Science.gov

Sample records for 3d collagen scaffold

  1. Enhancement of neurite outgrowth in neuron cancer stem cells by growth on 3-D collagen scaffolds

    SciTech Connect

    Chen, Chih-Hao; Kuo, Shyh Ming; Liu, Guei-Sheung; Chen, Wan-Nan U.; Chuang, Chin-Wen; Liu, Li-Feng

    2012-11-09

    Highlights: Black-Right-Pointing-Pointer Neuron cancer stem cells (NCSCs) behave high multiply of growth on collagen scaffold. Black-Right-Pointing-Pointer Enhancement of NCSCs neurite outgrowth on porous collagen scaffold. Black-Right-Pointing-Pointer 3-D collagen culture of NCSCs shows an advance differentiation than 2-D culture. -- Abstract: Collagen is one component of the extracellular matrix that has been widely used for constructive remodeling to facilitate cell growth and differentiation. The 3-D distribution and growth of cells within the porous scaffold suggest a clinical significance for nerve tissue engineering. In the current study, we investigated proliferation and differentiation of neuron cancer stem cells (NCSCs) on a 3-D porous collagen scaffold that mimics the natural extracellular matrix. We first generated green fluorescence protein (GFP) expressing NCSCs using a lentiviral system to instantly monitor the transitions of morphological changes during growth on the 3-D scaffold. We found that proliferation of GFP-NCSCs increased, and a single cell mass rapidly grew with unrestricted expansion between days 3 and 9 in culture. Moreover, immunostaining with neuronal nuclei (NeuN) revealed that NCSCs grown on the 3-D collagen scaffold significantly enhanced neurite outgrowth. Our findings confirmed that the 80 {mu}m porous collagen scaffold could enhance attachment, viability and differentiation of the cancer neural stem cells. This result could provide a new application for nerve tissue engineering and nerve regeneration.

  2. Primary human osteoblast culture on 3D porous collagen-hydroxyapatite scaffolds.

    PubMed

    Jones, Gemma L; Walton, Robin; Czernuszka, Jan; Griffiths, Sarah L; El Haj, Alicia J; Cartmell, Sarah H

    2010-09-15

    There is a need in tissue-engineering for 3D scaffolds that mimic the natural extracellular matrix of bone to enhance cell adhesion, proliferation, and differentiation. The scaffold is also required to be degradable. A highly porous scaffold has been developed to incorporate two of the extracellular components found in bone-collagen and hydroxyapatite (HA). The scaffold's collagen component is an afibrillar monomeric type I atelocollagen extracted from foetal calf's skin. This provided a novel environment for the inclusion of HA powder. Five hundred thousand primary human osteoblasts were seeded onto 4 mm cubed scaffolds that varied in ratio of HA to collagen. Weight ratios of 1:99, 25:75, 50:50, and 75:25 hydroxyapatite:collagen (HA:Collagen) were analysed. The scaffolds plus cells were cultured for 21 days. DNA assays and live/dead viability staining demonstrated that all of the scaffolds supported cell proliferation and viability. An alkaline phosphatase assay showed similar osteoblast phenotype maintenance on all of the 3D scaffolds analysed at 21 days. MicroCT analysis demonstrated an increase in total sample volume (correlating to increase in unmineralised matrix production). An even distribution of HA throughout the collagen matrix was observed using this technique. Also at 3 weeks, reductions in the percentage of the mineralised phase of the constructs were seen. These results indicate that each of the ratios of HA/collagen scaffolds have great potential for bone tissue engineering. PMID:20694991

  3. Wound healing properties of a 3-D scaffold comprising soluble silkworm gland hydrolysate and human collagen.

    PubMed

    Kim, Kyu-Oh; Lee, Youngjun; Hwang, Jung-Wook; Kim, Hojin; Kim, Sun Mi; Chang, Sung Woon; Lee, Heui Sam; Choi, Yong-Soo

    2014-04-01

    Biomaterials that serve as scaffolds for cell proliferation and differentiation are increasingly being used in wound repair. In this study, the potential regenerative properties of a 3-D scaffold containing soluble silkworm gland hydrolysate (SSGH) and human collagen were evaluated. The scaffold was generated by solid-liquid phase separation and a freeze-drying method using a homogeneous aqueous solution. The porosity, swelling behavior, protein release, cytotoxicity, and antioxidative properties of scaffolds containing various ratios of SSGH and collagen were evaluated. SSGH/collagen scaffolds had a high porosity of 61-81% and swelling behavior studies demonstrated a 50-75% increase in swelling, along with complete protein release in the presence of phosphate-buffered saline. Cytocompatibility of the SSGH/collagen scaffold was demonstrated using mesenchymal stem cells from human umbilical cord. Furthermore, SSGH/collagen efficiently attenuated oxidative stress-induced cell damage. In an in vivo mouse model of wound healing, the SSGH/collagen scaffold accelerated wound re-epithelialization over a 15-day period. Overall, the microporous SSGH/collagen 3-D scaffold maintained optimal hydration of the exposed tissues and decreased wound healing time. These results contribute to the generation of advanced wound healing materials and may have future therapeutic implications. PMID:24503353

  4. Cell Proliferation on Macro/Nano Surface Structure and Collagen Immobilization of 3D Polycaprolactone Scaffolds.

    PubMed

    Park, Young-Ouk; Myung, Sung-Woon; Kook, Min-Suk; Jung, Sang-Chul; Kim, Byung-Hoon

    2016-02-01

    In this study, 3D polycaprolactone (PCL) scaffolds were fabricated by 3D printing technique. The macro/nano morphology of, 3D PCL scaffolds surface was etched with oxygen plasma. Acrylic acid (AA) plasma-polymerization was performed to functionalize the macro/nano surface with carboxyl groups and then collagen was immobilized with plasma-polymerized 3D PCL scaffolds. After O2 plasma and AA plasma-polymerization, contact angles were decreased. The FE-SEM and AFM results showed that O2 plasma is increased the surface roughness. The MTT assay results showed that proliferation of the M3CT3-E1 cells increased on the oxygen plasma treated and collagen immobilized 3D PCL scaffolds. PMID:27433597

  5. 3D Printing of Composite Calcium Phosphate and Collagen Scaffolds for Bone Regeneration

    PubMed Central

    Inzana, Jason A.; Olvera, Diana; Fuller, Seth M.; Kelly, James P.; Graeve, Olivia A.; Schwarz, Edward M.; Kates, Stephen L.; Awad, Hani A.

    2014-01-01

    Low temperature 3D printing of calcium phosphate scaffolds holds great promise for fabricating synthetic bone graft substitutes with enhanced performance over traditional techniques. Many design parameters, such as the binder solution properties, have yet to be optimized to ensure maximal biocompatibility and osteoconductivity with sufficient mechanical properties. This study tailored the phosphoric acid-based binder solution concentration to 8.75 wt% to maximize cytocompatibility and mechanical strength, with a supplementation of Tween 80 to improve printing. To further enhance the formulation, collagen was dissolved into the binder solution to fabricate collagen-calcium phosphate composites. Reducing the viscosity and surface tension through a physiologic heat treatment and Tween 80, respectively, enabled reliable thermal inkjet printing of the collagen solutions. Supplementing the binder solution with 1–2 wt% collagen significantly improved maximum flexural strength and cell viability. To assess the bone healing performance, we implanted 3D printed scaffolds into a critically sized murine femoral defect for 9 weeks. The implants were confirmed to be osteoconductive, with new bone growth incorporating the degrading scaffold materials. In conclusion, this study demonstrates optimization of material parameters for 3D printed calcium phosphate scaffolds and enhancement of material properties by volumetric collagen incorporation via inkjet printing. PMID:24529628

  6. Bioactive fish collagen/polycaprolactone composite nanofibrous scaffolds fabricated by electrospinning for 3D cell culture.

    PubMed

    Choi, Da Jeong; Choi, Seung Mi; Kang, Hae Yeong; Min, Hye-Jin; Lee, Rira; Ikram, Muhammad; Subhan, Fazli; Jin, Song Wan; Jeong, Young Hun; Kwak, Jong-Young; Yoon, Sik

    2015-07-10

    One of the most challenging objectives of 3D cell culture is the development of scaffolding materials with outstanding biocompatibility and favorable mechanical strength. In this study, we fabricated a novel nanofibrous scaffold composed of fish collagen (FC) and polycaprolactone (PCL) blends by using the electrospinning method. Nanofibrous scaffolds were characterized using a scanning electron microscope (SEM), and it was revealed that the diameter of nanofibers decreased as FC content was increased in the FC/PCL composite nanofibers. The cytocompatibility of the FC/PCL scaffolds was evaluated by SEM, WST-1 assay, confocal microscopy, western blot, and RT-PCR. It was found that the scaffolds not only facilitated the adhesion, spreading, protrusions, and proliferation of thymic epithelial cells (TECs), but also stimulated the expression of genes and proteins involved in cell adhesion and T-cell development. Thus, these results suggest that the FC/PCL composite nanofibrous scaffolds will be a useful model of 3D cell culture for TECs and may have wide applicability in the future for engineering tissues or organs. PMID:25617682

  7. Development of bioartificial myocardium by electrostimulation of 3D collagen scaffolds seeded with stem cells

    PubMed Central

    Haneef, Kanwal; Lila, Nermine; Benadda, Samira; Legrand, Fabien; Carpentier, Alain; Chachques, Juan C.

    2012-01-01

    Electrostimulation (ES) can be defined as a safe physical method to induce stem cell differentiation. The aim of this study is to evaluate the effectiveness of ES on bone marrow mesenchymal stem cells (BMSCs) seeded in collagen scaffolds in terms of proliferation and differentiation into cardiomyocytes. BMSCs were isolated from Wistar rats and seeded into 3D collagen type 1 templates measuring 25 × 25 × 6 mm. Bipolar in vitro ES was performed during 21 days. Electrical impedance and cell proliferation were measured. Expression of cardiac markers was assessed by immunocytochemistry. Viscoelasticity of collagen matrix was evaluated. Electrical impedance assessments showed a low resistance of 234±41 Ohms which indicates good electrical conductivity of collagen matrix. Cell proliferation at 570 nm as significantly increased in ES groups after seven day (ES 0.129±0.03 vs non-stimulated control matrix 0.06±0.01, P=0.002) and after 21 days, (ES 0.22±0.04 vs control 0.13±0.01, P=0.01). Immunocytoche mistry of BMSCs after 21 days ES showed positive staining of cardiac markers, troponin I, connexin 43, sarcomeric alpha-actinin, slow myosin, fast myosin and desmin. Staining for BMSCs marker CD29 after 21 days was negative. Electrostimulation of cell-seeded collagen matrix changed stem cell morphology and biochemical characteristics, increasing the expression of cardiac markers. Thus, MSC-derived differentiated cells by electrostimulation grafted in biological scaffolds might result in a convenient tissue engineering source for myocardial diseases. PMID:23185681

  8. Electrical and Neurotrophin Enhancement of Neurite Outgrowth within a 3D Collagen Scaffold

    PubMed Central

    Adams, Robert D.; Rendell, Sara R.; Counts, Lauren R.; Papke, Jason B.; Willits, Rebecca K.; Harkins, Amy B.

    2016-01-01

    Electrical and chemical stimulation have been studied as potent mechanisms of enhancing nerve regeneration and wound healing. However, it remains unclear how electrical stimuli affect nerve growth, particularly in the presence of neurotrophic factors. The objective of this study was to explore (1) the effect of brain-derived neurotrophic factor (BDNF) and nerve growth factor (NGF) supplementation to support neurite outgrowth in a 3D scaffold, and (2) the effect of brief, low voltage, electrical stimulation (ES) on neurite outgrowth prior to neurotrophin supplementation. Dissociated E11 chick dorsal root ganglia (DRG) were seeded within a 1.5 mg/mL type-I collagen scaffold. For neurotrophin treatments, scaffolds were incubated for 24 hrs in culture media containing nerve growth factor (NGF, 10 ng/mL) or BDNF (200 ng/mL), or both. For ES groups, scaffolds containing neurons were stimulated for 10 min at 8–10 V/m DC, then incubated for 24 hrs with neurotrophin. Fixed and labeled neurons were imaged to measure neurite growth and directionality. BDNF supplementation was not as effective as NGF at supporting DRG neurite outgrowth. ES prior to NGF supplementation improved DRG neurite outgrowth compared to NGF alone. This combination of brief ES with NGF treatment was the most effective treatment compared to NGF or BDNF alone. Brief ES had no impact on neurite directionality in the 3D scaffolds. These results demonstrate that ES improves neurite outgrowth in the presence of neurotrophins, and could provide a potential therapeutic approach to improve nerve regeneration when coupled with neurotrophin treatment. PMID:24710795

  9. Collagen-poly(dialdehyde) guar gum based porous 3D scaffolds immobilized with growth factor for tissue engineering applications.

    PubMed

    Ragothaman, Murali; Palanisamy, Thanikaivelan; Kalirajan, Cheirmadurai

    2014-12-19

    Here we report the preparation of collagen-poly(dialdehyde) guar gum based hybrid functionalized scaffolds covalently immobilized with platelet derived growth factor - BB for tissue engineering applications. Poly(dialdehyde) guar gum was synthesized from selective oxidation of guar gum using sodium periodate. The synthesized poly(dialdehyde) guar gum not only promotes crosslinking of collagen but also immobilizes the platelet derived growth factor through imine bonds. The covalent crosslinking formed in collagen improves thermal, swelling and biodegradation properties of the hybrid scaffolds. The prepared hybrid scaffolds show 3D interconnected honeycomb porous structure when viewed under a microscope. The release of immobilized platelet derived growth factor was seen up to 13th day of incubation thereby proving its sustained delivery. The developed hybrid scaffold leads to a quantum increase in NIH 3T3 fibroblast cell density and proliferation thereby demonstrating its potential for tissue engineering applications. PMID:25263907

  10. 3D bioprinting of BMSC-laden methacrylamide gelatin scaffolds with CBD-BMP2-collagen microfibers.

    PubMed

    Du, Mingchun; Chen, Bing; Meng, Qingyuan; Liu, Sumei; Zheng, Xiongfei; Zhang, Cheng; Wang, Heran; Li, Hongyi; Wang, Nuo; Dai, Jianwu

    2015-01-01

    Three-dimensional (3D) bioprinting combines biomaterials, cells and functional components into complex living tissues. Herein, we assembled function-control modules into cell-laden scaffolds using 3D bioprinting. A customized 3D printer was able to tune the microstructure of printed bone mesenchymal stem cell (BMSC)-laden methacrylamide gelatin scaffolds at the micrometer scale. For example, the pore size was adjusted to 282 ± 32 μm and 363 ± 60 μm. To match the requirements of the printing nozzle, collagen microfibers with a length of 22 ± 13 μm were prepared with a high-speed crusher. Collagen microfibers bound bone morphogenetic protein 2 (BMP2) with a collagen binding domain (CBD) as differentiation-control module, from which BMP2 was able to be controllably released. The differentiation behaviors of BMSCs in the printed scaffolds were compared in three microenvironments: samples without CBD-BMP2-collagen microfibers in the growth medium, samples without microfibers in the osteogenic medium and samples with microfibers in the growth medium. The results indicated that BMSCs showed high cell viability (>90%) during printing; CBD-BMP2-collagen microfibers induced BMSC differentiation into osteocytes within 14 days more efficiently than the osteogenic medium. Our studies suggest that these function-control modules are attractive biomaterials and have potential applications in 3D bioprinting. PMID:26684899

  11. Editorial on the original article entitled “3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration” published in the Biomaterials on February 14, 2014

    PubMed Central

    Li, Lan

    2015-01-01

    The paper entitled “3D printing of composite calcium phosphate and collagen scaffolds for bone regeneration” published in the Biomaterials recently illuminated the way to make particular scaffolds with calcium phosphate (CaP) powder, phosphoric acid, type I collagen and Tween 80 in low temperature. After the optimal concentration of each component was determined, the scaffolds were evaluated in a critically sized murine femoral defect model and exhibited good material properties. We made some related introduction of materials applied in 3D printing for bone tissue engineering based on this article to demonstrate the current progress in this field of study. PMID:26046065

  12. Integration of 3D Printed and Micropatterned Polycaprolactone Scaffolds for Guidance of Oriented Collagenous Tissue Formation In Vivo.

    PubMed

    Pilipchuk, Sophia P; Monje, Alberto; Jiao, Yizu; Hao, Jie; Kruger, Laura; Flanagan, Colleen L; Hollister, Scott J; Giannobile, William V

    2016-03-01

    Scaffold design incorporating multiscale cues for clinically relevant, aligned tissue regeneration has potential to improve structural and functional integrity of multitissue interfaces. The objective of this preclinical study is to develop poly(ε-caprolactone) (PCL) scaffolds with mesoscale and microscale architectural cues specific to human ligament progenitor cells and assess their ability to form aligned bone-ligament-cementum complexes in vivo. PCL scaffolds are designed to integrate a 3D printed bone region with a micropatterned PCL thin film consisting of grooved pillars. The patterned film region is seeded with human ligament cells, fibroblasts transduced with bone morphogenetic protein-7 genes seeded within the bone region, and a tooth dentin segment positioned on the ligament region prior to subcutaneous implantation into a murine model. Results indicate increased tissue alignment in vivo using micropatterned PCL films, compared to random-porous PCL. At week 6, 30 μm groove depth significantly enhances oriented collagen fiber thickness, overall cell alignment, and nuclear elongation relative to 10 μm groove depth. This study demonstrates for the first time that scaffolds with combined hierarchical mesoscale and microscale features can align cells in vivo for oral tissue repair with potential for improving the regenerative response of other bone-ligament complexes. PMID:26820240

  13. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells

    NASA Astrophysics Data System (ADS)

    Guo, Weibo; Wang, Shu; Yu, Xin; Qiu, Jichuan; Li, Jianhua; Tang, Wei; Li, Zhou; Mou, Xiaoning; Liu, Hong; Wang, Zhonglin

    2016-01-01

    The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold because the surface of the scaffold can determine the fate of stem cells. A conductive surface is required for a scaffold to direct stem cells toward neural differentiation. However, most conductive polymers are toxic and not amenable to biological degradation, which restricts the design of neural tissue engineering scaffolds. In this study, we used a bioactive three-dimensional (3D) porcine acellular dermal matrix (PADM), which is mainly composed of type I collagen, as a basic material and successfully assembled a layer of reduced graphene oxide (rGO) nanosheets on the surface of the PADM channels to obtain a porous 3D, biodegradable, conductive and biocompatible PADM-rGO hybrid neural tissue engineering scaffold. Compared with the PADM scaffold, assembling the rGO into the scaffold did not induce a significant change in the microstructure but endowed the PADM-rGO hybrid scaffold with good conductivity. A comparison of the neural differentiation of rat bone-marrow-derived mesenchymal stem cells (MSCs) was performed by culturing the MSCs on PADM and PADM-rGO scaffolds in neuronal culture medium, followed by the determination of gene expression and immunofluorescence staining. The results of both the gene expression and protein level assessments suggest that the rGO-assembled PADM scaffold may promote the differentiation of MSCs into neuronal cells with higher protein and gene expression levels after 7 days under neural differentiation conditions. This study demonstrated that the PADM-rGO hybrid scaffold is a promising scaffold for neural tissue engineering; this scaffold can not only support the growth of MSCs at a high proliferation rate but also enhance the differentiation of MSCs into neural cells.The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold

  14. Construction of a 3D rGO-collagen hybrid scaffold for enhancement of the neural differentiation of mesenchymal stem cells.

    PubMed

    Guo, Weibo; Wang, Shu; Yu, Xin; Qiu, Jichuan; Li, Jianhua; Tang, Wei; Li, Zhou; Mou, Xiaoning; Liu, Hong; Wang, Zhonglin

    2016-01-28

    The cell-material interface is one of the most important considerations in designing a high-performance tissue engineering scaffold because the surface of the scaffold can determine the fate of stem cells. A conductive surface is required for a scaffold to direct stem cells toward neural differentiation. However, most conductive polymers are toxic and not amenable to biological degradation, which restricts the design of neural tissue engineering scaffolds. In this study, we used a bioactive three-dimensional (3D) porcine acellular dermal matrix (PADM), which is mainly composed of type I collagen, as a basic material and successfully assembled a layer of reduced graphene oxide (rGO) nanosheets on the surface of the PADM channels to obtain a porous 3D, biodegradable, conductive and biocompatible PADM-rGO hybrid neural tissue engineering scaffold. Compared with the PADM scaffold, assembling the rGO into the scaffold did not induce a significant change in the microstructure but endowed the PADM-rGO hybrid scaffold with good conductivity. A comparison of the neural differentiation of rat bone-marrow-derived mesenchymal stem cells (MSCs) was performed by culturing the MSCs on PADM and PADM-rGO scaffolds in neuronal culture medium, followed by the determination of gene expression and immunofluorescence staining. The results of both the gene expression and protein level assessments suggest that the rGO-assembled PADM scaffold may promote the differentiation of MSCs into neuronal cells with higher protein and gene expression levels after 7 days under neural differentiation conditions. This study demonstrated that the PADM-rGO hybrid scaffold is a promising scaffold for neural tissue engineering; this scaffold can not only support the growth of MSCs at a high proliferation rate but also enhance the differentiation of MSCs into neural cells. PMID:26750302

  15. Matrix forming characteristics of inner and outer human meniscus cells on 3D collagen scaffolds under normal and low oxygen tensions

    PubMed Central

    2013-01-01

    toward chondrogenic phenotype and ECM production. Oxygen tension played a key role in modulating the redifferentiation of meniscal fibrochondrocytes on a 3D collagen scaffold in vitro. PMID:24330551

  16. Deformation simulation of cells seeded on a collagen-GAG scaffold in a flow perfusion bioreactor using a sequential 3D CFD-elastostatics model.

    PubMed

    Jungreuthmayer, C; Jaasma, M J; Al-Munajjed, A A; Zanghellini, J; Kelly, D J; O'Brien, F J

    2009-05-01

    Tissue-engineered bone shows promise in meeting the huge demand for bone grafts caused by up to 4 million bone replacement procedures per year, worldwide. State-of-the-art bone tissue engineering strategies use flow perfusion bioreactors to apply biophysical stimuli to cells seeded on scaffolds and to grow tissue suitable for implantation into the patient's body. The aim of this study was to quantify the deformation of cells seeded on a collagen-GAG scaffold which was perfused by culture medium inside a flow perfusion bioreactor. Using a microCT scan of an unseeded collagen-GAG scaffold, a sequential 3D CFD-deformation model was developed. The wall shear stress and the hydrostatic wall pressure acting on the cells were computed through the use of a CFD simulation and fed into a linear elastostatics model in order to calculate the deformation of the cells. The model used numerically seeded cells of two common morphologies where cells are either attached flatly on the scaffold wall or bridging two struts of the scaffold. Our study showed that the displacement of the cells is primarily determined by the cell morphology. Although cells of both attachment profiles were subjected to the same mechanical load, cells bridging two struts experienced a deformation up to 500 times higher than cells only attached to one strut. As the scaffold's pore size determines both the mechanical load and the type of attachment, the design of an optimal scaffold must take into account the interplay of these two features and requires a design process that optimizes both parameters at the same time. PMID:19109048

  17. Significant Type I and Type III Collagen Production from Human Periodontal Ligament Fibroblasts in 3D Peptide Scaffolds without Extra Growth Factors

    PubMed Central

    Kumada, Yoshiyuki; Zhang, Shuguang

    2010-01-01

    We here report the development of two peptide scaffolds designed for periodontal ligament fibroblasts. The scaffolds consist of one of the pure self-assembling peptide scaffolds RADA16 through direct coupling to short biologically active motifs. The motifs are 2-unit RGD binding sequence PRG (PRGDSGYRGDS) and laminin cell adhesion motif PDS (PDSGR). RGD and laminin have been previously shown to promote specific biological activities including periodontal ligament fibroblasts adhesion, proliferation and protein production. Compared to the pure RADA16 peptide scaffold, we here show that these designer peptide scaffolds significantly promote human periodontal ligament fibroblasts to proliferate and migrate into the scaffolds (for ∼300 µm/two weeks). Moreover these peptide scaffolds significantly stimulated periodontal ligament fibroblasts to produce extracellular matrix proteins without using extra additional growth factors. Immunofluorescent images clearly demonstrated that the peptide scaffolds were almost completely covered with type I and type III collagens which were main protein components of periodontal ligament. Our results suggest that these designer self-assembling peptide nanofiber scaffolds may be useful for promoting wound healing and especially periodontal ligament tissue regeneration. PMID:20421985

  18. 3D printed PLA-based scaffolds

    PubMed Central

    Serra, Tiziano; Mateos-Timoneda, Miguel A; Planell, Josep A; Navarro, Melba

    2013-01-01

    Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds’ fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields. PMID:23959206

  19. Tuning 3D Collagen Matrix Stiffness Independently of Collagen Concentration Modulates Endothelial Cell Behavior

    PubMed Central

    Mason, Brooke N.; Starchenko, Alina; Williams, Rebecca M.; Bonassar, Lawrence J.; Reinhart-King, Cynthia A.

    2012-01-01

    Numerous studies have described the effects of matrix stiffening on cell behavior using two dimensional (2D) synthetic surfaces; however less is known about the effects of matrix stiffening on cells embedded in three dimensional (3D) in vivo-like matrices. A primary limitation in investigating the effects of matrix stiffness in 3D is the lack of materials that can be tuned to control stiffness independently of matrix density. Here, we use collagen-based scaffolds where the mechanical properties are tuned using non-enzymatic glycation of the collagen in solution, prior to polymerization. Collagen solutions glycated prior to polymerization result in collagen gels with a 3-fold increase in compressive modulus without significant changes to the collagen architecture. Using these scaffolds, we show that endothelial cell spreading increases with matrix stiffness, as does the number and length of angiogenic sprouts and the overall spheroid outgrowth. Differences in sprout length are maintained even when the receptor for advanced glycation endproducts is inhibited. Our results demonstrate the ability to de-couple matrix stiffness from matrix density and structure in collagen gels, and that increased matrix stiffness results in increased sprouting and outgrowth. PMID:22902816

  20. Collagen-hyaluronic acid scaffolds for adipose tissue engineering.

    PubMed

    Davidenko, N; Campbell, J J; Thian, E S; Watson, C J; Cameron, R E

    2010-10-01

    Three-dimensional (3-D) in vitro models of the mammary gland require a scaffold matrix that supports the development of adipose stroma within a robust freely permeable matrix. 3-D porous collagen-hyaluronic acid (HA: 7.5% and 15%) scaffolds were produced by controlled freeze-drying technique and crosslinking with 1-ethyl-3-(3-dimethylaminopropyl)-carbodiimide hydrochloride. All scaffolds displayed uniform, interconnected pore structure (total porosity approximately 85%). Physical and chemical analysis showed no signs of collagen denaturation during the formation process. The values of thermal characteristics indicated that crosslinking occurred and that its efficiency was enhanced by the presence of HA. Although the crosslinking reduced the swelling of the strut material in water, the collagen-HA matrix as a whole tended to swell more and show higher dissolution resistance than pure collagen samples. The compressive modulus and elastic collapse stress were higher for collagen-HA composites. All the scaffolds were shown to support the proliferation and differentiation 3T3-L1 preadipocytes while collagen-HA samples maintained a significantly increased proportion of cycling cells (Ki-67+). Furthermore, collagen-HA composites displayed significantly raised Adipsin gene expression with adipogenic culture supplementation for 8 days vs. control conditions. These results indicate that collagen-HA scaffolds may offer robust, freely permeable 3-D matrices that enhance mammary stromal tissue development in vitro. PMID:20466086

  1. Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration

    PubMed Central

    Meghezi, Sébastien; Seifu, Dawit G.; Bono, Nina; Unsworth, Larry; Mequanint, Kibret; Mantovani, Diego

    2015-01-01

    Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled. The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The “static bioreactor” provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues. PMID:26132527

  2. Engineering 3D Cellularized Collagen Gels for Vascular Tissue Regeneration.

    PubMed

    Meghezi, Sébastien; Seifu, Dawit G; Bono, Nina; Unsworth, Larry; Mequanint, Kibret; Mantovani, Diego

    2015-01-01

    Synthetic materials are known to initiate clinical complications such as inflammation, stenosis, and infections when implanted as vascular substitutes. Collagen has been extensively used for a wide range of biomedical applications and is considered a valid alternative to synthetic materials due to its inherent biocompatibility (i.e., low antigenicity, inflammation, and cytotoxic responses). However, the limited mechanical properties and the related low hand-ability of collagen gels have hampered their use as scaffold materials for vascular tissue engineering. Therefore, the rationale behind this work was first to engineer cellularized collagen gels into a tubular-shaped geometry and second to enhance smooth muscle cells driven reorganization of collagen matrix to obtain tissues stiff enough to be handled. The strategy described here is based on the direct assembling of collagen and smooth muscle cells (construct) in a 3D cylindrical geometry with the use of a molding technique. This process requires a maturation period, during which the constructs are cultured in a bioreactor under static conditions (without applied external dynamic mechanical constraints) for 1 or 2 weeks. The "static bioreactor" provides a monitored and controlled sterile environment (pH, temperature, gas exchange, nutrient supply and waste removal) to the constructs. During culture period, thickness measurements were performed to evaluate the cells-driven remodeling of the collagen matrix, and glucose consumption and lactate production rates were measured to monitor the cells metabolic activity. Finally, mechanical and viscoelastic properties were assessed for the resulting tubular constructs. To this end, specific protocols and a focused know-how (manipulation, gripping, working in hydrated environment, and so on) were developed to characterize the engineered tissues. PMID:26132527

  3. 3D Printing Facilitated Scaffold-free Tissue Unit Fabrication

    PubMed Central

    Tan, Yu; Richards, Dylan J.; Trusk, Thomas C.; Visconti, Richard P.; Yost, Michael J.; Kindy, Mark S.; Drake, Christopher J.; Argraves, William Scott; Markwald, Roger R.; Mei, Ying

    2014-01-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing micro-droplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit micro-droplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation. PMID:24717646

  4. 3D printing facilitated scaffold-free tissue unit fabrication.

    PubMed

    Tan, Yu; Richards, Dylan J; Trusk, Thomas C; Visconti, Richard P; Yost, Michael J; Kindy, Mark S; Drake, Christopher J; Argraves, William Scott; Markwald, Roger R; Mei, Ying

    2014-06-01

    Tissue spheroids hold great potential in tissue engineering as building blocks to assemble into functional tissues. To date, agarose molds have been extensively used to facilitate fusion process of tissue spheroids. As a molding material, agarose typically requires low temperature plates for gelation and/or heated dispenser units. Here, we proposed and developed an alginate-based, direct 3D mold-printing technology: 3D printing microdroplets of alginate solution into biocompatible, bio-inert alginate hydrogel molds for the fabrication of scaffold-free tissue engineering constructs. Specifically, we developed a 3D printing technology to deposit microdroplets of alginate solution on calcium containing substrates in a layer-by-layer fashion to prepare ring-shaped 3D hydrogel molds. Tissue spheroids composed of 50% endothelial cells and 50% smooth muscle cells were robotically placed into the 3D printed alginate molds using a 3D printer, and were found to rapidly fuse into toroid-shaped tissue units. Histological and immunofluorescence analysis indicated that the cells secreted collagen type I playing a critical role in promoting cell-cell adhesion, tissue formation and maturation. PMID:24717646

  5. Superelastic, superabsorbent and 3D nanofiber-assembled scaffold for tissue engineering.

    PubMed

    Chen, Weiming; Ma, Jun; Zhu, Lei; Morsi, Yosry; Ei-Hamshary, Hany; Al-Deyab, Salem S; Mo, Xiumei

    2016-06-01

    Fabrication of 3D scaffold to mimic the nanofibrous structure of the nature extracellular matrix (ECM) with appropriate mechanical properties and excellent biocompatibility, remain an important technical challenge in tissue engineering. The present study reports the strategy to fabricate a 3D nanofibrous scaffold with similar structure to collagen in ECM by combining electrospinning and freeze-drying technique. With the technique reported here, a nanofibrous structure scaffold with hydrophilic and superabsorbent properties can be readily prepared by Gelatin and Polylactic acid (PLA). In wet state the scaffold also shows a super-elastic property, which could bear a compressive strain as high as 80% and recovers its original shape afterwards. Moreover, after 6 days of culture, L-929 cells grow, proliferate and infiltrated into the scaffold. The results suggest that this 3D nanofibrous scaffold would be promising for varied field of tissue engineering application. PMID:26954082

  6. Investigation of 2D and 3D electrospun scaffolds intended for tendon repair.

    PubMed

    Bosworth, L A; Alam, N; Wong, J K; Downes, S

    2013-06-01

    Two-dimensional (2D) electrospun fibre mats have been investigated as fibrous sheets intended as biomaterials scaffolds for tissue repair. It is recognised that tissues are three-dimensional (3D) structures and that optimisation of the fabrication process should include both 2D and 3D scaffolds. Understanding the relative merits of the architecture of 2D and 3D scaffolds for tendon repair is required. This study investigated three different electrospun scaffolds based on poly(ε-caprolactone) fibres intended for repair of injured tendons, referred to as; 2D random sheet, 2D aligned sheet and 3D bundles. 2D aligned fibres and 3D bundles mimicked the parallel arrangement of collagen fibres in natural tendon and 3D bundles further replicated the tertiary layer of a tendon's hierarchical configuration. 3D bundles demonstrated greatest tensile properties, being significantly stronger and stiffer than 2D aligned and 2D random fibres. All scaffolds supported adhesion and proliferation of tendon fibroblasts. Furthermore, 2D aligned sheets and 3D bundles allowed guidance of the cells into a parallel, longitudinal arrangement, which is similar to tendon cells in the native tissue. With their superior physical properties and ability to better replicate tendon tissue, the 3D electrospun scaffolds warrant greater investigation as synthetic grafts in tendon repair. PMID:23504088

  7. Ionic solutes impact collagen scaffold bioactivity.

    PubMed

    Pawelec, K M; Husmann, A; Wardale, R J; Best, S M; Cameron, R E

    2015-02-01

    The structure of ice-templated collagen scaffolds is sensitive to many factors. By adding 0.5 wt% of sodium chloride or sucrose to collagen slurries, scaffold structure could be tuned through changes in ice growth kinetics and interactions of the solute and collagen. With ionic solutes (sodium chloride) the entanglements of the collagen molecule decreased, leading to fibrous scaffolds with increased pore size and decreased attachment of chondrocytes. With non-ionic solutes (sucrose) ice growth was slowed, leading to significantly reduced pore size and up-regulated cell attachment. This highlights the large changes in structure and biological function stimulated by solutes in ice-templating systems. PMID:25649518

  8. Generation of 3D Collagen Gels with Controlled Diverse Architectures.

    PubMed

    Doyle, Andrew D

    2016-01-01

    Rat tail collagen solutions have been used as polymerizable in vitro three dimensional (3D) extracellular matrix (ECM) gels for single and collective cell migration assays as well as spheroid formation. Factors such as ECM concentration, pH, ionic concentration, and temperature can alter collagen polymerization and ECM architecture. This unit describes how to generate 3D collagen gels that have distinct architectures ranging from a highly reticular meshwork of short thin fibrils with small pores to a loose matrix consisting of stiff, parallel-bundled long fibrils by changing collagen polymerization temperature. This permits analysis of 3D cell migration in different ECM architectures found in vivo while maintaining a similar ECM concentration. Also included are collagen labeling techniques helpful for ECM visualization during live fluorescence imaging. © 2016 by John Wiley & Sons, Inc. PMID:27580704

  9. 3D braid scaffolds for regeneration of articular cartilage.

    PubMed

    Ahn, Hyunchul; Kim, Kyoung Ju; Park, Sook Young; Huh, Jeong Eun; Kim, Hyun Jeong; Yu, Woong-Ryeol

    2014-06-01

    Regenerating articular cartilage in vivo from cultured chondrocytes requires that the cells be cultured and implanted within a biocompatible, biodegradable scaffold. Such scaffolds must be mechanically stable; otherwise chondrocytes would not be supported and patients would experience severe pain. Here we report a new 3D braid scaffold that matches the anisotropic (gradient) mechanical properties of natural articular cartilage and is permissive to cell cultivation. To design an optimal structure, the scaffold unit cell was mathematically modeled and imported into finite element analysis. Based on this analysis, a 3D braid structure with gradient axial yarn distribution was designed and manufactured using a custom-built braiding machine. The mechanical properties of the 3D braid scaffold were evaluated and compared with simulated results, demonstrating that a multi-scale approach consisting of unit cell modeling and continuum analysis facilitates design of scaffolds that meet the requirements for mechanical compatibility with tissues. PMID:24556323

  10. FIBROBLAST MECHANICS IN 3D COLLAGEN MATRICES

    PubMed Central

    Rhee, Sangmyung; Grinnell, Frederick

    2007-01-01

    Connective tissues provide mechanical support and frameworks for the other tissues of the body. Type 1 collagen is the major protein component of ordinary connective tissue, and fibroblasts are the cell type primarily responsible for its biosynthesis and remodeling. Research on fibroblasts interacting with collagen matrices explores all four quadrants of cell mechanics: pro-migratory vs. pro-contractile growth factor environments on one axis; high tension vs. low tension cell-matrix interactions on the other. The dendritic fibroblast – probably equivalent to the resting tissue fibroblast – can be observed only in the low tension quadrant and generally has not been appreciated from research on cells incubated with planar culture surfaces. Fibroblasts in the low tension quadrant require microtubules for formation of dendritic extensions, whereas fibroblasts in the high tension quadrant require microtubules for polarization but not for spreading. Ruffling of dendritic extensions rather than their overall protrusion or retraction provides the mechanism for remodeling of floating collagen matrices, and floating matrix remodeling likely reflects a model of tissue mechanical homeostasis. PMID:17825456

  11. Harnessing the Versatility of Bacterial Collagen to Improve the Chondrogenic Potential of Porous Collagen Scaffolds.

    PubMed

    Parmar, Paresh A; St-Pierre, Jean-Philippe; Chow, Lesley W; Puetzer, Jennifer L; Stoichevska, Violet; Peng, Yong Y; Werkmeister, Jerome A; Ramshaw, John A M; Stevens, Molly M

    2016-07-01

    Collagen I foams are used in the clinic as scaffolds to promote articular cartilage repair as they provide a bioactive environment for cells with chondrogenic potential. However, collagen I as a base material does not allow for precise control over bioactivity. Alternatively, recombinant bacterial collagens can be used as "blank slate" collagen molecules to offer a versatile platform for incorporation of selected bioactive sequences and fabrication into 3D scaffolds. Here, we show the potential of Streptococcal collagen-like 2 (Scl2) protein foams modified with peptides designed to specifically and noncovalently bind hyaluronic acid and chondroitin sulfate to improve chondrogenesis of human mesenchymal stem cells (hMSCs) compared to collagen I foams. Specific compositions of functionalized Scl2 foams lead to improved chondrogenesis compared to both nonfunctionalized Scl2 and collagen I foams, as indicated by gene expression, extracellular matrix accumulation, and compression moduli. hMSCs cultured in functionalized Scl2 foams exhibit decreased collagens I and X gene and protein expression, suggesting an advantage over collagen I foams in promoting a chondrocytic phenotype. These highly modular foams can be further modified to improve specific aspects chondrogenesis. As such, these scaffolds also have the potential to be tailored for other regenerative medicine applications. PMID:27219220

  12. 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures

    PubMed Central

    Hanson Shepherd, Jennifer N.; Parker, Sara T.; Shepherd, Robert F.; Gillette, Martha U.; Lewis, Jennifer A.; Nuzzo, Ralph G.

    2011-01-01

    Three-dimensional (3D) microperiodic scaffolds of poly(2-hydroxyethyl methacrylate) (pHEMA) have been fabricated by direct-write assembly of a photopolymerizable hydrogel ink. The ink is initially composed of physically entangled pHEMA chains dissolved in a solution of HEMA monomer, comonomer, photoinitiator and water. Upon printing 3D scaffolds of varying architecture, the ink filaments are exposed to UV light, where they are transformed into an interpenetrating hydrogel network of chemically cross-linked and physically entangled pHEMA chains. These 3D microperiodic scaffolds are rendered growth compliant for primary rat hippocampal neurons by absorption of polylysine. Neuronal cells thrive on these scaffolds, forming differentiated, intricately branched networks. Confocal laser scanning microscopy reveals that both cell distribution and extent of neuronal process alignment depend upon scaffold architecture. This work provides an important step forward in the creation of suitable platforms for in vitro study of sensitive cell types. PMID:21709750

  13. Tissue Engineering: Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake (Small 11/2016).

    PubMed

    Minardi, Silvia; Corradetti, Bruna; Taraballi, Francesca; Sandri, Monica; Martinez, Jonathan O; Powell, Sebastian T; Tampieri, Anna; Weiner, Bradley K; Tasciotti, Ennio

    2016-03-01

    Avoiding the clearance of drug delivery systems from 3D scaffolds is crucial to preserve the bioactivity of their therapeutic payload. This is accomplished on page 1479, by E. Tasciotti and co-workers, through a "concealing" strategy: cloaking PLGA microspheres with the type I collagen matrix of a biomimetic scaffold, which enables the control of the production of inflammatory mediators. PMID:26970527

  14. Phenotypic analysis of bovine chondrocytes cultured in 3D collagen sponges: effect of serum substitutes.

    PubMed

    Yates, Karen E; Allemann, Florin; Glowacki, Julie

    2005-01-01

    Repair of damaged cartilage usually requires replacement tissue or substitute material. Tissue engineering is a promising means to produce replacement cartilage from autologous or allogeneic cell sources. Scaffolds provide a three-dimensional (3D) structure that is essential for chondrocyte function and synthesis of cartilage-specific matrix proteins (collagen type II, aggrecan) and sulfated proteoglycans. In this study, we assessed porous, 3D collagen sponges for in vitro engineering of cartilage in both standard and serum-free culture conditions. Bovine articular chondrocytes (bACs) cultured in 3D sponges accumulated and maintained cartilage matrix over 4 weeks, as assessed by quantitative measures of matrix content, synthesis, and gene expression. Chondrogenesis by bACs cultured with Nutridoma as a serum replacement was equivalent or better than control cultures in serum. In contrast, chondrogenesis in insulin-transferrin-selenium (ITS(+3)) serum replacement cultures was poor, apparently due to decreased cell survival. These data indicate that porous 3D collagen sponges maintain chondrocyte viability, shape, and synthetic activity by providing an environment favorable for high-density chondrogenesis. With quantitative assays for cartilage-specific gene expression and biochemical measures of chondrogenesis in these studies, we conclude that the collagen sponges have potential as a scaffold for cartilage tissue engineering. PMID:15735900

  15. Electrospun nanofibrous 3D scaffold for bone tissue engineering.

    PubMed

    Eap, Sandy; Ferrand, Alice; Palomares, Carlos Mendoza; Hébraud, Anne; Stoltz, Jean-François; Mainard, Didier; Schlatter, Guy; Benkirane-Jessel, Nadia

    2012-01-01

    Tissue engineering aims at developing functional substitutes for damaged tissues by mimicking natural tissues. In particular, tissue engineering for bone regeneration enables healing of some bone diseases. Thus, several methods have been developed in order to produce implantable biomaterial structures that imitate the constitution of bone. Electrospinning is one of these methods. This technique produces nonwoven scaffolds made of nanofibers which size and organization match those of the extracellular matrix. Until now, seldom electrospun scaffolds were produced with thickness exceeding one millimeter. This article introduces a new kind of electrospun membrane called 3D scaffold of thickness easily exceeding one centimeter. The manufacturing involves a solution of poly(ε-caprolactone) in DMF/DCM system. The aim is to establish parameters for electrospinning in order to characterize these 3D scaffolds and, establish whether such scaffolds are potentially interesting for bone regeneration. PMID:22766712

  16. Polycaprolactone nanofiber interspersed collagen type-I scaffold for bone regeneration: a unique injectable osteogenic scaffold.

    PubMed

    Baylan, Nuray; Bhat, Samerna; Ditto, Maggie; Lawrence, Joseph G; Lecka-Czernik, Beata; Yildirim-Ayan, Eda

    2013-08-01

    There is an increasing demand for an injectable cell coupled three-dimensional (3D) scaffold to be used as bone fracture augmentation material. To address this demand, a novel injectable osteogenic scaffold called PN-COL was developed using cells, a natural polymer (collagen type-I), and a synthetic polymer (polycaprolactone (PCL)). The injectable nanofibrous PN-COL is created by interspersing PCL nanofibers within pre-osteoblast cell embedded collagen type-I. This simple yet novel and powerful approach provides a great benefit as an injectable bone scaffold over other non-living bone fracture stabilization polymers, such as polymethylmethacrylate and calcium content resin-based materials. The advantages of injectability and the biomimicry of collagen was coupled with the structural support of PCL nanofibers, to create cell encapsulated injectable 3D bone scaffolds with intricate porous internal architecture and high osteoconductivity. The effects of PCL nanofiber inclusion within the cell encapsulated collagen matrix has been evaluated for scaffold size retention and osteocompatibility, as well as for MC3T3-E1 cells osteogenic activity. The structural analysis of novel bioactive material proved that the material is chemically stable enough in an aqueous solution for an extended period of time without using crosslinking reagents, but it is also viscous enough to be injected through a syringe needle. Data from long-term in vitro proliferation and differentiation data suggests that novel PN-COL scaffolds promote the osteoblast proliferation, phenotype expression, and formation of mineralized matrix. This study demonstrates for the first time the feasibility of creating a structurally competent, injectable, cell embedded bone tissue scaffold. Furthermore, the results demonstrate the advantages of mimicking the hierarchical architecture of native bone with nano- and micro-size formation through introducing PCL nanofibers within macron-size collagen fibers and in

  17. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration

    PubMed Central

    Rosenzweig, Derek H.; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-01-01

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo. PMID:26151846

  18. 3D-Printed ABS and PLA Scaffolds for Cartilage and Nucleus Pulposus Tissue Regeneration.

    PubMed

    Rosenzweig, Derek H; Carelli, Eric; Steffen, Thomas; Jarzem, Peter; Haglund, Lisbet

    2015-01-01

    Painful degeneration of soft tissues accounts for high socioeconomic costs. Tissue engineering aims to provide biomimetics recapitulating native tissues. Biocompatible thermoplastics for 3D printing can generate high-resolution structures resembling tissue extracellular matrix. Large-pore 3D-printed acrylonitrile butadiene styrene (ABS) and polylactic acid (PLA) scaffolds were compared for cell ingrowth, viability, and tissue generation. Primary articular chondrocytes and nucleus pulposus (NP) cells were cultured on ABS and PLA scaffolds for three weeks. Both cell types proliferated well, showed high viability, and produced ample amounts of proteoglycan and collagen type II on both scaffolds. NP generated more matrix than chondrocytes; however, no difference was observed between scaffold types. Mechanical testing revealed sustained scaffold stability. This study demonstrates that chondrocytes and NP cells can proliferate on both ABS and PLA scaffolds printed with a simplistic, inexpensive desktop 3D printer. Moreover, NP cells produced more proteoglycan than chondrocytes, irrespective of thermoplastic type, indicating that cells maintain individual phenotype over the three-week culture period. Future scaffold designs covering larger pore sizes and better mimicking native tissue structure combined with more flexible or resorbable materials may provide implantable constructs with the proper structure, function, and cellularity necessary for potential cartilage and disc tissue repair in vivo. PMID:26151846

  19. Toward single cell traction microscopy within 3D collagen matrices

    SciTech Connect

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-10-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three-dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell–ECM and cell–cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cell migration within collagen gels. - Highlights: • Review of the current state of the art in 3D cell traction force microscopy. • Bulk and micro-characterization of remodelable fibrous collagen gels. • Strategies for performing 3D cell traction microscopy within collagen gels.

  20. 3D Printing of Scaffolds for Tissue Regeneration Applications

    PubMed Central

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M.; Salem, Aliasger K.

    2015-01-01

    The current need for organ and tissue replacement, repair and regeneration for patients is continually growing such that supply is not meeting the high demand primarily due to a paucity of donors as well as biocompatibility issues that lead to immune rejection of the transplant. In an effort to overcome these drawbacks, scientists working in the field of tissue engineering and regenerative medicine have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired a growing interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity and precision, where fine details can be included at a micron level. In this review, we discuss the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering. A hybrid approach, employing both natural and synthetic materials, as well as multiple printing processes may be the key to yielding an ECM-like scaffold with high mechanical strength, porosity, interconnectivity, biocompatibility, biodegradability, and high processability. Creating such biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  1. Chitosan-based hydrogel tissue scaffolds made by 3D plotting promotes osteoblast proliferation and mineralization.

    PubMed

    Liu, I-Hsin; Chang, Shih-Hsin; Lin, Hsin-Yi

    2015-06-01

    A 3D plotting system was used to make chitosan-based tissue scaffolds with interconnected pores using pure chitosan (C) and chitosan cross-linked with pectin (CP) and genipin (CG). A freeze-dried chitosan scaffold (CF/D) was made to compare with C, to observe the effects of structural differences. The fiber size, pore size, porosity, compression strength, swelling ratio, drug release efficacy, and cumulative weight loss of the scaffolds were measured. Osteoblasts were cultured on the scaffolds and their proliferation, type I collagen production, alkaline phosphatase activity, calcium deposition, and morphology were observed. C had a lower swelling ratio, degradation, porosity and drug release efficacy and a higher compressional stiffness and cell proliferation compared to CF/D (p < 0.05). Of the 3D-plotted samples, cells on CP exhibited the highest degree of mineralization after 21 d (p < 0.05). CP also had the highest swelling ratio and fastest drug release, followed by C and CG (p < 0.05). Both CP and CG were stiffer and degraded more slowly in saline solution than C (p < 0.05). In summary, 3D-plotted scaffolds were stronger, less likely to degrade and better promoted osteoblast cell proliferation in vitro compared to the freeze-dried scaffolds. C, CP and CG were structurally similar, and the different crosslinking caused significant changes in their physical and biological performances. PMID:25970802

  2. 3D Printing of Scaffolds for Tissue Regeneration Applications.

    PubMed

    Do, Anh-Vu; Khorsand, Behnoush; Geary, Sean M; Salem, Aliasger K

    2015-08-26

    The current need for organ and tissue replacement, repair, and regeneration for patients is continually growing such that supply is not meeting demand primarily due to a paucity of donors as well as biocompatibility issues leading to immune rejection of the transplant. In order to overcome these drawbacks, scientists have investigated the use of scaffolds as an alternative to transplantation. These scaffolds are designed to mimic the extracellular matrix (ECM) by providing structural support as well as promoting attachment, proliferation, and differentiation with the ultimate goal of yielding functional tissues or organs. Initial attempts at developing scaffolds were problematic and subsequently inspired an interest in 3D printing as a mode for generating scaffolds. Utilizing three-dimensional printing (3DP) technologies, ECM-like scaffolds can be produced with a high degree of complexity, where fine details can be included at a micrometer level. In this Review, the criteria for printing viable and functional scaffolds, scaffolding materials, and 3DP technologies used to print scaffolds for tissue engineering are discussed. Creating biofunctional scaffolds could potentially help to meet the demand by patients for tissues and organs without having to wait or rely on donors for transplantation. PMID:26097108

  3. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  4. 3D conductive nanocomposite scaffold for bone tissue engineering.

    PubMed

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  5. Cartilage Tissue Engineering: Preventing Tissue Scaffold Contraction Using a 3D-Printed Polymeric Cage.

    PubMed

    Visscher, Dafydd O; Bos, Ernst J; Peeters, Mirte; Kuzmin, Nikolay V; Groot, Marie Louise; Helder, Marco N; van Zuijlen, Paul P M

    2016-06-01

    Scaffold contraction is a common but underestimated problem in the field of tissue engineering. It becomes particularly problematic when creating anatomically complex shapes such as the ear. The aim of this study was to develop a contraction-free biocompatible scaffold construct for ear cartilage tissue engineering. To address this aim, we used three constructs: (i) a fibrin/hyaluronic acid (FB/HA) hydrogel, (ii) a FB/HA hydrogel combined with a collagen I/III scaffold, and (iii) a cage construct containing (ii) surrounded by a 3D-printed poly-ɛ-caprolactone mold. A wide range of different cell types were tested within these constructs, including chondrocytes, perichondrocytes, adipose-derived mesenchymal stem cells, and their combinations. After in vitro culturing for 1, 14, and 28 days, all constructs were analyzed. Macroscopic observation showed severe contraction of the cell-seeded hydrogel (i). This could be prevented, in part, by combining the hydrogel with the collagen scaffold (ii) and prevented in total using the 3D-printed cage construct (iii). (Immuno)histological analysis, multiphoton laser scanning microscopy, and biomechanical analysis showed extracellular matrix deposition and increased Young's modulus and thereby the feasibility of ear cartilage engineering. These results demonstrated that the 3D-printed cage construct is an adequate model for contraction-free ear cartilage engineering using a range of cell combinations. PMID:27089896

  6. Osteogenic effect of controlled released rhBMP-2 in 3D printed porous hydroxyapatite scaffold.

    PubMed

    Wang, Hai; Wu, Gui; Zhang, Jing; Zhou, Kui; Yin, Bo; Su, Xinlin; Qiu, Guixing; Yang, Guang; Zhang, Xianglin; Zhou, Gang; Wu, Zhihong

    2016-05-01

    Recently, 3D printing as effective technology has been highlighted in the biomedical field. Previously, a porous hydroxyapatite (HA) scaffold with the biocompatibility and osteoconductivity has been developed by this method. However, its osteoinductivity is limited. The main purpose of this study was to improve it by the introduction of recombinant human bone morphogenetic protein-2 (rhBMP-2). This scaffold was developed by coating rhBMP-2-delivery microspheres with collagen. These synthesized scaffolds were characterized by Scanning Electron Microscopy (SEM), a delivery test in vitro, cell culture, and the experiments in vivo by a Micro-computed tomography (μCT) scan and histological evaluation of VanGieson staining. SEM results indicated the surface of scaffolds were more fit for the adhesion of hMSCs to coat collagen/rhBMP-2 microspheres. Biphasic release of rhBMP-2 could continue for more than 21 days, and keep its osteoinductivity to induce osteogenic differentiation of hMSCs in vitro. In addition, the experiments in vivo showed that the scaffold had a good bone regeneration capacity. These findings demonstrate that the HA/Collagen/Chitosan Microspheres system can simultaneously achieve localized long-term controlled release of rhBMP-2 and bone regeneration, which provides a promising route for improving the treatment of bone defects. PMID:26896655

  7. Biomimetic Concealing of PLGA Microspheres in a 3D Scaffold to Prevent Macrophage Uptake.

    PubMed

    Minardi, Silvia; Corradetti, Bruna; Taraballi, Francesca; Sandri, Monica; Martinez, Jonathan O; Powell, Sebastian T; Tampieri, Anna; Weiner, Bradley K; Tasciotti, Ennio

    2016-03-01

    Scaffolds functionalized with delivery systems for the release of growth factors is a robust strategy to enhance tissue regeneration. However, after implantation, macrophages infiltrate the scaffold, eventually initiating the degradation and clearance of the delivery systems. Herein, it is hypothesized that fully embedding the poly(d,l-lactide-co-glycolide acid) microspheres (MS) in a highly structured collagen-based scaffold (concealing) can prevent their detection, preserving the integrity of the payload. Confocal laser microscopy reveals that non-embedded MS are easily internalized; when concealed, J774 and bone marrow-derived macrophages (BMDM) cannot detect them. This is further demonstrated by flow cytometry, as a tenfold decrease is found in the number of MS engulfed by the cells, suggesting that collagen can cloak the MS. This correlates with the amount of nitric oxide and tumor necrosis factor-α produced by J774 and BMDM in response to the concealed MS, comparable to that found for non-functionalized collagen scaffolds. Finally, the release kinetics of a reporter protein is preserved in the presence of macrophages, only when MS are concealed. The data provide detailed strategies for fabricating three dimensional (3D) biomimetic scaffolds able to conceal delivery systems and preserve the therapeutic molecules for release. PMID:26797709

  8. Towards Single Cell Traction Microscopy within 3D Collagen Matrices

    PubMed Central

    Hall, Matthew S.; Long, Rong; Feng, Xinzeng; Huang, YuLing; Hui, Chung-Yuen; Wu, Mingming

    2013-01-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion, and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D cell traction force microscopy, in which cells are cultured on a flat substrate. 3D cell traction microscopy is emerging for mapping traction fields of single animal cells embedded in either synthetic or natively derived fibrous gels. We discuss here the development of 3D cell traction microscopy, its current limitations, and perspectives on the future of this technology. Emphasis is placed on strategies for applying 3D cell traction microscopy to individual tumor cells migration within collagen gels. PMID:23806281

  9. Biomimetic collagen scaffolds with anisotropic pore architecture.

    PubMed

    Davidenko, N; Gibb, T; Schuster, C; Best, S M; Campbell, J J; Watson, C J; Cameron, R E

    2012-02-01

    Sponge-like matrices with a specific three-dimensional structural design resembling the actual extracellular matrix of a particular tissue show significant potential for the regeneration and repair of a broad range of damaged anisotropic tissues. The manipulation of the structure of collagen scaffolds using a freeze-drying technique was explored in this work as an intrinsically biocompatible way of tailoring the inner architecture of the scaffold. The research focused on the influence of temperature gradients, imposed during the phase of crystallisation of collagen suspensions, upon the degree of anisotropy in the microstructures of the scaffolds produced. Moulding technology was employed to achieve differences in heat transfer rates during the freezing processes. For this purpose various moulds with different configurations were developed with a view to producing uniaxial and multi-directional temperature gradients across the sample during this process. Scanning electron microscopy analysis of different cross-sections (longitudinal and horizontal) of scaffolds revealed that highly aligned matrices with axially directed pore architectures were obtained where single unidirectional temperature gradients were induced. Altering the freezing conditions by the introduction of multiple temperature gradients allowed collagen scaffolds to be produced with complex pore orientations, and anisotropy in pore size and alignment. PMID:22005330

  10. Single Cell Traction Microscopy within 3D Collagen Matrices

    NASA Astrophysics Data System (ADS)

    Wu, Mingming

    2014-03-01

    Mechanical interaction between the cell and its extracellular matrix (ECM) regulates cellular behaviors, including proliferation, differentiation, adhesion and migration. Cells require the three dimensional (3D) architectural support of the ECM to perform physiologically realistic functions. However, our current understanding of cell-ECM and cell-cell mechanical interactions is largely derived from 2D traction force microscopy, in which cells are cultured on a flat substrate. It is now clear that what we learn about cellular behavior on a 2D substrate does not always apply to cells embedded within a 3D biomatrix. 3D traction microscopy is emerging for mapping traction fields of single cells embedded in 3D gel, but current methods cannot account for the fibrous and nonlinear properties of collagen gel. In this talk, I will present a forward computation algorithm that we have developed for 3D cell traction measurements within collagen gels. The application of this technology to understanding cancer migration and invasion will be discussed. This work is supported by the National Center for Research Resources (5R21RR025801-03, NIH) and the National Institute of General Medical Sciences (8 R21 GM103388-03,NIH), and the Cornell Center on the Microenvironment & Metastasis.

  11. 3D printing of novel osteochondral scaffolds with graded microstructure.

    PubMed

    Nowicki, Margaret A; Castro, Nathan J; Plesniak, Michael W; Zhang, Lijie Grace

    2016-10-14

    Osteochondral tissue has a complex graded structure where biological, physiological, and mechanical properties vary significantly over the full thickness spanning from the subchondral bone region beneath the joint surface to the hyaline cartilage region at the joint surface. This presents a significant challenge for tissue-engineered structures addressing osteochondral defects. Fused deposition modeling (FDM) 3D bioprinters present a unique solution to this problem. The objective of this study is to use FDM-based 3D bioprinting and nanocrystalline hydroxyapatite for improved bone marrow human mesenchymal stem cell (hMSC) adhesion, growth, and osteochondral differentiation. FDM printing parameters can be tuned through computer aided design and computer numerical control software to manipulate scaffold geometries in ways that are beneficial to mechanical performance without hindering cellular behavior. Additionally, the ability to fine-tune 3D printed scaffolds increases further through our investment casting procedure which facilitates the inclusion of nanoparticles with biochemical factors to further elicit desired hMSC differentiation. For this study, FDM was used to print investment-casting molds innovatively designed with varied pore distribution over the full thickness of the scaffold. The mechanical and biological impacts of the varied pore distributions were compared and evaluated to determine the benefits of this physical manipulation. The results indicate that both mechanical properties and cell performance improve in the graded pore structures when compared to homogeneously distributed porous and non-porous structures. Differentiation results indicated successful osteogenic and chondrogenic manipulation in engineered scaffolds. PMID:27606933

  12. The Potential of Encapsulating “Raw Materials” in 3D Osteochondral Gradient Scaffolds

    PubMed Central

    Mohan, Neethu; Gupta, Vineet; Sridharan, BanuPriya; Sutherland, Amanda; Detamore, Michael S.

    2015-01-01

    Scaffolds with continuous gradients in material composition and bioactive signals enable a smooth transition of properties at the interface. Components like chondroitin sulfate (CS) and bioactive glass (BG) in 3D scaffolds may serve as “raw materials” for synthesis of new extracellular matrix (ECM), and may have the potential to completely or partially replace expensive growth factors. We hypothesized that scaffolds with gradients of ECM components would enable superior performance of engineered constructs. Raw material encapsulation altered the appearance, structure, porosity, and degradation of the scaffolds. They allowed the scaffolds to better retain their 3D structure during culture and provided a buffering effect to the cells in culture. Following seeding of rat mesenchymal stem cells, there were several instances where glycosaminoglycan (GAG), collagen, or calcium contents were higher with the scaffolds containing raw materials (CS or BG) than with those containing transforming growth factor (TGF)-β3 or bone morphogenetic protein (BMP)-2. It was also noteworthy that a combination of both CS and TGF-β3 increased the secretion of collagen type II. Moreover, cells seeded in scaffolds containing opposing gradients of CS/TGF-β3 and BG/BMP-2 produced clear regional variations in the secretion of tissue-specific ECM. The study demonstrated raw materials have the potential to create a favorable microenvironment for cells; they can significantly enhance the synthesis of certain extracellular matrix (ECM) components when compared to expensive growth factors; either alone or in combination with growth factors they can enhance the secretion of tissue specific matrix proteins. Raw materials are promising candidates that can be used to either replace or be used in combination with growth factors. Success with raw materials in lieu of growth factors could have profound implications in terms of lower cost and faster regulatory approval for more rapid translation of

  13. Highly porous 3D nanofiber scaffold using an electrospinning technique.

    PubMed

    Kim, Geunhyung; Kim, WanDoo

    2007-04-01

    A successful 3D tissue-engineering scaffold must have a highly porous structure and good mechanical stability. High porosity and optimally designed pore size provide structural space for cell accommodation and migration and enable the exchange of nutrients between the scaffold and environment. Poly(epsilon-carprolactone) fibers were electrospun using an auxiliary electrode and chemical blowing agent (BA), and characterized according to porosity, pore size, and their mechanical properties. We also investigated the effect of the BA on the electrospinning processability. The growth characteristic of human dermal fibroblasts cells cultured in the webs showed the good adhesion with the blown web relative to a normal electrospun mat. The blown nanofiber web had good tensile properties and high porosity compared to a typical electrospun nanofiber scaffold. PMID:16924612

  14. Improved resolution of 3D printed scaffolds by shrinking.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2015-10-01

    Three-dimensional printing (3DP) uses inkjet printheads to selectively deposit liquid binder to adjoin powder particles in a layer-by-layer fashion to create a computer-modeled 3D object. Two general approaches for 3DP have been described for biomedical applications (direct and indirect 3DP). The two approaches offer competing advantages, and both are limited by print resolution. This study describes a materials processing strategy to enhance 3DP resolution by controlled shrinking net-shape scaffolds. Briefly, porogen preforms are printed and infused with the desired monomer or polymer solution. After solidification or polymerization, the porogen is leached and the polymer is allowed to shrink by controlled drying. Heat treatment is performed to retain the dimensions against swelling forces. The main objective of this study is to determine the effects of polymer content and post-processing on dimension, microstructure, and thermomechanical properties of the scaffold. For polyethylene glycol diacrylate (PEG-DA), reducing polymer content corresponded with greater shrinkage with maximum shrinkage of ∼80 vol% at 20% vol% PEG-DA. The secondary heat treatment retains the microarchitecture and new dimensions of the scaffolds, even when the heat-treated scaffolds are immersed into water. To demonstrate shrinkage predictability, 3D components with interlocking positive and negative features were printed, processed, and fitted. This material processing strategy provides an alternative method to enhance the resolution of 3D scaffolds, for a wide range of polymers, without optimizing the binder-powder interaction physics to print each material combination. PMID:25404276

  15. Engineering Human TMJ Discs with Protein-Releasing 3D-Printed Scaffolds.

    PubMed

    Legemate, K; Tarafder, S; Jun, Y; Lee, C H

    2016-07-01

    The temporomandibular joint (TMJ) disc is a heterogeneous fibrocartilaginous tissue positioned between the mandibular condyle and glenoid fossa of the temporal bone, with important roles in TMJ functions. Tissue engineering TMJ discs has emerged as an alternative approach to overcoming limitations of current treatments for TMJ disorders. However, the anisotropic collagen orientation and inhomogeneous fibrocartilaginous matrix distribution present challenges in the tissue engineering of functional TMJ discs. Here, we developed 3-dimensional (3D)-printed anatomically correct scaffolds with region-variant microstrand alignment, mimicking anisotropic collagen alignment in the TMJ disc and corresponding mechanical properties. Connective tissue growth factor (CTGF) and transforming growth factor beta 3 (TGFβ3) were then delivered in the scaffolds by spatially embedding CTGF- or TGFβ3-encapsulated microspheres (µS) to reconstruct the regionally variant fibrocartilaginous matrix in the native TMJ disc. When cultured with human mesenchymal stem/progenitor cells (MSCs) for 6 wk, 3D-printed scaffolds with CTGF/TGFβ3-µS resulted in a heterogeneous fibrocartilaginous matrix with overall distribution of collagen-rich fibrous structure in the anterior/posterior (AP) bands and fibrocartilaginous matrix in the intermediate zone, reminiscent of the native TMJ disc. High dose of CTGF/TGFβ3-µS (100 mg µS/g of scaffold) showed significantly more collagen II and aggrecan in the intermediate zone than a low dose (50 mg µS/g of scaffold). Similarly, a high dose of CTGF/TGFβ3-µS yielded significantly higher collagen I expression in the AP bands compared with the low-dose and empty µS. From stress relaxation tests, the ratio of relaxation modulus to instantaneous modulus was significantly smaller with CTGF/TGFβ3-µS than empty µS. Similarly, a significantly higher coefficient of viscosity was achieved with the high dose of CTGF/TGFβ3-µS compared with the low-dose and empty

  16. Evaluation of 3D nano-macro porous bioactive glass scaffold for hard tissue engineering.

    PubMed

    Wang, S; Falk, M M; Rashad, A; Saad, M M; Marques, A C; Almeida, R M; Marei, M K; Jain, H

    2011-05-01

    Recently, nano-macro dual-porous, three-dimensional (3D) glass structures were developed for use as bioscaffolds for hard tissue regeneration, but there have been concerns regarding the interconnectivity and homogeneity of nanopores in the scaffolds, as well as the cytotoxicity of the environment deep inside due to limited fluid access. Therefore, mercury porosimetry, nitrogen absorption, and TEM have been used to characterize nanopore network of the scaffolds. In parallel, viability of MG 63 human osteosarcoma cells seeded on scaffold surface was investigated by fluorescence, confocal and electron microscopy methods. The results show that cells attach, migrate and penetrate inside the glass scaffold with high proliferation and viability rate. Additionally, scaffolds were implanted under the skin of a male New Zealand rabbit for in vivo animal test. Initial observations show the formation of new tissue with blood vessels and collagen fibers deep inside the implanted scaffolds with no obvious inflammatory reaction. Thus, the new nano-macro dual-porous glass structure could be a promising bioscaffold for use in regenerative medicine and tissue engineering for bone regeneration. PMID:21445655

  17. Design and characterization of microcapsules-integrated collagen matrixes as multifunctional three-dimensional scaffolds for soft tissue engineering.

    PubMed

    Del Mercato, Loretta L; Passione, Laura Gioia; Izzo, Daniela; Rinaldi, Rosaria; Sannino, Alessandro; Gervaso, Francesca

    2016-09-01

    Three-dimensional (3D) porous scaffolds based on collagen are promising candidates for soft tissue engineering applications. The addition of stimuli-responsive carriers (nano- and microparticles) in the current approaches to tissue reconstruction and repair brings about novel challenges in the design and conception of carrier-integrated polymer scaffolds. In this study, a facile method was developed to functionalize 3D collagen porous scaffolds with biodegradable multilayer microcapsules. The effects of the capsule charge as well as the influence of the functionalization methods on the binding efficiency to the scaffolds were studied. It was found that the binding of cationic microcapsules was higher than that of anionic ones, and application of vacuum during scaffolds functionalization significantly hindered the attachment of the microcapsules to the collagen matrix. The physical properties of microcapsules-integrated scaffolds were compared to pristine scaffolds. The modified scaffolds showed swelling ratios, weight losses and mechanical properties similar to those of unmodified scaffolds. Finally, in vitro diffusional tests proved that the collagen scaffolds could stably retain the microcapsules over long incubation time in Tris-HCl buffer at 37°C without undergoing morphological changes, thus confirming their suitability for tissue engineering applications. The obtained results indicate that by tuning the charge of the microcapsules and by varying the fabrication conditions, collagen scaffolds patterned with high or low number of microcapsules can be obtained, and that the microcapsules-integrated scaffolds fully retain their original physical properties. PMID:27219851

  18. 3D Scaffolds with Different Stiffness but the Same Microstructure for Bone Tissue Engineering.

    PubMed

    Chen, Guobao; Dong, Chanjuan; Yang, Li; Lv, Yonggang

    2015-07-29

    A growing body of evidence has shown that extracellular matrix (ECM) stiffness can modulate stem cell adhesion, proliferation, migration, differentiation, and signaling. Stem cells can feel and respond sensitively to the mechanical microenvironment of the ECM. However, most studies have focused on classical two-dimensional (2D) or quasi-three-dimensional environments, which cannot represent the real situation in vivo. Furthermore, most of the current methods used to generate different mechanical properties invariably change the fundamental structural properties of the scaffolds (such as morphology, porosity, pore size, and pore interconnectivity). In this study, we have developed novel three-dimensional (3D) scaffolds with different degrees of stiffness but the same 3D microstructure that was maintained by using decellularized cancellous bone. Mixtures of collagen and hydroxyapatite [HA: Ca10(PO4)6(OH)2] with different proportions were coated on decellularized cancellous bone to vary the stiffness (local stiffness, 13.00 ± 5.55 kPa, 13.87 ± 1.51 kPa, and 37.7 ± 19.6 kPa; bulk stiffness, 6.74 ± 1.16 kPa, 8.82 ± 2.12 kPa, and 23.61 ± 8.06 kPa). Microcomputed tomography (μ-CT) assay proved that there was no statistically significant difference in the architecture of the scaffolds before or after coating. Cell viability, osteogenic differentiation, cell recruitment, and angiogenesis were determined to characterize the scaffolds and evaluate their biological responses in vitro and in vivo. The in vitro results indicate that the scaffolds developed in this study could sustain adhesion and growth of rat mesenchymal stem cells (MSCs) and promote their osteogenic differentiation. The in vivo results further demonstrated that these scaffolds could help to recruit MSCs from subcutaneous tissue, induce them to differentiate into osteoblasts, and provide the 3D environment for angiogenesis. These findings showed that the method we developed can build scaffolds with

  19. hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold.

    PubMed

    Xu, Ruodan; Taskin, Mehmet Berat; Rubert, Marina; Seliktar, Dror; Besenbacher, Flemming; Chen, Menglin

    2015-01-01

    Fibroblasts are ubiquitous cells that constitute the stroma of virtually all tissues and play vital roles in homeostasis. The poor innate healing capacity of fibroblastic tissues is attributed to the scarcity of fibroblasts as collagen-producing cells. In this study, we have developed a functional ECM mimicking scaffold that is capable to supply spatial allocation of stem cells as well as anchorage and storage of growth factors (GFs) to direct stem cells differentiate towards fibroblasts. Electrospun PCL fibers were embedded in a PEG-fibrinogen (PF) hydrogel, which was infiltrated with connective tissue growth factor (CTGF) to form the 3D nanocomposite PFP-C. The human induced pluripotent stem cells derived mesenchymal stem cells (hiPS-MSCs) with an advance in growth over adult MSCs were applied to validate the fibrogenic capacity of the 3D nanocomposite scaffold. The PFP-C scaffold was found not only biocompatible with the hiPS-MSCs, but also presented intriguingly strong fibroblastic commitments, to an extent comparable to the positive control, tissue culture plastic surfaces (TCP) timely refreshed with 100% CTGF. The novel scaffold presented not only biomimetic ECM nanostructures for homing stem cells, but also sufficient cell-approachable bio-signaling cues, which may synergistically facilitate the control of stem cell fates for regenerative therapies. PMID:25684543

  20. hiPS-MSCs differentiation towards fibroblasts on a 3D ECM mimicking scaffold

    PubMed Central

    Xu, Ruodan; Taskin, Mehmet Berat; Rubert, Marina; Seliktar, Dror; Besenbacher, Flemming; Chen, Menglin

    2015-01-01

    Fibroblasts are ubiquitous cells that constitute the stroma of virtually all tissues and play vital roles in homeostasis. The poor innate healing capacity of fibroblastic tissues is attributed to the scarcity of fibroblasts as collagen-producing cells. In this study, we have developed a functional ECM mimicking scaffold that is capable to supply spatial allocation of stem cells as well as anchorage and storage of growth factors (GFs) to direct stem cells differentiate towards fibroblasts. Electrospun PCL fibers were embedded in a PEG-fibrinogen (PF) hydrogel, which was infiltrated with connective tissue growth factor (CTGF) to form the 3D nanocomposite PFP-C. The human induced pluripotent stem cells derived mesenchymal stem cells (hiPS-MSCs) with an advance in growth over adult MSCs were applied to validate the fibrogenic capacity of the 3D nanocomposite scaffold. The PFP-C scaffold was found not only biocompatible with the hiPS-MSCs, but also presented intriguingly strong fibroblastic commitments, to an extent comparable to the positive control, tissue culture plastic surfaces (TCP) timely refreshed with 100% CTGF. The novel scaffold presented not only biomimetic ECM nanostructures for homing stem cells, but also sufficient cell-approachable bio-signaling cues, which may synergistically facilitate the control of stem cell fates for regenerative therapies. PMID:25684543

  1. The generation of biomolecular patterns in highly porous collagen-GAG scaffolds using direct photolithography

    PubMed Central

    Martin, Teresa A.; Caliari, Steven R.; Williford, Paul D.; Harley, Brendan A.; Bailey, Ryan C.

    2014-01-01

    The extracellular matrix (ECM) is a complex organization of structural proteins found within tissues and organs. Heterogeneous tissues with spatially and temporally modulated properties play an important role in organism physiology. Here we present a benzophenone (BP) based direct, photolithographic approach to spatially pattern solution phase biomolecules within collagen-GAG (CG) scaffolds and demonstrate creation of a wide range of patterns composed of multiple biomolecular species in a manner independent from scaffold fabrication steps. We demonstrate the ability to immobilize biomolecules at surface densities of up to 1000 ligands per square micron on the scaffold strut surface and to depths limited by the penetration depth of the excitation source into the scaffold structure. Importantly, while BP photopatterning does further crosslink the CG scaffold, evidenced by increased mechanical properties and collagen crystallinity, it does not affect scaffold microstructural or compositional properties or negatively influence cell adhesion, viability, or proliferation. We show that covalently photoimmobilized fibronectin within a CG scaffold significantly increases the speed of MC3T3-E1 cell attachment relative to the bare CG scaffold or non-specifically adsorbed fibronectin, suggesting that this approach can be used to improve scaffold bioactivity. Our findings, on the whole, establish the use of direct, BP photolithography as a methodology for covalently incorporating activity-improving biochemical cues within 3D collagen biomaterial scaffolds with spatial control over biomolecular deposition. PMID:21397322

  2. Additive manufacturing of collagen scaffolds by three-dimensional plotting of highly viscous dispersions.

    PubMed

    Lode, Anja; Meyer, Michael; Brüggemeier, Sophie; Paul, Birgit; Baltzer, Hagen; Schröpfer, Michaela; Winkelmann, Claudia; Sonntag, Frank; Gelinsky, Michael

    2016-03-01

    Additive manufacturing (AM) allows the free form fabrication of three-dimensional (3D) structures with distinct external geometry, fitting into a patient-specific defect, and defined internal pore architecture. However, fabrication of predesigned collagen scaffolds using AM-based technologies is challenging due to the low viscosity of collagen solutions, gels or dispersions commonly used for scaffold preparation. In the present study, we have developed a straightforward method which is based on 3D plotting of a highly viscous, high density collagen dispersion. The swollen state of the collagen fibrils at pH 4 enabled the homogenous extrusion of the material, the deposition of uniform strands and finally the construction of 3D scaffolds. Stabilization of the plotted structures was achieved by freeze-drying and chemical crosslinking with the carbodiimide EDC. The scaffolds exhibited high shape and dimensional fidelity and a hierarchical porosity consisting of macropores generated by strand deposition as well as an interconnected microporosity within the strands as result of the freeze-drying process. Cultivation of human mesenchymal stromal cells on the scaffolds, with and without adipogenic or osteogenic stimulation, revealed their cytocompatibility and potential applicability for adipose and bone tissue engineering. PMID:26924825

  3. Nanorod mediated collagen scaffolds as extra cellular matrix mimics.

    PubMed

    Vedhanayagam, Mohan; Mohan, Ranganathan; Nair, Balachandran Unni; Sreeram, Kalarical Janardhanan

    2015-12-01

    Creating collagen scaffolds that mimic extracellular matrices without using toxic exogenous materials remains a big challenge. A new strategy to create scaffolds through end-to-end crosslinking through functionalized nanorods leading to well-designed architecture is presented here. Self-assembled scaffolds with a denaturation temperature of 110 °C, porosity of 70%, pore size of 0.32 μm and Young's modulus of 231 MPa were developed largely driven by imine bonding between 3-mercapto-1-propanal (MPA) functionalized ZnO nanorods and collagen. The mechanical properties obtained were much higher than that of native collagen, collagen-MPA, collagen-3-mercapto-1-propanol (3MPOH) or collagen- 3-MPOH-ZnO, clearly bringing out the relevance of nanorod mediated assembly of fibrous networks. This new strategy has led to scaffolds with mechanical properties much higher than earlier reports and can provide support for cell growth and facilitation of cell attachment. PMID:26586667

  4. The Integration of 3-D Cell-Printing and Mesoscopic Fluorescence Molecular Tomography of Vascular Constructs within Thick Hydrogel Scaffolds

    PubMed Central

    Zhao, Lingling; Lee, Vivian K.; Yoo, Seung-Schik; Dai, Guohao; Intes, Xavier

    2012-01-01

    Developing methods that provide adequate vascular perfusion is an important step toward engineering large functional tissues. Meanwhile, an imaging modality to assess the three-dimensional (3-D) structures and functions of the vascular channels is lacking for thick matrices (>2~3mm). Herein, we report on an original approach to construct and image 3-D dynamically perfused vascular structures in thick hydrogel scaffolds. In this work, we integrated a robotic 3-D cell-printing technology with a mesoscopic fluorescence molecular tomography imaging system, and demonstrated the capability of the platform to construct perfused collagen scaffolds with endothelial lining and to image both the fluid flow and fluorescent-labeled living endothelial cells at high-frame rates, with high sensitivity and accuracy. These results establish the potential of integrating both 3-D cell-printing and fluorescence mesoscopic imaging for functional and molecular studies in complex tissue engineered tissues. PMID:22531221

  5. Potency of Fish Collagen as a Scaffold for Regenerative Medicine

    PubMed Central

    Yamamoto, Kohei; Yanagiguchi, Kajiro

    2014-01-01

    Cells, growth factors, and scaffold are the crucial factors for tissue engineering. Recently, scaffolds consisting of natural polymers, such as collagen and gelatin, bioabsorbable synthetic polymers, such as polylactic acid and polyglycolic acid, and inorganic materials, such as hydroxyapatite, as well as composite materials have been rapidly developed. In particular, collagen is the most promising material for tissue engineering due to its biocompatibility and biodegradability. Collagen contains specific cell adhesion domains, including the arginine-glycine-aspartic acid (RGD) motif. After the integrin receptor on the cell surface binds to the RGD motif on the collagen molecule, cell adhesion is actively induced. This interaction contributes to the promotion of cell growth and differentiation and the regulation of various cell functions. However, it is difficult to use a pure collagen scaffold as a tissue engineering material due to its low mechanical strength. In order to make up for this disadvantage, collagen scaffolds are often modified using a cross-linker, such as gamma irradiation and carbodiimide. Taking into account the possibility of zoonosis, a variety of recent reports have been documented using fish collagen scaffolds. We herein review the potency of fish collagen scaffolds as well as associated problems to be addressed for use in regenerative medicine. PMID:24982861

  6. Sol-gel assisted fabrication of collagen hydrolysate composite scaffold: a novel therapeutic alternative to the traditional collagen scaffold.

    PubMed

    Ramadass, Satiesh Kumar; Perumal, Sathiamurthi; Gopinath, Arun; Nisal, Anuya; Subramanian, Saravanan; Madhan, Balaraman

    2014-09-10

    Collagen is one of the most widely used biomaterial for various biomedical applications. In this Research Article, we present a novel approach of using collagen hydrolysate, smaller fragments of collagen, as an alternative to traditionally used collagen scaffold. Collagen hydrolysate composite scaffold (CHCS) was fabricated with sol-gel transition procedure using tetraethoxysilane as the silica precursor. CHCS exhibits porous morphology with pore sizes varying between 380 and 780 μm. Incorporation of silica conferred CHCS with controlled biodegradation and better water uptake capacity. Notably, 3T3 fibroblast proliferation was seen to be significantly better under CHCS treatment when compared to treatment with collagen scaffold. Additionally, CHCS showed excellent antimicrobial activity against the wound pathogens Staphylococcus aureus, Bacillus subtilis, and Escherichia coli due to the inherited antimicrobial activity of collagen hydrolysate. In vivo wound healing experiments with full thickness excision wounds in rat model demonstrated that wounds treated with CHCS showed accelerated healing when compared to wounds treated with collagen scaffold. These findings indicate that the CHCS scaffold from collagen fragments would be an effective and affordable alternative to the traditionally used collagen structural biomaterials. PMID:25105509

  7. Nanocomposite scaffold with enhanced stability by hydrogen bonds between collagen, polyvinyl pyrrolidone and titanium dioxide.

    PubMed

    Li, Na; Fan, Xialian; Tang, Keyong; Zheng, Xuejing; Liu, Jie; Wang, Baoshi

    2016-04-01

    In this study, three-dimensional (3D) nanocomposite scaffolds, as potential substrates for skin tissue engineering, were fabricated by freeze drying the mixture of type I collagen extracted from porcine skin and polyvinyl pyrrolidone (PVP)-coated titanium dioxide (TiO2) nanoparticles. This procedure was performed without any cross-linker or toxic reagents to generate porosity in the scaffold. Both morphology and thermal stability of the nanocomposite scaffold were examined. The swelling behavior, mechanical properties and hydrolytic degradation of the composite scaffolds were carefully investigated. Our results revealed that collagen, PVP and TiO2 are bonded together by four main hydrogen bonds, which is an essential action for the formation of nanocomposite scaffold. Using Coasts-Redfern model, we were able to calculate the thermal degradation apparent activation energy and demonstrated that the thermal stability of nanocomposites is dependent on amount of PVP incorporated. Furthermore, SEM images showed that the collagen fibers are wrapped and stabilized on scaffolds by PVP molecules, which improve the ultimate tensile strength (UTS). The UTS of PVP-contained scaffold is four times higher than that of scaffold without PVP, whereas ultimate percentage of elongation (UPE) is decreased, and PVP can enhance the degradation resistance. PMID:26764111

  8. Rapid prototyping for tissue-engineered bone scaffold by 3D printing and biocompatibility study

    PubMed Central

    He, Hui-Yu; Zhang, Jia-Yu; Mi, Xue; Hu, Yang; Gu, Xiao-Yu

    2015-01-01

    The prototyping of tissue-engineered bone scaffold (calcined goat spongy bone-biphasic ceramic composite/PVA gel) by 3D printing was performed, and the biocompatibility of the fabricated bone scaffold was studied. Pre-designed STL file was imported into the GXYZ303010-XYLE 3D printing system, and the tissue-engineered bone scaffold was fabricated by 3D printing using gel extrusion. Rabbit bone marrow stromal cells (BMSCs) were cultured in vitro and then inoculated to the sterilized bone scaffold obtained by 3D printing. The growth of rabbit BMSCs on the bone scaffold was observed under the scanning electron microscope (SEM). The effect of the tissue-engineered bone scaffold on the proliferation and differentiation of rabbit BMSCs using MTT assay. Universal testing machine was adopted to test the tensile strength of the bone scaffold. The leachate of the bone scaffold was prepared and injected into the New Zealand rabbits. Cytotoxicity test, acute toxicity test, pyrogenic test and intracutaneous stimulation test were performed to assess the biocompatibility of the bone scaffold. Bone scaffold manufactured by 3D printing had uniform pore size with the porosity of about 68.3%. The pores were well interconnected, and the bone scaffold showed excellent mechanical property. Rabbit BMSCs grew and proliferated on the surface of the bone scaffold after adherence. MTT assay indicated that the proliferation and differentiation of rabbit BMSCs on the bone scaffold did not differ significantly from that of the cells in the control. In vivo experiments proved that the bone scaffold fabricated by 3D printing had no acute toxicity, pyrogenic reaction or stimulation. Bone scaffold manufactured by 3D printing allows the rabbit BMSCs to adhere, grow and proliferate and exhibits excellent biomechanical property and high biocompatibility. 3D printing has a good application prospect in the prototyping of tissue-engineered bone scaffold. PMID:26380018

  9. Direct electrospinning of 3D auricle-shaped scaffolds for tissue engineering applications.

    PubMed

    Walser, Jochen; Stok, Kathryn S; Caversaccio, Marco D; Ferguson, Stephen J

    2016-01-01

    Thirty-two poly(ε)caprolactone (PCL) scaffolds have been produced by electrospinning directly into an auricle-shaped mould and seeded with articular chondrocytes harvested from bovine ankle joints. After seeding, the auricle shaped constructs were cultured in vitro and analysed at days 1, 7, 14 and 21 for regional differences in total DNA, glycosaminoglycan (GAG) and collagen (COL) content as well as the expression of aggrecan (AGG), collagen type I and type II (COL1/2) and matrix metalloproteinase 3 and 13 (MMP3/13). Stress-relaxation indentation testing was performed to investigate regional mechanical properties of the electrospun constructs. Electrospinning into a conductive mould yielded stable 3D constructs both initially and for the whole in vitro culture period, with an equilibrium modulus in the MPa range. Rapid cell proliferation and COL accumulation was observed until week 3. Quantitative real time PCR analysis showed an initial increase in AGG, no change in COL2, a persistent increase in COL1, and only a slight decrease initially for MMP3. Electrospinning of fibrous scaffolds directly into an auricle-shape represents a promising option for auricular tissue engineering, as it can reduce the steps needed to achieve an implantable structure. PMID:27171651

  10. Composite Scaffolds Containing Silk Fibroin, Gelatin, and Hydroxyapatite for Bone Tissue Regeneration and 3D Cell Culturing

    PubMed Central

    Moisenovich, M. M.; Arkhipova, A. Yu.; Orlova, A. A.; Drutskaya, M. S; Volkova, S. V.; Zacharov, S. E.; Agapov, I. I.; Kirpichnikov, M. P.

    2014-01-01

    Three-dimensional (3D) silk fibroin scaffolds were modified with one of the major bone tissue derivatives (nano-hydroxyapatite) and/or a collagen derivative (gelatin). Adhesion and proliferation of mouse embryonic fibroblasts (MEF) within the scaffold were increased after modification with either nano-hydroxyapatite or gelatin. However, a significant increase in MEF adhesion and proliferation was observed when both additives were introduced into the scaffold. Such modified composite scaffolds provide a new and better platform to study wound healing, bone and other tissue regeneration, as well as artificial organ bioengineering. This system can further be applied to establish experimental models to study cell-substrate interactions, cell migration and other complex processes, which may be difficult to address using the conventional two-dimensional culture systems. PMID:24772332

  11. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering.

    PubMed

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-12-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds. PMID:27376895

  12. Micro/Nano Multilayered Scaffolds of PLGA and Collagen by Alternately Electrospinning for Bone Tissue Engineering

    NASA Astrophysics Data System (ADS)

    Kwak, Sanghwa; Haider, Adnan; Gupta, Kailash Chandra; Kim, Sukyoung; Kang, Inn-Kyu

    2016-07-01

    The dual extrusion electrospinning technique was used to fabricate multilayered 3D scaffolds by stacking microfibrous meshes of poly(lactic acid-co-glycolic acid) (PLGA) in alternate fashion to micro/nano mixed fibrous meshes of PLGA and collagen. To fabricate the multilayered scaffold, 35 wt% solution of PLGA in THF-DMF binary solvent (3:1) and 5 wt% solution of collagen in hexafluoroisopropanol (HFIP) with and without hydroxyapatite nanorods (nHA) were used. The dual and individual electrospinning of PLGA and collagen were carried out at flow rates of 1.0 and 0.5 mL/h, respectively, at an applied voltage of 20 kV. The density of collagen fibers in multilayered scaffolds has controlled the adhesion, proliferation, and osteogenic differentiation of MC3T3-E1 cells. The homogeneous dispersion of glutamic acid-modified hydroxyapatite nanorods (nHA-GA) in collagen solution has improved the osteogenic properties of fabricated multilayered scaffolds. The fabricated multilayered scaffolds were characterized using FT-IR, X-ray photoelectron spectroscopy, and transmission electron microscopy (TEM). The scanning electron microscopy (FE-SEM) was used to evaluate the adhesion and spreads of MC3T3-E1 cells on multilayered scaffolds. The activity of MC3T3-E1 cells on the multilayered scaffolds was evaluated by applying MTT, alkaline phosphatase, Alizarin Red, von Kossa, and cytoskeleton F-actin assaying protocols. The micro/nano fibrous PLGA-Col-HA scaffolds were found to be highly bioactive in comparison to pristine microfibrous PLGA and micro/nano mixed fibrous PLGA and Col scaffolds.

  13. Accurate micro-computed tomography imaging of pore spaces in collagen-based scaffold.

    PubMed

    Zidek, Jan; Vojtova, Lucy; Abdel-Mohsen, A M; Chmelik, Jiri; Zikmund, Tomas; Brtnikova, Jana; Jakubicek, Roman; Zubal, Lukas; Jan, Jiri; Kaiser, Jozef

    2016-06-01

    In this work we have used X-ray micro-computed tomography (μCT) as a method to observe the morphology of 3D porous pure collagen and collagen-composite scaffolds useful in tissue engineering. Two aspects of visualizations were taken into consideration: improvement of the scan and investigation of its sensitivity to the scan parameters. Due to the low material density some parts of collagen scaffolds are invisible in a μCT scan. Therefore, here we present different contrast agents, which increase the contrast of the scanned biopolymeric sample for μCT visualization. The increase of contrast of collagenous scaffolds was performed with ceramic hydroxyapatite microparticles (HAp), silver ions (Ag(+)) and silver nanoparticles (Ag-NPs). Since a relatively small change in imaging parameters (e.g. in 3D volume rendering, threshold value and μCT acquisition conditions) leads to a completely different visualized pattern, we have optimized these parameters to obtain the most realistic picture for visual and qualitative evaluation of the biopolymeric scaffold. Moreover, scaffold images were stereoscopically visualized in order to better see the 3D biopolymer composite scaffold morphology. However, the optimized visualization has some discontinuities in zoomed view, which can be problematic for further analysis of interconnected pores by commonly used numerical methods. Therefore, we applied the locally adaptive method to solve discontinuities issue. The combination of contrast agent and imaging techniques presented in this paper help us to better understand the structure and morphology of the biopolymeric scaffold that is crucial in the design of new biomaterials useful in tissue engineering. PMID:27153826

  14. Fibronectin- and Collagen-Mimetic Ligands Regulate BMSC Chondrogenesis in 3D Hydrogels

    PubMed Central

    Connelly, J.T.; Petrie, T.A.; García, A.J.; Levenston, M.E.

    2016-01-01

    Modification of tissue engineering scaffolds with bioactive molecules is a potential strategy for modulating cell behavior and guiding tissue regeneration. While adhesion to RGD peptides has been shown to inhibit in vitro chondrogenesis, the effects of extracellular matrix (ECM)-mimetic ligands with complex secondary and tertiary structures are unknown. This study aimed to determine whether collagen- and fibronectin-mimetic ligands would retain biologic functionality in three-dimensional (3D) hydrogels, whether different ECM-mimetic ligands differentially influence in vitro chondrogenesis, and if effects of ligands on differentiation depend on soluble biochemical stimuli. A linear RGD peptide, a recombinant fibronectin fragment containing the seven to 10 Type III repeats (FnIII7-10) and a triple helical, collagen mimetic peptide with the GFOGER motif were covalently coupled to agarose gels using the sulfo-SANPAH crosslinker, and bone marrow stromal cells (BMSCs) were cultured within the 3D hydrogels.. The ligands retained biologic functionality within the agarose gels and promoted density-dependent BMSC spreading. Interactions with all adhesive ligands inhibited stimulation by chondrogenic factors of collagen Type II and aggrecanmRNA levels and deposition of sulfated glycosaminoglycans. In medium containing fetal bovine serum, interactions with the GFOGER peptide enhanced mRNA expression of the osteogenic gene osteocalcin whereas FnIII7-10 inhibited osteocalcin expression. In conclusion, modification of agarose hydrogels with ECM-mimetic ligands can influence the differentiation of BMSCs in a manner that depends strongly on the presence and nature of soluble biochemical stimuli. PMID:21932193

  15. Formation of Neural Networks in 3D Scaffolds Fabricated by Means of Laser Microstereolithography.

    PubMed

    Vedunova, M V; Timashev, P S; Mishchenko, T A; Mitroshina, E V; Koroleva, A V; Chichkov, B N; Panchenko, V Ya; Bagratashvili, V N; Mukhina, I V

    2016-08-01

    We developed and tested new 3D scaffolds for neurotransplantation. Scaffolds of predetermined architectonic were prepared using microstereolithography technique. Scaffolds were highly biocompatible with the nervous tissue cells. In vitro studies showed that the material of fabricated scaffolds is not toxic for dissociated brain cells and promotes the formation of functional neural networks in the matrix. These results demonstrate the possibility of fabrication of tissue-engineering constructs for neurotransplantation based on created scaffolds. PMID:27595153

  16. 3D printed tricalcium phosphate scaffolds: Effect of SrO and MgO doping on in vivo osteogenesis in a rat distal femoral defect model

    PubMed Central

    Tarafder, Solaiman; Davies, Neal M.; Bandyopadhyay, Amit; Bose, Susmita

    2013-01-01

    The presence of interconnected macro pores is important in tissue engineering scaffolds for guided tissue regeneration. This study reports in vivo biological performance of interconnected macro porous tricalcium phosphate (TCP) scaffolds due to the addition of SrO and MgO as dopants in TCP. We have used direct three dimensional printing (3DP) technology for scaffold fabrication followed by microwave sintering. Mechanical strength was evaluated by scaffolds with 500 µm, 750 µm, and 1000 µm interconnected designed pore sizes. Maximum compressive strength of 12.01 ± 1.56 MPa was achieved for 500 µm interconnected designed pore size Sr-Mg doped scaffold. In vivo biological performance of the microwave sintered pure TCP and Sr-Mg doped TCP scaffolds was assessed by implanting 350 µm designed interconnected macro porous scaffolds in rat distal femoral defect. Sintered pore size of these 3D printed scaffolds were 311 ± 5.9 µm and 245 ± 7.5 µm for pure and SrO-MgO doped TCP scaffolds, respectively. These 3D printed scaffolds possessed multiscale porosity, i.e., 3D interconnected designed macro pores along with intrinsic micro pores. Histomorphology and histomorphometric analysis revealed a significant increase in osteoid like new bone formation, and accelerated mineralization inside SrO and MgO doped 3D printed TCP scaffolds as compared to pure TCP scaffolds. An increase in osteocalcin and type I collagen level was also observed in rat blood serum with SrO and MgO doped TCP scaffolds compared to pure TCP scaffolds. Our results show that these 3D printed SrO and MgO doped TCP scaffolds with multiscale porosity contributed to early healing through accelerated osteogenesis. PMID:24729867

  17. Nano-hydroxyapatite/poly epsilon-caprolactone composite 3D scaffolds for mastoid obliteration

    NASA Astrophysics Data System (ADS)

    Kim, S. E.; Yun, H. S.; Hyun, Y. T.; Shin, J. W.; Song, J. J.

    2009-05-01

    The aim of this study is to evaluate the use of our nano-HA/PCL composite 3D scaffolds as graft materials for mastoid cavity obliteration in an animal model. Nano-HA particles were synthesized by chemical precipitation technique and mixed them with PCL solution to make composite paste. 3D scaffolds were fabricated by a paste extruding deposition process. The nano-HA/PCL 3D scaffolds showed good in vivo bone regeneration behaviour in a rabbit model after 4 and 8 week implantation. To characterize the 3D scaffolds as a grafting material for mastoid obliteration, mastoid cavities were introduced in rats and implanted the scaffolds. After two week implantation, histological examination showed good tissue ingrowth and new bone formation behaviour. It can be argued that our nano-HA/PCL composite 3D scaffold is a promising alternative material for mastoid obliteration.

  18. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds.

    PubMed

    Brennan, Meadhbh Á; Renaud, Audrey; Gamblin, Anne-Laure; D'Arros, Cyril; Nedellec, Steven; Trichet, Valerie; Layrolle, Pierre

    2015-08-01

    A major limitation of the 2D culture systems is that they fail to recapitulate the in vivo 3D cellular microenvironment whereby cell-cell and cell-extracellular matrix (ECM) interactions occur. In this paper, a biomaterial scaffold that mimics the structure of collagen fibers was produced by jet-spraying. This micro-fiber polycaprolactone (PCL) scaffold was evaluated for 3D culture of human bone marrow mesenchymal stromal cells (MSCs) in comparison with a commercially available electrospun scaffold. The jet-sprayed scaffolds had larger pore diameters, greater porosity, smaller diameter fibers, and more heterogeneous fiber diameter size distribution compared to the electrospun scaffolds. Cells on jet-sprayed constructs exhibited spread morphology with abundant cytoskeleton staining, whereas MSCs on electrospun scaffolds appeared less extended with fewer actin filaments. MSC proliferation and cell infiltration occurred at a faster rate on jet-sprayed compared to electrospun scaffolds. Osteogenic differentiation of MSCs and ECM production as measured by ALP, collagen and calcium deposition was superior on jet-sprayed compared to electrospun scaffolds. The jet-sprayed scaffold which mimics the native ECM and permits homogeneous cell infiltration is important for 3D in vitro applications such as bone cellular interaction studies or drug testing, as well as bone tissue engineering strategies. PMID:26238732

  19. Comparison of the Expression of Hepatic Genes by Human Wharton’s Jelly Mesenchymal Stem Cells Cultured in 2D and 3D Collagen Culture Systems

    PubMed Central

    Khodabandeh, Zahra; Vojdani, Zahra; Talaei-Khozani, Tahereh; Jaberipour, Mansoureh; Hosseini, Ahmad; Bahmanpour, Soghra

    2016-01-01

    Background: Human Wharton’s jelly mesenchymal stem cells (HWJMSCs) express liver-specific markers such as albumin, alpha-fetoprotein, cytokeratin-19, cytokeratin-18, and glucose-6-phosphatase. Therefore, they can be considered as a good source for cell replacement therapy for liver diseases. This study aimed to evaluate the effects of various culture systems on the hepatocyte-specific gene expression pattern of naïve HWJMSCs. Methods: HWJMSCs were characterized as MSCs by detecting the surface CD markers and capability to differentiate toward osteoblast and adipocyte. HWJMSCs were cultured in 2D collagen films and 3D collagen scaffolds for 21 days and were compared to control cultures. Real time RT-PCR was used to evaluate the expression of liver-specific genes. Results: The HWJMSCs which were grown on non-coated culture plates expressed cytokeratin-18 and -19, alpha-fetoprotein, albumin, glucose-6-phosphatase, and claudin. The expression of the hepatic nuclear factor 4 (HNF4) was very low. The cells showed a significant increase in caludin expression when they cultured in 3D collagen scaffolds compared to the conventional monolayer culture and 2D collagen scaffold. Conclusion: Various culture systems did not influence on hepatocyte specific marker expression by HWJMSCs, except for claudin. The expression of claudin showed that 3D collagen scaffold provided the extracellular matrix for induction of the cells to interconnect with each other. PMID:26722142

  20. Collagen a natural scaffold for biology and engineering

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Collagen, the most abundant protein in mammals, constitutes a quarter of the animal's total weight. The unique structure of fibrous collagens, a long triple helix that further associates into fibers, provides an insoluble scaffold that gives strength and form to the skin, tendons, bones, cornea and...

  1. A 3D model of ovarian cancer cell lines on peptide nanofiber scaffold to explore the cell-scaffold interaction and chemotherapeutic resistance of anticancer drugs.

    PubMed

    Yang, Zehong; Zhao, Xiaojun

    2011-01-01

    RADA16-I peptide hydrogel, a type of nanofiber scaffold derived from self-assembling peptide RADA16-I, has been extensively applied to regenerative medicine and tissue repair in order to develop novel nanomedicine systems. In this study, using RADA16-I peptide hydrogel, a three-dimensional (3D) cell culture model was fabricated for in vitro culture of three ovarian cancer cell lines. Firstly, the peptide nanofiber scaffold was evaluated by transmission electron microscopy and atom force microscopy. Using phase contrast microscopy, the appearance of the representative ovarian cancer cells encapsulated in RADA16-I peptide hydrogel on days 1, 3, and 7 in 24-well Petri dishes was illustrated. The cancer cell-nanofiber scaffold construct was cultured for 5 days, and the ovarian cancer cells had actively proliferative potential. The precultured ovarian cancer cells exhibited nearly similar adhesion properties and invasion potentials in vitro between RADA16-I peptide nanofiber and type I collagen, which suggested that RADA16-I peptide hydrogel had some similar characteristics to type I collagen. The precultured ovarian cancer cells had two-fold to five-fold higher anticancer drug resistance than the conventional two-dimensional Petri dish culture. So the 3D cell model on peptide nanofiber scaffold is an optimal type of cell pattern for anticancer drug screening and tumor biology. PMID:21383855

  2. Characterisation of the surface structure of 3D printed scaffolds for cell infiltration and surgical suturing.

    PubMed

    Ruiz-Cantu, Laura; Gleadall, Andrew; Faris, Callum; Segal, Joel; Shakesheff, Kevin; Yang, Jing

    2016-03-01

    3D printing is of great interest for tissue engineering scaffolds due to the ability to form complex geometries and control internal structures, including porosity and pore size. The porous structure of scaffolds plays an important role in cell ingrowth and nutrition infusion. Although the internal porosity and pore size of 3D printed scaffolds have been frequently studied, the surface porosity and pore size, which are critical for cell infiltration and mass transport, have not been investigated. The surface geometry can differ considerably from the internal scaffold structure depending on the 3D printing process. It is vital to be able to control the surface geometry of scaffolds as well as the internal structure to fabricate optimal architectures. This work presents a method to control the surface porosity and pore size of 3D printed scaffolds. Six scaffold designs have been printed with surface porosities ranging from 3% to 21%. We have characterised the overall scaffold porosity and surface porosity using optical microscopy and microCT. It has been found that surface porosity has a significant impact on cell infiltration and proliferation. In addition, the porosity of the surface has been found to have an effect on mechanical properties and on the forces required to penetrate the scaffold with a surgical suturing needle. To the authors' knowledge, this study is the first to investigate the surface geometry of extrusion-based 3D printed scaffolds and demonstrates the importance of surface geometry in cell infiltration and clinical manipulation. PMID:26930179

  3. A Simple Approach for an Eggshell-Based 3D-Printed Osteoinductive Multiphasic Calcium Phosphate Scaffold.

    PubMed

    Dadhich, Prabhash; Das, Bodhisatwa; Pal, Pallabi; Srivas, Pavan K; Dutta, Joy; Ray, Sabyasachi; Dhara, Santanu

    2016-05-18

    Natural origin bioceramics are widely used for bone grafts. In the present study, an eggshell-derived bioceramic scaffold is fabricated by 3D printing as a potential bone-graft analogue. The eggshell, a biological waste material, was mixed with a specific ratio of phosphoric acid and chitosan to form a precursor toward the fabrication of an osteoinductive multiphasic calcium phosphate scaffold via a coagulation-assisted extrusion and sintering for a multiscalar hierarchical porous structure with improved mechanical properties. Physicochemical characterization of the formed scaffolds was carried out for phase analysis, surface morphology, and mechanical properties. A similar scaffold was prepared using a chemically synthesized calcium phosphate powder that was compared with the natural origin one. The higher surface area associated with the interconnected porosity along with multiple phases of the natural origin scaffold facilitated higher cell adhesion and proliferation compared to the chemically synthesized one. Further, the natural origin scaffold displayed relatively higher cell differentiation activity, as is evident by protein and gene expression studies. On subcutaneous implantation for 30 days, promising vascular tissue in-growth was observed, circumventing a major foreign body response. Collagen-rich vascular extracellular matrix deposition and osteocalcin secretion indicated bonelike tissue formation. Finally, the eggshell-derived multiphasic calcium phosphate scaffold displayed improvement in the mechanical properties with higher porosity and osteoinductivity compared to the chemically derived apatite and unveiled a new paradigm for utilization of biological wastes in bone-graft application. PMID:26853051

  4. Stabilized Collagen Scaffolds for Heart Valve Tissue Engineering

    PubMed Central

    Tedder, Mary E.; Liao, Jun; Weed, Benjamin; Stabler, Christopher; Zhang, Henry; Simionescu, Agneta

    2009-01-01

    Scaffolds for heart valve tissue engineering must function immediately after implantation but also need to tolerate cell infiltration and gradual remodeling. We hypothesized that moderately cross-linked collagen scaffolds would fulfill these requirements. To test our hypothesis, scaffolds prepared from decellularized porcine pericardium were treated with penta-galloyl glucose (PGG), a collagen-binding polyphenol, and tested for biodegradation, biaxial mechanical properties, and in vivo biocompatibility. For controls, we used un-cross-linked scaffolds and glutaraldehyde-treated scaffolds. Results confirmed complete pericardium decellularization and the ability of scaffolds to encourage fibroblast chemotaxis and to aid in creation of anatomically correct valve-shaped constructs. Glutaraldehyde cross-linking fully stabilized collagen but did not allow for tissue remodeling and calcified when implanted subdermally in rats. PGG-treated collagen was initially resistant to collagenase and then degraded gradually, indicating partial stabilization. Moreover, PGG-treated pericardium exhibited excellent biaxial mechanical properties, did not calcify in vivo, and supported infiltration by host fibroblasts and subsequent matrix remodeling. In conclusion, PGG-treated acellular pericardium is a promising scaffold for heart valve tissue engineering. PMID:18928400

  5. Poly(dopamine) coating of 3D printed poly(lactic acid) scaffolds for bone tissue engineering.

    PubMed

    Kao, Chia-Tze; Lin, Chi-Chang; Chen, Yi-Wen; Yeh, Chia-Hung; Fang, Hsin-Yuan; Shie, Ming-You

    2015-11-01

    3D printing is a versatile technique to generate large quantities of a wide variety of shapes and sizes of polymer. The aim of this study is to develop functionalized 3D printed poly(lactic acid) (PLA) scaffolds and use a mussel-inspired surface coating to regulate cell adhesion, proliferation and differentiation of human adipose-derived stem cells (hADSCs). We prepared PLA 3D scaffolds coated with polydopamine (PDA). The chemical composition and surface properties of PDA/PLA were characterized by XPS. PDA/PLA modulated hADSCs' responses in several ways. Firstly, adhesion and proliferation, and cell cycle of hADSCs cultured on PDA/PLA were significantly enhanced relative to those on PLA. In addition, the collagen I secreted from cells was increased and promoted cell attachment and cell cycle progression were depended on the PDA content. In osteogenesis assay, the ALP activity and osteocalcin of hADSCs cultured on PDA/PLA were significantly higher than seen in those cultured on pure PLA scaffolds. Moreover, hADSCs cultured on PDA/PLA showed up-regulation of the ang-1 and vWF proteins associated with angiogenic differentiation. Our results demonstrate that the bio-inspired coating synthetic PLA polymer can be used as a simple technique to render the surfaces of synthetic scaffolds active, thus enabling them to direct the specific responses of hADSCs. PMID:26249577

  6. Low-Temperature Additive Manufacturing of Biomimic Three-Dimensional Hydroxyapatite/Collagen Scaffolds for Bone Regeneration.

    PubMed

    Lin, Kai-Feng; He, Shu; Song, Yue; Wang, Chun-Mei; Gao, Yi; Li, Jun-Qin; Tang, Peng; Wang, Zheng; Bi, Long; Pei, Guo-Xian

    2016-03-23

    Low-temperature additive manufacturing (AM) holds promise for fabrication of three-dimensional (3D) scaffolds containing bioactive molecules and/or drugs. Due to the strict technical limitations of current approaches, few materials are suitable for printing at low temperature. Here, a low-temperature robocasting method was employed to print biomimic 3D scaffolds for bone regeneration using a routine collagen-hydroxyapatite (CHA) composite material, which is too viscous to be printed via normal 3D printing methods at low temperature. The CHA scaffolds had excellent 3D structure and maintained most raw material properties after printing. Compared to nonprinted scaffolds, printed scaffolds promoted bone marrow stromal cell proliferation and improved osteogenic outcome in vitro. In a rabbit femoral condyle defect model, the interconnecting pores within the printed scaffolds facilitated cell penetration and mineralization before the scaffolds degraded and enhanced repair, compared to nonprinted CHA scaffolds. Additionally, the optimal printing parameters for 3D CHA scaffolds were investigated; 600-μm-diameter rods were optimal in terms of moderate mechanical strength and better repair outcome in vivo. This low-temperature robocasting method could enable a variety of bioactive molecules to be incorporated into printed CHA materials and provides a method of bioprinting biomaterials without compromising their natural properties. PMID:26930140

  7. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography

    PubMed Central

    Gauvin, Robert; Chen, Ying-Chieh; Lee, Jin Woo; Soman, Pranav; Zorlutuna, Pinar; Nichol, Jason W.; Bae, Hojae; Chen, Shaochen; Khademhosseini, Ali

    2013-01-01

    The success of tissue engineering will rely on the ability to generate complex, cell seeded three-dimensional (3D) structures. Therefore, methods that can be used to precisely engineer the architecture and topography of scaffolding materials will represent a critical aspect of functional tissue engineering. Previous approaches for 3D scaffold fabrication based on top-down and process driven methods are often not adequate to produce complex structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. The proposed projection stereolithography (PSL) platform can be used to design intricate 3D tissue scaffolds that can be engineered to mimic the microarchitecture of tissues, based on computer aided design (CAD). The PSL system was developed, programmed and optimized to fabricate 3D scaffolds using gelatin methacrylate (GelMA). Variation of the structure and prepolymer concentration enabled tailoring the mechanical properties of the scaffolds. A dynamic cell seeding method was utilized to improve the coverage of the scaffold throughout its thickness. The results demonstrated that the interconnectivity of pores allowed for uniform human umbilical vein endothelial cells (HUVECs) distribution and proliferation in the scaffolds, leading to high cell density and confluency at the end of the culture period. Moreover, immunohistochemistry results showed that cells seeded on the scaffold maintained their endothelial phenotype, demonstrating the biological functionality of the microfabricated GelMA scaffolds. PMID:22365811

  8. Microfabrication of complex porous tissue engineering scaffolds using 3D projection stereolithography.

    PubMed

    Gauvin, Robert; Chen, Ying-Chieh; Lee, Jin Woo; Soman, Pranav; Zorlutuna, Pinar; Nichol, Jason W; Bae, Hojae; Chen, Shaochen; Khademhosseini, Ali

    2012-05-01

    The success of tissue engineering will rely on the ability to generate complex, cell seeded three-dimensional (3D) structures. Therefore, methods that can be used to precisely engineer the architecture and topography of scaffolding materials will represent a critical aspect of functional tissue engineering. Previous approaches for 3D scaffold fabrication based on top-down and process driven methods are often not adequate to produce complex structures due to the lack of control on scaffold architecture, porosity, and cellular interactions. The proposed projection stereolithography (PSL) platform can be used to design intricate 3D tissue scaffolds that can be engineered to mimic the microarchitecture of tissues, based on computer aided design (CAD). The PSL system was developed, programmed and optimized to fabricate 3D scaffolds using gelatin methacrylate (GelMA). Variation of the structure and prepolymer concentration enabled tailoring the mechanical properties of the scaffolds. A dynamic cell seeding method was utilized to improve the coverage of the scaffold throughout its thickness. The results demonstrated that the interconnectivity of pores allowed for uniform human umbilical vein endothelial cells (HUVECs) distribution and proliferation in the scaffolds, leading to high cell density and confluency at the end of the culture period. Moreover, immunohistochemistry results showed that cells seeded on the scaffold maintained their endothelial phenotype, demonstrating the biological functionality of the microfabricated GelMA scaffolds. PMID:22365811

  9. Collagen-based fibrous scaffold for spatial organization of encapsulated and seeded human mesenchymal stem cells

    PubMed Central

    Yow, S.Z.; Quek, C.H.; Yim, Evelyn K.F.; Lim, C.T.; Leong, K.W.

    2010-01-01

    Living tissues consist of groups of cells organized in a controlled manner to perform a specific function. Spatial distribution of cells within a three-dimensional matrix is critical for the success of any tissue-engineering construct. Fibers endowed with cell-encapsulation capability would facilitate the achievement of this objective. Here we report the synthesis of a cell-encapsulated fibrous scaffold by interfacial polyelectrolyte complexation (IPC) of methylated collagen and a synthetic terpolymer. The collagen component was well distributed in the fiber, which had a mean ultimate tensile strength of 244.6 ± 43.0 MPa. Cultured in proliferating medium, human mesenchymal stem cells (hMSCs) encapsulated in the fibers showed higher proliferation rate than those seeded on the scaffold. Gene expression analysis revealed the maintenance of multipotency for both encapsulated and seeded samples up to 7 days as evidenced by Sox 9, CBFA-1, AFP, PPARγ2, nestin, GFAP, collagen I, osteopontin and osteonectin genes. Beyond that, seeded hMSCs started to express neuronal-specific genes such as aggrecan and MAP2. The study demonstrates the appeal of IPC for scaffold design in general and the promise of collagen-based hybrid fibers for tissue engineering in particular. It lays the foundation for building fibrous scaffold that permits 3D spatial cellular organization and multi-cellular tissue development. PMID:19041132

  10. Effects of simple and complex motion patterns on gene expression of chondrocytes seeded in 3D scaffolds.

    PubMed

    Grad, Sibylle; Gogolewski, Sylwester; Alini, Mauro; Wimmer, Markus A

    2006-11-01

    This study investigated the effect of unidirectional and multidirectional motion patterns on gene expression and molecule release of chondrocyte-seeded 3D scaffolds. Resorbable porous polyurethane scaffolds were seeded with bovine articular chondrocytes and exposed to dynamic compression, applied with a ceramic hip ball, alone (group 1), with superimposed rotation of the scaffold around its cylindrical axis (group 2), oscillation of the ball over the scaffold surface (group 3), or oscillation of ball and scaffold in phase difference (group 4). Compared with group 1, the proteoglycan 4 (PRG4) and cartilage oligomeric matrix protein (COMP) mRNA expression levels were markedly increased by ball oscillation (groups 3 and 4). Furthermore, the collagen type II mRNA expression was enhanced in the groups 3 and 4, while the aggrecan and tissue inhibitor of metalloproteinase-3 (TIMP-3) mRNA expression levels were upregulated by multidirectional articular motion (group 4). Ball oscillation (groups 3 and 4) also increased the release of PRG4, COMP, and hyaluronan (HA) into the culture media. This indicates that the applied stimuli can contribute to the maintenance of the chondrocytic phenotype of the cells. The mechanical effects causing cell stimulation by applied surface motion might be related to fluid film buildup and/or frictional shear at the scaffold-ball interface. It is suggested that the oscillating ball drags the fluid into the joint space, thereby causing biophysical effects similar to those of fluid flow. PMID:17518631

  11. A three-dimensional hierarchical collagen scaffold fabricated by a combined solid freeform fabrication (SFF) and electrospinning process to enhance mesenchymal stem cell (MSC) proliferation

    NASA Astrophysics Data System (ADS)

    Ahn, SeungHyun; Koh, Young Ho; Kim, GeunHyung

    2010-06-01

    Collagen has the advantage of being very similar to macromolecular substances that can be recognized and metabolized in the biological environment. Although the natural material has superior property for this purpose, its use to fabricate reproducible and pore-structure-controlled 3D structures, which are designed to allow the entry of sufficient cells and the easy diffusion of nutrients, has been limited due to its low processability. Here, we propose a hybrid technology that combines a cryogenic plotting system with an electrospinning process. Using this technique, an easily pore-size-controllable hierarchical 3D scaffold consisting of micro-sized highly porous collagen strands and micro/nano-sized collagen fibers was fabricated. The pore structure of the collagen scaffold was controlled by the collagen micro/nanofibers, which were layered in the scaffold. The hierarchical scaffolds were characterized with respect to initial cell attachment and proliferation of bone marrow-derived mesenchymal stem cells within the scaffolds. The hierarchical scaffold exhibited incredibly enhanced initial cell attachment and cell compactness between pores of the plotted scaffold relative to the normally designed 3D collagen scaffold.

  12. Ornamenting 3D printed scaffolds with cell-laid extracellular matrix for bone tissue regeneration.

    PubMed

    Pati, Falguni; Song, Tae-Ha; Rijal, Girdhari; Jang, Jinah; Kim, Sung Won; Cho, Dong-Woo

    2015-01-01

    3D printing technique is the most sophisticated technique to produce scaffolds with tailorable physical properties. But, these scaffolds often suffer from limited biological functionality as they are typically made from synthetic materials. Cell-laid mineralized ECM was shown to be potential for improving the cellular responses and drive osteogenesis of stem cells. Here, we intend to improve the biological functionality of 3D-printed synthetic scaffolds by ornamenting them with cell-laid mineralized extracellular matrix (ECM) that mimics a bony microenvironment. We developed bone graft substitutes by using 3D printed scaffolds made from a composite of polycaprolactone (PCL), poly(lactic-co-glycolic acid) (PLGA), and β-tricalcium phosphate (β-TCP) and mineralized ECM laid by human nasal inferior turbinate tissue-derived mesenchymal stromal cells (hTMSCs). A rotary flask bioreactor was used to culture hTMSCs on the scaffolds to foster formation of mineralized ECM. A freeze/thaw cycle in hypotonic buffer was used to efficiently decellularize (97% DNA reduction) the ECM-ornamented scaffolds while preserving its main organic and inorganic components. The ECM-ornamented 3D printed scaffolds supported osteoblastic differentiation of newly-seeded hTMSCs by upregulating four typical osteoblastic genes (4-fold higher RUNX2; 3-fold higher ALP; 4-fold higher osteocalcin; and 4-fold higher osteopontin) and increasing calcium deposition compared to bare 3D printed scaffolds. In vivo, in ectopic and orthotopic models in rats, ECM-ornamented scaffolds induced greater bone formation than that of bare scaffolds. These results suggest a valuable method to produce ECM-ornamented 3D printed scaffolds as off-the-shelf bone graft substitutes that combine tunable physical properties with physiological presentation of biological signals. PMID:25453953

  13. Electrospinning of small diameter 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations for vascular grafts.

    PubMed

    Wu, Huijun; Fan, Jintu; Chu, Chih-Chang; Wu, Jun

    2010-12-01

    The control of nanofiber orientation in nanofibrous tubular scaffolds can benefit the cell responses along specific directions. For small diameter tubular scaffolds, however, it becomes difficult to engineer nanofiber orientation. This paper reports a novel electrospinning technique for the fabrication of 3-D nanofibrous tubular scaffolds with controllable nanofiber orientations. Synthetic absorbable poly-ε-caprolactone (PCL) was used as the model biomaterial to demonstrate this new electrospinning technique. Electrospun 3-D PCL nanofibrous tubular scaffolds of 4.5 mm in diameter with different nanofiber orientations (viz. circumferential, axial, and combinations of circumferential and axial directions) were successfully fabricated. The degree of nanofiber alignment in the electrospun 3-D tubular scaffolds was quantified by using the fast Fourier transform (FFT) analysis. The results indicated that excellent circumferential nanofiber alignment could be achieved in the 3-D nanofibrous PCL tubular scaffolds. The nanofibrous tubular scaffolds with oriented nanofibers had not only directional mechanical property but also could facilitate the orientation of the endothelial cell attachment on the fibers. Multiple layers of aligned nanofibers in different orientations can produce 3-D nanofibrous tubular scaffolds of different macroscopic properties. PMID:20890639

  14. An approach to architecture 3D scaffold with interconnective microchannel networks inducing angiogenesis for tissue engineering.

    PubMed

    Sun, Jiaoxia; Wang, Yuanliang; Qian, Zhiyong; Hu, Chenbo

    2011-11-01

    The angiogenesis of 3D scaffold is one of the major current limitations in clinical practice tissue engineering. The new strategy of construction 3D scaffold with microchannel circulation network may improve angiogenesis. In this study, 3D poly(D: ,L: -lactic acid) scaffolds with controllable microchannel structures were fabricated using sacrificial sugar structures. Melt drawing sugar-fiber network produced by a modified filament spiral winding method was used to form the microchannel with adjustable diameters and porosity. This fabrication process was rapid, inexpensive, and highly scalable. The porosity, microchannel diameter, interconnectivity and surface topographies of the scaffold were characterized by scanning electron microscopy. Mechanical properties were evaluated by compression tests. The mean porosity values of the scaffolds were in the 65-78% and the scaffold exhibited microchannel structure with diameter in the 100-200 μm range. The results showed that the scaffolds exhibited an adequate porosity, interconnective microchannel network, and mechanical properties. The cell culture studies with endothelial cells (ECs) demonstrated that the scaffold allowed cells to proliferate and penetrate into the volume of the entire scaffold. Overall, these findings suggest that the fabrication process offers significant advantages and flexibility in generating a variety of non-cytotoxic tissue engineering scaffolds with controllable distributions of porosity and physical properties that could provide the necessary physical cues for ECs and further improve angiogenesis for tissue engineering. PMID:21861076

  15. Vinculin is required for cell polarization, migration, and extracellular matrix remodeling in 3D collagen.

    PubMed

    Thievessen, Ingo; Fakhri, Nikta; Steinwachs, Julian; Kraus, Viola; McIsaac, R Scott; Gao, Liang; Chen, Bi-Chang; Baird, Michelle A; Davidson, Michael W; Betzig, Eric; Oldenbourg, Rudolf; Waterman, Clare M; Fabry, Ben

    2015-11-01

    Vinculin is filamentous (F)-actin-binding protein enriched in integrin-based adhesions to the extracellular matrix (ECM). Whereas studies in 2-dimensional (2D) tissue culture models have suggested that vinculin negatively regulates cell migration by promoting cytoskeleton-ECM coupling to strengthen and stabilize adhesions, its role in regulating cell migration in more physiologic, 3-dimensional (3D) environments is unclear. To address the role of vinculin in 3D cell migration, we analyzed the morphodynamics, migration, and ECM remodeling of primary murine embryonic fibroblasts (MEFs) with cre/loxP-mediated vinculin gene disruption in 3D collagen I cultures. We found that vinculin promoted 3D cell migration by increasing directional persistence. Vinculin was necessary for persistent cell protrusion, cell elongation, and stable cell orientation in 3D collagen, but was dispensable for lamellipodia formation, suggesting that vinculin-mediated cell adhesion to the ECM is needed to convert actin-based cell protrusion into persistent cell shape change and migration. Consistent with this finding, vinculin was necessary for efficient traction force generation in 3D collagen without affecting myosin II activity and promoted 3D collagen fiber alignment and macroscopical gel contraction. Our results suggest that vinculin promotes directionally persistent cell migration and tension-dependent ECM remodeling in complex 3D environments by increasing cell-ECM adhesion and traction force generation. PMID:26195589

  16. Cell Invasion in Collagen Scaffold Architectures Characterized by Percolation Theory.

    PubMed

    Ashworth, Jennifer C; Mehr, Marco; Buxton, Paul G; Best, Serena M; Cameron, Ruth E

    2015-06-24

    The relationship between biological scaffold interconnectivity and cell migration is an important but poorly understood factor in tissue regeneration. Here a scale-independent technique for characterization of collagen scaffold interconnectivity is presented, using a combination of X-ray microcomputed tomography and percolation theory. Confocal microscopy of connective tissue cells reveals this technique as highly relevant for determining the extent of cell invasion. PMID:25881025

  17. 3D fibre deposition and stereolithography techniques for the design of multifunctional nanocomposite magnetic scaffolds.

    PubMed

    De Santis, Roberto; D'Amora, Ugo; Russo, Teresa; Ronca, Alfredo; Gloria, Antonio; Ambrosio, Luigi

    2015-10-01

    Magnetic nanocomposite scaffolds based on poly(ε-caprolactone) and poly(ethylene glycol) were fabricated by 3D fibre deposition modelling (FDM) and stereolithography techniques. In addition, hybrid coaxial and bilayer magnetic scaffolds were produced by combining such techniques. The aim of the current research was to analyse some structural and functional features of 3D magnetic scaffolds obtained by the 3D fibre deposition technique and by stereolithography as well as features of multimaterial scaffolds in the form of coaxial and bilayer structures obtained by the proper integration of such methods. The compressive mechanical behaviour of these scaffolds was investigated in a wet environment at 37 °C, and the morphological features were analysed through scanning electron microscopy (SEM) and X-ray micro-computed tomography. The capability of a magnetic scaffold to absorb magnetic nanoparticles (MNPs) in water solution was also assessed. confocal laser scanning microscopy was used to assess the in vitro biological behaviour of human mesenchymal stem cells (hMSCs) seeded on 3D structures. Results showed that a wide range of mechanical properties, covering those spanning hard and soft tissues, can be obtained by 3D FDM and stereolithography techniques. 3D virtual reconstruction and SEM showed the precision with which the scaffolds were fabricated, and a good-quality interface between poly(ε-caprolactone) and poly(ethylene glycol) based scaffolds was observed for bilayer and coaxial scaffolds. Magnetised scaffolds are capable of absorbing water solution of MNPs, and a preliminary information on cell adhesion and spreading of hMSCs was obtained without the application of an external magnetic field. PMID:26420041

  18. Plant-Derived Human Collagen Scaffolds for Skin Tissue Engineering

    PubMed Central

    Willard, James J.; Drexler, Jason W.; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded

    2013-01-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  19. Plant-derived human collagen scaffolds for skin tissue engineering.

    PubMed

    Willard, James J; Drexler, Jason W; Das, Amitava; Roy, Sashwati; Shilo, Shani; Shoseyov, Oded; Powell, Heather M

    2013-07-01

    Tissue engineering scaffolds are commonly formed using proteins extracted from animal tissues, such as bovine hide. Risks associated with the use of these materials include hypersensitivity and pathogenic contamination. Human-derived proteins lower the risk of hypersensitivity, but possess the risk of disease transmission. Methods engineering recombinant human proteins using plant material provide an alternate source of these materials without the risk of disease transmission or concerns regarding variability. To investigate the utility of plant-derived human collagen (PDHC) in the development of engineered skin (ES), PDHC and bovine hide collagen were formed into tissue engineering scaffolds using electrospinning or freeze-drying. Both raw materials were easily formed into two common scaffold types, electrospun nonwoven scaffolds and lyophilized sponges, with similar architectures. The processing time, however, was significantly lower with PDHC. PDHC scaffolds supported primary human cell attachment and proliferation at an equivalent or higher level than the bovine material. Interleukin-1 beta production was significantly lower when activated THP-1 macrophages where exposed to PDHC electrospun scaffolds compared to bovine collagen. Both materials promoted proper maturation and differentiation of ES. These data suggest that PDHC may provide a novel source of raw material for tissue engineering with low risk of allergic response or disease transmission. PMID:23298216

  20. 3D Scaffolded Nickel-Tin Li-Ion Anodes with Enhanced Cyclability.

    PubMed

    Zhang, Huigang; Shi, Tan; Wetzel, David J; Nuzzo, Ralph G; Braun, Paul V

    2016-01-27

    A 3D mechanically stable scaffold is shown to accommodate the volume change of a high-specific-capacity nickel-tin nanocomposite during operation as a Li-ion battery anode. The nickel-tin anode is supported by an electrochemically inactive conductive scaffold with an engineered free volume and controlled characteristic dimensions, which engender the electrode with significantly improved cyclability. PMID:26618617

  1. AB173. Fibroblast-derived extracellular matrix formation in the 3D fiber-deposited polycaprolactone (PCL) scaffold for tunica albuginea replacement

    PubMed Central

    Lee, Hyun-Suk; Park, Jinju; Lee, Mina; Yu, Ho Song; Yim, Sang Un; Park, Su A.; Park, Kwangsung

    2015-01-01

    Objective To investigate the effects of growth factors fibroblast-derived extracellular matrix formation in the 3D fiber-deposited polycaprolactone (PCL) scaffold fabricated by 3D printing technique for tissue engineering applications of tunica albuginea. Methods PCL scaffold was fabricated by 3D bioprinting system. For in vitro cell study, scaffolds were seeded with human fibroblast cell at 5×105 cells and were cultured for up to 2 weeks. Cell survival and cell proliferation were monitored by EZ-cytox assay. The effect of growth factors on the extracellular matrix formation was evaluated by fastin elastin assay and enzyme immunoassay (EIA). Results SEM images showed the surface morphology of PCL scaffolds. Human fibroblasts were grown on 3D PCL scaffolds in the presence/absence of basic fibroblast growth factor (bFGF) or transforming growth factor-beta 1 (TGF-β1). bFGF or TGF-β1 stimulated proliferation of fibroblasts and also increased collagen and elastin formation in vitro study. Conclusions This study shows that bFGF or TGF-β1 modulates the fibroblast-derived extracellular matrix formation in the 3D PCL scaffold.

  2. Micro-structured materials and mechanical cues in 3D collagen gels.

    PubMed

    Phillips, James B; Brown, Robert

    2011-01-01

    Collagen gels provide a versatile and widely used substrate for three-dimensional (3D) cell culture. Here we describe how cell-seeded Type-I collagen gels can be adapted to provide powerful 3D models to support a wide range of research applications where cell/substrate alignment, density, stiffness/compliance, and strain are critical factors. In their fully hydrated form, rectangular collagen gels can be tethered such that endogenous forces generated as resident cells attach to and remodel the fibrillar collagen network can align the substrate in a controllable, predictable, and quantifiable manner. By removing water from collagen gels (plastic compression), their density increases towards that of body tissues, facilitating the engineering of a range of biomimetic constructs with controllable mechanical properties. This dense collagen can be used in combination with other components to achieve a range of functional properties from controlled perfusion, or tensile/compressive strength to new micro-structures. Detailed methodology is provided for the assembly of a range of 3D collagen materials including tethered aligned hydrogels and plastic compressed constructs. A range of techniques for analysing cell behaviour within these models, including microscopy and molecular analyses are described. These systems therefore provide a highly controllable mechanical and chemical micro-environment for investigating a wide range of cellular responses. PMID:21042973

  3. Cell-secreted extracellular matrix formation and differentiation of adipose-derived stem cells in 3D alginate scaffolds with tunable properties.

    PubMed

    Guneta, Vipra; Loh, Qiu Li; Choong, Cleo

    2016-05-01

    Three dimensional (3D) alginate scaffolds with tunable mechanical and structural properties are explored for investigating the effect of the scaffold properties on stem cell behavior and extracellular matrix (ECM) formation. Varying concentrations of crosslinker (20 - 60%) are used to tune the stiffness, porosity, and the pore sizes of the scaffolds post-fabrication. Enhanced cell proliferation and adipogenesis occur in scaffolds with 3.52 ± 0.59 kPa stiffness, 87.54 ± 18.33% porosity and 68.33 ± 0.88 μm pore size. On the other hand, cells in scaffolds with stiffness greater than 11.61 ± 1.74 kPa, porosity less than 71.98 ± 6.25%, and pore size less than 64.15 ± 4.34 μm preferentially undergo osteogenesis. When cultured in differentiation media, adipose-derived stem cells (ASCs) undergoing terminal adipogenesis in 20% firming buffer (FB) scaffolds and osteogenesis in 40% and 60% FB scaffolds show the highest secretion of collagen as compared to other groups of scaffolds. Overall, this study demonstrates the three-way relationship between 3D scaffolds, ECM composition, and stem cell differentiation. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1090-1101, 2016. PMID:26749566

  4. Influence of collagen concentration and glutaraldehyde on collagen-based scaffold properties.

    PubMed

    Perez-Puyana, V; Romero, A; Guerrero, A

    2016-06-01

    Several studies have shown the influence of the physical properties of scaffolds on their mechanical properties. An initial characterization of a type of collagen protein was carried out by studying its composition andits solubility at different pH values and infrared spectroscopy. Subsequently, porosity and scaffold pore size were studied, assessing how varying the composition of the initial solution (increasing the protein concentration or adding glutaraldehyde) changed the properties of the final scaffolds obtained. Lastly, rheological measurements were performed to evaluate the mechanical strength of the scaffolds. The initial characterization revealed that the type I collagen protein used is considerably denatured. In addition, increasing the protein content in the scaffold decreases the porosity, related to an increase in the elastic modulus producing an enhancement of its mechanical strength, while adding glutaraldehyde to the scaffold increases its mechanical strength without lowering its pore size or porosity. The results obtained are useful in that they demonstrate that it is possible to design a scaffold with specific properties, by just controlling the collagen concentration or adding glutaraldehyde to the initial solution. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1462-1468, 2016. PMID:26833811

  5. Quantitative Assessment of Local Collagen Matrix Remodeling in 3-D Culture: The Role of Rho Kinase

    PubMed Central

    Kim, Areum; Lakshman, Neema; Petroll, W.Matthew

    2007-01-01

    The purpose of this study was to quantitatively assess the role of Rho kinase in modulating the pattern and amount of local cell-induced collagen matrix remodeling. Human corneal fibroblasts were plated inside 100 μm thick fibrillar collagen matrices and cultured for 24 hours in media with or without the Rho kinase inhibitor Y-27632. Cells were then fixed and stained with phalloidin. Fluorescent (for f-actin) and reflected light (for collagen fibrils) 3-D optical section images were acquired using laser confocal microscopy. Fourier transform analysis was used to assess collagen fibril alignment, and 3-D cell morphology and local collagen density were measured using MetaMorph. Culture in serum-containing media induced significant global matrix contraction, which was inhibited by blocking Rho kinase (p < 0.001). Fibroblasts generally had a bipolar morphology and intracellular stress fibers. Collagen fibrils were compacted and aligned parallel to stress fibers and pseudopodia. When Rho kinase was inhibited, cells had a more cortical f-actin distribution and dendritic morphology. Both local collagen fibril density and alignment were significantly reduced (p<0.01). Overall, the data suggests that Rho kinase dependent contractile force generation leads to co-alignment of cells and collagen fibrils along the plane of greatest resistance, and that this process contributes to global matrix contraction. PMID:16978606

  6. Development of an indirect solid freeform fabrication process based on microstereolithography for 3D porous scaffolds

    NASA Astrophysics Data System (ADS)

    Kang, Hyun-Wook; Seol, Young-Joon; Cho, Dong-Woo

    2009-01-01

    Scaffold fabrication using solid freeform fabrication (SFF) technology is a hot topic in tissue engineering. Here, we present a new indirect SFF technology based on microstereolithography (MSTL), which has the highest resolution of all SFF methods, to construct a three-dimensional (3D) porous scaffold by combining SFF with molding technology. To realize this indirect method, we investigated and modified a water-soluble photopolymer. We used MSTL technology to fabricate a high-resolution 3D porous mold composed of the modified polymer. The mold can be removed using an appropriate solvent. We tested two materials, polycaprolactone and calcium sulfate hemihydrate, using the molding process, and developed a lost-mold shape forming process by dissolving the mold. This procedure demonstrated that the proposed method can yield scaffold pore sizes as small as 60-70 µm. In addition, cytotoxicity test results indicated that the proposed process is feasible for producing 3D porous scaffolds.

  7. 3D Printed Silicone-Hydrogel Scaffold with Enhanced Physicochemical Properties.

    PubMed

    Mohanty, Soumyaranjan; Alm, Martin; Hemmingsen, Mette; Dolatshahi-Pirouz, Alireza; Trifol, Jon; Thomsen, Peter; Dufva, Martin; Wolff, Anders; Emnéus, Jenny

    2016-04-11

    Scaffolds with multiple functionalities have attracted widespread attention in the field of tissue engineering due to their ability to control cell behavior through various cues, including mechanical, chemical, and electrical. Fabrication of such scaffolds from clinically approved materials is currently a huge challenge. The goal of this work was to fabricate a tissue engineering scaffold from clinically approved materials with the capability of delivering biomolecules and direct cell fate. We have used a simple 3D printing approach, that combines polymer casting with supercritical fluid technology to produce 3D interpenetrating polymer network (IPN) scaffold of silicone-poly(2-hydroxyethyl methacrylate)-co-poly(ethylene glycol) methyl ether acrylate (pHEMA-co-PEGMEA). The pHEMA-co-PEGMEA IPN materials were employed to support growth of human mesenchymal stem cells (hMSC), resulting in high cell viability and metabolic activity over a 3 weeks period. In addition, the IPN scaffolds support 3D tissue formation inside the porous scaffold with well spread cell morphology on the surface of the scaffold. As a proof of concept, sustained doxycycline (DOX) release from pHEMA-co-PEGMEA IPN was demonstrated and the biological activity of released drug from IPN was confirmed using a DOX regulated green fluorescent reporter (GFP) gene expression assay with HeLa cells. Given its unique mechanical and drug releasing characteristics, IPN scaffolds may be used for directing stem cell differentiation by releasing various chemicals from its hydrogel network. PMID:26902925

  8. From 2D to 3D: novel nanostructured scaffolds to investigate signalling in reconstructed neuronal networks.

    PubMed

    Bosi, Susanna; Rauti, Rossana; Laishram, Jummi; Turco, Antonio; Lonardoni, Davide; Nieus, Thierry; Prato, Maurizio; Scaini, Denis; Ballerini, Laura

    2015-01-01

    To recreate in vitro 3D neuronal circuits will ultimately increase the relevance of results from cultured to whole-brain networks and will promote enabling technologies for neuro-engineering applications. Here we fabricate novel elastomeric scaffolds able to instruct 3D growth of living primary neurons. Such systems allow investigating the emerging activity, in terms of calcium signals, of small clusters of neurons as a function of the interplay between the 2D or 3D architectures and network dynamics. We report the ability of 3D geometry to improve functional organization and synchronization in small neuronal assemblies. We propose a mathematical modelling of network dynamics that supports such a result. Entrapping carbon nanotubes in the scaffolds remarkably boosted synaptic activity, thus allowing for the first time to exploit nanomaterial/cell interfacing in 3D growth support. Our 3D system represents a simple and reliable construct, able to improve the complexity of current tissue culture models. PMID:25910072

  9. Concentrated hydroxyapatite inks for direct-write assembly of 3-D periodic scaffolds.

    PubMed

    Michna, Sarah; Wu, Willie; Lewis, Jennifer A

    2005-10-01

    Hydroxyapatite (HA) scaffolds with a 3-D periodic architecture and multiscale porosity have been fabricated by direct-write assembly. Concentrated HA inks with tailored viscoelastic properties were developed to enable the construction of complex 3-D architectures comprised of self-supporting cylindrical rods in a layer-by-layer patterning sequence. By controlling their lattice constant and sintering conditions, 3-D periodic HA scaffolds were produced with a bimodal pore size distribution. Mercury intrusion porosimetry (MIP) was used to determine the characteristic pore size and volume associated with the interconnected pore channels between HA rods and the finer pores within the partially sintered HA rods. PMID:15878368

  10. In vitro generation of mechanically functional cartilage grafts based on adult human stem cells and 3D-woven poly(ε-caprolactone) scaffolds

    PubMed Central

    Valonen, P.K.; Moutos, F.T.; Kusanagi, A.; Moretti, M.; Diekman, B.O.; Welter, J.F.; Caplan, A.I.; Guilak, F.

    2009-01-01

    Three-dimensionally woven poly(ε-caprolactone)(PCL) scaffolds were combined with adult human mesenchymal stem cells (hMSC) to engineer mechanically functional cartilage constructs in vitro. The specific objectives were to: (i) produce PCL scaffolds with cartilage-like mechanical properties, (ii) demonstrate that hMSCs formed cartilage after 21-days of culture on PCL scaffolds, and (iii) study effects of scaffold structure (loosely vs. tightly woven), culture vessel (static dish vs. oscillating bioreactor), and medium composition (chondrogenic additives with or without serum). Aggregate moduli of 21-day constructs approached normal articular cartilage for tightly woven PCL cultured in bioreactors, were lower for tightly woven PCL cultured statically, and lowest for loosely woven PCL cultured statically (p<0.05). Construct DNA, total collagen, and glyocosaminoglycans (GAG) increased in a manner dependent on time, culture vessel, and medium composition. Chondrogenesis was verified histologically by rounded cells within a hyaline-like matrix that immunostained for collagen type II but not type I. Bioreactors yielded constructs with higher collagen content (p<0.05) and more homogenous matrix than static controls. Chondrogenic additives yielded constructs with higher GAG (p<0.05) and earlier expression of collagen II mRNA if serum was not present in medium. These results show feasibility of functional cartilage tissue engineering from hMSC and 3D woven PCL scaffolds. PMID:20034665

  11. Thermoforming techniques for manufacturing porous scaffolds for application in 3D cell cultivation.

    PubMed

    Borowiec, Justyna; Hampl, Jörg; Gebinoga, Michael; Elsarnagawy, Tarek; Elnakady, Yasser A; Fouad, Hassan; Almajhadi, Fahd; Fernekorn, Uta; Weise, Frank; Singh, Sukhdeep; Elsarnagawy, Dief; Schober, Andreas

    2015-04-01

    Within the scientific community, there is an increasing demand to apply advanced cell cultivation substrates with increased physiological functionalities for studying spatially defined cellular interactions. Porous polymeric scaffolds are utilized for mimicking an organ-like structure or engineering complex tissues and have become a key element for three-dimensional (3D) cell cultivation in the meantime. As a consequence, efficient 3D scaffold fabrication methods play an important role in modern biotechnology. Here, we present a novel thermoforming procedure for manufacturing porous 3D scaffolds from permeable materials. We address the issue of precise thermoforming of porous polymer foils by using multilayer polymer thermoforming technology. This technology offers a new method for structuring porous polymer foils that are otherwise available for non-porous polymers only. We successfully manufactured 3D scaffolds from solvent casted and phase separated polylactic acid (PLA) foils and investigated their biocompatibility and basic cellular performance. The HepG2 cell culture in PLA scaffold has shown enhanced albumin secretion rate in comparison to a previously reported polycarbonate based scaffold with similar geometry. PMID:25686978

  12. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.

    PubMed

    Senatov, F S; Niaza, K V; Zadorozhnyy, M Yu; Maksimkin, A V; Kaloshkin, S D; Estrin, Y Z

    2016-04-01

    In the present work polylactide (PLA)/15wt% hydroxyapatite (HA) porous scaffolds with pre-modeled structure were obtained by 3D-printing by fused filament fabrication. Composite filament was obtained by extrusion. Mechanical properties, structural characteristics and shape memory effect (SME) were studied. Direct heating was used for activation of SME. The average pore size and porosity of the scaffolds were 700μm and 30vol%, respectively. Dispersed particles of HA acted as nucleation centers during the ordering of PLA molecular chains and formed an additional rigid fixed phase that reduced molecular mobility, which led to a shift of the onset of recovery stress growth from 53 to 57°C. A more rapid development of stresses was observed for PLA/HA composites with the maximum recovery stress of 3.0MPa at 70°C. Ceramic particles inhibited the growth of cracks during compression-heating-compression cycles when porous PLA/HA 3D-scaffolds recovered their initial shape. Shape recovery at the last cycle was about 96%. SME during heating may have resulted in "self-healing" of scaffold by narrowing the cracks. PLA/HA 3D-scaffolds were found to withstand up to three compression-heating-compression cycles without delamination. It was shown that PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME. PMID:26710259

  13. Chitosan-collagen/organomontmorillonite scaffold for bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Cao, Xianshuo; Wang, Jun; Liu, Min; Chen, Yong; Cao, Yang; Yu, Xiaolong

    2015-12-01

    A novel composite scaffold based on chitosan-collagen/organomontmorillonite (CS-COL/OMMT) was prepared to improve swelling ratio, biodegradation ratio, biomineralization and mechanical properties for use in tissue engineering applications. In order to expend the basal spacing, montmorillonite (MMT) was modified with sodium dodecyl sulfate (SDS) and was characterized by XRD, TGA and FTIR. The results indicated that the anionic surfactants entered into interlayer of MMT and the basal spacing of MMT was expanded to 3.85 nm. The prepared composite scaffolds were characterized by FTIR, XRD and SEM. The swelling ratio, biodegradation ratio and mechanical properties of composite scaffolds were also studied. The results demonstrated that the scaffold decreased swelling ratio, degradation ratio and improved mechanical and biomineralization properties because of OMMT.

  14. Preparation and Evaluation of Gelatin-Chitosan-Nanobioglass 3D Porous Scaffold for Bone Tissue Engineering

    PubMed Central

    Maji, Kanchan; Dasgupta, Sudip; Pramanik, Krishna; Bissoyi, Akalabya

    2016-01-01

    The aim of the present study was to prepare and characterize bioglass-natural biopolymer based composite scaffold and evaluate its bone regeneration ability. Bioactive glass nanoparticles (58S) in the size range of 20–30 nm were synthesized using sol-gel method. Porous scaffolds with varying bioglass composition from 10 to 30 wt% in chitosan, gelatin matrix were fabricated using the method of freeze drying of its slurry at 40 wt% solids loading. Samples were cross-linked with glutaraldehyde to obtain interconnected porous 3D microstructure with improved mechanical strength. The prepared scaffolds exhibited >80% porosity with a mean pore size range between 100 and 300 microns. Scaffold containing 30 wt% bioglass (GCB 30) showed a maximum compressive strength of 2.2 ± 0.1 MPa. Swelling and degradation studies showed that the scaffold had excellent properties of hydrophilicity and biodegradability. GCB 30 scaffold was shown to be noncytotoxic and supported mesenchymal stem cell attachment, proliferation, and differentiation as indicated by MTT assay and RUNX-2 expression. Higher cellular activity was observed in GCB 30 scaffold as compared to GCB 0 scaffold suggesting the fact that 58S bioglass nanoparticles addition into the scaffold promoted better cell adhesion, proliferation, and differentiation. Thus, the study showed that the developed composite scaffolds are potential candidates for regenerating damaged bone tissue. PMID:26884764

  15. Mechanical evaluation of gradient electrospun scaffolds with 3D printed ring reinforcements for tracheal defect repair.

    PubMed

    Ott, Lindsey M; Zabel, Taylor A; Walker, Natalie K; Farris, Ashley L; Chakroff, Jason T; Ohst, Devan G; Johnson, Jed K; Gehrke, Steven H; Weatherly, Robert A; Detamore, Michael S

    2016-04-01

    Tracheal stenosis can become a fatal condition, and current treatments include augmentation of the airway with autologous tissue. A tissue-engineered approach would not require a donor source, while providing an implant that meets both surgeons' and patients' needs. A fibrous, polymeric scaffold organized in gradient bilayers of polycaprolactone (PCL) and poly-lactic-co-glycolic acid (PLGA) with 3D printed structural ring supports, inspired by the native trachea rings, could meet this need. The purpose of the current study was to characterize the tracheal scaffolds with mechanical testing models to determine the design most suitable for maintaining a patent airway. Degradation over 12 weeks revealed that scaffolds with the 3D printed rings had superior properties in tensile and radial compression, with at least a three fold improvement and 8.5-fold improvement, respectively, relative to the other scaffold groups. The ringed scaffolds produced tensile moduli, radial compressive forces, and burst pressures similar to or exceeding physiological forces and native tissue data. Scaffolds with a thicker PCL component had better suture retention and tube flattening recovery properties, with the monolayer of PCL (PCL-only group) exhibiting a 2.3-fold increase in suture retention strength (SRS). Tracheal scaffolds with ring reinforcements have improved mechanical properties, while the fibrous component increased porosity and cell infiltration potential. These scaffolds may be used to treat various trachea defects (patch or circumferential) and have the potential to be employed in other tissue engineering applications. PMID:27097554

  16. In-vivo behavior of Si-hydroxyapatite/polycaprolactone/DMB scaffolds fabricated by 3D printing.

    PubMed

    Meseguer-Olmo, Luis; Vicente-Ortega, Vicente; Alcaraz-Baños, Miguel; Calvo-Guirado, José Luis; Vallet-Regí, María; Arcos, Daniel; Baeza, Alejandro

    2013-07-01

    Scaffolds made of polycaprolactone and nanocrystalline silicon-substituted hydroxyapatite have been fabricated by 3D printing rapid prototyping technique. To asses that the scaffolds fulfill the requirements to be considered for bone grafting applications, they were implanted in New Zealand rabbits. Histological and radiological studies have demonstrated that the scaffolds implanted in bone exhibited an excellent osteointegration without the interposition of fibrous tissue between bone and implants and without immune response after 4 months of implantation. In addition, we have evaluated the possibility of improving the scaffolds efficiency by incorporating demineralized bone matrix during the preparation by 3D printing. When demineralized bone matrix (DBM) is incorporated, the efficacy of the scaffolds is enhanced, as new bone formation occurs not only in the peripheral portions of the scaffolds but also within its pores after 4 months of implantation. This enhanced performance can be explained in terms of the osteoinductive properties of the DBM in the scaffolds, which have been assessed through the new bone tissue formation when the scaffolds are ectopically implanted. PMID:23255259

  17. Electroactive biomimetic collagen-silver nanowire composite scaffolds

    NASA Astrophysics Data System (ADS)

    Wickham, Abeni; Vagin, Mikhail; Khalaf, Hazem; Bertazzo, Sergio; Hodder, Peter; Dånmark, Staffan; Bengtsson, Torbjörn; Altimiras, Jordi; Aili, Daniel

    2016-07-01

    Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm-2 and a charge injection capacity of 0.3 mC cm-2, which is on par with bioelectrodes used in the clinic. The mechanical properties of the materials are similar to soft tissues with a dynamic elastic modulus within the lower kPa range. The nanocomposites also support proliferation of embryonic cardiomyocytes while inhibiting the growth of both Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The developed collagen/AgNW composites thus represent a highly attractive bioelectrode and scaffold material for a wide range of biomedical applications.Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm-2

  18. MMP Regulation of Corneal Keratocyte Motility and Mechanics in 3-D Collagen Matrices

    PubMed Central

    Zhou, Chengxin; Petroll, W. Matthew

    2014-01-01

    Previous studies have shown that platelet derived growth factor (PDGF) can stimulate corneal keratocyte spreading and migration within 3-D collagen matrices, without inducing transformation to a contractile, fibroblastic phenotype. The goal of this study was to investigate the role of matrix metalloproteinases (MMPs) in regulating PDGF-induced changes in keratocyte motility and mechanical differentiation. Rabbit corneal keratocytes were isolated and cultured in serum-free media (S-) to maintain their quiescent phenotype. A nested collagen matrix construct was used to assess 3-D cell migration, and a standard collagen matrix model was used to assess cell morphology and cell-mediated matrix contraction. In both cases constructs were cultured in S- supplemented with PDGF, with or without the broad spectrum MMP inhibitors GM6001 or BB-94. After 4 days, f-actin, nuclei and collagen fibrils were imaged using confocal microscopy. To assess sub-cellular mechanical activity (extension and retraction of cell processes), time-lapse DIC imaging was also performed. MT1-MMP expression and MMP-mediated collagen degradation by were also examined. Results demonstrated that neither GM6001 nor BB-94 affected corneal keratocyte viability or proliferation in 3-D culture. PDGF stimulated elongation and migration of corneal keratocytes within type I collagen matrices, without causing a loss of their dendritic morphology or inducing formation of intracellular stress fibers. Treatment with GM6001 and BB-94 inhibited PDGF-induced keratocyte spreading and migration. Relatively low levels of keratocyte-induced matrix contraction were also maintained in PDGF, and the amount of PDGF-induced collagen degradation was similar to that observed in S- controls. The collagen degradation pattern was consistent with membrane-associated MMP activity, and keratocytes showed positive staining for MT1-MMP, albeit weak. Both matrix contraction and collagen degradation were reduced by MMP inhibition. For most

  19. Development of melt electrohydrodynamic 3D printing for complex microscale poly (ε-caprolactone) scaffolds.

    PubMed

    He, Jiankang; Xia, Peng; Li, Dichen

    2016-01-01

    The replication of native hierarchical structures into synthetic scaffolds is important to direct cell growth and tissue regeneration. However, most of the existing scaffold strategies lack the capability to simultaneously realize the controlled fabrication of macroscopic geometries as well as microscale architectures with the scale similar to living cells. Here we developed a melt electrohydrodynamic printing platform and verified its feasibility to fabricate three-dimensional (3D) tissue-engineered scaffolds with complex curved geometries and microscale fibrous structures. Melting temperature was studied to stably print poly (ε-caprolactone) (PCL) filaments with the size of about 10 μm, which was precisely stacked into 3D straight walls with fine surface quality. By adjusting stage moving speed and directions, 3D PCL scaffolds with curved contours and predefined fiber orientations or spacing were successfully printed. Biological experiments showed that the printed microscale scaffolds had good biocompatibility and facilitated cellular proliferation and alignment in vitro. It is envisioned that the melt electrohydrodynamic printing can potentially provide an innovative tool to fabricate hierarchical scaffolds that mimic the native tissue architectures in a multiscale level. PMID:27490377

  20. Bioactive polymeric-ceramic hybrid 3D scaffold for application in bone tissue regeneration.

    PubMed

    Torres, A L; Gaspar, V M; Serra, I R; Diogo, G S; Fradique, R; Silva, A P; Correia, I J

    2013-10-01

    The regeneration of large bone defects remains a challenging scenario from a therapeutic point of view. In fact, the currently available bone substitutes are often limited by poor tissue integration and severe host inflammatory responses, which eventually lead to surgical removal. In an attempt to address these issues, herein we evaluated the importance of alginate incorporation in the production of improved and tunable β-tricalcium phosphate (β-TCP) and hydroxyapatite (HA) three-dimensional (3D) porous scaffolds to be used as temporary templates for bone regeneration. Different bioceramic combinations were tested in order to investigate optimal scaffold architectures. Additionally, 3D β-TCP/HA vacuum-coated with alginate, presented improved compressive strength, fracture toughness and Young's modulus, to values similar to those of native bone. The hybrid 3D polymeric-bioceramic scaffolds also supported osteoblast adhesion, maturation and proliferation, as demonstrated by fluorescence microscopy. To the best of our knowledge this is the first time that a 3D scaffold produced with this combination of biomaterials is described. Altogether, our results emphasize that this hybrid scaffold presents promising characteristics for its future application in bone regeneration. PMID:23910366

  1. 3D printed PLA-based scaffolds: a versatile tool in regenerative medicine.

    PubMed

    Serra, Tiziano; Mateos-Timoneda, Miguel A; Planell, Josep A; Navarro, Melba

    2013-10-01

    Rapid prototyping (RP), also known as additive manufacturing (AM), has been well received and adopted in the biomedical field. The capacity of this family of techniques to fabricate customized 3D structures with complex geometries and excellent reproducibility has revolutionized implantology and regenerative medicine. In particular, nozzle-based systems allow the fabrication of high-resolution polylactic acid (PLA) structures that are of interest in regenerative medicine. These 3D structures find interesting applications in the regenerative medicine field where promising applications including biodegradable templates for tissue regeneration purposes, 3D in vitro platforms for studying cell response to different scaffolds conditions and for drug screening are considered among others. Scaffolds functionality depends not only on the fabrication technique, but also on the material used to build the 3D structure, the geometry and inner architecture of the structure, and the final surface properties. All being crucial parameters affecting scaffolds success. This Commentary emphasizes the importance of these parameters in scaffolds' fabrication and also draws the attention toward the versatility of these PLA scaffolds as a potential tool in regenerative medicine and other medical fields. PMID:23959206

  2. Development of a 3D polymer reinforced calcium phosphate cement scaffold for cranial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Alge, Daniel L.

    The repair of critical-sized cranial bone defects represents an important clinical challenge. The limitations of autografts and alloplastic materials make a bone tissue engineering strategy desirable, but success depends on the development of an appropriate scaffold. Key scaffold properties include biocompatibility, osteoconductivity, sufficient strength to maintain its structure, and resorbability. Furthermore, amenability to rapid prototyping fabrication methods is desirable, as these approaches offer precise control over scaffold architecture and have the potential for customization. While calcium phosphate cements meet many of these criteria due to their composition and their injectability, which can be leveraged for scaffold fabrication via indirect casting, their mechanical properties are a major limitation. Thus, the overall goal of this work was to develop a 3D polymer reinforced calcium phosphate cement scaffold for use in cranial bone tissue engineering. Dicalcium phosphate dihydrate (DCPD) setting cements are of particular interest because of their excellent resorbability. We demonstrated for the first time that DCPD cement can be prepared from monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) mixtures. However, subsequent characterization revealed that MCPM/HA cements rapidly convert to HA during degradation, which is undesirable and led us to choose a more conventional formulation for scaffold fabrication. In addition, we developed a novel method for calcium phosphate cement reinforcement that is based on infiltrating a pre-set cement structure with a polymer, and then crosslinking the polymer in situ. Unlike prior methods of cement reinforcement, this method can be applied to the reinforcement of 3D scaffolds fabricated by indirect casting. Using our novel method, composites of poly(propylene fumarate) (PPF) reinforced DCPD were prepared and demonstrated as excellent candidate scaffold materials, as they had increased strength and ductility

  3. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds.

    PubMed

    Hofmann, Sandra; Stok, Kathryn S; Kohler, Thomas; Meinel, Anne J; Müller, Ralph

    2014-01-01

    The development of porous scaffolds for tissue engineering applications requires the careful choice of properties, as these influence cell adhesion, proliferation and differentiation. Sterilization of scaffolds is a prerequisite for in vitro culture as well as for subsequent in vivo implantation. The variety of methods used to provide sterility is as diverse as the possible effects they can have on the structural and material properties of the three-dimensional (3-D) porous structure, especially in polymeric or proteinous scaffold materials. Silk fibroin (SF) has previously been demonstrated to offer exceptional benefits over conventional synthetic and natural biomaterials in generating scaffolds for tissue replacements. This study sought to determine the effect of sterilization methods, such as autoclaving, heat-, ethylene oxide-, ethanol- or antibiotic-antimycotic treatment, on porous 3-D SF scaffolds. In terms of scaffold morphology, topography, crystallinity and short-term cell viability, the different sterilization methods showed only few effects. Nevertheless, mechanical properties were significantly decreased by a factor of two by all methods except for dry autoclaving, which seemed not to affect mechanical properties compared to the native control group. These data suggest that SF scaffolds are in general highly resistant to various sterilization treatments. Nevertheless, care should be taken if initial mechanical properties are of interest. PMID:24013025

  4. A multi-scale controlled tissue engineering scaffold prepared by 3D printing and NFES technology

    NASA Astrophysics Data System (ADS)

    Yan, Feifei; Liu, Yuanyuan; Chen, Haiping; Zhang, Fuhua; Zheng, Lulu; Hu, Qingxi

    2014-03-01

    The current focus in the field of life science is the use of tissue engineering scaffolds to repair human organs, which has shown great potential in clinical applications. Extracellular matrix morphology and the performance and internal structure of natural organs are required to meet certain requirements. Therefore, integrating multiple processes can effectively overcome the limitations of the individual processes and can take into account the needs of scaffolds for the material, structure, mechanical properties and many other aspects. This study combined the biological 3D printing technology and the near-field electro-spinning (NFES) process to prepare a multi-scale controlled tissue engineering scaffold. While using 3D printing technology to directly prepare the macro-scaffold, the compositing NFES process to build tissue micro-morphology ultimately formed a tissue engineering scaffold which has the specific extracellular matrix structure. This scaffold not only takes into account the material, structure, performance and many other requirements, but also focuses on resolving the controllability problems in macro- and micro-forming which further aim to induce cell directed differentiation, reproduction and, ultimately, the formation of target tissue organs. It has in-depth immeasurable significance to build ideal scaffolds and further promote the application of tissue engineering.

  5. Bottom-up topography assembly into 3D porous scaffold to mediate cell activities.

    PubMed

    Cheng, Delin; Hou, Jie; Hao, Lijing; Cao, Xiaodong; Gao, Huichang; Fu, Xiaoling; Wang, Yingjun

    2016-08-01

    Native cells live in a three-dimensional (3D) extracellular matrix (ECM) capable of regulating cell activities through various physical and chemical factors. Designed topographies have been well proven to trigger significant difference in cell behaviours. However, present topographies are almost all constructed on two-dimensional (2D) substrates like discs and films, which are far from features like 3D and porosity required in application like bone repair. Here we bottom-up assembled poly(lactic-co-glycolic acid)/calcium carbonate (PLGA/CC) microspheres with superficial porous topography intactly into a 3D porous scaffold. Because the scaffold was obtained through a mild technique, the bioactivity of released BMP-2 was well retained. Mouse bone marrow mesenchymal stem cells (mMSCs) were cultured on produced scaffolds having different 3D topographies. It turned out that osteogenic differentiation of mMSCs did respond to the 3D topographies, while proliferation didn't. Gene expression of αv and β1 integrins revealed that adhesion was supposed to be the underlying mechanism for osteogenic response. The study provides insight into enhancing function of practical scaffolds by elaborate topography design. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 1056-1063, 2016. PMID:26013977

  6. Relevance of PEG in PLA-based blends for tissue engineering 3D-printed scaffolds.

    PubMed

    Serra, Tiziano; Ortiz-Hernandez, Monica; Engel, Elisabeth; Planell, Josep A; Navarro, Melba

    2014-05-01

    Achieving high quality 3D-printed structures requires establishing the right printing conditions. Finding processing conditions that satisfy both the fabrication process and the final required scaffold properties is crucial. This work stresses the importance of studying the outcome of the plasticizing effect of PEG on PLA-based blends used for the fabrication of 3D-direct-printed scaffolds for tissue engineering applications. For this, PLA/PEG blends with 5, 10 and 20% (w/w) of PEG and PLA/PEG/bioactive CaP glass composites were processed in the form of 3D rapid prototyping scaffolds. Surface analysis and differential scanning calorimetry revealed a rearrangement of polymer chains and a topography, wettability and elastic modulus increase of the studied surfaces as PEG was incorporated. Moreover, addition of 10 and 20% PEG led to non-uniform 3D structures with lower mechanical properties. In vitro degradation studies showed that the inclusion of PEG significantly accelerated the degradation rate of the material. Results indicated that the presence of PEG not only improves PLA processing but also leads to relevant surface, geometrical and structural changes including modulation of the degradation rate of PLA-based 3D printed scaffolds. PMID:24656352

  7. Embroidered polymer-collagen hybrid scaffold variants for ligament tissue engineering.

    PubMed

    Hoyer, M; Drechsel, N; Meyer, M; Meier, C; Hinüber, C; Breier, A; Hahner, J; Heinrich, G; Rentsch, C; Garbe, L-A; Ertel, W; Schulze-Tanzil, G; Lohan, A

    2014-10-01

    Embroidery techniques and patterns used for scaffold production allow the adaption of biomechanical scaffold properties. The integration of collagen into embroidered polylactide-co-caprolactone [P(LA-CL)] and polydioxanone (PDS) scaffolds could stimulate neo-tissue formation by anterior cruciate ligament (ACL) cells. Therefore, the aim of this study was to test embroidered P(LA-CL) and PDS scaffolds as hybrid scaffolds in combination with collagen hydrogel, sponge or foam for ligament tissue engineering. ACL cells were cultured on embroidered P(LA-CL) and PDS scaffolds without or with collagen supplementation. Cell adherence, vitality, morphology and ECM synthesis were analyzed. Irrespective of thread size, ACL cells seeded on P(LA-CL) scaffolds without collagen adhered and spread over the threads, whereas the cells formed clusters on PDS and larger areas remained cell-free. Using the collagen hydrogel, the scaffold colonization was limited by the gel instability. The collagen sponge layers integrated into the scaffolds were hardly penetrated by the cells. Collagen foams increased scaffold colonization in P(LA-CL) but did not facilitate direct cell-thread contacts in the PDS scaffolds. The results suggest embroidered P(LA-CL) scaffolds as a more promising basis for tissue engineering an ACL substitute than PDS due to superior cell attachment. Supplementation with a collagen foam presents a promising functionalization strategy. PMID:25175216

  8. Microfluidic Generation of Haptotactic Gradients through 3D Collagen Gels for Enhanced Neurite Growth

    PubMed Central

    Sundararaghavan, Harini G.; Masand, Shirley N.

    2011-01-01

    Abstract We adapted a microfluidic system used previously to generate durotactic gradients of stiffness in a 3D collagen gel, to produce haptotactic gradients of adhesive ligands through the collagen gel. Oligopeptide sequences that included bioactive peptide sequences from laminin, YIGSR, or IKVAV, were grafted separately onto type I collagen using 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide (EDC). Solutions of peptide-grafted collagen and untreated collagen were then used as source and sink input solutions, respectively, in an H-shaped microfluidic network fabricated using traditional soft lithography. One-dimensional gradients of the peptide-grafted collagen solution were generated in the channel that connected the source and sink channels, and these gradients became immobilized upon self-assembly of the collagen into a 3D fibrillar gel. The slope and average concentration of the gradients were adjusted by changing the concentration of the source solutions and by changing the length of the cross-channel. A separate, underlying channel in the microfluidic construct allowed the introduction of a chick embryo dorsal root ganglion into the network. Neurites from these explants grew significantly longer up steep gradients of YIGSR, but shallow gradients of IKVAV in comparison to untreated collagen controls. When these two gradients were presented in combination, the bias in growth acceleration was the largest and most consistent. No differences were observed in the number of neurites choosing to grow up or down the gradients in any condition. These results suggest that the incorporation of distinct gradients of multiple bioactive ligands can improve directional acceleration of regenerating axons. PMID:21473683

  9. Electroactive biomimetic collagen-silver nanowire composite scaffolds.

    PubMed

    Wickham, Abeni; Vagin, Mikhail; Khalaf, Hazem; Bertazzo, Sergio; Hodder, Peter; Dånmark, Staffan; Bengtsson, Torbjörn; Altimiras, Jordi; Aili, Daniel

    2016-08-01

    Electroactive biomaterials are widely explored as bioelectrodes and as scaffolds for neural and cardiac regeneration. Most electrodes and conductive scaffolds for tissue regeneration are based on synthetic materials that have limited biocompatibility and often display large discrepancies in mechanical properties with the surrounding tissue causing problems during tissue integration and regeneration. This work shows the development of a biomimetic nanocomposite material prepared from self-assembled collagen fibrils and silver nanowires (AgNW). Despite consisting of mostly type I collagen fibrils, the homogeneously embedded AgNWs provide these materials with a charge storage capacity of about 2.3 mC cm(-2) and a charge injection capacity of 0.3 mC cm(-2), which is on par with bioelectrodes used in the clinic. The mechanical properties of the materials are similar to soft tissues with a dynamic elastic modulus within the lower kPa range. The nanocomposites also support proliferation of embryonic cardiomyocytes while inhibiting the growth of both Gram-negative Escherichia coli and Gram-positive Staphylococcus epidermidis. The developed collagen/AgNW composites thus represent a highly attractive bioelectrode and scaffold material for a wide range of biomedical applications. PMID:27385421

  10. Evaluating 3D Printed Biomaterials as Scaffolds for Vascularized Bone Tissue Engineering

    PubMed Central

    Wang, Martha O.; Vorwald, Charlotte E.; Dreher, Maureen L.; Mott, Eric J.; Cheng, Ming-Huei; Cinar, Ali; Mehdizadeh, Hamidreza; Somo, Sami; Dean, David; Brey, Eric M.; Fisher, John P.

    2015-01-01

    The recent proliferation of three dimensional (3D) printing technologies has allowed the exploration of increasing complex designs, and, furthermore, the consideration of 3D printed constructs for biological applications. However, there is an unmet need for a consistent set of tools for the design and evaluation of these biological 3D printed constructs, particularly as they relate to engineered tissues. For example, identifying the most advantageous construct parameters for the rapid vascularization of an engineered tissue - a critical parameter in regenerative medicine - is difficult without a common group of measures. We demonstrate here a toolbox to design, characterize, and evaluate 3D printed scaffolds for vascularized tissue regenerative medicine. Our toolbox (1) identifies the range of design specifications using a modular design, (2) nondestructively compares the 3D printed scaffolds to the design, (3) evaluates biocompatibility and mechanical properties, and (4) predicts host vessel integration. As a case study, we designed, fabricated, and evaluated polymer scaffolds using a poly(propylene fumarate) based resin. Our work highlights the potential for these tools to be combined as a consistent methodology for the evaluation of porous 3D printed constructs for regenerative medicine. PMID:25387454

  11. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis.

    PubMed

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-12-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (∼100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  12. Mesoporous bioactive glass nanolayer-functionalized 3D-printed scaffolds for accelerating osteogenesis and angiogenesis

    NASA Astrophysics Data System (ADS)

    Zhang, Yali; Xia, Lunguo; Zhai, Dong; Shi, Mengchao; Luo, Yongxiang; Feng, Chun; Fang, Bing; Yin, Jingbo; Chang, Jiang; Wu, Chengtie

    2015-11-01

    The hierarchical microstructure, surface and interface of biomaterials are important factors influencing their bioactivity. Porous bioceramic scaffolds have been widely used for bone tissue engineering by optimizing their chemical composition and large-pore structure. However, the surface and interface of struts in bioceramic scaffolds are often ignored. The aim of this study is to incorporate hierarchical pores and bioactive components into the bioceramic scaffolds by constructing nanopores and bioactive elements on the struts of scaffolds and further improve their bone-forming activity. Mesoporous bioactive glass (MBG) modified β-tricalcium phosphate (MBG-β-TCP) scaffolds with a hierarchical pore structure and a functional strut surface (~100 nm of MBG nanolayer) were successfully prepared via 3D printing and spin coating. The compressive strength and apatite-mineralization ability of MBG-β-TCP scaffolds were significantly enhanced as compared to β-TCP scaffolds without the MBG nanolayer. The attachment, viability, alkaline phosphatase (ALP) activity, osteogenic gene expression (Runx2, BMP2, OPN and Col I) and protein expression (OPN, Col I, VEGF, HIF-1α) of rabbit bone marrow stromal cells (rBMSCs) as well as the attachment, viability and angiogenic gene expression (VEGF and HIF-1α) of human umbilical vein endothelial cells (HUVECs) in MBG-β-TCP scaffolds were significantly upregulated compared with conventional bioactive glass (BG)-modified β-TCP (BG-β-TCP) and pure β-TCP scaffolds. Furthermore, MBG-β-TCP scaffolds significantly enhanced the formation of new bone in vivo as compared to BG-β-TCP and β-TCP scaffolds. The results suggest that application of the MBG nanolayer to modify 3D-printed bioceramic scaffolds offers a new strategy to construct hierarchically porous scaffolds with significantly improved physicochemical and biological properties, such as mechanical properties, osteogenesis, angiogenesis and protein expression for bone tissue

  13. Three Dimensional Collagen Scaffold Promotes Intrinsic Vascularisation for Tissue Engineering Applications

    PubMed Central

    Chan, Elsa C.; Kuo, Shyh-Ming; Kong, Anne M.; Morrison, Wayne A.; Dusting, Gregory J.; Mitchell, Geraldine M.

    2016-01-01

    Here, we describe a porous 3-dimensional collagen scaffold material that supports capillary formation in vitro, and promotes vascularization when implanted in vivo. Collagen scaffolds were synthesized from type I bovine collagen and have a uniform pore size of 80 μm. In vitro, scaffolds seeded with primary human microvascular endothelial cells suspended in human fibrin gel formed CD31 positive capillary-like structures with clear lumens. In vivo, after subcutaneous implantation in mice, cell-free collagen scaffolds were vascularized by host neovessels, whilst a gradual degradation of the scaffold material occurred over 8 weeks. Collagen scaffolds, impregnated with human fibrinogen gel, were implanted subcutaneously inside a chamber enclosing the femoral vessels in rats. Angiogenic sprouts from the femoral vessels invaded throughout the scaffolds and these degraded completely after 4 weeks. Vascular volume of the resulting constructs was greater than the vascular volume of constructs from chambers implanted with fibrinogen gel alone (42.7±5.0 μL in collagen scaffold vs 22.5±2.3 μL in fibrinogen gel alone; p<0.05, n = 7). In the same model, collagen scaffolds seeded with human adipose-derived stem cells (ASCs) produced greater increases in vascular volume than did cell-free collagen scaffolds (42.9±4.0 μL in collagen scaffold with human ASCs vs 25.7±1.9 μL in collagen scaffold alone; p<0.05, n = 4). In summary, these collagen scaffolds are biocompatible and could be used to grow more robust vascularized tissue engineering grafts with improved the survival of implanted cells. Such scaffolds could also be used as an assay model for studies on angiogenesis, 3-dimensional cell culture, and delivery of growth factors and cells in vivo. PMID:26900837

  14. The effect of anisotropic collagen-GAG scaffolds and growth factor supplementation on tendon cell recruitment, alignment, and metabolic activity

    PubMed Central

    Caliari, Steven R.; Harley, Brendan A.C.

    2014-01-01

    Current surgical and tissue engineering approaches for treating tendon injuries have shown limited success, suggesting the need for new biomaterial strategies. Here we describe the development of an anisotropic collagen-glycosaminoglycan (CG) scaffold and use of growth factor supplementation strategies to create a 3D platform for tendon tissue engineering. We fabricated cylindrical CG scaffolds with aligned tracks of ellipsoidal pores that mimic the native physiology of tendon by incorporating a directional solidification step into a conventional lyophilization strategy. By modifying the freezing temperature, we created a homologous series of aligned CG scaffolds with constant relative density and degree of anisotropy but a range of pore sizes (55–243 μm). Equine tendon cells showed greater levels of attachment, metabolic activity, and alignment as well as less cell-mediated scaffold contraction, when cultured in anisotropic scaffolds compared to an isotropic CG scaffold control. The anisotropic CG scaffolds also provided critical contact guidance cues for cell alignment. While tendon cells were randomly oriented in the isotropic control scaffold and the transverse (unaligned) plane of the anisotropic scaffolds, significant cell alignment was observed in the direction of the contact guidance cues in the longitudinal plane of the anisotropic scaffolds. Scaffold pore size was found to significantly influence tendon cell viability, proliferation, penetration into the scaffold, and metabolic activity in a manner predicted by cellular solids arguments. Finally, the addition of the growth factors PDGF-BB and IGF-1 to aligned CG scaffolds was found to enhance tendon cell motility, viability, and metabolic activity in dose-dependent manners. This work suggests a composite strategy for developing bioactive, 3D material systems for tendon tissue engineering. PMID:21550653

  15. Microfabricated collagen tracks facilitate single cell metastatic invasion in 3D.

    PubMed

    Kraning-Rush, Casey M; Carey, Shawn P; Lampi, Marsha C; Reinhart-King, Cynthia A

    2013-03-01

    While the mechanisms employed by metastatic cancer cells to migrate remain poorly understood, it has been widely accepted that metastatic cancer cells can invade the tumor stroma by degrading the extracellular matrix (ECM) with matrix metalloproteinases (MMPs). Although MMP inhibitors showed early promise in preventing metastasis in animal models, they have largely failed clinically. Recently, studies have shown that some cancer cells can use proteolysis to mechanically rearrange their ECM to form tube-like "microtracks" which other cells can follow without using MMPs themselves. We speculate that this mode of migration in the secondary cells may be one example of migration which can occur without endogenous protease activity in the secondary cells. Here we present a technique to study this migration in a 3D, collagen-based environment which mimics the size and topography of the tracks produced by proteolytically active cancer cells. Using time-lapse phase-contrast microscopy, we find that these microtracks permit the rapid and persistent migration of noninvasive MCF10A mammary epithelial cells, which are unable to otherwise migrate in 3D collagen. Additionally, while highly metastatic MDAMB231 breast cancer cells are able to invade a 3D collagen matrix, seeding within the patterned microtracks induced significantly increased cell migration speed, which was not decreased by pharmacological MMP inhibition. Together, these data suggest that microtracks within a 3D ECM may facilitate the migration of cells in an MMP-independent fashion, and may reveal novel insight into the clinical challenges facing MMP inhibitors. PMID:23388698

  16. Fabrication of computationally designed scaffolds by low temperature 3D printing.

    PubMed

    Castilho, Miguel; Dias, Marta; Gbureck, Uwe; Groll, Jürgen; Fernandes, Paulo; Pires, Inês; Gouveia, Barbara; Rodrigues, Jorge; Vorndran, Elke

    2013-09-01

    The development of artificial bone substitutes that mimic the properties of bone and simultaneously promote the desired tissue regeneration is a current issue in bone tissue engineering research. An approach to create scaffolds with such characteristics is based on the combination of novel design and additive manufacturing processes. The objective of this work is to characterize the microstructural and the mechanical properties of scaffolds developed by coupling both topology optimization and a low temperature 3D printing process. The scaffold design was obtained using a topology optimization approach to maximize the permeability with constraints on the mechanical properties. This procedure was studied to be suitable for the fabrication of a cage prototype for tibial tuberosity advancement application, which is one of the most recent and promising techniques to treat cruciate ligament rupture in dogs. The microstructural and mechanical properties of the scaffolds manufactured by reacting α/β-tricalcium phosphate with diluted phosphoric acid were then assessed experimentally and the scaffolds strength reliability was determined. The results demonstrate that the low temperature 3D printing process is a reliable option to create synthetic scaffolds with tailored properties, and when coupled with topology optimization design it can be a powerful tool for the fabrication of patient-specific bone implants. PMID:23887064

  17. Preparation of 3D fibrin scaffolds for stem cell culture applications.

    PubMed

    Kolehmainen, Kathleen; Willerth, Stephanie M

    2012-01-01

    Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue. A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis step for the

  18. Preparation of 3D Fibrin Scaffolds for Stem Cell Culture Applications

    PubMed Central

    Kolehmainen, Kathleen; Willerth, Stephanie M.

    2012-01-01

    Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche 1. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues 2. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue.3 A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo4. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors 5. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside 6,7. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis

  19. Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity

    PubMed Central

    Sun, Meng; Bloom, Alexander B.; Zaman, Muhammad H.

    2015-01-01

    Metastatic cancers aggressively reorganize collagen in their microenvironment. For example, radially orientated collagen fibers have been observed surrounding tumor cell clusters in vivo. The degree of fiber alignment, as a consequence of this remodeling, has often been difficult to quantify. In this paper, we present an easy to implement algorithm for accurate detection of collagen fiber orientation in a rapid pixel-wise manner. This algorithm quantifies the alignment of both computer generated and actual collagen fiber networks of varying degrees of alignment within 5°°. We also present an alternative easy method to calculate the alignment index directly from the standard deviation of fiber orientation. Using this quantitative method for determining collagen alignment, we demonstrate that the number of collagen fiber intersections has a negative correlation with the degree of fiber alignment. This decrease in intersections of aligned fibers could explain why cells move more rapidly along aligned fibers than unaligned fibers, as previously reported. Overall, our paper provides an easier, more quantitative and quicker way to quantify fiber orientation and alignment, and presents a platform in studying effects of matrix and cellular properties on fiber alignment in complex 3D environments. PMID:26158674

  20. 3D Raman mapping of the collagen fibril orientation in human osteonal lamellae.

    PubMed

    Schrof, Susanne; Varga, Peter; Galvis, Leonardo; Raum, Kay; Masic, Admir

    2014-09-01

    Chemical composition and fibrillar organization are the major determinants of osteonal bone mechanics. However, prominent methodologies commonly applied to investigate mechanical properties of bone on the micro scale are usually not able to concurrently describe both factors. In this study, we used polarized Raman spectroscopy (PRS) to simultaneously analyze structural and chemical information of collagen fibrils in human osteonal bone in a single experiment. Specifically, the three-dimensional arrangement of collagen fibrils in osteonal lamellae was assessed. By analyzing the anisotropic intensity of the amide I Raman band of collagen as a function of the orientation of the incident laser polarization, different parameters related to the orientation of the collagen fibrils and the degree of alignment of the fibrils were derived. Based on the analysis of several osteons, two major fibrillar organization patterns were identified, one with a monotonic and another with a periodically changing twist direction. These results confirm earlier reported twisted and oscillating plywood arrangements, respectively. Furthermore, indicators of the degree of alignment suggested the presence of disordered collagen within the lamellar organization of the osteon. The results show the versatility of the analytical PRS approach and demonstrate its capability in providing not only compositional, but also 3D structural information in a complex hierarchically structured biological material. The concurrent assessment of chemical and structural features may contribute to a comprehensive characterization of the microstructure of bone and other collagen-based tissues. PMID:25025981

  1. Rapid Quantification of 3D Collagen Fiber Alignment and Fiber Intersection Correlations with High Sensitivity.

    PubMed

    Sun, Meng; Bloom, Alexander B; Zaman, Muhammad H

    2015-01-01

    Metastatic cancers aggressively reorganize collagen in their microenvironment. For example, radially orientated collagen fibers have been observed surrounding tumor cell clusters in vivo. The degree of fiber alignment, as a consequence of this remodeling, has often been difficult to quantify. In this paper, we present an easy to implement algorithm for accurate detection of collagen fiber orientation in a rapid pixel-wise manner. This algorithm quantifies the alignment of both computer generated and actual collagen fiber networks of varying degrees of alignment within 5°°. We also present an alternative easy method to calculate the alignment index directly from the standard deviation of fiber orientation. Using this quantitative method for determining collagen alignment, we demonstrate that the number of collagen fiber intersections has a negative correlation with the degree of fiber alignment. This decrease in intersections of aligned fibers could explain why cells move more rapidly along aligned fibers than unaligned fibers, as previously reported. Overall, our paper provides an easier, more quantitative and quicker way to quantify fiber orientation and alignment, and presents a platform in studying effects of matrix and cellular properties on fiber alignment in complex 3D environments. PMID:26158674

  2. Engineering EMT using 3D micro-scaffold to promote hepatic functions for drug hepatotoxicity evaluation.

    PubMed

    Wang, Jingyu; Chen, Fengling; Liu, Longwei; Qi, Chunxiao; Wang, Bingjie; Yan, Xiaojun; Huang, Chenyu; Hou, Wei; Zhang, Michael Q; Chen, Yang; Du, Yanan

    2016-06-01

    Accompanied by decreased hepatic functions, epithelial-mesenchymal transition (EMT) was observed in two dimensional (2D) cultured hepatocytes with elongated morphology, loss of polarity and weakened cell-cell interaction, while upgrading to 3D culture has been considered as significant improvement of its 2D counterpart for hepatocyte maintenance. Here we hypothesize that 3D culture enhances hepatic functions through regulating the EMT status. Biomaterial-engineered EMT was achieved by culturing HepaRG as 3D spheroids (SP-3D) or 3D stretched cells (ST-3D) in non-adherent and adherent micro-scaffold respectively. In SP-3D, constrained EMT of HepaRG, a hepatic stem cell line, as represented by increased epithelial markers and decreased mesenchymal markers, was echoed by improved hepatic functions. To investigate the relationship between EMT status and hepatic functions, time-series RNA-Seq and gene network analysis were used for comparing different cell culture models, which identified histone deacetylases (HDACs) as key mediating factors. Protein analysis confirmed that high HDAC activity was correlated with high expression of Cadherin-1 (CDH1) and hepatic function genes, which were decreased upon HDAC inhibitor treatment in SP-3D, suggesting HDACs may play positive role in regulating EMT and hepatic functions. To illustrate the application of 3D micro-scaffold culture in drug safety evaluation, hepatotoxicity and metabolism assays of two hepatotoxins (i.e. N-acetyl-p-aminophenol and Doxorubicin) were performed and SP-3D showed more biomimetic toxicity response, indicating regulation of EMT as a vital consideration in designing 3D hepatocyte culture configuration. PMID:26994875

  3. In vivo bone response to 3D periodic hydroxyapatite scaffolds assembled by direct ink writing.

    PubMed

    Simon, Joshua L; Michna, Sarah; Lewis, Jennifer A; Rekow, E Dianne; Thompson, Van P; Smay, James E; Yampolsky, Andrew; Parsons, J Russell; Ricci, John L

    2007-12-01

    The in vivo bone response of 3D periodic hydroxyapatite (HA) scaffolds is investigated. Two groups of HA scaffolds (11 mm diameter x 3.5 mm thick) are fabricated by direct-write assembly of a concentrated HA ink. The scaffolds consist of cylindrical rods periodically arranged into four quadrants with varying separation distances between rods. In the first group, HA rods (250 microm in diameter) are patterned to create pore channels, whose areal dimensions are 250 x 250 microm(2) in quadrant 1, 250 x 500 microm(2) in quadrants 2 and 4, and 500 x 500 microm(2) in quadrant 3. In the second group, HA rods (400 microm in diameter) are patterned to create pore channels, whose areal dimensions of 500 x 500 microm(2) in quadrant 1, 500 x 750 microm(2) in quadrants 2 and 4, and 750 x 750 microm(2) in quadrant 3. Each group of scaffolds is partially densified by sintering at 1200 degrees C prior to being implanted bilaterally in trephine defects of skeletally mature New Zealand White rabbits. Their tissue response is evaluated at 8 and 16 weeks using micro-computed tomography, histology, and scanning electron microscopy. New trabecular bone is conducted rapidly and efficiently across substantial distances within these patterned 3D HA scaffolds. Our observations suggest that HA rods are first coated with a layer of new bone followed by subsequent scaffold infilling via outward and inward radial growth of the coated regions. Direct-write assembly of 3D periodic scaffolds composed of micro-porous HA rods arrayed to produce macro-pores that are size-matched to trabecular bone may represent an optimal strategy for bone repair and replacement structures. PMID:17559109

  4. Neuronal-glial populations form functional networks in a biocompatible 3D scaffold.

    PubMed

    Smith, Imogen; Haag, Marcus; Ugbode, Christopher; Tams, Daniel; Rattray, Marcus; Przyborski, Stefan; Bithell, Angela; Whalley, Benjamin J

    2015-11-16

    Monolayers of neurons and glia have been employed for decades as tools for the study of cellular physiology and as the basis for a variety of standard toxicological assays. A variety of three dimensional (3D) culture techniques have been developed with the aim to produce cultures that recapitulate desirable features of intact. In this study, we investigated the effect of preparing primary mouse mixed neuron and glial cultures in the inert 3D scaffold, Alvetex. Using planar multielectrode arrays, we compared the spontaneous bioelectrical activity exhibited by neuroglial networks grown in the scaffold with that seen in the same cells prepared as conventional monolayer cultures. Two dimensional (monolayer; 2D) cultures exhibited a significantly higher spike firing rate than that seen in 3D cultures although no difference was seen in total signal power (<50Hz) while pharmacological responsiveness of each culture type to antagonism of GABAAR, NMDAR and AMPAR was highly comparable. Interestingly, correlation of burst events, spike firing and total signal power (<50Hz) revealed that local field potential events were associated with action potential driven bursts as was the case for 2D cultures. Moreover, glial morphology was more physiologically normal in 3D cultures. These results show that 3D culture in inert scaffolds represents a more physiologically normal preparation which has advantages for physiological, pharmacological, toxicological and drug development studies, particularly given the extensive use of such preparations in high throughput and high content systems. PMID:26493605

  5. Microscale 3D collagen cell culture assays in conventional flat-bottom 384-well plates.

    PubMed

    Leung, Brendan M; Moraes, Christopher; Cavnar, Stephen P; Luker, Kathryn E; Luker, Gary D; Takayama, Shuichi

    2015-04-01

    Three-dimensional (3D) culture systems such as cell-laden hydrogels are superior to standard two-dimensional (2D) monolayer cultures for many drug-screening applications. However, their adoption into high-throughput screening (HTS) has been lagging, in part because of the difficulty of incorporating these culture formats into existing robotic liquid handling and imaging infrastructures. Dispensing cell-laden prepolymer solutions into 2D well plates is a potential solution but typically requires large volumes of reagents to avoid evaporation during polymerization, which (1) increases costs, (2) makes drug penetration variable and (3) complicates imaging. Here we describe a technique to efficiently produce 3D microgels using automated liquid-handling systems and standard, nonpatterned, flat-bottomed, 384-well plates. Sub-millimeter-diameter, cell-laden collagen gels are deposited on the bottom of a ~2.5 mm diameter microwell with no concerns about evaporation or meniscus effects at the edges of wells, using aqueous two-phase system patterning. The microscale cell-laden collagen-gel constructs are readily imaged and readily penetrated by drugs. The cytotoxicity of chemotherapeutics was monitored by bioluminescence and demonstrated that 3D cultures confer chemoresistance as compared with similar 2D cultures. Hence, these data demonstrate the importance of culturing cells in 3D to obtain realistic cellular responses. Overall, this system provides a simple and inexpensive method for integrating 3D culture capability into existing HTS infrastructure. PMID:25510473

  6. 3D-Printed Scaffolds and Biomaterials: Review of Alveolar Bone Augmentation and Periodontal Regeneration Applications

    PubMed Central

    Asa'ad, Farah; Giannì, Aldo Bruno; Giannobile, William V.; Rasperini, Giulio

    2016-01-01

    To ensure a successful dental implant therapy, the presence of adequate vertical and horizontal alveolar bone is fundamental. However, an insufficient amount of alveolar ridge in both dimensions is often encountered in dental practice due to the consequences of oral diseases and tooth loss. Although postextraction socket preservation has been adopted to lessen the need for such invasive approaches, it utilizes bone grafting materials, which have limitations that could negatively affect the quality of bone formation. To overcome the drawbacks of routinely employed grafting materials, bone graft substitutes such as 3D scaffolds have been recently investigated in the dental field. In this review, we highlight different biomaterials suitable for 3D scaffold fabrication, with a focus on “3D-printed” ones as bone graft substitutes that might be convenient for various applications related to implant therapy. We also briefly discuss their possible adoption for periodontal regeneration. PMID:27366149

  7. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography.

    PubMed

    Mačiulaitis, Justinas; Deveikytė, Milda; Rekštytė, Sima; Bratchikov, Maksim; Darinskas, Adas; Šimbelytė, Agnė; Daunoras, Gintaras; Laurinavičienė, Aida; Laurinavičius, Arvydas; Gudas, Rimtautas; Malinauskas, Mangirdas; Mačiulaitis, Romaldas

    2015-01-01

    Over the last decade DLW employing ultrafast pulsed lasers has become a well-established technique for the creation of custom-made free-form three-dimensional (3D) microscaffolds out of a variety of materials ranging from proteins to biocompatible glasses. Its potential applications for manufacturing a patient's specific scaffold seem unlimited in terms of spatial resolution and geometry complexity. However, despite few exceptions in which live cells or primitive organisms were encapsulated into a polymer matrix, no demonstration of an in vivo study case of scaffolds generated with the use of such a method was performed. Here, we report a preclinical study of 3D artificial microstructured scaffolds out of hybrid organic-inorganic (HOI) material SZ2080 fabricated using the DLW technique. The created 2.1 × 2.1 × 0.21 mm(3) membrane constructs are tested both in vitro by growing isolated allogeneic rabbit chondrocytes (Cho) and in vivo by implanting them into rabbit organisms for one, three and six months. An ex vivo histological examination shows that certain pore geometry and the pre-growing of Cho prior to implantation significantly improves the performance of the created 3D scaffolds. The achieved biocompatibility is comparable to the commercially available collagen membranes. The successful outcome of this study supports the idea that hexagonal-pore-shaped HOI microstructured scaffolds in combination with Cho seeding may be successfully implemented for cartilage tissue engineering. PMID:25797444

  8. Rheological, biocompatibility and osteogenesis assessment of fish collagen scaffold for bone tissue engineering.

    PubMed

    Elango, Jeevithan; Zhang, Jingyi; Bao, Bin; Palaniyandi, Krishnamoorthy; Wang, Shujun; Wenhui, Wu; Robinson, Jeya Shakila

    2016-10-01

    In the present investigation, an attempt was made to find an alternative to mammalian collagen with better osteogenesis ability. Three types of collagen scaffolds - collagen, collagen-chitosan (CCH), and collagen-hydroxyapatite (CHA) - were prepared from the cartilage of Blue shark and investigated for their physico-functional and mechanical properties in relation to biocompatibility and osteogenesis. CCH scaffold was superior with pH 4.5-4.9 and viscosity 9.7-10.9cP. Notably, addition of chitosan and HA (hydroxyapatite) improved the stiffness (11-23MPa) and degradation rate but lowered the water binding capacity and porosity of the scaffold. Interestingly, CCH scaffolds remained for 3days before complete in-vitro biodegradation. The decreased amount of viable T-cells and higher level of FAS/APO-1 were substantiated the biocompatibility properties of prepared collagen scaffolds. Osteogenesis study revealed that the addition of CH and HA in both fish and mammalian collagen scaffolds could efficiently promote osteoblast cell formation. The ALP activity was significantly high in CHA scaffold-treated osteoblast cells, which suggests an enhanced bone-healing process. Therefore, the present study concludes that the composite scaffolds prepared from fish collagen with higher stiffness, lower biodegradation rate, better biocompatible, and osteogenesis properties were suitable biomaterial for a bone tissue engineering application as an alternative to mammalian collagen scaffolds. PMID:27211297

  9. Texture analysis of the 3D collagen network and automatic classification of the physiology of articular cartilage.

    PubMed

    Duan, Xiaojuan; Wu, Jianping; Swift, Benjamin; Kirk, Thomas Brett

    2015-07-01

    A close relationship has been found between the 3D collagen structure and physiological condition of articular cartilage (AC). Studying the 3D collagen network in AC offers a way to determine the condition of the cartilage. However, traditional qualitative studies are time consuming and subjective. This study aims to develop a computer vision-based classifier to automatically determine the condition of AC tissue based on the structural characteristics of the collagen network. Texture analysis was applied to quantitatively characterise the 3D collagen structure in normal (International Cartilage Repair Society, ICRS, grade 0), aged (ICRS grade 1) and osteoarthritic cartilages (ICRS grade 2). Principle component techniques and linear discriminant analysis were then used to classify the microstructural characteristics of the 3D collagen meshwork and the condition of the AC. The 3D collagen meshwork in the three physiological condition groups displayed distinctive characteristics. Texture analysis indicated a significant difference in the mean texture parameters of the 3D collagen network between groups. The principle component and linear discriminant analysis of the texture data allowed for the development of a classifier for identifying the physiological status of the AC with an expected prediction error of 4.23%. An automatic image analysis classifier has been developed to predict the physiological condition of AC (from ICRS grade 0 to 2) based on texture data from the 3D collagen network in the tissue. PMID:24428581

  10. Experimental and Modeling Study of Collagen Scaffolds with the Effects of Crosslinking and Fiber Alignment

    PubMed Central

    Xu, Bin; Chow, Ming-Jay; Zhang, Yanhang

    2011-01-01

    Collagen type I scaffolds are commonly used due to its abundance, biocompatibility, and ubiquity. Most applications require the scaffolds to operate under mechanical stresses. Therefore understanding and being able to control the structural-functional integrity of collagen scaffolds becomes crucial. Using a combined experimental and modeling approach, we studied the structure and function of Type I collagen gel with the effects of spatial fiber alignment and crosslinking. Aligned collagen scaffolds were created through the flow of magnetic particles enmeshed in collagen fibrils to mimic the anisotropy seen in native tissue. Inter- and intra- molecular crosslinking was modified chemically with Genipin to further improve the stiffness of collagen scaffolds. The anisotropic mechanical properties of collagen scaffolds were characterized using a planar biaxial tensile tester and parallel plate rheometer. The tangent stiffness from biaxial tensile test is two to three orders of magnitude higher than the storage moduli from rheological measurements. The biphasic nature of collagen gel was discussed and used to explain the mechanical behavior of collagen scaffolds under different types of mechanical tests. An anisotropic hyperelastic constitutive model was used to capture the characteristics of the stress-strain behavior exhibited by collagen scaffolds. PMID:21876695

  11. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    PubMed

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load. PMID:25596860

  12. 3D PLLA/ibuprofen composite scaffolds obtained by a supercritical fluids assisted process.

    PubMed

    Cardea, S; Baldino, L; Scognamiglio, M; Reverchon, E

    2014-04-01

    The emerging next generation of engineered tissues is based on the development of loaded scaffolds containing bioactive molecules in order to control the cellular function or to interact on the surrounding tissues. Indeed, implantation of engineered biomaterials might cause local inflammation because of the host's immune response; thereby, the use of anti-inflammatory agents, whether steroidal or nonsteroidal is required. One of the most important stages of tissue engineering is the design and the generation of a porous 3D structure, with high porosity, high interconnectivity and homogenous morphology. Various techniques have been reported in the literature for the fabrication of biodegradable scaffolds, but they suffer several limitations. In this study, for the first time, the possibility of generating 3D polymeric scaffolds loaded with an active compound by supercritical freeze extraction process is evaluated; this innovative process combines the advantages of the thermally induced phase separation process and of the supercritical carbon dioxide drying. Poly-L-lactid acid/ibuprofen composite scaffolds characterized by a 3D geometry, micrometric cellular structures and wrinkled pores walls have been obtained; moreover, homogeneous drug distribution and controlled release of the active principle have been assured. PMID:24366467

  13. 3D printing of porous hydroxyapatite scaffolds intended for use in bone tissue engineering applications.

    PubMed

    Cox, Sophie C; Thornby, John A; Gibbons, Gregory J; Williams, Mark A; Mallick, Kajal K

    2015-02-01

    A systematic characterisation of bone tissue scaffolds fabricated via 3D printing from hydroxyapatite (HA) and poly(vinyl)alcohol (PVOH) composite powders is presented. Flowability of HA:PVOH precursor materials was observed to affect mechanical stability, microstructure and porosity of 3D printed scaffolds. Anisotropic behaviour of constructs and part failure at the boundaries of interlayer bonds was highlighted by compressive strength testing. A trade-off between the ability to facilitate removal of PVOH thermal degradation products during sintering and the compressive strength of green parts was revealed. The ultimate compressive strength of 55% porous green scaffolds printed along the Y-axis and dried in a vacuum oven for 6h was 0.88 ± 0.02 MPa. Critically, the pores of 3D printed constructs could be user designed, ensuring bulk interconnectivity, and the imperfect packing of powder particles created an inherent surface roughness and non-designed porosity within the scaffold. These features are considered promising since they are known to facilitate osteoconduction and osteointegration in-vivo. Characterisation techniques utilised in this study include two funnel flow tests, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), compressive strength testing and computed tomography (CT). PMID:25492194

  14. Microwave Sintered 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering

    PubMed Central

    Tarafder, Solaiman; Balla, Vamsi Krishna; Davies, Neal M.; Bandyopadhyay, Amit; Bose, Susmita

    2014-01-01

    We report here the fabrication of three dimensional (3D) interconnected macro porous tricalcium phosphate (TCP) scaffolds with controlled internal architecture by direct 3D printing (3DP), and high mechanical strength by microwave sintering. TCP scaffolds with 27%, 35% and 41% designed macro porosity having pore sizes of 500 μm, 750 μm, and 1000 μm, respectively, have been fabricated via direct 3DP. These scaffolds are then sintered at 1150 °C and 1250 °C in conventional electric muffle furnace as well as microwave furnace. Total open porosity between 42% and 63% is obtained in the sintered scaffolds due to the presence of intrinsic micro pores along with the designed pores. A significant increase in compressive strength, between 46% and 69%, is achieved by microwave sintering as compared to conventional sintering as a result of efficient densification. A maximum compressive strength of 10.95 ± 1.28 MPa and 6.62 ± 0.67 MPa is achieved for scaffolds with 500 μm designed pores (~400 μm after sintering) sintered in microwave and conventional furnaces, respectively. An increase in cell density with a decrease in macro pore size is observed during in vitro cell-material interactions using human osteoblast cells. Histomorphological analysis reveals that the presence of both micro and macro pores facilitated osteoid like new bone formation when tested in the femoral defect on Sprague-Dawley rats. Our results show that bioresorbable 3D printed TCP scaffolds have great potential in tissue engineering applications for bone tissue repair and regeneration. PMID:22396130

  15. A 3D Fibrous Scaffold Inducing Tumoroids: A Platform for Anticancer Drug Development

    PubMed Central

    Girard, Yvonne K.; Wang, Chunyan; Ravi, Sowndharya; Howell, Mark C.; Mallela, Jaya; Alibrahim, Mahmoud; Green, Ryan; Hellermann, Gary; Mohapatra, Shyam S.; Mohapatra, Subhra

    2013-01-01

    The development of a suitable three dimensional (3D) culture system for anticancer drug development remains an unmet need. Despite progress, a simple, rapid, scalable and inexpensive 3D-tumor model that recapitulates in vivo tumorigenesis is lacking. Herein, we report on the development and characterization of a 3D nanofibrous scaffold produced by electrospinning a mixture of poly(lactic-co-glycolic acid) (PLGA) and a block copolymer of polylactic acid (PLA) and mono-methoxypolyethylene glycol (mPEG) designated as 3P. Cancer cells cultured on the 3P scaffold formed tight irregular aggregates similar to in vivo tumors, referred to as tumoroids that depended on the topography and net charge of the scaffold. 3P scaffolds induced tumor cells to undergo the epithelial-to-mesenchymal transition (EMT) as demonstrated by up-regulation of vimentin and loss of E-cadherin expression. 3P tumoroids showed higher resistance to anticancer drugs than the same tumor cells grown as monolayers. Inhibition of ERK and PI3K signal pathways prevented EMT and reduced tumoroid formation, diameter and number. Fine needle aspirates, collected from tumor cells implanted in mice when cultured on 3P scaffolds formed tumoroids, but showed decreased sensitivity to anticancer drugs, compared to tumoroids formed by direct seeding. These results show that 3P scaffolds provide an excellent platform for producing tumoroids from tumor cell lines and from biopsies and that the platform can be used to culture patient biopsies, test for anticancer compounds and tailor a personalized cancer treatment. PMID:24146752

  16. 3-D intestinal scaffolds for evaluating the therapeutic potential of probiotics.

    PubMed

    Costello, Cait M; Sorna, Rachel M; Goh, Yih-Lin; Cengic, Ivana; Jain, Nina K; March, John C

    2014-07-01

    Biomimetic in vitro intestinal models are becoming useful tools for studying host-microbial interactions. In the past, these models have typically been limited to simple cultures on 2-D scaffolds or Transwell inserts, but it is widely understood that epithelial cells cultured in 3-D environments exhibit different phenotypes that are more reflective of native tissue, and that different microbial species will preferentially adhere to select locations along the intestinal villi. We used a synthetic 3-D tissue scaffold with villous features that could support the coculture of epithelial cell types with select bacterial populations. Our end goal was to establish microbial niches along the crypt-villus axis in order to mimic the natural microenvironment of the small intestine, which could potentially provide new insights into microbe-induced intestinal disorders, as well as enabling targeted probiotic therapies. We recreated the surface topography of the small intestine by fabricating a biodegradable and biocompatible villous scaffold using poly lactic-glycolic acid to enable the culture of Caco-2 with differentiation along the crypt-villus axis in a similar manner to native intestines. This was then used as a platform to mimic the adhesion and invasion profiles of both Salmonella and Pseudomonas, and assess the therapeutic potential of Lactobacillus and commensal Escherichia coli in a 3-D setting. We found that, in a 3-D environment, Lactobacillus is more successful at displacing pathogens, whereas Nissle is more effective at inhibiting pathogen adhesion. PMID:24798584

  17. 3-D Intestinal Scaffolds for Evaluating the Therapeutic Potential of Probiotics

    PubMed Central

    2015-01-01

    Biomimetic in vitro intestinal models are becoming useful tools for studying host–microbial interactions. In the past, these models have typically been limited to simple cultures on 2-D scaffolds or Transwell inserts, but it is widely understood that epithelial cells cultured in 3-D environments exhibit different phenotypes that are more reflective of native tissue, and that different microbial species will preferentially adhere to select locations along the intestinal villi. We used a synthetic 3-D tissue scaffold with villous features that could support the coculture of epithelial cell types with select bacterial populations. Our end goal was to establish microbial niches along the crypt–villus axis in order to mimic the natural microenvironment of the small intestine, which could potentially provide new insights into microbe-induced intestinal disorders, as well as enabling targeted probiotic therapies. We recreated the surface topography of the small intestine by fabricating a biodegradable and biocompatible villous scaffold using poly lactic-glycolic acid to enable the culture of Caco-2 with differentiation along the crypt–villus axis in a similar manner to native intestines. This was then used as a platform to mimic the adhesion and invasion profiles of both Salmonella and Pseudomonas, and assess the therapeutic potential of Lactobacillus and commensal Escherichia coli in a 3-D setting. We found that, in a 3-D environment, Lactobacillus is more successful at displacing pathogens, whereas Nissle is more effective at inhibiting pathogen adhesion. PMID:24798584

  18. Microscale 3-D collagen cell culture assays in conventional flat-bottom 384-well plates

    PubMed Central

    Leung, Brendan M.; Moraes, Christopher; Cavnar, Stephen; Luker, Kathryn E.; Luker, Gary D.; Takayama, Shuichi

    2015-01-01

    Three-dimensional culture systems such as cell-laden hydrogels are superior to standard 2-D monolayer cultures for many drug-screening applications. However, their adoption in high throughput screening (HTS) have been lagging, in part due to the difficulty of incorporating these culture formats into existing robotic liquid handling and imaging infrastructures. Dispensing cell-laden pre-polymer solutions into 2-D well-plates is a potential solution, but typically requires large volumes of reagents to avoid evaporation during polymerization, which increases cost, makes drug penetration variable and imaging complex. Here we describe a technique to efficiently produce 3-D ‘microgels’ using automated liquid handling systems and standard, non-patterned, flat-bottomed, 384-well plates. Sub-millimeter-diameter, cell-laden collagen gels are deposited on the bottom of ~2.5 mm-diameter microwell with no concerns over evaporation and meniscus effects at the edges of wells, using aqueous two-phase system patterning. The microscale cell-laden collagen-gel constructs are readily imaged and readily penetrated by drugs. Cytotoxicity of chemotherapeutics were monitored by bioluminescence and demonstrates that 3-D cultures confer chemoresistance, as compared to similar 2-D culture. This data hence, demonstrates the importance of culturing cells in 3-D to obtain realistic cellular responses. Overall, this system provided a simple and inexpensive method for integrating 3-D culture capability into existing HTS infrastructure. PMID:25510473

  19. 3D scaffold alters cellular response to graphene in a polymer composite for orthopedic applications.

    PubMed

    Kumar, Sachin; Azam, Dilkash; Raj, Shammy; Kolanthai, Elayaraja; Vasu, K S; Sood, A K; Chatterjee, Kaushik

    2016-05-01

    Graphene-based polymer nanocomposites are being studied for biomedical applications. Polymer nanocomposites can be processed differently to generate planar two-dimensional (2D) substrates and porous three-dimensional (3D) scaffolds. The objective of this work was to investigate potential differences in biological response to graphene in polymer composites in the form of 2D substrates and 3D scaffolds. Polycaprolactone (PCL) nanocomposites were prepared by incorporating 1% of graphene oxide (GO) and reduced graphene oxide (RGO). GO increased modulus and strength of PCL by 44 and 22% respectively, whereas RGO increased modulus and strength by 22 and 16%, respectively. RGO increased the water contact angle of PCL from 81° to 87° whereas GO decreased it to 77°. In 2D, osteoblast proliferated 15% more on GO composites than on PCL whereas RGO composite showed 17% decrease in cell proliferation, which may be attributed to differences in water wettability. In 3D, initial cell proliferation was markedly retarded in both GO (36% lower) and RGO (55% lower) composites owing to increased roughness due to the presence of the protruding nanoparticles. Cells organized into aggregates in 3D in contrast to spread and randomly distributed cells on 2D discs due to the macro-porous architecture of the scaffolds. Increased cell-cell contact and altered cellular morphology led to significantly higher mineralization in 3D. This study demonstrates that the cellular response to nanoparticles in composites can change markedly by varying the processing route and has implications for designing orthopedic implants such as resorbable fracture fixation devices and tissue scaffolds using such nanocomposites. © 2015 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 104B: 732-749, 2016. PMID:26482196

  20. Fabrication of scalable and structured tissue engineering scaffolds using water dissolvable sacrificial 3D printed moulds.

    PubMed

    Mohanty, Soumyaranjan; Larsen, Layla Bashir; Trifol, Jon; Szabo, Peter; Burri, Harsha Vardhan Reddy; Canali, Chiara; Dufva, Marin; Emnéus, Jenny; Wolff, Anders

    2015-10-01

    One of the major challenges in producing large scale engineered tissue is the lack of ability to create large highly perfused scaffolds in which cells can grow at a high cell density and viability. Here, we explore 3D printed polyvinyl alcohol (PVA) as a sacrificial mould in a polymer casting process. The PVA mould network defines the channels and is dissolved after curing the polymer casted around it. The printing parameters determined the PVA filament density in the sacrificial structure and this density resulted in different stiffness of the corresponding elastomer replica. It was possible to achieve 80% porosity corresponding to about 150 cm(2)/cm(3) surface to volume ratio. The process is easily scalable as demonstrated by fabricating a 75 cm(3) scaffold with about 16,000 interconnected channels (about 1m(2) surface area) and with a channel to channel distance of only 78 μm. To our knowledge this is the largest scaffold ever to be produced with such small feature sizes and with so many structured channels. The fabricated scaffolds were applied for in-vitro culturing of hepatocytes over a 12-day culture period. Smaller scaffolds (6×4 mm) were tested for cell culturing and could support homogeneous cell growth throughout the scaffold. Presumably, the diffusion of oxygen and nutrient throughout the channel network is rapid enough to support cell growth. In conclusion, the described process is scalable, compatible with cell culture, rapid, and inexpensive. PMID:26117791

  1. 3D polycarprolactone (PCL) scaffold with hierarchical structure fabricated by a piezoelectric transducer (PZT)-assisted bioplotter

    NASA Astrophysics Data System (ADS)

    Kim, Geun Hyung; Son, Joon Gon

    2009-03-01

    The 3D bioplotter, which is one of the rapid-prototyping systems, enables us to produce the design-based scaffolds which could control good mechanical properties and pore structures for mimicking human organs. Although the plotting system has several advantages to fabricate a variety of designed scaffolds, the main disadvantage of scaffolds fabricated by the system is that the strand surfaces are too smooth and tend to discourage initial cell attachment within the scaffolds. To overcome the problem, we suggest a new 3D plotting method supplemented by piezoelectric vibration system for fabricating scaffolds that have hierarchical surface structures, which increase the surface roughness of the scaffold without any additional chemical process. The surface-modified 3D scaffold exhibited various positive qualities including enhanced compressive modulus and improved initial cell attachment and proliferation. Cell culturing results demonstrated that the interactions between chondrocytes and the scaffold were much more favorable than those between the cells and conventionally plotted 3D scaffolds. This process provides a feasible new technique for fabricating high-quality 3D scaffolds for tissue engineering applications.

  2. Modulating mechanical behaviour of 3D-printed cartilage-mimetic PCL scaffolds: influence of molecular weight and pore geometry.

    PubMed

    Olubamiji, Adeola D; Izadifar, Zohreh; Si, Jennifer L; Cooper, David M L; Eames, B Frank; Chen, Daniel X B

    2016-06-01

    Three-dimensional (3D)-printed poly(ε)-caprolactone (PCL)-based scaffolds are increasingly being explored for cartilage tissue engineering (CTE) applications. However, ensuring that the mechanical properties of these PCL-based constructs are comparable to that of articular cartilage that they are meant to regenerate is an area that has been under-explored. This paper presents the effects of PCL's molecular weight (MW) and scaffold's pore geometric configurations; strand size (SZ), strand spacing (SS), and strand orientation (SO), on mechanical properties of 3D-printed PCL scaffolds. The results illustrate that MW has significant effect on compressive moduli and yield strength of 3D-printed PCL scaffolds. Specifically, PCL with MW of 45 K was a more feasible choice for fabrication of visco-elastic, flexible and load-bearing PCL scaffolds. Furthermore, pore geometric configurations; SZ, SS, and SO, all significantly affect on tensile moduli of scaffolds. However, only SZ and SS have statistically significant effects on compressive moduli and porosity of these scaffolds. That said, inverse linear relationship was observed between porosity and mechanical properties of 3D-printed PCL scaffolds in Pearson's correlation test. Altogether, this study illustrates that modulating MW of PCL and pore geometrical configurations of the scaffolds enabled design and fabrication of PCL scaffolds with mechanical and biomimetic properties that better mimic mechanical behaviour of human articular cartilage. Thus, the modulated PCL scaffold proposed in this study is a framework that offers great potentials for CTE applications. PMID:27328736

  3. Treatment with Y-27632, a ROCK Inhibitor, Increases the Proinvasive Nature of SW620 Cells on 3D Collagen Type 1 Matrix

    PubMed Central

    Vishnubhotla, Ramana; Bharadwaj, Shruthi; Sun, Shan; Metlushko, Vitali; Glover, Sarah C.

    2012-01-01

    The concept of using tissue density as a mechanism to diagnose a tumor has been around for centuries. However, this concept has not been sufficiently explored in a laboratory setting. Therefore, in this paper, we observed the effects of cell density and extracellular matrix (ECM) density on colon cancer invasion and proliferation using SW620 cells. We also attempted to inhibit ROCK-I to determine its effect on cell invasion and proliferation using standard molecular biology techniques and advanced imaging. Increasing cell seeding density resulted in a 2-fold increase in cell invasion as well as cell proliferation independent of treatment with Y-27632. Increasing collagen I scaffold density resulted in a 2.5-fold increase in cell proliferation while treatment with Y-27632 attenuated this effect although 1.5 fold increase in cell invasion was observed in ROCK inhibited samples. Intriguingly, ROCK inhibition also resulted in a 3.5-fold increase in cell invasion within 3D collagen scaffolds for cells seeded at lower densities. We show in this paper that ROCK-I inhibition leads to increased invasion within 3D collagen I microenvironments. This data suggests that although ROCK inhibitors have been used clinically to treat several medical conditions, its effect largely depends on the surrounding microenvironment. PMID:22690219

  4. 3D Chemical Similarity Networks for Structure-Based Target Prediction and Scaffold Hopping.

    PubMed

    Lo, Yu-Chen; Senese, Silvia; Damoiseaux, Robert; Torres, Jorge Z

    2016-08-19

    Target identification remains a major challenge for modern drug discovery programs aimed at understanding the molecular mechanisms of drugs. Computational target prediction approaches like 2D chemical similarity searches have been widely used but are limited to structures sharing high chemical similarity. Here, we present a new computational approach called chemical similarity network analysis pull-down 3D (CSNAP3D) that combines 3D chemical similarity metrics and network algorithms for structure-based drug target profiling, ligand deorphanization, and automated identification of scaffold hopping compounds. In conjunction with 2D chemical similarity fingerprints, CSNAP3D achieved a >95% success rate in correctly predicting the drug targets of 206 known drugs. Significant improvement in target prediction was observed for HIV reverse transcriptase (HIVRT) compounds, which consist of diverse scaffold hopping compounds targeting the nucleotidyltransferase binding site. CSNAP3D was further applied to a set of antimitotic compounds identified in a cell-based chemical screen and identified novel small molecules that share a pharmacophore with Taxol and display a Taxol-like mechanism of action, which were validated experimentally using in vitro microtubule polymerization assays and cell-based assays. PMID:27285961

  5. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation.

    PubMed

    Almeida, Catarina R; Serra, Tiziano; Oliveira, Marta I; Planell, Josep A; Barbosa, Mário A; Navarro, Melba

    2014-02-01

    Recent studies have pointed towards a decisive role of inflammation in triggering tissue repair and regeneration, while at the same time it is accepted that an exacerbated inflammatory response may lead to rejection of an implant. Within this context, understanding and having the capacity to regulate the inflammatory response elicited by 3-D scaffolds aimed for tissue regeneration is crucial. This work reports on the analysis of the cytokine profile of human monocytes/macrophages in contact with biodegradable 3-D scaffolds with different surface properties, architecture and controlled pore geometry, fabricated by 3-D printing technology. Fabrication processes were optimized to create four different 3-D platforms based on polylactic acid (PLA), PLA/calcium phosphate glass or chitosan. Cytokine secretion and cell morphology of human peripheral blood monocytes allowed to differentiate on the different matrices were analyzed. While all scaffolds supported monocyte/macrophage adhesion and stimulated cytokine production, striking differences between PLA-based and chitosan scaffolds were found, with chitosan eliciting increased secretion of tumor necrosis factor (TNF)-α, while PLA-based scaffolds induced higher production of interleukin (IL)-6, IL-12/23 and IL-10. Even though the material itself induced the biggest differences, the scaffold geometry also impacted on TNF-α and IL-12/23 production, with chitosan scaffolds having larger pores and wider angles leading to a higher secretion of these pro-inflammatory cytokines. These findings strengthen the appropriateness of these 3-D platforms to study modulation of macrophage responses by specific parameters (chemistry, topography, scaffold architecture). PMID:24211731

  6. Chitosan-g-lactide copolymers for fabrication of 3D scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Demina, T. S.; Zaytseva-Zotova, D. S.; Timashev, P. S.; Bagratashvili, V. N.; Bardakova, K. N.; Sevrin, Ch; Svidchenko, E. A.; Surin, N. M.; Markvicheva, E. A.; Grandfils, Ch; Akopova, T. A.

    2015-07-01

    Chitosan-g-oligo (L, D-lactide) copolymers were synthesized and assessed to fabricate a number of 3D scaffolds using a variety of technologies such as oil/water emulsion evaporation technique, freeze-drying and two-photon photopolymerization. Solid-state copolymerization method allowed us to graft up to 160 wt-% of oligolactide onto chitosan backbone via chitosan amino group acetylation with substitution degree reaching up to 0.41. Grafting of hydrophobic oligolactide side chains with polymerization degree up to 10 results in chitosan amphiphilic properties. The synthesized chitosan-g-lactide copolymers were used to design 3D scaffolds for tissue engineering such as spherical microparticles and macroporous hydrogels.

  7. Prolonged presence of VEGF promotes vascularization in 3D bioprinted scaffolds with defined architecture.

    PubMed

    Poldervaart, Michelle T; Gremmels, Hendrik; van Deventer, Kelly; Fledderus, Joost O; Oner, F Cumhur; Verhaar, Marianne C; Dhert, Wouter J A; Alblas, Jacqueline

    2014-06-28

    Timely vascularization is essential for optimal performance of bone regenerative constructs. Vascularization is efficiently stimulated by vascular endothelial growth factor (VEGF), a substance with a short half-life time. This study investigates the controlled release of VEGF from gelatin microparticles (GMPs) as a means to prolong VEGF activity at the preferred location within 3D bioprinted scaffolds, and the effects on subsequent vascularization. The release of VEGF from GMPs was continuous for 3 weeks during in vitro studies, and bioactivity was confirmed using human endothelial progenitor cells (EPCs) in migration assays. Traditional and real-time migration assays showed immediate and efficient EPC migration in the presence of GMP-released VEGF, indistinguishable from VEGF-solution that was added to the medium. Matrigel scaffolds containing EPCs and VEGF, which was released either in a fast or sustained fashion by application of GMPs, were investigated for their in vivo vasculogenic capacity. Implantation in subcutaneous pockets in nude mice for one week demonstrated that vessel formation was significantly higher in the VEGF sustained-release group compared to the fast release group. In addition, regional differences with respect to VEGF release were introduced in 3D bioprinted EPC-laden scaffolds and their influence on vasculogenesis was investigated in vivo. The different regions were retained and vessel formation occurred analogous with the results seen in the Matrigel plugs. We conclude that GMPs are suitable to generate sustained release profiles of bioactive VEGF, and that they can be used to create defined differentiation regions in 3D bioprinted heterogeneous constructs, allowing a new generation of smart scaffold design. The prolonged presence of VEGF led to a significant increase in scaffold vascularization when applied in vivo. PMID:24727077

  8. Effect of HDAC Inhibitors on Corneal Keratocyte Mechanical Phenotypes in 3-D Collagen Matrices

    PubMed Central

    Koppaka, Vindhya; Lakshman, Neema

    2015-01-01

    Purpose: Histone deacetylase inhibitors (HDAC) have been shown to inhibit the TGFβ-induced myofibroblast transformation of corneal fibroblasts in 2-D culture. However, the effect of HDAC inhibitors on keratocyte spreading, contraction, and matrix remodeling in 3-D culture has not been directly assessed. The goal of this study was to investigate the effects of the HDAC inhibitors Trichostatin A (TSA) and Vorinostat (SAHA) on corneal keratocyte mechanical phenotypes in 3-D culture using defined serum-free culture conditions. Methods: Rabbit corneal keratocytes were plated within standard rat tail type I collagen matrices (2.5 mg/ml) or compressed collagen matrices (~100 mg/ml) and cultured for up to 4 days in serum-free media, PDGF BB, TGFβ1, and either 50 nM TSA, 10 μM SAHA, or vehicle (DMSO). F-actin, α-SM-actin, and collagen fibrils were imaged using confocal microscopy. Cell morphology and global matrix contraction were quantified digitally. The expression of α-SM-actin was assessed using western blotting. Results: Corneal keratocytes in 3-D matrices had a quiescent mechanical phenotype, as indicated by a dendritic morphology, a lack of stress fibers, and minimal cell-induced matrix remodeling. This phenotype was generally maintained following the addition of TSA or SAHA. TGFβ1 induced a contractile phenotype, as indicated by a loss of dendritic cell processes, the development of stress fibers, and significant matrix compaction. In contrast, cells cultured in TGFβ1 plus TSA or SAHA remained dendritic and did not form stress fibers or induce ECM compaction. Western blotting showed that the expression of α-SM actin after treatment with TGFβ1 was inhibited by TSA and SAHA. PDGF BB stimulated the elongation of keratocytes and the extension of dendritic processes within 3-D matrices without inducing stress fiber formation or collagen reorganization. This spreading response was maintained in the presence of TSA or SAHA. Conclusions: Overall, HDAC inhibitors

  9. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds.

    PubMed

    Castro, Nathan J; O'Brien, Joseph; Zhang, Lijie Grace

    2015-09-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation. PMID:26234364

  10. Integrating biologically inspired nanomaterials and table-top stereolithography for 3D printed biomimetic osteochondral scaffolds

    NASA Astrophysics Data System (ADS)

    Castro, Nathan J.; O'Brien, Joseph; Zhang, Lijie Grace

    2015-08-01

    The osteochondral interface of an arthritic joint is notoriously difficult to regenerate due to its extremely poor regenerative capacity and complex stratified architecture. Native osteochondral tissue extracellular matrix is composed of numerous nanoscale organic and inorganic constituents. Although various tissue engineering strategies exist in addressing osteochondral defects, limitations persist with regards to tissue scaffolding which exhibit biomimetic cues at the nano to micro scale. In an effort to address this, the current work focused on 3D printing biomimetic nanocomposite scaffolds for improved osteochondral tissue regeneration. For this purpose, two biologically-inspired nanomaterials have been synthesized consisting of (1) osteoconductive nanocrystalline hydroxyapatite (nHA) (primary inorganic component of bone) and (2) core-shell poly(lactic-co-glycolic) acid (PLGA) nanospheres encapsulated with chondrogenic transforming growth-factor β1 (TGF-β1) for sustained delivery. Then, a novel table-top stereolithography 3D printer and the nano-ink (i.e., nHA + nanosphere + hydrogel) were employed to fabricate a porous and highly interconnected osteochondral scaffold with hierarchical nano-to-micro structure and spatiotemporal bioactive factor gradients. Our results showed that human bone marrow-derived mesenchymal stem cell adhesion, proliferation, and osteochondral differentiation were greatly improved in the biomimetic graded 3D printed osteochondral construct in vitro. The current work served to illustrate the efficacy of the nano-ink and current 3D printing technology for efficient fabrication of a novel nanocomposite hydrogel scaffold. In addition, tissue-specific growth factors illustrated a synergistic effect leading to increased cell adhesion and directed stem cell differentiation.

  11. Periodontal regeneration with stem cells-seeded collagen-hydroxyapatite scaffold.

    PubMed

    Liu, Zeping; Yin, Xing; Ye, Qingsong; He, Wulin; Ge, Mengke; Zhou, Xiaofu; Hu, Jing; Zou, Shujuan

    2016-07-01

    Re-establishing compromised periodontium to its original structure, properties and function is demanding, but also challenging, for successful orthodontic treatment. In this study, the periodontal regeneration capability of collagen-hydroxyapatite scaffolds, seeded with bone marrow stem cells, was investigated in a canine labial alveolar bone defect model. Bone marrow stem cells were isolated, expanded and characterized. Porous collagen-hydroxyapatite scaffold and cross-linked collagen-hydroxyapatite scaffold were prepared. Attachment, migration, proliferation and morphology of bone marrow stem cells, co-cultured with porous collagen-hydroxyapatite or cross-linked collagen-hydroxyapatite, were evaluated in vitro. The periodontal regeneration capability of collagen-hydroxyapatite scaffold with or without bone marrow stem cells was tested in six beagle dogs, with each dog carrying one sham-operated site as healthy control, and three labial alveolar bone defects untreated to allow natural healing, treated with bone marrow stem cells - collagen-hydroxyapatite scaffold implant or collagen-hydroxyapatite scaffold implant, respectively. Animals were euthanized at 3 and 6 months (3 animals per group) after implantation and the resected maxillary and mandibular segments were examined using micro-computed tomography scan, H&E staining, Masson's staining and histometric evaluation. Bone marrow stem cells were successfully isolated and demonstrated self-renewal and multi-potency in vitro. The porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite had average pore sizes of 415 ± 20 µm and 203 ± 18 µm and porosity of 69 ± 0.5% and 50 ± 0.2%, respectively. The attachment, proliferation and migration of bone marrow stem cells were satisfactory on both porous collagen-hydroxyapatite and cross-linked collagen-hydroxyapatite scaffolds. Implantation of bone marrow stem cells - collagen-hydroxyapatite or collagen-hydroxyapatite scaffold in

  12. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity

    PubMed Central

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity. PMID:26618362

  13. 3D Printing Bioceramic Porous Scaffolds with Good Mechanical Property and Cell Affinity.

    PubMed

    Chang, Chih-Hao; Lin, Chih-Yang; Liu, Fwu-Hsing; Chen, Mark Hung-Chih; Lin, Chun-Pin; Ho, Hong-Nerng; Liao, Yunn-Shiuan

    2015-01-01

    Artificial bone grafting is widely used in current orthopedic surgery for bone defect problems. Unfortunately, surgeons remain unsatisfied with the current commercially available products. One of the major complaints is that these products cannot provide sufficient mechanical strength to support the human skeletal structure. In this study, we aimed to develop a bone scaffold with better mechanical property and good cell affinity by 3D printing (3DP) techniques. A self-developed 3D printer with laser-aided gelling (LAG) process was used to fabricate bioceramic scaffolds with inter-porous structures. To improve the mechanical property of the bioceramic parts after heating, CaCO3 was added to the silica ceramic slurry. CaCO3 was blended into a homogenous SiO2-sol dispersion at weight ratios varying from 0/100 to 5/95 to 9/91 (w/w). Bi-component CaCO3/SiO2-sol was prepared as a biocomposite for the 3DP scaffold. The well-mixed biocomposite was used to fabricate the bioceramic green part using the LAG method. The varied scaffolds were sintered at different temperatures ranging from 900 to 1500°C, and the mechanical property was subsequently analyzed. The scaffolds showed good property with the composite ratio of 5:95 CaCO3:SiO2 at a sintering temperature of 1300°C. The compressive strength was 47 MPa, and the porosity was 34%. The topography of the sintered 3DP bioceramic scaffold was examined by SEM, EDS and XRD. The silica bioceramic presented no cytotoxicity and good MG-63 osteoblast-like cell affinity, demonstrating good biocompatibility. Therefore, the new silica biocomposite is viable for fabricating 3DP bone bioceramics with improved mechanical property and good cell affinity. PMID:26618362

  14. Acrylic-acid-functionalized PolyHIPE scaffolds for use in 3D cell culture.

    PubMed

    Hayward, Adam S; Sano, Naoko; Przyborski, Stefan A; Cameron, Neil R

    2013-12-01

    This study describes the development of a functional porous polymer for use as a scaffold to support 3D hepatocyte culture. A high internal phase emulsion (HIPE) is prepared containing the monomers styrene (STY), divinylbenzene (DVB), and 2-ethylhexyl acrylate (EHA) in the external oil phase and the monomer acrylic acid (Aa) in the internal aqueous phase. Upon thermal polymerization with azobisisobutyronitrile (AIBN), the resulting porous polymer (polyHIPE) is found to have an open-cell morphology and a porosity of 89%, both suitable characteristics for 3D cell scaffold applications. X-ray photo-electron spectroscopy reveals that the polyHIPE surface contained 7.5% carboxylic acid functionality, providing a useful substrate for subsequent surface modifications and bio-conjugations. Initial bio-compatibility assessments with human hepatocytes show that the acid functionality does not have any detrimental effect on cell adhesion. It is therefore believed that this material can be a useful precursor scaffold towards 3D substrates that offer tailored surface functionality for enhanced cell adhesion. PMID:24243821

  15. Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.

    PubMed

    Stout, David A; Toyjanova, Jennet; Franck, Christian

    2015-01-01

    The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis. PMID:26131645

  16. Engineered 3D Silk-collagen-based Model of Polarized Neural Tissue

    PubMed Central

    Chwalek, Karolina; Sood, Disha; Cantley, William L.; White, James D.; Tang-Schomer, Min; Kaplan, David L.

    2015-01-01

    Despite huge efforts to decipher the anatomy, composition and function of the brain, it remains the least understood organ of the human body. To gain a deeper comprehension of the neural system scientists aim to simplistically reconstruct the tissue by assembling it in vitro from basic building blocks using a tissue engineering approach. Our group developed a tissue-engineered silk and collagen-based 3D brain-like model resembling the white and gray matter of the cortex. The model consists of silk porous sponge, which is pre-seeded with rat brain-derived neurons, immersed in soft collagen matrix. Polarized neuronal outgrowth and network formation is observed with separate axonal and cell body localization. This compartmental architecture allows for the unique development of niches mimicking native neural tissue, thus enabling research on neuronal network assembly, axonal guidance, cell-cell and cell-matrix interactions and electrical functions. PMID:26555926

  17. Laser 3D printing with sub-microscale resolution of porous elastomeric scaffolds for supporting human bone stem cells.

    PubMed

    Petrochenko, Peter E; Torgersen, Jan; Gruber, Peter; Hicks, Lucas A; Zheng, Jiwen; Kumar, Girish; Narayan, Roger J; Goering, Peter L; Liska, Robert; Stampfl, Jürgen; Ovsianikov, Aleksandr

    2015-04-01

    A reproducible method is needed to fabricate 3D scaffold constructs that results in periodic and uniform structures with precise control at sub-micrometer and micrometer length scales. In this study, fabrication of scaffolds by two-photon polymerization (2PP) of a biodegradable urethane and acrylate-based photoelastomer is demonstrated. This material supports 2PP processing with sub-micrometer spatial resolution. The high photoreactivity of the biophotoelastomer permits 2PP processing at a scanning speed of 1000 mm s(-1), facilitating rapid fabrication of relatively large structures (>5 mm(3)). These structures are custom printed for in vitro assay screening in 96-well plates and are sufficiently flexible to enable facile handling and transplantation. These results indicate that stable scaffolds with porosities of greater than 60% can be produced using 2PP. Human bone marrow stromal cells grown on 3D scaffolds exhibit increased growth and proliferation compared to smooth 2D scaffold controls. 3D scaffolds adsorb larger amounts of protein than smooth 2D scaffolds due to their larger surface area; the scaffolds also allow cells to attach in multiple planes and to completely infiltrate the porous scaffolds. The flexible photoelastomer material is biocompatible in vitro and is associated with facile handling, making it a viable candidate for further study of complex 3D-printed scaffolds. PMID:25522214

  18. An Experimental Model for Assessing Fibroblast Migration in 3-D Collagen Matrices

    PubMed Central

    Karamichos, Dimitris; Lakshman, Neema; Petroll, W. Matthew

    2009-01-01

    The purpose of this study was to develop and test a novel culture model for studying fibroblast migration in 3-D collagen matrices. Human corneal fibroblasts were seeded within dense, randomly oriented compressed collagen matrices. A 6 mm diameter button of this cell-seeded matrix was placed in the middle of an acellular, less dense outer collagen matrix. These constructs were cultured for 1, 3, 5 or 7 days in serum-free media, 10% fetal bovine serum (FBS), or 50 ng/ml PDGF. Constructs were then fixed and labeled with AlexaFluor 546 phalloidin (for f-actin) and TOTO-3 (for nuclei). Cell-matrix interactions were assessed using a combination of fluorescent and reflected light confocal imaging. Human corneal fibroblasts in serum-free media showed minimal migration into the outer (non-compressed) matrix. In contrast, culture in serum or PDGF stimulated cell migration. Cell-induced collagen matrix reorganization in the outer matrix could be directly visualized using reflected light imaging, and was highest following culture in 10% FBS. Cellular contraction in 10% FBS often led to alignment of cells parallel to the outer edge of the inner matrix, similar to the pattern observed during corneal wound healing following incisional surgery. Overall, this 3-D model allows the effects of different culture conditions on cell migration and matrix remodeling to be assessed simultaneously. In addition, the design allows for ECM density, geometry and mechanical constraints to be varied in a controlled fashion. These initial results demonstrate differences in cell and matrix patterning during migration in response to serum and PDGF. PMID:19061246

  19. Interfacing polymeric scaffolds with primary pancreatic ductal adenocarcinoma cells to develop 3D cancer models

    PubMed Central

    Ricci, Claudio; Mota, Carlos; Moscato, Stefania; D’Alessandro, Delfo; Ugel, Stefano; Sartoris, Silvia; Bronte, Vincenzo; Boggi, Ugo; Campani, Daniela; Funel, Niccola; Moroni, Lorenzo; Danti, Serena

    2014-01-01

    We analyzed the interactions between human primary cells from pancreatic ductal adenocarcinoma (PDAC) and polymeric scaffolds to develop 3D cancer models useful for mimicking the biology of this tumor. Three scaffold types based on two biocompatible polymeric formulations, such as poly(vinyl alcohol)/gelatin (PVA/G) mixture and poly(ethylene oxide terephthalate)/poly(butylene terephthalate) (PEOT/PBT) copolymer, were obtained via different techniques, namely, emulsion and freeze-drying, compression molding followed by salt leaching, and electrospinning. In this way, primary PDAC cells interfaced with different pore topographies, such as sponge-like pores of different shape and size or nanofiber interspaces. The aim of this study was to investigate the influence played by the scaffold architecture over cancerous cell growth and function. In all scaffolds, primary PDAC cells showed good viability and synthesized tumor-specific metalloproteinases (MMPs) such as MMP-2, and MMP-9. However, only sponge-like pores, obtained via emulsion-based and salt leaching-based techniques allowed for an organized cellular aggregation very similar to the native PDAC morphological structure. Differently, these cell clusters were not observed on PEOT/PBT electrospun scaffolds. MMP-2 and MMP-9, as active enzymes, resulted to be increased in PVA/G and PEOT/PBT sponges, respectively. These findings suggested that spongy scaffolds supported the generation of pancreatic tumor models with enhanced aggressiveness. In conclusion, primary PDAC cells showed diverse behaviors while interacting with different scaffold types that can be potentially exploited to create stage-specific pancreatic cancer models likely to provide new knowledge on the modulation and drug susceptibility of MMPs. PMID:25482337

  20. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis.

    PubMed

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-14

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  1. Functional 3-D cardiac co-culture model using bioactive chitosan nanofiber scaffolds.

    PubMed

    Hussain, Ali; Collins, George; Yip, Derek; Cho, Cheul H

    2013-02-01

    The in vitro generation of a three-dimensional (3-D) myocardial tissue-like construct employing cells, biomaterials, and biomolecules is a promising strategy in cardiac tissue regeneration, drug testing, and tissue engineering applications. Despite significant progress in this field, current cardiac tissue models are not yet able to stably maintain functional characteristics of cardiomyocytes for long-term culture and therapeutic purposes. The objective of this study was to fabricate bioactive 3-D chitosan nanofiber scaffolds using an electrospinning technique and exploring its potential for long-term cardiac function in the 3-D co-culture model. Chitosan is a natural polysaccharide biomaterial that is biocompatible, biodegradable, non-toxic, and cost effective. Electrospun chitosan was utilized to provide structural scaffolding characterized by scale and architectural resemblance to the extracellular matrix (ECM) in vivo. The chitosan fibers were coated with fibronectin via adsorption in order to enhance cellular adhesion to the fibers and migration into the interfibrous milieu. Ventricular cardiomyocytes were harvested from neonatal rats and studied in various culture conditions (i.e., mono- and co-cultures) for their viability and function. Cellular morphology and functionality were examined using immunofluorescent staining for alpha-sarcomeric actin (SM-actin) and gap junction protein, Connexin-43 (Cx43). Scanning electron microscopy (SEM) and light microscopy were used to investigate cellular morphology, spatial organization, and contractions. Calcium indicator was used to monitor calcium ion flux of beating cardiomyocytes. The results demonstrate that the chitosan nanofibers retained their cylindrical morphology in long-term cell cultures and exhibited good cellular attachment and spreading in the presence of adhesion molecule, fibronectin. Cardiomyocyte mono-cultures resulted in loss of cardiomyocyte polarity and islands of non-coherent contractions. However

  2. Carboxy-Methyl-Cellulose (CMC) hydrogel-filled 3-D scaffold: Preliminary study through a 3-D antiproliferative activity of Centella asiatica extract

    NASA Astrophysics Data System (ADS)

    Aizad, Syazwan; Yahaya, Badrul Hisham; Zubairi, Saiful Irwan

    2015-09-01

    This study focuses on the effects of using the water extract from Centella asiatica on the mortality of human lung cancer cells (A549) with the use of novel 3-D scaffolds infused with CMC hydrogel. A biodegradable polymer, poly (hydroxybutyrate-co-hydroxyvalerate) (PHBV) was used in this study as 3-D scaffolds, with some modifications made by introducing the gel structure on its pore, which provides a great biomimetic microenvironment for cells to grow apart from increasing the interaction between the cells and cell-bioactive extracts. The CMC showed a good hydrophilic characteristic with mean contact angle of 24.30 ± 22.03°. To ensure the CMC gel had good attachments with the scaffolds, a surface treatment was made before the CMC gel was infused into the scaffolds. The results showed that these modified scaffolds contained 42.41 ± 0.14% w/w of CMC gel, which indicated that the gel had already filled up the entire pore of 3-D scaffolds. Besides, the infused hydrogel scaffolds took only 24 hours to be saturated when absorbing the water. The viability of cancer cells by MTS assay after being treated with Centella asiatica showed that the scaffolds infused with CMC hydrogel had the cell viability of 46.89 ± 1.20% followed by porous 3-D model with 57.30 ± 1.60% of cell viability, and the 2-D model with 67.10 ± 1.10% of cell viability. The inhibitory activity in cell viability between 2-D and 3-D models did not differ significantly (p>0.05) due to the limitation of time in incubating the extract with the cell in the 3-D model microenvironment. In conclusion, with the application of 3-D scaffolds infused with CMC hydrogel, the extracts of Centella asiatica has been proven to have the ability to kill cancer cells and have a great potential to become one of the alternative methods in treating cancer patients.

  3. Anisotropic collagen fibrillogenesis within microfabricated scaffolds: implications for biomimetic tissue engineering.

    PubMed

    Jean, Aurélie; Engelmayr, George C

    2012-01-11

    Anisotropic collagen fibrillogenesis is demonstrated within the pores of an accordion-like honeycomb poly(glycerol sebacate) tissue engineering scaffold. Confocal reflectance microscopy and image analysis demonstrate increased fibril distribution order, fibril density, and alignment in accordion-like honeycomb pores compared with collagen gelled unconstrained. Finite element modeling predicts how collagen gel and scaffold mechanics couple in matching native heart muscle stiffness and anisotropy. PMID:23184695

  4. Chitosan-collagen scaffolds with nano/microfibrous architecture for skin tissue engineering.

    PubMed

    Sarkar, Soumi Dey; Farrugia, Brooke L; Dargaville, Tim R; Dhara, Santanu

    2013-12-01

    In this study, a hierarchical nano/microfibrous chitosan/collagen scaffold that approximates structural and functional attributes of native extracellular matrix has been developed for applicability in skin tissue engineering. Scaffolds were produced by electrospinning of chitosan followed by imbibing of collagen solution, freeze-drying, and subsequent cross-linking of two polymers. Scanning electron microscopy showed formation of layered scaffolds with nano/microfibrous architechture. Physicochemical properties of scaffolds including tensile strength, swelling behavior, and biodegradability were found satisfactory for intended application. 3T3 fibroblasts and HaCaT keratinocytes showed good in vitro cellular response on scaffolds thereby indicating the matrices, cytocompatible nature. Scaffolds tested in an ex vivo human skin equivalent wound model, as a preliminary alternative to animal testing, showed keratinocyte migration and wound re-epithelization-a prerequisite for healing and regeneration. Taken together, the herein proposed chitosan/collagen scaffold, shows good potential for skin tissue engineering. PMID:23606420

  5. Fabrication of 3D Scaffolds with Nano-Hydroxyapatite for Improving the Preosteoblast Cell-Biological Performance.

    PubMed

    Roh, Hee-Sang; Myung, Sung-Woon; Jung, Sang-Chul; Kim, Byung-Hoon

    2015-08-01

    Three-dimensional (3D) scaffolds fabricated by rapid prototyping techniques have many merits for tissue engineering applications, due to its controllable properties such as porosity, pore size and structural shape. Nonetheless, low cell seeding efficiency remains drawback. In this study, poly-caprolactone (PCL) composite 3D extruded scaffolds were modified with nano hydroxyapatite (n-HAp). PCL/n-HAp 3D scaffold surface was treated with oxygen plasma to improve the preosteoblast cell seeding efficiency and proliferation. The results indicate that oxygen plasma is useful technique to improve the cell affinity. PMID:26369121

  6. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.

    PubMed

    Mott, Eric J; Busso, Mallory; Luo, Xinyi; Dolder, Courtney; Wang, Martha O; Fisher, John P; Dean, David

    2016-04-01

    Our recent investigations into the 3D printing of poly(propylene fumarate) (PPF), a linear polyester, using a DMD-based system brought us to a resin that used titanium dioxide (TiO2) as an ultraviolet (UV) filter for controlling cure depth. However, this material hindered the 3D printing process due to undesirable lateral or "dark" curing (i.e., in areas not exposed to light from the DMD chip). Well known from its use in sunscreen, another UV filter, oxybenzone, has previously been used in conjunction with TiO2. In this study we hypothesize that combining these two UV filters will result in a synergistic effect that controls cure depth and avoids dark cure. A resin mixture (i.e., polymer, initiator, UV filters) was identified that worked well. The resin was then further characterized through mechanical testing, cure testing, and cytotoxicity testing to investigate its use as a material for bone tissue engineering scaffolds. Results show that the final resin eliminated dark cure as shown through image analysis. Mechanically the new scaffolds proved to be far weaker than those printed from previous resins, with compressive strengths of 7.8 ± 0.5 MPa vs. 36.5 ± 1.6 MPa, respectively. The new scaffolds showed a 90% reduction in elastic modulus and a 74% increase in max strain. These properties may be useful in tissue engineering applications where resorption is required. Initial cytotoxicity evaluation was negative. As hypothesized, the use of TiO2 and oxybenzone showed synergistic effects in the 3D printing of PPF tissue engineering scaffolds. PMID:26838854

  7. Additive manufactured polymeric 3D scaffolds with tailored surface topography influence mesenchymal stromal cells activity.

    PubMed

    Neves, Sara C; Mota, Carlos; Longoni, Alessia; Barrias, Cristina C; Granja, Pedro L; Moroni, Lorenzo

    2016-06-01

    Additive manufactured three-dimensional (3D) scaffolds with tailored surface topography constitute a clear advantage in tissue regeneration strategies to steer cell behavior. 3D fibrous scaffolds of poly(ethylene oxide terephthalate)/poly(butylene terephthalate) block copolymer presenting different fiber surface features were successfully fabricated by additive manufacturing combined with wet-spinning, in a single step, without any post-processing. The optimization of the processing parameters, mainly driven by different solvent/non-solvent combinations, led to four distinct scaffold types, with average surface roughness values ranging from 0.071 ± 0.012 μm to 1.950 ± 0.553 μm, average pore sizes in the x- and y-axis between 351.1 ± 33.6 μm and 396.1 ± 32.3 μm, in the z-axis between 36.5 ± 5.3 μm and 70.7 ± 8.8 μm, average fiber diameters between 69.4 ± 6.1 μm and 99.0 ± 9.4 μm, and porosity values ranging from 60.2 ± 0.8% to 71.7 ± 2.6%. Human mesenchymal stromal cells (hMSCs) cultured on these scaffolds adhered, proliferated, and produced endogenous extracellular matrix. The effect of surface roughness and topography on hMSCs differentiation was more evident for cells seeded at lower density, where the percentage of cells in direct contact with the surface was higher compared to more densely seeded scaffolds. Under osteogenic conditions, lower surface roughness values (0.227 ± 0.035 μm) had a synergistic effect on hMSCs behavior, while chondrogenesis was favored on rougher surfaces (1.950 ± 0.553 μm). PMID:27219645

  8. Generation and transplantation of reprogrammed human neurons in the brain using 3D microtopographic scaffolds

    PubMed Central

    Carlson, Aaron L.; Bennett, Neal K.; Francis, Nicola L.; Halikere, Apoorva; Clarke, Stephen; Moore, Jennifer C.; Hart, Ronald P.; Paradiso, Kenneth; Wernig, Marius; Kohn, Joachim; Pang, Zhiping P.; Moghe, Prabhas V.

    2016-01-01

    Cell replacement therapy with human pluripotent stem cell-derived neurons has the potential to ameliorate neurodegenerative dysfunction and central nervous system injuries, but reprogrammed neurons are dissociated and spatially disorganized during transplantation, rendering poor cell survival, functionality and engraftment in vivo. Here, we present the design of three-dimensional (3D) microtopographic scaffolds, using tunable electrospun microfibrous polymeric substrates that promote in situ stem cell neuronal reprogramming, neural network establishment and support neuronal engraftment into the brain. Scaffold-supported, reprogrammed neuronal networks were successfully grafted into organotypic hippocampal brain slices, showing an ∼3.5-fold improvement in neurite outgrowth and increased action potential firing relative to injected isolated cells. Transplantation of scaffold-supported neuronal networks into mouse brain striatum improved survival ∼38-fold at the injection site relative to injected isolated cells, and allowed delivery of multiple neuronal subtypes. Thus, 3D microscale biomaterials represent a promising platform for the transplantation of therapeutic human neurons with broad neuro-regenerative relevance. PMID:26983594

  9. Fibroblast cluster formation on 3D collagen matrices requires cell contraction dependent fibronectin matrix organization.

    PubMed

    da Rocha-Azevedo, Bruno; Ho, Chin-Han; Grinnell, Frederick

    2013-02-15

    Fibroblasts incubated on 3D collagen matrices in serum or lysophosphatidic acid (LPA)-containing medium self-organize into clusters through a mechanism that requires cell contraction. However, in platelet-derived growth factor (PDGF)-containing medium, cells migrate as individuals and do not form clusters even though they constantly encounter each other. Here, we present evidence that a required function of cell contraction in clustering is formation of fibronectin (FN) fibrillar matrix. We found that in serum or LPA but not in PDGF or basal medium, cells organized FN (both serum and cellular) into a fibrillar, detergent-insoluble matrix. Cell clusters developed concomitant with FN matrix formation. FN fibrils accumulated beneath cells and along the borders of cell clusters in regions of cell-matrix tension. Blocking Rho kinase or myosin II activity prevented FN matrix assembly and cell clustering. Using siRNA silencing and function-blocking antibodies and peptides, we found that cell clustering and FN matrix assembly required α5β1 integrins and fibronectin. Cells were still able to exert contractile force and compact the collagen matrix under the latter conditions, which showed that contraction was not sufficient for cell clustering to occur. Our findings provide new insights into how procontractile (serum/LPA) and promigratory (PDGF) growth factor environments can differentially regulate FN matrix assembly by fibroblasts interacting with collagen matrices and thereby influence mesenchymal cell morphogenetic behavior under physiologic circumstances such as wound repair, morphogenesis and malignancy. PMID:23117111

  10. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation.

    PubMed

    Smeriglio, Piera; Lai, Janice H; Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  11. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation

    PubMed Central

    Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  12. Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth.

    PubMed

    Cooke, Malcolm N; Fisher, John P; Dean, David; Rimnac, Clare; Mikos, Antonios G

    2003-02-15

    A novel approach to the manufacture of biodegradable polymeric scaffolds for tissue-engineering utilizing stereolithography (SLA) is presented. SLA is a three-dimensional (3D) printing method that uses an ultraviolet laser to photo-crosslink a liquid polymer substrate. The current generation of SLA devices provide a 3D printing resolution of 0.1 mm. The experiments utilized a biodegradable resin mixture of diethyl fumarate (DEF), poly(propylene fumarate) (PPF), and a photoinitiator, bisacylphosphine oxide (BAPO). The PPF is crosslinked with the use of the SLA's UV laser (325-nm wavelength). An SLA device was retrofitted with a custom fixture build tank enclosing an elevator-driven build table. A 3D prototype model testing the manufacturing control this device provides was created in a computer-aided-design package. The resulting geometric data were used to drive the SLA process, and a DEF/PPF prototype part was successfully manufactured. These scaffolds have application in the tissue engineering of bony substrates. PMID:12516080

  13. 3-D loaded scaffolds obtained by supercritical CO2 assisted process

    NASA Astrophysics Data System (ADS)

    Cardea, S.; Reverchon, E.

    2014-08-01

    In this work, a supercritical CO2 (SC-CO2) drying process for the formation of 3-D PVDF-HFP loaded scaffolds was tested. Experiments at pressures ranging between 150 and 250 bar and at temperatures ranging between 35 and 55°C were performed. The PVDF-HFP- acetone-ethanol solution at 15% w/w polymer was selected as the base case. The drug (amoxicillin) concentration was varied from 20 to 30% w/w with respect to PVDF-HFP. SC- CO2 drying process was confirmed to be a valid alternative to generate loaded structures; indeed, scaffolds characterized by nanometric networks (with mean pore diameter of about 300 nm) with a homogeneous drug distribution were obtained. Drug controlled release experiments were also performed and a quasi-zero order release kinetic was observed.

  14. In situ cross-linked electrospun fiber scaffold of collagen for fabricating cell-dense muscle tissue.

    PubMed

    Takeda, Naoya; Tamura, Kenichi; Mineguchi, Ryo; Ishikawa, Yumiko; Haraguchi, Yuji; Shimizu, Tatsuya; Hara, Yusuke

    2016-06-01

    Engineered muscle tissues used as transplant tissues in regenerative medicine should have a three-dimensional and cell-dense structure like native tissue. For fabricating a 3D cell-dense muscle tissue from myoblasts, we proposed the electrospun type I collagen microfiber scaffold of the string-shape like a harp. The microfibers were oriented in the same direction to allow the myoblasts to align, and were strung at low density with micrometer intervals to create space for the cells to occupy. To realize this shape of the scaffold, we employed in situ cross-linking during electrospinning process for the first time to collagen fibers. The collagen microfibers in situ cross-linked with glutaraldehyde stably existed in the aqueous media and completely retained the original shape to save the spaces between the fibers for over 14 days. On the contrary, the conventional cross-linking method by exposure to a glutaraldehyde aqueous solution vapor partially dissolved and damaged the fiber to lose a low-density shape of the scaffold. Myoblasts could penetrate into the interior of the in situ cross-linked string-shaped scaffold and form the cell-dense muscle tissues. Histochemical analysis showed the total area occupied by the cells in the cross section of the tissue was approximately 73 %. Furthermore, the resulting muscle tissue fabricated from primary myoblasts showed typical sarcomeric cross-striations and the entire tissue continuously pulsated by autonomous contraction. Together with the in situ cross-linking, the string-shaped scaffold provides an efficient methodology to fabricate a cell-dense 3D muscle tissue, which could be applied in regenerative medicine in future. PMID:26472433

  15. 3D composites based on the blends of chitosan and collagen with the addition of hyaluronic acid.

    PubMed

    Sionkowska, Alina; Kaczmarek, Beata; Lewandowska, Katarzyna; Grabska, Sylwia; Pokrywczyńska, Marta; Kloskowski, Tomasz; Drewa, Tomasz

    2016-08-01

    3D porous composites based on blends of chitosan, collagen and hyaluronic acid were obtained through the lyophilization process. Mechanical properties, swelling behavior and thermal stability of the blends were studied. Moreover, SEM images were taken and the structure of the blends was studied. Biological properties of the materials obtained were investigated by analyzing of proliferation rate of fibroblast cells incubated with biomaterial extract using MTT assay (3-(4,5-dimethylthiazolyl-2)-2,5-diphenyltetrazolium bromide). The results showed that the properties of 3D composites based on the blends of chitosan and collagen were altered after the addition 1%, 2% and 5% of hyaluronic acid. Mechanical properties and thermal stability of chitosan/collagen blends were improved in the presence of hyaluronic acid in the composite. New 3D materials based on the blends of chitosan, collagen and hyaluronic acid were non-toxic and did not significantly affect cell morphology. PMID:27151670

  16. Repair of Avascular Meniscus Tears with Electrospun Collagen Scaffolds Seeded with Human Cells.

    PubMed

    Baek, Jihye; Sovani, Sujata; Glembotski, Nicholas E; Du, Jiang; Jin, Sungho; Grogan, Shawn P; D'Lima, Darryl D

    2016-03-01

    The self-healing capacity of an injured meniscus is limited to the vascularized regions and is especially challenging in the inner avascular regions. As such, we investigated the use of human meniscus cell-seeded electrospun (ES) collagen type I scaffolds to produce meniscal tissue and explored whether these cell-seeded scaffolds can be implanted to repair defects created in meniscal avascular tissue explants. Human meniscal cells (derived from vascular and avascular meniscal tissue) were seeded on ES scaffolds and cultured. Constructs were evaluated for cell viability, gene expression, and mechanical properties. To determine potential for repair of meniscal defects, human meniscus avascular cells were seeded and cultured on aligned ES collagen scaffolds for 4 weeks before implantation. Surgical defects resembling "longitudinal tears" were created in the avascular zone of bovine meniscus and implanted with cell-seeded collagen scaffolds and cultured for 3 weeks. Tissue regeneration and integration were evaluated by histology, immunohistochemistry, mechanical testing, and magentic resonance imaging. Ex vivo implantation with cell-seeded collagen scaffolds resulted in neotissue that was significantly better integrated with the native tissue than acellular collagen scaffolds or untreated defects. Human meniscal cell-seeded ES collagen scaffolds may therefore be useful in facilitating meniscal repair of avascular meniscus tears. PMID:26842062

  17. Combinatorial screening of osteoblast response to 3D calcium phosphate/poly(ε-caprolactone) scaffolds using gradients and arrays

    PubMed Central

    Chatterjee, Kaushik; Sun, Limin; Chow, Laurence C.; Young, Marian F.; Simon, Carl G.

    2012-01-01

    There is a need for combinatorial and high-throughput methods for screening cell–biomaterial interactions to maximize tissue generation in scaffolds. Current methods employ a flat two-dimensional (2D) format even though three-dimensional (3D) scaffolds are more representative of the tissue environment in vivo and cells are responsive to topographical differences of 2D substrates and 3D scaffolds. Thus, combinatorial libraries of 3D porous scaffolds were developed and used to screen the effect of nano-amorphous calcium phosphate (nACP) particles on osteoblast response. Increasing nACP content in poly (ε-caprolactone) (PCL) scaffolds promoted osteoblast adhesion and proliferation. The nACP-containing scaffolds released calcium and phosphate ions which are known to activate osteoblast function. Scaffold libraries were fabricated in two formats, gradients and arrays, and the magnitude of the effect of nACP on osteoblast proliferation was greater for arrays than gradients. The enhanced response in arrays can be explained by differences in cell culture designs, diffusional effects and differences in the ratio of “scaffold mass to culture medium”. These results introduce a gradient library approach for screening large pore 3D scaffolds and demonstrate that inclusion of the nACP particles enhances osteoblast proliferation in 3D scaffolds. Further, comparison of gradients and arrays suggests that gradients were more sensitive for detecting effects of scaffold composition on cell adhesion (short time points, 1 day) whereas arrays were more sensitive at detecting effects on cell proliferation (longer time points, 14 day). PMID:21074846

  18. The inhibition by interleukin 1 of MSC chondrogenesis and the development of biomechanical properties in biomimetic 3D woven PCL scaffolds

    PubMed Central

    Ousema, Paul H.; Moutos, Franklin T.; Estes, Bradley T.; Caplan, Arnold I.; Lennon, Donald P.; Guilak, Farshid; Weinberg, J. Brice

    2012-01-01

    Tissue-engineered constructs designed to treat large cartilage defects or osteoarthritic lesions may be exposed to significant mechanical loading as well as an inflammatory environment upon implantation in an injured or diseased joint. We hypothesized that a three-dimensionally (3D) woven poly(ε-caprolactone) (PCL) scaffold seeded with bone marrow-derived mesenchymal stem cells (MSCs) would provide biomimetic mechanical properties in early stages of in vitro culture as the MSCs assembled a functional, cartilaginous extracellular matrix (ECM). We also hypothesized that these properties would be maintained even in the presence of the pro-inflammatory cytokine interleukin-1 (IL-1), which is found at high levels in injured or diseased joints. MSC-seeded 3D woven scaffolds cultured in chondrogenic conditions synthesized a functional ECM rich in collagen and proteoglycan content, reaching an aggregate modulus of ~0.75 MPa within 14 days of culture. However, the presence of pathophysiologically relevant levels of IL-1 limited matrix accumulation and inhibited any increase in mechanical properties over baseline values. On the other hand, the mechanical properties of constructs cultured in chondrogenic conditions for 4 weeks prior to IL-1 exposure were protected from deleterious effects of the cytokine. These findings demonstrate that IL-1 significantly inhibits the chondrogenic development and maturation of MSC-seeded constructs; however, the overall mechanical functionality of the engineered tissue can be preserved through the use of a 3D woven scaffold designed to recreate the mechanical properties of native articular cartilage. PMID:22999467

  19. ECM inspired coating of embroidered 3D scaffolds enhances calvaria bone regeneration.

    PubMed

    Rentsch, C; Rentsch, B; Heinemann, S; Bernhardt, R; Bischoff, B; Förster, Y; Scharnweber, D; Rammelt, S

    2014-01-01

    Resorbable polymeric implants and surface coatings are an emerging technology to treat bone defects and increase bone formation. This approach is of special interest in anatomical regions like the calvaria since adults lose the capacity to heal large calvarial defects. The present study assesses the potential of extracellular matrix inspired, embroidered polycaprolactone-co-lactide (PCL) scaffolds for the treatment of 13 mm full thickness calvarial bone defects in rabbits. Moreover the influence of a collagen/chondroitin sulfate (coll I/cs) coating of PCL scaffolds was evaluated. Defect areas filled with autologous bone and empty defects served as reference. The healing process was monitored over 6 months by combining a novel ultrasonographic method, radiographic imaging, biomechanical testing, and histology. The PCL coll I/cs treated group reached 68% new bone volume compared to the autologous group (100%) and the biomechanical stability of the defect area was similar to that of the gold standard. Histological investigations revealed a significantly more homogenous bone distribution over the whole defect area in the PCL coll I/cs group compared to the noncoated group. The bioactive, coll I/cs coated, highly porous, 3-dimensional PCL scaffold acted as a guide rail for new skull bone formation along and into the implant. PMID:25013767

  20. ECM Inspired Coating of Embroidered 3D Scaffolds Enhances Calvaria Bone Regeneration

    PubMed Central

    Rentsch, C.; Rentsch, B.; Heinemann, S.; Bernhardt, R.; Bischoff, B.; Förster, Y.; Scharnweber, D.; Rammelt, S.

    2014-01-01

    Resorbable polymeric implants and surface coatings are an emerging technology to treat bone defects and increase bone formation. This approach is of special interest in anatomical regions like the calvaria since adults lose the capacity to heal large calvarial defects. The present study assesses the potential of extracellular matrix inspired, embroidered polycaprolactone-co-lactide (PCL) scaffolds for the treatment of 13 mm full thickness calvarial bone defects in rabbits. Moreover the influence of a collagen/chondroitin sulfate (coll I/cs) coating of PCL scaffolds was evaluated. Defect areas filled with autologous bone and empty defects served as reference. The healing process was monitored over 6 months by combining a novel ultrasonographic method, radiographic imaging, biomechanical testing, and histology. The PCL coll I/cs treated group reached 68% new bone volume compared to the autologous group (100%) and the biomechanical stability of the defect area was similar to that of the gold standard. Histological investigations revealed a significantly more homogenous bone distribution over the whole defect area in the PCL coll I/cs group compared to the noncoated group. The bioactive, coll I/cs coated, highly porous, 3-dimensional PCL scaffold acted as a guide rail for new skull bone formation along and into the implant. PMID:25013767

  1. Control of vascular network location in millimeter-sized 3D-tissues by micrometer-sized collagen coated cells.

    PubMed

    Liu, Chun-Yen; Matsusaki, Michiya; Akashi, Mitsuru

    2016-03-25

    Engineering three-dimensional (3D) vascularized constructs remains a central challenge because capillary network structures are important for sufficient oxygen and nutrient exchange to sustain the viability of engineered constructs. However, construction of 3D-tissues at single cell level has yet to be reported. Previously, we established a collagen coating method for fabricating a micrometer-sized collagen matrix on cell surfaces to control cell distance or cell densities inside tissues. In this study, a simple fabrication method is presented for constructing vascular networks in 3D-tissues over micrometer-sized or even millimeter-sized with controlled cell densities. From the results, well vascularized 3D network structures can be observed with a fluorescence label method mixing collagen coated cells and endothelia cells, indicating that constructed ECM rich tissues have the potential for vascularization, which opens up the possibility for various applications in pharmaceutical or tissue engineering fields. PMID:26920051

  2. Control of crosslinking for tailoring collagen-based scaffolds stability and mechanics

    PubMed Central

    Davidenko, N.; Schuster, C.F.; Bax, D.V.; Raynal, N.; Farndale, R.W.; Best, S.M.; Cameron, R.E.

    2015-01-01

    We provide evidence to show that the standard reactant concentrations used in tissue engineering to cross-link collagen-based scaffolds are up to 100 times higher than required for mechanical integrity in service, and stability against degradation in an aqueous environment. We demonstrate this with a detailed and systematic study by comparing scaffolds made from (a) collagen from two different suppliers, (b) gelatin (a partially denatured collagen) and (c) 50% collagen–50% gelatin mixtures. The materials were processed, using lyophilisation, to produce homogeneous, highly porous scaffolds with isotropic architectures and pore diameters ranging from 130 to 260 μm. Scaffolds were cross-linked using a carbodiimide treatment, to establish the effect of the variations in crosslinking conditions (down to very low concentrations) on the morphology, swelling, degradation and mechanical properties of the scaffolds. Carbodiimide concentration of 11.5 mg/ml was defined as the standard (100%) and was progressively diluted down to 0.1%. It was found that 10-fold reduction in the carbodiimide content led to the significant increase (almost 4-fold) in the amount of free amine groups (primarily on collagen lysine residues) without compromising mechanics and stability in water of all resultant scaffolds. The importance of this finding is that, by reducing cross-linking, the corresponding cell-reactive carboxylate anions (collagen glutamate or aspartate residues) that are essential for integrin-mediated binding remain intact. Indeed, a 10-fold reduction in carbodiimide crosslinking resulted in near native-like cell attachment to collagen scaffolds. We have demonstrated that controlling the degree of cross-linking, and hence retaining native scaffold chemistry, offers a major step forward in the biological performance of collagen- and gelatin-based tissue engineering scaffolds. Statement of Significance This work developed collagen and gelatine-based scaffolds with structural

  3. Chondroitin sulphate-based 3D scaffolds containing MWCNTs for nervous tissue repair.

    PubMed

    Serrano, María C; Nardecchia, Stefania; García-Rama, Concepción; Ferrer, María L; Collazos-Castro, Jorge E; del Monte, Francisco; Gutiérrez, María C

    2014-02-01

    Nervous tissue lesions are an important social concern due to their increasing prevalence and their high sanitary costs. Their treatment still remains a challenge because of the reduced ability of nervous tissue to regenerate, its intrinsic structural and functional complexity and the rapid formation of fibroglial scars inhibiting neural repair. Herein, we show that 3D porous scaffolds made of chondroitin sulphate (CS), a major regulatory component of the nervous tissue, and multi-walled carbon nanotubes (MWCNTs) are selective substrates for the formation of a viable and neuron-enriched network with a transitory low glial content. Scaffolds have been fabricated by using the ice segregation-induced self-assembly technique and cultured with embryonic neural progenitor cells. Cell adhesion, morphology, viability, neuron/glial differentiation, calcium signaling dynamics, and mitochondrial activity have been studied over time on the scaffolds and compared to appropriate 2D control substrates. Our results indicate the formation of viable cultures enriched in neuron cells for up to 20 days, with ability to display calcium transients and active mitochondria, even in the absence of poly-D-lysine coating. A synergistic neural-permissive signaling from both the scaffold structure and its components (i.e., MWCNTs and CS) is suggested as the major responsible factor for these findings. We anticipate that these scaffolds may serve nerve regeneration if implanted in the acute phase after injury, as it is during the first stages of graft implantation when the most critical sequence of phenomena takes place to drive either nervous regeneration or fibroglial scar formation. The temporary glial inhibition found may be, indeed, beneficial for promoting the formation of neuron-enriched circuits at early phases while guaranteeing posterior glial integration to support longer-term neuron survival and activity. PMID:24290440

  4. A Tunable Scaffold of Microtubular Graphite for 3D Cell Growth.

    PubMed

    Lamprecht, Constanze; Taale, Mohammadreza; Paulowicz, Ingo; Westerhaus, Hannes; Grabosch, Carsten; Schuchardt, Arnim; Mecklenburg, Matthias; Böttner, Martina; Lucius, Ralph; Schulte, Karl; Adelung, Rainer; Selhuber-Unkel, Christine

    2016-06-22

    Aerographite (AG) is a novel carbon-based material that exists as a self-supportive 3D network of interconnected hollow microtubules. It can be synthesized in a variety of architectures tailored by the growth conditions. This flexibility in creating structures presents interesting bioengineering possibilities such as the generation of an artificial extracellular matrix. Here we have explored the feasibility and potential of AG as a scaffold for 3D cell growth employing cyclic RGD (cRGD) peptides coupled to poly(ethylene glycol) (PEG) conjugated phospholipids for surface functionalization to promote specific adhesion of fibroblast cells. Successful growth and invasion of the bulk material was followed over a period of 4 days. PMID:27258400

  5. A Tunable Scaffold of Microtubular Graphite for 3D Cell Growth

    PubMed Central

    2016-01-01

    Aerographite (AG) is a novel carbon-based material that exists as a self-supportive 3D network of interconnected hollow microtubules. It can be synthesized in a variety of architectures tailored by the growth conditions. This flexibility in creating structures presents interesting bioengineering possibilities such as the generation of an artificial extracellular matrix. Here we have explored the feasibility and potential of AG as a scaffold for 3D cell growth employing cyclic RGD (cRGD) peptides coupled to poly(ethylene glycol) (PEG) conjugated phospholipids for surface functionalization to promote specific adhesion of fibroblast cells. Successful growth and invasion of the bulk material was followed over a period of 4 days. PMID:27258400

  6. Evaluation of cell binding to collagen and gelatin: a study of the effect of 2D and 3D architecture and surface chemistry.

    PubMed

    Davidenko, Natalia; Schuster, Carlos F; Bax, Daniel V; Farndale, Richard W; Hamaia, Samir; Best, Serena M; Cameron, Ruth E

    2016-10-01

    Studies of cell attachment to collagen-based materials often ignore details of the binding mechanisms-be they integrin-mediated or non-specific. In this work, we have used collagen and gelatin-based substrates with different dimensional characteristics (monolayers, thin films and porous scaffolds) in order to establish the influence of composition, crosslinking (using carbodiimide) treatment and 2D or 3D architecture on integrin-mediated cell adhesion. By varying receptor expression, using cells with collagen-binding integrins (HT1080 and C2C12 L3 cell lines, expressing α2β1, and Rugli expressing α1β1) and a parent cell line C2C12 with gelatin-binding receptors (αvβ3 and α5β1), the nature of integrin binding sites was studied in order to explain the bioactivity of different protein formulations. We have shown that alteration of the chemical identity, conformation and availability of free binding motifs (GxOGER and RGD), resulting from addition of gelatin to collagen and crosslinking, have a profound effect on the ability of cells to adhere to these formulations. Carbodiimide crosslinking ablates integrin-dependent cell activity on both two-dimensional and three-dimensional architectures while the three-dimensional scaffold structure also leads to a high level of non-specific interactions remaining on three-dimensional samples even after a rigorous washing regime. This phenomenon, promoted by crosslinking, and attributed to cell entrapment, should be considered in any assessment of the biological activity of three-dimensional substrates. Spreading data confirm the importance of integrin-mediated cell engagement for further cell activity on collagen-based compositions. In this work, we provide a simple, but effective, means of deconvoluting the effects of chemistry and dimensional characteristics of a substrate, on the cell activity of protein-derived materials, which should assist in tailoring their biological properties for specific tissue engineering

  7. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation

    PubMed Central

    Zhou, Xuan; Castro, Nathan J.; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm2 intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  8. Improved Human Bone Marrow Mesenchymal Stem Cell Osteogenesis in 3D Bioprinted Tissue Scaffolds with Low Intensity Pulsed Ultrasound Stimulation.

    PubMed

    Zhou, Xuan; Castro, Nathan J; Zhu, Wei; Cui, Haitao; Aliabouzar, Mitra; Sarkar, Kausik; Zhang, Lijie Grace

    2016-01-01

    3D printing and ultrasound techniques are showing great promise in the evolution of human musculoskeletal tissue repair and regeneration medicine. The uniqueness of the present study was to combine low intensity pulsed ultrasound (LIPUS) and advanced 3D printing techniques to synergistically improve growth and osteogenic differentiation of human mesenchymal stem cells (MSC). Specifically, polyethylene glycol diacrylate bioinks containing cell adhesive Arginine-Glycine-Aspartic acid-Serene (RGDS) peptide and/or nanocrystalline hydroxyapatite (nHA) were used to fabricate 3D scaffolds with different geometric patterns via novel table-top stereolithography 3D printer. The resultant scaffolds provide a highly porous and interconnected 3D environment to support cell proliferation. Scaffolds with small square pores were determined to be the optimal geometric pattern for MSC attachment and growth. The optimal LIPUS working parameters were determined to be 1.5 MHz, 20% duty cycle with 150 mW/cm(2) intensity. Results demonstrated that RGDS peptide and nHA containing 3D printed scaffolds under LIPUS treatment can greatly promote MSC proliferation, alkaline phosphatase activity, calcium deposition and total protein content. These results illustrate the effectiveness of the combination of LIPUS and biomimetic 3D printing scaffolds as a valuable combinatorial tool for improved MSC function, thus make them promising for future clinical and various regenerative medicine application. PMID:27597635

  9. Fabrication of Compositionally and Topographically Complex Robust Tissue Forms by 3D-Electrochemical Compaction of Collagen

    PubMed Central

    Younesi, Mousa; Islam, Anowarul; Kishore, Vipuil; Panit, Stefi; Akkus, Ozan

    2015-01-01

    Collagen solutions are phase-transformed to mechanically robust shell structures with curviplanar topographies using electrochemically induced pH gradients. The process enables rapid layer-by-layer deposition of collagen-rich mixtures over the entire field simultaneously to obtain compositionally diverse multilayered structures. In-plane tensile strength and modulus of the electrocompacted collagen sheet samples were 5200 -fold and 2300 -fold greater than that of uncompacted collagen samples. Out of plane compression tests showed 27 -fold and fold increase in compressive stress and 46 -fold increase in compressive modulus compared to uncompacted collagen sheets. Cells proliferated 4.9 times faster, and cellular area spread was 2.7 times greater on compacted collagen sheets. Electrocompaction also resulted in 2.9 times greater focal adhesion area than on regular collagen hydrogel. The reported improvements in the cell-matrix interactions with electrocompaction would serve to expedite the population of electrocompacted collagen scaffolds by cells. The capacity of the method to fabricate nonlinear curved topographies with compositional heterogeneous layers is demonstrated by sequential deposition of collagenhydroxyapatite layer over a collagen layer. The complex curved topography of the nasal structure is replicated by the electrochemical compaction method. The presented electrochemical compaction process is an enabling modality which holds significant promise for reconstruction of a wide spectrum of topographically complex systems such as joint surfaces, craniofacial defects, ears, nose or urogenital forms. PMID:26069162

  10. Self-Assembled 3D Ordered Macroporous Structures for Tissue Engineering Scaffolds

    NASA Astrophysics Data System (ADS)

    Juan, Wen-Tau; Chung, Kuo-Yuan; Mishra, Narayan; Lin, Keng-Hui

    2008-03-01

    A simple, inexpensive and fast microfluidic method to fabricate three-dimensional ordered macroporous gel is demonstrated using alginate as the scaffold material. The microfluidic device consists of two concentric micropipettes where one is nested inside the other. Nitrogen gas and aqueous alginate solution with Pluronic F127 are pumped through the inner and the outer channel respectively. Under appropriate conditions, bubbles of a uniform size are generated within the device at few thousand Hz. We show the control over bubble size by the gas pressure and quantitatively predict the size dependence from the geometry of fluidic device. Monodisperse bubbles are collected and self-assemble into crystal structures as wet foam. The alginate solution between bubbles is crosslinked by divalent calcium ions and turns into 3D ordered macroporous gel where the pores are highly interconnected. The pore size can be directly controlled by the bubble size which ranges from few tens microns to few millimeters. This technique promises a versatile and robust way to make 3D ordered tissue engineering scaffolds.

  11. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance

    NASA Astrophysics Data System (ADS)

    Hapach, Lauren A.; VanderBurgh, Jacob A.; Miller, Joseph P.; Reinhart-King, Cynthia A.

    2015-12-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix.

  12. Manipulation of in vitro collagen matrix architecture for scaffolds of improved physiological relevance.

    PubMed

    Hapach, Lauren A; VanderBurgh, Jacob A; Miller, Joseph P; Reinhart-King, Cynthia A

    2015-01-01

    Type I collagen is a versatile biomaterial that is widely used in medical applications due to its weak antigenicity, robust biocompatibility, and its ability to be modified for a wide array of applications. As such, collagen has become a major component of many tissue engineering scaffolds, drug delivery platforms, and substrates for in vitro cell culture. In these applications, collagen constructs are fabricated to recapitulate a diverse set of conditions. Collagen fibrils can be aligned during or post-fabrication, cross-linked via numerous techniques, polymerized to create various fibril sizes and densities, and copolymerized into a wide array of composite scaffolds. Here, we review approaches that have been used to tune collagen to better recapitulate physiological environments for use in tissue engineering applications and studies of basic cell behavior. We discuss techniques to control fibril alignment, methods for cross-linking collagen constructs to modulate stiffness, and composite collagen constructs to better mimic physiological extracellular matrix. PMID:26689380

  13. Tuning Cell Differentiation into a 3D Scaffold Presenting a Pore Shape Gradient for Osteochondral Regeneration.

    PubMed

    Di Luca, Andrea; Lorenzo-Moldero, Ivan; Mota, Carlos; Lepedda, Antonio; Auhl, Dietmar; Van Blitterswijk, Clemens; Moroni, Lorenzo

    2016-07-01

    Osteochondral regeneration remains nowadays a major problem since the outcome of current techniques is not satisfactory in terms of functional tissue formation and development. A possible solution is the combination of human mesenchymal stem cells (hMSCs) with additive manufacturing technologies to fabricate scaffolds with instructive properties. In this study, the differentiation of hMSCs within a scaffold presenting a gradient in pore shape is presented. The variation in pore shape is determined by varying the angle formed by the fibers of two consequent layers. The fiber deposition patterns are 0-90, which generate squared pores, 0-45, 0-30, and 0-15, that generate rhomboidal pores with an increasing major axis as the deposition angle decreases. Within the gradient construct, squared pores support a better chondrogenic differentiation whereas cells residing in the rhomboidal pores display a better osteogenic differentiation. When cultured under osteochondral conditions the trend in both osteogenic and chondrogenic markers is maintained. Engineering the pore shape, thus creating axial gradients in structural properties, seems to be an instructive strategy to fabricate functional 3D scaffolds that are able to influence hMSCs differentiation for osteochondral tissue regeneration. PMID:27109461

  14. Effect of particle size in a colloidal hydrogel scaffold for 3D cell culture.

    PubMed

    Gu, Jianjun; Zhao, Yening; Guan, Ying; Zhang, Yongjun

    2015-12-01

    The in situ-forming colloidal hydrogels from the thermal gelation of poly(N-isopropylacrylamide) (PNIPAM) microgel dispersions have been exploited for 3D cell culture. The properties of the hydrogel scaffold need to be tuned to further improve its performance. In addition, cellular uptake of the microgel particles need to be reduced to avoid their potential undesired influence. For these purposes we systematically examined the effect of microgel particle size on the hydrogel scaffold. It was found that gel properties could be tuned via changing particle size. Increasing particle size reduces the gel strength and its syneresis degree, both of which are favorable for cell growth. Meanwhile increasing particle size could also reduce significantly the cellular uptake of the microgel particles. Microgel with a size of ~162 nm shows the highest cellular uptake, beyond which cellular uptake decreases with increasing particle size. Hydrogel scaffold from 300 nm microgel, with suitable physical properties and reduced cellular uptake, were successfully used for multicellular spheroid generation. PMID:26613865

  15. The use of collagen-based scaffolds to simulate prostate cancer bone metastases with potential for evaluating delivery of nanoparticulate gene therapeutics.

    PubMed

    Fitzgerald, Kathleen A; Guo, Jianfeng; Tierney, Erica G; Curtin, Caroline M; Malhotra, Meenakshi; Darcy, Raphael; O'Brien, Fergal J; O'Driscoll, Caitriona M

    2015-10-01

    Prostate cancer bone metastases are a leading cause of cancer-related death in men with current treatments offering only marginally improved rates of survival. Advances in the understanding of the genetic basis of prostate cancer provide the opportunity to develop gene-based medicines capable of treating metastatic disease. The aim of this work was to establish a 3D cell culture model of prostate cancer bone metastasis using collagen-based scaffolds, to characterise this model, and to assess the potential of the model to evaluate delivery of gene therapeutics designed to target bone metastases. Two prostate cancer cell lines (PC3 and LNCaP) were cultured in 2D standard culture and compared to 3D cell growth on three different collagen-based scaffolds (collagen and composites of collagen containing either glycosaminoglycan or nanohydroxyapatite). The 3D model was characterised for cell proliferation, viability and for matrix metalloproteinase (MMP) enzyme and Prostate Specific Antigen (PSA) secretion. Chemosensitivity to docetaxel treatment was assessed in 2D in comparison to 3D. Nanoparticles (NPs) containing siRNA formulated using a modified cyclodextrin were delivered to the cells on the scaffolds and gene silencing was quantified. Both prostate cancer cell lines actively infiltrated and proliferated on the scaffolds. Cell culture in 3D resulted in reduced levels of MMP1 and MMP9 secretion in PC3 cells. In contrast, LNCaP cells grown in 3D secreted elevated levels of PSA, particularly on the scaffold composed of collagen and glycosaminoglycans. Both cell lines grown in 3D displayed increased resistance to docetaxel treatment. The cyclodextrin.siRNA nanoparticles achieved cellular uptake and knocked down the endogenous GAPDH gene in the 3D model. In conclusion, development of a novel 3D cell culture model of prostate cancer bone metastasis has been initiated resulting, for the first time, in the successful delivery of gene therapeutics in a 3D in vitro model

  16. Secreted Endothelial Cell Factors Immobilized on Collagen Scaffolds Enhance the Recipient Endothelial Cell Environment

    PubMed Central

    Hamilton, Charlotte; Callanan, Anthony

    2016-01-01

    Abstract Strategies to design novel vascular scaffolds are a continuing aim in tissue engineering and often such designs encompass the use of recombinant factors to enhance the performance of the scaffold. The established use of cell secretion utilized in feeder systems and conditioned media offer a source of paracrine factors, which has potential to be used in tissue-engineered (TE) scaffolds. Here we utilize this principle from endothelial cells (ECs), to create a novel TE scaffold by harnessing secreted factors and immobilizing these to collagen scaffolds. This research revealed increased cellular attachment and positive angiogenic gene upregulation responses in recipient ECs grown on these conditioned scaffolds. Also, the conditioning method did not affect the mechanical structural integrity of the scaffolds. These results may advocate the potential use of this system to improve vascular scaffolds' in vivo performance. In addition, this process may be a future method utilized to improve other tissue engineering scaffold therapies. PMID:27057474

  17. Three-dimensional poly (ε-caprolactone)/hydroxyapatite/collagen scaffolds incorporating bone marrow mesenchymal stem cells for the repair of bone defects.

    PubMed

    Qi, Xin; Huang, Yinjun; Han, Dan; Zhang, Jieyuan; Cao, Jiaqing; Jin, Xiangyun; Huang, Jinghuan; Li, Xiaolin; Wang, Ting

    2016-04-01

    We previously demonstrated that three-dimensional (3D) hydroxyapatite (HAP)-collagen (COL)-coated poly(ε-caprolactone) (PCL) scaffolds (HAP-COL-PCL) possess appropriate nano-structures, surface roughness, and nutrients, providing a favorable environment for osteogenesis. However, the effect of using 3D HAP-COL-PCL scaffolds incorporating BMSCs for the repair of bone defects in rats has been not evaluated. 3D PCL scaffolds coated with HAP, collagen or HAP/COL and incorporating BMSCs were implanted into calvarial defects. At 12 weeks after surgery, the rats were sacrificed and crania were harvested to assess the bone defect repair using microcomputed tomography (micro-CT), histology, immunohistochemistry and sequential fluorescent labeling analysis. 3D micro-CT reconstructed images and quantitative analysis showed that HAP-COL-PCL groups possessed better bone-forming capacity than HAP-PCL groups or COL-PCL groups. Fluorescent labeling analysis revealed the percentage of tetracycline labeling, alizarin red labeling, and calcein labeling in HAP-COL-PCL groups were all greater than in the other two groups (P < 0.05), and the result was confirmed by immunohistochemical staining and histological analysis of bone regeneration. This study demonstrates that 3D HAP-COL-PCL scaffolds incorporating BMSCs markedly enhance bone regeneration of bone defects in rats. PMID:26964015

  18. Design control for clinical translation of 3D printed modular scaffolds.

    PubMed

    Hollister, Scott J; Flanagan, Colleen L; Zopf, David A; Morrison, Robert J; Nasser, Hassan; Patel, Janki J; Ebramzadeh, Edward; Sangiorgio, Sophia N; Wheeler, Matthew B; Green, Glenn E

    2015-03-01

    founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115

  19. Design Control for Clinical Translation of 3D Printed Modular Scaffolds

    PubMed Central

    Hollister, Scott J.; Flanagan, Colleen L.; Zopf, David A.; Morrison, Robert J.; Nasser, Hassan; Patel, Janki J.; Ebramzadeh, Edward; Sangiorgio, Sophia N.; Wheeler, Matthew B.; Green, Glenn E.

    2015-01-01

    founded on 3D printing for developing tissue engineering therapies and (2) illustrate the design control process for modular implementation of two scaffold based tissue engineering therapies: airway reconstruction and bone tissue engineering based spine fusion. PMID:25666115

  20. Comparative study of bioactivity of collagen scaffolds coated with graphene oxide and reduced graphene oxide

    PubMed Central

    Kanayama, Izumi; Miyaji, Hirofumi; Takita, Hiroko; Nishida, Erika; Tsuji, Maiko; Fugetsu, Bunshi; Sun, Ling; Inoue, Kana; Ibara, Asako; Akasaka, Tsukasa; Sugaya, Tsutomu; Kawanami, Masamitsu

    2014-01-01

    Background Graphene oxide (GO) is a single layer carbon sheet with a thickness of less than 1 nm. GO has good dispersibility due to surface modifications with numerous functional groups. Reduced graphene oxide (RGO) is produced via the reduction of GO, and has lower dispersibility. We examined the bioactivity of GO and RGO films, and collagen scaffolds coated with GO and RGO. Methods GO and RGO films were fabricated on a culture dish. Some GO films were chemically reduced using either ascorbic acid or sodium hydrosulfite solution, resulting in preparation of RGO films. The biological properties of each film were evaluated by scanning electron microscopy (SEM), atomic force microscopy, calcium adsorption tests, and MC3T3-E1 cell seeding. Subsequently, GO- and RGO-coated collagen scaffolds were prepared and characterized by SEM and compression tests. Each scaffold was implanted into subcutaneous tissue on the backs of rats. Measurements of DNA content and cell ingrowth areas of implanted scaffolds were performed 10 days post-surgery. Results The results show that GO and RGO possess different biological properties. Calcium adsorption and alkaline phosphatase activity were strongly enhanced by RGO, suggesting that RGO is effective for osteogenic differentiation. SEM showed that RGO-modified collagen scaffolds have rough, irregular surfaces. The compressive strengths of GO- and RGO-coated scaffolds were approximately 1.7-fold and 2.7-fold greater, respectively, when compared with the non-coated scaffold. Tissue ingrowth rate was 39% in RGO-coated scaffolds, as compared to 20% in the GO-coated scaffold and 16% in the non-coated scaffold. Conclusion In summary, these results suggest that GO and RGO coatings provide different biological properties to collagen scaffolds, and that RGO-coated scaffolds are more bioactive than GO-coated scaffolds. PMID:25050063

  1. Synthesis and Characterization of Collagen Scaffolds Reinforced by Eggshell Derived Hydroxyapatite for Tissue Engineering.

    PubMed

    Padmanabhan, Sanosh Kunjalukkal; Salvatore, Luca; Gervaso, Francesca; Catalano, Massimo; Taurino, Antonietta; Sannino, Alessando; Licciulli, Antonio

    2015-01-01

    In this work, we synthesized porous nanohydroxyapatite/collagen composite scaffold (nHA-COL), which resemble extracellular matrices in bone and cartilage tissues. Nano hydroxyapatite (nHA) was successfully nucleated in to the collagen matrix using hen eggshell as calcium biogenic source. Porosity was evaluated by apparent and theoretical density measurement. Porosity of all scaffolds was in the range of 95-98%. XRD and TEM analyses show the purity and size of nucleated HA around 10 nm and selected area electron diffraction (SAED) analysis reveals the polycrystalline nature of nucleated HA. SEM analysis reveals (i) all the scaffolds have interconnected pores with an average pore diameter of 130 micron and (ii) aggregates of hydroxyapatite were strongly embedded in the collagen matrix for both composite scaffolds compared with pure collagen scaffold. EDS analysis shows the Ca/P stoichiometric ratio around 1.67 and FTIR reveals the chemical interaction between the collagen molecule and HA particles. The testing of mechanical properties evidenced that incorporation of HA resulted in up to a two-fold increase in compressive modulus with high reinforcement level (-7 kPa for 50HA-50COL) compared to pure collagen scaffold. PMID:26328390

  2. Rheological characterization of the nucleus pulposus and dense collagen scaffolds intended for functional replacement.

    PubMed

    Bron, J L; Koenderink, G H; Everts, V; Smit, T H

    2009-05-01

    Lumbar discectomy is an effective therapy for neurological decompression in patients suffering from sciatica due to a herniated nucleus pulposus (NP). However, high numbers of patients suffering from persisting postoperative low back pain have resulted in many strategies targeting the regeneration of the NP. For successful regeneration, the stiffness of scaffolds is increasingly recognized as a potent mechanical cue for the differentiation and biosynthetic response of (stem) cells. The aim of the current study is to characterize the viscoelastic properties of the NP and to develop dense collagen scaffolds with similar properties. The scaffolds consisted of highly dense (0.5%-12%) type I collagen matrices, prepared by plastic compression. The complex modulus of the NP was 22 kPa (at 10 rad s(-1)), which should agree with a scaffold with a collagen concentration of 23%. The loss tangent, indicative of energy dissipation, is higher for the NP (0.28) than for the scaffolds (0.12) and was not dependent of the collagen density. Gamma sterilization of the scaffolds increased the shear moduli but also resulted in more brittle behavior and a reduced swelling capacity. In conclusion, by tuning the collagen density, we can approach the stiffness of the NP. Therefore, dense collagen is a promising candidate for tissue engineering of the NP that deserves further study, such as the addition of other proteins. PMID:18991343

  3. Novel Vanadium-Loaded Ordered Collagen Scaffold Promotes Osteochondral Differentiation of Bone Marrow Progenitor Cells

    PubMed Central

    Cortizo, Ana M.; Ruderman, Graciela; Mazzini, Flavia N.; Molinuevo, M. Silvina; Mogilner, Ines G.

    2016-01-01

    Bone and cartilage regeneration can be improved by designing a functionalized biomaterial that includes bioactive drugs in a biocompatible and biodegradable scaffold. Based on our previous studies, we designed a vanadium-loaded collagen scaffold for osteochondral tissue engineering. Collagen-vanadium loaded scaffolds were characterized by SEM, FTIR, and permeability studies. Rat bone marrow progenitor cells were plated on collagen or vanadium-loaded membranes to evaluate differences in cell attachment, growth and osteogenic or chondrocytic differentiation. The potential cytotoxicity of the scaffolds was assessed by the MTT assay and by evaluation of morphological changes in cultured RAW 264.7 macrophages. Our results show that loading of VOAsc did not alter the grooved ordered structure of the collagen membrane although it increased membrane permeability, suggesting a more open structure. The VOAsc was released to the media, suggesting diffusion-controlled drug release. Vanadium-loaded membranes proved to be a better substratum than C0 for all evaluated aspects of BMPC biocompatibility (adhesion, growth, and osteoblastic and chondrocytic differentiation). In addition, there was no detectable effect of collagen or vanadium-loaded scaffolds on macrophage viability or cytotoxicity. Based on these findings, we have developed a new ordered collagen scaffold loaded with VOAsc that shows potential for osteochondral tissue engineering. PMID:27293438

  4. In vitro evaluation of Ficoll-enriched and genipin-stabilised collagen scaffolds.

    PubMed

    Satyam, A; Subramanian, G S; Raghunath, M; Pandit, A; Zeugolis, D I

    2014-03-01

    Polysaccharides are frequently incorporated into scaffolds for tissue engineering applications to improve mechanical and biological properties. We evaluated the influence of a Ficoll® scaffold on collagen films, a scaffold that is extensively used for soft and hard tissue repair. To avoid cytotoxicity issues associated with chemical reagents, the influence of genipin, a naturally occurring crosslinking agent, was assessed. Ultra-structural level collagen films formed with and without Ficoll showed a fine fibrillar structure whereas genipin crosslinked films showed a coarse fibrillar and partially nodular structure. In contrast, glutaraldehyde crosslinked films lost their fibrillar pattern. Crosslinking significantly increased denaturation temperature (p < 0.001), stress (p < 0.0001) and force (p < 0.0001) at break. Collagen/Ficoll and collagen/Ficoll/genipin films showed the highest WI38 fibroblast attachment than any other scaffold (p < 0.003) and significantly greater WI38 fibroblast metabolic activity than other scaffolds (p < 0.001). By day 6. collagen/Ficoll/genipin films also induced higher and more aligned fibronectin matrix deposition than other scaffolds. Overall, this study indicates the suitability of collagen/Ficoll/genipin for tissue engineering applications. PMID:22552937

  5. Bio-printing of collagen and VEGF-releasing fibrin gel scaffolds for neural stem cell culture.

    PubMed

    Lee, Yeong-Bae; Polio, Samuel; Lee, Wonhye; Dai, Guohao; Menon, Lata; Carroll, Rona S; Yoo, Seung-Schik

    2010-06-01

    Time-released delivery of soluble growth factors (GFs) in engineered hydrogel tissue constructs promotes the migration and proliferation of embedded cells, which is an important factor for designing scaffolds that ultimately aim for neural tissue regeneration. We report a tissue engineering technique to print murine neural stem cells (C17.2), collagen hydrogel, and GF (vascular endothelial growth factor: VEGF)-releasing fibrin gel to construct an artificial neural tissue. We examined the morphological changes of the printed C17.2 cells embedded in the collagen and its migration toward the fibrin gel. The cells showed high viability (92.89+/-2.32%) after printing, which was equivalent to that of manually-plated cells. C17.2 cells printed within 1mm from the border of VEGF-releasing fibrin gel showed GF-induced changes in their morphology. The cells printed in this range also migrated toward the fibrin gel, with the total migration distance of 102.4+/-76.1microm over 3days. The cells in the control samples (fibrin without the VEGF or VEGF printed directly in collagen) neither proliferated nor migrated. The results demonstrated that bio-printing of VEGF-containing fibrin gel supported sustained release of the GF in the collagen scaffold. The presented method can be gainfully used in the development of three-dimensional (3D) artificial tissue assays and neural tissue regeneration applications. PMID:20211178

  6. Three-dimensional scaffold of type II collagen promote the differentiation of adipose-derived stem cells into a nucleus pulposus-like phenotype.

    PubMed

    Zhou, Xiaopeng; Tao, Yiqing; Wang, Jingkai; Liu, Dongyu; Liang, Chengzhen; Li, Hao; Chen, Qixin

    2016-07-01

    Type II collagen is reported to have the capability of guiding adipose-derived stem cells (ADSCs) to differentiate towards a nucleus pulposus (NP)-like phenotype. So this study aimed to establish a three-dimensional (3D) collagen scaffold using N,N-(3-dimethylaminopropyl)-N'-ethyl carbodiimide and N-hydroxysuccinimide (EDAC/NHS) to increase the efficiency of ADSC differentiation into NP-like cells. Physical properties, such as porosity, biodegradation, and microstructure, and biological characteristics such as cytotoxicity, cell proliferation, and expression of relevant genes and proteins were measured to evaluate the efficacy of different scaffolds. Collagen scaffolds cross-linked with EDAC/NHS exhibited higher biological stability, better spatial structure, and higher gene and protein expression of functional markers such as aggrecan, SOX9 and COL2 than those of other groups. Based on the results, freeze-dried type II collagen cross-linked with EDAC/NHS formed the best 3D scaffold, for inducing ADSC proliferation and differentiation toward a NP-like phenotype. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1687-1693, 2016. PMID:26940048

  7. FTIR spectro-imaging of collagen scaffold formation during glioma tumor development.

    PubMed

    Noreen, Razia; Chien, Chia-Chi; Chen, Hsiang-Hsin; Bobroff, Vladimir; Moenner, Michel; Javerzat, Sophie; Hwu, Yeukuang; Petibois, Cyril

    2013-11-01

    Evidence has recently emerged that solid and diffuse tumors produce a specific extracellular matrix (ECM) for division and diffusion, also developing a specific interface with microvasculature. This ECM is mainly composed of collagens and their scaffolding appears to drive tumor growth. Although collagens are not easily analyzable by UV-fluorescence means, FTIR imaging has appeared as a valuable tool to characterize collagen contents in tissues, specially the brain, where ECM is normally devoid of collagen proteins. Here, we used FTIR imaging to characterize collagen content changes in growing glioma tumors. We could determine that C6-derived solid tumors presented high content of triple helix after 8-11 days of growth (typical of collagen fibrils formation; 8/8 tumor samples; 91 % of total variance), and further turned to larger α-helix (days 12-15; 9/10 of tumors; 94 % of variance) and β-turns (day 18-21; 7/8 tumors; 97 % of variance) contents, which suggest the incorporation of non-fibrillar collagen types in ECM, a sign of more and more organized collagen scaffold along tumor progression. The growth of tumors was also associated to the level of collagen produced (P < 0.05). This study thus confirms that collagen scaffolding is a major event accompanying the angiogenic shift and faster tumor growth in solid glioma phenotypes. PMID:24068168

  8. An investigation of common crosslinking agents on the stability of electrospun collagen scaffolds.

    PubMed

    Huang, Gloria Portocarrero; Shanmugasundaram, Shobana; Masih, Pallavi; Pandya, Deep; Amara, Suwah; Collins, George; Arinzeh, Treena Livingston

    2015-02-01

    Electrospinning is a widely used processing method to form fibrous tissue engineering scaffolds that mimic the structural features of the native extracellular matrix. Electrospun fibers made of collagen have been sought because it is a natural structural protein that supports cell attachment and growth. Yet, conventional solvents used to electrospin collagen can result in the loss of hydrolytic stability and fiber morphology of the scaffold. This study evaluated the effect of commonly used synthetic and natural crosslinking agents, genipin, glutaraldehyde, N-(3-dimethylaminopropyl)-N'-ethylcarbodiimide hydrochloride (EDC), and EDC with N-hydroxysulfosuccinimide (EDC-NHS), on electrospun collagen. Crosslinked collagen scaffolds were assessed for structural integrity in an in vitro immersion study for up to 3 months. Their cytocompatibility was evaluated by human mesenchymal stem cell morphology and proliferation. Our results showed that dimensional stability and cytocompatibility of crosslinked electrospun collagen scaffolds are dependent on the type of crosslinking agent used. Collagen scaffolds treated with EDC and EDC-NHS were structurally stable and retained fiber structure for up to 3 months and were cytocompatible. Therefore, EDC and EDC-NHS are favorable crosslinking agents for electrospun collagen that can be utilized in tissue engineering applications. PMID:24828818

  9. Scaffolds for bone regeneration made of hydroxyapatite microspheres in a collagen matrix.

    PubMed

    Cholas, Rahmatullah; Kunjalukkal Padmanabhan, Sanosh; Gervaso, Francesca; Udayan, Gayatri; Monaco, Graziana; Sannino, Alessandro; Licciulli, Antonio

    2016-06-01

    Biomimetic scaffolds with a structural and chemical composition similar to native bone tissue may be promising for bone tissue regeneration. In the present work hydroxyapatite mesoporous microspheres (mHA) were incorporated into collagen scaffolds containing an ordered interconnected macroporosity. The mHA were obtained by spray drying of a nano hydroxyapatite slurry prepared by the precipitation technique. X-ray diffraction (XRD) analysis revealed that the microspheres were composed only of hydroxyapatite (HA) phase, and energy-dispersive x-ray spectroscopy (EDS) analysis revealed the Ca/P ratio to be 1.69 which is near the value for pure HA. The obtained microspheres had an average diameter of 6μm, a specific surface area of 40m(2)/g as measured by Brunauer-Emmett-Teller (BET) analysis, and Barrett-Joyner-Halenda (BJH) analysis showed a mesoporous structure with an average pore diameter of 16nm. Collagen/HA-microsphere (Col/mHA) composite scaffolds were prepared by freeze-drying followed by dehydrothermal crosslinking. SEM observations of Col/mHA scaffolds revealed HA microspheres embedded within a porous collagen matrix with a pore size ranging from a few microns up to 200μm, which was also confirmed by histological staining of sections of paraffin embedded scaffolds. The compressive modulus of the composite scaffold at low and high strain values was 1.7 and 2.8 times, respectively, that of pure collagen scaffolds. Cell proliferation measured by the MTT assay showed more than a 3-fold increase in cell number within the scaffolds after 15days of culture for both pure collagen scaffolds and Col/mHA composite scaffolds. Attractive properties of this composite scaffold include the potential to load the microspheres for drug delivery and the controllability of the pore structure at various length scales. PMID:27040244

  10. Development and evaluation of cross-linked collagen-hydroxyapatite scaffolds for tissue engineering.

    PubMed

    Panda, Niladri Nath; Jonnalagadda, Sriramakamal; Pramanik, Krishna

    2013-01-01

    This study examines the tissue engineering potential of type I collagen cross-linked in the presence of hydroxyapatite (HAp). Scaffolds were prepared by controlled freezing followed by lyophilization of composite mixtures of collagen and HAp in acetic acid, followed by cross-linking with 0.3% glutaraldehyde. Scaffolds of three ratios were prepared, corresponding to collagen/HAp ratios of 1:2, 1:4, and 1:6. The scaffolds were evaluated for their microstructure, chemical and physical properties, swelling behavior, mechanical strength, biodegradability hemocompatability, cytocompatibility, and histopathology following subcutaneous implantation in Sprague Dawley rats. The collagen/HAp matrices showed a smaller pore size of 10-40 μm compared to 50-100 μm for pure collagen scaffolds. Pure collagen showed a mechanical strength of 0.25 MPa, and the value almost doubled for cross-linked composites with collagen/HAp ratio 1:6. The improvement in mechanical strength corresponded to a decrease in swelling and enzymatic degradation (measured by resistance to collagenases). FTIR spectra results in conjunction with scanning electron micrographs showed that cross-linking in the presence of HAp did not significantly alter the structure of collagen. MTT assay and calcein AM staining revealed prominent and healthy growth of mesenchymal stem cells in both the pure collagen as well as collagen:HAp composites of ratio 1:2. In vivo implantation in Sprague Dawley rats showed an initial acute inflammatory response during days 3 and 7, followed by a chronic, macrophage-mediated inflammatory response on days 14 and 28. Overall, a cross-linked collagen/HAp composite scaffold of ratio 1:2 was identified as having potential for further development in tissue engineering. PMID:23905722

  11. Hierarchically biomimetic scaffold of a collagen-mesoporous bioactive glass nanofiber composite for bone tissue engineering.

    PubMed

    Hsu, Fu-Yin; Lu, Meng-Ru; Weng, Ru-Chun; Lin, Hsiu-Mei

    2015-04-01

    Mesoporous bioactive glass nanofibers (MBGNFs) were prepared by a sol-gel/electrospinning technique. Subsequently, a collagen-MBGNF (CM) composite scaffold that simultaneously possessed a macroporous structure and collagen nanofibers was fabricated by a gelation and freeze-drying process. Additionally, immersing the CM scaffold in a simulated body fluid resulted in the formation of bone-like apatite minerals on the surface. The CM scaffold provided a suitable environment for attachment to the cytoskeleton. Based on the measured alkaline phosphatase activity and protein expression levels of osteocalcin and bone sialoprotein, the CM scaffold promoted the differentiation and mineralization of MG63 osteoblast-like cells. In addition, the bone regeneration ability of the CM scaffold was examined using a rat calvarial defect model in vivo. The results revealed that CM is biodegradable and could promote bone regeneration. Therefore, a CM composite scaffold is a potential bone graft for bone tissue engineering applications. PMID:25805665

  12. Novel collagen scaffolds with predefined internal morphology made by solid freeform fabrication.

    PubMed

    Sachlos, E; Reis, N; Ainsley, C; Derby, B; Czernuszka, J T

    2003-04-01

    Novel collagen scaffolds possessing predefined and reproducible internal channels with widths of 135 microm and greater have been produced. The process employed to make the collagen scaffold utilises a sacrificial mould, manufactured using solid freeform fabrication technology, and critical point drying technique. A computer aided design (CAD) file of the mould to be produced is created. This mould is manufactured using a phase change ink-jet printer. A dispersion of collagen is then cast into the mould and frozen. The mould is dissolved away with ethanol and the collagen scaffold is then critical point dried with liquid carbon dioxide. The effect of processing on the tertiary structure of collagen is assessed by monitoring the wavenumber of the N-H stretching vibration peak using Fourier transform infra-red spectroscopy and it is found that processing does not denature the collagen. Ultraviolet-visual spectroscopy was used to detect the presence of any contamination from the sacrificial mould on the collagen. The ability to use computer aided design and manufacture (CAD/CAM) provides a route to optimise scaffold designs using collagen in tissue engineering applications. PMID:12527290

  13. Genipin-cross-linked collagen/chitosan biomimetic scaffolds for articular cartilage tissue engineering applications.

    PubMed

    Yan, Le-Ping; Wang, Ying-Jun; Ren, Li; Wu, Gang; Caridade, Sofia G; Fan, Jia-Bing; Wang, Ling-Yun; Ji, Pei-Hong; Oliveira, Joaquim M; Oliveira, João T; Mano, João F; Reis, Rui L

    2010-11-01

    In this study, genipin-cross-linked collagen/chitosan biodegradable porous scaffolds were prepared for articular cartilage regeneration. The influence of chitosan amount and genipin concentration on the scaffolds physicochemical properties was evaluated. The morphologies of the scaffolds were characterized by scanning electron microscope (SEM) and cross-linking degree was investigated by ninhydrin assay. Additionally, the mechanical properties of the scaffolds were assessed under dynamic compression. To study the swelling ratio and the biostability of the collagen/chitosan scaffold, in vitro tests were also carried out by immersion of the scaffolds in PBS solution or digestion in collagenase, respectively. The results showed that the morphologies of the scaffolds underwent a fiber-like to a sheet-like structural transition by increasing chitosan amount. Genipin cross-linking remarkably changed the morphologies and pore sizes of the scaffolds when chitosan amount was less than 25%. Either by increasing the chitosan ratio or performing cross-linking treatment, the swelling ratio of the scaffolds can be tailored. The ninhydrin assay demonstrated that the addition of chitosan could obviously increase the cross-linking efficiency. The degradation studies indicated that genipin cross-linking can effectively enhance the biostability of the scaffolds. The biocompatibility of the scaffolds was evaluated by culturing rabbit chondrocytes in vitro. This study demonstrated that a good viability of the chondrocytes seeded on the scaffold was achieved. The SEM analysis has revealed that the chondrocytes adhered well to the surface of the scaffolds and contacted each other. These results suggest that the genipin-cross-linked collagen/chitosan matrix may be a promising formulation for articular cartilage scaffolding. PMID:20648541

  14. Solid state synthesis of chitosan and its unsaturated derivatives for laser microfabrication of 3D scaffolds

    NASA Astrophysics Data System (ADS)

    Akopova, T. A.; Demina, T. S.; Bagratashvili, V. N.; Bardakova, K. N.; Novikov, M. M.; Selezneva, I. I.; Istomin, A. V.; Svidchenko, E. A.; Cherkaev, G. V.; Surin, N. M.; Timashev, P. S.

    2015-07-01

    Chitosans with various degrees of deacetylation and molecular weights and their allyl substituted derivatives were obtained through a solvent-free reaction under shear deformation in an extruder. Structure and physical-chemical analysis of the samples were carried out using nuclear magnetic resonance (NMR), ultraviolet (UV) and infrared radiation (IR) spectroscopy. Photosensitive materials based on the synthesized polymers were successfully used for microfabrication of 3D well-defined architectonic structures by laser stereolithography. Study on the metabolic activity of NCTC L929 cultured in the presence of the cured chitosan extracts indicates that the engineered biomaterials could support adhesion, spreading and growth of adherent-dependent cells, and thus could be considered as biocompatible scaffolds.

  15. Preliminary study of surface modification of 3D Poly (ɛ - caprolactone) scaffolds by ultrashort laser irradiation

    NASA Astrophysics Data System (ADS)

    Daskalova, A.; Bliznakova, I.; Iordanova, E.; Yankov, G.; Grozeva, M.; Ostrowska, B.

    2016-02-01

    Three - dimensional poly (e- caprolactone) (PCL) scaffolds as suitable biocompatible material for manufacturing tissue replacements are utilized for tissue engineering purposes. The porous structures are fabricated by rapid prototyping method (Bioscaffolder) based on hypodermic dispensing process. The consecution of experiments demonstrated the possibility on creation of surface micro formations, applying different laser fluences, at 1 kHz repetition rate for fixed time of exposure 1 sec at 800 nm central wavelength. The combination of both methods offers possibilities for successful production of 3D matrices with modified surfaces. The obtained results of laser - induced surface modifications of PCL demonstrate the potential of the method to microprocess this kind of material for possible applications in regenerative medicine.

  16. Fabrication of 3D tissue equivalent: an in vitro platform for understanding collagen evolution in healthy and diseased models

    NASA Astrophysics Data System (ADS)

    Urciuolo, F.; Imparato, G.; Casale, C.; Scamardella, S.; Netti, P.

    2013-04-01

    In this study we realized a three-dimensional human dermis equivalent (3D-HDE) and, by exploiting multi-photon microscopy (MPM) we validated its use as an in vitro model to study collagen network re-arrangement under simulated solar exposure. The realization of 3D-HDE has been pursed by means of a bottom-up tissue engineering strategy that comprises firstly the fabrication of micron sized tissue building blocks and then their assembly in a 3D tissue construct. The building blocks injected in a maturation chamber, and cultured under optimized culture condition, were able to fuse due to the establishment of cell-cell and cell-extra cellular matrix (ECM) interactions that induced a biological sintering process resulting in 3D-HDE production. The final 3D tissue was made-up by fibroblasts embedded in their own ECM rich in endogenous collagen type I, resembling the composition and the architecture of native human dermis. Second Harmonic Generation (SHG) and Two-Photon Excited Fluorescence (TPEF) imaging have been exploited to assess modification in collagen assembly before and after UV irradiation. Textural features and SHG to TPFE ratio of the endogenous ECM within 3D-HDE have been shown to vary after UVA irradiation, proving the hypothesis that the 3DHDE realized can be used as biological platform in vitro to study ECM modifications induced by photo-damage.

  17. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    SciTech Connect

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-07

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.

  18. 3D Differentiation of Neural Stem Cells in Macroporous Photopolymerizable Hydrogel Scaffolds

    PubMed Central

    Li, Hang; Wijekoon, Asanka; Leipzig, Nic D.

    2012-01-01

    Neural stem/progenitor cells (NSPCs) are the stem cell of the adult central nervous system (CNS). These cells are able to differentiate into the major cell types found in the CNS (neurons, oligodendrocytes, astrocytes), thus NSPCs are the mechanism by which the adult CNS could potentially regenerate after injury or disorder. Microenviromental factors are critical for guiding NSPC differentiation and are thus important for neural tissue engineering. In this study, D-mannitol crystals were mixed with photocrosslinkable methacrylamide chitosan (MAC) as a porogen to enhance pore size during hydrogel formation. D-mannitol was admixed to MAC at 5, 10 and 20 wt% D-mannitol per total initial hydrogel weight. D-mannitol crystals were observed to dissolve and leave the scaffold within 1 hr. Quantification of resulting average pore sizes showed that D-mannitol addition resulted in larger average pore size (5 wt%, 4060±160 µm2, 10 wt%, 6330±1160 µm2, 20 wt%, 7600±1550 µm2) compared with controls (0 wt%, 3150±220 µm2). Oxygen diffusion studies demonstrated that larger average pore area resulted in enhanced oxygen diffusion through scaffolds. Finally, the differentiation responses of NSPCs to phenotypic differentiation conditions were studied for neurons, astrocytes and oligodendrocytes in hydrogels of varied porosity over 14 d. Quantification of total cell numbers at day 7 and 14, showed that cell numbers decreased with increased porosity and over the length of the culture. At day 14 immunohistochemistry quantification for primary cell types demonstrated significant differentiation to the desired cells types, and that total percentages of each cell type was greatest when scaffolds were more porous. These results suggest that larger pore sizes in MAC hydrogels effectively promote NSPC 3D differentiation. PMID:23144988

  19. Incorporating pTGF-β1/calcium phosphate nanoparticles with fibronectin into 3-dimensional collagen/chitosan scaffolds: efficient, sustained gene delivery to stem cells for chondrogenic differentiation.

    PubMed

    Cao, Xia; Deng, Wenwen; Wei, Yuan; Yang, Yan; Su, Weiyan; Wei, Yawei; Xu, Ximing; Yu, Jiangnan

    2012-01-01

    The objective of this study was to prepare a 3-dimensional nanoparticle gene delivery system (3D-NGDS) based on collagen/chitosan scaffolds, in which plasmid transforming growth factor beta 1 (TGF-β1)/calcium phosphate nanoparticles mixed with fibronectin (FN) were used to transfect mesenchymal stem cells (MSCs). Scanning electron microscopy was used to characterise the microstructure of 3-dimensional collagen/chitosan scaffolds. An analysis performed to quantify the TGF-b1 concentrations in MSC cultures revealed that the MSCs transfected with the 3D-NGDS showed remarkably high levels of TGF-b1 over long periods, retaining a concentration of TGF-b1 of approximately 10 ng/mL within two weeks, with the highest level (12.6 ng/mL) being observed on the 6th day. An immunohistochemistry analysis for collagen type II revealed that much higher production of collagen II from the 9th to 15th day was observed in the 3D-NGDS-transfected MSCs than that in MSCs transfected by the Lipofectamine 2000 method. The glycosaminoglycan content of the 3D-NGDS was comparable to those treated with TGF-β1 as well as TGF-β1 plus dexamethasone, and was significantly higher than those treated with free plasmid and Lipofectamine 2000. A remarkable type I collagen expression inhibition of the 3D-NGDS at day 21 was observed via ELISA. These results suggested that transfection with the 3D-NGDS could successfully induce MSC chondrogenic differentiation in vitro without dexamethasone. In summary, the 3D-NGDS could be developed into a promising alternative method to transfer exogenous nucleic acid to MSCs in clinical trials. PMID:22314694

  20. Optimisation of UV irradiation as a binding site conserving method for crosslinking collagen-based scaffolds.

    PubMed

    Davidenko, Natalia; Bax, Daniel V; Schuster, Carlos F; Farndale, Richard W; Hamaia, Samir W; Best, Serena M; Cameron, Ruth E

    2016-01-01

    Short wavelength (λ = 254 nm) UV irradiation was evaluated over a range of intensities (0.06 to 0.96 J/cm(2)) as a means of cross-linking collagen- and gelatin-based scaffolds, to tailor their material characteristics whilst retaining biological functionality. Zero-link carbodiimide treatments are commonly applied to collagen-based materials, forming cross-links from carboxylate anions (for example the acidic E of GFOGER) that are an essential part of integrin binding sites on collagen. Cross-linking these amino acids therefore disrupts the bioactivity of collagen. In contrast, UV irradiation forms bonds from less important aromatic tyrosine and phenylalanine residues. We therefore hypothesised that UV cross-linking would not compromise collagen cell reactivity. Here, highly porous (~99 %) isotropic, collagen-based scaffolds were produced via ice-templating. A series of scaffolds (pore diameters ranging from 130-260 μm) with ascending stability in water was made from gelatin, two different sources of collagen I, or blends of these materials. Glucose, known to aid UV crosslinking of collagen, was added to some lower-stability formulations. These scaffolds were exposed to different doses of UV irradiation, and the scaffold morphology, dissolution stability in water, resistance to compression and cell reactivity was assessed. Stabilisation in aqueous media varied with both the nature of the collagen-based material employed and the UV intensity. Scaffolds made from the most stable materials showed the greatest stability after irradiation, although the levels of cross-linking in all cases were relatively low. Scaffolds made from pure collagen from the two different sources showed different optimum levels of irradiation, suggesting altered balance between stabilisation from cross-linking and destabilisation from denaturation. The introduction of glucose into the scaffold enhanced the efficacy of UV cross-linking. Finally, as hypothesized, cell attachment, spreading and

  1. Collagen scaffolds combined with collagen-binding ciliary neurotrophic factor facilitate facial nerve repair in mini-pigs.

    PubMed

    Lu, Chao; Meng, Danqing; Cao, Jiani; Xiao, Zhifeng; Cui, Yi; Fan, Jingya; Cui, Xiaolong; Chen, Bing; Yao, Yao; Zhang, Zhen; Ma, Jinling; Pan, Juli; Dai, Jianwu

    2015-05-01

    The preclinical studies using animal models play a very important role in the evaluation of facial nerve regeneration. Good models need to recapitulate the distance and time for axons to regenerate in humans. Compared with the most used rodent animals, the structure of facial nerve in mini-pigs shares more similarities with humans in microanatomy. To evaluate the feasibility of repairing facial nerve defects by collagen scaffolds combined with ciliary neurotrophic factor (CNTF), 10-mm-long gaps were made in the buccal branch of mini-pigs' facial nerve. Three months after surgery, electrophysiological assessment and histological examination were performed to evaluate facial nerve regeneration. Immunohistochemistry and transmission electron microscope observation showed that collagen scaffolds with collagen binding (CBD)-CNTF could promote better axon regeneration, Schwann cell migration, and remyelination at the site of implant device than using scaffolds alone. Electrophysiological assessment also showed higher recovery rate in the CNTF group. In summary, combination of collagen scaffolds and CBD-CNTF showed promising effects on facial nerve regeneration in mini-pig models. PMID:25098760

  2. Reinforcement of Mono- and Bi-layer Poly(Ethylene Glycol) Hydrogels with a Fibrous Collagen Scaffold.

    PubMed

    Kinneberg, K R C; Nelson, A; Stender, M E; Aziz, A H; Mozdzen, L C; Harley, B A C; Bryant, S J; Ferguson, V L

    2015-11-01

    Biomaterial-based tissue engineering strategies hold great promise for osteochondral tissue repair. Yet significant challenges remain in joining highly dissimilar materials to achieve a biomimetic, mechanically robust design for repairing interfaces between soft tissue and bone. This study sought to improve interfacial properties and function in a bi-layer hydrogel interpenetrated with a fibrous collagen scaffold. 'Soft' 10% (w/w) and 'stiff' 30% (w/w) PEGDM was formed into mono- or bi-layer hydrogels possessing a sharp diffusional interface. Hydrogels were evaluated as single-(hydrogel only) or multi-phase (hydrogel + fibrous scaffold penetrating throughout the stiff layer and extending >500 μm into the soft layer). Including a fibrous scaffold into both soft and stiff mono-layer hydrogels significantly increased tangent modulus and toughness and decreased lateral expansion under compressive loading. Finite element simulations predicted substantially reduced stress and strain gradients across the soft-stiff hydrogel interface in multi-phase, bilayer hydrogels. When combining two low moduli constituent materials, composites theory poorly predicts the observed, large modulus increases. These results suggest material structure associated with the fibrous scaffold penetrating within the PEG hydrogel as the major contributor to improved properties and function-the hydrogel bore compressive loads and the 3D fibrous scaffold was loaded in tension thus resisting lateral expansion. PMID:26001970

  3. Storage conditions do not have detrimental effect on allograft collagen or scaffold performance.

    PubMed

    Abreu, E L; Palmer, M P; Murray, M M

    2009-11-01

    Musculoskeletal allografts are a valuable alternative to autograft tissue in orthopaedic surgeries. However, the effects of the allografts' storage history on the collagen and subsequent allograft scaffold properties are unknown. In this study, we hypothesized that freezing and refrigeration of allografts for 1 week would alter the biologic performance and mechanical properties of the allograft collagen. Allograft collagen was characterized by SDS-PAGE migration pattern, amino acid profile and measured denaturation. Scaffolds made from allograft collagen were evaluated for fibroblast proliferation, platelet activation and scaffold retraction. Collagen gelation kinetics (elastic and inelastic moduli and the viscous-elastic transition point) were also evaluated. Fibroblast proliferation, platelet activation and scaffold retraction results showed only minor, though statistically significant, differences between the storage groups. In addition, there were no significant differences in rheological properties or collagen biochemistry. In conclusion, this study suggests that freezing or refrigeration for 1 week does not appear to have any detrimental effect on the mechanical properties and biologic performance of the collagen within allografts. PMID:19507051

  4. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  5. Hierarchical bioceramic scaffolds with 3D-plotted macropores and mussel-inspired surface nanolayers for stimulating osteogenesis

    NASA Astrophysics Data System (ADS)

    Xu, Mengchi; Zhai, Dong; Xia, Lunguo; Li, Hong; Chen, Shiyi; Fang, Bing; Chang, Jiang; Wu, Chengtie

    2016-07-01

    The hierarchical structure of biomaterials plays an important role in the process of tissue reconstruction and regeneration. 3D-plotted scaffolds have been widely used for bone tissue engineering due to their controlled macropore structure and mechanical properties. However, the lack of micro- or nano-structures on the strut surface of 3D-plotted scaffolds, especially for bioceramic scaffolds, limits their biological activity. Inspired by the adhesive versatility of mussels and the active ion-chelating capacity of polydopamine, we set out to prepare a hierarchical bioceramic scaffold with controlled macropores and mussel-inspired surface nanolayers by combining the 3D-plotting technique with the polydopamine/apatite hybrid strategy in order to synergistically accelerate the osteogenesis and angiogenesis. β-Tricalcium phosphate (TCP) scaffolds were firstly 3D-plotted and then treated in dopamine-Tris/HCl and dopamine-SBF solutions to obtain TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds, respectively. It was found that polydopamine/apatite hybrid nanolayers were formed on the surface of both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds and TCP-DOPA-SBF scaffolds induced apatite mineralization for the second time during the cell culture. As compared to TCP scaffolds, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly promoted the osteogenesis of bone marrow stromal cells (BMSCs) as well as the angiogenesis of human umbilical vein endothelial cells (HUVECs), and the TCP-DOPA-SBF group presented the highest in vitro osteogenic/angiogenic activity among the three groups. Furthermore, both TCP-DOPA-Tris and TCP-DOPA-SBF scaffolds significantly improved the formation of new bone in vivo as compared to TCP scaffolds without a nanostructured surface. Our results suggest that the utilization of a mussel-inspired Ca, P-chelated polydopamine nanolayer on 3D-plotted bioceramic scaffolds is a viable and effective strategy to construct a hierarchical structure for synergistically

  6. A potential platform for developing 3D tubular scaffolds for paediatric organ development.

    PubMed

    de Mel, Achala; Yap, Trixie; Cittadella, Giorgio; Hale, Luke Richard; Maghsoudlou, Panagiotis; de Coppi, Paolo; Birchall, Martin A; Seifalian, Alexander M

    2015-03-01

    Children suffer from damaged or loss of hollow organs i.e. trachea, oesophagus or arteries from birth defects or diseases. Generally these organs possess an outer matrix consisting of collagen, elastin, and cells such as smooth muscle cells (SMC) and a luminal layer consisting of endothelial or epithelial cells, whilst presenting a barrier to luminal content. Tissue engineering research enables the construction of such organs and this study explores this possibility with a bioabsorbable nanocomposite biomaterial, polyhedral oligomeric silsesquioxane poly(ε-caprolactone) urea urethane (POSS-PCL).Our established methods of tubular graft extrusion were modified using a porogen-incorporated POSS-PCL and a new lamination method was explored. Porogen (40, 60 or 105 µm) were introduced to POSS-PCL, which were fabricated into a bilayered, dual topography matching the exterior and luminal interior of tubular organs. POSS-PCL with different amounts of porogen were tested for their suitability as a SMC layer by measuring optimal interactions with human adipose derived stem cells. Angiogenesis potential was tested with the chorioallantoic membrane assay. Tensile strength and burst pressures of bilayared tubular grafts were determined. Scaffolds made with 40 µm porogen demonstrated optimal adipose derived stem cell integration and the scaffolds were able to accommodate angiogenesis. Mechanical properties of the grafts confirmed their potential to match the relevant physiological and biophysical parameters. This study presents a platform for the development of hollow organs for transplantation based on POSS-PCL. These bilayered-tubular structures can be tailor-made for cellular integration and match physico-mechanical properties of physiological systems of interest. More specific luminal cell integration and sources of SMC for the external layer could be further explored. PMID:25737129

  7. Comparison of the properties of collagen-chitosan scaffolds after γ-ray irradiation and carbodiimide cross-linking.

    PubMed

    Chen, Zihao; Du, Tianming; Tang, Xiangyu; Liu, Changjun; Li, Ruixin; Xu, Cheng; Tian, Feng; Du, Zhenjie; Wu, Jimin

    2016-07-01

    The property of collagen-chitosan porous scaffold varies according to cross-linking density and scaffold composition. This study was designed to compare the properties of collagen-chitosan porous scaffolds cross-linked with γ-irradiation and carbodiimide (CAR) for the first time. Eleven sets of collagen-chitosan scaffolds containing different concentrations of chitosan at a 5% increasing gradient were fabricated. Fourier transform infrared spectroscopy was performed to confirm the success of cross-linking in the scaffolds. The scaffold morphology was evaluated under scanning electron microscope (SEM). SEM revealed that chitosan was an indispensable material for the fabrication of γ-ray irradiation scaffold. The microstructure of γ-ray irradiation scaffold was less stable than those of alternative scaffolds. Based upon swelling ratio, porosity factor, and collagenase degradation, γ-ray irradiation scaffold was less stable than CAR and 25% proportion of chitosan scaffolds. Mechanical property determines the orientation in γ-irradiation and CAR scaffold. In vitro degradation test indicated that γ-irradiation and CAR cross-linking can elevate the scaffold biocompatibility. Compared with γ-ray irradiation, CAR cross-linked scaffold containing 25% chitosan can more significantly enhance the bio-stability and biocompatibility of collagen-chitosan scaffolds. CAR cross-linked scaffold may be the best choice for future tissue engineering. PMID:27122297

  8. Combination of thermal extrusion printing and ultrafast laser fabrication for the manufacturing of 3D composite scaffolds

    NASA Astrophysics Data System (ADS)

    Balčiūnas, Evaldas; Lukoševičius, Laurynas; Mackevičiūtė, Dovilė; Rekštytė, Sima; Rutkūnas, Vygandas; Paipulas, Domas; Stankevičiūtė, Karolina; Baltriukienė, Daiva; Bukelskienė, Virginija; Piskarskas, Algis P.; Malinauskas, Mangirdas

    2014-03-01

    We present a novel approach to manufacturing 3D microstructured composite scaffolds for tissue engineering applications. A thermal extrusion 3D printer - a simple, low-cost tabletop device enabling rapid materialization of CAD models in plastics - was used to produce cm-scale microporous scaffolds out of polylactic acid (PLA). The fabricated objects were subsequently immersed in a photosensitive monomer solution and direct laser writing technique (DLW) was used to refine its inner structure by fabricating a fine mesh inside the previously produced scaffold. In addition, a composite material structure out of four different materials fabricated via DLW is presented. This technique, empowered by ultrafast lasers allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. A composite scaffold made of distinct materials and periodicities is acquired after the development process used to wash out non-linked monomers. Another way to modify the 3D printed PLA surfaces was also demonstrated - ablation with femtosecond laser beam. Structure geometry on macro- to micro- scales could be finely tuned by combining these fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. To our best knowledge, this is the first experimental demonstration showing the creation of composite 3D scaffolds using convenient 3D printing combined with DLW. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro-featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of tissue engineering, as well as in microelectromechanical systems, microfluidics, microoptics and others.

  9. Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials.

    PubMed

    Ovsianikov, Aleksandr; Schlie, Sabrina; Ngezahayo, Anaclet; Haverich, Axel; Chichkov, Boris N

    2007-01-01

    We report on recent advances in the fabrication of three-dimensional (3D) scaffolds for tissue engineering and regenerative medicine constructs using a two-photon polymerization technique (2PP). 2PP is a novel CAD/CAM technology allowing the fabrication of any computer-designed 3D structure from a photosensitive polymeric material. The flexibility of this technology and the ability to precisely define 3D construct geometry allows issues associated with vascularization and patient-specific tissue fabrication to be directly addressed. The fabrication of reproducible scaffold structures by 2PP is important for systematic studies of cellular processes and better understanding of in vitro tissue formation. In this study, 2PP was applied for the generation of 3D scaffold-like structures, using the photosensitive organic-inorganic hybrid polymer ORMOCER (ORganically MOdified CERamics) and epoxy-based SU8 materials. By comparing the proliferation rates of cells grown on flat material surfaces and under control conditions, it was demonstrated that ORMOCER and SU8 are not cytotoxic. Additional tests show that the DNA strand breaking of GFSHR-17 granulosa cells was not affected by the presence of ORMOCER. Furthermore, gap junction conductance measurements revealed that ORMOCER did not alter the formation of cell-cell junctions, critical for functional tissue growth. The possibilities of seeding 3D structures with cells were analysed. These studies demonstrate the great potential of 2PP technique for the manufacturing of scaffolds with controlled topology and properties. PMID:18265416

  10. Biologically active collagen-based scaffolds: advances in processing and characterization.

    PubMed

    Yannas, I V; Tzeranis, D S; Harley, B A; So, P T C

    2010-04-28

    A small number of type I collagen-glycosaminoglycan scaffolds (collagen-GAG scaffolds; CGSs) have unusual biological activity consisting primarily in inducing partial regeneration of organs in the adult mammal. Two of these are currently in use in a variety of clinical settings. CGSs appear to induce regeneration by blocking the adult healing response, following trauma, consisting of wound contraction and scar formation. Several structural determinants of biological activity have been identified, including ligands for binding of fibroblasts to the collagen surface, the mean pore size (which affects ligand density) and the degradation rate (which affects the duration of the wound contraction-blocking activity by the scaffold). Processing variables that affect these determinants include the kinetics of swelling of collagen fibres in acetic acid, freezing of the collagen-GAG suspension and cross-linking of the freeze-dried scaffold. Recent developments in the processing of CGSs include fabrication of scaffolds that are paucidisperse in pore size, scaffolds with gradients in physicochemical properties (and therefore biological activity) and scaffolds that incorporate a mineral component. Advances in the characterization of the pore structure of CGSs have been made using confocal and nonlinear optical microscopy (NLOM). The mechanical behaviour of CGSs, as well as the resistance to degradative enzymes, have been studied. Following seeding with cells (typically fibroblasts), contractile forces in the range 26-450 nN per cell are generated by the cells, leading to buckling of scaffold struts. Ongoing studies of cell-seeded CGSs with NLOM have shown an advantage over the use of confocal microscopy due to the ability of the former method to image the CGS surfaces without staining (which alters its surface ligands), reduced cell photodamage, reduced fluorophore photobleaching and the ability to image deeper inside the scaffold. PMID:20308118

  11. Designed hybrid scaffolds consisting of polycaprolactone microstrands and electrospun collagen-nanofibers for bone tissue regeneration.

    PubMed

    Lee, Hyeongjin; Yeo, Myunggu; Ahn, SeungHyun; Kang, Dong-Oan; Jang, Chul Ho; Lee, Haengnam; Park, Gil-Moon; Kim, Geun Hyung

    2011-05-01

    Biomedical scaffolds used in bone tissue engineering should have various properties including appropriate bioactivity, mechanical strength, and morphologically optimized pore structures. Collagen has been well known as a good biomaterial for various types of tissue regeneration, but its usage has been limited due to its low mechanical property and rapid degradation. In this work, a new hybrid scaffold consisting of polycaprolactone (PCL) and collagen is proposed for bone tissue regeneration. The PCL enhances the mechanical properties of the hybrid scaffold and controls the pore structure. Layered collagen nanofibers were used to enhance the initial cell attachment and proliferation. The results showed that the hybrid scaffold yielded better mechanical properties of pure PCL scaffold as well as enhanced biological activity than the pure PCL scaffold did. The effect of pore size on bone regeneration was investigated using two hybrid scaffolds with pore sizes of 200 ± 20 and 300 ± 27 μm. After post-seeding for 7 days, the cell proliferation with pore size, 200 ± 20 μm, was greater than that with pore size, 300 ± 27 μm, due to the high surface area of the scaffold. PMID:21384546

  12. Strategies for Directing the Structure and Function of 3D Collagen Biomaterials across Length Scales

    PubMed Central

    Walters, Brandan D.; Stegemann, Jan P.

    2013-01-01

    Collagen type I is a widely used natural biomaterial that has found utility in a variety of biological and medical applications. Its well characterized structure and role as an extracellular matrix protein make it a highly relevant material for controlling cell function and mimicking tissue properties. Collagen type I is abundant in a number of tissues, and can be isolated as a purified protein. This review focuses on hydrogel biomaterials made by reconstituting collagen type I from a solubilized form, with an emphasis on in vitro studies in which collagen structure can be controlled. The hierarchical structure of collagen from the nanoscale to the macroscale is described, with an emphasis on how structure is related to function across scales. Methods of reconstituting collagen into hydrogel materials are presented, including molding of macroscopic constructs, creation of microscale modules, and electrospinning of nanoscale fibers. The modification of collagen biomaterials to achieve desired structures and functions is also addressed, with particular emphasis on mechanical control of collagen structure, creation of collagen composite materials, and crosslinking of collagenous matrices. Biomaterials scientists have made remarkable progress in rationally designing collagen-based biomaterials and in applying them to both the study of biology and for therapeutic benefit. This broad review illustrates recent examples of techniques used to control collagen structure, and to thereby direct its biological and mechanical functions. PMID:24012608

  13. Flexible Fabrication of Shape-Controlled Collagen Building Blocks for Self-Assembly of 3D Microtissues.

    PubMed

    Zhang, Xu; Meng, Zhaoxu; Ma, Jingyun; Shi, Yang; Xu, Hui; Lykkemark, Simon; Qin, Jianhua

    2015-08-12

    Creating artificial tissue-like structures that possess the functionality, specificity, and architecture of native tissues remains a big challenge. A new and straightforward strategy for generating shape-controlled collagen building blocks with a well-defined architecture is presented, which can be used for self-assembly of complex 3D microtissues. Collagen blocks with tunable geometries are controllably produced and released via a membrane-templated microdevice. The formation of functional microtissues by embedding tissue-specific cells into collagen blocks with expression of specific proteins is described. The spontaneous self-assembly of cell-laden collagen blocks into organized tissue constructs with predetermined configurations is demonstrated, which are largely driven by the synergistic effects of cell-cell and cell-matrix interactions. This new strategy would open up new avenues for the study of tissue/organ morphogenesis, and tissue engineering applications. PMID:25920010

  14. Biomimetic collagenous scaffold to tune inflammation by targeting macrophages

    PubMed Central

    Taraballi, Francesca; Corradetti, Bruna; Minardi, Silvia; Powel, Sebastian; Cabrera, Fernando; Van Eps, Jeff L.; Weiner, Bradley K; Tasciotti, Ennio

    2016-01-01

    The inflammatory response following implantation of a biomaterial is one of the major regulatory aspects of the overall regenerative process. The progress of inflammation determines whether functional tissue is restored or if nonfunctional fibrotic tissue is formed. This delicate balance is directed by the activity of different cells. Among these, macrophages and their different phenotypes, the inflammatory M1 to anti-inflammatory M2, are considered key players in the process. Recent approaches exploit macrophage’s regenerative potential in tissue engineering. Here, we propose a collagen scaffold functionalized with chondroitin sulfate (CSCL), a glycosaminoglycan known to be able to tune inflammation. We studied CSCL effects on bone-marrow-derived macrophages in physiological, and lipopolysaccharides-inflamed, conditions in vitro. Our data demonstrate that CSCL is able to modulate macrophage phenotype by inhibiting the LPS/CD44/NF-kB cascade. As a consequence, an upregulation of anti-inflammatory markers (TGF-β, Arg, MRC1, and IL-10) was found concomitantly with a decrease in the expression of pro-inflammatory markers (iNOS, TNF-α, IL-1β, IL-12β). We then implanted CSCL subcutaneously in a rat model to test whether the same molecular mechanism could be maintained in an in vivo environment. In vivo data confirmed the in vitro studies. A significant reduction in the number of infiltrating cells around and within the implants was observed at 72 h, with a significant downregulation of pro-inflammatory genes expression. The present work provides indications regarding the immunomodulatory potential of molecules used for the development of biomimetic materials and suggests their use to direct macrophage immune modulation for tissue repair. PMID:26977285

  15. Augmentation of diabetic wound healing and enhancement of collagen content using nanofibrous glucophage-loaded collagen/PLGA scaffold membranes.

    PubMed

    Lee, Cheng-Hung; Chang, Shang-Hung; Chen, Wei-Jan; Hung, Kuo-Chun; Lin, Yu-Huang; Liu, Shih-Jung; Hsieh, Ming-Jer; Pang, Jong-Hwei S; Juang, Jyuhn-Huarng

    2015-02-01

    This work developed nanofibrous drug-loaded collagen/poly-D-L-lactide-glycolide (PLGA) scaffold membranes that provided the sustained release of glucophage for the wounds associated with diabetes. PLGA, glucophage, and collagen were firstly dissolved in 1,1,1,3,3,3-hexafluoro-2-propanol and were spun into nanofibrous membranes by electrospinning. High-performance liquid chromatography assay was used to characterize the in vivo and in vitro release rates of the pharmaceuticals from the membranes. High concentrations of glucophage were released for over three weeks from the nanofibrous membranes. The nanofibrous glucophage-loaded collagen/PLGA membranes were more hydrophilic than collagen/PLGA membranes and exhibited a greater water-containing capacity. The glucophage-loaded collagen/PLGA membranes markedly promoted the healing of diabetic wounds. Moreover, the collagen content of diabetic rats using drug-eluting membranes was higher than that of the control rats, because of the down-regulation of matrix metalloproteinase 9. The experimental results herein suggest that the nanofibrous glucophage-loaded collagen/PLGA membranes had effect for increasing collagen content in treating diabetic wounds and very effective promoters of the healing of such wounds in the early stages. PMID:25463179

  16. Engineering anatomically shaped vascularized bone grafts with hASCs and 3D-printed PCL scaffolds.

    PubMed

    Temple, Joshua P; Hutton, Daphne L; Hung, Ben P; Huri, Pinar Yilgor; Cook, Colin A; Kondragunta, Renu; Jia, Xiaofeng; Grayson, Warren L

    2014-12-01

    The treatment of large craniomaxillofacial bone defects is clinically challenging due to the limited availability of transplantable autologous bone grafts and the complex geometry of the bones. The ability to regenerate new bone tissues that faithfully replicate the anatomy would revolutionize treatment options. Advances in the field of bone tissue engineering over the past few decades offer promising new treatment alternatives using biocompatible scaffold materials and autologous cells. This approach combined with recent advances in three-dimensional (3D) printing technologies may soon allow the generation of large, bioartificial bone grafts with custom, patient-specific architecture. In this study, we use a custom-built 3D printer to develop anatomically shaped polycaprolactone (PCL) scaffolds with varying internal porosities. These scaffolds are assessed for their ability to support induction of human adipose-derived stem cells (hASCs) to form vasculature and bone, two essential components of functional bone tissue. The development of functional tissues is assessed in vitro and in vivo. Finally, we demonstrate the ability to print large mandibular and maxillary bone scaffolds that replicate fine details extracted from patient's computed tomography scans. The findings of this study illustrate the capabilities and potential of 3D printed scaffolds to be used for engineering autologous, anatomically shaped, vascularized bone grafts. PMID:24510413

  17. Collagen Hydrogel Scaffold and Fibroblast Growth Factor-2 Accelerate Periodontal Healing of Class II Furcation Defects in Dog

    PubMed Central

    Momose, Takehito; Miyaji, Hirofumi; Kato, Akihito; Ogawa, Kosuke; Yoshida, Takashi; Nishida, Erika; Murakami, Syusuke; Kosen, Yuta; Sugaya, Tsutomu; Kawanami, Masamitsu

    2016-01-01

    Objective: Collagen hydrogel scaffold exhibits bio-safe properties and facilitates periodontal wound healing. However, regenerated tissue volume is insufficient. Fibroblast growth factor-2 (FGF2) up-regulates cell behaviors and subsequent wound healing. We evaluated whether periodontal wound healing is promoted by application of collagen hydrogel scaffold in combination with FGF2 in furcation defects in beagle dogs. Methods: Collagen hydrogel was fabricated from bovine type I collagen with an ascorbate-copper ion cross-linking system. Collagen hydrogel was mingled with FGF2 and injected into sponge-form collagen. Subsequently, FGF2 (50 µg)/collagen hydrogel scaffold and collagen hydrogel scaffold alone were implanted into class II furcation defects in dogs. In addition, no implantation was performed as a control. Histometric parameters were assessed at 10 days and 4 weeks after surgery. Result: FGF2 application to scaffold promoted considerable cell and tissue ingrowth containing numerous cells and blood vessel-like structure at day 10. At 4 weeks, reconstruction of alveolar bone was stimulated by implantation of scaffold loaded with FGF2. Furthermore, periodontal attachment, consisting of cementum-like tissue, periodontal ligament-like tissue and Sharpey’s fibers, was also repaired, indicating that FGF2-loaded scaffold guided self-assembly and then re-established the function of periodontal organs. Aberrant healing, such as ankylosis and root resorption, was not observed. Conclusion: FGF2-loaded collagen hydrogel scaffold possessed excellent biocompatibility and strongly promoted periodontal tissue engineering, including periodontal attachment re-organization. PMID:27583044

  18. Water-based polyurethane 3D printed scaffolds with controlled release function for customized cartilage tissue engineering.

    PubMed

    Hung, Kun-Che; Tseng, Ching-Shiow; Dai, Lien-Guo; Hsu, Shan-hui

    2016-03-01

    Conventional 3D printing may not readily incorporate bioactive ingredients for controlled release because the process often involves the use of heat, organic solvent, or crosslinkers that reduce the bioactivity of the ingredients. Water-based 3D printing materials with controlled bioactivity for customized cartilage tissue engineering is developed in this study. The printing ink contains the water dispersion of synthetic biodegradable polyurethane (PU) elastic nanoparticles, hyaluronan, and bioactive ingredients TGFβ3 or a small molecule drug Y27632 to replace TGFβ3. Compliant scaffolds are printed from the ink at low temperature. These scaffolds promote the self-aggregation of mesenchymal stem cells (MSCs) and, with timely release of the bioactive ingredients, induce the chondrogenic differentiation of MSCs and produce matrix for cartilage repair. Moreover, the growth factor-free controlled release design may prevent cartilage hypertrophy. Rabbit knee implantation supports the potential of the novel 3D printing scaffolds in cartilage regeneration. We consider that the 3D printing composite scaffolds with controlled release bioactivity may have potential in customized tissue engineering. PMID:26774563

  19. Biocompatibility assessment of novel collagen-sericin scaffolds improved with hyaluronic Acid and chondroitin sulfate for cartilage regeneration.

    PubMed

    Dinescu, Sorina; Gălăţeanu, Bianca; Albu, Mădălina; Lungu, Adriana; Radu, Eugen; Hermenean, Anca; Costache, Marieta

    2013-01-01

    Cartilage tissue engineering (CTE) applications are focused towards the use of implantable biohybrids consisting of biodegradable scaffolds combined with in vitro cultured cells. Hyaluronic acid (HA) and chondroitin sulfate (CS) were identified as the most potent prochondrogenic factors used to design new biomaterials for CTE, while human adipose-derived stem cells (ASCs) were proved to display high chondrogenic potential. In this context, our aim was not only to build novel 3D porous scaffolds based on natural compounds but also to evaluate their in vitro biological performances. Therefore, for prospective CTE, collagen-sericin (Coll-SS) scaffolds improved with HA (5% or 10%) and CS (5% or 10%) were used as temporary physical supports for ASCs and were analyzed in terms of structural, thermal, morphological, and swelling properties and cytotoxic potential. To complete biocompatibility data, ASCs viability and proliferation potential were also assessed. Our studies revealed that Coll-SS hydrogels improved with 10% HA and 5% CS displayed the best biological performances in terms of cell viability, proliferation, morphology, and distribution. Thus, further work will address a novel 3D system including both HA 10% and CS 5% glycoproteins, which will probably be exposed to prochondrogenic conditions in order to assess its potential use in CTE applications. PMID:24308001

  20. SiO2 and ZnO Dopants in 3D Printed TCP Scaffolds Enhances Osteogenesis and Angiogenesis in vivo

    PubMed Central

    Fielding, Gary; Bose, Susmita

    2013-01-01

    Calcium phosphate (CaP) scaffolds with three dimensionally (3D) interconnected pores play an important role in mechanical interlocking and biological fixation in bone implant applications. CaPs alone, however, are only osteoconductive (ability to guide bone growth). Much attention has been given to the incorporation of biologics and pharmacologics to add osteoinductive (ability to cause new bone growth) properties to CaP materials. Because biologics and pharmacologics are generally delicate compounds and also subject to increased regulatory scrutiny, there is a need to investigate alternative methods to introduce osteoinductivity to CaP materials. In this study silica (SiO2) and zinc oxide (ZnO) have been incorporated in to 3D printed β-tricalcium phosphate (TCP) scaffolds to investigate their potential to trigger osteoinduction in vivo. Silicon and zinc are trace elements that are common to bone and have also been shown to have many beneficial properties from increased bone regeneration to angiogenesis. Implants were placed in bicortical femur defects introduced to a murine model for up to 16 weeks. Addition of dopants into TCP increased the capacity for new early bone formation by modulating collagen I production and osteocalcin production. Neovascularization was found to be up to three times more than the pure TCP control group. The findings from this study indicate that the combination of SiO2 and ZnO dopants in TCP may be a viable alternative to introduce osteoinductive properties to CaPs. PMID:23871941

  1. Development of the flow behavior model for 3D scaffold fabrication in the polymer deposition process by a heating method

    NASA Astrophysics Data System (ADS)

    Kim, Jong Young; Park, Jung Kyu; Hahn, Sei Kwang; Kwon, Tai Hun; Cho, Dong-Woo

    2009-10-01

    The flow behavior model for 3D scaffold fabrication in the polymer deposition process by the heating method was developed for enhanced efficiency of the deposition process. The analysis of the polymer flow property is very important in the fabrication process of precise micro-structures such as scaffolds. In this study, a deposition model considering fluid mechanics and heat transfer phenomena was built up and introduced for the estimation of the fluid behavior of molten polymer. The effectiveness of the simulation model was verified through comparison with the experimental result in the case of PCL biomaterial. In addition, the effects of various parameters, such as pressure, temperature and nozzle size, were predicted through simulation before experimental approaches. Through the fabrication of 3D scaffold, it is concluded that this model is useful in predicting the flow behavior characteristics in the micro-structure fabrication process, which is based on the heating method.

  2. The development of a tissue-engineered tracheobronchial epithelial model using a bilayered collagen-hyaluronate scaffold.

    PubMed

    O'Leary, Cian; Cavanagh, Brenton; Unger, Ronald E; Kirkpatrick, C James; O'Dea, Shirley; O'Brien, Fergal J; Cryan, Sally-Ann

    2016-04-01

    Today, chronic respiratory disease is one of the leading causes of mortality globally. Epithelial dysfunction can play a central role in its pathophysiology. The development of physiologically-representative in vitro model systems using tissue-engineered constructs might improve our understanding of epithelial tissue and disease. This study sought to engineer a bilayered collagen-hyaluronate (CHyA-B) scaffold for the development of a physiologically-representative 3D in vitro tracheobronchial epithelial co-culture model. CHyA-B scaffolds were fabricated by integrating a thin film top-layer into a porous sub-layer with lyophilisation. The film layer firmly connected to the sub-layer with delamination occurring at stresses of 12-15 kPa. Crosslinked scaffolds had a compressive modulus of 1.9 kPa and mean pore diameters of 70 μm and 80 μm, depending on the freezing temperature. Histological analysis showed that the Calu-3 bronchial epithelial cell line attached and grew on CHyA-B with adoption of an epithelial monolayer on the film layer. Immunofluorescence and qRT-PCR studies demonstrated that the CHyA-B scaffolds facilitated Calu-3 cell differentiation, with enhanced mucin expression, increased ciliation and the formation of intercellular tight junctions. Co-culture of Calu-3 cells with Wi38 lung fibroblasts was achieved on the scaffold to create a submucosal tissue analogue of the upper respiratory tract, validating CHyA-B as a platform to support co-culture and cellular organisation reminiscent of in vivo tissue architecture. In summary, this study has demonstrated that CHyA-B is a promising tool for the development of novel 3D tracheobronchial co-culture in vitro models with the potential to unravel new pathways in drug discovery and drug delivery. PMID:26871888

  3. Proliferation and enrichment of CD133+ glioblastoma cancer stem cells on 3D chitosan-alginate scaffolds

    PubMed Central

    Kievit, Forrest M.; Florczyk, Stephen J.; Leung, Matthew C.; Wang, Kui; Wu, Jennifer D.; Silber, John R.; Ellenbogen, Richard G.; Lee, Jerry S.H.; Zhang, Miqin

    2014-01-01

    Emerging evidence implicates cancer stem cells (CSCs) as primary determinants of the clinical behavior of human cancers, representing an ideal target for next-generation anticancer therapies. However CSCs are difficult to propagate in vitro, severely limiting the study of CSC biology and drug development. Here we report that growing cells from glioblastoma (GBM) cell lines on three dimensional (3D) porous chitosan-alginate (CA) scaffolds dramatically promotes the proliferation and enrichment of cells possessing the hallmarks of CSCs. CA scaffold-grown cells were found more tumorigenic in nude mouse xenografts than cells grown from monolayers. Growing in CA scaffolds rapidly promoted expression of genes involved in the epithelial-to-mesenchymal transition that has been implicated in the genesis of CSCs. Our results indicate that CA scaffolds have utility as a simple and inexpensive means to cultivate CSCs in vitro in support of studies to understand CSC biology and develop more effective anti-cancer therapies. PMID:25109438

  4. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    NASA Astrophysics Data System (ADS)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  5. Structural and Biochemical Modification of a Collagen Scaffold to Selectively Enhance MSC Tenogenic, Chondrogenic, and Osteogenic Differentiation

    PubMed Central

    Caliari, Steven R.

    2014-01-01

    Biomaterial approaches for engineering orthopedic interfaces such as the tendon-bone junction (TBJ) are limited by a lack of understanding of how insoluble (microstructure, composition) and soluble regulators of stem cell fate work in concert to promote bioactivity and differentiation. One strategy for regenerating the interface is to design biomaterials containing spatially-graded structural properties sufficient to induce divergent mesenchymal stem cell (MSC) differentiation into multiple interface-specific phenotypes. This work explores the hypothesis that selective structural modification to a 3D collagen-glycosaminoglycan (CG) scaffold combined with biochemical supplementation can drive human bone marrow-derived MSC differentiation down tenogenic, osteogenic, and chondrogenic lineages. Tenogenic differentiation is enhanced in geometrically anisotropic scaffolds versus a standard isotropic control. Notably, blebbistatin treatment abrogates this microstructurally-driven effect. Further, enhanced osteogenic differentiation and new mineral synthesis is achieved by incorporation of a calcium phosphate mineral phase within the CG scaffold along with the use of osteogenic induction media. Finally, chondrogenic differentiation is optimally driven by combining chondrogenic induction media with a reduced density scaffold that promotes increased cellular condensation, significantly higher expression of chondrogenic genes, and increased GAG deposition. Together these data provide critical insight regarding design rules for elements of an integrated biomaterial platform for orthopedic interface regeneration. PMID:24574180

  6. A Novel 3D Fibril Force Assay Implicates Src in Tumor Cell Force Generation in Collagen Networks

    PubMed Central

    Polackwich, Robert J.; Koch, Daniel; Arevalo, Richard; Miermont, Anne M.; Jee, Kathleen J.; Lazar, John; Urbach, Jeffrey; Mueller, Susette C.; McAllister, Ryan G.

    2013-01-01

    New insight into the biomechanics of cancer cell motility in 3D extracellular matrix (ECM) environments would significantly enhance our understanding of aggressive cancers and help identify new targets for intervention. While several methods for measuring the forces involved in cell-matrix interactions have been developed, previous to this study none have been able to measure forces in a fibrillar environment. We have developed a novel assay for simultaneously measuring cell mechanotransduction and motility in 3D fibrillar environments. The assay consists of a controlled-density fibrillar collagen gel atop a controlled-stiffness polyacrylamide (PAA) surface. Forces generated by living cells and their migration in the 3D collagen gel were measured with the 3D motion of tracer beads within the PAA layer. Here, this 3D fibril force assay is used to study the role of the invasion-associated protein kinase Src in mechanotransduction and motility. Src expression and activation are linked with proliferation, invasion, and metastasis, and have been shown to be required in 2D for invadopodia membranes to direct and mediate invasion. Breast cancer cell line MDA-MD-231 was stably transfected with GFP-tagged constitutively active Src or wild-type Src. In 3D fibrillar collagen matrices we found that, relative to wild-type Src, constitutively active Src: 1) increased the strength of cell-induced forces on the ECM, 2) did not significantly change migration speed, and 3) increased both the duration and the length, but not the number, of long membrane protrusions. Taken together, these results support the hypothesis that Src controls invasion by controlling the ability of the cell to form long lasting cellular protrusions to enable penetration through tissue barriers, in addition to its role in promoting invadopodia matrix-degrading activity. PMID:23536784

  7. Effect of solid freeform fabrication-based polycaprolactone/poly(lactic-co-glycolic acid)/collagen scaffolds on cellular activities of human adipose-derived stem cells and rat primary hepatocytes.

    PubMed

    Shim, Jin-Hyung; Kim, Arthur Joon; Park, Ju Young; Yi, Namwoo; Kang, Inhye; Park, Jaesung; Rhie, Jong-Won; Cho, Dong-Woo

    2013-04-01

    Highly biocompatible polycaprolactone (PCL)/poly(lactic-co-glycolic acid) (PLGA)/collagen scaffolds in which the PCL/PLGA collagen solution was selectively dispensed into every other space between the struts were fabricated using solid freeform fabrication (SFF) technology, as we described previously. The objective of this study was to evaluate and compare the PCL/PLGA/collagen scaffolds (group 3) with PCL/PLGA-only scaffolds (group 1) and PCL/PLGA scaffolds with collagen by the dip-coating method (group 2) using human adipose-derived stem cells (hASCs) and rat primary hepatocytes. The selectively dispensed collagen formed a three-dimensional (3D) network of nanofibers in group 3, as observed by scanning electron microscopy. The compressive strength and modulus of group 3 were approximately 140 and 510 times higher, respectively, than those of a sponge-type collagen scaffold whose weak mechanical properties were regarded as a critical drawback. Proliferation and osteogenic differentiation of hASCs were promoted significantly in group 3 compared to groups 1 and 2. In addition, we found that the viability and albumin secretion ability of rat primary hepatocytes were highly retained for 10 days in group 3 but not group 1. Interestingly, hepatocyte aggregation, which enhances hepatic function through cell-cell interactions, was observed particularly in group 3. In conclusion, group 3, in which the collagen was selectively dispensed in the 3D space of the porous PCL/PLGA framework, will be a promising 3D scaffold for culturing various cell types. PMID:23430333

  8. Optimization of composition, structure and mechanical strength of bioactive 3-D glass-ceramic scaffolds for bone substitution.

    PubMed

    Baino, Francesco; Ferraris, Monica; Bretcanu, Oana; Verné, Enrica; Vitale-Brovarone, Chiara

    2013-03-01

    Fabrication of 3-D highly porous, bioactive, and mechanically competent scaffolds represents a significant challenge of bone tissue engineering. In this work, Bioglass®-derived glass-ceramic scaffolds actually fulfilling this complex set of requirements were successfully produced through the sponge replication method. Scaffold processing parameters and sintering treatment were carefully designed in order to obtain final porous bodies with pore content (porosity above 70 %vol), trabecular architecture and mechanical properties (compressive strength up to 3 MPa) analogous to those of the cancellous bone. Influence of the Bioglass® particles size on the structural and mechanical features of the sintered scaffolds was considered and discussed. Relationship between porosity and mechanical strength was investigated and modeled. Three-dimensional architecture, porosity, mechanical strength and in vitro bioactivity of the optimized Bioglass®-derived scaffolds were also compared to those of CEL2-based glass-ceramic scaffolds (CEL2 is an experimental bioactive glass originally developed by the authors at Politecnico di Torino) fabricated by the same processing technique, in an attempt at understanding the role of different bioactive glass composition on the major features of scaffolds prepared by the same method. PMID:22207602

  9. Effect of adipic dihydrazide modification on the performance of collagen/hyaluronic acid scaffold.

    PubMed

    Zhang, Ling; Xiao, Yumei; Jiang, Bo; Fan, Hongsong; Zhang, Xingdong

    2010-02-01

    Collagen and hydrazide-functionalized hyaluronic acid derivatives were hybridized by gelating and genipin crosslinking to form composite hydrogel. The study contributed to the understanding of the effects of adipic dihydrazide modification on the physicochemical and biological properties of the collagen/hyaluronic acid scaffold. The investigation included morphology observation, mechanical measurement, swelling evaluation, and collagenase degradation. The results revealed that the stability of composites was increased through adipic dihydrazide modification and genipin crosslinking. The improved biocompatibility and retention of hyaluronic acid made the composite material more favorable to chondrocytes growing, suggesting the prepared scaffold might be high potential for chondrogenesis. PMID:19810117

  10. Collagen-chitosan scaffold modified with Au and Ag nanoparticles: Synthesis and structure

    NASA Astrophysics Data System (ADS)

    Rubina, M. S.; Kamitov, E. E.; Zubavichus, Ya. V.; Peters, G. S.; Naumkin, A. V.; Suzer, S.; Vasil'kov, A. Yu.

    2016-03-01

    Nowadays, the dermal biomimetic scaffolds are widely used in regenerative medicine. Collagen-chitosan scaffold one of these materials possesses antibacterial activity, good compatibility with living tissues and has been already used as a wound-healing material. In this article, collagen-chitosan scaffolds modified with Ag and Au nanoparticles have been synthesized using novel method - the metal-vapor synthesis. The nanocomposite materials are characterized by XPS, TEM, SEM and synchrotron radiation-based X-ray techniques. According to XRD data, the mean size of the nanoparticles (NPs) is 10.5 nm and 20.2 nm in Au-Collagen-Chitosan (Au-CollCh) and Ag-Collagen-Chitosan (Ag-CollCh) scaffolds, respectively in fair agreement with the TEM data. SAXS analysis of the composites reveals an asymmetric size distribution peaked at 10 nm for Au-CollCh and 25 nm for Ag-CollCh indicative of particle's aggregation. According to SEM data, the metal-carrying scaffolds have layered structure and the nanoparticles are rather uniformly distributed on the surface material. XPS data indicate that the metallic nanoparticles are in their unoxidized/neutral states and dominantly stabilized within the chitosan-rich domains.

  11. A Collagen-based Scaffold Delivering Exogenous MicroRNA-29B to Modulate Extracellular Matrix Remodeling

    PubMed Central

    Monaghan, Michael; Browne, Shane; Schenke-Layland, Katja; Pandit, Abhay

    2014-01-01

    Directing appropriate extracellular matrix remodeling is a key aim of regenerative medicine strategies. Thus, antifibrotic interfering RNA (RNAi) therapy with exogenous microRNA (miR)-29B was proposed as a method to modulate extracellular matrix remodeling following cutaneous injury. It was hypothesized that delivery of miR-29B from a collagen scaffold will efficiently modulate the extracellular matrix remodeling response and reduce maladaptive remodeling such as aggressive deposition of collagen type I after injury. The release of RNA from the scaffold was assessed and its ability to silence collagen type I and collagen type III expression was evaluated in vitro. When primary fibroblasts were cultured with scaffolds doped with miR-29B, reduced levels of collagen type I and collagen type III mRNA expression were observed for up to 2 weeks of culture. When the scaffolds were applied to full thickness wounds in vivo, reduced wound contraction, improved collagen type III/I ratios and a significantly higher matrix metalloproteinase (MMP)-8: tissue inhibitor of metalloproteinase (TIMP)-1 ratio were detected when the scaffolds were functionalized with miR-29B. Furthermore, these effects were significantly influenced by the dose of miR-29B in the collagen scaffold (0.5 versus 5 μg). This study shows a potential of combining exogenous miRs with collagen scaffolds to improve extracellular matrix remodeling following injury. PMID:24402185

  12. Compositional and in Vitro Evaluation of Nonwoven Type I Collagen/Poly-dl-lactic Acid Scaffolds for Bone Regeneration

    PubMed Central

    Qiao, Xiangchen; Russell, Stephen J.; Yang, Xuebin; Tronci, Giuseppe; Wood, David J.

    2015-01-01

    Poly-dl-lactic acid (PDLLA) was blended with type I collagen to attempt to overcome the instantaneous gelation of electrospun collagen scaffolds in biological environments. Scaffolds based on blends of type I collagen and PDLLA were investigated for material stability in cell culture conditions (37 °C; 5% CO2) in which post-electrospinning glutaraldehyde crosslinking was also applied. The resulting wet-stable webs were cultured with bone marrow stromal cells (HBMSC) for five weeks. Scanning electron microscopy (SEM), confocal laser scanning microscopy (CLSM), Fourier transform infra-red spectroscopy (FTIR) and biochemical assays were used to characterise the scaffolds and the consequent cell-scaffold constructs. To investigate any electrospinning-induced denaturation of collagen, identical PDLLA/collagen and PDLLA/gelatine blends were electrospun and their potential to promote osteogenic differentiation investigated. PDLLA/collagen blends with w/w ratios of 40/60, 60/40 and 80/20 resulted in satisfactory wet stabilities in a humid environment, although chemical crosslinking was essential to ensure long term material cell culture. Scaffolds of PDLLA/collagen at a 60:40 weight ratio provided the greatest stability over a five-week culture period. The PDLLA/collagen scaffolds promoted greater cell proliferation and osteogenic differentiation compared to HMBSCs seeded on the corresponding PDLLA/gelatine scaffolds, suggesting that any electrospinning-induced collagen denaturation did not affect material biofunctionality within 5 weeks in vitro. PMID:26251924

  13. Controlling Stem Cell-mediated Bone Regeneration through Tailored Mechanical Properties of Collagen Scaffolds

    PubMed Central

    Sun, Hongli; Zhu, Feng; Hu, Qingang; Krebsbach, Paul H.

    2014-01-01

    Mechanical properties of the extracellular matrix (ECM) play an essential role in cell fate determination. To study the role of mechanical properties of ECM in stem cell-mediated bone regeneration, we used a 3D in vivo ossicle model that recapitulates endochondral bone formation. Three-dimensional gelatin scaffolds with distinct stiffness were developed using 1-Ethyl-3-[3-dimethylaminopropyl] carbodiimide hydrochloride (EDC) mediated zero-length crosslinking. The mechanical strength of the scaffolds was significantly increased by EDC treatment, while the microstructure of the scaffold was preserved. Cell behavior on the scaffolds with different mechanical properties was evaluated in vitro and in vivo. EDC-treated scaffolds promoted early chondrogenic differentiation, while it promoted both chondrogenic and osteogenic differentiation at later time points. Both micro-computed tomography and histologic data demonstrated that EDC-treatment significantly increased trabecular bone formation by transplanted cells transduced with AdBMP. Moreover, significantly increased chondrogenesis was observed in the EDC-treated scaffolds. Based on both in vitro and in vivo data, we conclude that the high mechanical strength of 3D scaffolds promoted stem cell mediated bone regeneration by promoting endochondral ossification. These data suggest a new method for harnessing stem cells for bone regeneration in vivo by tailoring the mechanical properties of 3D scaffolds. PMID:24211076

  14. Incorporation of TGF-beta 3 within collagen-hyaluronic acid scaffolds improves their chondrogenic potential.

    PubMed

    Matsiko, Amos; Levingstone, Tanya J; Gleeson, John P; O'Brien, Fergal J

    2015-06-01

    Incorporation of therapeutics in the form of growth factors within biomaterials can enhance their biofunctionality. Two methods of incorporating transforming growth factor-beta 3 within collagen-hyaluronic acid scaffolds are described, markedly improving mesenchymal stem cell-mediated chondrogenic differentiation and matrix production. Such scaffolds offer control over the release of therapeutics, demonstrating their potential for repair of complex chondral defects requiring additional stimuli. PMID:25800862

  15. PGA-incorporated collagen: Toward a biodegradable composite scaffold for bone-tissue engineering.

    PubMed

    Toosi, Shirin; Naderi-Meshkin, Hojjat; Kalalinia, Fatemeh; Peivandi, Mohammad Taghi; HosseinKhani, Hossein; Bahrami, Ahmad Reza; Heirani-Tabasi, Asieh; Mirahmadi, Mahdi; Behravan, Javad

    2016-08-01

    Nowadays composite scaffolds based on synthetic and natural biomaterials have got attention to increase healing of non-union bone fractures. To this end, different aspects of collagen sponge incorporated with poly(glycolic acid) (PGA) fiber were investigated in this study. Collagen solution (6.33 mg/mL) with PGA fibers (collagen/fiber ratio [w/w]: 4.22, 2.11, 1.06, 0.52) was freeze-dried, followed by dehydrothermal cross-linking to obtain collagen sponge incorporating PGA fibers. Properties of scaffold for cell viability, proliferation, and differentiation of mesenchymal stem cells (MSCs) were evaluated. Scanning electron microscopy showed that collagen sponge exhibited an interconnected pore structure with an average pore size of 190 μm, irrespective of PGA fiber incorporation. The collagen-PGA sponge was superior to the original collagen sponge in terms of the initial attachment, proliferation rate, and osteogenic differentiation of the bone marrow-MSCs (BM-MSC). The shrinkage of sponges during cell culture was significantly suppressed by fiber incorporation. Incorporation of PGA fiber is a simple and promising way to reinforce collagen sponge without impairing biocompatibility. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 2020-2028, 2016. PMID:27059133

  16. Highly biocompatible collagen-Delonix regia seed polysaccharide hybrid scaffolds for antimicrobial wound dressing.

    PubMed

    Cheirmadurai, Kalirajan; Thanikaivelan, Palanisamy; Murali, Ragothaman

    2016-02-10

    Biomaterials based entirely on biological resources are ideal for tissue engineering applications. Here we report the preparation of hybrid collagen scaffolds comprising gulmohar seed polysaccharide (GSP) and cinnamon bark extract as cross-linking agent. (1)H NMR spectrum of GSP confirms the presence of galactose and mannose in the ratio of 1:1.54, which was further corroborated using FT-IR. The hybrid scaffolds show better enzyme and thermal stability in contrast to pure collagen scaffold probably due to weak interactions from GSP and covalent interaction through cinnamaldehyde. Gas permeability and scanning electron microscopic analysis show that the porosity of the hybrid scaffolds is slightly reduced with the increase in the concentration of GSP. The infrared and circular dichroic spectral studies show that the secondary structure of the collagen did not change after the interaction with GSP and cinnamaldehyde. The hybrid scaffolds stabilized with cinnamaldehyde show good antimicrobial activity against the common multi-drug resistant wound pathogens. These results suggest that the prepared hybrid scaffolds have great potential for antimicrobial wound dressing applications. PMID:26686167

  17. Evaluation of synovium-derived mesenchymal stem cells and 3D printed nanocomposite scaffolds for tissue engineering

    NASA Astrophysics Data System (ADS)

    Pan, Jian-Feng; Li, Shuo; Guo, Chang-An; Xu, Du-Liang; Zhang, Feng; Yan, Zuo-Qin; Mo, Xiu-Mei

    2015-08-01

    Stem cells and scaffolds play a very important role in tissue engineering. Here, we isolated synovium-derived mesenchymal stem cells (SMSCs) from synovial membrane tissue and characterized stem-cell properties. Gelatin nanoparticles (NP) were prepared using a two-step desolvation method and then pre-mixed into different host matrix (silk fibroin (SF), gelatin (Gel), or SF-Gel mixture) to generate various 3D printed nanocomposite scaffolds (NP/SF, NP/SF-Gel, NP/Gel-1, and NP/Gel-2). The microstructure was examined by scanning electron microscopy. Biocompatibility assessment was performed through CCK-8 assay by coculturing with SMSCs at 1, 3, 7 and 14 days. According to the results, SMSCs are similar to other MSCs in their surface epitope expression, which are negative for CD45 and positive for CD44, CD90, and CD105. After incubation in lineage-specific medium, SMSCs could differentiate into chondrocytes, osteocytes and adipocytes. 3D printed nanocomposite scaffolds exhibited a good biocompatibility in the process of coculturing with SMSCs and had no negative effect on cell behavior. The study provides a strategy to obtain SMSCs and fabricate 3D printed nanocomposite scaffolds, the combination of which could be used for practical applications in tissue engineering.

  18. 3D-printed hierarchical scaffold for localized isoniazid/rifampin drug delivery and osteoarticular tuberculosis therapy.

    PubMed

    Zhu, Min; Li, Kun; Zhu, Yufang; Zhang, Jianhua; Ye, Xiaojian

    2015-04-01

    After surgical treatment of osteoarticular tuberculosis (TB), it is necessary to fill the surgical defect with an implant, which combines the merits of osseous regeneration and local multi-drug therapy so as to avoid drug resistance and side effects. In this study, a 3D-printed macro/meso-porous composite scaffold is fabricated. High dosages of isoniazid (INH)/rifampin (RFP) anti-TB drugs are loaded into chemically modified mesoporous bioactive ceramics in advance, which are then bound with poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (PHBHHx) through a 3D printing procedure. The composite scaffolds show greatly prolonged drug release time compared to commercial calcium phosphate scaffolds either in vitro or in vivo. In addition, the drug concentrations on the periphery tissues of defect are maintained above INH/RFP minimal inhibitory concentrations even up to 12 weeks post-surgery, while they are extremely low in blood. Examinations of certain serum enzymes suggest no harm to hepatic or renal functions. Micro-CT evaluations and histology results also indicate partly degradation of the composite scaffolds and new bone growth in the cavity. These results suggest promising applications of our hierarchical composite scaffold in bone regeneration and local anti-TB therapy after osteoarticular TB debridement surgery. PMID:25653217

  19. Pore size and LbL chitosan coating influence mesenchymal stem cell in vitro fibrosis and biomineralization in 3D porous poly(epsilon-caprolactone) scaffolds.

    PubMed

    Mehr, Nima Ghavidel; Li, Xian; Chen, Gaoping; Favis, Basil D; Hoemann, Caroline D

    2015-07-01

    Poly(epsilon-caprolactone) (PCL) is a hydrophobic bioplastic under development for bone tissue engineering applications. Limited information is available on the role of internal geometry and cell-surface attachment on osseous integration potential. We tested the hypothesis that human bone marrow mesenchymal stem cells (MSCs) deposit more mineral inside porous 3D PCL scaffolds with fully interconnected 84 or 141 µm pores, when the surfaces are coated with chitosan via Layer-by-Layer (LbL)-deposited polyelectrolytes. Freshly trypsinized MSCs were seeded on PCL 3D cylinders using a novel static cold seeding method in 2% serum to optimally populate all depths of the scaffold discs, followed by 10 days of culture in proliferation medium and 21 additional days in osteogenic medium. MSCs were observed by SEM and histology to spread faster and to proliferate more on chitosan-coated pore surfaces. Most pores, with or without chitosan, became filled by collagen networks sparsely populated with fibroblast-like cells. After 21 days of culture in osteogenic medium, sporadic matrix mineralization was detected histologically and by micro-CT in highly cellular surface layers that enveloped all scaffolds and in cell aggregates in 141 µm pores near the edges. LbL-chitosan promoted punctate mineral deposition on the surfaces of 84 µm pores (p < 0.05 vs. PCL-only) but not the 141 µm pores. This study revealed that LbL-chitosan coatings are sufficient to promote MSC attachment to PCL but only enhance mineral formation in 84 µm pores, suggesting a potential inhibitory role for MSC-derived fibroblasts in osteoblast terminal differentiation. PMID:25504184

  20. Developing multi-cellular tumor spheroid model (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening.

    PubMed

    Wang, Jian-Zheng; Zhu, Yu-Xia; Ma, Hui-Chao; Chen, Si-Nan; Chao, Ji-Ye; Ruan, Wen-Ding; Wang, Duo; Du, Feng-Guang; Meng, Yue-Zhong

    2016-05-01

    In this work, a 3D MCTS-CCA system was constructed by culturing multi-cellular tumor spheroid (MCTS) in the chitosan/collagen/alginate (CCA) fibrous scaffold for anticancer drug screening. The CCA scaffolds were fabricated by spray-spinning. The interactions between the components of the spray-spun fibers were evidenced by methods of Coomassie Blue stain, X-ray diffraction (XRD) and Fourier transform-infrared spectroscopy (FTIR). Co-culture indicated that MCF-7 cells showed a spatial growth pattern of multi-cellular tumor spheroid (MCTS) in the CCA fibrous scaffold with increased proliferation rate and drug-resistance to MMC, ADM and 5-Aza comparing with the 2D culture cells. Significant increases of total viable cells were found in 3D MCTS groups after drug administration by method of apoptotic analysis. Glucose-lactate analysis indicated that the metabolism of MCTS in CCA scaffold was closer to the tumor issue in vivo than the monolayer cells. In addition, MCTS showed the characteristic of epithelial mesenchymal transition (EMT) which is subverted by carcinoma cells to facilitate metastatic spread. These results demonstrated that MCTS in CCA scaffold possessed a more conservative phenotype of tumor than monolayer cells, and anticancer drug screening in 3D MCTS-CCA system might be superior to the 2D culture system. PMID:26952417

  1. 3D scaffold of PLLA/pearl and PLLA/nacre powder for bone regeneration.

    PubMed

    Liu, Yuansheng; Huang, Qianli; Feng, Qingling

    2013-12-01

    Naturally occurring pearl and its derivatives have recently gained interest in bone regeneration due to their bioactive characteristics and good mechanical properties. In this study, three-dimensional scaffolds composed of poly-l-lactide (PLLA)/aragonite pearl powder, PLLA/vaterite pearl powder and PLLA/nacre powder were fabricated by freeze-drying. Scanning electron microscope (SEM) images indicated that the addition of powder made no visible difference to the morphology of the composite scaffolds. These composite scaffolds were found to have nearly twice the compressive strength and compressive modulus of the pure PLLA scaffold. X-ray diffraction patterns reveal that both PLLA/aragonite and PLLA/nacre composite scaffolds have pure aragonite crystals as their inorganic component, while PLLA/vaterite has pure vaterite crystals. The attachment and morphology of rat bone marrow-derived mesenchymal stem cells (rBMSCs) on scaffolds was observed by the SEM. The proliferation and osteogenic differentiation of rBMSCs on composite scaffolds was also investigated. The results indicate that PLLA/aragonite and PLLA/nacre scaffolds better stimulate cell proliferation and alkaline phosphatase activity than the PLLA scaffold. However, the PLLA/vaterite scaffold appears to decrease rBMSCs proliferation as well as the osteogenic differentiation, possibly due to the high pH of the solution containing PLLA/vaterite. PMID:24225162

  2. Fabrication of 3D porous SF/β-TCP hybrid scaffolds for bone tissue reconstruction.

    PubMed

    Park, Hyun Jung; Min, Kyung Dan; Lee, Min Chae; Kim, Soo Hyeon; Lee, Ok Joo; Ju, Hyung Woo; Moon, Bo Mi; Lee, Jung Min; Park, Ye Ri; Kim, Dong Wook; Jeong, Ju Yeon; Park, Chan Hum

    2016-07-01

    Bio-ceramic is a biomaterial actively studied in the field of bone tissue engineering. But, only certain ceramic materials can resolve the corrosion problem and possess the biological affinity of conventional metal biomaterials. Therefore, the recent development of composites of hybrid composites and polymers has been widely studied. In this study, we aimed to select the best scaffold of silk fibroin and β-TCP hybrid for bone tissue engineering. We fabricated three groups of scaffold such as SF (silk fibroin scaffold), GS (silk fibroin/small granule size of β-TCP scaffold) and GM (silk fibroin/medium granule size of β-TCP scaffold), and we compared the characteristics of each group. During characterization of the scaffold, we used scanning electron microscopy (SEM) and a Fourier transform infrared spectroscopy (FTIR) for structural analysis. We compared the physiological properties of the scaffold regarding the swelling ratio, water uptake and porosity. To evaluate the mechanical properties, we examined the compressive strength of the scaffold. During in vitro testing, we evaluated cell attachment and cell proliferation (CCK-8). Finally, we confirmed in vivo new bone regeneration from the implanted scaffolds using histological staining and micro-CT. From these evaluations, the fabricated scaffold demonstrated high porosity with good inter-pore connectivity, showed good biocompatibility and high compressive strength and modulus. In particular, the present study indicates that the GM scaffold using β-TCP accelerates new bone regeneration of implanted scaffolds. Accordingly, our scaffold is expected to act a useful application in the field of bone tissue engineering. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1779-1787, 2016. PMID:26999521

  3. Osteogenic cell response to 3-D hydroxyapatite scaffolds developed via replication of natural marine sponges.

    PubMed

    Clarke, S A; Choi, S Y; McKechnie, Melanie; Burke, G; Dunne, N; Walker, G; Cunningham, E; Buchanan, F

    2016-02-01

    Bone tissue engineering may provide an alternative to autograft, however scaffold optimisation is required to maximize bone ingrowth. In designing scaffolds, pore architecture is important and there is evidence that cells prefer a degree of non-uniformity. The aim of this study was to compare scaffolds derived from a natural porous marine sponge (Spongia agaricina) with unique architecture to those derived from a synthetic polyurethane foam. Hydroxyapatite scaffolds of 1 cm(3) were prepared via ceramic infiltration of a marine sponge and a polyurethane (PU) foam. Human foetal osteoblasts (hFOB) were seeded at 1 × 10(5) cells/scaffold for up to 14 days. Cytotoxicity, cell number, morphology and differentiation were investigated. PU-derived scaffolds had 84-91% porosity and 99.99% pore interconnectivity. In comparison marine sponge-derived scaffolds had 56-61% porosity and 99.9% pore interconnectivity. hFOB studies showed that a greater number of cells were found on marine sponge-derived scaffolds at than on the PU scaffold but there was no significant difference in cell differentiation. X-ray diffraction and inductively coupled plasma mass spectrometry showed that Si ions were released from the marine-derived scaffold. In summary, three dimensional porous constructs have been manufactured that support cell attachment, proliferation and differentiation but significantly more cells were seen on marine-derived scaffolds. This could be due both to the chemistry and pore architecture of the scaffolds with an additional biological stimulus from presence of Si ions. Further in vivo tests in orthotopic models are required but this marine-derived scaffold shows promise for applications in bone tissue engineering. PMID:26704539

  4. Collagen/chitosan porous bone tissue engineering composite scaffold incorporated with Ginseng compound K.

    PubMed

    Muthukumar, Thangavelu; Aravinthan, Adithan; Sharmila, Judith; Kim, Nam Soo; Kim, Jong-Hoon

    2016-11-01

    In this study, suitable scaffold materials for bone tissue engineering were successfully prepared using fish scale collagen, hydroxyapatite, chitosan, and beta-tricalcium phosphate. Porous composite scaffolds were prepared by freeze drying method. The Korean traditional medicinal ginseng compound K, a therapeutic agent for the treatment of osteoporosis that reduces inflammation and enhances production of bone morphogenetic protein-2, was incorporated into the composite scaffold. The scaffold was characterized for pore size, swelling, density, degradation, mineralization, cell viability and attachment, and its morphological features were examined using scanning electron microscopy. This characterization and in vitro analysis showed that the prepared scaffold was biocompatible and supported the growth of MG-63 cells, and therefore has potential as an alternative approach for bone regeneration. PMID:27516305

  5. Fabrication and characterization of strontium incorporated 3-D bioactive glass scaffolds for bone tissue from biosilica.

    PubMed

    Özarslan, Ali Can; Yücel, Sevil

    2016-11-01

    Bioactive glass scaffolds that contain silica are high viable biomaterials as bone supporters for bone tissue engineering due to their bioactive behaviour in simulated body fluid (SBF). In the human body, these materials help inorganic bone structure formation due to a combination of the particular ratio of elements such as silicon (Si), calcium (Ca), sodium (Na) and phosphorus (P), and the doping of strontium (Sr) into the scaffold structure increases their bioactive behaviour. In this study, bioactive glass scaffolds were produced by using rice hull ash (RHA) silica and commercial silica based bioactive glasses. The structural properties of scaffolds such as pore size, porosity and also the bioactive behaviour were investigated. The results showed that undoped and Sr-doped RHA silica-based bioactive glass scaffolds have better bioactivity than that of commercial silica based bioactive glass scaffolds. Moreover, undoped and Sr-doped RHA silica-based bioactive glass scaffolds will be able to be used instead of undoped and Sr-doped commercial silica based bioactive glass scaffolds for bone regeneration applications. Scaffolds that are produced from undoped or Sr-doped RHA silica have high potential to form new bone for bone defects in tissue engineering. PMID:27524030

  6. Nano-TiO2/collagen-chitosan porous scaffold for wound repairing.

    PubMed

    Fan, Xialian; Chen, Keke; He, Xichan; Li, Na; Huang, Jinbao; Tang, Keyong; Li, Yijin; Wang, Fang

    2016-10-01

    Collagen-Chitosan (COL-CS) porous scaffolds have been widely used as a dermal equivalent to induce fibroblasts infiltration and dermal regeneration. To improve the anti-bacterial properties, nano-TiO2 hydrosol was introduced into COL-CS scaffolds. TiO2/COL-CS porous scaffolds were fabricated through a freeze-drying process, and scanning electron microscopy (SEM) was employed to study the micro-structure of the scaffolds. Fourier transform infrared spectroscopy (FT-IR) was used to study the intermolecular interactions in the scaffolds. The swelling property, porosity, degradation, antibacterial behavior, red blood cell aggregation, and cytotoxicity of the composite were investigated. The results showed that the scaffold is good in permeability and it may provide a humid environment for wound repairing. The degradation in lysozyme solution for 4 weeks showed that porous scaffolds are good in stability, which may satisfy the wound coverage protection in the repairing period. An obvious inhibitory effect on Staphylococcus aureus of the porous scaffolds was found, and the red blood cells were easy to form clusters aggregation to stop bleeding. It was suggested that the TiO2/COL-CS composite scaffolds could be a promising candidate for wound repairing dressing. PMID:27238587

  7. Type I collagen and polyvinyl alcohol blend fiber scaffold for anterior cruciate ligament reconstruction.

    PubMed

    Cai, Changbin; Chen, Cheng; Chen, Guangxing; Wang, Fuyou; Guo, Lin; Yin, Li; Feng, Dehong; Yang, Liu

    2013-06-01

    The aim of this study was to perform an evaluation of a braided fiber scaffold for anterior cruciate ligament (ACL) reconstruction. The scaffold was composed of 50% type I collagen (Col-I) and 50% polyvinyl alcohol (PVA). First, the biocompatibility and in vitro weight loss of the scaffold were tested. Then, the scaffolds were used to reconstruct the ACL in China Bama mimi pigs. At 24 weeks post-operation, the mechanical properties and histology of the regenerated ACL were analyzed. The maximum load and tensile strength were 472.43± 15.2 N and 29.71± 0.96 MPa, respectively; both were ~75% of those of native ACL and ~90% of those of fiber scaffold. This indicated that the scaffold maintained a large portion of native ACL's mechanical properties, and tissue formation on the scaffold compensated most of the tensile strength loss caused by scaffold degradation. Histology and immunohistology analysis showed the morphology and major extracellular matrix components of the regenerated ligament resembled the native ACL. Thus, the Col-I/PVA blend fiber ACL scaffold showed good potential for clinical applications. PMID:23531980

  8. Novel chitosan/collagen scaffold containing transforming growth factor-{beta}1 DNA for periodontal tissue engineering

    SciTech Connect

    Zhang Yufeng; Cheng Xiangrong . E-mail: Xiangrongcheng@hotmail.com; Wang Jiawei; Wang Yining; Shi Bin; Huang Cui; Yang Xuechao; Liu Tongjun

    2006-05-26

    The current rapid progression in tissue engineering and local gene delivery system has enhanced our applications to periodontal tissue engineering. In this study, porous chitosan/collagen scaffolds were prepared through a freeze-drying process, and loaded with plasmid and adenoviral vector encoding human transforming growth factor-{beta}1 (TGF-{beta}1). These scaffolds were evaluated in vitro by analysis of microscopic structure, porosity, and cytocompatibility. Human periodontal ligament cells (HPLCs) were seeded in this scaffold, and gene transfection could be traced by green fluorescent protein (GFP). The expression of type I and type III collagen was detected with RT-PCR, and then these scaffolds were implanted subcutaneously into athymic mice. Results indicated that the pore diameter of the gene-combined scaffolds was lower than that of pure chitosan/collagen scaffold. The scaffold containing Ad-TGF-{beta}1 exhibited the highest proliferation rate, and the expression of type I and type III collagen up-regulated in Ad-TGF-{beta}1 scaffold. After implanted in vivo, EGFP-transfected HPLCs not only proliferated but also recruited surrounding tissue to grow in the scaffold. This study demonstrated the potential of chitosan/collagen scaffold combined Ad-TGF-{beta}1 as a good substrate candidate in periodontal tissue engineering.

  9. The significance of grafting collagen on polycaprolactone composite scaffolds: processing-structure-functional property relationship.

    PubMed

    Kiran, S; Nune, K C; Misra, R D K

    2015-09-01

    The study concerns processing-structure-functional property relationship in organic-inorganic hybrid scaffolds based on grafted collagen for bone tissue engineering. Biodegradable polyester, polycaprolactone (PCL) and nanohydroxyapatite were used to fabricate three-dimensional porous scaffolds by adopting a combination of solvent casting, particulate leaching, and polymer leaching approaches. The PCL scaffold was subsequently surface modified by chemical bonding of 1,6-hexanediamine to the ester groups of PCL to introduce free NH2 groups. The introduction of NH2 groups as active sites enabled immobilization of biocompatible macromolecule, collagen, on the aminolyzed PCL via a cross-linking agent, glutaraldehyde. The osteoblasts' functions, notably cell adhesion, proliferation, and mineralization, were favorably modulated because of the chemical interaction between Arg-Gly-Asp domains in collagen molecule and integrin receptor in the cell membrane. The study underscores the significance of grafting collagen on PCL-nHA scaffold in modulating cellular activity and biological functions expanding its current use in soft tissue engineering to hard tissue regeneration. PMID:25691223

  10. Aligned 3D human aortic smooth muscle tissue via layer by layer technique inside microchannels with novel combination of collagen and oxidized alginate hydrogel.

    PubMed

    Rayatpisheh, Shahrzad; Poon, Yin Fun; Cao, Ye; Feng, Jie; Chan, Vincent; Chan-Park, Mary B

    2011-08-01

    Tissue engineering of the small diameter blood vessel medial layer has been challenging. Recreation of the circumferentially aligned multilayer smooth muscle tissue has been one of the major technical difficulties. Some research has utilized cyclic stress to align smooth muscle cells (SMCs) but due to the long time conditioning needed, it was not possible to use primary human cells because of expeditious senescence occurred . We demonstrate rapid buildup of a homogeneous relatively thick (30-40 μm) aligned smooth muscle tissue via layer by layer (LBL) technique within microchannels and a soft cell-adhesive hydrogel. Using a microchannelled scaffold with gapped microwalls, two layers of primary human SMCs separated by an interlayer hydrogel were cultured to confluence within the microchannels. The SMCs aligned along the microchannels because of the physically constraining microwalls. A novel double layered gel consisting of a mixture of pristine and oxidized alginate hydrogel coated with collagen was designed to place between each layer of cells, leading to a thicker tissue in a shorter time. The SMCs penetrated the soft thin interlayer hydrogel within 6 days of seeding of the 2nd cell layer so that the entire construct became more or less homogeneously populated by the SMCs. The unique LBL technique applied within the micropatterned scaffold using a soft cell-adhesive gel interlayer allows rapid growth and confluence of SMCs on 2D surface but at the same time aligns the cells and builds up multiple layers into a 3D tissue. This pseudo-3D buildup method avoids the typical steric resistance of hydrogel embedding. PMID:21548018

  11. Spirooxindoles as novel 3D-fragment scaffolds: Synthesis and screening against CYP121 from M. tuberculosis.

    PubMed

    Davis, Holly J; Kavanagh, Madeline E; Balan, Tudor; Abell, Chris; Coyne, Anthony G

    2016-08-01

    The search for new scaffolds to complement current HTS and fragment libraries is an active area of research. The development of novel strategies to synthesise compounds with 3D character in order to expand the diversity of a fragment library was explored. A range of substituted bicyclo[2,2,1]spirooxindoles were synthesised using a Diels-Alder [4+2] cycloaddition reaction. Both diastereoisomers were isolated from the reactions and these 3D fragment scaffolds were screened against the cytochrome P450 enzyme CYP121 from Mycobacterium tuberculosis. A number of hits were identified to bind to CYP121 and were shown to exhibit Type I binding interactions with the heme group. PMID:27287372

  12. 45S5-Bioglass®-Based 3D-Scaffolds Seeded with Human Adipose Tissue-Derived Stem Cells Induce In Vivo Vascularization in the CAM Angiogenesis Assay

    PubMed Central

    Handel, Marina; Hammer, Timo R.; Nooeaid, Patcharakamon; Boccaccini, Aldo R.

    2013-01-01

    Poor vascularization is the key limitation for long-term acceptance of large three-dimensional (3D) tissue engineering constructs in regenerative medicine. 45S5 Bioglass® was investigated given its potential for applications in bone engineering. Since native Bioglass® shows insufficient angiogenic properties, we used a collagen coating, to seed human adipose tissue-derived stem cells (hASC) confluently onto 3D 45S5 Bioglass®-based scaffolds. To investigate vascularization by semiquantitative analyses, these biofunctionalized scaffolds were then subjected to in vitro human umbilical vein endothelial cells formation assays, and were also investigated in the chorioallantoic membrane (CAM) angiogenesis model, an in vivo angiogenesis assay, which uses the CAM of the hen's egg. In their native, nonbiofunctionalized state, neither Bioglass®-based nor biologically inert fibrous polypropylene control scaffolds showed angiogenic properties. However, significant vascularization was induced by hASC-seeded scaffolds (Bioglass® and polypropylene) in the CAM angiogenesis assay. Biofunctionalized scaffolds also showed enhanced tube lengths, compared to unmodified scaffolds or constructs seeded with fibroblasts. In case of biologically inert hernia meshes, the quantification of vascular endothelial growth factor secretion as the key angiogenic stimulus strongly correlated to the tube lengths and vessel numbers in all models. This correlation proved the CAM angiogenesis assay to be a suitable semiquantitative tool to characterize angiogenic effects of larger 3D implants. In addition, our results suggest that combinations of suitable scaffold materials, such as 45S5 Bioglass®, with hASC could be a promising approach for future tissue engineering applications. PMID:23837884

  13. Urethral reconstruction with a 3D porous bacterial cellulose scaffold seeded with lingual keratinocytes in a rabbit model.

    PubMed

    Huang, Jian-Wen; Lv, Xiang-Guo; Li, Zhe; Song, Lu-Jie; Feng, Chao; Xie, Min-Kai; Li, Chao; Li, Hong-Bin; Wang, Ji-Hong; Zhu, Wei-Dong; Chen, Shi-Yan; Wang, Hua-Ping; Xu, Yue-Min

    2015-09-01

    The goal of this study was to evaluate the effects of urethral reconstruction with a three-dimensional (3D) porous bacterial cellulose (BC) scaffold seeded with lingual keratinocytes in a rabbit model. A novel 3D porous BC scaffold was prepared by gelatin sponge interfering in the BC fermentation process. Rabbit lingual keratinocytes were isolated, expanded, and seeded onto 3D porous BC. BC alone (group 1, N  =  10), 3D porous BC alone (group 2, N  =  10), and 3D porous BC seeded with lingual keratinocytes (group 3, N  =  10) were used to repair rabbit ventral urethral defects (2.0   ×   0.8 cm). Scanning electron microscopy revealed that BC consisted of a compact laminate while 3D porous BC was composed of a porous sheet buttressed by a dense outer layer. The average pore diameter and porosity of the 3D porous BC were 4.23   ±   1.14 μm and 67.00   ±   6.80%, respectively. At 3 months postoperatively, macroscopic examinations and retrograde urethrograms of urethras revealed that all urethras maintained wide calibers in group 3. Strictures were found in all rabbits in groups 1 and 2. Histologically, at 1 month postoperatively, intact epithelium occurred in group 3, and discontinued epithelium was found in groups 1 and 2. However, groups 2 and 3 exhibited similar epithelial regeneration, which was superior to that of group 1 at 3 months (p  <  0.05). Comparisons of smooth muscle content and endothelia density among the three groups revealed a significant increase at each time point (p  <  0.05). Our results demonstrated that 3D porous BC seeded with lingual keratinocytes enhanced urethral tissue regeneration. 3D porous BC could potentially be used as an optimized scaffold for urethral reconstruction. PMID:26358641

  14. Multi-scale mechanical response of freeze-dried collagen scaffolds for tissue engineering applications.

    PubMed

    Offeddu, Giovanni S; Ashworth, Jennifer C; Cameron, Ruth E; Oyen, Michelle L

    2015-02-01

    Tissue engineering has grown in the past two decades as a promising solution to unresolved clinical problems such as osteoarthritis. The mechanical response of tissue engineering scaffolds is one of the factors determining their use in applications such as cartilage and bone repair. The relationship between the structural and intrinsic mechanical properties of the scaffolds was the object of this study, with the ultimate aim of understanding the stiffness of the substrate that adhered cells experience, and its link to the bulk mechanical properties. Freeze-dried type I collagen porous scaffolds made with varying slurry concentrations and pore sizes were tested in a viscoelastic framework by macroindentation. Membranes made up of stacks of pore walls were indented using colloidal probe atomic force microscopy. It was found that the bulk scaffold mechanical response varied with collagen concentration in the slurry consistent with previous studies on these materials. Hydration of the scaffolds resulted in a more compliant response, yet lesser viscoelastic relaxation. Indentation of the membranes suggested that the material making up the pore walls remains unchanged between conditions, so that the stiffness of the scaffolds at the scale of seeded cells is unchanged; rather, it is suggested that thicker pore walls or more of these result in the increased moduli for the greater slurry concentration conditions. PMID:25460922

  15. Controlled Rate Freezing to Regulate the Structure of Collagen-GAG Scaffolds in Engineered Skin Substitutes

    PubMed Central

    Lloyd, Christopher; Besse, John; Boyce, Steven

    2014-01-01

    Controlled rate freezing (CRF) of biopolymer scaffolds may increase reproducibility of microstructure compared to analog processes. Freezing of collagen-glycosaminoglycan (CG) scaffolds by CRF with liquid nitrogen at chamber cooling rates of −80°C, −40°C, −20°C, or −10°C/min, was compared to submersion in 95% ethanol at −55°C. Cooling rates of −80°C/min or −40°C/min generated scaffolds with pore areas and pore fractions that were comparable to scaffolds frozen in ethanol. Test and control scaffolds were populated with human dermal fibroblasts and keratinocytes to generate engineered skin substitutes (ESS), and evaluated for surface hydration and mitochondrial metabolism. ESS with scaffolds frozen by CRF at −80°C/min or −40°C/min were comparable to, or better than ESS with control scaffolds (p<0.05). These results demonstrate that fabrication of CG scaffolds by CRF offers advantages of digital programming, as well as greater reproducibility, safety and simplicity than submersion in chilled ethanol without compromise of biological properties required for biomedical applications. PMID:25132427

  16. Processing of polycaprolactone and polycaprolactone-based copolymers into 3D scaffolds, and their cellular responses.

    PubMed

    Hoque, Md Enamul; San, Wong Yoke; Wei, Feng; Li, Suming; Huang, Ming-Hsi; Vert, Michel; Hutmacher, Dietmar W

    2009-10-01

    Synthetic polymers have attracted much attention in tissue engineering due to their ability to modulate biomechanical properties. This study investigated the feasibility of processing poly(epsilon-caprolactone) (PCL) homopolymer, PCL-poly(ethylene glycol) (PEG) diblock, and PCL-PEG-PCL triblock copolymers into three-dimensional porous scaffolds. Properties of the various polymers were investigated by dynamic thermal analysis. The scaffolds were manufactured using the desktop robot-based rapid prototyping technique. Gross morphology and internal three-dimensional structure of scaffolds were identified by scanning electron microscopy and micro-computed tomography, which showed excellent fusion at the filament junctions, high uniformity, and complete interconnectivity of pore networks. The influences of process parameters on scaffolds' morphological and mechanical characteristics were studied. Data confirmed that the process parameters directly influenced the pore size, porosity, and, consequently, the mechanical properties of the scaffolds. The in vitro cell culture study was performed to investigate the influence of polymer nature and scaffold architecture on the adhesion of the cells onto the scaffolds using rabbit smooth muscle cells. Light, scanning electron, and confocal laser microscopy showed cell adhesion, proliferation, and extracellular matrix formation on the surface as well as inside the structure of both scaffold groups. The completely interconnected and highly regular honeycomb-like pore morphology supported bridging of the pores via cell-to-cell contact as well as production of extracellular matrix at later time points. The results indicated that the incorporation of hydrophilic PEG into hydrophobic PCL enhanced the overall hydrophilicity and cell culture performance of PCL-PEG copolymer. However, the scaffold architecture did not significantly influence the cell culture performance in this study. PMID:19331580

  17. 3D-printed dimethyloxallyl glycine delivery scaffolds to improve angiogenesis and osteogenesis.

    PubMed

    Min, Zhu; Shichang, Zhao; Chen, Xin; Yufang, Zhu; Changqing, Zhang

    2015-08-01

    Angiogenesis-osteogenesis coupling processes are vital in bone tissue engineering. Normal biomaterials implanted in bone defects have issues in the sufficient formation of blood vessels, especially in the central part. Single delivery of vascular endothelial growth factors (VEGF) to foci in previous studies did not show satisfactory results due to low loading doses, a short protein half-life and low efficiency. Development of a hypoxia-mimicking microenvironment for cells by local prolyl-4-hydroxylase inhibitor release, which can stabilize hypoxia-inducible factor 1α (HIF-1α) expression, is an alternative method. The aim of this study was to design a dimethyloxallyl glycine (DMOG) delivering scaffold composed of mesoporous bioactive glasses and poly(3-hydroxybutyrate-co-3-hydroxyhexanoate) polymers (MPHS scaffolds), so as to investigate whether the sustained release of DMOG promotes local angiogenesis and bone healing. The morphology and microstructure of composite scaffolds were characterized. The DMOG release patterns from scaffolds loaded with different DMOG dosages were evaluated, and the effects of DMOG delivery on human bone marrow stromal cell (hBMSC) adhesion, viability, proliferation, osteogenic differentiation and angiogenic-relative gene expressions with scaffolds were also investigated. In vivo studies were carried out to observe vascular formations and new bone ingrowth with DMOG-loaded scaffolds. The results showed that DMOG could be released in a sustained manner over 4 weeks from MPHS scaffolds and obviously enhance the angiogenesis and osteogenesis in the defects. Microfil perfusion showed a significantly increased formation of vessels in the defects with DMOG delivery. Furthermore, micro-CT imaging and fluorescence labeling indicated larger areas of bone formation for DMOG-loaded scaffolds. It is concluded that MPHS-DMOG scaffolds are promising for enhancing bone healing of osseous defects. PMID:26222039

  18. Decellularized kidney in the presence of chondroitin sulfate as a natural 3D scaffold for stem cells

    PubMed Central

    Rafighdoust, Alireza; Shahri, Nasser Mahdavi; Baharara, Javad

    2015-01-01

    Objective(s): Use of biological scaffolds and automating the cells directing process with materials such as growth factors and glycosaminoglycans (GAGs) in a certain path may have beneficial effects in tissue engineering and regenerative medicine in future. In this research, chondroitin sulfate sodium was used for impregnation of the scaffolds. It is a critical component in extracellular matrix and plays an important role in signaling pathway; however, little is known about its role within mammalian development and cell linage specification. Materials and Methods: Due to its porous and appropriate structure and for putting cells in 3D space, the kidney of BALB/c mouse was selected and decellulalized using physical and chemical methods. After decellularization, the scaffold was impregnated in chondroitin sulfate solution (CS) for 24 hr. Then, 60×105 human adipose-derived mesenchymal stem cells were seeded on the scaffold to assess their behavior on day 5, 10, 15, 20, and 25. Results: After 48 hr, DAPI staining approved completed decellularized kidney by 1% SDS (sodium dodecyl sulfate). Migration and establishment of a number of cells to the remaining area of the glomerulus was observed. In addition, cell accumulation on the scaffold surface as well as cells migration to the depth of kidney formed an epithelium-like structure. Up to the day 15, microscopic study of different days of seeding showed the gradual adhesion of large number of cells to the scaffold. Conclusion: Glycosaminoglycan could be a right option for impregnation. It is used for smartification and strengthening of natural scaffolds and induction of some behaviors in stem cells. PMID:26557968

  19. Low doses of ultraviolet radiation stimulate cell activity in collagen-based scaffolds.

    PubMed

    Rajan, Navneeta; Lagueux, Jean; Couet, Frédéric; Pennock, William; Mantovani, Diego; Sionkowska, Alina

    2008-01-01

    Cardiovascular diseases are increasingly becoming the main cause of death all over the world, leading to an increase in the economical and social burden. Vascular tissue engineering (VTE) is paving its routes toward challenging applications, focused mainly on substitutions of small-diameter blood vessels (<6 mm). Native collagen, a natural biological material which possesses extraordinary properties in terms of biocompatibility, has been extensively investigated as a scaffold for VTE. However, collagen is mainly extracted from collagen-rich native natural tissues by different harsh chemical and physical treatments, resulting in a solution susceptible to be processed for the fabrication of supports. These treatments imply the destruction of the native organization of the collagen microstructure, thus resulting in a collagen-based support less resistant in terms of mechanical properties than the native one. Therefore, different approaches have been investigated to increase these mechanical properties. Although UV irradiation present a strong potential for efficient crosslinking collagen macromolecules, the undesirable effects of UV on cell activity still remain the main challenge to be overpassed. The aim of this study was to investigate the potential of UV radiation and glycation for the crosslinking of collagen gels, with particular concern to the cells and capacity of the cells to remodel the collagen structure. PMID:19194897

  20. Anterior cruciate ligament reconstruction in a rabbit model using silk-collagen scaffold and comparison with autograft.

    PubMed

    Bi, Fanggang; Shi, Zhongli; Liu, An; Guo, Peng; Yan, Shigui

    2015-01-01

    The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL) reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL in 20 rabbits in the scaffold group, and autologous semitendinosus tendons were used to reconstruct the ACL in the autograft control group. At 4 and 16 weeks after surgery, grafts were retrieved and analyzed for neoligament regeneration and tendon-bone healing. To evaluate neoligament regeneration, H&E and immunohistochemical staining was performed, and to assess tendon-bone healing, micro-CT, biomechanical test, H&E and Russell-Movat pentachrome staining were performed. Cell infiltration increased over time in the scaffold group, and abundant fibroblast-like cells were found in the core of the scaffold graft at 16 weeks postoperatively. Tenascin-C was strongly positive in newly regenerated tissue at 4 and 16 weeks postoperatively in the scaffold group, similar to observations in the autograft group. Compared with the autograft group, tendon-bone healing was better in the scaffold group with trabecular bone growth into the scaffold. The results indicate that the silk-collagen scaffold has considerable potential for clinical application. PMID:25938408

  1. Anterior Cruciate Ligament Reconstruction in a Rabbit Model Using Silk-Collagen Scaffold and Comparison with Autograft

    PubMed Central

    Bi, Fanggang; Shi, Zhongli; Liu, An; Guo, Peng; Yan, Shigui

    2015-01-01

    The objective of the present study was to perform an in vivo assessment of a novel silk-collagen scaffold for anterior cruciate ligament (ACL) reconstruction. First, a silk-collagen scaffold was fabricated by combining sericin-extracted knitted silk fibroin mesh and type I collagen to mimic the components of the ligament. Scaffolds were electron-beam sterilized and rolled up to replace the ACL in 20 rabbits in the scaffold group, and autologous semitendinosus tendons were used to reconstruct the ACL in the autograft control group. At 4 and 16 weeks after surgery, grafts were retrieved and analyzed for neoligament regeneration and tendon-bone healing. To evaluate neoligament regeneration, H&E and immunohistochemical staining was performed, and to assess tendon-bone healing, micro-CT, biomechanical test, H&E and Russell-Movat pentachrome staining were performed. Cell infiltration increased over time in the scaffold group, and abundant fibroblast-like cells were found in the core of the scaffold graft at 16 weeks postoperatively. Tenascin-C was strongly positive in newly regenerated tissue at 4 and 16 weeks postoperatively in the scaffold group, similar to observations in the autograft group. Compared with the autograft group, tendon-bone healing was better in the scaffold group with trabecular bone growth into the scaffold. The results indicate that the silk-collagen scaffold has considerable potential for clinical application. PMID:25938408

  2. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture.

    PubMed

    Liu, Jun; Cheng, Fang; Grénman, Henrik; Spoljaric, Steven; Seppälä, Jukka; E Eriksson, John; Willför, Stefan; Xu, Chunlin

    2016-09-01

    Swollen three-dimensional nanocellulose films and their resultant aerogels were prepared as scaffolds towards tissue engineering application. The nanocellulose hydrogels with various swelling degree (up to 500 times) and the resultant aerogels with desired porosity (porosity up to 99.7% and specific surface area up to 308m(2)/g) were prepared by tuning the nanocellulose charge density, the swelling media conditions, and the material processing approach. Representative cell-based assays were applied to assess the material biocompatibility and efficacy of the human extracellular matrix (ECM)-mimicking nanocellulose scaffolds. The effects of charge density and porosity of the scaffolds on the biological tests were investigated for the first time. The results reveal that the nanocellulose scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells. These results suggest the usefulness of the nanocellulose-based matrices in supporting crucial cellular processes during cell growth and proliferation. PMID:27185139

  3. Mathematical Modeling of Uniaxial Mechanical Properties of Collagen Gel Scaffolds for Vascular Tissue Engineering

    PubMed Central

    Irastorza, Ramiro M.; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model. PMID:25834840

  4. Mathematical modeling of uniaxial mechanical properties of collagen gel scaffolds for vascular tissue engineering.

    PubMed

    Irastorza, Ramiro M; Drouin, Bernard; Blangino, Eugenia; Mantovani, Diego

    2015-01-01

    Small diameter tissue-engineered arteries improve their mechanical and functional properties when they are mechanically stimulated. Applying a suitable stress and/or strain with or without a cycle to the scaffolds and cells during the culturing process resides in our ability to generate a suitable mechanical model. Collagen gel is one of the most used scaffolds in vascular tissue engineering, mainly because it is the principal constituent of the extracellular matrix for vascular cells in human. The mechanical modeling of such a material is not a trivial task, mainly for its viscoelastic nature. Computational and experimental methods for developing a suitable model for collagen gels are of primary importance for the field. In this research, we focused on mechanical properties of collagen gels under unconfined compression. First, mechanical viscoelastic models are discussed and framed in the control system theory. Second, models are fitted using system identification. Several models are evaluated and two nonlinear models are proposed: Mooney-Rivlin inspired and Hammerstein models. The results suggest that Mooney-Rivlin and Hammerstein models succeed in describing the mechanical behavior of collagen gels for cyclic tests on scaffolds (with best fitting parameters 58.3% and 75.8%, resp.). When Akaike criterion is used, the best is the Mooney-Rivlin inspired model. PMID:25834840

  5. Bio-inspired in situ crosslinking and mineralization of electrospun collagen scaffolds for bone tissue engineering.

    PubMed

    Dhand, Chetna; Ong, Seow Theng; Dwivedi, Neeraj; Diaz, Silvia Marrero; Venugopal, Jayarama Reddy; Navaneethan, Balchandar; Fazil, Mobashar H U T; Liu, Shouping; Seitz, Vera; Wintermantel, Erich; Beuerman, Roger W; Ramakrishna, Seeram; Verma, Navin K; Lakshminarayanan, Rajamani

    2016-10-01

    Bone disorders are the most common cause of severe long term pain and physical disability, and affect millions of people around the world. In the present study, we report bio-inspired preparation of bone-like composite structures by electrospinning of collagen containing catecholamines and Ca(2+). The presence of divalent cation induces simultaneous partial oxidative polymerization of catecholamines and crosslinking of collagen nanofibers, thus producing mats that are mechanically robust and confer photoluminescence properties. Subsequent mineralization of the mats by ammonium carbonate leads to complete oxidative polymerization of catecholamines and precipitation of amorphous CaCO3. The collagen composite scaffolds display outstanding mechanical properties with Young's modulus approaching the limits of cancellous bone. Biological studies demonstrate that human fetal osteoblasts seeded on to the composite scaffolds display enhanced cell adhesion, penetration, proliferation, differentiation and osteogenic expression of osteocalcin, osteopontin and bone matrix protein when compared to pristine collagen or tissue culture plates. Among the two catecholamines, mats containing norepinephrine displayed superior mechanical, photoluminescence and biological properties than mats loaded with dopamine. These smart multifunctional scaffolds could potentially be utilized to repair and regenerate bone defects and injuries. PMID:27475728

  6. Colonization of collagen scaffolds by adipocytes derived from mesenchymal stem cells of the common marmoset monkey

    SciTech Connect

    Bernemann, Inga; Mueller, Thomas; Blasczyk, Rainer; Glasmacher, Birgit; Hofmann, Nicola

    2011-07-29

    Highlights: {yields} Marmoset bone marrow-derived MSCs differentiate in suspension into adipogenic, osteogenic and chondrogenic lineages. {yields} Marmoset MSCs integrate in collagen type I scaffolds and differentiate excellently into adipogenic cells. {yields} Common marmoset monkey is a suitable model for soft tissue engineering in human regenerative medicine. -- Abstract: In regenerative medicine, human cell replacement therapy offers great potential, especially by cell types differentiated from immunologically and ethically unproblematic mesenchymal stem cells (MSCs). In terms of an appropriate carrier material, collagen scaffolds with homogeneous pore size of 65 {mu}m were optimal for cell seeding and cultivating. However, before clinical application and transplantation of MSC-derived cells in scaffolds, the safety and efficiency, but also possible interference in differentiation due to the material must be preclinically tested. The common marmoset monkey (Callithrix jacchus) is a preferable non-human primate animal model for this aim due to its genetic and physiological similarities to the human. Marmoset bone marrow-derived MSCs were successfully isolated, cultured and differentiated in suspension into adipogenic, osteogenic and chondrogenic lineages by defined factors. The differentiation capability could be determined by FACS. Specific marker genes for all three cell types could be detected by RT-PCR. Furthermore, MSCs seeded on collagen I scaffolds differentiated in adipogenic lineage showed after 28 days of differentiation high cell viability and homogenous distribution on the material which was validated by calcein AM and EthD staining. As proof of adipogenic cells, the intracellular lipid vesicles in the cells were stained with Oil Red O. The generation of fat vacuoles was visibly extensive distinguishable and furthermore determined on the molecular level by expression of specific marker genes. The results of the study proved both the differential

  7. Strontium eluting graphene hybrid nanoparticles augment osteogenesis in a 3D tissue scaffold

    NASA Astrophysics Data System (ADS)

    Kumar, Sachin; Chatterjee, Kaushik

    2015-01-01

    The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium particles. Thermal gravimetric analysis further confirmed the composition of the hybrid particles as 22 wt% of strontium. Macroporous tissue scaffolds were prepared by incorporating RGO_Sr particles in poly(ε-caprolactone) (PCL). The PCL/RGO_Sr scaffolds were found to elute strontium ions in aqueous medium. Osteoblast proliferation and differentiation was significantly higher in the PCL scaffolds containing the RGO_Sr particles in contrast to neat PCL and PCL/RGO scaffolds. The increased biological activity can be attributed to the release of strontium ions from the hybrid nanoparticles. This study demonstrates that composites prepared using hybrid nanoparticles that elute strontium ions can be used to prepare multifunctional scaffolds with good mechanical and osteoinductive properties. These findings have important implications for designing the next generation of biomaterials for use in tissue regeneration.The objective of this work was to prepare hybrid nanoparticles of graphene sheets decorated with strontium metallic nanoparticles and demonstrate their advantages in bone tissue engineering. Strontium-decorated reduced graphene oxide (RGO_Sr) hybrid nanoparticles were synthesized by the facile reduction of graphene oxide and strontium nitrate. X-ray diffraction, transmission electron microscopy, and atomic force microscopy revealed that the hybrid particles were composed of RGO sheets decorated with 200-300 nm metallic strontium

  8. Effects of epicatechin, a crosslinking agent, on human dental pulp cells cultured in collagen scaffolds

    PubMed Central

    Lim, Eun-su; Lim, Myung-Jin; Min, Kyung-San; Kwon, Young-Sun; Hwang, Yun-Chan; Yu, Mi-Kyung; Hong, Chan-Ui; Lee, Kwang-Won

    2016-01-01

    ABSTRACT Objective The purpose of this study was to investigate the biological effects of epicatechin (ECN), a crosslinking agent, on human dental pulp cells (hDPCs) cultured in collagen scaffolds. Material and Method To evaluate the effects of ECN on the proliferation of hDPCs, cell counting was performed using optical and fluorescent microscopy. Measurements of alkaline phosphatase (ALP) activity, alizarin red staining, and real-time polymerase chain reactions were performed to assess odontogenic differentiation. The compressive strength and setting time of collagen scaffolds containing ECN were measured. Differential scanning calorimetry was performed to analyze the thermal behavior of collagen in the presence of ECN. Results Epicatechin increased ALP activity, mineralized nodule formation, and the mRNA expression of dentin sialophosphoprotein (DSPP), a specific odontogenic-related marker. Furthermore, ECN upregulated the expression of DSPP in hDPCs cultured in collagen scaffolds. Epicatechin activated the extracellular signal-regulated kinase (ERK) and the treatment with an ERK inhibitor (U0126) blocked the expression of DSPP. The compressive strength was increased and the setting time was shortened in a dose-dependent manner. The number of cells cultured in the ECN-treated collagen scaffolds was significantly increased compared to the cells in the untreated control group. Conclusions Our results revealed that ECN promoted the proliferation and differentiation of hDPCs. Furthermore, the differentiation was regulated by the ERK signaling pathway. Changes in mechanical properties are related to cell fate, including proliferation and differentiation. Therefore, our study suggests the ECN treatment might be desirable for dentin-pulp complex regeneration. PMID:27008260

  9. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model

    PubMed Central

    Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D.; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-01-01

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models. PMID:26885896

  10. Control of Retinal Ganglion Cell Positioning and Neurite Growth: Combining 3D Printing with Radial Electrospun Scaffolds.

    PubMed

    Kador, Karl E; Grogan, Shawn P; Dorthé, Erik W; Venugopalan, Praseeda; Malek, Monisha F; Goldberg, Jeffrey L; D'lima, Darryl D

    2016-02-01

    Retinal ganglion cells (RGCs) are responsible for the transfer of signals from the retina to the brain. As part of the central nervous system, RGCs are unable to regenerate following injury, and implanted cells have limited capacity to orient and integrate in vivo. During development, secreted guidance molecules along with signals from extracellular matrix and the vasculature guide cell positioning, for example, around the fovea, and axon outgrowth; however, these changes are temporally regulated and are not the same in the adult. Here, we combine electrospun cell transplantation scaffolds capable of RGC neurite guidance with thermal inkjet 3D cell printing techniques capable of precise positioning of RGCs on the scaffold surface. Optimal printing parameters are developed for viability, electrophysiological function and, neurite pathfinding. Different media, commonly used to promote RGC survival and growth, were tested under varying conditions. When printed in growth media containing both brain-derived neurotrophic factor (BDNF) and ciliary neurotrophic factor (CNTF), RGCs maintained survival and normal electrophysiological function, and displayed radial axon outgrowth when printed onto electrospun scaffolds. These results demonstrate that 3D printing technology may be combined with complex electrospun surfaces in the design of future retinal models or therapies. PMID:26729061

  11. The Use of Silk as a Scaffold for Mature, Sustainable Unilocular Adipose 3D Tissue Engineered Systems.

    PubMed

    Abbott, Rosalyn D; Wang, Rebecca Y; Reagan, Michaela R; Chen, Ying; Borowsky, Francis E; Zieba, Adam; Marra, Kacey G; Rubin, J Peter; Ghobrial, Irene M; Kaplan, David L

    2016-07-01

    There is a critical need for monitoring physiologically relevant, sustainable, human adipose tissues in vitro to gain new insights into metabolic diseases. To support long-term culture, a 3D silk scaffold assisted culture system is developed that maintains mature unilocular adipocytes ex vivo in coculture with preadipocytes, endothelial cells, and smooth muscle cells obtained from small volumes of liquefied adipose samples. Without the silk scaffold, adipose tissue explants cannot be sustained in long-term culture (3 months) due to their fragility. Adjustments to media components are used to tune lipid metabolism and proliferation, in addition to responsiveness to an inflammatory stimulus. Interestingly, patient specific responses to TNFα stimulation are observed, providing a proof-of-concept translational technique for patient specific disease modeling in the future. In summary, this novel 3D scaffold assisted approach is required for establishing physiologically relevant, sustainable, human adipose tissue systems from small volumes of lipoaspirate, making this methodology of great value to studies of metabolism, adipokine-driven diseases, and other diseases where the roles of adipocytes are only now becoming uncovered. PMID:27197588

  12. EDC/NHS cross-linked collagen foams as scaffolds for artificial corneal stroma.

    PubMed

    Vrana, N E; Builles, N; Kocak, H; Gulay, P; Justin, V; Malbouyres, M; Ruggiero, F; Damour, O; Hasirci, V

    2007-01-01

    In this study, a highly porous collagen-based biodegradable scaffold was developed as an alternative to synthetic, non-degradable corneal implants. The developed method involved lyophilization and subsequent stabilization through N-ethyl-N'-[3-dimethylaminopropyl] carbodiimide/N-hydroxy succinimide (EDC/NHS) cross-linking to yield longer lasting, porous scaffolds with a thickness similar to that of native cornea (500 microm). For collagen-based scaffolds, cross-linking is essential; however, it has direct effects on physical characteristics crucial for optimum cell behavior. Hence, the effect of cross-linking was studied by examining the influence of cross-linking on pore size distribution, bulk porosity and average pore size. After seeding the foam with human corneal keratocytes, cell proliferation, cell penetration into the scaffold and ECM production within the scaffold were studied. After a month of culture microscopical and immunohistochemical examinations showed that the foam structure did not undergo any significant loss of integrity, and the human corneal keratocytes populated the scaffold with cells migrating both longitudinally and laterally, and secreted some of the main constituents of the corneal ECM, namely collagen types I, V and VI. The foams had a layer of lower porosity (skin layer) both at the top and the bottom. Foams had an optimal porosity (93.6%), average pore size (67.7 microm), and chemistry for cell attachment and proliferation. They also had a sufficiently rapid degradation rate (73.6+/-1.1% in 4 weeks) and could be produced at a thickness close to that of the natural corneal stroma. Cells were seeded at the top surface of the foams and their numbers there was higher than the rest, basically due to the presence of the skin layer. This is considered to be an advantage when epithelial cells need to be seeded for the construction of hemi or full thickness cornea. PMID:17988518

  13. Comparative evaluation of a biomimic collagen/hydroxyapatite/β-tricaleium phosphate scaffold in alveolar ridge preservation with Bio-Oss Collagen

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Li, Qing; Zhang, Gui-feng; Zhou, Gang; Yu, Xin; Zhang, Jing; Wang, Xiu-mei; Tang, Zhi-hui

    2016-04-01

    Bone scaffolds are critical in current implant and periodontal regeneration approaches. In this study, we prepared a novel composite type-I collagen and hydroxyapatite (HA)/β-tricaleium phosphate (TCP) scaffold (CHTS) by incorporating type-I collagen and bovine calcined bone granules, prepared as a mixture of 50% HA and 50% TCP, by freeze drying. We then characterized the CHTS and determined its cytotoxic effects. Additionally, ridge preservation experiments were carried out to evaluate the clinical effects of the CHTS. The results demonstrated that the composite scaffolds had good surface morphology and no cytotoxicity. Additionally, an in vivo experiment in an animal model showed that the CHTS performed equally as well as Bio-Oss Collagen, a widely used bone graft in ridge preservation. These findings revealed that the CHTS, which contained natural constituents of bone, could be used as a scaffold for bone regeneration and clinical use.

  14. Comparative evaluation of a biomimic collagen/hydroxyapatite/β-tricaleium phosphate scaffold in alveolar ridge preservation with Bio-Oss Collagen

    NASA Astrophysics Data System (ADS)

    Wang, Tong; Li, Qing; Zhang, Gui-feng; Zhou, Gang; Yu, Xin; Zhang, Jing; Wang, Xiu-mei; Tang, Zhi-hui

    2016-06-01

    Bone scaffolds are critical in current implant and periodontal regeneration approaches. In this study, we prepared a novel composite type-I collagen and hydroxyapatite (HA)/β-tricaleium phosphate (TCP) scaffold (CHTS) by incorporating type-I collagen and bovine calcined bone granules, prepared as a mixture of 50% HA and 50% TCP, by freeze drying. We then characterized the CHTS and determined its cytotoxic effects. Additionally, ridge preservation experiments were carried out to evaluate the clinical effects of the CHTS. The results demonstrated that the composite scaffolds had good surface morphology and no cytotoxicity. Additionally, an in vivo experiment in an animal model showed that the CHTS performed equally as well as Bio-Oss Collagen, a widely used bone graft in ridge preservation. These findings revealed that the CHTS, which contained natural constituents of bone, could be used as a scaffold for bone regeneration and clinical use.

  15. Investigating the neuroglial differentiation effect of neuroblastoma conditioned medium in human endometrial stem cells cultured on 3D nanofibrous scaffold.

    PubMed

    Ebrahimi-Barough, Somayeh; Hoveizi, Elham; Norouzi Javidan, Abbas; Ai, Jafar

    2015-08-01

    Neural tissue engineering is an important area of research in the field of tissue-engineering especially for neurodegenerative disease such as spinal cord injury. The differentiation capacity of human endometrial stem cells (hEnSCs) into neuronal cells has yet to be elucidated. Here, the major aim of the present study was to investigate the differentiation ability of hEnSCs cultured on polylactic acid/chitosan (PLA/CS) nanofibrous scaffold into neuroglial cells in response to conditioned medium of BE(2)-C human neuroblastoma cells and growth factors. Here we investigated the use PLA/CS scaffold as a three dimensional (3D) system that increased neuro-glial cells differentiation. Human EnSCs after three passages were differentiated in neuro-glial like cells under neuroblastoma conditioned medium with FGF2/PDGF-AA on PLA/CS scaffold. By day 18, differentiated cells were analyzed for expression of neuroglial markers by qRT-PCR and immunofluorescence. The results revealed that hEnSCs attach, grow and differentiation on the nanofibrous PLA/CS scaffold. Additionally, our study showed the expression of neural and glial lineage markers such as Nestin, NF-L, MAP2, PDGFRa, CNP, Olig2, MBP, and GFAP in the level of mRNA and MAP2, Tuj-1, and NF-L in the protein level after 18 days. Our results demonstrate that hEnSCs cultured on PLA/CS nanofibrous scaffold have the potential to differentiate in neuronal and glial cells in presence of neuroblastoma conditioned medium on PLA/CS scaffold. The result of this study may have impact in tissue engineering and cells-base therapy of neurodegenerative diseases and have a great potential for wide application. PMID:25611196

  16. Preparation of collagen/hydroxyapatite/alendronate hybrid hydrogels as potential scaffolds for bone regeneration.

    PubMed

    Ma, Xin; He, Zhiwei; Han, Fengxuan; Zhong, Zhiyuan; Chen, Liang; Li, Bin

    2016-07-01

    Development of biomimetic scaffolds represents a promising direction in bone tissue engineering. In this study, we designed a two-step process to prepare a type of biomimetic hybrid hydrogels that were composed of collagen, hydroxyapatite (HAP) and alendronate (ALN), an anti-osteoporosis drug. First, water-soluble ALN-conjugated HAP (HAP-ALN) containing 4.0wt.% of ALN was synthesized by treating HAP particles with ALN. Hydrogels were then formed from HAP-ALN conjugate and collagen under physiological conditions using genipin (GNP) as the crosslinker. Depending on the ALN/collagen molar ratio and GNP concentration, the gelation time of hydrogels ranged from 5 to 37min. Notably, these hybrid hydrogels exhibited markedly improved mechanical property (storage modulus G'=38-187kPa), higher gel contents, and lower swelling ratios compared to the hydrogels prepared from collagen alone under similar conditions. Moreover, they showed tunable degradation behaviors against collagenase. The collagen/HAP-ALN hybrid hydrogels supported the adhesion and growth of murine MC3T3-E1 osteoblastic cells well. Such tough yet enzymatically degradable hybrid hydrogels hold potential as scaffolds for bone tissue engineering. PMID:26998869

  17. Microporous polymeric 3D scaffolds templated by the layer-by-layer self-assembly.

    PubMed

    Paulraj, Thomas; Feoktistova, Natalia; Velk, Natalia; Uhlig, Katja; Duschl, Claus; Volodkin, Dmitry

    2014-08-01

    Polymeric scaffolds serve as valuable supports for biological cells since they offer essential features for guiding cellular organization and tissue development. The main challenges for scaffold fabrication are i) to tune an internal structure and ii) to load bio-molecules such as growth factors and control their local concentration and distribution. Here, a new approach for the design of hollow polymeric scaffolds using porous CaCO3 particles (cores) as templates is presented. The cores packed into a microfluidic channel are coated with polymers employing the layer-by-layer (LbL) technique. Subsequent core elimination at mild conditions results in formation of the scaffold composed of interconnected hollow polymer microspheres. The size of the cores determines the feature dimensions and, as a consequence, governs cellular adhesion: for 3T3 fibroblasts an optimal microsphere size is 12 μm. By making use of the carrier properties of the porous CaCO3 cores, the microspheres are loaded with BSA as a model protein. The scaffolds developed here may also be well suited for the localized release of bio-molecules using external triggers such as IR-light. PMID:25042776

  18. Injectable 3D hydrogel scaffold with tailorable porosity post-implantation.

    PubMed

    Al-Abboodi, Aswan; Fu, Jing; Doran, Pauline M; Tan, Timothy T Y; Chan, Peggy P Y

    2014-05-01

    Since rates of tissue growth vary significantly between tissue types, and also between individuals due to differences in age, dietary intake, and lifestyle-related factors, engineering a scaffold system that is appropriate for personalized tissue engineering remains a significant challenge. In this study, a gelatin-hydroxyphenylpropionic acid/carboxylmethylcellulose-tyramine (Gtn-HPA/CMC-Tyr) porous hydrogel system that allows the pore structure of scaffolds to be altered in vivo after implantation is developed. Cross-linking of Gtn-HPA/CMC-Tyr hydrogels via horseradish peroxidase oxidative coupling is examined both in vitro and in vivo. Post-implantation, further alteration of the hydrogel structure is achieved by injecting cellulase enzyme to digest the CMC component of the scaffold; this treatment yields a structure with larger pores and higher porosity than hydrogels without cellulase injection. Using this approach, the pore sizes of scaffolds are altered in vivo from 32-87 μm to 74-181 μm in a user-controled manner. The hydrogel is biocompatible to COS-7 cells and has mechanical properties similar to those of soft tissues. The new hydrogel system developed in this work provides clinicians with the ability to tailor the structure of scaffolds post-implantation depending on the growth rate of a tissue or an individual's recovery rate, and could thus be ideal for personalized tissue engineering. PMID:24151286

  19. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes.

    PubMed

    Neiman, Jaclyn A Shepard; Raman, Ritu; Chan, Vincent; Rhoads, Mary G; Raredon, Micha Sam B; Velazquez, Jeremy J; Dyer, Rachel L; Bashir, Rashid; Hammond, Paula T; Griffith, Linda G

    2015-04-01

    In vitro models that recapitulate the liver's structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricated coupled to chemically activated, commercially available filters (polycarbonate and polyvinylidene fluoride) using a chemistry that permitted cell viability, and was robust enough to withstand perfused culture of up to 1 µL/s for at least 7 days. SLA energy dose, photoinitiator concentrations, and pretreatment conditions were screened to determine conditions that maximized cell viability and hydrogel bonding to the filter. Multiple open channel geometries were readily achieved, and included ellipses and rectangles. Rectangular open channels employed for subsequent studies had final dimensions on the order of 350 µm by 850 µm. Cell seeding densities and flow rates that promoted cell viability were determined. Perfused culture of primary hepatocytes in hydrogel scaffolds in the presence of soluble epidermal growth factor (EGF) prolonged the maintenance of albumin production throughout the 7-day culture relative to 2D controls. This technique of bonding hydrogel scaffolds can be employed to fabricate soft scaffolds for a number of bioreactor configurations and applications. PMID:25384798

  20. Scaffold hopping through virtual screening using 2D and 3D similarity descriptors: ranking, voting, and consensus scoring.

    PubMed

    Zhang, Qiang; Muegge, Ingo

    2006-03-01

    The ability to find novel bioactive scaffolds in compound similarity-based virtual screening experiments has been studied comparing Tanimoto-based, ranking-based, voting, and consensus scoring protocols. Ligand sets for seven well-known drug targets (CDK2, COX2, estrogen receptor, neuraminidase, HIV-1 protease, p38 MAP kinase, thrombin) have been assembled such that each ligand represents its own unique chemotype, thus ensuring that each similarity recognition event between ligands constitutes a scaffold hopping event. In a series of virtual screening studies involving 9969 MDDR compounds as negative controls it has been found that atom pair descriptors and 3D pharmacophore fingerprints combined with ranking, voting, and consensus scoring strategies perform well in finding novel bioactive scaffolds. In addition, often superior performance has been observed for similarity-based virtual screening compared to structure-based methods. This finding suggests that information about a target obtained from known bioactive ligands is as valuable as knowledge of the target structures for identifying novel bioactive scaffolds through virtual screening. PMID:16509572

  1. In vivo testing of a 3D bifurcating microchannel scaffold inducing separation of regenerating axon bundles in peripheral nerves

    NASA Astrophysics Data System (ADS)

    Stoyanova, Irina I.; van Wezel, Richard J. A.; Rutten, Wim L. C.

    2013-12-01

    Artificial nerve guidance channels enhance the regenerative effectiveness in an injured peripheral nerve but the existing design so far has been limited to basic straight tubes simply guiding the growth to bridge the gap. Hence, one of the goals in development of more effective neuroprostheses is to create bidirectional highly selective neuro-electronic interface between a prosthetic device and the severed nerve. A step towards improving selectivity for both recording and stimulation have been made with some recent in vitro studies which showed that three-dimensional (3D) bifurcating microchannels can separate neurites growing on a planar surface and bring them into contact with individual electrodes. Since the growing axons in vivo have the innate tendency to group in bundles surrounded by connective tissue, one of the big challenges in neuro-prosthetic interface design is how to overcome it. Therefore, we performed experiments with 3D bifurcating guidance scaffolds implanted in the sciatic nerve of rats to test if this new channel architecture could trigger separation pattern of ingrowth also in vivo. Our results showed that this new method enabled the re-growth of neurites into channels with gradually diminished width (80, 40 and 20 µm) and facilitated the separation of the axonal bundles with 91% success. It seems that the 3D bifurcating scaffold might contribute towards conveying detailed neural control and sensory feedback to users of prosthetic devices, and thus could improve the quality of their daily life.

  2. Topographical guidance of 3D tumor cell migration at an interface of collagen densities

    NASA Astrophysics Data System (ADS)

    Bordeleau, Francois; Tang, Lauren N.; Reinhart-King, Cynthia A.

    2013-12-01

    During cancer progression, metastatic cells leave the primary tumor and invade into the fibrous extracellular matrix (ECM) within the surrounding stroma. This ECM network is highly heterogeneous, and interest in understanding how this network can affect cell behavior has increased in the past several decades. However, replicating this heterogeneity has proven challenging. Here, we designed and utilized a method to create a well-defined interface between two distinct regions of high- and low-density collagen gels to mimic the heterogeneities in density found in the tumor stroma. We show that cells will invade preferentially from the high-density side into the low-density side. We also demonstrate that the net cell migration is a function of the density of the collagen in which the cells are embedded, and the difference in density between the two regions has minimal effect on cell net displacement and distance travelled. Our data further indicate that a low-to-high density interface promotes directional migration and induces formation of focal adhesion on the interface surface. Together, the current results demonstrate how ECM heterogeneities, in the form of interfacial boundaries, can affect cell migration.

  3. Osteogenic differentiation of human mesenchymal stem cells in 3-D Zr-Si organic-inorganic scaffolds produced by two-photon polymerization technique.

    PubMed

    Koroleva, Anastasia; Deiwick, Andrea; Nguyen, Alexander; Schlie-Wolter, Sabrina; Narayan, Roger; Timashev, Peter; Popov, Vladimir; Bagratashvili, Viktor; Chichkov, Boris

    2015-01-01

    Two-photon polymerization (2PP) is applied for the fabrication of 3-D Zr-Si scaffolds for bone tissue engineering. Zr-Si scaffolds with 150, 200, and 250 μm pore sizes are seeded with human bone marrow stem cells (hBMSCs) and human adipose tissue derived stem cells (hASCs) and cultured in osteoinductive and control media for three weeks. Osteogenic differentiation of hASCs and hBMSCs and formation of bone matrix is comparatively analyzed via alkaline phosphatase activity (ALP), calcium quantification, osteocalcin staining and scanning electron microscopy (SEM). It is observed that the 150 μm pore size Zr-Si scaffolds support the strongest matrix mineralization, as confirmed by calcium deposition. Analysis of ALP activity, osteocalcin staining and SEM observations of matrix mineralization reveal that mesenchymal stem cells cultured on 3-D scaffolds without osteogenic stimulation spontaneously differentiate towards osteogenic lineage. Nanoindentation measurements show that aging of the 2PP-produced Zr-Si scaffolds in aqueous or alcohol media results in an increase in the scaffold Young's modulus and hardness. Moreover, accelerated formation of bone matrix by hASCs is noted, when cultured on the scaffolds with lower Young's moduli and hardness values (non aged scaffolds) compared to the cells cultured on scaffolds with higher Young's modulus and hardness values (aged scaffolds). Presented results support the potential application of Zr-Si scaffolds for autologous bone tissue engineering. PMID:25706270

  4. Osteogenic Differentiation of Human Mesenchymal Stem Cells in 3-D Zr-Si Organic-Inorganic Scaffolds Produced by Two-Photon Polymerization Technique

    PubMed Central

    Koroleva, Anastasia; Deiwick, Andrea; Nguyen, Alexander; Schlie-Wolter, Sabrina; Narayan, Roger; Timashev, Peter; Popov, Vladimir; Bagratashvili, Viktor; Chichkov, Boris

    2015-01-01

    Two-photon polymerization (2PP) is applied for the fabrication of 3-D Zr-Si scaffolds for bone tissue engineering. Zr-Si scaffolds with 150, 200, and 250 μm pore sizes are seeded with human bone marrow stem cells (hBMSCs) and human adipose tissue derived stem cells (hASCs) and cultured in osteoinductive and control media for three weeks. Osteogenic differentiation of hASCs and hBMSCs and formation of bone matrix is comparatively analyzed via alkaline phosphatase activity (ALP), calcium quantification, osteocalcin staining and scanning electron microscopy (SEM). It is observed that the 150 μm pore size Zr-Si scaffolds support the strongest matrix mineralization, as confirmed by calcium deposition. Analysis of ALP activity, osteocalcin staining and SEM observations of matrix mineralization reveal that mesenchymal stem cells cultured on 3-D scaffolds without osteogenic stimulation spontaneously differentiate towards osteogenic lineage. Nanoindentation measurements show that aging of the 2PP-produced Zr-Si scaffolds in aqueous or alcohol media results in an increase in the scaffold Young’s modulus and hardness. Moreover, accelerated formation of bone matrix by hASCs is noted, when cultured on the scaffolds with lower Young’s moduli and hardness values (non aged scaffolds) compared to the cells cultured on scaffolds with higher Young’s modulus and hardness values (aged scaffolds). Presented results support the potential application of Zr-Si scaffolds for autologous bone tissue engineering. PMID:25706270

  5. Modified fibrin hydrogel matrices: both, 3D-scaffolds and local and controlled release systems to stimulate angiogenesis.

    PubMed

    Hall, Heike

    2007-01-01

    Sufficient blood perfusion is essential for all tissues to guarantee nutrient- and gas exchange. As many diseases are induced by the reduction of blood perfusion such that these tissues gradually loose their ability to function properly, therapeutic angiogenesis aims to increase blood flow in ischemic tissues by stimulating the patient's endogenous capacity to develop new blood vessels. These studies include application of angiogenesis stimulating (growth) factors and adhesion sequences as well as local gene therapy. One approach is to rationally design 3D-fibrin hydrogel matrices that provide specific adhesion sequences such as a receptor for alpha v beta 3-integrin expressed on angiogenic endothelial cells and that, in addition, are able to store and release angiogenic growth factors such as VEGF-A(165) and bFGF that target cell type-specific responses. Moreover, these matrices can be modified to release complexed plasmid DNA that transfect surrounding cells and improve angiogenesis. During wound healing, cells infiltrate into the scaffold and degrade it, thereby releasing entrapped growth factors or complexed plasmid DNA, and with the speed of tissue regeneration the scaffold is completely removed when tissue healing is achieved. The long-term aim is to develop biomimetic 3D-matrices for applications in a biomaterials context that can be applied directly at the site of injury by minimal invasive surgery. 3D-fibrin matrices constitute a scaffold and release system for single or combined therapeutic biomolecules and may therefore be able to contribute to the patients' endogenous healing response resulting in the functional recovery of a diseased tissue or organ. PMID:18220797

  6. Calcium phosphate cement reinforcement by polymer infiltration and in situ curing: a method for 3D scaffold reinforcement.

    PubMed

    Alge, Daniel L; Chu, Tien-Min Gabriel

    2010-08-01

    This study describes a novel method of calcium phosphate cement reinforcement based on infiltrating a pre-set cement with a reactive polymer and then cross-linking the polymer in situ. This method can be used to reinforce 3D calcium phosphate cement scaffolds, which we demonstrate using poly(ethylene glycol) diacrylate (PEGDA) as a model reinforcing polymer. The compressive strength of a 3D scaffold comprised of orthogonally intersecting beams was increased from 0.31 +/- 0.06 MPa to 1.65 +/- 0.13 MPa using PEGDA 600. In addition, the mechanical properties of reinforced cement were characterized using three PEGDA molecular weights (200, 400, and 600 Da) and three cement powder to liquid (P/L) ratios (0.8, 1.0, and 1.43). Higher molecular weight increased reinforcement efficacy, and P/L controlled cement porosity and determined the extent of polymer incorporation. Although increasing polymer incorporation resulted in a transition from brittle, cement-like behavior to ductile, polymer-like behavior, maximizing polymer incorporation was not advantageous. Polymerization shrinkage produced microcracks in the cement, which reduced the mechanical properties. The most effective reinforcement was achieved with P/L of 1.43 and PEGDA 600. In this group, flexural strength increased from 0.44 +/- 0.12 MPa to 7.04 +/- 0.51 MPa, maximum displacement from 0.05 +/- 0.01 mm to 1.44 +/- 0.17 mm, and work of fracture from 0.64 +/- 0.10 J/m(2) to 677.96 +/- 70.88 J/m(2) compared to non-reinforced controls. These results demonstrate the effectiveness of our novel reinforcement method, as well as its potential for fabricating reinforced 3D calcium phosphate cement scaffolds useful for bone tissue engineering. PMID:20186776

  7. Preparation and characterization of aloe vera blended collagen-chitosan composite scaffold for tissue engineering applications.

    PubMed

    Jithendra, Panneerselvam; Rajam, Abraham Merlin; Kalaivani, Thambiran; Mandal, Asit Baran; Rose, Chellan

    2013-08-14

    Collagen-Chitosan (COL-CS) scaffolds supplemented with different concentrations (0.1-0.5%) of aloe vera (AV) were prepared and tested in vitro for their possible application in tissue engineering. After studying the microstructure and mechanical properties of all the composite preparations, a 0.2% AV blended COL-CS scaffold was chosen for further studies. Scaffolds were examined by Fourier transform infrared spectroscopy (FT-IR), differential scanning calorimetry (DSC), and thermogravimetry analysis (TGA) to understand the intermolecular interactions and their influence on the thermal property of the complex composite. Swelling property in phosphate buffered saline (pH 7.4) and in vitro biodegradability by collagenase digestion method were monitored to assess the stability of the scaffold in a physiological medium in a hydrated condition, and to assay its resistance against enzymatic forces. The scanning electron microscope (SEM) image of the scaffold samples showed porous architecture with gradual change in their morphology and reduced tensile properties with increasing aloe vera concentration. The FTIR spectrum revealed the overlap of the AV absorption peak with the absorption peak of COL-CS. The inclusion of AV to COL-CS increased the thermal stability as well as hydrophilicity of the scaffolds. Cell culture studies on the scaffold showed enhanced growth and proliferation of fibroblasts (3T3L1) without exhibiting any toxicity. Also, normal cell morphology and proliferation were observed by fluorescence microscopy and SEM. The rate of cell growth in the presence/absence of aloe vera in the scaffolds was in the order: COL-CS-AV > COL-CS > TCP (tissue culture polystyrene plate). These results suggested that the aloe vera gel-blended COL-CS scaffolds could be a promising candidate for tissue engineering applications. PMID:23838342

  8. Development and characterization of novel porous 3D alginate-cockle shell powder nanobiocomposite bone scaffold.

    PubMed

    Bharatham, B Hemabarathy; Abu Bakar, Md Zuki; Perimal, Enoch Kumar; Yusof, Loqman Mohamed; Hamid, Muhajir

    2014-01-01

    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects. PMID:25110655

  9. Development and Characterization of Novel Porous 3D Alginate-Cockle Shell Powder Nanobiocomposite Bone Scaffold

    PubMed Central

    Bharatham, B. Hemabarathy; Abu Bakar, Md. Zuki; Perimal, Enoch Kumar; Yusof, Loqman Mohamed; Hamid, Muhajir

    2014-01-01

    A novel porous three-dimensional bone scaffold was developed using a natural polymer (alginate/Alg) in combination with a naturally obtained biomineral (nano cockle shell powder/nCP) through lyophilization techniques. The scaffold was developed in varying composition mixture of Alg-nCP and characterized using various evaluation techniques as well as preliminary in vitro studies on MG63 human osteoblast cells. Morphological observations using SEM revealed variations in structures with the use of different Alg-nCP composition ratios. All the developed scaffolds showed a porous structure with pore sizes ideal for facilitating new bone growth; however, not all combination mixtures showed subsequent favorable characteristics to be used for biological applications. Scaffolds produced using the combination mixture of 40% Alg and 60% nCP produced significantly promising results in terms of mechanical strength, degradation rate, and increased cell proliferation rates making it potentially the optimum composition mixture of Alg-nCP with future application prospects. PMID:25110655

  10. Characterization of Silk Fibroin/Chitosan 3D Porous Scaffold and In Vitro Cytology

    PubMed Central

    Zeng, Shuguang; Liu, Lei; Shi, Yong; Qiu, Junqi; Fang, Wei; Rong, Mingdeng; Guo, Zehong; Gao, Wenfeng

    2015-01-01

    Bone tissue engineering is a powerful tool to treat bone defects caused by trauma, infection, tumors and other factors. Both silk fibroin (SF) and chitosan (CS) are non-toxic and have good biocompatibility, but are poor biological scaffolds when used alone. In this study, the microscopic structure and related properties of SF/CS composite scaffolds with different component ratios were examined. The scaffold material most suitable for osteoblast growth was determined, and these results offer an experimental basis for the future reconstruction of bone defects. First, via freeze-drying and chemical crosslinking methods, SF/CS composites with different component ratios were prepared and their structure was characterized. Changes in the internal structure of the SF and CS mixture were observed, confirming that the mutual modification between the two components was complete and stable. The internal structure of the composite material was porous and three-dimensional with a porosity above 90%. We next studied the pore size, swelling ratio, water absorption ratio, degradation and in vitro cell proliferation. For the 40% SF-60% CS group, the pore size of the scaffold was suitable for the growth of osteoblasts, and the rate of degradation was steady. This favors the early adhesion, growth and proliferation of MG-63 cells. In addition to good biocompatibility and satisfactory cell affinity, this material promotes the secretion of extracellular matrix materials by osteoblasts. Thus, 40% SF-60% CS is a good material for bone tissue engineering. PMID:26083846

  11. Regeneration of meniscal cartilage with use of a collagen scaffold. Analysis of preliminary data.

    PubMed

    Stone, K R; Steadman, J R; Rodkey, W G; Li, S T

    1997-12-01

    A collagen scaffold was designed for use as a template for the regeneration of meniscal cartilage and was tested in ten patients in an initial, Food and Drug Administration-approved, clinical feasibility trial. The goal of the study was to evaluate the implantability and safety of the scaffold as well as its ability to support tissue ingrowth. The study was based on the findings of in vitro and in vivo investigations in dogs that had demonstrated cellular ingrowth and tissue regeneration through the scaffold. Nine patients remained in the study for at least thirty-six months, and one patient voluntarily withdrew after three months for personal reasons. The collagen scaffold was found to be implantable and to be safe over the three-year period. Histologically, it supported regeneration of tissue in meniscal defects of various sizes. No adverse immunological reactions were noted on sequential serological testing. On second-look arthroscopy, performed either three or six months after implantation, gross and histological evaluation revealed newly formed tissue replacing the implant as it was resorbed. At thirty-six months, the nine patients reported a decrease in the symptoms. According to a scale that assigned 1 point for strenuous activity and 5 points for an inability to perform sports activity, the average score was 1.5 points before the injury, 3.0 points after the injury and before the operation, and 2.4 points at six months postoperatively, 2.2 points at twelve months, 2.0 points at twenty-four months, and 1.9 points at thirty-six months. According to a scale that assigned 0 points for no pain and 3 points for severe pain, the average pain score was 2.2 points preoperatively and 0.6 point thirty-six months postoperatively. One patient, who had had a repair of a bucket-handle tear of the medial meniscus and augmentation with the collagen scaffold, had retearing of the cartilage nineteen months after implantation. Another patient had debridement because of an

  12. Histological evaluation of osteogenesis of 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds in a rabbit model.

    PubMed

    Ge, Zigang; Tian, Xianfeng; Heng, Boon Chin; Fan, Victor; Yeo, Jin Fei; Cao, Tong

    2009-04-01

    Utilizing a suitable combination of lactide and glycolide in a copolymer would optimize the degradation rate of a scaffold upon implantation in situ. Moreover, 3D printing technology enables customizing the shape of the scaffold to biometric data from CT and MRI scans. A previous in vitro study has shown that novel 3D-printed poly-lactic-co-glycolic acid (PLGA) scaffolds had good biocompatibility and mechanical properties comparable with human cancellous bone, while they could support proliferation and osteogenic differentiation of osteoblasts. Based on the previous study, this study evaluated PLGA scaffolds for bone regeneration within a rabbit model. The scaffolds were implanted at two sites on the same animal, within the periosteum and within bi-cortical bone defects on the iliac crest. Subsequently, the efficacy of bone regeneration within the implanted scaffolds was evaluated at 4, 12 and 24 weeks post-surgery through histological analysis. In both the intra-periosteum and iliac bone defect models, the implanted scaffolds facilitated new bone tissue formation and maturation over the time course of 24 weeks, even though there was initially observed to be little tissue ingrowth within the scaffolds at 4 weeks post-surgery. Hence, the 3D-printed porous PLGA scaffolds investigated in this study displayed good biocompatibility and are osteoconductive in both the intra-periosteum and iliac bone defect models. PMID:19208943

  13. Intrafibrillar silicification of collagen scaffolds for sustained release of stem cell homing chemokine in hard tissue regeneration.

    PubMed

    Niu, Li-Na; Jiao, Kai; Qi, Yi-Pin; Nikonov, Sergey; Yiu, Cynthia K Y; Arola, Dwayne D; Gong, Shi-Qiang; El-Marakby, Ahmed; Carrilho, Marcela R O; Hamrick, Mark W; Hargreaves, Kenneth M; Diogenes, Anibal; Chen, Ji-Hua; Pashley, David H; Tay, Franklin R

    2012-11-01

    Traditional bone regeneration strategies relied on supplementation of biomaterials constructs with stem or progenitor cells or growth factors. By contrast, cell homing strategies employ chemokines to mobilize stem or progenitor cells from host bone marrow and tissue niches to injured sites. Although silica-based biomaterials exhibit osteogenic and angiogenic potentials, they lack cell homing capability. Stromal cell-derived factor-1 (SDF-1) plays a pivotal role in mobilization and homing of stem cells to injured tissues. In this work, we demonstrated that 3-dimensional collagen scaffolds infiltrated with intrafibrillar silica are biodegradable and highly biocompatible. They exhibit improved compressive stress-strain responses and toughness over nonsilicified collagen scaffolds. They are osteoconductive and up-regulate expressions of osteogenesis- and angiogenesis-related genes more significantly than nonsilicified collagen scaffolds. In addition, these scaffolds reversibly bind SDF-1α for sustained release of this chemokine, which exhibits in vitro cell homing characteristics. When implanted subcutaneously in an in vivo mouse model, SDF-1α-loaded silicified collagen scaffolds stimulate the formation of ectopic bone and blood capillaries within the scaffold and abrogate the need for cell seeding or supplementation of osteogenic and angiogenic growth factors. Intrafibrillar-silicified collagen scaffolds with sustained SDF-1α release represent a less costly and complex alternative to contemporary cell seeding approaches and provide new therapeutic options for in situ hard tissue regeneration. PMID:22859369

  14. The development of collagen-GAG scaffold-membrane composites for tendon tissue engineering.

    PubMed

    Caliari, Steven R; Ramirez, Manuel A; Harley, Brendan A C

    2011-12-01

    Current tissue engineering approaches for tendon defects require improved biomaterials to balance microstructural and mechanical design criteria. Collagen-glycosaminoglycan (CG) scaffolds have shown considerable success as in vivo regenerative templates and in vitro constructs to study cell behavior. While these scaffolds possess many advantageous qualities, their mechanical properties are typically orders of magnitude lower than orthopedic tissues such as tendon. Taking inspiration from mechanically efficient core-shell composites in nature such as plant stems and porcupine quills, we have created core-shell CG composites that display high bioactivity and improved mechanical integrity. These composites feature integration of a low density, anisotropic CG scaffold core with a high density, CG membrane shell. CG membranes were fabricated via an evaporative process that allowed separate tuning of membrane thickness and elastic moduli and were found to be isotropic in-plane. The membranes were then integrated with an anisotropic CG scaffold core via freeze-drying and subsequent crosslinking. Increasing the relative thickness of the CG membrane shell was shown to increase composite tensile elastic modulus by as much as a factor of 36 in a manner consistent with predictions from layered composites theory. CG scaffold-membrane composites were found to support tendon cell viability, proliferation, and metabolic activity in vitro, suggesting they maintain sufficient permeability while demonstrating improved mechanical strength. This work suggests an effective, biomimetic approach for balancing strength and bioactivity requirements of porous scaffolds for tissue engineering. PMID:21880362

  15. Microencapsulation of Neuroblastoma Cells and Mesenchymal Stromal Cells in Collagen Microspheres: A 3D Model for Cancer Cell Niche Study

    PubMed Central

    Yeung, Pan; Sin, Hoi Shun; Chan, Shing; Chan, Godfrey Chi Fung; Chan, Barbara Pui

    2015-01-01

    There is a growing trend for researchers to use in vitro 3D models in cancer studies, as they can better recapitulate the complex in vivo situation. And the fact that the progression and development of tumor are closely associated to its stromal microenvironment has been increasingly recognized. The establishment of such tumor supportive niche is vital in understanding tumor progress and metastasis. The mesenchymal origin of many cells residing in the cancer niche provides the rationale to include MSCs in mimicking the niche in neuroblastoma. Here we co-encapsulate and co-culture NBCs and MSCs in a 3D in vitro model and investigate the morphology, growth kinetics and matrix remodeling in the reconstituted stromal environment. Results showed that the incorporation of MSCs in the model lead to accelerated growth of cancer cells as well as recapitulation of at least partially the tumor microenvironment in vivo. The current study therefore demonstrates the feasibility for the collagen microsphere to act as a 3D in vitro cancer model for various topics in cancer studies. PMID:26657086

  16. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating.

    PubMed

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-03-15

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium-scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with "lithiophilic" coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm(2) over 80 cycles. PMID:26929378

  17. Finite difference time domain model of ultrasound propagation in agarose scaffold containing collagen or chondrocytes.

    PubMed

    Inkinen, Satu I; Liukkonen, Jukka; Malo, Markus K H; Virén, Tuomas; Jurvelin, Jukka S; Töyräs, Juha

    2016-07-01

    Measurement of ultrasound backscattering is a promising diagnostic technique for arthroscopic evaluation of articular cartilage. However, contribution of collagen and chondrocytes on ultrasound backscattering and speed of sound in cartilage is not fully understood and is experimentally difficult to study. Agarose hydrogels have been used in tissue engineering applications of cartilage. Therefore, the aim of this study was to simulate the propagation of high frequency ultrasound (40 MHz) in agarose scaffolds with varying concentrations of chondrocytes (1 to 32 × 10(6) cells/ml) and collagen (1.56-200 mg/ml) using transversely isotropic two-dimensional finite difference time domain method (FDTD). Backscatter and speed of sound were evaluated from the simulated pulse-echo and through transmission measurements, respectively. Ultrasound backscatter increased with increasing collagen and chondrocyte concentrations. Furthermore, speed of sound increased with increasing collagen concentration. However, this was not observed with increasing chondrocyte concentrations. The present study suggests that the FDTD method may have some applicability in simulations of ultrasound scattering and propagation in constructs containing collagen and chondrocytes. Findings of this study indicate the significant role of collagen and chondrocytes as ultrasound scatterers and can aid in development of modeling approaches for understanding how cartilage architecture affects to the propagation of high frequency ultrasound. PMID:27475127

  18. Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro.

    PubMed

    Calabrese, Giovanna; Giuffrida, Raffaella; Fabbi, Claudia; Figallo, Elisa; Lo Furno, Debora; Gulino, Rosario; Colarossi, Cristina; Fullone, Francesco; Giuffrida, Rosario; Parenti, Rosalba; Memeo, Lorenzo; Forte, Stefano

    2016-01-01

    Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects. PMID:26982592

  19. Collagen-Hydroxyapatite Scaffolds Induce Human Adipose Derived Stem Cells Osteogenic Differentiation In Vitro

    PubMed Central

    Fabbi, Claudia; Figallo, Elisa; Lo Furno, Debora; Gulino, Rosario; Colarossi, Cristina; Fullone, Francesco; Giuffrida, Rosario; Parenti, Rosalba; Memeo, Lorenzo; Forte, Stefano

    2016-01-01

    Mesenchymal stem cells (MSCs) play a crucial role in regulating normal skeletal homeostasis and, in case of injury, in bone healing and reestablishment of skeletal integrity. Recent scientific literature is focused on the development of bone regeneration models where MSCs are combined with biomimetic three-dimensional scaffolds able to direct MSC osteogenesis. In this work the osteogenic potential of human MSCs isolated from adipose tissue (hADSCs) has been evaluated in vitro in combination with collagen/Mg doped hydroxyapatite scaffolds. Results demonstrate the high osteogenic potential of hADSCs when cultured in specific differentiation induction medium, as revealed by the Alizarin Red S staining and gene expression profile analysis. In combination with collagen/hydroxyapatite scaffold, hADSCs differentiate into mature osteoblasts even in the absence of specific inducing factors; nevertheless, the supplement of the factors markedly accelerates the osteogenic process, as confirmed by the expression of specific markers of pre-osteoblast and mature osteoblast stages, such as osterix, osteopontin (also known as bone sialoprotein I), osteocalcin and specific markers of extracellular matrix maturation and mineralization stages, such as ALPL and osteonectin. Hence, the present work demonstrates that the scaffold per se is able to induce hADSCs differentiation, while the addition of osteo-inductive factors produces a significant acceleration of the osteogenic process. This observation makes the use of our model potentially interesting in the field of regenerative medicine for the treatment of bone defects. PMID:26982592

  20. Surface modification of electrospun PLGA scaffold with collagen for bioengineered skin substitutes.

    PubMed

    Sadeghi, A R; Nokhasteh, S; Molavi, A M; Khorsand-Ghayeni, M; Naderi-Meshkin, H; Mahdizadeh, A

    2016-09-01

    In skin tissue engineering, surface feature of the scaffolds plays an important role in cell adhesion and proliferation. In this study, non-woven fibrous substrate based on poly (lactic-co-glycolic acid) (PLGA) (75/25) were hydrolyzed in various concentrations of NaOH (0.05N, 0.1N, 0.3N) to increase carboxyl and hydroxyl groups on the fiber surfaces. These functional groups were activated by EDC/NHS to create chemical bonding with collagen. To improve bioactivity, the activated substrates were coated with a collagen solution (2mg/ml) and cross-linking was carried out using the EDC/NHS in MES buffer. The effectiveness of the method was evaluated by contact angle measurements, porosimetry, scanning electron microscopy (SEM), Fourier transform infrared spectroscopy (FTIR), tensile and degradation tests as well as in vitro cell attachment and cytotoxicity assays. Cell culture results of human dermal fibroblasts (HDF) and keratinocytes cell line (HaCat) revealed that the cells could attach to the scaffold. Further investigation with MTT assay showed that the cell proliferation of HaCat significantly increases with collagen coating. It seems that sufficient stability of collagen on the surface due to proper chemical bonding and cross-linking has increased the bioactivity of surface remarkably which can be promising for bioengineered skin applications. PMID:27207046

  1. The Role of Gap Junctions and Mechanical Loading on Mineral Formation in a Collagen-I Scaffold Seeded with Osteoprogenitor Cells

    PubMed Central

    Damaraju, Swathi; Matyas, John R.; Rancourt, Derrick E.

    2015-01-01

    Fracture nonunions represent one of many large bone defects where current treatment strategies fall short in restoring both form and function of the injured tissue. In this case, the use of a tissue-engineered scaffold for promoting bone healing offers an accessible and easy-to-manipulate environment for studying bone formation processes in vitro. We have previously shown that mechanical prestimulation using confined compression of differentiating osteoblasts results in an increase in mineralization formed in a 3D collagen-I scaffold. This study builds on this knowledge by evaluating the short and long-term effects of blocking gap junction-mediated intercellular communication among osteogenic cells on their effectiveness to mineralize collagen-I scaffolds in vitro, and in the presence and absence of mechanical stimulation. In this study, confined compression was applied in conjunction with octanol (a general communication blocker) or 18-α-glycerrhetinic acid (AGA, a specific gap junction blocker) using a modified FlexCell plate to collagen-I scaffolds seeded with murine embryonic stem cells stimulated toward osteoblast differentiation using beta-glycerol phosphate. The activity, presence, and expression of osteoblast cadherin, connexin-43, as well as various pluripotent and osteogenic markers were examined at 5–30 days of differentiation. Fluorescence recovery after photobleaching, immunofluorescence, viability, histology assessments, and reverse-transcriptase polymerase chain reaction assessments revealed that inhibiting communication in this scaffold altered the lineage and function of differentiating osteoblasts. In particular, treatment with communication inhibitors caused reduced mineralization in the matrix, and dissociation between connexin-43 and integrin α5β1. This dissociation was not restored even after long-term recovery. Thus, in order for this scaffold to be considered as an alternative strategy for the repair of large bone defects, cell

  2. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects.

    PubMed

    Wang, Yao; Van Manh, Ngo; Wang, Haorong; Zhong, Xue; Zhang, Xu; Li, Changyi

    2016-01-01

    The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid) as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC), was used to stabilize amorphous calcium phosphate (ACP) to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the control group. The biomimetic mineralization will assist us in fabricating a novel collagen scaffold for clinical applications. PMID:27274235

  3. Synergistic intrafibrillar/extrafibrillar mineralization of collagen scaffolds based on a biomimetic strategy to promote the regeneration of bone defects

    PubMed Central

    Wang, Yao; Van Manh, Ngo; Wang, Haorong; Zhong, Xue; Zhang, Xu; Li, Changyi

    2016-01-01

    The mineralization of collagen scaffolds can improve their mechanical properties and biocompatibility, thereby providing an appropriate microenvironment for bone regeneration. The primary purpose of the present study is to fabricate a synergistically intra- and extrafibrillar mineralized collagen scaffold, which has many advantages in terms of biocompatibility, biomechanical properties, and further osteogenic potential. In this study, mineralized collagen scaffolds were fabricated using a traditional mineralization method (ie, immersed in simulated body fluid) as a control group and using a biomimetic method based on the polymer-induced liquid precursor process as an experimental group. In the polymer-induced liquid precursor process, a negatively charged polymer, carboxymethyl chitosan (CMC), was used to stabilize amorphous calcium phosphate (ACP) to form nanocomplexes of CMC/ACP. Collagen scaffolds mineralized based on the polymer-induced liquid precursor process were in gel form such that nanocomplexes of CMC/ACP can easily be drawn into the interstices of the collagen fibrils. Scanning electron microscopy and transmission electron microscopy were used to examine the porous micromorphology and synergistic mineralization pattern of the collagen scaffolds. Compared with simulated body fluid, nanocomplexes of CMC/ACP significantly increased the modulus of the collagen scaffolds. The results of in vitro experiments showed that the cell count and differentiated degrees in the experimental group were higher than those in the control group. Histological staining and micro-computed tomography showed that the amount of new bone regenerated in the experimental group was larger than that in the control group. The biomimetic mineralization will assist us in fabricating a novel collagen scaffold for clinical applications. PMID:27274235

  4. Compensation of spherical aberration influences for two-photon polymerization patterning of large 3D scaffolds

    NASA Astrophysics Data System (ADS)

    Stichel, T.; Hecht, B.; Houbertz, R.; Sextl, G.

    2015-10-01

    Two-photon polymerization using femtosecond laser pulses at a wavelength of 515 nm is used for three-dimensional patterning of photosensitive, biocompatible inorganic-organic hybrid polymers (ORMOCER®s). In order to fabricate millimeter-sized biomedical scaffold structures with interconnected pores, medium numerical aperture air objectives with long working distances are applied which allow voxel lengths of several micrometers and thus the solidification of large scaffolds in an adequate time. It is demonstrated that during processing the refraction of the focused laser beam at the air/material interface leads to strong spherical aberration which decreases the peak intensity of the focal point spread function along with shifting and severely extending the focal region in the direction of the beam propagation. These effects clearly decrease the structure integrity, homogeneity and the structure details and therefore are minimized by applying a positioning and laser power adaptation throughout the fabrication process. The results will be discussed with respect to the resulting structural homogeneity and its application as biomedical scaffold.

  5. Development of a Mechanically Tuneable 3D Scaffold for Vascular Reconstruction

    PubMed Central

    Rodriguez, Maritza; Juran, Cassandra; McClendon, Mark; Eyadiel, Cyril; McFetridge, Peter

    2012-01-01

    Material compliance has been shown to be a predictor of vascular graft patency and as such is a critical parameter when designing new materials. While ex vivo derived materials have been clinically successful in a number of applications their mechanical properties are a direct function of the original vessel and are not easily controllable. These investigations describe an approach to modulate the mechanical properties of an ex vivo derived scaffold by machining variable (discrete) wall thicknesses to control compliance. Human umbilical arteries (HUA) were machine-lathed directly from the umbilical cord at wall thicknesses of 250, 500, 750, and 1000 μm then decellularized using 1 % sodium dodecyl sulfate (SDS). Compliance over physiological pressures, increased from 3.08±1.84% to 11.47±4.11% as direct function of each discrete vessel diameter. Radial stress strain analysis revealed primary and secondary failure points attributed to the discrete layers within the anisotropic scaffold. Maximum strength and suture retention were shown to increase with increasing wall thickness, by contrast stress failure decreased with increasing thickness due to increasing proportions of the mechanically weaker amorphous Wharton’s jelly (WJ). Reseeded smooth muscle cells were shown to adhere, proliferate, and migrate from the scaffold surface showing the potential of the HUA as a mechanically ‘tunable’ material with applications as an acellular implant or as a tissue engineered construct. PMID:22826192

  6. Development of a mechanically tuneable 3D scaffold for vascular reconstruction.

    PubMed

    Rodriguez, Maritza; Juran, Cassandra; McClendon, Mark; Eyadiel, Cyril; McFetridge, Peter S

    2012-12-01

    Material compliance has been shown to be a predictor of vascular graft patency and as such is a critical parameter when designing new materials. Although ex vivo derived materials have been clinically successful in a number of applications their mechanical properties are a direct function of the original vessel and are not easily controllable. These investigations describe an approach to modulate the mechanical properties of an ex vivo derived scaffold by machining variable (discrete) wall thicknesses to control compliance. Human umbilical arteries (HUAs) were machine lathed directly from the umbilical cord at wall thicknesses of 250, 500, 750, and 1000 μm then decellularized using 1% sodium dodecyl sulfate. Compliance over physiological pressures, increased from 3.08 ± 1.84% to 11.47 ± 4.11% as direct function of each discrete vessel diameter. Radial stress strain analysis revealed primary and secondary failure points attributed to the discrete layers within the anisotropic scaffold. Maximum strength and suture retention were shown to increase with increasing wall thickness, by contrast stress failure decreased with increasing thickness due to increasing proportions of the mechanically weaker amorphous Wharton's jelly. Reseeded smooth muscle cells were shown to adhere, proliferate, and migrate from the scaffold surface showing the potential of the HUA as a mechanically "tunable" material with applications as an acellular implant or as a tissue engineered construct. © 2012 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 100A:3189-3196, 2012. PMID:22826192

  7. Nanofibrous clinical-grade collagen scaffolds seeded with human cardiomyocytes induces cardiac remodeling in dilated cardiomyopathy.

    PubMed

    Joanne, Pierre; Kitsara, Maria; Boitard, Solène-Emmanuelle; Naemetalla, Hany; Vanneaux, Valérie; Pernot, Mathieu; Larghero, Jérôme; Forest, Patricia; Chen, Yong; Menasché, Philippe; Agbulut, Onnik

    2016-02-01

    Limited data are available on the effects of stem cells in non-ischemic dilated cardiomyopathy (DCM). Since the diffuse nature of the disease calls for a broad distribution of cells, this study investigated the scaffold-based delivery of human induced pluripotent stem cell-derived cardiomyocytes (hiPS-CM) in a mouse model of DCM. Nanofibrous scaffolds were produced using a clinical grade atelocollagen which was electrospun and cross-linked under different conditions. As assessed by scanning electron microscopy and shearwave elastography, the optimum crosslinking conditions for hiPS-CM colonization proved to be a 10% concentration of citric acid crosslinking agent and 150 min of post-electrospinning baking. Acellular collagen scaffolds were first implanted in both healthy mice and those with induced DCM by a cardiac-specific invalidation of serum response factor (SRF). Seven and fourteen days after implantation, the safety of the scaffold was demonstrated by echocardiography and histological assessments. The subsequent step of implantation of the scaffolds seeded with hiPS-CM in DCM induced mice, using cell-free scaffolds as controls, revealed that after fourteen days heart function decreased in controls while it remained stable in the treated mice. This pattern was associated with an increased number of endothelial cells, in line with the greater vascularity of the scaffold. Moreover, a lesser degree of fibrosis consistent with the upregulation of several genes involved in extracellular matrix remodeling was observed. These results support the interest of the proposed hiPS-CM seeded electrospun scaffold for the stabilization of the DCM outcome with potential for its clinical use in the future. PMID:26708641

  8. Study of the collagen structure in the superficial zone and physiological state of articular cartilage using a 3D confocal imaging technique

    PubMed Central

    Wu, Jian P; Kirk, Thomas B; Zheng, Ming H

    2008-01-01

    Introduction The collagen structure in the superficial zone of articular cartilage is critical to the tissue's durability. Early osteoarthritis is often characterized with fissures on the articular surface. This is closely related to the disruption of the collagen network. However, the traditional histology can not offer visualization of the collagen structure in articular cartilage because it uses conventional optical microscopy that does not have insufficient imaging resolution to resolve collagen from proteoglycans in hyaline articular cartilage. This study examines the 3D collagen network of articular cartilage scored from 0 to 2 in the scoring system of International Cartilage Repair Society, and aims to develop a 3D histology for assessing early osteoarthritis. Methods Articular cartilage was visually classified into five physiological groups: normal cartilage, aged cartilage, cartilage with artificial and natural surface disruption, and fibrillated. The 3D collagen matrix of the cartilage was acquired using a 3D imaging technique developed previously. Traditional histology was followed to grade the physiological status of the cartilage in the scoring system of International Cartilage Repair Society. Results Normal articular cartilage contains interwoven collagen bundles near the articular surface, approximately within the lamina splendens. However, its collagen fibres in the superficial zone orient predominantly in a direction spatially oblique to the articular surface. With age and disruption of the articular surface, the interwoven collagen bundles are gradually disappeared, and obliquely oriented collagen fibres change to align predominantly in a direction spatially perpendicular to the articular surface. Disruption of the articular surface is well related to the disappearance of the interwoven collagen bundles. Conclusion A 3D histology has been developed to supplement the traditional histology and study the subtle changes in the collagen network in the

  9. Compression loading-induced stress responses in intervertebral disc cells encapsulated in 3D collagen constructs

    PubMed Central

    Chooi, Wai Hon; Chan, Barbara Pui

    2016-01-01

    Cells protect themselves from stresses through a cellular stress response. In the interverebral disc, such response was also demonstrated to be induced by various environmental stresses. However, whether compression loading will cause cellular stress response in the nucleus pulposus cells (NPCs) is not well studied. By using an in vitro collagen microencapsulation model, we investigated the effect of compression loading on the stress response of NPCs. Cell viability tests, and gene and protein expression experiments were conducted, with primers for the heat shock response (HSR: HSP70, HSF1, HSP27 and HSP90), and unfolded protein response (UPR: GRP78, GRP94, ATF4 and CHOP) genes and an antibody to HSP72. Different gene expression patterns occurred due to loading type throughout experiments. Increasing the loading strain for a short duration did not increase the stress response genes significantly, but over longer durations, HSP70 and HSP27 were upregulated. Longer loading durations also resulted in a continuous upregulation of HSR genes and downregulation of UPR genes, even after load removal. The rate of apoptosis did not increase significantly after loading, suggesting that stress response genes might play a role in cell survival following mechanical stress. These results demonstrate how mechanical stress might induce and control the expression of HSR and UPR genes in NPCs. PMID:27197886

  10. Compression loading-induced stress responses in intervertebral disc cells encapsulated in 3D collagen constructs.

    PubMed

    Chooi, Wai Hon; Chan, Barbara Pui

    2016-01-01

    Cells protect themselves from stresses through a cellular stress response. In the interverebral disc, such response was also demonstrated to be induced by various environmental stresses. However, whether compression loading will cause cellular stress response in the nucleus pulposus cells (NPCs) is not well studied. By using an in vitro collagen microencapsulation model, we investigated the effect of compression loading on the stress response of NPCs. Cell viability tests, and gene and protein expression experiments were conducted, with primers for the heat shock response (HSR: HSP70, HSF1, HSP27 and HSP90), and unfolded protein response (UPR: GRP78, GRP94, ATF4 and CHOP) genes and an antibody to HSP72. Different gene expression patterns occurred due to loading type throughout experiments. Increasing the loading strain for a short duration did not increase the stress response genes significantly, but over longer durations, HSP70 and HSP27 were upregulated. Longer loading durations also resulted in a continuous upregulation of HSR genes and downregulation of UPR genes, even after load removal. The rate of apoptosis did not increase significantly after loading, suggesting that stress response genes might play a role in cell survival following mechanical stress. These results demonstrate how mechanical stress might induce and control the expression of HSR and UPR genes in NPCs. PMID:27197886

  11. Variation of mechanical behavior of β-TCP/collagen two phase composite scaffold with mesenchymal stem cell in vitro.

    PubMed

    Arahira, Takaaki; Todo, Mitsugu

    2016-08-01

    The primary aim of this study is to characterize the variational behavior of the compressive mechanical property of bioceramic-based scaffolds using stem cells during the cell culture period. β-Tricalcium phosphate (TCP)/collagen two phase composites and β-TCP scaffolds were fabricated using the polyurethane template technique and a subsequent freeze-drying method. Rat bone-marrow mesenchymal stem cells (rMSCs) were then cultured in these scaffolds for up to 28 days. Compression tests of the scaffolds with rMSCs were periodically conducted. Biological properties, such as the cell number, alkaline phosphatase (ALP) activity, and gene expressions of osteogenesis, were evaluated. The microstructural change due to cell growth and the formation of extracellular matrices was examined using a field-emission scanning electron microscope. The compressive property was then correlated with the biological properties and microstructures to understand the mechanism of the variational behavior of the macroscopic mechanical property. The porous collagen structure in the β-TCP scaffold effectively improved the structural stability of the composite scaffold, whereas the β-TCP scaffold exhibited structural instability with the collapse of the porous structure when immersed in a culture medium. The β-TCP/collagen composite scaffold exhibited higher ALP activity and more active generation of osteoblastic markers than the β-TCP scaffold. PMID:27124803

  12. PLLA-collagen and PLLA-gelatin hybrid scaffolds with funnel-like porous structure for skin tissue engineering

    NASA Astrophysics Data System (ADS)

    Lu, Hongxu; Oh, Hwan Hee; Kawazoe, Naoki; Yamagishi, Kozo; Chen, Guoping

    2012-12-01

    In skin tissue engineering, a three-dimensional porous scaffold is necessary to support cell adhesion and proliferation and to guide cells moving into the repair area in the wound healing process. Structurally, the porous scaffold should have an open and interconnected porous architecture to facilitate homogenous cell distribution. Moreover, the scaffolds should be mechanically strong to protect deformation during the formation of new skin. In this study, the hybrid scaffolds were prepared by forming funnel-like collagen or gelatin sponge on a woven poly(l-lactic acid) (PLLA) mesh. The hybrid scaffolds combined the advantages of both collagen or gelatin (good cell-interactions) and PLLA mesh (high mechanical strength). The hybrid scaffolds were used to culture dermal fibroblasts for dermal tissue engineering. The funnel-like porous structure promoted homogeneous cell distribution and extracellular matrix production. The PLLA mesh reinforced the scaffold to avoid deformation. Subcutaneous implantation showed that the PLLA-collagen and PLLA-gelatin scaffolds promoted the regeneration of dermal tissue and epidermis and reduced contraction during the formation of new tissue. These results indicate that funnel-like hybrid scaffolds can be used for skin tissue regeneration.

  13. Nanofiber Yarn/Hydrogel Core-Shell Scaffolds Mimicking Native Skeletal Muscle Tissue for Guiding 3D Myoblast Alignment, Elongation, and Differentiation.

    PubMed

    Wang, Ling; Wu, Yaobin; Guo, Baolin; Ma, Peter X

    2015-09-22

    Designing scaffolds that can mimic native skeletal muscle tissue and induce 3D cellular alignment and elongated myotube formation remains an ongoing challenge for skeletal muscle tissue engineering. Herein, we present a simple technique to generate core-shell composite scaffolds for mimicking native skeletal muscle structure, which comprise the aligned nanofiber yarn (NFY) core and the photocurable hydrogel shell. The aligned NFYs are prepared by the hybrid composition including poly(caprolactone), silk fibroin, and polyaniline via a developed dry-wet electrospinning method. A series of core-shell column and sheet composite scaffolds are ultimately obtained by encapsulating a piece and layers of aligned NFY cores within the hydrogel shell after photo-cross-linking. C2C12 myoblasts are seeded within the core-shell scaffolds, and the good biocompatibility of these scaffolds and their ability to induce 3D cellular alignment and elongation are successfully demonstrated. Furthermore, the 3D elongated myotube formation within core-shell scaffolds is also performed after long-term cultivation. These data suggest that these core-shell scaffolds combine the aligned NFY core that guides the myoblast alignment and differentiation and the hydrogel shell that provides a suitable 3D environment for nutrition exchange and mechanical protection to perform a great practical application for skeletal muscle regeneration. PMID:26280983

  14. Towards the Design of 3D Fiber-Deposited Poly(ε-caprolactone)/lron-Doped Hydroxyapatite Nanocomposite Magnetic Scaffolds for Bone Regeneration.

    PubMed

    De Santis, Roberta; Russo, Alessandro; Gloria, Antonio; D'Amora, Ugo; Russo, Teresa; Panseri, Silvia; Sandri, Monica; Tampieri, Anna; Marcacci, Maurilio; Dediu, Valentin A; Wilde, Colin J; Ambrosio, Luigi

    2015-07-01

    In the past few years, researchers have focused on the design and development of three-dimensional (3D) advanced scaffolds, which offer significant advantages in terms of cell performance. The introduction of magnetic features into scaffold technology could offer innovative opportunities to control cell populations within 3D microenvironments, with the potential to enhance their use in tissue regeneration or in cell-based analysis. In the present study, 3D fully biodegradable and magnetic nanocomposite scaffolds for bone tissue engineering, consisting of a poly(ε-caprolactone) (PCL) matrix reinforced with iron-doped hydroxyapatite (FeHA) nanoparticles, were designed and manufactured using a rapid prototyping technique. The performances of these novel 3D PCL/FeHA scaffolds were assessed through a combination of theoretical evaluation, experimental in vitro analyses and in vivo testing in a rabbit animal model. The results from mechanical com- pression tests were consistent with FEM simulations. The in vitro results showed that the cell growth in the magnetized scaffolds was 2.2-fold greater than that in non-magnetized ones. In vivo experiments further suggested that, after only 4 weeks, the PCL/FeHA scaffolds were completely filled with newly formed bone, proving a good level of histocompatibility. All of the results suggest that the introduction of magnetic features into biocompatible materials may confer significant advantages in terms of 3D cell assembly. PMID:26307846

  15. Combination therapy with BMP-2 and BMSCs enhances bone healing efficacy of PCL scaffold fabricated using the 3D plotting system in a large segmental defect model.

    PubMed

    Kang, Sun-Woong; Bae, Ji-Hoon; Park, Su-A; Kim, Wan-Doo; Park, Mi-Su; Ko, You-Jin; Jang, Hyon-Seok; Park, Jung-Ho

    2012-07-01

    The three-dimensional (3D) plotting system is a rapidly-developing scaffold fabrication method for bone tissue engineering. It yields a highly porous and inter-connective structure without the use of cytotoxic solvents. However, the therapeutic effects of a scaffold fabricated using the 3D plotting system in a large segmental defect model have not yet been demonstrated. We have tested two hypotheses: whether the bone healing efficacy of scaffold fabricated using the 3D plotting system would be enhanced by bone marrow-derived mesenchymal stem cell (BMSC) transplantation; and whether the combination of bone morphogenetic protein-2 (BMP-2) administration and BMSC transplantation onto the scaffold would act synergistically to enhance bone regeneration in a large segmental defect model. The use of the combined therapy did increase bone regeneration further as compared to that with monotherapy in large segmental bone defects. PMID:22447098

  16. Tailoring chitosan/collagen scaffolds for tissue engineering: Effect of composition and different crosslinking agents on scaffold properties.

    PubMed

    Martínez, A; Blanco, M D; Davidenko, N; Cameron, R E

    2015-11-01

    Chitosan/collagen (Chit/Col) blends have demonstrated great potential for use in tissue engineering (TE) applications. However, there exists a lack of detailed study on the influence of important design parameters (i.e, component ratio or crosslinking methods) on the essential properties of the scaffolds (morphology, mechanical stiffness, swelling, degradation and cytotoxicity). This work entailed a systematic study of these essential properties of three Chit/Col compositions, covering a wide range of component ratios and using different crosslinking methods. Our results showed the possibility of tailoring these properties by changing component ratios, since different interactions occurred between Chit/Col: samples with Chit-enriched compositions showed a hydrogen-bonding type complex (HC), whereas a self-crosslinking phenomenon was induced in Col-enriched scaffolds. Additionally, material and biological properties of the resultant matrices were further adjusted and tuned by changing crosslinking conditions. In such way, we obtained a wide range of scaffolds whose properties were tailored to meet specific needs of TE applications. PMID:26256388

  17. The effect of collagen-chitosan porous scaffold thickness on dermal regeneration in a one-stage grafting procedure.

    PubMed

    Haifei, Shi; Xingang, Wang; Shoucheng, Wu; Zhengwei, Mao; Chuangang, You; Chunmao, Han

    2014-01-01

    Dermal substitutes are used as dermal regeneration templates to reduce scar formation and improve wound healing. Unlike autografts, dermal substitutes lack normal vascular networks. The increased distance required for diffusion of oxygen and nutrients to the autograft following interpositioning of the substitute dramatically affects graft survival. To evaluate the effect of collagen-chitosan scaffold thickness on dermal regeneration, single-layer collagen-chitosan porous scaffolds of 0.5-, 1- and 2-mm thicknesses were fabricated and used to treat full-thickness wounds in a one-stage grafting procedure in a rat model. Skin-graft viability, wound contraction, histological changes, and wound tensile strength were evaluated. The results indicated that the distance for the diffusion of oxygen and nutrients to the autograft in the 2-mm-thick scaffold provided less support for graft take, which resulted in graft necrosis, extensive inflammatory reaction, marked foreign-body reaction (FBR), rapid scaffold degradation, and abnormal collagen deposition and remodeling. In contrast, the thinner scaffolds, especially of that 0.5-mm thickness, promoted earlier angiogenesis, ensuring skin-graft viability with a mild FBR, and ordered fibroblast infiltration and better collagen remodeling. It can be concluded that collagen-chitosan porous scaffolds with a thickness of <1mm are more suitable for dermal regeneration and can be used as dermal templates for treatment of dermal defects using a one-stage grafting procedure. PMID:24076783

  18. Fabrication of three-dimensional porous scaffold based on collagen fiber and bioglass for bone tissue engineering.

    PubMed

    Long, Teng; Yang, Jun; Shi, Shan-Shan; Guo, Ya-Ping; Ke, Qin-Fei; Zhu, Zhen-An

    2015-10-01

    An ideal scaffold for bone tissue engineering should have interconnected porous structure, good biocompatibility, and mechanical properties well-matched with natural bones. Collagen is the key component in the extracellular matrix (ECM) of natural bones, and plays an important role in bone regeneration. The biological activity of collagen has promoted it to be an advantageous biomaterial for bone tissue engineering; however, the mechanical properties of these scaffolds are insufficient and the porous structures are not stable in the wet state. An effective strategy to solve this problem is to fabricate a hybrid scaffold of biologically derived and synthetic material, which have the necessary bioactivity and mechanical stability needed for bone synthesis. In this work, a three-dimensional macroporous bone scaffold based on collagen (CO) fiber and bioglass (BG) is fabricated by a slurry-dipping technique, and its relevant mechanical and biological properties are evaluated. The CO/BG scaffold is interconnected with a porosity of 81 ± 4.6% and pore size of 40-200 μm. Compared with CO scaffold, water absorption value of CO/BG scaffold decreases greatly from 889% to 52%, which significantly alleviates the swelling behavior of collagen and improves the stability of scaffold structure. The CO/BG scaffold has a compression strength of 5.8 ± 1.6 MPa and an elastic modulus of 0.35 ± 0.01 Gpa, which are well-matched with the mechanical properties of trabecular bones. In vitro cell assays demonstrate that the CO/BG scaffold has good biocompatibility to facilitate the spreading and proliferation of human bone marrow stromal cells. Hence, the CO/BG scaffold is promising for bone tissue engineering application. PMID:25430707

  19. Aligned nanofibrillar collagen scaffolds - Guiding lymphangiogenesis for treatment of acquired lymphedema.

    PubMed

    Hadamitzky, Catarina; Zaitseva, Tatiana S; Bazalova-Carter, Magdalena; Paukshto, Michael V; Hou, Luqia; Strassberg, Zachary; Ferguson, James; Matsuura, Yuka; Dash, Rajesh; Yang, Phillip C; Kretchetov, Shura; Vogt, Peter M; Rockson, Stanley G; Cooke, John P; Huang, Ngan F

    2016-09-01

    Secondary lymphedema is a common disorder associated with acquired functional impairment of the lymphatic system. The goal of this study was to evaluate the therapeutic efficacy of aligned nanofibrillar collagen scaffolds (BioBridge) positioned across the area of lymphatic obstruction in guiding lymphatic regeneration. In a porcine model of acquired lymphedema, animals were treated with BioBridge scaffolds, alone or in conjunction with autologous lymph node transfer as a source of endogenous lymphatic growth factor. They were compared with a surgical control group and a second control group in which the implanted BioBridge was supplemented with exogenous vascular endothelial growth factor-C (VEGF-C). Three months after implantation, immunofluorescence staining of lymphatic vessels demonstrated a significant increase in lymphatic collectors within close proximity to the scaffolds. To quantify the functional impact of scaffold implantation, bioimpedance was used as an early indicator of extracellular fluid accumulation. In comparison to the levels prior to implantation, the bioimpedance ratio was significantly improved only in the experimental BioBridge recipients with or without lymph node transfer, suggesting restoration of functional lymphatic drainage. These results further correlated with quantifiable lymphatic collectors, as visualized by contrast-enhanced computed tomography. They demonstrate the therapeutic potential of BioBridge scaffolds in secondary lymphedema. PMID:27348849

  20. Fish collagen/alginate/chitooligosaccharides integrated scaffold for skin tissue regeneration application.

    PubMed

    Chandika, Pathum; Ko, Seok-Chun; Oh, Gun-Woo; Heo, Seong-Yeong; Nguyen, Van-Tinh; Jeon, You-Jin; Lee, Bonggi; Jang, Chul Ho; Kim, GeunHyung; Park, Won Sun; Chang, Wonseok; Choi, Il-Whan; Jung, Won-Kyo

    2015-11-01

    An emerging paradigm in wound healing techniques is that a tissue-engineered skin substitute offers an alternative approach to create functional skin tissue. Here we developed a fish collagen/alginate (FCA) sponge scaffold that was functionalized by different molecular weights of chitooligosaccharides (COSs) with the use of 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride as a cross-linking agent. The effects of cross-linking were analyzed by Fourier transform infrared spectroscopy. The results indicate that the homogeneous materials blending and cross-linking intensity were dependent on the molecular weights of COSs. The highly interconnected porous architecture with 160-260μm pore size and over 90% porosity and COS's MW driven swelling and retention capacity, tensile property and in vitro biodegradation behavior guaranteed the FCA/COS scaffolds for skin tissue engineering application. Further improvement of these properties enhanced the cytocompatibility of all the scaffolds, especially the scaffolds containing COSs with MW in the range of 1-3kDa (FCA/COS1) showed the best cytocompatibility. These physicochemical, mechanical, and biological properties suggest that the FCA/COS1 scaffold is a superior candidate that can be used for skin tissue regeneration. PMID:26306410

  1. The effects of different crossing-linking conditions of genipin on type I collagen scaffolds: an in vitro evaluation.

    PubMed

    Zhang, Xiujie; Chen, Xueying; Yang, Ting; Zhang, Naili; Dong, Li; Ma, Shaoying; Liu, Xiaoming; Zhou, Mo; Li, Baoxing

    2014-12-01

    The purpose of this paper is to analyze the properties of fabricating rat tail type I collagen scaffolds cross-linked with genipin under different conditions. The porous genipin cross-linked scaffolds are obtained through a two step freeze-drying process. To find out the optimal cross-link condition, we used different genipin concentrations and various cross-linked temperatures to prepare the scaffolds in this study. The morphologies of the scaffolds were characterized by scanning electron microscope, and the mechanical properties of the scaffolds were evaluated under dynamic compression. Additionally, the cross-linking degree was assessed by ninhydrin assay. To investigate the swelling ratio and the in vitro degradation of the collagen scaffold, the tests were also carried out by immersion of the scaffolds in a PBS solution or digestion in a type I collagenase respectively. The morphologies of the non-cross-linked scaffolds presented a lattice-like structure while the cross-linked ones displayed a sheet-like framework. The morphology of the genipin cross-linked scaffolds could be significantly changed by either increasing genipin concentration or the temperature. The swelling ratio of each cross-linked scaffold was much lower than that of the control (non-cross-linked).The ninhydrin assay demonstrated that the higher temperature and genipin concentration could obviously increase the cross-linking efficiency. The in vitro degradation studies indicated that genipin cross-linking can effectively elevate the biostability of the scaffolds. The biocompatibility and cytotoxicity of the scaffolds was evaluated by culturing rat chondrocytes on the scaffold in vitro and by MTT. The results of MTT and the fact that the chondrocytes adhered well to the scaffolds demonstrated that genipin cross-linked scaffolds possessed an excellent biocompatibility and low cytotoxicity. Based on these results, 0.3 % genipin concentrations and 37 °C cross-linked temperatures are

  2. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing.

    PubMed

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C-1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C-1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds were

  3. Structure, Properties, and In Vitro Behavior of Heat-Treated Calcium Sulfate Scaffolds Fabricated by 3D Printing

    PubMed Central

    Asadi-Eydivand, Mitra; Solati-Hashjin, Mehran; Shafiei, Seyedeh Sara; Mohammadi, Sepideh; Hafezi, Masoud; Abu Osman, Noor Azuan

    2016-01-01

    The ability of inkjet-based 3D printing (3DP) to fabricate biocompatible ceramics has made it one of the most favorable techniques to generate bone tissue engineering (BTE) scaffolds. Calcium sulfates exhibit various beneficial characteristics, and they can be used as a promising biomaterial in BTE. However, low mechanical performance caused by the brittle character of ceramic materials is the main weakness of 3DP calcium sulfate scaffolds. Moreover, the presence of certain organic matters in the starting powder and binder solution causes products to have high toxicity levels. A post-processing treatment is usually employed to improve the physical, chemical, and biological behaviors of the printed scaffolds. In this study, the effects of heat treatment on the structural, mechanical, and physical characteristics of 3DP calcium sulfate prototypes were investigated. Different microscopy and spectroscopy methods were employed to characterize the printed prototypes. The in vitro cytotoxicity of the specimens was also evaluated before and after heat treatment. Results showed that the as-printed scaffolds and specimens heat treated at 300°C exhibited severe toxicity in vitro but had almost adequate strength. By contrast, the specimens heat treated in the 500°C–1000°C temperature range, although non-toxic, had insufficient mechanical strength, which was mainly attributed to the exit of the organic binder before 500°C and the absence of sufficient densification below 1000°C. The sintering process was accelerated at temperatures higher than 1000°C, resulting in higher compressive strength and less cytotoxicity. An anhydrous form of calcium sulfate was the only crystalline phase existing in the samples heated at 500°C–1150°C. The formation of calcium oxide caused by partial decomposition of calcium sulfate was observed in the specimens heat treated at temperatures higher than 1200°C. Although considerable improvements in cell viability of heat-treated scaffolds

  4. Subcellular stretch-induced cytoskeletal response of single fibroblasts within 3D designer scaffolds.

    PubMed

    Scheiwe, Andrea C; Frank, Stephanie C; Autenrieth, Tatjana J; Bastmeyer, Martin; Wegener, Martin

    2015-03-01

    In vivo, cells are exposed to mechanical forces in many different ways. These forces can strongly influence cell functions or may even lead to diseases. Through their sensing machinery, cells are able to perceive the physical information of the extracellular matrix and translate it into biochemical signals resulting in cellular responses. Here, by virtue of two-component polymer scaffolds made via direct laser writing, we precisely control the cell matrix adhesions regarding their spatial arrangement and size. This leads to highly controlled and uniform cell morphologies, thereby allowing for averaging over the results obtained from several different individual cells, enabling quantitative analysis. We transiently deform these elastic structures by a micromanipulator, which exerts controlled stretching forces on primary fibroblasts grown in these scaffolds on a subcellular level. We find stretch-induced remodeling of both actin cytoskeleton and cell matrix adhesions. The responses to static and periodic stretching are significantly different. The amount of paxillin and phosphorylated focal adhesion kinase increases in cell matrix adhesions at the manipulated pillar after static stretching whereas it decreases after periodic stretching. PMID:25617137

  5. Investigating the potential of electrospun gelatin and collagen scaffolds for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Sisson, Kristin M.

    Electrospinning provides an avenue to explore tissue engineering with the ability to produce nano- and micro-sized fibers in a non-woven construct with properties ideal for a tissue engineered scaffold including: small diameter fibers, which create a large surface to volume ratio, and an interconnected porous network that enables cell migration, good mechanical integrity and a three-dimensional structure. A tissue engineered scaffold also must be biocompatible, biodegradable, non-toxic and able to be sterilized. All of these requirements can be satisfied by choosing an appropriate polymer and solvent system for electrospinning. The main objective of this research is to create a non-toxic, flat, bone tissue engineered scaffold to place into a non-immune compromised mouse. The current bone tissue repair and replacement methodologies include using metal and ceramic replacements or autologous and autogenous bone grafts. Each of these has its own set of disadvantages. Autologous grafts are bone harvested in one location in a patient and used in another location. This procedure is expensive, often results in pain and infection at the replacement site, and the actual harvesting procedure can cause problems for the patient. Autogenous grafts are bone harvested in one patient and used in another patient. The shortcomings include low donor availability and the possibility of rejection of the implant. The other options include using metal and ceramics to create replacement bone. However, metals provide good mechanical stability but can fail due to infection and also have poor integration into natural tissue. Ceramics, on the other hand, are brittle and have very low tensile strength. The natural extracellular matrix (ECM) of bone consists mainly of collagen type I. Electrospun fiber diameters closely resemble those of the natural ECM of bone. Thus, electrospinning a natural polymer like collagen type I for bone tissue engineering could make sense. Applications for these

  6. Label-free nonenzymatic glycation monitoring of collagen scaffolds in type 2 diabetic mice by confocal Raman microspectroscopy

    NASA Astrophysics Data System (ADS)

    Shi, Panpan; Liu, Hanping; Deng, Xiaoyuan; Jin, Ying; Wang, Qiannan; Liu, Hao; Chen, Maosheng; Han, Xue

    2015-02-01

    Collagen is the key target of nonenzymatic glycation during physiopathological processes such as diabetes. The induced changes in the biochemical property of collagen by nonenzymatic glycation remain a major challenge to probe. This study investigated the use of confocal Raman microspectroscopy to label-free monitor the nonenzymatic glycation of collagen scaffolds from type 2 diabetic (T2D) mice at different timepoints (0, 4, 8, and 12 weeks). The glycated collagen scaffolds were obtained through the decellularized dermal matrix method to remove the epidermis layer, subcutaneous tissue, and cells in the dermis and to retain the collagen fibrils. Raman spectra showed no changes in Raman peak positions, which indicated that nonenzymatic glycation could produce no significant changes in the triple-helix structure of collagen in T2D mice. However, the relative intensity of the Raman bands at 921, 1033, 1244, 1274, 1346, 1635, and 1672 cm-1 increased as diabetic time progressed. Correlation analysis suggested that the spectra of these bands had a high positive correlation with the expression of anti-advanced glycation end products obtained by immunofluorescence imaging of the same collagen scaffolds. Confocal Raman microspectroscopy proves a potential tool to label-free monitor the collagen changes caused by nonenzymatic glycation in T2D mice.

  7. Adipogenic Differentiation of Human Adipose-Derived Stem Cells on 3D Silk Scaffolds

    PubMed Central

    Choi, Jennifer H.; Bellas, Evangelia; Vunjak-Novakovic, Gordana

    2014-01-01

    Current treatment modalities for soft tissue defects due to various pathologies and trauma include autologous grafting and the use of commercially available fillers. However, these treatment methods are associated with a number of limitations, such as donor site morbidity and volume loss over time. As such, improved therapeutic options are needed. Tissue engineering techniques offer novel solutions to these problems through development of bioactive tissue constructs that can regenerate adipose tissue with an appropriate structure and function. The recent advances in the derivation and characterization of hASCs have led to numerous studies of soft tissue reconstruction. In this chapter, we discuss methods in which our laboratory has used hASCs and silk scaffolds for adipose tissue engineering. The use of naturally occurring and clinically acceptable materials such as silk protein for tissue-engineering applications poses advantages with respect to biocompatibility and mechanical and biological properties. PMID:21082412

  8. High-resolution direct 3D printed PLGA scaffolds: print and shrink.

    PubMed

    Chia, Helena N; Wu, Benjamin M

    2015-01-01

    Direct three-dimensional printing (3DP) produces the final part composed of the powder and binder used in fabrication. An advantage of direct 3DP is control over both the microarchitecture and macroarchitecture. Prints which use porogen incorporated in the powder result in high pore interconnectivity, uniform porosity, and defined pore size after leaching. The main limitations of direct 3DP for synthetic polymers are the use of organic solvents which can dissolve polymers used in most printheads and limited resolution due to unavoidable spreading of the binder droplet after contact with the powder. This study describes a materials processing strategy to eliminate the use of organic solvent during the printing process and to improve 3DP resolution by shrinking with a non-solvent plasticizer. Briefly, poly(lactic-co-glycolic acid) (PLGA) powder was prepared by emulsion solvent evaporation to form polymer microparticles. The printing powder was composed of polymer microparticles dry mixed with sucrose particles. After printing with a water-based liquid binder, the polymer microparticles were fused together to form a network by solvent vapor in an enclosed vessel. The sucrose is removed by leaching and the resulting scaffold is placed in a solution of methanol. The methanol acts as a non-solvent plasticizer and allows for polymer chain rearrangement and efficient packing of polymer chains. The resulting volumetric shrinkage is ∼80% at 90% methanol. A complex shape (honey-comb) was designed, printed, and shrunken to demonstrate isotropic shrinking with the ability to reach a final resolution of ∼400 μm. The effect of type of alcohol (i.e. methanol or ethanol), concentration of alcohol, and temperature on volumetric shrinking was studied. This study presents a novel materials processing strategy to overcome the main limitations of direct 3DP to produce high resolution PLGA scaffolds. PMID:25514829

  9. The effect of sliding velocity on chondrocytes activity in 3D scaffolds.

    PubMed

    Wimmer, Markus A; Alini, Mauro; Grad, Sibylle

    2009-03-11

    Sliding motion and shear are important mediators for the synthesis of cartilage matrix and surface molecules. This study investigated the effects of velocity magnitude and motion path on the response of bovine chondrocytes cultured in polyurethane scaffolds and subjected to oscillation against a ceramic ball. In order to vary velocity magnitude, the ball oscillated +/-25 degrees at 0.01, 0.1, and 1Hz to generate 0.28, 2.8, and 28mm/s, respectively. The median velocity of these 'open' motion trajectories was tested against 'closed' motion trajectories in that the scaffold oscillated +/-20 degrees against the ball at 1Hz, reaching 2.8mm/s. Constructs were loaded twice a day for 1h over 5 days. Gene expression of cartilage oligomeric matrix protein (COMP), proteoglycan 4 (PRG4, lubricin), and hyaluronan synthase 1 (HAS1) and release of COMP, PRG4, and hyaluronan (HA) were analyzed. Velocity magnitude determined both gene expression and release of target molecules. Using regression analysis, there was a positive and significant relationship with all outcome variables. However, only COMP reacted significantly at 0.28mm/s, while all other measured variables were considerably up-regulated at 28mm/s. Motion path characteristics affected COMP, but not PRG4 and HAS1/HA. To conclude, velocity magnitude is a critical determinant for cellular responses in tissue engineered cartilage constructs. The motion type also plays a role. However, different molecules are affected in different ways. A molecule specific velocity threshold appears necessary to induce a significant response. This should be considered in further studies investigating the effects of continuous or intermittent motion. PMID:19152917

  10. The Effect of 3D Nanofibrous Scaffolds on the Chondrogenesis of Induced Pluripotent Stem Cells and Their Application in Restoration of Cartilage Defects

    PubMed Central

    Liu, Ji; Nie, Huarong; Xu, Zhengliang; Niu, Xin; Guo, Shangchun; Yin, Junhui; Guo, Fei; Li, Gang; Wang, Yang; Zhang, Changqing

    2014-01-01

    The discovery of induced pluripotent stem cells (iPSCs) rendered the reprogramming of terminally differentiated cells to primary stem cells with pluripotency possible and provided potential for the regeneration and restoration of cartilage defect. Chondrogenic differentiation of iPSCs is crucial for their application in cartilage tissue engineering. In this study we investigated the effect of 3D nanofibrous scaffolds on the chondrogenesis of iPSCs and articular cartilage defect restoration. Super-hydrophilic and durable mechanic polycaprolactone (PCL)/gelatin scaffolds were fabricated using two separate electrospinning processes. The morphological structure and mechanical properties of the scaffolds were characterized. The chondrogenesis of the iPSCs in vitro and the restoration of the cartilage defect was investigated using scanning electron microscopy (SEM), the Cell Counting Kit-8 (CCK-8), histological observation, RT-qPCR, and western blot analysis. iPSCs on the scaffolds expressed higher levels of chondrogenic markers than the control group. In an animal model, cartilage defects implanted with the scaffold-cell complex exhibited an enhanced gross appearance and histological improvements, higher cartilage-specific gene expression and protein levels, as well as subchondral bone regeneration. Therefore, we showed scaffolds with a 3D nanofibrous structure enhanced the chondrogenesis of iPSCs and that iPSC-containing scaffolds improved the restoration of cartilage defects to a greater degree than did scaffolds alone in vivo. PMID:25389965

  11. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold.

    PubMed

    Bornes, Troy D; Jomha, Nadr M; Mulet-Sierra, Aillette; Adesida, Adetola B

    2016-03-01

    Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 × 10(6) cells/cm(3). Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing an expansion medium, and seeded within collagen I scaffolds at densities of 50, 10, 5, 1, and 0.5 × 10(6) BMSCs/cm(3). For 3D isolation and expansion, aspirates containing known quantities of mononucleated cells (bone marrow-derived mononucleated cells [BMNCs]) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 × 10(6) BMNCs/cm(3) and cultured in the expansion medium for an equivalent duration to 2D expansion. Constructs were differentiated in vitro in the chondrogenic medium for 21 days and assessed with reverse-transcription quantitative polymerase chain reaction, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two-dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II messenger RNA (mRNA) relative to predifferentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5-10 × 10(6) BMSCs/cm(3). Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5-10 × 10(6) BMSCs/cm(3) based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/deoxyribonucleic acid (DNA). For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II m

  12. Optimal Seeding Densities for In Vitro Chondrogenesis of Two- and Three-Dimensional-Isolated and -Expanded Bone Marrow-Derived Mesenchymal Stromal Stem Cells Within a Porous Collagen Scaffold

    PubMed Central

    Bornes, Troy D.; Jomha, Nadr M.; Mulet-Sierra, Aillette; Adesida, Adetola B.

    2016-01-01

    Bone marrow-derived mesenchymal stromal stem cells (BMSCs) are a promising cell source for treating articular cartilage defects. The objective of this study was to assess the impact of cell seeding density within a collagen I scaffold on in vitro BMSC chondrogenesis following isolation and expansion in two-dimensional (2D) and three-dimensional (3D) environments. It was hypothesized that both expansion protocols would produce BMSCs capable of hyaline-like chondrogenesis with an optimal seeding density of 10 × 106 cells/cm3. Ovine BMSCs were isolated in a 2D environment by plastic adherence, expanded to passage two in flasks containing an expansion medium, and seeded within collagen I scaffolds at densities of 50, 10, 5, 1, and 0.5 × 106 BMSCs/cm3. For 3D isolation and expansion, aspirates containing known quantities of mononucleated cells (bone marrow-derived mononucleated cells [BMNCs]) were seeded on scaffolds at 50, 10, 5, 1, and 0.5 × 106 BMNCs/cm3 and cultured in the expansion medium for an equivalent duration to 2D expansion. Constructs were differentiated in vitro in the chondrogenic medium for 21 days and assessed with reverse-transcription quantitative polymerase chain reaction, safranin O staining, histological scoring using the Bern Score, collagen immunofluorescence, and glycosaminoglycan (GAG) quantification. Two-dimensional-expanded BMSCs seeded at all densities were capable of proteoglycan production and displayed increased expressions of aggrecan and collagen II messenger RNA (mRNA) relative to pre-differentiation controls. Collagen II deposition was apparent in scaffolds seeded at 0.5–10 × 106 BMSCs/cm3. Chondrogenesis of 2D-expanded BMSCs was most pronounced in scaffolds seeded at 5–10 × 106 BMSCs/cm3 based on aggrecan and collagen II mRNA, safranin O staining, Bern Score, total GAG, and GAG/deoxyribonucleic acid (DNA). For 3D-expanded BMSC-seeded scaffolds, increased aggrecan and collagen II mRNA expressions relative to controls were

  13. Using a decellularized splenic matrix as a 3D scaffold for hepatocyte cultivation in vitro: a preliminary trial.

    PubMed

    Zheng, Xing-Long; Xiang, Jun-Xi; Wu, Wan-Quan; Wang, Bo; Liu, Wen-Yan; Gao, Rui; Dong, Ding-Hui; Lv, Yi

    2015-08-01

    Using a decellularized liver matrix (DLM) to reengineer liver tissue is a promising therapy for end-stage liver disease. However, the limited supply of donor organs still hampers its potential clinical application, while a xenogenic decellularized matrix may bring a risk of zoonosis and immunological rejection. Therefore, an appropriate alternative scaffold is needed. In this research, we established a decellularized splenic matrix (DSM) in a rodent model, which preserved the 3D ultrastructure, the components of the extracellular matrix (ECM) and the native vascular network. The DSM and DLM had similar components of ECM, and similar mechanical properties. Hepatocytes were seeded to the DSM and DLM for dynamic culturing up to 6 d, and distributed both in decellularized sinusoidal spaces and around the vessels. The TUNEL-positive cell percentage in a dynamic culturing decellularized splenic matrix (dDSM) was 10.7%  ±  3.6% at 3d and 25.8%  ±  5.6% at 5d, although 14.2%  ±  4.5% and 24.8%  ±  2.9%, respectively, in a dynamic culturing decellularized liver matrix (dDLM) at the same time point (p  >  0.05). Primary hepatocytes in the dDSM and dDLM expressed albumin, G6pc and Ugt1a1. The gene expression of Cyp2b1, Cyp1a2 and HNF1α in the gene transcription level revealed hepatocytes had lower gene expression levels in the dDSM compared with the dDLM at 3d, but better than those in a sandwich culture. The cumulative albumin production at 6 d of culture was 80.7   ±   9.6 μg per million cells in the dDSM and 89.6   ±   4.6 μg per million cells in the dDLM (p  >  0.05). In summary, the DSM is a promising 3D scaffold for hepatocyte cultivation in vitro. PMID:26290516

  14. Effect of Factors Secreted by the Placenta on Phenotype of THP-1 Cells Cultured on a 3D Scaffold.

    PubMed

    Lvova, T Yu; Stepanova, O I; Viazmina, L P; Okorokova, L S; Belyakova, K L; Belikova, M E; Selkov, S A; Sokolov, D I

    2016-05-01

    We studied the effects of secretory products of the placenta obtained from women with normal pregnancy and preeclampsia on the expression of surface markers by THP-1 cells cultured on a 3D Matrigel scaffold. Secretory products of third trimester placentas obtained from women with normal pregnancy reduced the relative number of THP-1 cells expressing CD54 and CD14 molecules and expression of CD14 and CD95 molecules by THP-1 cells in comparison with the effect of secretory products first trimester placentas. In parallel, the intensity of CD49d expression by THP-1 cells increased in the presence of secretory products of third trimester placentas in comparison with the first trimester. No differences in the expression of the studied molecules by THP-1 cells under the effect of placentas from women with physiological pregnancy and patients with preeclampsia were found. PMID:27259498

  15. Layer-by-layer assembly of antibacterial coating on interbonded 3D fibrous scaffolds and its cytocompatibility assessment.

    PubMed

    Tang, Yanwei; Zhao, Yan; Wang, Hongxia; Gao, Yuan; Liu, Xin; Wang, Xungai; Lin, Tong

    2012-08-01

    Bonded fibrous matrices have shown great potential in tissue engineering because of their unique 3D structures and pore characteristics. For some applications, bacterial infections must be taken into account, and antibacterial function is highly desired. In this study, an antibacterial polymer, polyhexamethylene biguanide (PHMB), was applied onto the fiber surface of a bonded poly(ε-caprolactone) (PCL) fibrous matrix with the objective to achieve both strong antibacterial effect and good cell compatibility. The coatings were prepared by using an electrostatic layer-by-layer (LbL) assembly technique, which allowed the control of PHMB loading and coating uniformity on the fiber surface. The PHMB coating provided antibacterial activities, but had no toxicity on mammalian cells. This bonded PCL fibrous matrix with electrostatically self-assembled PHMB may provide a new antiinfective tissue scaffold for various biomedical applications. PMID:22581705

  16. Heat- and pH-induced BSA conformational changes, hydrogel formation and application as 3D cell scaffold.

    PubMed

    Navarra, Giovanna; Peres, Chiara; Contardi, Marco; Picone, Pasquale; San Biagio, Pier Luigi; Di Carlo, Marta; Giacomazza, Daniela; Militello, Valeria

    2016-09-15

    Aggregation and gelation of globular proteins can be an advantage to generate new forms of nanoscale biomaterials based on the fibrillar architecture. Here, we report results obtained by exploiting the proteins' natural tendency to self-organize in 3D network, for the production of new material based on BSA for medical application. In particular, at five different pH values the conformational and structural changes of the BSA during all the steps of the thermal aggregation and gelation have been analyzed by FTIR spectroscopy. The macroscopic mechanical properties of these hydrogels have been obtained by rheological measurements. The microscopic structure of the gels have been studied by AFM and SEM images to have a picture of their different spatial arrangement. Finally, the use of the BSA hydrogels as scaffold has been tested in two different cell cultures. PMID:27480606

  17. Image-based analysis of the internal microstructure of bone replacement scaffolds fabricated by 3D printing

    NASA Astrophysics Data System (ADS)

    Irsen, Stephan H.; Leukers, Barbara; Bruckschen, Björn; Tille, Carsten; Seitz, Hermann; Beckmann, Felix; Müller, Bert

    2006-08-01

    Rapid Prototyping and especially the 3D printing, allows generating complex porous ceramic scaffolds directly from powders. Furthermore, these technologies allow manufacturing patient-specific implants of centimeter size with an internal pore network to mimic bony structures including vascularization. Besides the biocompatibility properties of the base material, a high degree of open, interconnected porosity is crucial for the success of the synthetic bone graft. Pores with diameters between 100 and 500 μm are the prerequisite for vascularization to supply the cells with nutrients and oxygen, because simple diffusion transport is ineffective. The quantification of porosity on the macro-, micro-, and nanometer scale using well-established techniques such as Hg-porosimetry and electron microscopy is restricted. Alternatively, we have applied synchrotron-radiation-based micro computed tomography (SRμCT) to determine the porosity with high precision and to validate the macroscopic internal structure of the scaffold. We report on the difficulties in intensity-based segmentation for nanoporous materials but we also elucidate the power of SRμCT in the quantitative analysis of the pores at the different length scales.

  18. Biofunctionalization of electrospun PCL-based scaffolds with perlecan domain IV peptide to create a 3-D pharmacokinetic cancer model

    PubMed Central

    Hartman, Olga; Zhang, Chu; Adams, Elizabeth L.; Farach-Carson, Mary C.; Petrelli, Nicholas J.; Chase, Bruce D.; Rabolt, John F.

    2010-01-01

    Because prostate cancer cells metastasize to bone and exhibit osteoblastic features (osteomimicry), the interrelationships between bone-specific microenvironment and prostate cancer cells at sites of bone metastasis are critical to disease progression. In this work the bone marrow microenvironment in vitro was recreated both by tailoring scaffolds physical properties and by functionalizing electrospun polymer fibers with a bioactive peptide derived from domain IV of perlecan heparan sulfate proteoglycan. Electrospun poly (ε-caprolactone) (PCL) fibers and PCL/gelatin composite scaffolds were modified covalently with perlecan domain IV (PlnDIV) peptide. The expression of tight junction protein (E-cadherin) and focal adhesion kinase (FAK) phosphorylation on tyrosine 397 also were investigated. The described bioactive motif significantly enhanced adherence and infiltration of the metastatic prostate cancer cells on all modified electrospun substrates by day 5 post-seeding. Cells cultured on PlnDIV-modified matrices organized stress fibers and increased proliferation at statistically significant rates. Additional findings suggest that presence of PlnDIV peptide in the matrix reduced expression of tight junction protein and binding to PlnDIV peptide was accompanied by increased focal adhesion kinase (FAK) phosphorylation on tyrosine 397. We conclude that PlnDIV peptide supports key signaling events leading to proliferation, survival, and migration of C4-2B cancer cells; hence its incorporation into electrospun matrix is a key improvement to create a successful three-dimensional (3-D) pharmacokinetic cancer model. PMID:20417554

  19. Peptide-incorporated 3D porous alginate scaffolds with enhanced osteogenesis for bone tissue engineering.

    PubMed

    Luo, Zuyuan; Yang, Yue; Deng, Yi; Sun, Yuhua; Yang, Hongtao; Wei, Shicheng

    2016-07-01

    Good bioactivity and osteogenesis of three-dimensional porous alginate scaffolds (PAS) are critical for bone tissue engineering. In this work, alginate and bone-forming peptide-1 (BFP-1), derived from bone morphogenetic protein-7 (BMP-7), have been combined together (without carbodiimide chemistry treatment) to develop peptide-incorporated PAS (p-PAS) for promoting bone repairing ability. The mechanical properties and SEM images show no difference between pure PAS and p-PAS. The release kinetics of the labeled peptide with 6-carboxy tetramethyl rhodamine from the PAS matrix suggests that the peptide is released in a relatively sustained manner. In the cell experiment, p-PAS show higher cell adhesion, spreading, proliferation and alkaline phosphatase (ALP) activity than the pristine PAS group, indicating that the BFP-1 released from p-PAS could significantly promote the aggregation and differentiation of osteoblasts, especially at 10μg/mL of trapped peptide concentration (p-PAS-10). Furthermore, p-PAS-10 was implanted into Beagle calvarial defects and bone regeneration was analyzed after 4 weeks. New bone formation was assessed by calcein and Masson's trichrome staining. The data reveal that p-PAS group exhibits significantly enhanced oseto-regenerative capability in vivo. The peptide-modified PAS with promoted bioactivity and osteogenic differentiation in vitro as well as bone formation ability in vivo could be promising tissue engineering materials for repairing and regeneration of bone defects. PMID:27022863

  20. Contact genomics: scaffolding and phasing (meta)genomes using chromosome 3D physical signatures.

    PubMed

    Flot, Jean-François; Marie-Nelly, Hervé; Koszul, Romain

    2015-10-01

    High-throughput DNA sequencing technologies are fuelling an accelerating trend to assemble de novo or resequence the genomes of numerous species as well as to complete unfinished assemblies. While current DNA sequencing technologies remain limited to reading stretches of a few hundreds or thousands of base pairs, experimental and computational methods are continuously improving with the goal of assembling entire genomes from large numbers of short DNA sequences. However, the algorithms that piece together DNA strands face important limitations due, notably, to the presence of repeated sequences or of multiple haplotypes within one genome, thus leaving many assemblies incomplete. Recently, the realization that the physical contacts experienced by a portion of a DNA molecule could be used as a robust and quantitative assay to determine its genomic position has led to the emerging field of contact genomics, which promises to revolutionize current genome assembly approaches by exploiting the flexible polymer properties of chromosomes. Here we review the current applications of contact genomics to genome scaffolding, haplotyping and metagenomic assembly, then outline the future developments we envision. PMID:25935414

  1. Sustained Release of Cx43 Antisense Oligodeoxynucleotides from Coated Collagen Scaffolds Promotes Wound Healing.

    PubMed

    Gilmartin, Daniel J; Soon, Allyson; Thrasivoulou, Christopher; Phillips, Anthony R J; Jayasinghe, Suwan N; Becker, David L

    2016-07-01

    Antisense oligodeoxynucleotides targeting the mRNA of the gap junction protein Cx43 promote tissue repair in a variety of different wounds. Delivery of the antisense drug has most often been achieved by a thermoreversible hydrogel, Pluronic F-127, which is very effective in the short term but does not allow for sustained delivery over several days. For chronic wounds that take a long time to heal, repeated dosing with the drug may be desirable but is not always compatible with conventional treatments such as the weekly changing of compression bandages on venous leg ulcers. Here the coating of collagen scaffolds with antisense oligonucleotides is investigated and a way to provide protection of the oligodeoxynucleotide drug is found in conjunction with sustained release over a 7 d period. This approach significantly reduces the normal foreign body reaction to the scaffold, which induces an increase of Cx43 protein and an inhibition of healing. As a result of the antisense integration into the scaffold, inflammation is reduced with the rate of wound healing and contracture is significantly improved. This coated scaffold approach may be very useful for treating venous leg ulcers and also for providing a sustained release of any other types of oligonucleotide drugs that are being developed. PMID:27253638

  2. Functionalization of a Collagen-Hydroxyapatite Scaffold with Osteostatin to Facilitate Enhanced Bone Regeneration.

    PubMed

    Quinlan, Elaine; Thompson, Emmet M; Matsiko, Amos; O'Brien, Fergal J; López-Noriega, Adolfo

    2015-12-01

    Defects within bones caused by trauma and other pathological complications may often require the use of a range of therapeutics to facilitate tissue regeneration. A number of approaches have been widely utilized for the delivery of such therapeutics via physical encapsulation or chemical immobilization suggesting significant promise in the healing of bone defects. The study focuses on the chemical immobilization of osteostatin, a pentapeptide of the parathyroid hormone (PTHrP107-111), within a collagen-hydroxyapatite scaffold. The chemical attachment method via crosslinking supports as little as 4% release of the peptide from the scaffolds after 21 d whereas non-crosslinking leads to 100% of the peptide being released by as early as 4 d. In vitro characterization demonstrates that this cross-linking method of immobilization supports a pro-osteogenic effect on osteoblasts. Most importantly, when implanted in a critical-sized calvarial defect within a rat, these scaffolds promote significantly greater new bone volume and area compared to nonfunctionalized scaffolds (**p < 0.01) and an empty defect control (***p < 0.001). Collectively, this study suggests that such an approach of chemical immobilization offers greater spatiotemporal control over growth factors and can significantly modulate tissue regeneration. Such a system may be adopted for a range of different proteins and thus offers the potential for the treatment of various complex pathologies that require localized mediation of drug delivery. PMID:26414944

  3. Treatment of penetrating brain injury in a rat model using collagen scaffolds incorporating soluble Nogo receptor.

    PubMed

    Elias, Paul Z; Spector, Myron

    2015-02-01

    Injuries and diseases of the central nervous system (CNS) have the potential to cause permanent loss of brain parenchyma, with severe neurological consequences. Cavitary defects in the brain may afford the possibility of treatment with biomaterials that fill the lesion site while delivering therapeutic agents. This study examined the treatment of penetrating brain injury (PBI) in a rat model with collagen biomaterials and a soluble Nogo receptor (sNgR) molecule. sNgR was aimed at neutralizing myelin proteins that hinder axon regeneration by inducing growth cone collapse. Scaffolds containing sNgR were implanted in the brains of adult rats 1 week after injury and analysed 4 weeks or 8 weeks later. Histological analysis revealed that the scaffolds filled the lesion sites, remained intact with open pores and were infiltrated with cells and extracellular matrix. Immunohistochemical staining demonstrated the composition of the cellular infiltrate to include macrophages, astrocytes and vascular endothelial cells. Isolated regions of the scaffold borders showed integration with surrounding viable brain tissue that included neurons and oligodendrocytes. While axon regeneration was not detected in the scaffolds, the cellular infiltration and vascularization of the lesion site demonstrated a modification of the injury environment with implications for regenerative strategies. PMID:23038669

  4. Novel 3D scaffold with enhanced physical and cell response properties for bone tissue regeneration, fabricated by patterned electrospinning/electrospraying.

    PubMed

    Hejazi, Fatemeh; Mirzadeh, Hamid

    2016-09-01

    Developing three dimensional scaffolds mimicking the nanoscale structure of native extracellular matrix is a key parameter in tissue regeneration. In this study, we aimed to introduce a novel 3D structures composed of nanofibers (NF) and micro particles (MP) and compare their efficiency with 2D nanofibrous scaffold. The conventional nanofibrous PCL scaffolds are 2D mats fabricated by the electrospinning technique, whereas the NF/MP and patterned NF/MP PCL scaffolds are three dimensional structures fabricated by a modified electrospinning/electrospraying technique. The mentioned method was carried out by varying the electrospinning solution parameters and use of a metal mesh as the collector. Detailed fabrication process and morphological properties of the fabricated structures is discussed and porosity, pore size and PBS solution absorption value of the prepared structures are reported. Compared with the 2D structure, 3D scaffolds possessed enhanced porosity and pore size which led to the significant increase in their water uptake capacity. In vitro cell experiments were carried out on the prepared structures by the use of MG-63 osteosarcoma cell line. The fabricated 3D structures offered significantly increased cell attachment, spread and diffusion which were confirmed by SEM analysis. In vitro cytocompatibility assessed by MTT colorimetric assay indicated a continuous cell proliferation over 21 days on the innovative 3D structure, while on 2D mat cell proliferation stopped at early time points. Enhanced osteogenic differentiation of the seeded MG-63 cells on 3D scaffold was confirmed by the remarkable ALP activity together with increased and accelerated calcium deposition on this structure compared to 2D mat. Massive and well distributed bone minerals formed on patterned 3D structure were shown by EDX analysis. In comparison between NF/MP quasi-3D and Patterned NF/MP 3D scaffolds, patterned structures proceeded in all of the above properties. As such, the

  5. The Effect of Mechanical Stimulation on Mineralization in Differentiating Osteoblasts in Collagen-I Scaffolds

    PubMed Central

    Damaraju, Swathi; Matyas, John R.; Rancourt, Derrick E.

    2014-01-01

    Developing a viable and functional bone scaffold in vitro that is capable of surviving and bearing mechanical load in vivo requires an understanding of the cell biology of osteoprogenitor cells, particularly how they are influenced by mechanical stimulation during cell differentiation and maturation. In this study, mechanical load was applied using a modified FlexCell plate to impart confined compression to collagen-I scaffolds seeded with undifferentiated murine embryonic stem cells. The activity, presence, and expression of osteoblast-cadherin (OB-Cad) and connexin-43, as well as various pluripotent and osteogenic markers were examined at 5–30 days of differentiation as cells were stimulated to differentiate to osteoblasts with and without applied mechanical load. Fluorescence recovery after photobleaching, immunofluorescence, viability, von Kossa, and real-time polymerase chain reaction assessments revealed that mechanical prestimulation of this cell-seeded scaffold altered the expression of OB-Cad and connexin-43 and resulted in significant differences in the structure and organization of mineralization present in the collagen matrix. Specifically, cells in gels that were loaded for 40 h after 5 days of differentiation and then left to fully differentiate for 30 days produced a highly structured honeycomb-shaped mineralization in the matrix; an outcome that was previously shown to be indicative of late osteoblast/early osteocyte activity. This study highlights the potential of mechanical load to accelerate differentiation and enhance osteoblast communication and function during the differentiation process, and highlights a time point of cell differentiation within this scaffold to apply load in order to most effectively transduce a mechanical signal. PMID:24851936

  6. Collagen scaffold: a treatment for simulated maternal birth injury in the rat model

    PubMed Central

    Alperin, Marianna; Feola, Andrew; Meyn, Leslie; Duerr, Robert; Abramowitch, Steven; Moalli, Pamela

    2010-01-01

    Objective We sought to determine the impact of a collagen scaffold on the healing response after simulated birth injury in a rodent model. Study design A total of 52 virgin animals were divided into the following groups: control (n = 18), injured untreated (n = 18), and injured treated with porcine small intestinal submucosa (SIS) (n = 16). Histopathology, immunofluorescence of collagens, and vaginal mechanical properties were used to assess the impact of injury and the subsequent healing response. Results Collagen I/V decreased by 44% after birth injury relative to the controls (P = .001). Birth injury resulted in inferior mechanical properties of the vagina with a decrease of 38% in the tangent modulus and 44% in the tensile strength. SIS improved the collagen I/V and I/III ratios by 28% and 46%, respectively, paralleling the trend in the mechanical properties. Conclusion Simulated birth injury negatively affected vaginal biochemical and biomechanical properties long term. SIS treatment mitigated the impact of birth injury by enhancing tissue quality. PMID:20510960

  7. Sol-gel processed mupirocin silica microspheres loaded collagen scaffold: a synergistic bio-composite for wound healing.

    PubMed

    Perumal, Sathiamurthi; Ramadass, Satiesh kumar; Madhan, Balaraman

    2014-02-14

    Development of a bio-composite using synergistic combination is a promising strategy to address various pathological manifestations of acute and chronic wounds. In the present work, we have combined three materials viz., mupirocin as an antimicrobial drug, sol-gel processed silica microsphere as drug carrier for sustained delivery of drug and collagen, an established wound healer as scaffold. The mupirocin-loaded silica microspheres (Mu-SM) and Mu-SM loaded collagen scaffold were characterized for surface morphology, entrapment efficiency and distribution homogeneity, in vitro drug release, water uptake capacity, cell proliferation and antibacterial activity. In vivo wound healing efficacy of the bio-composite was experimented using full thickness excision wound model in Wistar albino rats. The Mu-SM incorporated collagen scaffold showed good in vitro characteristics in terms of better water uptake, sustained drug availability and antimicrobial activity. The wound closure analysis revealed that the complete epithelialisation was observed at 14.2 ± 0.44 days for Mu-SM loaded collagen, whereas this was 17.4 ± 0.44 days and 20.6 ± 0.54 days for collagen and control groups, respectively. Consequently, the synergistic strategy of combining mupirocin-loaded silica microspheres and collagen as a Mu-SM loaded collagen dressing material would be an ideal biomaterial for the treatment of surface wounds, burns and foot ulcers. PMID:24514452

  8. Development of a gene-activated scaffold platform for tissue engineering applications using chitosan-pDNA nanoparticles on collagen-based scaffolds.

    PubMed

    Raftery, Rosanne M; Tierney, Erica G; Curtin, Caroline M; Cryan, Sally-Ann; O'Brien, Fergal J

    2015-07-28

    Biomaterial scaffolds that support cell infiltration and tissue formation can also function as platforms for the delivery of therapeutics such as drugs, proteins, and genes. As burst release of supraphysiological quantities of recombinant proteins can result in adverse side effects, the objective of this study was to explore the potential of a series of collagen-based scaffolds, developed in our laboratory, as gene-activated scaffold platforms with potential in a range of tissue engineering applications. The potential of chitosan, a biocompatible material derived from the shells of crustaceans, as a gene delivery vector was assessed using mesenchymal stem cells (MSCs). A transfection efficiency of >45% is reported which is similar to what is achieved with polyethyleneimine (PEI), a non-viral gold standard vector, without causing cytotoxic side effects. When the optimised chitosan nanoparticles were incorporated into a series of collagen-based scaffolds, sustained transgene expression from MSCs seeded on the scaffolds was maintained for up to 28days and interestingly the composition of the scaffold had an effect on transfection efficiency. These results demonstrate that by simply varying the scaffold composition and the gene (or combinations thereof) chosen; the system has potential for a myriad of therapeutic applications. PMID:25982680

  9. Accuracy of three techniques to determine cell viability in 3D tissues or scaffolds.

    PubMed

    Gantenbein-Ritter, Benjamin; Potier, Esther; Zeiter, Stephan; van der Werf, Marije; Sprecher, Christoph M; Ito, Keita

    2008-12-01

    Several different assays are commonly used to evaluate survival of cells inside tissues or three-dimensional carriers, but their accuracy and reliability have not been evaluated. Here, we compare three methods for cell viability (CV) determination: (i) lactate dehydrogenase (LDH) staining on cryosections, (ii) calcein AM/ethidium homodimer-1 (CaAM/EthH) staining, and (iii) carrier digestion and trypan blue (TB) assay. Living and dead cell populations were generated from bovine chondrocytes and combined to produce approximately 0%, 25%, 50%, 75%, and 100% CV mixtures. CV ratios were measured with TB assay (MIX) before seeding cells into fibrin carriers. CV was then determined using the three methods (n = 5/method). Custom-written macros were used to process LDH- and CaAM/EthH-stained images, and hand counting with hemocytometer was used for the TB method. Absolute error and intraclass correlation (ICC) were used for accuracy and reliability evaluation. All methods estimated CV values close to MIX values. TB method was the most accurate (ICC = 0.99) followed by CaAM/EthH (ICC = 0.98) and LDH (ICC = 0.97). As for absolute quantification of living and dead cells, TB and LDH methods performed well (ICC = 0.75-0.96), whereas CaAM/EthH largely overestimated cell numbers (living, ICC = 0.30; dead, ICC = 0.30). Although TB was the most accurate, LDH and CaAM/EthH provide valuable information on cell shape and spatial distribution of cells in tissue or a scaffold. PMID:18800876

  10. Association of electrospinning with electrospraying: a strategy to produce 3D scaffolds with incorporated stem cells for use in tissue engineering

    PubMed Central

    Braghirolli, Daikelly Iglesias; Zamboni, Fernanda; Acasigua, Gerson AX; Pranke, Patricia

    2015-01-01

    In tissue engineering, a uniform cell occupation of scaffolds is crucial to ensure the success of tissue regeneration. However, this point remains an unsolved problem in 3D scaffolds. In this study, a direct method to integrate cells into fiber scaffolds was investigated by combining the methods of electrospinning of fibers and bioelectrospraying of cells. With the associating of these methods, the cells were incorporated into the 3D scaffolds while the fibers were being produced. The scaffolds containing cells (SCCs) were produced using 20% poly(lactide-co-glycolide) solution for electrospinning and mesenchymal stem cells from deciduous teeth as a suspension for bioelectrospraying. After their production, the SCCs were cultivated for 15 days at 37°C with an atmosphere of 5% CO2. The 3-(4,5-dimethylthiazol- 2-yl)-2,5-diphenyltetrazolium bromide test demonstrated that the cells remained viable and were able to grow between the fibers. Scanning electron microscopy showed the presence of a high number of cells in the structure of the scaffolds and confocal images demonstrated that the cells were able to adapt and spread between the fibers. Histological analysis of the SCCs after 1 day of cultivation showed that the cells were uniformly distributed throughout the thickness of the scaffolds. Some physicochemical properties of the scaffolds were also investigated. SCCs exhibited good mechanical properties, compatible with their handling and further implantation. The results obtained in the present study suggest that the association of electrospinning and bioelectrospraying provides an interesting tool for forming 3D cell-integrated scaffolds, making it a viable alternative for use in tissue engineering. PMID:26316747

  11. Activation of Transcription Factor GAX and Concomitant Downregulation of IL-1β and ERK1/2 Modulate Vascular Smooth Muscle Cell Phenotype in 3D Fibrous Scaffolds.

    PubMed

    Lin, Shigang; Mequanint, Kibret

    2015-09-01

    Since vascular smooth muscle cells (VSMCs) display phenotypic plasticity in response to changing environmental cues, understanding the molecular mechanisms underlying the phenotypic modulation mediated by a three-dimensional (3D) scaffold is important to engineer functional vasculature. Following cell seeding into 3D scaffolds, the synthetic phenotype is desired to enable cells to expand rapidly and produce and assemble extracellular matrix components, but must revert to a quiescent contractile phenotype after tissue fabrication to impart the contractile properties found in native blood vessels. This study shows that 3D electrospun fibrous scaffolds regulate human coronary artery smooth muscle cells (HCASMCs) toward a more synthetic phenotype characterized by reduced contractile markers, such as smooth muscle alpha-actin and calponin. The reduction in contractile markers expression was mediated by endogenously expressed proinflammatory cytokine interleukin-1β (IL-1β). 3D topography transiently induces concomitant upregulation of IL-1β and MAPK ERK1/2 through nuclear factor-κB-dependent signaling pathway. An early burst of expression of IL-1β is essential for suppression of the homeobox transcription factor Gax and related cyclin-dependent kinase inhibitor p21(Cip1), which are key regulators for cells exiting from cell cycle. Our findings provide new insights for understanding signaling mechanisms of HCASMCs in electrospun 3D fibrous scaffolds, which have considerable value for application in vascular tissue engineering. PMID:26041434

  12. RhBMP-2 microspheres-loaded chitosan/collagen scaffold enhanced osseointegration: an experiment in dog.

    PubMed

    Shi, Shanshan; Cheng, Xiangrong; Wang, Jiawei; Zhang, Wei; Peng, Lin; Zhang, Yufeng

    2009-01-01

    The purpose of this study is to develop a novel recombinant human bone morphogenetic protein-2 (rhBMP-2) sustained release scaffold for dental implant osseointegration, and to evaluate the effect of this scaffold on promoting bone formation. RhBMP-2 was encapsulated in the poly-D,L-lactide-co-glycolide (PLGA) biodegradable microspheres, which were subsequently dispersed in a chitosan/collagen composite scaffold. This rhBMP-2 microspheres-loaded scaffold (S-MB) was compared with a chitosan/collagen scaffold without microspheres that directly encapsulated rhBMP-2 (S-B) in vitro and in vivo. The microstructure of the new scaffold was examined with scanning electron microscopy. The release profile of rhBMP-2 in vitro was measured at interval periods. The effect of rhBMP-2 encapsulated scaffolds on enhancing bone formation through implantation in dogs' mandibles was identified by histological examination of the regenerated bone after 4 weeks of implantation. Due to PLGA microspheres being loaded, the S-MB exhibited lower values at porosity and swelling rate, as well as a higher effective release dose than that of the S-B. Bone density, bone-implant contact, and bone-fill values measured from dog experiments demonstrated that the S-MB induced bone regeneration more quickly and was timely substituted by new bone. It was concluded that this sustained carrier scaffold based on microspheres was more effective to induce implant osseointegration. PMID:18667455

  13. Effect of silica and hydroxyapatite mineralization on the mechanical properties and the biocompatibility of nanocomposite collagen scaffolds.

    PubMed

    Heinemann, S; Heinemann, C; Jäger, M; Neunzehn, J; Wiesmann, H P; Hanke, T

    2011-11-01

    A recently established materials concept of biomimetic composites based on silica, collagen, and calcium phosphates was adapted for the preparation of porous scaffolds suitable for tissue engineering applications. Mineralization was achieved by directed nucleation of silica on the templating organic phase during a sol-gel process with or without addition of hydroxyapatite. Both mineral phases (25 wt %, individually or combined in equal shares) influenced the scaffold's morphology at the nanoscale. Enhancement of apparent density and compressive strength was similar for silica or hydroxyapatite mineralization; however the stiffening effect of hydroxyapatite was much higher. All scaffold modifications provided proper conditions for adhesion, proliferation, and osteogenic differentiation of human bone marrow stromal cells. The open porosity allowed cells to migrate throughout the scaffolds while maintaining their viability, both confirmed by MTT staining and confocal laser scanning microscopy. Initial cell distributions were graduated due to collagen mineralization, but balanced out over the cultivation time of 28 days. RT-PCR analyses revealed higher gene expression of ALP but lower expression of BSP II and osteocalcin because of collagen mineralization. The results demonstrate that both silica and hydroxyapatite offer comparable possibilities to tailor mechanical properties of collagen-based scaffolds without being detrimental to in vitro biocompatibility. PMID:21942510

  14. Thermally triggered release of a pro-osteogenic peptide from a functionalized collagen-based scaffold using thermosensitive liposomes.

    PubMed

    López-Noriega, Adolfo; Ruiz-Hernández, Eduardo; Quinlan, Elaine; Storm, Gert; Hennink, Wim E; O'Brien, Fergal J

    2014-08-10

    Collagen is one of the most attractive materials for the development of matrices for tissue engineering, due to its excellent biocompatibility and non-toxic bioresorption. The present work describes a collagen-based externally controlled drug-eluting scaffold which consists of drug encapsulated thermoresponsive liposomes covalently attached to the surface of a functionalized collagen-based scaffold. The model drug used in this work was PTHrP 107-111, a pentapeptide with pro-osteogenic and antiosteoclastic activity. An osteoconductive collagen-hydroxyapatite scaffold, designed specifically for bone repair, was used as a model scaffold. The results demonstrate that it is possible to modify the kinetics of release of the drug from the scaffold with the application of an external thermal stimulus (42°C, 20min). In vitro studies carried out with pre-osteoblastic MC3T3-E1 cells demonstrated that neither the attachment of liposomes to the surface of the scaffolds nor the hyperthermic pulse negatively affected the ability of cells to attach and proliferate on the scaffolds. Importantly, the on-demand release of PTHrP 107-111 had a pro-osteogenic effect, as shown by the enhancement of alkaline phosphatase activity, an early osteogenic marker, which correlated with increased expression of the osteogenic genes osteopontin and osteocalcin. In conclusion, the scaffold-based release system developed in this study has immense potential for tuning the delivery of a diverse range of drugs which can be applied for the regeneration of a variety of tissue types. PMID:24878185

  15. Differences between top-down and bottom-up approaches in mineralizing thick, partially demineralized collagen scaffolds.

    PubMed

    Liu, Yan; Mai, Sui; Li, Nan; Yiu, Cynthia K Y; Mao, Jing; Pashley, David H; Tay, Franklin R

    2011-04-01

    Biominerals exhibit complex hierarchical structures derived from bottom-up self-assembly mechanisms. Type I collagen serves as the building block for mineralized tissues such as bone and dentin. In the present study, 250-300 μm thick, partially demineralized collagen scaffolds exhibiting a gradient of demineralization from the base to surface were mineralized using a classical top-down approach and a non-classical bottom-up approach. The top-down approach involved epitaxial growth over seed crystallites. The bottom-up approach utilized biomimetic analogs of matrix proteins to stabilize amorphous calcium phosphate nanoprecursors and template apatite nucleation and growth within the collagen matrix. Micro-computed tomography and transmission electron microscopy were employed to examine mineral uptake and apatite arrangement within the mineralized collagen matrix. The top-down approach could mineralize only the base of the partially demineralized scaffold, where remnant seed crystallites were abundant. Minimal mineralization was observed along the surface of the scaffold; extrafibrillar mineralization was predominantly observed. Conversely, the entire partially demineralized scaffold, including apatite-depleted collagen fibrils, was mineralized by the bottom-up approach, with evidence of both intrafibrillar and extrafibrillar mineralization. Understanding the different mechanisms involved in these two mineralization approaches is pivotal in adopting the optimum strategy for fabricating novel nanostructured materials in bioengineering research. PMID:21111071

  16. Differences between top-down and bottom-up approaches in mineralizing thick, partially-demineralized collagen scaffolds

    PubMed Central

    Liu, Yan; Mai, Sui; Li, Nan; Yiu, Cynthia K.Y.; Mao, Jing; Pashley, David H.; Tay, Franklin R.

    2010-01-01

    Biominerals exhibit complex hierarchical structures derived from bottom-up self-assembly mechanisms. Type I collagen serves as the building block for mineralized tissues such as bone and dentin. In the present study, 250–300 μm thick, partially-demineralized collagen scaffolds exhibiting a gradient of demineralization from the base to surface were mineralized using a classical top-down approach and a non-classical bottom-up approach. The top-down approach involved epitaxial growth over seed crystallites. The bottom-up approach utilized biomimetic analogs of matrix proteins to stabilize amorphous calcium phosphate nanoprecursors and template apatite nucleation and growth within the collagen matrix. Micro-computed tomography and transmission electron microscopy were employed to examine mineral uptake and apatite arrangement within the mineralized collagen matrix. The top-down approach could only mineralize the base of the partially-demineralized scaffold where remnant seed crystallites were abundant. Minimal mineralization was observed along the surface of the scaffold; extrafibrillar mineralization was predominantly observed. Conversely, the entire partially-demineralized scaffold including apatite-depleted collagen fibrils was mineralized by the bottom-up approach, with evidence of both intrafibrillar and extrafibrillar mineralization. Understanding the different mechanisms involved in these two mineralization approaches is pivotal in adopting the optimum strategy for fabricating novel nanostructured materials in bioengineering research. PMID:21111071

  17. Novel genipin-collagen immobilization of polylactic acid (PLA) fibers for use as tissue engineering scaffolds.

    PubMed

    Tambe, Nisarg; Di, Jin; Zhang, Ze; Bernacki, Susan; El-Shafei, Ahmed; King, Martin W

    2015-08-01

    The material surface plays an important role in the case of biomaterials used as tissue engineering scaffolds. On exposure to a biological environment, extra cellular matrix (ECM) proteins are adsorbed non-specifically onto the surface and cells interact indirectly with the surface through the adsorbed proteins. Most synthetic polymeric biomaterials lack the desirable surface properties for cells as well as have poor cellular adhesion due to their hydrophobic nature. The main objective of this study was to harness surface functionalization technologies to fabricate scaffolds that would be biocompatible and support the adhesion and proliferation of fibroblast cells. The collagen was immobilized on the surface of functionalized PLA via a novel natural cross-linking molecule genipin which resulted in improved cell proliferation of human dermal fibroblasts as compared to the PLA surface coated with collagen without genipin. It is believed that genipin helps reduce steric problems between the functional groups and large protein molecules, and enables immobilized peptide to move more freely in a biological environment. PMID:25308088

  18. Insoluble elastin reduces collagen scaffold stiffness, improves viscoelastic properties, and induces a contractile phenotype in smooth muscle cells.

    PubMed

    Ryan, Alan J; O'Brien, Fergal J

    2015-12-01

    Biomaterials with the capacity to innately guide cell behaviour while also displaying suitable mechanical properties remain a challenge in tissue engineering. Our approach to this has been to utilise insoluble elastin in combination with collagen as the basis of a biomimetic scaffold for cardiovascular tissue engineering. Elastin was found to markedly alter the mechanical and biological response of these collagen-based scaffolds. Specifically, during extensive mechanical assessment elastin was found to reduce the specific tensile and compressive moduli of the scaffolds in a concentration dependant manner while having minimal effect on scaffold microarchitecture with both scaffold porosity and pore size still within the ideal ranges for tissue engineering applications. However, the viscoelastic properties were significantly improved with elastin addition with a 3.5-fold decrease in induced creep strain, a 6-fold increase in cyclical strain recovery, and with a four-parameter viscoelastic model confirming the ability of elastin to confer resistance to long term deformation/creep. Furthermore, elastin was found to result in the modulation of SMC phenotype towards a contractile state which was determined via reduced proliferation and significantly enhanced expression of early (α-SMA), mid (calponin), and late stage (SM-MHC) contractile proteins. This allows the ability to utilise extracellular matrix proteins alone to modulate SMC phenotype without any exogenous factors added. Taken together, the ability of elastin to alter the mechanical and biological response of collagen scaffolds has led to the development of a biomimetic biomaterial highly suitable for cardiovascular tissue engineering. PMID:26431909

  19. Coating of biomaterial scaffolds with the collagen-mimetic peptide GFOGER for bone defect repair.

    PubMed

    Wojtowicz, Abigail M; Shekaran, Asha; Oest, Megan E; Dupont, Kenneth M; Templeman, Kellie L; Hutmacher, Dietmar W; Guldberg, Robert E; García, Andrés J

    2010-03-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the alpha(2)beta(1) integrin receptor involved in osteogenesis. GFOGER coatings passively adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost-effective and facile approach, translatable into a robust clinical therapy for musculoskeletal applications. PMID:20056517

  20. Coating of Biomaterial Scaffolds with the Collagen-Mimetic Peptide GFOGER for Bone Defect Repair

    PubMed Central

    Wojtowicz, Abigail M.; Shekaran, Asha; Oest, Megan E.; Dupont, Kenneth M.; Templeman, Kellie L.; Hutmacher, Dietmar W.; Guldberg, Robert E.; García, Andrés J.

    2009-01-01

    Healing large bone defects and non-unions remains a significant clinical problem. Current treatments, consisting of auto- and allografts, are limited by donor supply and morbidity, insufficient bioactivity and risk of infection. Biotherapeutics, including cells, genes and proteins, represent promising alternative therapies, but these strategies are limited by technical roadblocks to biotherapeutic delivery, cell sourcing, high cost, and regulatory hurdles. In the present study, the collagen-mimetic peptide, GFOGER, was used to coat synthetic PCL scaffolds to promote bone formation in critically-sized segmental defects in rats. GFOGER is a synthetic triple helical peptide that binds to the α2β1 integrin receptor involved in osteogenesis. GFOGER coatings passively-adsorbed onto polymeric scaffolds, in the absence of exogenous cells or growth factors, significantly accelerated and increased bone formation in non-healing femoral defects compared to uncoated scaffolds and empty defects. Despite differences in bone volume, no differences in torsional strength were detected after 12 weeks, indicating that bone mass but not bone quality was improved in this model. This work demonstrates a simple, cell/growth factor-free strategy to promote bone formation in challenging, non-healing bone defects. This biomaterial coating strategy represents a cost effective and facile approach translatable into a robust clinical therapy for musculoskeletal applications. PMID:20056517

  1. Enhancing cell migration in shape-memory alginate-collagen composite scaffolds: In vitro and ex vivo assessment for intervertebral disc repair.

    PubMed

    Guillaume, Olivier; Naqvi, Syeda Masooma; Lennon, Kerri; Buckley, Conor Timothy

    2015-04-01

    Lower lumbar disc disorders pose a significant problem in an aging society with substantial socioeconomic consequences. Both inner tissue (nucleus pulposus) and outer tissue (annulus fibrosus) of the intervertebral disc are affected by such debilitating disorders and can lead to disc herniation and lower back pain. In this study, we developed an alginate-collagen composite porous scaffold with shape-memory properties to fill defects occurring in annulus fibrosus tissue of degenerated intervertebral discs, which has the potential to be administered using minimal invasive surgery. In the first part of this work, we assessed how collagen incorporation on preformed alginate scaffolds influences the physical properties of the final composite scaffold. We also evaluated the ability of annulus fibrosus cells to attach, migrate, and proliferate on the composite alginate-collagen scaffolds compared to control scaffolds (alginate only). In vitro experiments, performed in intervertebral disc-like microenvironmental conditions (low glucose and low oxygen concentrations), revealed that for alginate only scaffolds, annulus fibrosus cells agglomerated in clusters with limited infiltration and migration capacity. In comparison, for alginate-collagen scaffolds, annulus fibrosus cells readily attached and colonized constructs, while preserving their typical fibroblastic-like cell morphology with spreading behavior and intense cytoskeleton expression. In a second part of this study, we investigated the effects of alginate-collagen scaffold when seeded with bone marrow derived mesenchymal stem cells. In vitro, we observed that alginate-collagen porous scaffolds supported cell proliferation and extracellular matrix deposition (collagen type I), with secretion amplified by the local release of transforming growth factor-β3. In addition, when cultured in ex vivo organ defect model, alginate-collagen scaffolds maintained viability of transplanted mesenchymal stem cells for up to 5

  2. Monitoring Fibrous Scaffold Guidance of Three-Dimensional Collagen Organisation Using Minimally-Invasive Second Harmonic Generation

    PubMed Central

    Delaine-Smith, Robin M.; Green, Nicola H.; Matcher, Stephen J.; MacNeil, Sheila; Reilly, Gwendolen C.

    2014-01-01

    The biological and mechanical function of connective tissues is largely determined by controlled cellular alignment and therefore it seems appropriate that tissue-engineered constructs should be architecturally similar to the in vivo tissue targeted for repair or replacement. Collagen organisation dictates the tensile properties of most tissues and so monitoring the deposition of cell-secreted collagen as the construct develops is essential for understanding tissue formation. In this study, electrospun fibres with a random or high degree of orientation, mimicking two types of tissue architecture found in the body, were used to culture human fibroblasts for controlling cell alignment. The minimally-invasive technique of second harmonic generation was used with the aim of monitoring and profiling the deposition and organisation of collagen at different construct depths over time while construct mechanical properties were also determined over the culture period. It was seen that scaffold fibre organisation affected cell migration and orientation up to 21 days which in turn had an effect on collagen organisation. Collagen in random fibrous constructs was deposited in alternating configurations at different depths however a high degree of organisation was observed throughout aligned fibrous constructs orientated in the scaffold fibre direction. Three-dimensional second harmonic generation images showed that deposited collagen was more uniformly distributed in random constructs but aligned constructs were more organised and had higher intensities. The tensile properties of all constructs increased with increasing collagen deposition and were ultimately dictated by collagen organisation. This study highlights the importance of scaffold architecture for controlling the development of well-organised tissue engineered constructs and the usefulness of second harmonic generation imaging for monitoring collagen maturation in a minimally invasive manner. PMID:24587017

  3. Versatile wedge-based system for the construction of unidirectional collagen scaffolds by directional freezing: practical and theoretical considerations.

    PubMed

    Pot, Michiel W; Faraj, Kaeuis A; Adawy, Alaa; van Enckevort, Willem J P; van Moerkerk, Herman T B; Vlieg, Elias; Daamen, Willeke F; van Kuppevelt, Toin H

    2015-04-29

    Aligned unidirectional collagen scaffolds may aid regeneration of those tissues where alignment of cells and extracellular matrix is essential, as for instance in cartilage, nerve bundles, and skeletal muscle. Pores can be introduced by ice crystal formation followed by freeze-drying, the pore architecture reflecting the ice crystal morphology. In this study we developed a wedge-based system allowing the production of a wide range of collagen scaffolds with unidirectional pores by directional freezing. Insoluble type I collagen suspensions were frozen using a custom-made wedge system, facilitating the formation of a horizontal as well as a vertical temperature gradient and providing a controlled solidification area for ice dendrites. The system permitted the growth of aligned unidirectional ice crystals over a large distance (>2.5 cm), an insulator prolonging the freezing process and facilitating the construction of crack-free scaffolds. Unidirectional collagen scaffolds with tunable pore sizes and pore morphologies were constructed by varying freezing rates and suspension media. The versatility of the system was indicated by the construction of unidirectional scaffolds from albumin, poly(vinyl alcohol) (a synthetic polymer), and collagen-polymer blends producing hybrid scaffolds. Macroscopic observations, temperature measurements, and scanning electron microscopy indicated that directed horizontal ice dendrite formation, vertical ice crystal nucleation, and evolutionary selection were the basis of the aligned unidirectional ice crystal growth and, hence, the aligned unidirectional pore structure. In conclusion, a simple, highly adjustable freezing system has been developed allowing the construction of large (hybrid) bioscaffolds with tunable unidirectional pore architecture. PMID:25822583

  4. Bone response to 3D periodic hydroxyapatite scaffolds with and without tailored microporosity to deliver bone morphogenetic protein 2.

    PubMed

    Dellinger, Jennifer G; Eurell, Jo Ann C; Stewart, Matthew; Jamison, Russell D

    2006-02-01

    Three types of model hydroxyapatite (HA) scaffolds were implanted in the metacarpal and metatarsal bones of goats. Scaffolds, consisting of a latticed pattern of rods, were fabricated with a solid freeform fabrication (SFF) technique. All scaffolds contained macropores; some were also fabricated with micropores (5.2 +/- 2.0 microm). Recombinant human bone morphogenetic protein-2 (rhBMP-2) was added to some microporous scaffolds. rhBMP-2 caused increased percent filled with bone tissue compared to microporous scaffolds without rhBMP-2. Lamellar bone in the scaffolds was aligned perpendicular to the long axis of the bone near the junctions of the rods that make up the scaffold but was more random away from the junctions of rods. Microporous scaffolds stained beneath areas of contact with new bone. This staining might indicate either extracellular matrix (ECM) in the rods, byproducts of ECM production, or reaction of cellular products with the scaffold. PMID:16270335

  5. Effects of SiO2 and ZnO doping on mechanical and biological properties of 3D printed TCP scaffolds

    PubMed Central

    Fielding, Gary A.; Bandyopadhyay, Amit; Bose, Susmita

    2011-01-01

    Objectives To evaluate the effects of SiO2 (0.5 wt %) and ZnO (0.25 wt %) dopants on the mechanical and biological properties of tricalcium phosphate (TCP) scaffolds with three dimensionally (3D) interconnected pores. Methods Scaffolds were created with a commercial 3D printer. Post sintering phase analysis was determined by x-ray diffraction. Surface morphology of the scaffolds was examined by field emission electron microscopy. Mechanical strength was evaluated with a screw driven universal testing machine. MTT assay was used for cellular proliferation characteristics and cellular morphology was examined by field emission electron microscopy. Results Addition of dopants into TCP increased the average density of pure TCP from 90.8 ± 0.8% to 94.1 ± 1.6% and retarded the β to α phase transformation at high sintering temperatures, which resulted in up to 2.5 fold increase in compressive strength. In vitro cell-materials interaction studies, carried out using hFOB cells, confirmed that the addition of SiO2 and ZnO to the scaffolds facilitates faster cell proliferation when compared to pure TCP scaffolds. Significance Addition of SiO2 and ZnO dopants to the TCP scaffolds showed increased mechanical strength as well as increased cellular proliferation. PMID:22047943

  6. Assessment of angiogenesis in osseointegration of a silica-collagen biomaterial using 3D-nano-CT.

    PubMed

    Alt, Volker; Kögelmaier, Daniela Vera; Lips, Katrin S; Witt, Vera; Pacholke, Sabine; Heiss, Christian; Kampschulte, Marian; Heinemann, Sascha; Hanke, Thomas; Thormann, Ulrich; Schnettler, Reinhard; Langheinrich, Alexander C

    2011-10-01

    Bony integration of biomaterials is a complex process in which angiogenesis plays a crucial role. We evaluated micro- and nano-CT imaging to demonstrate and quantify neovascularization in bony integration of a biomaterial and to give an image based estimation for the needed resolution for imaging angiogenesis in an animal model of femora defect healing. In 8 rats 5mm full-size defects were created at the left femur that was filled with silica-collagen bone substitute material and internally fixed with plate osteosynthesis. After 6 weeks the femora were infused in situ with Microfil, harvested and scanned for micro-CT (9 μm)(3) and nano-CT (3 μm)(3) imaging. Using those 3D images, the newly formed blood vessels in the area of the biomaterial were assessed and the total vascular volume fraction, the volume of the bone substitute material and the volume of the bone defect were quantitatively characterized. Results were complemented by histology. Differences were statistically assessed using (ANOVA). High-resolution nano-CT demonstrated new blood vessel formation surrounding the biomaterial in all animals at capillary level. Immunohistochemistry confirmed the newly formed blood vessels surrounding the bone substitute material. The mean vascular volume fraction (VVF) around the implant was calculated to be 3.01 ± 0.4%. The VVF was inversely correlated with the volume of the bone substitute material (r=0.8) but not with the dimension of the fracture zone (r=0.3). Nano-CT imaging is feasible for quantitative analysis of angiogenesis during bony integration of biomaterials and a promising tool in this context for the future. PMID:21723963

  7. Effect of collagen-glycosaminoglycan scaffold pore size on matrix mineralization and cellular behavior in different cell types.

    PubMed

    Murphy, Ciara M; Duffy, Garry P; Schindeler, Aaron; O'brien, Fergal J

    2016-01-01

    We have previously examined osteoblast behavior on porous collagen-glycosaminoglycan (CG) scaffolds with a range of mean pore sizes demonstrating superior cell attachment and migration in scaffolds with the largest pores (325 μm). Scaffolds provide a framework for construct development; therefore, it is crucial to identify the optimal pore size for augmented tissue formation. Utilizing the same range of scaffolds (85 μm - 325 μm), this study aimed to examine the effects of mean pore size on subsequent osteoblast differentiation and matrix mineralization, and to understand the mechanism by which pore size influences behavior of different cell types. Consequently, primary mesenchymal stem cells (MSCs) were assessed and their behavior compared to osteoblasts. Results demonstrated that scaffolds with the largest pore size (325 μm) facilitated improved osteoblast infiltration, earlier expression of mature bone markers osteopontin (OPN) and osteocalcin (OCN), and increased mineralization. MSCs responded similarly to osteoblasts whereby cell attachment and scaffold infiltration improved with increasing pore size. However, MSCs showed reduced cell motility, proliferation, and scaffold infiltration compared to osteoblasts. This was associated with differences in the profile of integrin subunits (α2) and collagen receptors (CD44), indicating that osteoblasts have a stronger affinity for CG scaffolds compared to MSCs. In summary, these results reveal how larger pores promote improved cell infiltration, essential for construct development, however the optimal scaffold pore size can be cell type specific. As such, this study highlights a necessity to tailor both scaffold micro-architecture and cell-type when designing constructs for successful bone tissue engineering applications. PMID:26386362

  8. Platelet autologous growth factors decrease the osteochondral regeneration capability of a collagen-hydroxyapatite scaffold in a sheep model

    PubMed Central

    2010-01-01

    Background Current research aims to develop innovative approaches to improve chondral and osteochondral regeneration. The objective of this study was to investigate the regenerative potential of platelet-rich plasma (PRP) to enhance the repair process of a collagen-hydroxyapatite scaffold in osteochondral defects in a sheep model. Methods PRP was added to a new, multi-layer gradient, nanocomposite scaffold that was obtained by nucleating collagen fibrils with hydroxyapatite nanoparticles. Twenty-four osteochondral lesions were created in sheep femoral condyles. The animals were randomised to three treatment groups: scaffold, scaffold loaded with autologous PRP, and empty defect (control). The animals were sacrificed and evaluated six months after surgery. Results Gross evaluation and histology of the specimens showed good integration of the chondral surface in both treatment groups. Significantly better bone regeneration and cartilage surface reconstruction were observed in the group treated with the scaffold alone. Incomplete bone regeneration and irregular cartilage surface integration were observed in the group treated with the scaffold where PRP was added. In the control group, no bone and cartilage defect healing occurred; defects were filled with fibrous tissue. Quantitative macroscopic and histological score evaluations confirmed the qualitative trends observed. Conclusions The hydroxyapatite-collagen scaffold enhanced osteochondral lesion repair, but the combination with platelet growth factors did not have an additive effect; on the contrary, PRP administration had a negative effect on the results obtained by disturbing the regenerative process. In the scaffold + PRP group, highly amorphous cartilaginous repair tissue and poorly spatially organised underlying bone tissue were found. PMID:20875101

  9. A novel collagen/platelet-rich plasma (COL/PRP) scaffold: preparation and growth factor release analysis.

    PubMed

    Zhang, Xiujie; Wang, Jingwei; Ren, Mingguang; Li, Lifeng; Wang, Qingwen; Hou, Xiaohua

    2016-06-01

    Platelet-rich plasma (PRP) has been widely used in clinical practice for more than 20 years because it causes the release of many growth factors. However, the burst release pattern and short release period of PRP have become obstacles to its application. An optimal controllable release system is an urgent need for researchers. This study investigated whether collagen/PRP (COL/PRP) scaffolds can serve as a vehicle for the controllable release of growth factors. We fabricated a novel scaffold that integrates PRP activated by thrombin or collagen into type I collagen. The mechanical properties, cytotoxicity, and transforming growth factor β1 (TGF-β1), platelet derived growth factor (PDGF), fibroblast growth factor (FGF) and vascular endothelial growth factor (VEGF) content were evaluated. Our results demonstrate that the COL/PRP scaffolds were not cytotoxic to L-929 fibroblasts. The PDGF and FGF content in the thrombin group was at a higher level and lasted for a long period of time. Collagen and thrombin played the same role in the release of TGF-β1 and VEGF. These data suggest that the novel COL/PRP scaffolds provide a carrier for the controllable release of growth factors and may be used in tissue- regenerative therapies. PMID:26951554

  10. Polycaprolactone-Coated 3D Printed Tricalcium Phosphate Scaffolds for Bone Tissue Engineering: In Vitro Alendronate Release Behavior and Local Delivery Effect on In Vivo Osteogenesis

    PubMed Central

    2015-01-01

    The aim of this work was to evaluate the effect of in vitro alendronate (AD) release behavior through polycaprolactone (PCL) coating on in vivo bone formation using PCL-coated 3D printed interconnected porous tricalcium phosphate (TCP) scaffolds. Higher AD and Ca2+ ion release was observed at lower pH (5.0) than that at higher pH (7.4). AD and Ca2+ release, surface morphology, and phase analysis after release indicated a matrix degradation dominated AD release caused by TCP dissolution. PCL coating showed its effectiveness for controlled and sustained AD release. Six different scaffold compositions, namely, (i) TCP (bare TCP), (ii) TCP + AD (AD-coated TCP), (iii) TCP + PCL (PCL-coated TCP), (iv) TCP + PCL + AD, (v) TCP + AD + PCL, and (vi) TCP + AD + PCL + AD were tested in the distal femoral defect of Sprague–Dawley rats for 6 and 10 weeks. An excellent bone formation inside the micro and macro pores of the scaffolds was observed from histomorphology. Histomorphometric analysis revealed maximum new bone formation in TCP + AD + PCL scaffolds after 6 weeks. No adverse effect of PCL on bioactivity of TCP and in vivo bone formation was observed. All scaffolds with AD showed higher bone formation and reduced TRAP (tartrate resistant acid phosphatase) positive cells activity compared to bare TCP and TCP coated with only PCL. Bare TCP scaffolds showed the highest TRAP positive cells activity followed by TCP + PCL scaffolds, whereas TCP + AD scaffolds showed the lowest TRAP activity. A higher TRAP positive cells activity was observed in TCP + AD + PCL compared to TCP + AD scaffolds after 6 weeks. Our results show that in vivo local AD delivery from PCL-coated 3DP TCP scaffolds could further induce increased early bone formation. PMID:24826838

  11. SrO- and MgO-doped microwave sintered 3D printed tricalcium phosphate scaffolds: mechanical properties and in vivo osteogenesis in a rabbit model.

    PubMed

    Tarafder, Solaiman; Dernell, William S; Bandyopadhyay, Amit; Bose, Susmita

    2015-04-01

    The presence of interconnected macro pores allows guided tissue regeneration in tissue engineering scaffolds. However, highly porous scaffolds suffer from having poor mechanical strength. Previously, we showed that microwave sintering could successfully be used to improve mechanical strength of macro porous tricalcium phosphate (TCP) scaffolds. This study reports the presence of SrO and MgO as dopants in TCP scaffolds improves mechanical and in vivo biological performance. We have used direct three dimensional printing (3DP) technology for scaffold fabrication. These 3DP scaffolds possessed multiscale porosity, that is, 3D interconnected designed macro pores along with intrinsic micro pores. A significant increase in mechanical strength, between 37 and 41%, was achieved due to SrO and MgO doping in TCP as compared with pure TCP. Maximum compressive strengths of 9.38 ± 1.86 MPa and 12.01 ± 1.56 MPa were achieved by conventional and microwave sintering, respectively, for SrO-MgO-doped 3DP scaffolds with 500 μm designed pores. Histomorphological and histomorphometric analysis revealed a significantly higher osteoid, bone and haversian canal formation induced by the presence of SrO and MgO dopants in 3DP TCP as compared with pure TCP scaffolds when tested in rabbit femoral condyle defect model. Increased osteon and thus enhanced network of blood vessel formation, and osteocalcin expression were observed in the doped TCP scaffolds. Our results show that these 3DP SrO-MgO-doped TCP scaffolds have the potential for early wound healing through accelerated osteogenesis and vasculogenesis. PMID:25045131

  12. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer.

    PubMed

    Wang, Kui; Kievit, Forrest M; Florczyk, Stephen J; Stephen, Zachary R; Zhang, Miqin

    2015-10-12

    Cationic nanoparticles (NPs) for targeted gene delivery are conventionally evaluated using 2D in vitro cultures. However, this does not translate well to corresponding in vivo studies because of the marked difference in NP behavior in the presence of the tumor microenvironment. In this study, we investigated whether prostate cancer (PCa) cells cultured in three-dimensional (3D) chitosan-alginate (CA) porous scaffolds could model cationic NP-mediated gene targeted delivery to tumors in vitro. We assessed in vitro tumor cell proliferation, formation of tumor spheroids, and expression of marker genes that promote tumor malignancy in CA scaffolds. The efficacy of NP-targeted gene delivery was evaluated in PCa cells in 2D cultures, PCa tumor spheroids grown in CA scaffolds, and PCa tumors in a mouse TRAMP-C2 flank tumor model. PCa cells cultured in CA scaffolds grew into tumor spheroids and displayed characteristics of higher malignancy as compared to those in 2D cultures. Significantly, targeted gene delivery was only observed in cells cultured in CA scaffolds, whereas cells cultured on 2D plates showed no difference in gene delivery between targeted and nontarget control NPs. In vivo NP evaluation confirmed targeted gene delivery, indicating that only CA scaffolds correctly modeled NP-mediated targeted delivery in vivo. These findings suggest that CA scaffolds serve as a better in vitro platform than 2D cultures for evaluation of NP-mediated targeted gene delivery to PCa. PMID:26347946

  13. Ectopic bone formation in rapidly fabricated acellular injectable dense collagen-Bioglass hybrid scaffolds via gel aspiration-ejection.

    PubMed

    Miri, Amir K; Muja, Naser; Kamranpour, Neysan O; Lepry, William C; Boccaccini, Aldo R; Clarke, Susan A; Nazhat, Showan N

    2016-04-01

    Gel aspiration-ejection (GAE) has recently been introduced as an effective technique for the rapid production of injectable dense collagen (IDC) gel scaffolds with tunable collagen fibrillar densities (CFDs) and microstructures. Herein, a GAE system was applied for the advanced production and delivery of IDC and IDC-Bioglass(®) (IDC-BG) hybrid gel scaffolds for potential bone tissue engineering applications. The efficacy of GAE in generating mineralizable IDC-BG gels (from an initial 75-25 collagen-BG ratio) produced through needle gauge numbers 8G (3.4 mm diameter and 6 wt% CFD) and 14G (1.6 mm diameter and 14 wt% CFD) was investigated. Second harmonic generation (SHG) imaging of as-made gels revealed an increase in collagen fibril alignment with needle gauge number. In vitro mineralization of IDC-BG gels was confirmed where carbonated hydroxyapatite was detected as early as day 1 in simulated body fluid, which progressively increased up to day 14. In vivo mineralization of, and host response to, acellular IDC and IDC-BG gel scaffolds were further investigated following subcutaneous injection in adult rats. Mineralization, neovascularization and cell infiltration into the scaffolds was enhanced by the addition of BG and at day 21 post injection, there was evidence of remodelling of granulation tissue into woven bone-like tissue in IDC-BG. SHG imaging of explanted scaffolds indicated collagen fibril remodelling through cell infiltration and mineralization over time. In sum, the results suggest that IDC-BG hybrid gels have osteoinductive properties and potentially offer a novel therapeutic approach for procedures requiring the injectable delivery of a malleable and dynamic bone graft that mineralizes under physiological conditions. PMID:26871889

  14. Polyelectrolyte multilayer coating of 3D scaffolds enhances tissue growth and gene delivery: non-invasive and label-free assessment.

    PubMed

    Holmes, Christina; Daoud, Jamal; Bagnaninchi, Pierre O; Tabrizian, Maryam

    2014-04-01

    Layer-by-layer (LbL) deposition is a versatile technique which is beginning to be be explored for inductive tissue engineering applications. Here, it is demonstrated that a polyelectrolyte multilayer film system composed of glycol-chitosan (Glyc-CHI) and hyaluronic acid (HA) can be used to coat 3D micro-fabricated polymeric tissue engineering scaffolds. In order to overcome many of the limitations associated with conventional techniques for assessing cell growth and viability within 3D scaffolds, two novel, real-time, label-free techniques are introduced: impedance monitoring and optical coherence phase microscopy. Using these methods, it is shown that LbL-coated scaffolds support in vitro cell growth and viability for a period of at least two weeks at levels higher than uncoated controls. These polyelectrolyte multilayer coatings are then further adapted for non-viral gene delivery applications via incorporation of DNA carrier lipoplexes. Scaffold-based delivery of the enhanced green fluorescent protein (EGFP) marker gene from these coatings is successfully demonstrated in vitro, achieving a two-fold increase in transfection efficiency compared with control scaffolds. These results show the great potential of Glyc-CHI/HA polyelectrolyte multilayer films for a variety of gene delivery and inductive tissue engineering applications. PMID:24030932

  15. 3D Non-Woven Polyvinylidene Fluoride Scaffolds: Fibre Cross Section and Texturizing Patterns Have Impact on Growth of Mesenchymal Stromal Cells

    PubMed Central

    Schellenberg, Anne; Ross, Robin; Abagnale, Giulio; Joussen, Sylvia; Schuster, Philipp; Arshi, Annahit; Pallua, Norbert; Jockenhoevel, Stefan; Gries, Thomas; Wagner, Wolfgang

    2014-01-01

    Several applications in tissue engineering require transplantation of cells embedded in appropriate biomaterial scaffolds. Such structures may consist of 3D non-woven fibrous materials whereas little is known about the impact of mesh size, pore architecture and fibre morphology on cellular behavior. In this study, we have developed polyvinylidene fluoride (PVDF) non-woven scaffolds with round, trilobal, or snowflake fibre cross section and different fibre crimp patterns (10, 16, or 28 needles per inch). Human mesenchymal stromal cells (MSCs) from adipose tissue were seeded in parallel on these scaffolds and their growth was compared. Initial cell adhesion during the seeding procedure was higher on non-wovens with round fibres than on those with snowflake or trilobal cross sections. All PVDF non-woven fabrics facilitated cell growth over a time course of 15 days. Interestingly, proliferation was significantly higher on non-wovens with round or trilobal fibres as compared to those with snowflake profile. Furthermore, proliferation increased in a wider, less dense network. Scanning electron microscopy (SEM) revealed that the MSCs aligned along the fibres and formed cellular layers spanning over the pores. 3D PVDF non-woven scaffolds support growth of MSCs, however fibre morphology and mesh size are relevant: proliferation is enhanced by round fibre cross sections and in rather wide-meshed scaffolds. PMID:24728045

  16. A synergistic approach to the design, fabrication and evaluation of 3D printed micro and nano featured scaffolds for vascularized bone tissue repair

    NASA Astrophysics Data System (ADS)

    Holmes, Benjamin; Bulusu, Kartik; Plesniak, Michael; Zhang, Lijie Grace

    2016-02-01

    3D bioprinting has begun to show great promise in advancing the development of functional tissue/organ replacements. However, to realize the true potential of 3D bioprinted tissues for clinical use requires the fabrication of an interconnected and effective vascular network. Solving this challenge is critical, as human tissue relies on an adequate network of blood vessels to transport oxygen, nutrients, other chemicals, biological factors and waste, in and out of the tissue. Here, we have successfully designed and printed a series of novel 3D bone scaffolds with both bone formation supporting structures and highly interconnected 3D microvascular mimicking channels, for efficient and enhanced osteogenic bone regeneration as well as vascular cell growth. Using a chemical functionalization process, we have conjugated our samples with nano hydroxyapatite (nHA), for the creation of novel micro and nano featured devices for vascularized bone growth. We evaluated our scaffolds with mechanical testing, hydrodynamic measurements and in vitro human mesenchymal stem cell (hMSC) adhesion (4 h), proliferation (1, 3 and 5 d) and osteogenic differentiation (1, 2 and 3 weeks). These tests confirmed bone-like physical properties and vascular-like flow profiles, as well as demonstrated enhanced hMSC adhesion, proliferation and osteogenic differentiation. Additional in vitro experiments with human umbilical vein endothelial cells also demonstrated improved vascular cell growth, migration and organization on micro-nano featured scaffolds.

  17. A synergistic approach to the design, fabrication and evaluation of 3