO per flash on average compared most favorably with column mass and probability distribution functions calculated from observations. This assumed production per flash corresponds to a global annual lightning NOx source of 7 Tg N per yr. Chemical reactions were included in the model to evaluate the impact of lightning NO(x), on ozone. During the storm, the inclusion of lightning NOx in the model results in a small loss of ozone (on average less than 4 ppbv) at all model levels. Simulations of the chemical environment in the 24 hours following the storm show on average a small increase in the net production of ozone at most levels resulting from lightning NO(x), maximizing at approximately 5 ppbv per day at 5.5 km. Between 8 and 10.5 km, lightning NO(x) causes decreased net ozone production.

  6. Interaction Between Tropical Convection and its Embedding Environment: An Energetics Analysis of a 2-D Cloud Resolving Simulation

    NASA Technical Reports Server (NTRS)

    Li, Xiaofan; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    The phase relation between the perturbation kinetic energy (K') associated with the tropical convection and the horizontal-mean moist available potential energy (bar-P) associated with environmental conditions is investigated by an energetics analysis of a numerical experiment. This experiment is performed using a 2-D cloud resolving model forced by the TOGA-COARE derived vertical velocity. The imposed upward motion leads to a decrease of bar-P directly through the associated vertical advective cooling, and to an increase of K' directly through cloud related processes, feeding the convection. The maximum K' and its maximum growth rate lags and leads, respectively, the maximum imposed large-scale upward motion by about 1-2 hours, indicating that convection is phase locked with large-scale forcing. The dominant life cycle of the simulated convection is about 9 hours, whereas the time scales of the imposed large-scale forcing are longer than the diurnal cycle. In the convective events, maximum growth of K' leads maximum decay of the perturbation moist available potential energy (P') by about 3 hours through vertical heat transport by perturbation circulation, and perturbation cloud heating. Maximum decay of P' leads maximum decay of bar-P by about one hour through the perturbation radiative, processes, the horizontal-mean cloud heating, and the large-scale vertical advective cooling. Therefore, maximum gain of K' occurs about 4-5 hours before maximum decay of bar-P.

  7. Evaluation of Long-Term Cloud-Resolving Model Simulations Using Satellite Radiance Observations and Multi-Frequency Satellite Simulators

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Zeng, Xiping; Tao, Wei-Kuo; Masunaga, Hirohiko; Olson, William S.; Lang, Stephen

    2008-01-01

    This paper proposes a methodology known as the Tropical Rainfall Measuring Mission (TRMM) Triple-Sensor Three-step Evaluation Framework (T3EF) for the systematic evaluation of precipitating cloud types and microphysics in a cloud-resolving model (CRM). T3EF utilizes multi-frequency satellite simulators and novel statistics of multi-frequency radiance and backscattering signals observed from the TRMM satellite. Specifically, T3EF compares CRM and satellite observations in the form of combined probability distributions of precipitation radar (PR) reflectivity, polarization-corrected microwave brightness temperature (Tb), and infrared Tb to evaluate the candidate CRM. T3EF is used to evaluate the Goddard Cumulus Ensemble (GCE) model for cases involving the South China Sea Monsoon Experiment (SCSMEX) and Kwajalein Experiment (KWAJEX). This evaluation reveals that the GCE properly captures the satellite-measured frequencies of different precipitating cloud types in the SCSMEX case but underestimates the frequencies of deep convective and deep stratiform types in the KWAJEX case. Moreover, the GCE tends to simulate excessively large and abundant frozen condensates in deep convective clouds as inferred from the overestimated GCE-simulated radar reflectivities and microwave Tb depressions. Unveiling the detailed errors in the GCE s performance provides the best direction for model improvements.

  8. Temporally and spatially resolved imaging of laser-nucleated bubble cloud sonoluminescence.

    PubMed

    Sukovich, Jonathan R; Sampathkumar, Ashwin; Anderson, Phillip A; Holt, R Glynn; Pishchalnikov, Yuri A; Gaitan, D Felipe

    2012-05-01

    Imaging techniques have been used to capture the temporal and spatial evolution of light emissions from collapsing bubble clouds at high static pressures. Emission events lasting up to 70 ns with peak diameters nearing 1 mm have been observed. Observations of the cloud evolution before and after emission events have been made. Photomultiplier tube monitoring has been employed in conjunction with imaging to study the temporal characteristics of light emission.

  9. Temporally and spatially resolved imaging of laser-nucleated bubble cloud sonoluminescence.

    PubMed

    Sukovich, Jonathan R; Sampathkumar, Ashwin; Anderson, Phillip A; Holt, R Glynn; Pishchalnikov, Yuri A; Gaitan, D Felipe

    2012-05-01

    Imaging techniques have been used to capture the temporal and spatial evolution of light emissions from collapsing bubble clouds at high static pressures. Emission events lasting up to 70 ns with peak diameters nearing 1 mm have been observed. Observations of the cloud evolution before and after emission events have been made. Photomultiplier tube monitoring has been employed in conjunction with imaging to study the temporal characteristics of light emission. PMID:23004893

  10. Temporally and spatially resolved imaging of laser-nucleated bubble cloud sonoluminescence

    NASA Astrophysics Data System (ADS)

    Sukovich, Jonathan R.; Sampathkumar, Ashwin; Anderson, Phillip A.; Holt, R. Glynn; Pishchalnikov, Yuri A.; Gaitan, D. Felipe

    2012-05-01

    Imaging techniques have been used to capture the temporal and spatial evolution of light emissions from collapsing bubble clouds at high static pressures. Emission events lasting up to 70 ns with peak diameters nearing 1 mm have been observed. Observations of the cloud evolution before and after emission events have been made. Photomultiplier tube monitoring has been employed in conjunction with imaging to study the temporal characteristics of light emission.

  11. Using Field and Satellite Measurements to Improve Snow and Riming Processes in Cloud Resolving Models

    NASA Technical Reports Server (NTRS)

    Colle, Brian A.; Molthan, Andrew L.

    2013-01-01

    The representation of clouds in climate and weather models is a driver in forecast uncertainty. Cloud microphysics parameterizations are challenged by having to represent a diverse range of ice species. Key characteristics of predicted ice species include habit and fall speed, and complex interactions that result from mixed-phased processes like riming. Our proposed activity leverages Global Precipitation Measurement (GPM) Mission ground validation studies to improve parameterizations

  12. Time-resolved measurements of individual ion cloud signals to investigate space-charge effects in plasma mass spectrometry.

    PubMed

    Olesik, J W; Dziewatkoski, M P

    1996-04-01

    A new approach to directly monitor space charge induced effects due to high concentrations of efficiently ionized elements in inductively coupled plasma mass spectrometry (ICP-MS) is described. The broadening of ion clouds produced from individual, monodisperse drops of sample is measured by using time-resolved ICP-MS. The extent of broadening due to high concentrations of Pb in the sample is related inversely to the analyte mass. For the lightest analyte investigated, Li(+), the relative width of the time-resolved analyte peak increases and then shows a dip in the center as the Pb concentration is increased to 500 and then 1500 µg/mL. The initial results of experiments that investigated chemical matrix effects as a function of concomitant species concentration, analyte mass, and sampling location in ICP-MS are consistent with space-charge effects.

  13. The Role of Aerosols on Precipitation Processes: Cloud Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Li, X.; Matsui, T.

    2012-01-01

    Cloud microphysics is inevitably affected by the smoke particle (CCN, cloud condensation nuclei) size distributions below the clouds. Therefore, size distributions parameterized as spectral bin microphysics are needed to explicitly study the effects of atmospheric aerosol concentration on cloud development, rainfall production, and rainfall rates for convective clouds. Recently, a detailed spectral-bin microphysical scheme was implemented into the Goddard Cumulus Ensemble (GCE) model. The formulation for the explicit spectral bin microphysical processes is based on solving stochastic kinetic equations for the size distribution functions of water droplets (i.e., cloud droplets and raindrops), and several types of ice particles [i.e. pristine ice crystals (columnar and plate-like), snow (dendrites and aggregates), graupel and frozen drops/hail]. Each type is described by a special size distribution function containing many categories (i.e., 33 bins). Atmospheric aerosols are also described using number density size-distribution functions. The model is tested by studying the evolution of deep cloud systems in the west Pacific warm pool region, the sub-tropics (Florida) and midlatitudes using identical thermodynamic conditions but with different concentrations of CCN: a low "clean" concentration and a high "dirty" concentration. Results indicate that the low CCN concentration case produces rainfall at the surface sooner than the high CeN case but has less cloud water mass aloft. Because the spectral-bin model explicitly calculates and allows for the examination of both the mass and number concentration of species in each size category, a detailed analysis of the instantaneous size spectrum can be obtained for these cases. It is shown that since the low (CN case produces fewer droplets, larger sizes develop due to greater condensational and collection growth, leading to a broader size spectrum in comparison to the high CCN case. Sensitivity tests were performed to

  14. Interpretation of simple and cloud-resolving simulations of moist convection radiation interaction with a mock-Walker circulation

    NASA Astrophysics Data System (ADS)

    Bretherton, Christopher S.; Blossey, Peter N.; Peters, Matthew E.

    2006-11-01

    An idealized two-dimensional mock-Walker circulation in the tropical atmosphere forced by prescribed horizontal gradients in sea-surface temperature (SST) is discussed. This model problem includes feedbacks between cumulus convection and tropical large-scale circulations that have proved challenging for global climate models to predict accurately. Three-dimensional cloud-resolving model (CRM) simulations that explicitly simulate turbulent circulations within individual cloud systems across 4,096 and 1,024 km-wide Walker circulations are compared with a simple theoretical model, the Simplified Quasiequilibrium Tropical Circulation Model (SQTCM). This theoretical model combines the weak-temperature-gradient approximation with a unimodal truncation of tropospheric vertical structure coupled to highly simplified formulations of moist precipitating cumulus convection and its cloud-radiative feedbacks. The rainfall, cloud and humidity distribution, circulation strength, energy fluxes and scaling properties are compared between the models. The CRM-simulated horizontal distribution of rainfall and energy fluxes are adequately predicted by the SQTCM. However, the humidity distribution (drier subsidence regions and high-humidity boundary layers in the CRM), vertical structure and domain-size scaling of the circulation differ significantly between the models. For the SQTCM, the concept of gross moist stability related to advection of moist static energy (MSE) out of tropospheric columns by the mean divergent circulation is used to explain the width and intensity of the rainy region. Column MSE budgets averaged across the ascent branch of the simulated Walker circulation provide similar insight into the cloud-resolving simulations after consideration of the more complex horizontal and vertical circulation structure and the role of transient eddies. A nondimensional ascent-region moist stability ratio α, analogous to the SQTCM gross moist stability, is developed. One term of

  15. Evaluation of cloud-resolving model simulations of midlatitude cirrus with ARM and A-train observations

    NASA Astrophysics Data System (ADS)

    Muhlbauer, A.; Ackerman, T. P.; Lawson, R. P.; Xie, S.; Zhang, Y.

    2015-07-01

    Cirrus clouds are ubiquitous in the upper troposphere and still constitute one of the largest uncertainties in climate predictions. This paper evaluates cloud-resolving model (CRM) and cloud system-resolving model (CSRM) simulations of a midlatitude cirrus case with comprehensive observations collected under the auspices of the Atmospheric Radiation Measurements (ARM) program and with spaceborne observations from the National Aeronautics and Space Administration A-train satellites. The CRM simulations are driven with periodic boundary conditions and ARM forcing data, whereas the CSRM simulations are driven by the ERA-Interim product. Vertical profiles of temperature, relative humidity, and wind speeds are reasonably well simulated by the CSRM and CRM, but there are remaining biases in the temperature, wind speeds, and relative humidity, which can be mitigated through nudging the model simulations toward the observed radiosonde profiles. Simulated vertical velocities are underestimated in all simulations except in the CRM simulations with grid spacings of 500 m or finer, which suggests that turbulent vertical air motions in cirrus clouds need to be parameterized in general circulation models and in CSRM simulations with horizontal grid spacings on the order of 1 km. The simulated ice water content and ice number concentrations agree with the observations in the CSRM but are underestimated in the CRM simulations. The underestimation of ice number concentrations is consistent with the overestimation of radar reflectivity in the CRM simulations and suggests that the model produces too many large ice particles especially toward the cloud base. Simulated cloud profiles are rather insensitive to perturbations in the initial conditions or the dimensionality of the model domain, but the treatment of the forcing data has a considerable effect on the outcome of the model simulations. Despite considerable progress in observations and microphysical parameterizations, simulating

  16. Mesoscale Convective Systems During SCSMEX: Simulations with a Regional Climate Model and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W. K.; Wang, Y.; Qian, J.; Shie, C. -L.; Lau, W. K. -M.; Kakar, R.; Starr, David O' C. (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China (Lau et al. 2000). Multiple observation platforms (e.g., soundings, Doppler radar, ships, wind seafarers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convection and circulation changes, associated with monsoons over the South China Sea region. SCSMEX also provided precipitation derived from atmospheric budgets (Johnson and Ciesielski 2002) and comparison to those obtained from the Tropical Rainfall Measuring Mission (TRMM). In this paper, a regional climate model and a cloud-resolving model are used to perform multi-day integrations to understand the precipitation processes associated with the summer monsoon over Southeast Asia and southern China. The regional climate model is used to understand the soil - precipitation interaction and feedback associated with a flood event that occurred in and around China's Atlantic River during SCSMEX. Sensitivity tests on various land surface models, cumulus parameterization schemes (CASE), sea surface temperature (SST) variations and midlatitude influences are also performed to understand the processes associated with the onset of the monsoon over the S. China Sea during SCSMEX. Cloud-resolving models (CRMs) use more sophisticated and physically realistic parameterizations of cloud microphysical processes with very fine spatial and temporal resolution. One of the major characteristics of CRMs is an explicit interaction between clouds, radiation and the land/ocean surface. It is for this reason that GEWEX (Global Energy and Water Cycle Experiment) has formed the GCSS (GEWEX Cloud System Study) expressly for the purpose of improving the representation of the moist processes in large-scale models using CRMs. The Goddard

  17. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment

    DOE PAGESBeta

    Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; Yio, John J.; Cederwall, Richard T.; McCoy, Renata

    2006-10-05

    [1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related tomore » the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.« less

  18. Developing large-scale forcing data for single-column and cloud-resolving models from the Mixed-Phase Arctic Cloud Experiment

    SciTech Connect

    Xie, Shaocheng; Klein, Stephen A.; Zhang, Minghua; Yio, John J.; Cederwall, Richard T.; McCoy, Renata

    2006-10-05

    [1] This study represents an effort to develop Single-Column Model (SCM) and Cloud-Resolving Model large-scale forcing data from a sounding array in the high latitudes. An objective variational analysis approach is used to process data collected from the Atmospheric Radiation Measurement Program (ARM) Mixed-Phase Arctic Cloud Experiment (M-PACE), which was conducted over the North Slope of Alaska in October 2004. In this method the observed surface and top of atmosphere measurements are used as constraints to adjust the sounding data from M-PACE in order to conserve column-integrated mass, heat, moisture, and momentum. Several important technical and scientific issues related to the data analysis are discussed. It is shown that the analyzed data reasonably describe the dynamic and thermodynamic features of the Arctic cloud systems observed during M-PACE. Uncertainties in the analyzed forcing fields are roughly estimated by examining the sensitivity of those fields to uncertainties in the upper-air data and surface constraints that are used in the analysis. Impacts of the uncertainties in the analyzed forcing data on SCM simulations are discussed. Results from the SCM tests indicate that the bulk features of the observed Arctic cloud systems can be captured qualitatively well using the forcing data derived in this study, and major model errors can be detected despite the uncertainties that exist in the forcing data as illustrated by the sensitivity tests. Lastly, the possibility of using the European Center for Medium-Range Weather Forecasts analysis data to derive the large-scale forcing over the Arctic region is explored.

  19. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  20. 3d-3d correspondence revisited

    DOE PAGESBeta

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  1. Polar Stratospheric Clouds and heterogeneous chemistry: Comparison between a 3D-CTM with detailed online PSC microphysics and CALIPSO observations

    NASA Astrophysics Data System (ADS)

    Viscardy, Sébastien; Errera, Quentin; Pitts, Michael C.; Poole, Lamont R.; Chabrillat, Simon; Daerden, Frank

    2013-04-01

    A 3-D Chemical Transport Model (CTM), with full stratospheric chemistry and driven by the ECMWF temperature and wind fields, has been coupled to a detailed PSC microphysical model to simulate polar winters. The formation and evolution of four types of PSC particles (STS, SAT, NAT, and ice) are described through relevant microphysical processes which alter interactively the nitric acid and water vapor concentrations of the atmosphere. Each particle type is described by a binned size distribution for the number density and chemical composition. This set-up allows for detailed calculation of optical properties and surface area densities used to compute the heterogeneous reaction rates. After comparing the evolution of the stratospheric chemical structure to satellite observations, we will investigate how the model reproduces the PSC coverage detected by CALIPSO. A comparison between the model and CALIPSO optical properties will be used to discuss the PSC composition. Finally, we aim at estimating the contribution of each PSC particle type to the chlorine activation.

  2. ALMA RESOLVES 30 DORADUS: SUB-PARSEC MOLECULAR CLOUD STRUCTURE NEAR THE CLOSEST SUPER STAR CLUSTER

    SciTech Connect

    Indebetouw, Remy; Brogan, Crystal; Leroy, Adam; Hunter, Todd; Kepley, Amanda E-mail: cbrogan@nrao.edu; and others

    2013-09-01

    We present Atacama Large (sub)Millimeter Array observations of 30 Doradus-the highest resolution view of molecular gas in an extragalactic star formation region to date ({approx}0.4 pc Multiplication-Sign 0.6 pc). The 30Dor-10 cloud north of R136 was mapped in {sup 12}CO 2-1, {sup 13}CO 2-1, C{sup 18}O 2-1, 1.3 mm continuum, the H30{alpha} recombination line, and two H{sub 2}CO 3-2 transitions. Most {sup 12}CO emission is associated with small filaments and clumps ({approx}<1 pc, {approx}10{sup 3} M{sub Sun} at the current resolution). Some clumps are associated with protostars, including ''pillars of creation'' photoablated by intense radiation from R136. Emission from molecular clouds is often analyzed by decomposition into approximately beam-sized clumps. Such clumps in 30 Doradus follow similar trends in size, linewidth, and surface density to Milky Way clumps. The 30 Doradus clumps have somewhat larger linewidths for a given size than predicted by Larson's scaling relation, consistent with pressure confinement. They extend to a higher surface density at a given size and linewidth compared to clouds studied at 10 pc resolution. These trends are also true of clumps in Galactic infrared-dark clouds; higher resolution observations of both environments are required. Consistency of clump masses calculated from dust continuum, CO, and the virial theorem reveals that the CO abundance in 30 Doradus clumps is not significantly different from the Large Magellanic Cloud mean, but the dust abundance may be reduced by {approx}2. There are no strong trends in clump properties with distance from R136; dense clumps are not strongly affected by the external radiation field, but there is a modest trend toward lower dense clump filling fraction deeper in the cloud.

  3. ALMA Resolves 30 Doradus: Sub-parsec Molecular Cloud Structure near the Closest Super Star Cluster

    NASA Astrophysics Data System (ADS)

    Indebetouw, Rémy; Brogan, Crystal; Chen, C.-H. Rosie; Leroy, Adam; Johnson, Kelsey; Muller, Erik; Madden, Suzanne; Cormier, Diane; Galliano, Frédéric; Hughes, Annie; Hunter, Todd; Kawamura, Akiko; Kepley, Amanda; Lebouteiller, Vianney; Meixner, Margaret; Oliveira, Joana M.; Onishi, Toshikazu; Vasyunina, Tatiana

    2013-09-01

    We present Atacama Large (sub)Millimeter Array observations of 30 Doradus—the highest resolution view of molecular gas in an extragalactic star formation region to date (~0.4 pc × 0.6 pc). The 30Dor-10 cloud north of R136 was mapped in 12CO 2-1, 13CO 2-1, C18O 2-1, 1.3 mm continuum, the H30α recombination line, and two H2CO 3-2 transitions. Most 12CO emission is associated with small filaments and clumps (lsim1 pc, ~103 M ⊙ at the current resolution). Some clumps are associated with protostars, including "pillars of creation" photoablated by intense radiation from R136. Emission from molecular clouds is often analyzed by decomposition into approximately beam-sized clumps. Such clumps in 30 Doradus follow similar trends in size, linewidth, and surface density to Milky Way clumps. The 30 Doradus clumps have somewhat larger linewidths for a given size than predicted by Larson's scaling relation, consistent with pressure confinement. They extend to a higher surface density at a given size and linewidth compared to clouds studied at 10 pc resolution. These trends are also true of clumps in Galactic infrared-dark clouds; higher resolution observations of both environments are required. Consistency of clump masses calculated from dust continuum, CO, and the virial theorem reveals that the CO abundance in 30 Doradus clumps is not significantly different from the Large Magellanic Cloud mean, but the dust abundance may be reduced by ~2. There are no strong trends in clump properties with distance from R136; dense clumps are not strongly affected by the external radiation field, but there is a modest trend toward lower dense clump filling fraction deeper in the cloud.

  4. Response to ?A Madden-Julian Oscillation Event Realistically Simulated by a Global Cloud-Resolving Model?

    SciTech Connect

    Sperber, K R

    2007-12-18

    I agree with the authors that forecasting the Madden-Julian Oscillation (MJO) in a high resolution global model is important for numerous reasons, including improved weather forecast skill beyond 10 days, and resolving small scale features embedded in the MJO that coarse resolution ({approx}100-300km horizontal grid spacing) climate models do not (e.g., tropical cyclones). Unfortunately, the authors promote the (incorrect) overall impression that coarse resolution climate models cannot simulate the MJO by (a) only discussing aspects of works that indicate the poor ability of coarse resolution climate models to simulate the MJO, and (b) by promoting the use of higher resolution models, and the use of embedded two-dimensional cloud resolving models embedded in coarse resolution climate models as the principal methods for realistically representing the MJO because of the difficulty of coarse resolution models 'to estimate the vertical redistribution of heat and moisture by unresolved convective clouds'. Regarding items (a) and (b), I have co-authored two of the works cited by Miura et al. that bemoan the poor ability of coarse resolution climate models to simulate the MJO, and indeed simulating the MJO in coarse resolution climate models is a grand challenge. However, I would like to draw to their attention to work that has demonstrated that two different coarse resolution climate models, using conventional parameterizations of convection and clouds, can represent the MJO with high fidelity. In the later study, where more complete model diagnostics were available, important aspects of the MJO that were realistically represented included the relationship between convection and low-level moisture convergence, surface fluxes, the vertical structure of winds and divergence, and important air-sea interactions. Additionally, regarding item (b), convection is certainly of central importance in representing the MJO, but it is the interaction of convection (parameterized or

  5. The kinematical properties of superbubbles and H II regions of the Large Magellanic Cloud derived from the 3D Hα Survey

    NASA Astrophysics Data System (ADS)

    Ambrocio-Cruz, P.; Le Coarer, E.; Rosado, M.; Russeil, D.; Amram, P.; Laval, A.; Epinat, B.; Ramírez, M.; Odonne, M.; Goldes, G.

    2016-04-01

    We report the results of a kinematical Hα survey of the Large Magellanic Cloud (LMC) presented in the form of a kinematical and photometric catalogue of 210 H II regions. The observations have been obtained with a scanning Fabry-Perot interferometer that produced data cubes corresponding to 66 different pointings over this galaxy, each with a field of view of 38 arcmin, covering almost the whole extent of the LMC. We find a bimodal distribution of the Hα luminosity of LMC H II regions. We also derive the local star formation and star formation rate (SFR) per unit area of the nebulae, concluding that star formation in the LMC has proceeded until the present time at an average rate of roughly 0.11 M⊙ yr-1. Also, we do not find any correlation between the SFR or ΣSFR with ΔV (full width at half-maximum for a single Gaussian profile and the difference in velocities for multiple-components velocity profiles), the diameter, the distance to the kinematical centre of the LMC and age of the nebulae. Over most of the LMC ΔV appears to be of the order of 30 km s-1. However, in a few regions the ΔV of the velocity profiles is as large as 50-100 kms-1, corresponding to identified supernova remnants and superbubbles undergoing expansion motions.

  6. 3D Modeling By Consolidation Of Independent Geometries Extracted From Point Clouds - The Case Of The Modeling Of The Turckheim's Chapel (Alsace, France)

    NASA Astrophysics Data System (ADS)

    Koehl, M.; Fabre, Ph.; Schlussel, B.

    2014-06-01

    Turckheim is a small town located in Alsace, north-east of France. In the heart of the Alsatian vineyard, this city has many historical monuments including its old church. To understand the effectiveness of the project described in this paper, it is important to have a look at the history of this church. Indeed there are many historical events that explain its renovation and even its partial reconstruction. The first mention of a christian sanctuary in Turckheim dates back to 898. It will be replaced in the 12th century by a roman church (chapel), which subsists today as the bell tower. Touched by a lightning in 1661, the tower then was enhanced. In 1736, it was repaired following damage sustained in a tornado. In 1791, the town installs an organ to the church. Last milestone, the church is destroyed by fire in 1978. The organ, like the heart of the church will then have to be again restored (1983) with a simplified architecture. From this heavy and rich past, it unfortunately and as it is often the case, remains only very few documents and information available apart from facts stated in some sporadic writings. And with regard to the geometry, the positioning, the physical characteristics of the initial building, there are very little indication. Some assumptions of positions and right-of-way were well issued by different historians or archaeologists. The acquisition and 3D modeling project must therefore provide the current state of the edifice to serve as the basis of new investigations and for the generation of new hypotheses on the locations and historical shapes of this church and its original chapel (Fig. 1)

  7. Evaluation of Subgrid-scale Hydrometeor Transport Schemes using a High-resolution Cloud-resolving Model

    SciTech Connect

    Wong, May Wai San; Ovchinnikov, Mikhail; Wang, Minghuai

    2015-09-14

    Potential ways of parameterizing vertical turbulent fluxes of hydrometeors are examined using a high-resolution cloud-resolving model. The cloud-resolving model uses the Morrison microphysics scheme, which contains prognostic variables for rain, graupel, ice, and snow. A benchmark simulation with a horizontal grid spacing of 250 m of a deep convection case carried out to evaluate three different ways of parameterizing the turbulent vertical fluxes of hydrometeors: an eddy-diffusion approximation, a quadrant-based decomposition, and a scaling method that accounts for within-quadrant (subplume) correlations. Results show that the down-gradient nature of the eddy-diffusion approximation tends to transport mass away from concentrated regions, whereas the benchmark simulation indicates that the vertical transport tends to transport mass from below the level of maximum to aloft. Unlike the eddy-diffusion approach, the quadri-modal decomposition is able to capture the signs of the flux gradient but underestimates the magnitudes. The scaling approach is shown to perform the best by accounting for within-quadrant correlations, and improves the results for all hydrometeors except for snow. A sensitivity study is performed to examine how vertical transport may affect the microphysics of the hydrometeors. The vertical transport of each hydrometeor type is artificially suppressed in each test. Results from the sensitivity tests show that cloud-droplet-related processes are most sensitive to suppressed rain or graupel transport. In particular, suppressing rain or graupel transport has a strong impact on the production of snow and ice aloft. Lastly, a viable subgrid-scale hydrometeor transport scheme in an assumed probability density function parameterization is discussed.

  8. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  9. Assessing the sensitivity of moist convection to climate change within an idealized cloud-resolving modeling framework

    NASA Astrophysics Data System (ADS)

    Schlemmer, Linda; Schmidli, Juerg; Schär, Christoph

    2014-05-01

    The use of parametrization schemes for the representation of moist convection implies major uncertainties in current climate projections. Here we introduce an idealized cloud-resolving modeling (CRM) framework for the study of mid-latitude diurnal convection over land. The framework is used to assess the sensitivity of the soil-moisture precipitation feedback and associated heavy precipitation events from first principles. The model is run for 30 days. Using a relaxation strategy, approximate equilibrium is reached after about 16 days. In this state, termed "diurnal equilibrium", the diurnal cycle of moist convection repeats itself more or less from day to day. Using this framework we investigate the sensitivity of the diurnal convection and resulting cloud development to changes in atmospheric temperature, lapse-rate and soil moisture content that could result from anthropogenic climate change. We find that the temperature stratification of the environment has a dominant influence on the depth and intensity of convection. If the background profile is more stably stratified, more clouds develop and the intensity of convection increases considerably. More unstable profiles in contrast lead to deeper convection that continues over a longer time span. For warmer atmospheres, the increase of water vapor enhances moreover cloud amount. A decrease of soil moisture reduces precipitation amounts and leads to the development of very localized precipitation patches. Concerning the distribution of precipitation intensities, we find an increase of heavy precipitation events if a warming of the atmosphere goes together with a stabilization of the atmosphere as is projected by many climate models. These increases are however smaller than expected from Clausius Clapeyron scaling. Reductions of soil moisture on the other hand decrease precipitation over all intensities.

  10. What does Reflection from Cloud Sides tell us about Vertical Distribution of Cloud Droplet Sizes?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Martins, J. V.; Zubko, V.; Kaufman, Y. J.

    2006-01-01

    Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from CloudSat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3-D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimentional(3-D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 microns) and one with liquid water efficient absorption of solar radiation (2.1 microns). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3-D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.

  11. The resolved magnetic fields of the quiescent cloud GRSMC 45.60+0.30

    NASA Astrophysics Data System (ADS)

    Pavel, Michael D.; Marchwinski, Robert C.; Clemens, Dan P.

    2015-03-01

    Marchwinski et al. (2012) mapped the magnetic field strength across the quiescent cloud GRSMC 45.60+0.30 (shown in Figure 1 subtending 40x10 pc at a distance of 1.88 kpc) with the Chandrasekhar-Fermi method CF; Chandrasekhar & Fermi 1953) using near-infrared starlight polarimetry from the Galactic Plane Infrared Polarization Survey (Clemens et al. 2012a, b) and gas properties from the Galactic Ring Survey (Jackson et al. 2006). The large-scale magnetic field is oriented parallel to the gas-traced `spine' of the cloud. Seven `magnetic cores' with high magnetic field strength were identified and are coincident with peaks in the gas column density. Calculation of the mass-to-flux ratio (Crutcher 1999) shows that these cores are exclusively magnetically subcritical and that magnetostatic pressure can support them against gravitational collapse.

  12. Quasi-3D Multi-scale Modeling Framework Development

    NASA Astrophysics Data System (ADS)

    Arakawa, A.; Jung, J.

    2008-12-01

    When models are truncated in or near an energetically active range of the spectrum, model physics must be changed as the resolution changes. The model physics of GCMs and that of CRMs are, however, quite different from each other and at present there is no unified formulation of model physics that automatically provides transition between these model physics. The Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is an attempt to bridge this gap. Like the recently proposed Heterogeneous Multiscale Method (HMM) (E and Engquist 2003), MMF combines a macroscopic model, GCM, and a microscopic model, CRM. Unlike the traditional multiscale methods such as the multi-grid and adapted mesh refinement techniques, HMM and MMF are for solving multi-physics problems. They share the common objective "to design combined macroscopic-microscopic computational methods that are much more efficient than solving the full microscopic model and at the same time give the information we need" (E et al. 2008). The question is then how to meet this objective in practice, which can be highly problem dependent. In HHM, the efficiency is gained typically by localization of the microscale problem. Following the pioneering work by Grabowski and Smolarkiewicz (1999) and Grabowski (2001), MMF takes advantage of the fact that 2D CRMs are reasonably successful in simulating deep clouds. In this approach, the efficiency is gained by sacrificing the three-dimensionality of cloud-scale motion. It also "localizes" the algorithm through embedding a CRM in each GCM grid box using cyclic boundary condition. The Q3D MMF is an attempt to reduce the expense due to these constraints by partially including the cloud-scale 3D effects and extending the CRM beyond individual GCM grid boxes. As currently formulated, the Q3D MMF is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic cloud-resolving vector vorticity equation model (VVM) applied to a network of horizontal grids. The network

  13. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  14. Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals

    NASA Astrophysics Data System (ADS)

    Holz, R. E.; Platnick, S.; Meyer, K.; Vaughan, M.; Heidinger, A.; Yang, P.; Wind, G.; Dutcher, S.; Ackerman, S.; Amarasinghe, N.; Nagle, F.; Wang, C.

    2015-10-01

    Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of two bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ~ 0.75 in the mid-visible spectrum

  15. Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals

    NASA Astrophysics Data System (ADS)

    Holz, Robert E.; Platnick, Steven; Meyer, Kerry; Vaughan, Mark; Heidinger, Andrew; Yang, Ping; Wind, Gala; Dutcher, Steven; Ackerman, Steven; Amarasinghe, Nandana; Nagle, Fredrick; Wang, Chenxi

    2016-04-01

    Despite its importance as one of the key radiative properties that determines the impact of upper tropospheric clouds on the radiation balance, ice cloud optical thickness (IOT) has proven to be one of the more challenging properties to retrieve from space-based remote sensing measurements. In particular, optically thin upper tropospheric ice clouds (cirrus) have been especially challenging due to their tenuous nature, extensive spatial scales, and complex particle shapes and light-scattering characteristics. The lack of independent validation motivates the investigation presented in this paper, wherein systematic biases between MODIS Collection 5 (C5) and CALIOP Version 3 (V3) unconstrained retrievals of tenuous IOT (< 3) are examined using a month of collocated A-Train observations. An initial comparison revealed a factor of 2 bias between the MODIS and CALIOP IOT retrievals. This bias is investigated using an infrared (IR) radiative closure approach that compares both products with MODIS IR cirrus retrievals developed for this assessment. The analysis finds that both the MODIS C5 and the unconstrained CALIOP V3 retrievals are biased (high and low, respectively) relative to the IR IOT retrievals. Based on this finding, the MODIS and CALIOP algorithms are investigated with the goal of explaining and minimizing the biases relative to the IR. For MODIS we find that the assumed ice single-scattering properties used for the C5 retrievals are not consistent with the mean IR COT distribution. The C5 ice scattering database results in the asymmetry parameter (g) varying as a function of effective radius with mean values that are too large. The MODIS retrievals have been brought into agreement with the IR by adopting a new ice scattering model for Collection 6 (C6) consisting of a modified gamma distribution comprised of a single habit (severely roughened aggregated columns); the C6 ice cloud optical property models have a constant g ≈ 0.75 in the mid-visible spectrum

  16. What Does Reflection from Cloud Sides Tell Us About Vertical Distribution of Cloud Droplet Sizes?

    NASA Technical Reports Server (NTRS)

    Marshak, Alexander; Martins, J. Vanderlei; Zubko, Victor; Kaufman, Yoram, J.

    2005-01-01

    Cloud development, the onset of precipitation and the effect of aerosol on clouds depend on the structure of the cloud profiles of droplet size and phase. Aircraft measurements of cloud profiles are limited in their temporal and spatial extent. Satellites were used to observe cloud tops not cloud profiles with vertical profiles of precipitation-sized droplets anticipated from Cloudsat. The recently proposed CLAIM-3D satellite mission (cloud aerosol interaction mission in 3D) suggests to measure profiles of cloud microphysical properties by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides. Inversion of measurements from the cloud sides requires rigorous understanding of the 3-dimensional (3D) properties of clouds. Here we discuss the reflected sunlight from the cloud sides and top at two wavelengths: one nonabsorbing to solar radiation (0.67 micrometers) and one with liquid water efficient absorption of solar radiation (2.1 micrometers). In contrast to the plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer is used for interpreting the observed reflectances. General properties of the radiation reflected from the sides of an isolated cloud are discussed. As a proof of concept, the paper shows a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with the prescribed vertically resolved microphysics. To retrieve the information about droplet sizes, we propose to use the probability density function of the droplet size distribution and its first two moments instead of the assumption about fixed values of the droplet effective radius. The retrieval algorithm is based on the Bayesian theorem that combines prior information about cloud structure and microphysics with radiative transfer calculations.

  17. Mesoscale Convective Systems in SCSMEX: Simulated by a Regional Climate Model and a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Lau, W.; Jia, Y.; Johnson, D.; Shie, C.-L.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    A Regional Land-Atmosphere Climate Simulation (RELACS) System is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model with improved physical processes, in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water and energy cycles in Indo-China/South China Sea (SCS)/China, North America and South America. The Penn State/NCAR MM5 atmospheric modeling system, a state of the art atmospheric numerical model designed to simulate regional weather and climate, has been successfully coupled to the Goddard Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model, PLACE allows for the effect A vegetation, and thus important physical processes such as evapotranspiration and interception are included. The PLACE model incorporates vegetation type and has been shown in international comparisons to accurately predict evapotranspiration and runoff over a wide variety of land surfaces. The coupling of MM5 and PLACE creates a numerical modeling system with the potential to more realistically simulate the atmosphere and land surface processes including land-sea interaction, regional circulations such as monsoons, and flash flood events. RELACS has been used to simulate the onset of the South China Sea Monsoon in 1986, 1991 and 1998. Sensitivity tests on various land surface models, cumulus parameterization schemes (CPSs), sea surface temperature (SST) variations and midlatitude influences have been performed. These tests have indicated that the land surface model has a major impact on the circulation over the South China Sea. CPSs can effect the precipitation pattern while SST variation can effect the precipitation amounts over both land and ocean. RELACS has also been used to understand the soil-precipitation interaction and feedback associated with a flood event that occurred in and around

  18. Interior Reconstruction Using the 3d Hough Transform

    NASA Astrophysics Data System (ADS)

    Dumitru, R.-C.; Borrmann, D.; Nüchter, A.

    2013-02-01

    Laser scanners are often used to create accurate 3D models of buildings for civil engineering purposes, but the process of manually vectorizing a 3D point cloud is time consuming and error-prone (Adan and Huber, 2011). Therefore, the need to characterize and quantify complex environments in an automatic fashion arises, posing challenges for data analysis. This paper presents a system for 3D modeling by detecting planes in 3D point clouds, based on which the scene is reconstructed at a high architectural level through removing automatically clutter and foreground data. The implemented software detects openings, such as windows and doors and completes the 3D model by inpainting.

  19. What does reflection from cloud sides tell us about vertical distribution of cloud droplets?

    NASA Technical Reports Server (NTRS)

    Marshak, A.; Kaufman, Yoram; Martins, V.; Zubko, Victor

    2006-01-01

    In order to accurately measure the interaction of clouds with aerosols, we have to resolve the vertical distribution of cloud droplet sizes and determine the temperature of glaciation for clean and polluted clouds. Knowledge of the droplet vertical profile is also essential for understanding precipitation. So far, all existing satellites either measure cloud microphysics only at cloud top (e.g., MODIS) or give a vertical profile of precipitation sized droplets (e.g., Cloudsat). What if one measures cloud microphysical properties in the vertical by retrieving them from the solar and infrared radiation reflected or emitted from cloud sides? This was the idea behind CLAIM-3D (A 3D - cloud aerosol interaction mission) recently proposed by NASA GSFC. This presentation will focus on the interpretation of the radiation reflected from cloud sides. In contrast to plane-parallel approximation, a conventional approach to all current operational retrievals, 3D radiative transfer will be used for interpreting the observed reflectances. As a proof of concept, we will show a few examples of radiation reflected from cloud fields generated by a simple stochastic cloud model with prescribed microphysics. Instead of fixed values of the retrieved effective radii, the probability density functions of droplet size distributions will serve as possible retrievals.

  20. A new single-moment microphysics scheme for cloud-resolving models using observed dependence of ice concentration on temperature.

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, M.

    2015-12-01

    The representation of microphysics, especially ice microphysics, remains one of the major uncertainties in cloud-resolving models (CRMs). Most of the cloud schemes use the so-called bulk microphysics approach, in which a few moments of such distributions are used as the prognostic variables. The System for Atmospheric Modeling (SAM) is the CRM that employs two such schemes. The single-moment scheme, which uses only mass for each of the water phases, and the two-moment scheme, which adds the particle concentration for each of the hydrometeor category. Of the two, the single-moment scheme is much more computationally efficient as it uses only two prognostic microphysics variables compared to ten variables used by the two-moment scheme. The efficiency comes from a rather considerable oversimplification of the microphysical processes. For instance, only a sum of the liquid and icy cloud water is predicted with the temperature used to diagnose the mixing ratios of different hydrometeors. The main motivation for using such simplified microphysics has been computational efficiency, especially in the applications of SAM as the super-parameterization in global climate models. Recently, we have extended the single-moment microphysics by adding only one additional prognostic variable, which has, nevertheless, allowed us to separate the cloud ice from liquid water. We made use of some of the recent observations of ice microphysics collected at various parts of the world to parameterize several aspects of ice microphysics that have not been explicitly represented before in our sing-moment scheme. For example, we use the observed broad dependence of ice concentration on temperature to diagnose the ice concentration in addition to prognostic mass. Also, there is no artificial separation between the pristine ice and snow, often used by bulk models. Instead we prescribed the ice size spectrum as the gamma distribution, with the distribution shape parameter controlled by the

  1. Cloud-resolving simulations of mercury scavenging and deposition in thunderstorms

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Holmes, C. D.; Ter Schure, A.; Kallos, G.; Walters, J. T.

    2013-10-01

    This study examines dynamical and microphysical features of convective clouds that affect mercury (Hg) wet scavenging and concentrations in rainfall. Using idealized numerical model simulations in the Regional Atmospheric Modeling System (RAMS), we diagnose vertical transport and scavenging of soluble Hg species - gaseous oxidized mercury (GOM) and particle-bound mercury (HgP), collectively Hg(II) - in thunderstorms under typical environmental conditions found in the Northeast and Southeast United States (US). Mercury scavenging efficiencies from various initial altitudes are diagnosed for a case study of a typical strong convective storm in the Southeast US. Assuming that soluble mercury concentrations are initially vertically uniform, the model results suggest that 60% of mercury deposited to the surface in rainwater originates from above the boundary layer (> 2 km). The free troposphere could supply a larger fraction of mercury wet deposition if GOM and HgP concentrations increase with altitude. We use radiosonde observations in the Northeast and Southeast to characterize three important environmental characteristics that influence thunderstorm morphology: convective available potential energy (CAPE), vertical shear (0-6 km) of horizontal wind (SHEAR) and precipitable water (PW). The Southeast US generally has lower SHEAR and higher CAPE and PW. We then use RAMS to test how PW and SHEAR impact mercury scavenging and deposition, while keeping the initial Hg(II) concentrations fixed in all experiments. We found that the mercury concentration in rainfall is sensitive to SHEAR with the nature of sensitivity differing depending upon the PW. Since CAPE and PW cannot be perturbed independently, we test their combined influence using an ensemble of thunderstorm simulations initialized with environmental conditions for the Northeast and Southeast US. These simulations, which begin with identical Hg(II) concentrations, predict higher mercury concentrations in rainfall

  2. Cloud-resolving simulations of mercury scavenging and deposition in thunderstorms

    NASA Astrophysics Data System (ADS)

    Nair, U. S.; Wu, Y.; Holmes, C. D.; Ter Schure, A.; Kallos, G.; Walters, J. T.

    2013-02-01

    This study examines dynamical and microphysical features of convective clouds that affect mercury (Hg) wet scavenging and concentrations in rainfall. Using idealized numerical model simulations in the Regional Atmospheric Modeling System (RAMS), we diagnose vertical transport and scavenging of soluble Hg species in thunderstorms under typical environmental conditions found in the Northeast and Southeast United States (US). Three important environmental characteristics that impact thunderstorm morphology were studied: convective available potential energy (CAPE), vertical shear (0-6 km) of horizontal wind (SHEAR) and precipitable water (PW). We find that in a strong convective storm in the Southeast US that about 40% of mercury in the boundary layer (0-2 km) can be scavenged and deposited to the surface. Removal efficiencies are 35% or less in the free troposphere and decline with altitude. Nevertheless, if we assume that soluble Hg species are initially uniformly mixed vertically, then about 60% deposited mercury deposited by the thunderstorm originates in the free troposphere. For a given CAPE, storm morphology and Hg deposition respond to SHEAR and PW. Experiments show that the response of mercury concentration in rainfall to SHEAR depends on the amount of PW. For low PW, increasing SHEAR decreases mercury concentrations in high-rain amounts (>13 mm). However, at higher PW values, increasing SHEAR decreases mercury concentrations for all rainfall amounts. These experiments suggest that variations in environmental characteristics relevant to thunderstorm formation and evolution can also contribute to geographical difference in wet deposition of mercury. An ensemble of thunderstorm simulations was also conducted for different combinations of CAPE, SHEAR and PW values derived from radiosonde observations at five sites in the Northeast United States (US) and at three sites in the Southeast US. Using identical initial concentrations of gaseous oxidized mercury (GOM

  3. Mesoscale Convective Systems in SCSMEX: Simulated by a Regional Climate Model and a Cloud Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Qian, I.; Lau, W.; Shie, C.-L.; Starr, David (Technical Monitor)

    2002-01-01

    's Yantz River during 1998. The exact location (region) of the flooding can be effected by the soil-rainfall feedback. Also, the Goddard Cumulus Ensemble (GCE) model which allows for realistic moist processes as well as explicit interactions between cloud and radiation, and cloud and surface processes will be used to simulate convective systems associated with the onset of the South China Sea Monsoon in 1998. The GCE model also includes the same PLACE and radiation scheme used in the RELACS. A detailed comparison between the results from the GCE model and RELACS will be performed.

  4. Precipitation Processes Derived from TRMM Satellite Data, Cloud Resolving Model and Field Campaigns

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Lang, S.; Simpson, J.; Meneghini, R.; Halverson, J.; Johnson, R.; Adler, R.; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Rainfall is a key link in the hydrologic cycle and is a primary heat source for the atmosphere. The vertical distribution of latent-heat release, which is accompanied by rainfall, modulates the large-scale circulations of the tropics and in turn can impact midlatitude weather. This latent heat release is a consequence of phase changes between vapor, liquid. and solid water. Present large-scale weather and climate models can simulate cloud latent heat release only crudely thus reducing their confidence in predictions on both global and regional scales. In this paper, NASA Tropical Rainfall Measuring (TRMM) precipitation radar (PR) derived rainfall information and the Goddard Convective and Stratiform Heating (CSH) algorithm used to estimate the four-dimensional structure of global monthly latent heating and rainfall profiles over the global tropics from December 1997 to October 2000. Rainfall latent heating and radar reflectively structure between ENSO (1997-1998 winter) and non-ENSO (1998-1999 winter) periods are examined and compared. The seasonal variation of heating over various geographic locations (i.e. Indian ocean vs west Pacific; Africa vs S. America) are also analyzed. In addition, the relationship between rainfall latent heating maximum heating level), radar reflectively and SST are examined.

  5. CO Signatures in Subtropical Convective Clouds and Anvils During CRYSTAL-FACE: An Analysis of Convective Transport and Entertainment Using Observations and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Lopez, Jimena P.; Fridlind, Ann M.; Jost, Hans-Jurg; Loewenstein, Max; Ackerman, Andrew S.; Campos, Teresa L.; Weinstock, Elliot M.; Sayres, David S.; Smith, Jessica B.; Pittman, Jasna V.; Hallar, A. Gannet; Avallone, Linnea M.; Davis, Sean M.; Herman, Robert L.

    2006-01-01

    Convective systems are an important mechanism in the transport of boundary layer air into the upper troposphere. The Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign, in July 2002, was developed as a comprehensive atmospheric mission to improve knowledge of subtropical cirrus systems and their roles in regional and global climate. In situ measurements of carbon monoxide (CO), water vapor (H20v), and total water (H20t) aboard NASA's . WB-57F aircraft and CO aboard the U.S. Navy's Twin Otter aircraft were obtained to study the role of convective transport. Three flights sampled convective outflow on 11, 16 and 29 July found varying degrees of CO enhancement relative to the fiee troposphere. A cloud-resolving model used the in situ observations and meteorological fields to study these three systems. Several methods of filtering the observations were devised here using ice water content, relative humidity with respect to ice, and particle number concentration as a means to statistically sample the model results to represent the flight tracks. A weighted histogram based on ice water content observations was then used to sample the simulations for the three flights. In addition, because the observations occurred in the convective outflow cirrus and not in the storm cores, the model was used to estimate the maximum CO within the convective systems. In general, anvil-level air parcels contained an estimated 20-40% boundary layer air in the analyzed storms.

  6. CO Signatures in Subtropical Convective Clouds and Anvils during CRYSTAL-FACE: An Analysis of Convective Transport and Entrainment using Observations and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Lopez, Jimena P.; Fridlind, Ann M.; Jost, Hans-Juerg; Loewenstein, Max; Ackerman, Andrew S.; Campos, Teresa L.; Weinstock, Elliot M.; Sayres, David S.; Smith, Jessica B.; Pittman, Jasna V.

    2006-01-01

    Convective systems are an important mechanism in the transport of boundary layer air into the upper troposphere. The Cirrus Regional Study of Tropical Anvils and Cirrus Layers-Florida Area Cirrus Experiment (CRYSTAL-FACE) campaign, in July 2002, was developed as a comprehensive atmospheric mission to improve knowledge of subtropical cirrus systems and their roles in regional and global climate. In situ measurements of carbon monoxide (CO), water vapor (H2Ov), and total water (H2Ot) aboard NASA's WB-57F aircraft and CO aboard the U.S. Navy's Twin Otter aircraft were obtained to study the role of convective transport. Three flights sampled convective outflow on 11, 16 and 29 July found varying degrees of CO enhancement relative to the free troposphere. A cloud-resolving model used the in situ observations and meteorological fields to study these three systems. Several methods of filtering the observations were devised here using ice water content, relative humidity with respect to ice, and particle number concentration as a means to statistically sample the model results to represent the flight tracks. A weighted histogram based on ice water content observations was then used to sample the simulations for the three flights. In addition, because the observations occurred in the convective outflow cirrus and not in the storm cores, the model was used to estimate the maximum CO within the convective systems. In general, anvil-level air parcels contained an estimated 20-40% boundary layer air in the analyzed storms.

  7. The development of a 3D risk analysis method.

    PubMed

    I, Yet-Pole; Cheng, Te-Lung

    2008-05-01

    Much attention has been paid to the quantitative risk analysis (QRA) research in recent years due to more and more severe disasters that have happened in the process industries. Owing to its calculation complexity, very few software, such as SAFETI, can really make the risk presentation meet the practice requirements. However, the traditional risk presentation method, like the individual risk contour in SAFETI, is mainly based on the consequence analysis results of dispersion modeling, which usually assumes that the vapor cloud disperses over a constant ground roughness on a flat terrain with no obstructions and concentration fluctuations, which is quite different from the real situations of a chemical process plant. All these models usually over-predict the hazardous regions in order to maintain their conservativeness, which also increases the uncertainty of the simulation results. On the other hand, a more rigorous model such as the computational fluid dynamics (CFD) model can resolve the previous limitations; however, it cannot resolve the complexity of risk calculations. In this research, a conceptual three-dimensional (3D) risk calculation method was proposed via the combination of results of a series of CFD simulations with some post-processing procedures to obtain the 3D individual risk iso-surfaces. It is believed that such technique will not only be limited to risk analysis at ground level, but also be extended into aerial, submarine, or space risk analyses in the near future.

  8. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  9. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  10. Size-resolved and integral measurements of cloud condensation nuclei (CCN) at the high-alpine site Jungfraujoch

    NASA Astrophysics Data System (ADS)

    Rose, D.; Gunthe, S. S.; Jurányi, Z.; Gysel, M.; Frank, G. P.; Schneider, J.; Curtius, J.; Pöschl, U.

    2013-12-01

    As part of the CLACE-6 campaign we performed size-resolved CCN measurements for a~supersaturation range of S = 0.079 % to 0.66% at the high-alpine research station Jungfraujoch, Switzerland, in March~2007. The derived effective hygroscopicity parameter κ describing the influence of particle composition on CCN activity was on average 0.23-0.30 for Aitken (50-100 nm) and 0.32-0.43 for accumulation mode particles (100-200 nm). The campaign average value of κ = 0.3 is similar to the average value of κ for other continental locations. When air masses came from southeasterly directions crossing the Po Valley in Italy, particles were much more hygroscopic (κ ≈ 0.42) due to large sulfate mass fractions. The κ values obtained at S = 0.079 % exhibited a good negative correlation with the organic mass fractions derived from PM1 aerosol mass spectrometer (AMS) measurements. Applying a simple mixing rule the organic and inorganic mass fractions observed by the AMS could be used to reproduce the temporal fluctuations of the hygroscopicity of accumulation mode particles quite well. We show how during a cloud event the aerosol particles were activated as cloud droplets and then removed from the air by precipitation leaving behind only a small amount of accumulation mode particles consisting mainly of weakly CCN-active particles, most likely externally mixed unprocessed soot particles. During the campaign we had the opportunity to directly compare two DMT CCN counters for a certain time. The total CCN concentration (NCCN,tot) obtained by the two instruments at equal supersaturations agreed well for both possible operating modes: detecting NCCN,tot directly by sampling the polydisperse aerosol with the CCNC, or indirectly by combining size-resolved measurements of the activated fraction with parallel measurements of the particle size distribution (e.g., by SMPS). However, some supersaturation setpoints differed between the two CCNCs by as much as 20% after applying the

  11. Bootstrapping 3D fermions

    DOE PAGESBeta

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  12. Optical Multi-Channel Intensity Interferometry - Or: How to Resolve O-Stars in the Magellanic Clouds

    NASA Astrophysics Data System (ADS)

    Trippe, Sascha; Kim, Jae-Young; Lee, Bangwon; Choi, Changsu; Oh, Junghwan; Lee, Taeseok; Yoon, Sung-Chul; Im, Myungshin; Park, Yong-Sun

    2014-12-01

    Intensity interferometry, based on the Hanbury Brown--Twiss effect, is a simple and inexpensive method for optical interferometry at microarcsecond angular resolutions; its use in astronomy was abandoned in the 1970s because of low sensitivity. Motivated by recent technical developments, we argue that the sensitivity of large modern intensity interferometers can be improved by factors up to approximately 25,000, corresponding to 11 photometric magnitudes, compared to the pioneering Narrabri Stellar Interferometer. This is made possible by (i) using avalanche photodiodes (APD) as light detectors, (ii) distributing the light received from the source over multiple independent spectral channels, and (iii) use of arrays composed of multiple large light collectors. Our approach permits the construction of large (with baselines ranging from few kilometers to intercontinental distances) optical interferometers at the cost of (very) long-baseline radio interferometers. Realistic intensity interferometer designs are able to achieve limiting R-band magnitudes as good as m_R≈14, sufficient for spatially resolved observations of main-sequence O-type stars in the Magellanic Clouds. Multi-channel intensity interferometers can address a wide variety of science cases: (i) linear radii, effective temperatures, and luminosities of stars, via direct measurements of stellar angular sizes; (ii) mass--radius relationships of compact stellar remnants, via direct measurements of the angular sizes of white dwarfs; (iii) stellar rotation, via observations of rotation flattening and surface gravity darkening; (iv) stellar convection and the interaction of stellar photospheres and magnetic fields, via observations of dark and bright starspots; (v) the structure and evolution of multiple stars, via mapping of the companion stars and of accretion flows in interacting binaries; (vi) direct measurements of interstellar distances, derived from angular diameters of stars or via the interferometric

  13. An Optical Lightning Simulator in an Electrified Cloud-Resolving Model to Prepare the Future Space Lightning Missions

    NASA Astrophysics Data System (ADS)

    Bovalo, Christophe; Defer, Eric; Pinty, Jean-Pierre

    2016-04-01

    The future decade will see the launch of several space missions designed to monitor the total lightning activity. Among these missions, the American (Geostationary Lightning Mapper - GLM) and European (Lightning Imager - LI) optical detectors will be onboard geostationary satellites (GOES-R and MTG, respectively). For the first time, the total lightning activity will be monitored over the full Earth disk and at a very high temporal resolution (2 and 1 ms, respectively). Missions like the French Tool for the Analysis of Radiation from lightNIng and Sprites (TARANIS) and ISS-LIS will bring complementary information in order to better understand the lightning physics and to improve the weather prediction (nowcasting and forecasting). Such missions will generate a huge volume of new and original observations for the scientific community and weather prediction centers that have to be prepared. Moreover, before the launch of these missions, fundamental questions regarding the interpretation of the optical signal property and its relation to cloud optical thickness and lightning discharge processes need to be further investigated. An innovative approach proposed here is to use the synergy existing in the French MesoNH Cloud-Resolving Model (CRM). Indeed, MesoNH is one of the only CRM able to simulate the lifecycle of electrical charges generated within clouds through non-inductive charging process (dependent of the 1-moment microphysical scheme). The lightning flash geometry is based on a fractal law while the electrical field is diagnosed thanks to the Gauss' law. The lightning optical simulator is linked to the electrical scheme as the lightning radiance at 777.4 nm is a function of the lightning current, approximated by the charges neutralized along the lightning path. Another important part is the scattering of this signal by the hydrometeors (mainly ice particles) that is taken into account. Simulations at 1-km resolution are done over the Langmuir Laboratory (New

  14. Mesoscale Convective Systems During SCSMEX: Simulations with a Regional Climate Model and a Cloud-Resolving Model

    NASA Technical Reports Server (NTRS)

    Tao, W.-K.; Wang, Y.; Qian, J.-H.; Shie, C.-L.; Lau, W. K.-M.; Kakar, R.; Starr, David (Technical Monitor)

    2002-01-01

    results show there are more latent heat fluxes prior to the onset of the monsoon. However, more rainfall was simulated after the onset of the monsoon. This modeling study indicates the latent heat fluxes (or evaporation) have more of an impact on precipitation processes and rainfall in the regional climate model simulations than in the cloud-resolving model simulations. Research is underway to determine if the difference in the grid sizes or the moist processes used in these two models is responsible for the differing influence of surface fluxes an precipitation processes.

  15. Convective Systems Over the South China Sea: Cloud-Resolving Model Simulations

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Shie, C.-L.; Johnson, D.; Simpson, J.; Braun, S.; Johnson, R.; Ciesielski, P. E.; Starr, David OC. (Technical Monitor)

    2002-01-01

    The South China Sea Monsoon Experiment (SCSMEX) was conducted in May-June 1998. One of its major objectives is to better understand the key physical processes for the onset and evolution of the summer monsoon over Southeast Asia and southern China. Multiple observation platforms (e.g., upper-air soundings, Doppler radar, ships, wind profilers, radiometers, etc.) during SCSMEX provided a first attempt at investigating the detailed characteristics of convective storms and air pattern changes associated with monsoons over the South China Sea region. SCSMEX also provided rainfall estimates which allows for comparisons with those obtained from the Tropical Rainfall Measuring Mission (TRMM), a low earth orbit satellite designed to measure rainfall from space. The Goddard Cumulus Ensemble (GCE) model (with 1-km grid size) is used to understand and quantify the precipitation processes associated with the summer monsoon over the South China Sea. This is the first (loud-resolving model used to simulate precipitation processes in this particular region. The GCE-model results captured many of the observed precipitation characteristics because it used a fine grid size. For example, the temporal variation of the simulated rainfall compares quite well to the sounding-estimated rainfall variation. The time and domain-averaged temperature (heating/cooling) and water vapor (drying/ moistening) budgets are in good agreement with observations. The GCE-model-simulated rainfall amount also agrees well with TRMM rainfall data. The results show there is more evaporation from the ocean surface prior to the onset of the monsoon than after the on-et of monsoon when rainfall increases. Forcing due to net radiation (solar heating minus longwave cooling) is responsible for about 25% of the precipitation in SCSMEX The transfer of heat from the ocean into the atmosphere does not contribute significantly to the rainfall in SCSMEX. Model sensitivity tests indicated that total rain production is

  16. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  17. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  18. More reliable forecasts with less precise computations: a fast-track route to cloud-resolved weather and climate simulators?

    PubMed Central

    Palmer, T. N.

    2014-01-01

    This paper sets out a new methodological approach to solving the equations for simulating and predicting weather and climate. In this approach, the conventionally hard boundary between the dynamical core and the sub-grid parametrizations is blurred. This approach is motivated by the relatively shallow power-law spectrum for atmospheric energy on scales of hundreds of kilometres and less. It is first argued that, because of this, the closure schemes for weather and climate simulators should be based on stochastic–dynamic systems rather than deterministic formulae. Second, as high-wavenumber elements of the dynamical core will necessarily inherit this stochasticity during time integration, it is argued that the dynamical core will be significantly over-engineered if all computations, regardless of scale, are performed completely deterministically and if all variables are represented with maximum numerical precision (in practice using double-precision floating-point numbers). As the era of exascale computing is approached, an energy- and computationally efficient approach to cloud-resolved weather and climate simulation is described where determinism and numerical precision are focused on the largest scales only. PMID:24842038

  19. Large-scale Environmental Variables and Transition to Deep Convection in Cloud Resolving Model Simulations: A Vector Representation

    SciTech Connect

    Hagos, Samson M.; Leung, Lai-Yung R.

    2012-11-01

    Cloud resolving model simulations and vector analysis are used to develop a quantitative method of assessing regional variations in the relationships between various large-scale environmental variables and the transition to deep convection. Results of the CRM simulations from three tropical regions are used to cluster environmental conditions under which transition to deep convection does and does not take place. Projections of the large-scale environmental variables on the difference between these two clusters are used to quantify the roles of these variables in the transition to deep convection. While the transition to deep convection is most sensitive to moisture and vertical velocity perturbations, the details of the profiles of the anomalies vary from region to region. In comparison, the transition to deep convection is found to be much less sensitive to temperature anomalies over all three regions. The vector formulation presented in this study represents a simple general framework for quantifying various aspects of how the transition to deep convection is sensitive to environmental conditions.

  20. Derivation of Physical and Optical Properties of Midlatitude Cirrus Ice Crystals for a Size-Resolved Cloud Microphysics Model

    NASA Technical Reports Server (NTRS)

    Fridlind, Ann M.; Atlas, Rachel; Van Diedenhoven, Bastiaan; Um, Junshik; McFarquhar, Greg M.; Ackerman, Andrew S.; Moyer, Elisabeth J.; Lawson, R. Paul

    2016-01-01

    Single-crystal images collected in mid-latitude cirrus are analyzed to provide internally consistent ice physical and optical properties for a size-resolved cloud microphysics model, including single-particle mass, projected area, fall speed, capacitance, single-scattering albedo, and asymmetry parameter. Using measurements gathered during two flights through a widespread synoptic cirrus shield, bullet rosettes are found to be the dominant identifiable habit among ice crystals with maximum dimension (Dmax) greater than 100µm. Properties are therefore first derived for bullet rosettes based on measurements of arm lengths and widths, then for aggregates of bullet rosettes and for unclassified (irregular) crystals. Derived bullet rosette masses are substantially greater than reported in existing literature, whereas measured projected areas are similar or lesser, resulting in factors of 1.5-2 greater fall speeds, and, in the limit of large Dmax, near-infrared single-scattering albedo and asymmetry parameter (g) greater by approx. 0.2 and 0.05, respectively. A model that includes commonly imaged side plane growth on bullet rosettes exhibits relatively little difference in microphysical and optical properties aside from approx. 0:05 increase in mid-visible g primarily attributable to plate aspect ratio. In parcel simulations, ice size distribution, and g are sensitive to assumed ice properties.

  1. Spectral ladar: towards active 3D multispectral imaging

    NASA Astrophysics Data System (ADS)

    Powers, Michael A.; Davis, Christopher C.

    2010-04-01

    In this paper we present our Spectral LADAR concept, an augmented implementation of traditional LADAR. This sensor uses a polychromatic source to obtain range-resolved 3D spectral images which are used to identify objects based on combined spatial and spectral features, resolving positions in three dimensions and up to hundreds of meters in distance. We report on a proof-of-concept Spectral LADAR demonstrator that generates spectral point clouds from static scenes. The demonstrator transmits nanosecond supercontinuum pulses generated in a photonic crystal fiber. Currently we use a rapidly tuned receiver with a high-speed InGaAs APD for 25 spectral bands with the future expectation of implementing a linear APD array spectrograph. Each spectral band is independently range resolved with multiple return pulse recognition. This is a critical feature, enabling simultaneous spectral and spatial unmixing of partially obscured objects when not achievable using image fusion of monochromatic LADAR and passive spectral imagers. This enables higher identification confidence in highly cluttered environments such as forested or urban areas (e.g. vehicles behind camouflage or foliage). These environments present challenges for situational awareness and robotic perception which can benefit from the unique attributes of Spectral LADAR. Results from this demonstrator unit are presented for scenes typical of military operations and characterize the operation of the device. The results are discussed here in the context of autonomous vehicle navigation and target recognition.

  2. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  3. The turbulent destruction of clouds - III. Three-dimensional adiabatic shock-cloud simulations

    NASA Astrophysics Data System (ADS)

    Pittard, J. M.; Parkin, E. R.

    2016-04-01

    We present 3D hydrodynamic simulations of the adiabatic interaction of a shock with a dense, spherical cloud. We compare how the nature of the interaction changes with the Mach number of the shock, M, and the density contrast of the cloud, χ. We examine the differences with 2D axisymmetric calculations, perform detailed resolution tests, and compare `inviscid' results to those obtained with the inclusion of a k-ɛ subgrid turbulence model. Resolutions of 32-64 cells per cloud radius are the minimum necessary to capture the dominant dynamical processes in 3D simulations, while the 3D inviscid and k-ɛ simulations typically show very good agreement. Clouds accelerate and mix up to five times faster when they are poorly resolved. The interaction proceeds very similarly in 2D and 3D - although non-azimuthal modes lead to different behaviour, there is very little effect on key global quantities such as the lifetime of the cloud and its acceleration. In particular, we do not find significant differences in the hollowing or `voiding' of the cloud between 2D and 3D simulations with M = 10 and χ = 10, which contradicts previous work in the literature.

  4. 3D Radiative Transfer in Cloudy Atmospheres

    NASA Astrophysics Data System (ADS)

    Marshak, Alexander; Davis, Anthony

    Developments in three-dimensional cloud radiation over the past few decades are assessed and distilled into this contributed volume. Chapters are authored by subject-matter experts who address a broad audience of graduate students, researchers, and anyone interested in cloud-radiation processes in the solar and infrared spectral regions. After two introductory chapters and a section on the fundamental physics and computational techniques, the volume extensively treats two main application areas: the impact of clouds on the Earth's radiation budget, which is an essential aspect of climate modeling; and remote observation of clouds, especially with the advanced sensors on current and future satellite missions. http://www.springeronline.com/alert/article?a=3D1_1fva7w_1j826l_41z_6

  5. Size-resolved cloud condensation nuclei (CCN) activity and closure analysis at the HKUST Supersite in Hong Kong

    NASA Astrophysics Data System (ADS)

    Meng, J. W.; Yeung, M. C.; Li, Y. J.; Lee, B. Y. L.; Chan, C. K.

    2014-09-01

    The cloud condensation nuclei (CCN) properties of atmospheric aerosols were measured on 1-30 May 2011 at the HKUST (Hong Kong University of Science and Technology) Supersite, a coastal site in Hong Kong. Size-resolved CCN activation curves, the ratio of number concentration of CCN (NCCN) to aerosol concentration (NCN) as a function of particle size, were obtained at supersaturation (SS) = 0.15, 0.35, 0.50, and 0.70% using a DMT (Droplet Measurement Technologies) CCN counter (CCNc) and a TSI scanning mobility particle sizer (SMPS). The mean bulk size-integrated NCCN ranged from ~500 cm-3 at SS = 0.15% to ~2100 cm-3 at SS = 0.70%, and the mean bulk NCCN / NCN ratio ranged from 0.16 at SS = 0.15% to 0.65 at SS = 0.70%. The average critical mobility diameters (D50) at SS = 0.15, 0.35, 0.50, and 0.70% were 116, 67, 56, and 46 nm, respectively. The corresponding average hygroscopic parameters (κCCN) were 0.39, 0.36, 0.31, and 0.28. The decrease in κCCN can be attributed to the increase in organic to inorganic volume ratio as particle size decreases, as measured by an Aerodyne high resolution time-of-flight aerosol mass spectrometer (HR-ToF-AMS). The κCCN correlates reasonably well with κAMS_SR based on size-resolved AMS measurements: κAMS_SR = κorg × forg + κinorg × finorg, where forg and finorg are the organic and inorganic volume fractions, respectively, κorg = 0.1 and κinorg = 0.6, with a R2 of 0.51. In closure analysis, NCCN was estimated by integrating the measured size-resolved NCN for particles larger than D50 derived from κ assuming internal mixing state. Estimates using κAMS_SR show that the measured and predicted NCCN were generally within 10% of each other at all four SS. The deviation increased to 26% when κAMS was calculated from bulk PM1 AMS measurements of particles because PM1 was dominated by particles of 200 to 500 nm in diameter, which had a larger inorganic fraction than those of D50 (particle diameter < 200 nm). A constant κ = 0

  6. Region-Based 3d Surface Reconstruction Using Images Acquired by Low-Cost Unmanned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Lari, Z.; Al-Rawabdeh, A.; He, F.; Habib, A.; El-Sheimy, N.

    2015-08-01

    Accurate 3D surface reconstruction of our environment has become essential for an unlimited number of emerging applications. In the past few years, Unmanned Aerial Systems (UAS) are evolving as low-cost and flexible platforms for geospatial data collection that could meet the needs of aforementioned application and overcome limitations of traditional airborne and terrestrial mobile mapping systems. Due to their payload restrictions, these systems usually include consumer-grade imaging and positioning sensor which will negatively impact the quality of the collected geospatial data and reconstructed surfaces. Therefore, new surface reconstruction surfaces are needed to mitigate the impact of using low-cost sensors on the final products. To date, different approaches have been proposed to for 3D surface construction using overlapping images collected by imaging sensor mounted on moving platforms. In these approaches, 3D surfaces are mainly reconstructed based on dense matching techniques. However, generated 3D point clouds might not accurately represent the scanned surfaces due to point density variations and edge preservation problems. In order to resolve these problems, a new region-based 3D surface renostruction trchnique is introduced in this paper. This approach aims to generate a 3D photo-realistic model of individually scanned surfaces within the captured images. This approach is initiated by a Semi-Global dense Matching procedure is carried out to generate a 3D point cloud from the scanned area within the collected images. The generated point cloud is then segmented to extract individual planar surfaces. Finally, a novel region-based texturing technique is implemented for photorealistic reconstruction of the extracted planar surfaces. Experimental results using images collected by a camera mounted on a low-cost UAS demonstrate the feasibility of the proposed approach for photorealistic 3D surface reconstruction.

  7. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  8. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  9. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    NASA Astrophysics Data System (ADS)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  10. Precipitation responses to radiative effects of ice clouds: A cloud-resolving modeling study of a pre-summer torrential precipitation event

    NASA Astrophysics Data System (ADS)

    Shen, Xinyong; Huang, Wenyan; Guo, Chunyan; Jiang, Xiaocen

    2016-10-01

    The precipitation responses to the radiative effects of ice clouds are investigated through analysis of five-day and horizontally averaged data from 2D cumulus ensemble model experiments of a pre-summer torrential precipitation event. The exclusion of the radiative effects of ice clouds lowered the precipitation rate through a substantial reduction in the decrease of hydrometeors when the radiative effects of water clouds were switched on, whereas it increased the precipitation rate through hydrometeor change from an increase to a decrease when the radiative effects of ice clouds were turned off. The weakened hydrometeor decrease was associated with the enhanced longwave radiative cooling mainly through the decreases in the melting of non-precipitating ice to non-precipitating water. The hydrometeor change from an increase to a decrease corresponded to the strengthened longwave radiative cooling in the upper troposphere through the weakened collection of non-precipitating water by precipitation water.

  11. Surface reconstruction for 3D remote sensing

    NASA Astrophysics Data System (ADS)

    Baran, Matthew S.; Tutwiler, Richard L.; Natale, Donald J.

    2012-05-01

    This paper examines the performance of the local level set method on the surface reconstruction problem for unorganized point clouds in three dimensions. Many laser-ranging, stereo, and structured light devices produce three dimensional information in the form of unorganized point clouds. The point clouds are sampled from surfaces embedded in R3 from the viewpoint of a camera focal plane or laser receiver. The reconstruction of these objects in the form of a triangulated geometric surface is an important step in computer vision and image processing. The local level set method uses a Hamilton-Jacobi partial differential equation to describe the motion of an implicit surface in threespace. An initial surface which encloses the data is allowed to move until it becomes a smooth fit of the unorganized point data. A 3D point cloud test suite was assembled from publicly available laser-scanned object databases. The test suite exhibits nonuniform sampling rates and various noise characteristics to challenge the surface reconstruction algorithm. Quantitative metrics are introduced to capture the accuracy and efficiency of surface reconstruction on the degraded data. The results characterize the robustness of the level set method for surface reconstruction as applied to 3D remote sensing.

  12. Size-resolved Chemical Composition of Cloud and Rain Water Collected during the Puerto Rico African Dust and Clouds Study (PRADACS) Campaign

    NASA Astrophysics Data System (ADS)

    Torres, E.; Valle Diaz, C. J.; Zurcher, F.; Lee, T.; Collett, J. L.; Fitzgerald, E.; Cuadra, L.; Prather, K. A.; Mayol-Bracero, O. L.

    2011-12-01

    The underlying physico-chemical processes of dust-aerosol interactions are poorly understood; even less understood is how aging impacts cloud properties and climate as the particles travel from Africa to the Caribbean region. Caribbean landmasses have tropical montane cloud forests (TMCFs) that are tightly coupled to the atmospheric hydrologic cycle. Small-scale shifts in temperature and precipitation could have serious ecological consequences. Therefore, this makes TMCFs an interesting ecosystem to see the effects African Dust (AD) might have on cloud formation and precipitation. As part of the Puerto Rico African Dust and Clouds Study (PRADACS) cloud and rain water samples for subsequent chemical analysis were collected at Pico del Este (PE) station in Luquillo, PR (1051 masl) during summer 2011. At PE, two cloud collectors (i.e., single stage (Aluminum version) and 2-stage (Teflon version) Caltech Active Strand Cloudwater Collector (CASCC)), and a rainwater collector were operated. Measurements such as the liquid water content (LWC), pH, conductivity., and composition of single particles using an aerosol time of flight mass spectrometer (ATOFMS) were performed. Preliminary results showed that days with the influence of African dust (AD), had LWC values that ranged from 300 to 500 mg/m3, pH values up to 5.7,, and conductivity up to 180 μS/cm. The ATOFMS showed titanium and iron ions, suggesting the presence of AD as well as, occasionally, sulfate and nitrate ions suggesting the influence of anthropogenic pollution. Results on the chemical composition and the physical properties of cloud, rainwater, and aerosol for the inorganic as well as the organic fraction and how these properties change for the different air masses observed will also be presented.

  13. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  15. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  16. 3D Spray Droplet Distributions in Sneezes

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia

    2015-11-01

    3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.

  17. Size-resolved Chemical Composition of Cloud and Rain Water Collected during the Puerto Rico African Dust and Clouds Study (PRADACS) Campaign

    NASA Astrophysics Data System (ADS)

    Valle Diaz, C. J.; Mayol-Bracero, O. L.; Zurcher, F.; Gioda, A.; Lee, T.; Collett, J. L.; Pradacs Team

    2010-12-01

    The underlying physico-chemical processes of dust-aerosol interactions are poorly understood; even less understood is how aging impacts cloud properties and climate as the particles travel from Africa to the Caribbean region. Caribbean landmasses have Tropical Montane Cloud Forests (TMCFs) that are tightly coupled to the atmospheric hydrologic cycle. Small-scale shifts in temperature and precipitation could have serious ecological consequences. Therefore, this makes TMCFs an interesting ecosystem to see the effects African Dust (AD) might have on cloud formation and precipitation. The first field measurements of the Puerto Rico African Dust and Clouds Study (PRADACS) were from July 22 to August 12, 2010. Measurements were performed at East Peak (EP) station at Luquillo, PR (1051 masl) and Cape San Juan Station (CSJ), a coastal station at Fajardo, PR (~60 masl). At EP, two cloud collectors (i.e., single stage (Aluminum version) and 2-stage (Teflon version) Caltech Active Strand Cloudwater Collector (CASCC)), and a rainwater collector were operated. Chemical composition (water-soluble ions and carbonaceous, organic nitrogen and metals) and pH were determined for the cloud water and rainwater samples. Here we present preliminary results for EP station. For cloud water and rainwater sampling, pH was 5.5 in average, but during dust events pH values were higher due to the presence of cations that form hydroxides in aqueous solution. Conductivity measurements ranged from 20 to 120 μs/cm; being higher on dust events and lower for rain samples. The values of pH and conductivity in the first stage (large droplets of approximately 15 μm are collected) indicate a higher content of dust than in the second stage (small droplets of approximately 5 μm). This is consistent with the larger sizes of dust particles as well as their lower hygroscopicity which requires more water to serve as Cloud Condensation Nuclei (CCN). Additional results for physical properties and chemical

  18. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  19. Cloud-resolving modeling of aerosol indirect effects in idealized radiative-convective equilibrium with interactive and fixed sea surface temperature

    NASA Astrophysics Data System (ADS)

    Khairoutdinov, M. F.; Yang, C.-E.

    2012-11-01

    The study attempts to evaluate the aerosol indirect effects over tropical oceans in regions of deep convection applying a three-dimensional cloud-resolving model run over a doubly-periodic domain. The Tropics are modeled using a radiative-convective equilibrium idealization when the radiation, turbulence, cloud microphysics, and surface fluxes are explicitly represented while the effects of large-scale circulation are ignored. The aerosol effects are modeled by varying the number concentration of cloud condensation nuclei (CCN) at 1% supersaturation, which serves as a proxy for the aerosol amount in the environment, over a wide range, starting from pristine maritime (50 cm-3) to polluted (1000 cm-3) conditions. No direct effects of aerosol on radiation are included. Two sets of simulations have been run to equilibrium: fixed (non-interactive) sea surface temperature (SST) and interactive SST as predicted by a simple slab-ocean model responding to the surface radiative fluxes and surface enthalpy flux. Both sets of experiments agree on the tendency to make the shortwave cloud forcing more negative and reduce the longwave cloud forcing in response to increasing CCN concentration. These, in turn, tend to cool the SST in interactive-SST case. It is interesting that the absolute change of the SST and most other bulk quantities depends only on relative change of CCN concentration; that is, same SST change can be the result of doubling CCN concentration regardless of clean or polluted conditions. It is found that the 10-fold increase of CCN concentration can cool the SST by as much as 1.5 K. This is quite comparable to 2 K warming obtained in a simulation for clean maritime conditions, but doubled CO2 concentration. Qualitative differences between the interactive and fixed SST cases have been found in sensitivity of the hydrological cycle to the increase in CCN concentration; namely, the precipitation rate shows some tendency to increase in fixed SST case, but robust

  20. Detailed cloud resolving model simulations of the impacts of Saharan air layer dust on tropical deep convection - Part 1: Dust acts as ice nuclei

    NASA Astrophysics Data System (ADS)

    Gong, W.; Min, Q.; Li, R.; Teller, A.; Joseph, E.; Morris, V.

    2010-05-01

    Observational studies suggest that the Saharan Air Layer (SAL), an elevated layer (850-500 hPa) of Saharan air and mineral dust, has strong impacts on the microphysical as well as dynamical properties of tropical deep convective cloud systems along its track. In this case study, numerical simulations using a two-dimensional Detailed Cloud Resolving Model (DCRM) were carried out to investigate the dust-cloud interactions in the tropical deep convection, focusing on the dust role as Ice Nuclei (IN). The simulations showed that mineral dust considerably enhanced heterogeneous nucleation and freezing at temperatures warmer than -40 °C, resulting in more ice hydrometeors number concentration and reduced precipitating size of ice particles. Because of the lower in the saturation over ice as well as more droplet freezing, total latent heating increased, and consequently the updraft velocity was stronger. On the other hand, the increased ice deposition consumed more water vapor at middle troposphere, which induces a competition for water vapor between heterogeneous and homogeneous freezing and nucleation. As a result, dust suppressed the homogeneous droplet freezing and nucleation due to the heterogeneous droplet freezing and the weakened transport of water vapor at lower stratosphere, respectively. These effects led to decreased number concentration of ice cloud particles in the upper troposphere, and consequently lowered the cloud top height during the stratus precipitating stage. Acting as IN, mineral dust also influenced precipitation in deep convection. It initiated earlier the collection because dust-related heterogeneous nucleation and freezing at middle troposphere occur earlier than homogeneous nucleation at higher altitudes. Nevertheless, the convective precipitation was suppressed by reduced collection of large graupel particles and insufficient fallout related to decreased sizes of precipitating ice hydrometeors. On the contrary, dust increased the

  1. Resolved Versus Parametrized Boundary-Layer Plumes. Part III: Derivation of a Statistical Scheme for Cumulus Clouds

    NASA Astrophysics Data System (ADS)

    Jam, A.; Hourdin, F.; Rio, C.; Couvreux, F.

    2013-06-01

    We present a statistical cloud scheme based on the subgrid-scale distribution of the saturation deficit. When analyzed in large-eddy simulations (LES) of a typical cloudy convective boundary layer, this distribution is shown to be bimodal and reasonably well-fitted by a bi-Gaussian distribution. Thanks to a tracer-based conditional sampling of coherent structures of the convective boundary layer in LES, we demonstrate that one mode corresponds to plumes of buoyant air arising from the surface, and the second to their environment, both within the cloud and sub-cloud layers. According to this analysis, we propose a cloud scheme based on a bi-Gaussian distribution of the saturation deficit, which can be easily coupled with any mass-flux scheme that discriminates buoyant plumes from their environment. For that, the standard deviations of the two Gaussian modes are parametrized starting from the top-hat distribution of the subgrid-scale thermodynamic variables given by the mass-flux scheme. Single-column model simulations of continental and maritime case studies show that this approach allows us to capture the vertical and temporal variations of the cloud cover and liquid water.

  2. SPATIALLY RESOLVED H{alpha} MAPS AND SIZES OF 57 STRONGLY STAR-FORMING GALAXIES AT z {approx} 1 FROM 3D-HST: EVIDENCE FOR RAPID INSIDE-OUT ASSEMBLY OF DISK GALAXIES

    SciTech Connect

    Nelson, Erica June; Van Dokkum, Pieter G.; Skelton, Rosalind E.; Bezanson, Rachel; Lundgren, Britt; Brammer, Gabriel; Foerster Schreiber, Natascha; Franx, Marijn; Fumagalli, Mattia; Patel, Shannon; Labbe, Ivo; Rix, Hans-Walter; Da Cunha, Elisabete; Schmidt, Kasper B.; Kriek, Mariska; Quadri, Ryan

    2012-03-10

    We investigate the buildup of galaxies at z {approx} 1 using maps of H{alpha} and stellar continuum emission for a sample of 57 galaxies with rest-frame H{alpha} equivalent widths >100 A in the 3D-HST grism survey. We find that the H{alpha} emission broadly follows the rest-frame R-band light but that it is typically somewhat more extended and clumpy. We quantify the spatial distribution with the half-light radius. The median H{alpha} effective radius r{sub e} (H{alpha}) is 4.2 {+-} 0.1 kpc but the sizes span a large range, from compact objects with r{sub e} (H{alpha}) {approx} 1.0 kpc to extended disks with r{sub e} (H{alpha}) {approx} 15 kpc. Comparing H{alpha} sizes to continuum sizes, we find =1.3 {+-} 0.1 for the full sample. That is, star formation, as traced by H{alpha}, typically occurs out to larger radii than the rest-frame R-band stellar continuum; galaxies are growing their radii and building up from the inside out. This effect appears to be somewhat more pronounced for the largest galaxies. Using the measured H{alpha} sizes, we derive star formation rate surface densities, {Sigma}{sub SFR}. We find that {Sigma}{sub SFR} ranges from {approx}0.05 M{sub Sun} yr{sup -1} kpc{sup -2} for the largest galaxies to {approx}5 M{sub Sun} yr{sup -1} kpc{sup -2} for the smallest galaxies, implying a large range in physical conditions in rapidly star-forming z {approx} 1 galaxies. Finally, we infer that all galaxies in the sample have very high gas mass fractions and stellar mass doubling times <500 Myr. Although other explanations are also possible, a straightforward interpretation is that we are simultaneously witnessing the rapid formation of compact bulges and large disks at z {approx} 1.

  3. Random-profiles-based 3D face recognition system.

    PubMed

    Kim, Joongrock; Yu, Sunjin; Lee, Sangyoun

    2014-01-01

    In this paper, a noble nonintrusive three-dimensional (3D) face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D) face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation.

  4. Random-Profiles-Based 3D Face Recognition System

    PubMed Central

    Joongrock, Kim; Sunjin, Yu; Sangyoun, Lee

    2014-01-01

    In this paper, a noble nonintrusive three-dimensional (3D) face modeling system for random-profile-based 3D face recognition is presented. Although recent two-dimensional (2D) face recognition systems can achieve a reliable recognition rate under certain conditions, their performance is limited by internal and external changes, such as illumination and pose variation. To address these issues, 3D face recognition, which uses 3D face data, has recently received much attention. However, the performance of 3D face recognition highly depends on the precision of acquired 3D face data, while also requiring more computational power and storage capacity than 2D face recognition systems. In this paper, we present a developed nonintrusive 3D face modeling system composed of a stereo vision system and an invisible near-infrared line laser, which can be directly applied to profile-based 3D face recognition. We further propose a novel random-profile-based 3D face recognition method that is memory-efficient and pose-invariant. The experimental results demonstrate that the reconstructed 3D face data consists of more than 50 k 3D point clouds and a reliable recognition rate against pose variation. PMID:24691101

  5. Time-Resolved Imaging of the MALDI Linear-TOF Ion Cloud: Direct Visualization and Exploitation of Ion Optical Phenomena Using a Position- and Time-Sensitive Detector

    NASA Astrophysics Data System (ADS)

    Ellis, Shane R.; Soltwisch, Jens; Heeren, Ron M. A.

    2014-05-01

    In this study, we describe the implementation of a position- and time-sensitive detection system (Timepix detector) to directly visualize the spatial distributions of the matrix-assisted laser desorption ionization ion cloud in a linear-time-of-flight (MALDI linear-ToF) as it is projected onto the detector surface. These time-resolved images allow direct visualization of m/z-dependent ion focusing effects that occur within the ion source of the instrument. The influence of key parameters, namely extraction voltage ( E V ), pulsed-ion extraction (PIE) delay, and even the matrix-dependent initial ion velocity was investigated and were found to alter the focusing properties of the ion-optical system. Under certain conditions where the spatial focal plane coincides with the detector plane, so-called x-y space focusing could be observed (i.e., the focusing of the ion cloud to a small, well-defined spot on the detector). Such conditions allow for the stigmatic ion imaging of intact proteins for the first time on a commercial linear ToF-MS system. In combination with the ion-optical magnification of the system (~100×), a spatial resolving power of 11-16 μm with a pixel size of 550 nm was recorded within a laser spot diameter of ~125 μm. This study demonstrates both the diagnostic and analytical advantages offered by the Timepix detector in ToF-MS.

  6. Height of warm core in very severe cyclonic storms Phailin: INSAT-3D perspective

    NASA Astrophysics Data System (ADS)

    Rani, S. Indira; Prasad, V. S.; Rajagopal, E. N.; Basu, Swati

    2016-05-01

    Warm core is the characteristic that distinguishes tropical cyclones from its extra tropical counter parts, where the center of the cyclone is warmer than its environment. Two of the most common variables used to characterize the warm core are its strength and height. The strength is given by the magnitude of maximum perturbation temperature and the height is the level where the maximum perturbation temperature occurs. INSAT-3D, India's advanced weather satellite, is the first geostationary sounder over India and the surrounding Oceanic regions. INSAT-3D has 18 channel sounder with a resolution of 10 km to profile the atmospheric temperature and humidity. Brightness Temperatures (Tbs) from INSAT-3D sounder channels are used to analyze the warm core structure of Tropical cyclone Phailin (8-14 October 2013) over the North Indian Ocean. Only when the system becomes very severe cyclonic system, when the eye of the cyclone is clearer (fully cloud free), the sounder channel Tbs showed multiple maxima, with strong primary maximum in the middle level (600-500 mb) and the secondary maximum in the upper level (300-250 mb), unlike the conventional belief suggested warm core existence at 250 mb. Due to the high resolution of (10 km) INSAT-3D sounder channels, compared to the Micro wave channels (AMSU-A of 50 km resolution), the warm core structure below 10 km of the atmosphere is well resolved.

  7. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  8. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  9. Automatic 2D-to-3D image conversion using 3D examples from the internet

    NASA Astrophysics Data System (ADS)

    Konrad, J.; Brown, G.; Wang, M.; Ishwar, P.; Wu, C.; Mukherjee, D.

    2012-03-01

    repository. While far from perfect, the presented results demonstrate that on-line repositories of 3D content can be used for effective 2D-to-3D image conversion. With the continuously increasing amount of 3D data on-line and with the rapidly growing computing power in the cloud, the proposed framework seems a promising alternative to operator-assisted 2D-to-3D conversion.

  10. Computer animation of clouds

    SciTech Connect

    Max, N.

    1994-01-28

    Computer animation of outdoor scenes is enhanced by realistic clouds. I will discuss several different modeling and rendering schemes for clouds, and show how they evolved in my animation work. These include transparency-textured clouds on a 2-D plane, smooth shaded or textured 3-D clouds surfaces, and 3-D volume rendering. For the volume rendering, I will present various illumination schemes, including the density emitter, single scattering, and multiple scattering models.

  11. 3D affine registration using teaching-learning based optimization

    NASA Astrophysics Data System (ADS)

    Jani, Ashish; Savsani, Vimal; Pandya, Abhijit

    2013-09-01

    3D image registration is an emerging research field in the study of computer vision. In this paper, two effective global optimization methods are considered for the 3D registration of point clouds. Experiments were conducted by applying each algorithm and their performance was evaluated with respect to rigidity, similarity and affine transformations. Comparison of algorithms and its effectiveness was tested for the average performance to find the global solution for minimizing the error in the terms of distance between the model cloud and the data cloud. The parameters for the transformation matrix were considered as the design variables. Further comparisons of the considered methods were done for the computational effort, computational time and the convergence of the algorithm. The results reveal that the use of TLBO was outstanding for image processing application involving 3D registration. [Figure not available: see fulltext.

  12. Techniques for interactive 3-D scientific visualization

    SciTech Connect

    Glinert, E.P. . Dept. of Computer Science); Blattner, M.M. Hospital and Tumor Inst., Houston, TX . Dept. of Biomathematics California Univ., Davis, CA . Dept. of Applied Science Lawrence Livermore National Lab., CA ); Becker, B.G. . Dept. of Applied Science Lawrence Livermore National La

    1990-09-24

    Interest in interactive 3-D graphics has exploded of late, fueled by (a) the allure of using scientific visualization to go where no-one has gone before'' and (b) by the development of new input devices which overcome some of the limitations imposed in the past by technology, yet which may be ill-suited to the kinds of interaction required by researchers active in scientific visualization. To resolve this tension, we propose a flat 5-D'' environment in which 2-D graphics are augmented by exploiting multiple human sensory modalities using cheap, conventional hardware readily available with personal computers and workstations. We discuss how interactions basic to 3-D scientific visualization, like searching a solution space and comparing two such spaces, are effectively carried out in our environment. Finally, we describe 3DMOVE, an experimental microworld we have implemented to test out some of our ideas. 40 refs., 4 figs.

  13. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  14. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  15. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  16. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  17. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  18. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  19. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  20. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a comp