Science.gov

Sample records for 3d colloidal crystals

  1. 3-D rare earth-doped colloidal photonic crystals

    NASA Astrophysics Data System (ADS)

    Clara Gonçalves, M.; Fortes, Luis M.; Almeida, Rui M.; Chiasera, Alessandro; Chiappini, Andrea; Ferrari, Maurizio

    2009-07-01

    Three-dimensional photonic bandgap structures have been synthesized by a colloidal/sol-gel route, starting with the self-organization of polystyrene microspheres into opal structures by vertical convective self-assembly, followed by sol-gel infiltration of the interstices with silica or titania doped with Er 3+ and Yb 3+ ions and the removal of the polymeric template by heat treatment. The structural and optical properties of the opals and inverse opals prepared by this method have been studied by scanning electron microscopy and near infra-red spectroscopy. The SEM images show that the photonic crystals contain ordered domains up to ˜600 μm 2. Variable incidence reflectivity spectra have been measured for the opals, infiltrated opals and inverse opals. The corresponding effective refractive indices ( neff) were calculated based on effective-medium approaches. Photoluminescence measurements of the emission of Er 3+ ions at ˜1.5 μm from titania inverse opal structures were performed and are compared with those characteristic of the same ions in bulk titania material in the absence of a photonic bandgap structure.

  2. Multiple Colors Output on Voile through 3D Colloidal Crystals with Robust Mechanical Properties.

    PubMed

    Meng, Yao; Tang, Bingtao; Ju, Benzhi; Wu, Suli; Zhang, Shufen

    2017-01-25

    Distinguished from the chromatic mechanism of dyes and pigments, structural color is derived from physical interactions of visible light with structures that are periodic at the scale of the wavelength of light. Using colloidal crystals with coloring functions for fabrics has resulted in significant improvements compared with chemical colors because the structural color from colloidal crystals bears many unique and fascinating optical properties, such as vivid iridescence and nonphotobleaching. However, the poor mechanical performance of the structural color films cannot meet actual requirements because of the weak point contact of colloidal crystal particles. Herein, we demonstrate in this study the patterning on voile fabrics with high mechanical strength on account of the periodic array lock effect of polymers, and multiple structural color output was simultaneously achieved by a simple two-phase self-assembly method for printing voile fabrics with 3D colloidal crystals. The colored voile fabrics exhibit high color saturation, good mechanical stability, and multiple-color patterns printable. In addition, colloidal crystals are promising potential substitutes for organic dyes and pigments because colloidal crystals are environmentally friendly.

  3. 3D inverted colloidal crystals in realistic cell migration assays for drug screening applications.

    PubMed

    da Silva, Joakim; Lautenschläger, Franziska; Kuo, Cheng-Hwa R; Guck, Jochen; Sivaniah, Easan

    2011-12-01

    Screening drugs for their specific impact on cell mechanics, in addition to targeting adhesion and proteolysis, will be important for successfully moderating migration in infiltrative disorders including cancer metastasis. We present 3D inverted colloidal crystals made of hydrogel as a realistic cell migration assay, where the geometry and stiffness can be set independently to mimic the tissue requirements in question. We show the utility of this 3D assay for drug screening purposes, specifically in contrast to conventional 2D migration studies, by surveying the effects of commonly used cytoskeletal toxins that impact cell mechanics. This assay allows studying large cell numbers for good statistics but at single-cell resolution.

  4. Observation of solid-solid transitions in 3D crystals of colloidal superballs

    NASA Astrophysics Data System (ADS)

    Meijer, Janne-Mieke; Pal, Antara; Ouhajji, Samia; Lekkerkerker, Henk N. W.; Philipse, Albert P.; Petukhov, Andrei V.

    2017-02-01

    Self-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube. In particular, we observe the formation of a plastic crystal phase with translational order and orientational disorder, and the subsequent transformation into rhombohedral crystals. Moreover, we uncover that the phase behaviour is richer than predicted, as we find two distinct rhombohedral crystals with different stacking variants, namely hollow-site and bridge-site stacking. In addition, for slightly softer interactions we observe a solid-solid transition between the two. Our investigation brings us one step closer to ultimately controlling the experimental self-assembly of superballs into functional materials, such as photonic crystals.

  5. Observation of solid–solid transitions in 3D crystals of colloidal superballs

    PubMed Central

    Meijer, Janne-Mieke; Pal, Antara; Ouhajji, Samia; Lekkerkerker, Henk N. W.; Philipse, Albert P.; Petukhov, Andrei V.

    2017-01-01

    Self-organization in anisotropic colloidal suspensions leads to a fascinating range of crystal and liquid crystal phases induced by shape alone. Simulations predict the phase behaviour of a plethora of shapes while experimental realization often lags behind. Here, we present the experimental phase behaviour of superball particles with a shape in between that of a sphere and a cube. In particular, we observe the formation of a plastic crystal phase with translational order and orientational disorder, and the subsequent transformation into rhombohedral crystals. Moreover, we uncover that the phase behaviour is richer than predicted, as we find two distinct rhombohedral crystals with different stacking variants, namely hollow-site and bridge-site stacking. In addition, for slightly softer interactions we observe a solid–solid transition between the two. Our investigation brings us one step closer to ultimately controlling the experimental self-assembly of superballs into functional materials, such as photonic crystals. PMID:28186101

  6. Measuring nonlinear stresses generated by defects in 3D colloidal crystals

    NASA Astrophysics Data System (ADS)

    Lin, Neil Y. C.; Bierbaum, Matthew; Schall, Peter; Sethna, James P.; Cohen, Itai

    2016-11-01

    The mechanical, structural and functional properties of crystals are determined by their defects, and the distribution of stresses surrounding these defects has broad implications for the understanding of transport phenomena. When the defect density rises to levels routinely found in real-world materials, transport is governed by local stresses that are predominantly nonlinear. Such stress fields however, cannot be measured using conventional bulk and local measurement techniques. Here, we report direct and spatially resolved experimental measurements of the nonlinear stresses surrounding colloidal crystalline defect cores, and show that the stresses at vacancy cores generate attractive interactions between them. We also directly visualize the softening of crystalline regions surrounding dislocation cores, and find that stress fluctuations in quiescent polycrystals are uniformly distributed rather than localized at grain boundaries, as is the case in strained atomic polycrystals. Nonlinear stress measurements have important implications for strain hardening, yield and fatigue.

  7. Fabrication of 3-D Photonic Band Gap Crystals Via Colloidal Self-Assembly

    NASA Technical Reports Server (NTRS)

    Subramaniam, Girija; Blank, Shannon

    2005-01-01

    The behavior of photons in a Photonic Crystals, PCs, is like that of electrons in a semiconductor in that, it prohibits light propagation over a band of frequencies, called Photonic Band Gap, PBG. Photons cannot exist in these band gaps like the forbidden bands of electrons. Thus, PCs lend themselves as potential candidates for devices based on the gap phenomenon. The popular research on PCs stem from their ability to confine light with minimal losses. Large scale 3-D PCs with a PBG in the visible or near infra red region will make optical transistors and sharp bent optical fibers. Efforts are directed to use PCs for information processing and it is not long before we can have optical integrated circuits in the place of electronic ones.

  8. Size-Controlled 3D Colloidal Crystals Formed in an Aqueous Suspension of Polystyrene/Polyglycidol Microspheres with Covalently Bound l-DOPA.

    PubMed

    Gosecka, Monika; Slomkowski, Stanislaw; Basinska, Teresa; Chehimi, Mohamed M

    2016-12-06

    Stable three-dimensional colloidal crystals were fabricated in an aqueous suspension of Tris buffer at pH > 8. The basic building blocks of the crystals were submicron-sized polystyrene-polyglycidol core-shell particles (Dn(SEM) = 270 ± 18 nm) with covalently bound 3,4-dihydroxyphenylalanine (l-DOPA). The growth of the crystals was triggered by a thermodynamically favorable arrangement of particles leading to their close packing and by the formation of covalent cross-links between the individual particles. Under alkaline conditions, molecules of l-DOPA are oxidized, which allows their participation in cross-linking, necessary for the stabilization of the formed colloidal crystals. The average size of the fabricated colloidal crystals is determined by their weight, density of the suspending medium, and the energy of their Brownian motion. Crystals generated during the suspension of particles fall down after reaching the critical weight. Therefore, crystals of similar dimensions are deposited at the bottom of the vessel. The described system is the first example of the formation of stable colloidal crystals in a suspension.

  9. Electrohydrodynamically patterned colloidal crystals

    NASA Technical Reports Server (NTRS)

    Hayward, Ryan C. (Inventor); Poon, Hak F. (Inventor); Xiao, Yi (Inventor); Saville, Dudley A. (Inventor); Aksay, Ilhan A. (Inventor)

    2003-01-01

    A method for assembling patterned crystalline arrays of colloidal particles using ultraviolet illumination of an optically-sensitive semiconducting anode while using the anode to apply an electronic field to the colloidal particles. The ultraviolet illumination increases current density, and consequently, the flow of the colloidal particles. As a result, colloidal particles can be caused to migrate from non-illuminated areas of the anode to illuminated areas of the anode. Selective illumination of the anode can also be used to permanently affix colloidal crystals to illuminated areas of the anode while not affixing them to non-illuminated areas of the anode.

  10. Spherical colloidal photonic crystals.

    PubMed

    Zhao, Yuanjin; Shang, Luoran; Cheng, Yao; Gu, Zhongze

    2014-12-16

    CONSPECTUS: Colloidal photonic crystals (PhCs), periodically arranged monodisperse nanoparticles, have emerged as one of the most promising materials for light manipulation because of their photonic band gaps (PBGs), which affect photons in a manner similar to the effect of semiconductor energy band gaps on electrons. The PBGs arise due to the periodic modulation of the refractive index between the building nanoparticles and the surrounding medium in space with subwavelength period. This leads to light with certain wavelengths or frequencies located in the PBG being prohibited from propagating. Because of this special property, the fabrication and application of colloidal PhCs have attracted increasing interest from researchers. The most simple and economical method for fabrication of colloidal PhCs is the bottom-up approach of nanoparticle self-assembly. Common colloidal PhCs from this approach in nature are gem opals, which are made from the ordered assembly and deposition of spherical silica nanoparticles after years of siliceous sedimentation and compression. Besides naturally occurring opals, a variety of manmade colloidal PhCs with thin film or bulk morphology have also been developed. In principle, because of the effect of Bragg diffraction, these PhC materials show different structural colors when observed from different angles, resulting in brilliant colors and important applications. However, this angle dependence is disadvantageous for the construction of some optical materials and devices in which wide viewing angles are desired. Recently, a series of colloidal PhC materials with spherical macroscopic morphology have been created. Because of their spherical symmetry, the PBGs of spherical colloidal PhCs are independent of rotation under illumination of the surface at a fixed incident angle of the light, broadening the perspective of their applications. Based on droplet templates containing colloidal nanoparticles, these spherical colloidal PhCs can be

  11. Equilibrium Shape of Colloidal Crystals.

    PubMed

    Sehgal, Ray M; Maroudas, Dimitrios

    2015-10-27

    Assembling colloidal particles into highly ordered configurations, such as photonic crystals, has significant potential for enabling a broad range of new technologies. Facilitating the nucleation of colloidal crystals and developing successful crystal growth strategies require a fundamental understanding of the equilibrium structure and morphology of small colloidal assemblies. Here, we report the results of a novel computational approach to determine the equilibrium shape of assemblies of colloidal particles that interact via an experimentally validated pair potential. While the well-known Wulff construction can accurately capture the equilibrium shape of large colloidal assemblies, containing O(10(4)) or more particles, determining the equilibrium shape of small colloidal assemblies of O(10) particles requires a generalized Wulff construction technique which we have developed for a proper description of equilibrium structure and morphology of small crystals. We identify and characterize fully several "magic" clusters which are significantly more stable than other similarly sized clusters.

  12. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc.

  13. Clathrate colloidal crystals

    NASA Astrophysics Data System (ADS)

    Lin, Haixin; Lee, Sangmin; Sun, Lin; Spellings, Matthew; Engel, Michael; Glotzer, Sharon C.; Mirkin, Chad A.

    2017-03-01

    DNA-programmable assembly has been used to deliberately synthesize hundreds of different colloidal crystals spanning dozens of symmetries, but the complexity of the achieved structures has so far been limited to small unit cells. We assembled DNA-modified triangular bipyramids (~250-nanometer long edge, 177-nanometer short edge) into clathrate architectures. Electron microscopy images revealed that at least three different structures form as large single-domain architectures or as multidomain materials. Ordered assemblies, isostructural to clathrates, were identified with the help of molecular simulations and geometric analysis. These structures are the most sophisticated architectures made via programmable assembly, and their formation can be understood based on the shape of the nanoparticle building blocks and mode of DNA functionalization.

  14. Colloidal-crystal-assisted patterning of crystalline materials.

    PubMed

    Li, Cheng; Qi, Limin

    2010-04-06

    Colloidal crystals have shown great potential as versatile templates for the fabrication of patterned micro- and nanostructures with complex architectures and novel properties. The patterning of functional crystalline materials in two and three dimensions is essential to the realization of their applications in many technologically important fields. This article highlights some recent progress in the fabrication of 2D and 3D patterned crystalline materials with the assistance of colloidal crystals. By combining a bioinspired synthetic strategy based on a transient amorphous phase with a colloidal-crystal templating method, unique 3D ordered macroporous (3DOM) calcite single crystals can be created. Moreover, patterned arrays of regular ZnO nanopillars with controlled size, shape, and orientation can be fabricated via a facile wet chemical approach by using masks derived from monolayer colloidal crystals (MCC).

  15. 3-D Distribution of Retained Colloids in Unsaturated Porous Media

    NASA Astrophysics Data System (ADS)

    Morales, V. L.; Perez-Reche, F. J.; Holzner, M.; Kinzelbach, W. K.; Otten, W.

    2013-12-01

    It is well accepted that colloid transport processes in porous media differ substantially between water saturated and unsaturated conditions. Differences are frequently ascribed to colloid immobilization by association with interfaces with the gas, as well as to restrictions of the liquid medium through which colloids are transported. Such factors depend on interfacial conditions provided by the water saturation of the porous medium. Yet, the current understanding of the importance of colloid retention at gas interfaces is based on observations of single pores or two-dimensional pore network representations, leaving open the question of their statistical significance when all pores in the medium are considered. In order to address this question, column experiments were performed using a model porous medium of glass beads through which colloidal silver particles were transported for conditions of varying water content. X-ray microtomography was subsequently employed as a non-destructive imaging technique to obtain pore-scale information of the entire column regarding: i) the presence and distribution of the four main locations where colloids can become retained (interfaces with the liquid-solid, gas-liquid and gas-solid, and the bulk liquid), ii) deposition profiles of colloids along the column classified by the available retention location, iii) morphological characteristics of the deposited colloidal aggregates, and iv) channel widths of 3-dimensional pore-water network representations. The results presented provide, for the first time, a direct statistical evaluation on the significance of colloid retention by attachment to the liquid-solid, gas-liquid, gas-solid interfaces, and by straining in the bulk liquid. Additionally, an effective-pore structure characteristic is proposed to improve predictions of mass removal by straining under various water saturations. A) Unsaturated conditions. B) Saturated conditions. Left: Tomograph slice illustrating with false

  16. Predicting crystals of Janus colloids

    NASA Astrophysics Data System (ADS)

    Vissers, Teun; Preisler, Zdeněk; Smallenburg, Frank; Dijkstra, Marjolein; Sciortino, Francesco

    2013-04-01

    We present a numerical study on the phase diagram for a simple model of Janus colloids, including ordered and disordered structures. Using a range of techniques, we generate a set of crystal structures and investigate their relative stability field in the pressure-temperature and temperature-density planes by means of free-energy calculations and thermodynamic integration schemes. We find that despite the Janus colloids' simple architecture, they form stable crystal structures with complicated bond-topologies on an underlying face-centered-cubic or hexagonal-close-packed lattice. In addition, we find a phase consisting of wrinkled bilayer sheets, competing with both the fluid and the crystal phases. We detect a metastable gas-liquid coexistence which displays a micellization-driven re-entrant behavior.

  17. Colloidal and polyelectrolyte inks for direct-write assembly of 3D periodic structures

    NASA Astrophysics Data System (ADS)

    Gratson, Gregory Michael

    Novel inks were developed for the direct-write assembly of 3D periodic structures with varying feature size. Specifically, two ink designs were pursued: (1) a model colloidal ink (feature size > 100 mum) and (2) a polyelectrolyte ink (feature size ˜ 1 mum). The rheological properties of both inks were specifically tailored for our direct-write assembly process, which involves ink deposition through a fine scale nozzle that is robotically controlled using a 3-axis stage. Central to this approach is the design of inks that are capable of flowing through deposition nozzles of varying size and then "setting" immediately to facilitate shape retention of the deposited features. In addition, the inks must contain a high solid volume fraction to minimize drying-induced shrinkage after assembly is complete. First, a model colloidal ink based on monodisperse silica microspheres was designed for 3D periodic structures. These colloidal inks suffer difficulties (e.g., nozzle clogging) when used to fabricate structures with feature sizes below ˜ 100 mum, so a different ink design was pursued based on polyelectrolyte complexes. These inks rapidly solidified upon deposition into an IPA/water coagulation reservoir, and the exact coagulation mechanism depended strongly on reservoir composition. The water/IPA ratio in the reservoir (83--88 % IPA) was carefully tailored to produce filaments that could maintain their shape while spanning unsupported regions in the structure, yet were flexible enough to adhere to the substrate or underlying layers. Several micro-periodic structures of varying design were fabricated, revealing the facile nature of our approach. 3D micro-periodic scaffolds were used to create photonic crystals with high refractive index contrast. Silica chemical vapor deposition was performed under ambient conditions to produce a thin inorganic layer around the polymer, which facilitated further high-temperature steps. The polymer was removed through burnout at 475

  18. Nanostructured colloidal crystals from forced hydrolysis methods.

    PubMed

    Otal, Eugenio H; Granada, Mara; Troiani, Horacio E; Cánepa, Horacio; Walsöe de Reca, Noemí E

    2009-08-18

    In this work, an original route for ZnO nanostructured spherical colloids and their assembly into colloidal crystals are presented. The temporal evolution of crystal size and shape was followed by X-ray diffraction and the colloids size distribution by scanning electron microscopy. These spherical colloids showed a change in their size dispersion with aging time. Early stage suspensions, with a narrow size distribution, were settled to the bottom and dried with a slow evaporation rate to obtain colloidal crystals. This original route provides a new material for future applications in opalline photonic crystals, with a dielectric constant higher than that of classical materials (silica and latex). Moreover, this route means an improvement of previously reported data from the literature since it involves a one-pot strategy and room-temperature colloid assembly.

  19. Measuring heterogenous stress fields in a 3D colloidal glass

    NASA Astrophysics Data System (ADS)

    Lin, Neil; Bierbaum, Matthew; Bi, Max; Sethna, James; Cohen, Itai

    Glass in our common experience is hard and fragile. But it still bends, yields, and flows slowly under loads. The yielding of glass, a well documented yet not fully understood flow behavior, is governed by the heterogenous local stresses in the material. While resolving stresses at the atomic scale is not feasible, measurements of stresses at the single particle level in colloidal glasses, a widely used model system for atomic glasses, has recently been made possible using Stress Assessment from Local Structural Anisotropy (SALSA). In this work, we use SALSA to visualize the three dimensional stress network in a hard-sphere glass during start-up shear. By measuring the evolution of this stress network we identify local-yielding. We find that these local-yielding events often require only minimal structural rearrangement and as such have most likely been ignored in previous analyses. We then relate these micro-scale yielding events to the macro-scale flow behavior observed using bulk measurements.

  20. Exotic crystal superstructures of colloidal crystals in confinement.

    PubMed

    Fontecha, Ana Barreira; Schöpe, Hans Joachim

    2008-06-01

    Colloidal model systems have been used for over three decades for investigating liquids, crystals, and glasses. Colloidal crystal superstructures have been observed in binary systems of repulsive spheres as well as oppositely charged sphere systems showing structures well known from atomic solids. In this work we study the structural transition of colloidal crystals under confinement. In addition to the known sequence of crystalline structures, crystal superstructures with dodecagonal and hexagonal symmetry are observed in one component systems. These structures have no atomic counterpart.

  1. Crystallization of DNA-coated colloids

    PubMed Central

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-01-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids. PMID:26078020

  2. Crystallization of DNA-coated colloids

    NASA Astrophysics Data System (ADS)

    Wang, Yu; Wang, Yufeng; Zheng, Xiaolong; Ducrot, Étienne; Yodh, Jeremy S.; Weck, Marcus; Pine, David J.

    2015-06-01

    DNA-coated colloids hold great promise for self-assembly of programmed heterogeneous microstructures, provided they not only bind when cooled below their melting temperature, but also rearrange so that aggregated particles can anneal into the structure that minimizes the free energy. Unfortunately, DNA-coated colloids generally collide and stick forming kinetically arrested random aggregates when the thickness of the DNA coating is much smaller than the particles. Here we report DNA-coated colloids that can rearrange and anneal, thus enabling the growth of large colloidal crystals from a wide range of micrometre-sized DNA-coated colloids for the first time. The kinetics of aggregation, crystallization and defect formation are followed in real time. The crystallization rate exhibits the familiar maximum for intermediate temperature quenches observed in metallic alloys, but over a temperature range smaller by two orders of magnitude, owing to the highly temperature-sensitive diffusion between aggregated DNA-coated colloids.

  3. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  4. Reduction of thermal conductivity by nanoscale 3D phononic crystal.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal.

  5. 3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography.

    PubMed

    Ulmeanu, M; Grubb, M P; Jipa, F; Quignon, B; Ashfold, M N R

    2015-06-01

    We report a comprehensive study of laser-initiated, liquid-assisted colloidal (LILAC) lithography, and illustrate its utility in patterning silicon substrates. The method combines single shot laser irradiation (frequency doubled Ti-sapphire laser, 50fs pulse duration, 400nm wavelength) and medium-tuned optical near-field effects around arrays of silica colloidal particles to achieve 3-D surface patterning of silicon. A monolayer (or multilayers) of hexagonal close packed silica colloidal particles act as a mask and offer a route to liquid-tuned optical near field enhancement effects. The resulting patterns are shown to depend on the difference in refractive index of the colloidal particles (ncolloid) and the liquid (nliquid) in which they are immersed. Two different topographies are demonstrated experimentally: (a) arrays of bumps, centred beneath the original colloidal particles, when using liquids with nliquidcolloidal particles, and bumps when using liquids with nliquid>ncolloid - and explained with the aid of complementary Mie scattering simulations. The LILAC lithography technique has potential for rapid, large area, organized 3-D patterning of silicon (and related) substrates.

  6. Hybrid colloidal plasmonic-photonic crystals.

    PubMed

    Romanov, Sergei G; Korovin, Alexander V; Regensburger, Alois; Peschel, Ulf

    2011-06-17

    We review the recently emerged class of hybrid metal-dielectric colloidal photonic crystals. The hybrid approach is understood as the combination of a dielectric photonic crystal with a continuous metal film. It allows to achieve a strong modification of the optical properties of photonic crystals by involving the light scattering at electronic excitations in the metal component into moulding of the light flow in series to the diffraction resonances occurring in the body of the photonic crystal. We consider different realizations of hybrid plasmonic-photonic crystals based on two- and three-dimensional colloidal photonic crystals in association with flat and corrugated metal films. In agreement with model calculations, different resonance phenomena determine the optical response of hybrid crystals leading to a broadly tuneable functionality of these crystals.

  7. 3D imaging of semiconductor colloid nanocrystals: on the way to nanodiagnostics of track membranes

    NASA Astrophysics Data System (ADS)

    Kulyk, S. I.; Eremchev, I. Y.; Gorshelev, A. A.; Naumov, A. V.; Zagorsky, D. L.; Kotova, S. P.; Volostnikov, V. G.; Vorontsov, E. N.

    2016-12-01

    The work concerns the feasibility of 3D optical diagnostic of porous media with subdifraction spatial resolution via epi-luminescence microscopy of single semiconductor colloid nanocrystals (quantum dots, QD) CdSe/ZnS used as emitting labels/nanoprobes. The nanoprecise reconstruction of axial coordinate is provided by double helix technique of point spread function transformation (DH-PSF). The results of QD localization in polycarbonate track membrane (TM) is presented.

  8. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing

    NASA Astrophysics Data System (ADS)

    Aristov, Andrey I.; Manousidaki, Maria; Danilov, Artem; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.

    2016-05-01

    We explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (>2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*104 deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology.

  9. 3D plasmonic crystal metamaterials for ultra-sensitive biosensing

    PubMed Central

    Aristov, Andrey I.; Manousidaki, Maria; Danilov, Artem; Terzaki, Konstantina; Fotakis, Costas; Farsari, Maria; Kabashin, Andrei V.

    2016-01-01

    We explore the excitation of plasmons in 3D plasmon crystal metamaterials and report the observation of a delocalized plasmon mode, which provides extremely high spectral sensitivity (>2600 nm per refractive index unit (RIU) change), outperforming all plasmonic counterparts excited in 2D nanoscale geometries, as well as a prominent phase-sensitive response (>3*104 deg. of phase per RIU). Combined with a large surface for bioimmobilization provided by the 3D matrix, the proposed sensor architecture promises a new important landmark in the advancement of plasmonic biosensing technology. PMID:27151104

  10. Three-dimensional ultrasonic colloidal crystals

    NASA Astrophysics Data System (ADS)

    Caleap, Mihai; Drinkwater, Bruce W.

    2016-05-01

    Colloidal assembly represents a powerful method for the fabrication of functional materials. In this article, we describe how acoustic radiation forces can guide the assembly of colloidal particles into structures that serve as microscopic elements in novel acoustic metadevices or act as phononic crystals. Using a simple three-dimensional orthogonal system, we show that a diversity of colloidal structures with orthorhombic symmetry can be assembled with megahertz-frequency (MHz) standing pressure waves. These structures allow rapid tuning of acoustic properties and provide a new platform for dynamic metamaterial applications.

  11. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  12. Anisotropic elasticity of experimental colloidal Wigner crystals.

    PubMed

    Russell, Emily R; Spaepen, Frans; Weitz, David A

    2015-03-01

    Colloidal particles interacting via a long-range repulsion can, in contrast to hard-sphere systems, exhibit crystalline ordering at low volume fraction. Here we experimentally investigate the structure and properties of such "colloidal Wigner crystals." We find a body-centered-cubic crystalline phase at volume fractions of ϕ≳15%, which exhibits large fluctuations of individual particles from their average positions. We determine the three independent crystalline elastic constants and find that these crystals are very compliant and highly anisotropic.

  13. Collective sliding states for colloidal molecular crystals

    SciTech Connect

    Reichhardt, Charles; Reichhardt, Cynthia

    2008-01-01

    We study the driving of colloidal molecular crystals over periodic substrates such as those created with optical traps. The n-merization that occurs in the colloidal molecular crystal states produces a remarkably rich variety of distinct dynamical behaviors, including polarization effects within the pinned phase and the formation of both ordered and disordered sliding phases. Using computer simulations, we map the dynamic phase diagrams as a function of substrate strength for dimers and trimers on a triangular substrate, and correlate features on the phase diagram with transport signatures.

  14. Acoustically trapped colloidal crystals that are reconfigurable in real time.

    PubMed

    Caleap, Mihai; Drinkwater, Bruce W

    2014-04-29

    Photonic and phononic crystals are metamaterials with repeating unit cells that result in internal resonances leading to a range of wave guiding and filtering properties and are opening up new applications such as hyperlenses and superabsorbers. Here we show the first, to our knowledge, 3D colloidal phononic crystal that is reconfigurable in real time and demonstrate its ability to rapidly alter its frequency filtering characteristics. Our reconfigurable material is assembled from microspheres in aqueous solution, trapped with acoustic radiation forces. The acoustic radiation force is governed by an energy landscape, determined by an applied high-amplitude acoustic standing wave field, in which particles move swiftly to energy minima. This creates a colloidal crystal of several milliliters in volume with spheres arranged in an orthorhombic lattice in which the acoustic wavelength is used to control the lattice spacing. Transmission acoustic spectroscopy shows that the new colloidal crystal behaves as a phononic metamaterial and exhibits clear band-pass and band-stop frequencies which are adjusted in real time.

  15. Biaxial ferromagnetic liquid crystal colloids

    PubMed Central

    Liu, Qingkun; Ackerman, Paul J.; Lubensky, Tom C.; Smalyukh, Ivan I.

    2016-01-01

    The design and practical realization of composite materials that combine fluidity and different forms of ordering at the mesoscopic scale are among the grand fundamental science challenges. These composites also hold a great potential for technological applications, ranging from information displays to metamaterials. Here we introduce a fluid with coexisting polar and biaxial ordering of organic molecular and magnetic colloidal building blocks exhibiting the lowest symmetry orientational order. Guided by interactions at different length scales, rod-like organic molecules of this fluid spontaneously orient along a direction dubbed “director,” whereas magnetic colloidal nanoplates order with their dipole moments parallel to each other but pointing at an angle to the director, yielding macroscopic magnetization at no external fields. Facile magnetic switching of such fluids is consistent with predictions of a model based on competing actions of elastic and magnetic torques, enabling previously inaccessible control of light. PMID:27601668

  16. Large Area Printing of 3D Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Watkins, James J.; Beaulieu, Michael R.; Hendricks, Nicholas R.; Kothari, Rohit

    2014-03-01

    We have developed a readily scalable print, lift, and stack approach for producing large area, 3D photonic crystal (PC) structures. UV-assisted nanoimprint lithography (UV-NIL) was used to pattern grating structures comprised of highly filled nanoparticle polymer composite resists with tune-able refractive indices (RI). The gratings were robust and upon release from a support substrate were oriented and stacked to yield 3D PCs. The RI of the composite resists was tuned between 1.58 and 1.92 at 800 nm while maintaining excellent optical transparency. The grating structure dimensions, line width, depth, and pitch, were easily varied by simply changing the imprint mold. For example, a 6 layer log-pile stack was prepared using a composite resist a RI of 1.72 yielding 72 % reflection at 900 nm. The process is scalable for roll-to-roll (R2R) production. Center for Hierarchical Manufacturing - an NSF Nanoscale Science and Engineering Center.

  17. Restricted Defect Dynamics in Colloidal Peanut Crystals

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Lee, Stephanie; John, Bettina; Wolfgang, Angie; Liddell, Chekesha; Escobedo, Fernando; Cohen, Itai

    2008-03-01

    We report that monolayers of hard peanut-shaped colloidal particles consisting of two connected spherical lobes order into a crystalline phase at high area fractions. In this ``lobe-close-packed'' (LCP) crystal, the peanut particle lobes occupy triangular lattice sites, much like close-packed spheres, while the connections between lobe pairs are randomly oriented, uniformly populating the three crystalline directions of the underlying lattice. Using optical microscopy, we directly observe defect nucleation and dynamics in sheared LCP crystals. We find that many particle configurations form obstacles blocking dislocation glide. Consequently, in stark contrast to colloidal monolayers of close-packed spheres, single dislocation pair nucleation is not the only significant energetic barrier to relieving an imposed shear strain. Dislocation propagation beyond such obstructions can proceed only through additional mechanisms such as dislocation reactions. We discuss the implications of such restricted defect mobility for the plasticity of LCP crystals.

  18. Restricted Defect Dynamics in Colloidal Peanut Crystals

    NASA Astrophysics Data System (ADS)

    Gerbode, Sharon; Lee, Stephanie; John, Bettina; Wolfgang, Angie; Liddell, Chakesha; Escobedo, Fernando; Cohen, Itai

    2008-03-01

    We report that monolayers of hard peanut-shaped colloidal particles consisting of two connected spherical lobes order into a crystalline phase at high area fractions. In this ``lobe- close-packed'' (LCP) crystal, the peanut particle lobes occupy triangular lattice sites, much like close-packed spheres, while the connections between lobe pairs are randomly oriented, uniformly populating the three crystalline directions of the underlying lattice. Using optical microscopy, we directly observe defect nucleation and dynamics in sheared LCP crystals. We find that many particle configurations form obstacles blocking dislocation glide. Consequently, in stark contrast to colloidal monolayers of close-packed spheres, single dislocation pair nucleation is not the only significant energetic barrier to relieving an imposed shear strain. Dislocation propagation beyond such obstructions can proceed only through additional mechanisms such as dislocation reactions. We discuss the implications of such restricted defect mobility for the plasticity of LCP crystals.

  19. 3-D phononic crystals with ultra-wide band gaps

    PubMed Central

    Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit

    2017-01-01

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions. PMID:28233812

  20. 3-D phononic crystals with ultra-wide band gaps

    NASA Astrophysics Data System (ADS)

    Lu, Yan; Yang, Yang; Guest, James K.; Srivastava, Ankit

    2017-02-01

    In this paper gradient based topology optimization (TO) is used to discover 3-D phononic structures that exhibit ultra-wide normalized all-angle all-mode band gaps. The challenging computational task of repeated 3-D phononic band-structure evaluations is accomplished by a combination of a fast mixed variational eigenvalue solver and distributed Graphic Processing Unit (GPU) parallel computations. The TO algorithm utilizes the material distribution-based approach and a gradient-based optimizer. The design sensitivity for the mixed variational eigenvalue problem is derived using the adjoint method and is implemented through highly efficient vectorization techniques. We present optimized results for two-material simple cubic (SC), body centered cubic (BCC), and face centered cubic (FCC) crystal structures and show that in each of these cases different initial designs converge to single inclusion network topologies within their corresponding primitive cells. The optimized results show that large phononic stop bands for bulk wave propagation can be achieved at lower than close packed spherical configurations leading to lighter unit cells. For tungsten carbide - epoxy crystals we identify all angle all mode normalized stop bands exceeding 100%, which is larger than what is possible with only spherical inclusions.

  1. Preparation of iridescent colloidal crystal coatings with variable structural colors.

    PubMed

    Cong, Hailin; Yu, Bing; Wang, Shaopeng; Qi, Limin; Wang, Jilei; Ma, Yurong

    2013-07-29

    Iridescent colloidal crystal coatings with variable structural colors were fabricated by incorporating carbon black nanoparticles (CB-NPs) into the voids of polystyrene (PS) colloidal crystals. The structural color of the colloid crystal coatings was not only greatly enhanced after the composition but also varied with observation angles. By changing the diameter of monodisperse PS colloids in the composites, colloidal crystal coatings with three primary colors for additive or subtractive combination were obtained. After incorporation of the PS/CB-NPs hybrid coatings into polydimethylsiloxane (PDMS) matrix, manmade opal jewelry with variable iridescent colors was made facilely.

  2. Crystal nucleation of colloidal hard dumbbells.

    PubMed

    Ni, Ran; Dijkstra, Marjolein

    2011-01-21

    Using computer simulations, we investigate the homogeneous crystal nucleation in suspensions of colloidal hard dumbbells. The free energy barriers are determined by Monte Carlo simulations using the umbrella sampling technique. We calculate the nucleation rates for the plastic crystal and the aperiodic crystal phase using the kinetic prefactor as determined from event driven molecular dynamics simulations. We find good agreement with the nucleation rates determined from spontaneous nucleation events observed in event driven molecular dynamics simulations within error bars of one order of magnitude. We study the effect of aspect ratio of the dumbbells on the nucleation of plastic and aperiodic crystal phases, and we also determine the structure of the critical nuclei. Moreover, we find that the nucleation of the aligned close-packed crystal structure is strongly suppressed by a high free energy barrier at low supersaturations and slow dynamics at high supersaturations.

  3. Colloidal cholesteric liquid crystal in spherical confinement

    PubMed Central

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-01-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter. PMID:27561545

  4. Colloidal cholesteric liquid crystal in spherical confinement

    NASA Astrophysics Data System (ADS)

    Li, Yunfeng; Jun-Yan Suen, Jeffrey; Prince, Elisabeth; Larin, Egor M.; Klinkova, Anna; Thérien-Aubin, Héloïse; Zhu, Shoujun; Yang, Bai; Helmy, Amr S.; Lavrentovich, Oleg D.; Kumacheva, Eugenia

    2016-08-01

    The organization of nanoparticles in constrained geometries is an area of fundamental and practical importance. Spherical confinement of nanocolloids leads to new modes of packing, self-assembly, phase separation and relaxation of colloidal liquids; however, it remains an unexplored area of research for colloidal liquid crystals. Here we report the organization of cholesteric liquid crystal formed by nanorods in spherical droplets. For cholesteric suspensions of cellulose nanocrystals, with progressive confinement, we observe phase separation into a micrometer-size isotropic droplet core and a cholesteric shell formed by concentric nanocrystal layers. Further confinement results in a transition to a bipolar planar cholesteric morphology. The distribution of polymer, metal, carbon or metal oxide nanoparticles in the droplets is governed by the nanoparticle size and yields cholesteric droplets exhibiting fluorescence, plasmonic properties and magnetic actuation. This work advances our understanding of how the interplay of order, confinement and topological defects affects the morphology of soft matter.

  5. Controlled synthesis of monodispersed AgGaS{sub 2} 3D nanoflowers and the shape evolution from nanoflowers to colloids

    SciTech Connect

    Yuan, Yanping; Zai, Jiantao; Su, Yuezeng; Qian, Xuefeng

    2011-05-15

    Monodispersed AgGaS{sub 2} three-dimensional (3D) nanoflowers have been successfully synthesized in a 'soft-chemical' system with the mixture of 1-octyl alcohol and cyclohexane as reaction medium and oleylamine as surfactant. The crystal phase, morphology and chemical composition of the as-prepared products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM), and high-resolution TEM (HTEM), respectively. Results reveal that the as-synthesized AgGaS{sub 2} nanoflowers are in tetragonal structure with 3D flower-like shape. Controlled experiments demonstrated that the shape transformation of AgGaS{sub 2} nanocrystals from 3D nanoflowers (50 nm) to nanoparticles (10-20 nm) could be readily realized by tuning the reaction parameters, e.g., the ratio of octanol to cyclohexane, the length of carbon chain of fatty alcohol, the concentration of oleylamine, etc. The UV-vis and PL spectra of the obtained AgGaS{sub 2} nanoflowers and colloids were researched. In addition, the photoelectron energy conversion (SPV) of AgGaS{sub 2} nanoflowers was further researched by the surface photovoltage spectra. -- Graphical abstract: Various AgGaS{sub 2} nanocrystals with different morphologies and sizes including 3D nanoflowers (a) and colloids (b) were synthesized in mixed solvent reaction system and their PL spectra was researched (c). Display Omitted highlights: > Ternary chalcogenide AgGaS{sub 2} nanocrystals were synthesized in a simple mixed solvent system. > The shape and size transformation of AgGaS{sub 2} from 3D nanoflowers to colloids could be tuned effectively. > AgGaS{sub 2} nanoflowers was obtained with relatively insufficient ligands protection in reaction system, otherwise, AgGaS{sub 2} colloids was obtained. > Provide a new choice to prepare ternary nanomaterials and further understand the reaction mechanisms along with the growth kinetics of ternary nanocrystals.

  6. 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction.

    PubMed

    Verrier, Nicolas; Fournier, Corinne; Fournel, Thierry

    2015-06-01

    In-line digital holography is a valuable tool for sizing, locating, and tracking micro- or nano-objects in a volume. When a parametric imaging model is available, inverse problem approaches provide a straightforward estimate of the object parameters by fitting data with the model, thereby allowing accurate reconstruction. As recently proposed and demonstrated, combining pixel super-resolution techniques with inverse problem approaches improves the estimation of particle size and 3D position. Here, we demonstrate the accurate tracking of colloidal particles in Brownian motion. Particle size and 3D position are jointly optimized from video holograms acquired with a digital holographic microscopy setup based on a low-end microscope objective (×20, NA 0.5). Exploiting information redundancy makes it possible to characterize particles with a standard deviation of 15 nm in size and a theoretical resolution of 2×2×5  nm3 for position under additive white Gaussian noise assumption.

  7. Photochemical manipulation of colloidal structures in liquid-crystal colloids

    NASA Astrophysics Data System (ADS)

    Yamamoto, T.; Tabe, Y.; Yokoyama, H.

    2007-05-01

    We investigated photochemical manipulation of physical properties and colloidal structures in liquid-crystal (LC) colloids containing azobenzene compounds. In a LC suspension where polymeric particles were dispersed in a host LC, we achieved photochemical control of light-scattering properties of the suspension. In a nematic phase, when the suspension was sandwiched with two glass plates, the film became opaque. This would be attributable to an appearance of both multidomain structures of LC alignment and mismatches of refractive indices between the materials. The opaque state turned into a transparent one when a nematic-to-isotropic phase transition was induced by the trans-to-cis photoisomerization of the azo-dye. This will result from a disappearance of both the multidomain structures and the refractive-index mismatches in the isotropic phase. The transparent film went back into the initial opaque film when the nematic phase was obtained by the cis-to-trans photoisomerization. In a LC emulsion in which glycerol or water droplets were dispersed in liquid crystals, we examined photochemical change of defect structures and inter-droplet distances by the photochemical manner. At the initial state, Saturn ring and hedgehog defects were formed around the droplets. For the glycerol droplets, we observed structural transformations between Saturn ring and boojums on irradiation with ultra-violet and visible light. For the water droplets, the inter-droplet distances varied by changing defect size on the irradiation. These phenomena would result from modulation of anchoring conditions of the droplets by the photoisomerization of the azo-dyes.

  8. From crystal chemistry to colloid stability

    NASA Astrophysics Data System (ADS)

    Gilbert, B.; Burrows, N.; Penn, R. L.

    2008-12-01

    Aqueous suspensions of ferrihydrite nanoparticles form a colloid with properties that can be understood using classical theories but which additionally exhibit the distinctive phenomenon of nanocluster formation. While use of in situ light and x-ray scattering methods permit the quantitative determination of colloid stability, interparticle interactions, and cluster or aggregate geometry, there are currently few approaches to predict the colloidal behavior of mineral nanoparticles. A longstanding goal of aqueous geochemistry is the rationalization and prediction of the chemical properties of hydrated mineral interfaces from knowledge of interface structure at the molecular scale. Because interfacial acid-base reactions typically lead to the formation of a net electrostatic charge at the surfaces of oxide, hydroxide, and oxyhydroxide mineral surfaces, quantitative descriptions of this behavior have the potential to permit the prediction of long-range interactions between mineral particles. We will evaluate the feasibility of this effort by constructing a model for surface charge formation for ferrihydrite that combines recent insights into the crystal structure of this phase and proposed methods for estimating the pKa of acidic surface groups. We will test the ability of this model to predict the colloidal stability of ferrihydrite suspensions as a function of solution chemistry.

  9. Phenomenology of colloidal crystal electrophoresis

    NASA Astrophysics Data System (ADS)

    Medebach, Martin; Palberg, Thomas

    2003-08-01

    We studied the motion of polycrystalline solids comprising of charged sub-micron latex spheres suspended in deionized water. These were subjected to a low frequency alternating square wave electric field in an optical cell of rectangular cross section. Velocity profiles in X and Y direction were determined by Laser Doppler Velocimetry. The observed complex flow profiles are time dependent due to the combined effects of electro-osmosis, electrophoresis, crystal elasticity, and friction of the crystals at the cell wall. On small time scales elastic deformation occurs. On long time scales channel formation is observed. At intermediate times steady state profiles are dominated by a solid plug of polycrystalline material moving in the cell center. At large field strengths the plug shear melts. Mobilities in the shear molten state are on the order of (6.5±0.5) 10-8 m2 V-1 s-1 and connect continuously with those of the equilibrium fluid. The apparent mobility of the plug is much larger than of the fluid and like the mobility of the fluid decreases with increasing particle number density. We qualitatively attribute the accelerated motion of the plug to an incomplete exposure to the electro-osmotic flow profile.

  10. Slab photonic crystals with dimer colloid bases

    SciTech Connect

    Riley, Erin K.; Liddell Watson, Chekesha M.

    2014-06-14

    The photonic band gap properties for centered rectangular monolayers of asymmetric dimers are reported. Colloids in suspension have been organized into the phase under confinement. The theoretical model is inspired by the range of asymmetric dimers synthesized via seeded emulsion polymerization and explores, in particular, the band structures as a function of degree of lobe symmetry and degree of lobe fusion. These parameters are varied incrementally from spheres to lobe-tangent dimers over morphologies yielding physically realizable particles. The work addresses the relative scarcity of theoretical studies on photonic crystal slabs with vertical variation that is consistent with colloidal self-assembly. Odd, even and polarization independent gaps in the guided modes are determined for direct slab structures. A wide range of lobe symmetry and degree of lobe fusion combinations having Brillouin zones with moderate to high isotropy support gaps between odd mode band indices 3-4 and even mode band indices 1-2 and 2-3.

  11. Fabrication of Large-Area Two-Dimensional Microgel Colloidal Crystals via Interfacial Thiol-Ene Click Reaction.

    PubMed

    Li, Xiaoyun; Weng, Junying; Guan, Ying; Zhang, Yongjun

    2016-04-26

    A method for the fabrication of high quality, large area 2D colloidal crystals (CCs) using poly(N-isopropylacrylamide) (PNIPAM) microgel sphere, an extremely soft colloid, as building block was proposed. First the microgel spheres were assembled into 3D colloidal crystals. The first 111 plane of the 3D crystal close to the substrate was then fixed in situ onto the substrate. Highly efficient photoinitiated thiol-ene coupling was chosen for the fixing purpose. Thanks to the high quality of 3D microgel CCs, the resulting 2D CCs exhibit a high degree of ordering. Large area 2D CCs were fabricated because large area 3D microgel CCs can be facilely fabricated. Besides planar substrates, the method allows the fabrication of 2D CCs on curved surface, too. In addition, the interpartical distance in the 2D CCs can be tuned by the concentration of the microgel dispersion.

  12. Fabrication and Characterization of Colloidal Crystal Thin Films

    ERIC Educational Resources Information Center

    Rodriguez, I.; Ramiro-Manzano, F.; Meseguer, F.; Bonet, E.

    2011-01-01

    We present a laboratory experiment that allows undergraduate or graduate students to get introduced to colloidal crystal research concepts in an interesting way. Moreover, such experiments and studies can also be useful in the field of crystallography or solid-state physics. The work concerns the growth of colloidal crystal thin films obtained…

  13. Polymorphism, crystal nucleation and growth in the phase-field crystal model in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Tóth, Gyula I.; Tegze, György; Pusztai, Tamás; Tóth, Gergely; Gránásy, László

    2010-09-01

    We apply a simple dynamical density functional theory, the phase-field crystal (PFC) model of overdamped conservative dynamics, to address polymorphism, crystal nucleation, and crystal growth in the diffusion-controlled limit. We refine the phase diagram for 3D, and determine the line free energy in 2D and the height of the nucleation barrier in 2D and 3D for homogeneous and heterogeneous nucleation by solving the respective Euler-Lagrange (EL) equations. We demonstrate that, in the PFC model, the body-centered cubic (bcc), the face-centered cubic (fcc), and the hexagonal close-packed structures (hcp) compete, while the simple cubic structure is unstable, and that phase preference can be tuned by changing the model parameters: close to the critical point the bcc structure is stable, while far from the critical point the fcc prevails, with an hcp stability domain in between. We note that with increasing distance from the critical point the equilibrium shapes vary from the sphere to specific faceted shapes: rhombic dodecahedron (bcc), truncated octahedron (fcc), and hexagonal prism (hcp). Solving the equation of motion of the PFC model supplied with conserved noise, solidification starts with the nucleation of an amorphous precursor phase, into which the stable crystalline phase nucleates. The growth rate is found to be time dependent and anisotropic; this anisotropy depends on the driving force. We show that due to the diffusion-controlled growth mechanism, which is especially relevant for crystal aggregation in colloidal systems, dendritic growth structures evolve in large-scale isothermal single-component PFC simulations. An oscillatory effective pair potential resembling those for model glass formers has been evaluated from structural data of the amorphous phase obtained by instantaneous quenching. Finally, we present results for eutectic solidification in a binary PFC model.

  14. Universal Hydrodynamic Mechanisms for Crystallization in Active Colloidal Suspensions

    NASA Astrophysics Data System (ADS)

    Singh, Rajesh; Adhikari, R.

    2016-11-01

    The lack of detailed balance in active colloidal suspensions allows dissipation to determine stationary states. Here we show that slow viscous flow produced by polar or apolar active colloids near plane walls mediates attractive hydrodynamic forces that drive crystallization. Hydrodynamically mediated torques tend to destabilize the crystal but stability can be regained through critical amounts of bottom heaviness or chiral activity. Numerical simulations show that crystallization is not nucleational, as in equilibrium, but is preceded by a spinodal-like instability. Harmonic excitations of the active crystal relax diffusively but the normal modes are distinct from an equilibrium colloidal crystal. The hydrodynamic mechanisms presented here are universal and rationalize recent experiments on the crystallization of active colloids.

  15. Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Casas, Lluís; Estop, Euge`nia

    2015-01-01

    Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…

  16. Colloidal crystallization of colloidal silica modified with ferrocenyl group-contained polymers in organic solvents.

    PubMed

    Yoshinaga, Kohji; Shigeta, Maki; Komune, Seishu; Mouri, Emiko; Nakai, Akemi

    2007-01-15

    Surface modification of colloidal silica with ferrocenyl-grafted polymer and colloidal crystallization of the particles in organic solvent were studied. Poly(methyl methacrylate-co-vinylferrocene)-grafted silica never formed colloidal crystals in polar solvent, such as acetone, acetonitrile, ethanol and N,N-dimethylformamide (DMF), while poly(methyl methacrylate-co-ferrocenyl acrylate)-grafted silica gave colloidal crystallization in DMF. The particles prepared by grafting of poly(N,N-dimethylacrylamide-co-vinylferrocene), with vinylferrocene (Vfc) mole fraction of 1/13 and 1/23, were observed to give the crystallization in ethanol and DMF over particle volume fraction of 0.058. Further, silica modified with copolymer of Vfc and N-vinyl-2-pyrrolidone, N-vinylcarbazole or N-isopropylacrylamide formed colloidal crystals in ethanol and DMF. Especially, poly(N-isopropylacrylamide-co-Vfc)-grafted silica, which was composed of the highest mole fraction of vinylferrocene, 1/3, afforded colloidal crystallization in ethanol over particle volume fraction of 0.053. Relatively high polar vinylferrocene copolymer grafting of silica resulted in colloidal polymerization in organic solvents.

  17. Colloid Transport in Unsaturated Porous Media: 3D Visualization Using Synchrotron X-Ray Microtomography

    NASA Astrophysics Data System (ADS)

    Brueck, C. L.; Meisenheimer, D.; Wildenschild, D.

    2015-12-01

    Understanding the mechanisms controlling colloid transport and deposition in the vadose zone is an important step in protecting our water resources. Not only may these particles themselves be undesirable contaminants, but they can also aid in the transport of smaller, molecular-scale contaminants by chemical attachment. In this research, we examined the influence that air-water interfaces (AWI) and air-water-solid contact lines (AWS) have on colloid deposition and mobilization in three-dimensional systems. We used x-ray microtomography to visualize the transport of hydrophobic colloids as they move through a partially saturated glass bead pack. Drainage and imbibition experiments were conducted using syringe pumps to control the flow of a colloid suspension through the porous media at 0.6 mL/hr. The high ionic strength fluid was adjusted to a pH of 9.5 and a concentration of 1.0 mol/L KI. During the drainage and imbibition, the flow was periodically halted and allowed to equilibrate before collecting the microtomography scans. Dopants were used to enhance the contrast between the four phases (water, air, beads, and colloids), including potassium iodide dissolved in the fluid, and an outer layer of silver coating the colloids. We hypothesized that AWIs and AWSs will scour and mobilize a significant percentage of colloids, and therefore reduce the concentration of colloids along the vertical profile of the column. The concentration of potassium iodide, and thus the ionic strength, necessary for adequate image segmentation was also explored in separate experiments so that the influence of ionic strength on colloid deposition and mobilization can be studied.

  18. Controllable liquid crystal gratings for an adaptive 2D/3D auto-stereoscopic display

    NASA Astrophysics Data System (ADS)

    Zhang, Y. A.; Jin, T.; He, L. C.; Chu, Z. H.; Guo, T. L.; Zhou, X. T.; Lin, Z. X.

    2017-02-01

    2D/3D switchable, viewpoint controllable and 2D/3D localizable auto-stereoscopic displays based on controllable liquid crystal gratings are proposed in this work. Using the dual-layer staggered structure on the top substrate and bottom substrate as driven electrodes within a liquid crystal cell, the ratio between transmitting region and shielding region can be selectively controlled by the corresponding driving circuit, which indicates that 2D/3D switch and 3D video sources with different disparity images can reveal in the same auto-stereoscopic display system. Furthermore, the controlled region in the liquid crystal gratings presents 3D model while other regions maintain 2D model in the same auto-stereoscopic display by the corresponding driving circuit. This work demonstrates that the controllable liquid crystal gratings have potential applications in the field of auto-stereoscopic display.

  19. Three-dimensional dynamic photonic crystal creation by four laser beams interference in colloidal quantum dots

    NASA Astrophysics Data System (ADS)

    Smirnov, A. M.; Mantsevich, V. N.; Ezhova, K. V.; Tikhonov, I. V.; Dneprovskii, V. S.

    2016-04-01

    We investigate a simple way to create dynamic photonic crystals with different lattice symmetry by interference of four non-coplanar laser beams in colloidal solution of CdSe/ZnS quantum dots (QDs). The formation of dynamic photonic crystal was confirmed by the observed diffraction of the beams that have excited photonic crystal at the angles equal to that calculated for the corresponding three-dimensional lattice (self-diffraction regime). Self-diffraction from an induced 3D transient photonic crystal has been discovered in the case of resonant excitation of the excitons (electron - hole transitions) in CdSe/ZnS QDs (highly absorbing colloidal solution) by powerful beams of mode-locked laser with picosecond pulse duration. Self-diffraction arises for four laser beams intersecting in the cell with colloidal CdSe/ZnS QDs due to the induced 3D dynamic photonic crystal. The physical processes that arise in CdSe/ZnS QDs and are responsible for the observed self-action effects are discussed.

  20. FEM modeling of 3D photonic crystals and photonic crystal waveguides

    NASA Astrophysics Data System (ADS)

    Burger, Sven; Klose, Roland; Schaedle, Achim; Schmidt, Frank; Zschiedrich, Lin W.

    2005-03-01

    We present a finite-element simulation tool for calculating light fields in 3D nano-optical devices. This allows to solve challenging problems on a standard personal computer. We present solutions to eigenvalue problems, like Bloch-type eigenvalues in photonic crystals and photonic crystal waveguides, and to scattering problems, like the transmission through finite photonic crystals. The discretization is based on unstructured tetrahedral grids with an adaptive grid refinement controlled and steered by an error-estimator. As ansatz functions we use higher order, vectorial elements (Nedelec, edge elements). For a fast convergence of the solution we make use of advanced multi-grid algorithms adapted for the vectorial Maxwell's equations.

  1. A full field, 3-D velocimeter for microgravity crystallization experiments

    NASA Technical Reports Server (NTRS)

    Brodkey, Robert S.; Russ, Keith M.

    1991-01-01

    The programming and algorithms needed for implementing a full-field, 3-D velocimeter for laminar flow systems and the appropriate hardware to fully implement this ultimate system are discussed. It appears that imaging using a synched pair of video cameras and digitizer boards with synched rails for camera motion will provide a viable solution to the laminar tracking problem. The algorithms given here are simple, which should speed processing. On a heavily loaded VAXstation 3100 the particle identification can take 15 to 30 seconds, with the tracking taking less than one second. It seeems reasonable to assume that four image pairs can thus be acquired and analyzed in under one minute.

  2. Surviving structure in colloidal suspensions squeezed from 3D to 2D.

    PubMed

    Klapp, Sabine H L; Zeng, Yan; Qu, Dan; von Klitzing, Regine

    2008-03-21

    Combining colloidal-probe experiments and computer simulations, we analyze the solvation forces F of charged silica colloids confined in films of various thicknesses h. We show that the oscillations characterizing F(h), for sufficiently large h, are determined by the dominant wavelength of the bulk radial distribution function. As a consequence, both quantities display the same power-law density dependence. This is the first direct evidence, in a system treatable both by experiment and by simulation, that the structural wavelength in bulk and confinement coincide, in agreement with predictions from density functional theory. Moreover, theoretical and experimental data are in excellent quantitative agreement.

  3. A thermoresponsive and magnetic colloid for 3D cell expansion and reconfiguration.

    PubMed

    Saeed, Aram; Francini, Nora; White, Lisa; Dixon, James; Gould, Toby; Rashidi, Hassan; Al Ghanami, Racha Cheikh; Hruschka, Veronika; Redl, Heinz; Saunders, Brian R; Alexander, Cameron; Shakesheff, Kevin M

    2015-01-27

    A dual thermoresponsive and magnetic colloidal gel matrix is described for enhanced stem-cell culture. The combined properties of the material allow enzyme-free passaging and expansion of mesenchymal stem cells, as well as isolation of cells postculture by the simple process of lowering the temperature and applying an external magnetic field. The colloidal gel can be reconfigured with thermal and magnetic stimuli to allow patterning of cells in discrete zones and to control movement of cells within the porous matrix during culture.

  4. Fabrication of large binary colloidal crystals with a NaCl structure.

    PubMed

    Vermolen, E C M; Kuijk, A; Filion, L C; Hermes, M; Thijssen, J H J; Dijkstra, M; van Blaaderen, A

    2009-09-22

    Binary colloidal crystals offer great potential for tuning material properties for applications in, for example, photonics, semiconductors and spintronics, because they allow the positioning of particles with quite different characteristics on one lattice. For micrometer-sized colloids, it is believed that gravity and slow crystallization rates hinder the formation of high-quality binary crystals. Here, we present methods for growing binary colloidal crystals with a NaCl structure from relatively heavy, hard-sphere-like, micrometer-sized silica particles by exploring the following external fields: electric, gravitational, and dielectrophoretic fields and a structured surface (colloidal epitaxy). Our simulations show that the free-energy difference between the NaCl and NiAs structures, which differ in their stacking of the hexagonal planes of the larger spheres, is very small (approximately 0.002 k(B)T). However, we demonstrate that the fcc stacking of the large spheres, which is crucial for obtaining the pure NaCl structure, can be favored by using a combination of the above-mentioned external fields. In this way, we have successfully fabricated large, 3D, oriented single crystals having a NaCl structure without stacking disorder.

  5. Colloidal crystallization of colloidal silica grafted with iron(0) complex-tethered polymers in organic solvents

    NASA Astrophysics Data System (ADS)

    Yoshinaga, Kohji; Mouri, Emiko

    2007-09-01

    Incorporation of iron(0) complex into polymer-grafted silica and colloidal crystallization in organic solvent were studied. In this study, zero-valence iron complex, vinylferrocene (Vfc) and iron(0)tricarbonyl(4,4-dimethyl-1,-4-cyclohexadienyl) acrylate (Fe(0)Ac) or methacrylate (Fe(0)Me), were introduced into grafted polymer to prevent from increasing ionic strength in colloidal crystallization system. Poly(methyl methacrylate (MMA)-co-Vfc)-grafted silica never formed colloidal crystals in polar solvent, such as acetone or acetonitrile. However, increasing ferrocenyl group fraction in the polymer resulted in disturbing the crystallization. Poly(N-isopropylacrylamide (NIPAAm)-co-Vfc)-grafted silica, which was composed of mole fraction of Vfc, 1/3, afforded crystallization in ethanol over the particle fraction of 0.053. In the case of diene-Fe(0)(CO) 3/polymer-grafted silica, poly(MMA-co-Fe(0)Ac)-, poly(NIPAAm-co-Fe(0)Ac)- and poly(N.N-dimethylacrylamide (DMAAm)-co-Fe(0)Ac)-grafted silica gave colloidal crystallization in relatively low polar solvents, DMF, acetone, acetonirile and ethanol, critical volume fraction for which were in the range from 0.054 to 0.117. In the case of copolymer-grafted silica containing Fe(0)Me, poly(MMA-co-FeMe)-grafted silica crystallized in DMF, Interestingly, especially in cases of polymer-grafted silica containing Fe(0)Ac or Fe(0)Me composed of the highest mole fraction Fe(0)Me, 1/2, afforded crystallization in DMF. The iridescence color of the colloidal crystals was changed with the combination of grafted polymer and solvent. The characteristic coloration of the solution from reddish to greenish color is possibly due to absorption of blue light region by diene-Fe(0)(CO) 3 complex and Bragg deflection on colloidal crystals.

  6. Some implications of colloid stability theory for protein crystallization

    NASA Technical Reports Server (NTRS)

    Young, C. C.; De Mattei, R. C.; Feigelson, R. S.; Tiller, W. A.

    1988-01-01

    Colloid stability theory has been applied to protein crystallization and predicts a narrow range of conditions under which crystals can be grown without the agglomeration of protein molecules (colloids) in the bulk solution. It also predicts a critical electrolyte concentration above which agglomeration will always occur. Using this theory, the rapid protein agglomeration occurring during Schlieren experiments as well as a terminal crystal size effect in a fixed container were explained. Following this concept, the supposed 'terminal' crystal size has been at least doubled.

  7. Modified spin-coating technique to achieve directional colloidal crystallization.

    PubMed

    Bartlett, Andrew P; Pichumani, Moorthi; Giuliani, Maximiliano; González-Viñas, Wenceslao; Yethiraj, Anand

    2012-02-14

    Fabricating large single crystals with colloidal spheres as building blocks is challenging and of competitive interest. Spin-coating of colloids offers a robust technique, which is highly reproducible in obtaining colloidal crystals even at fast dynamical regimes; however, these crystals are intrinsically polycrystalline due to the axial symmetry of spin-coating. We report a new method that applies a nonuniform electric field during the spin-coating process. By arranging the field direction to be stationary in the rotating frame, we are able to break the axial symmetry and to orient the colloids along one predefined direction. By regulating the applied field strength, we demonstrate local control over the orientation of the crystallites, and thus, the orientation is determined by the applied field strength.

  8. Linear colloidal crystal arrays by electrohydrodynamic printing

    NASA Astrophysics Data System (ADS)

    Poon, H. F.; Saville, D. A.; Aksay, I. A.

    2008-09-01

    We use electrohydrodynamic jets of colloidal suspensions to produce arrays of colloidal crystalline stripes on surfaces. A critical factor in maintaining a stable jet is the distance of separation between the nozzle and the surface. Colloidal crystalline stripes are produced as two wetting lines of the deployed suspension merge during drying. To ensure that the two wetting lines merge, the "deployed-line-width" to "particle size" ratio is kept below a critical value so that the capillary forces overcome the frictional forces between the particles and the substrate.

  9. Shear effects on crystal nucleation in colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Cerdà, Juan J.; Sintes, Tomás; Holm, C.; Sorensen, C. M.; Chakrabarti, A.

    2008-09-01

    Extensive two-dimensional Langevin dynamics simulations are used to determine the effect of steady shear flows on the crystal nucleation kinetics of charge stabilized colloids and colloids whose pair potential possess an attractive shallow well of a few kBT ’s (attractive colloids). Results show that in both types of systems small amounts of shear speeds up the crystallization process and enhances the quality of the growing crystal significantly. Moderate shear rates, on the other hand, destroy the ordering in the system. The very high shear rate regime where a reentering transition to the ordered state could exist is not considered in this work. In addition to the crystal nucleation phenomena, the analysis of the transport properties and the characterization of the steady state regime under shear are performed.

  10. Triclinic nematic colloidal crystals from competing elastic and electrostatic interactions.

    PubMed

    Mundoor, Haridas; Senyuk, Bohdan; Smalyukh, Ivan I

    2016-04-01

    The self-assembly of nanoparticles can enable the generation of composites with predesigned properties, but reproducing the structural diversity of atomic and molecular crystals remains a challenge. We combined anisotropic elastic and weakly screened electrostatic interactions to guide both orientational and triclinic positional self-ordering of inorganic nanocrystals in a nematic fluid host. The lattice periodicity of these low-symmetry colloidal crystals is more than an order of magnitude larger than the nanoparticle size. The orientations of the nanocrystals, as well as the crystallographic axes of the ensuing triclinic colloidal crystals, are coupled to the uniform alignment direction of the nematic host, which can be readily controlled on large scales. We examine colloidal pair and many-body interactions and show how triclinic crystals with orientational ordering of the semiconductor nanorods emerge from competing long-range elastic and electrostatic forces.

  11. Large-scale fabrication of wafer-size colloidal crystals, macroporous polymers and nanocomposites by spin-coating.

    PubMed

    Jiang, Peng; McFarland, Michael J

    2004-10-27

    This paper reports a simple spin-coating technique for rapidly fabricating three types of technologically important materials--colloidal crystal, macroporous polymer, and polymeric nanocomposite, each with high crystalline qualities and wafer-scale sizes. Dispersion of monodisperse silica colloids in triacrylate monomers is spin-coated onto a variety of substrates. Shear-induced ordering and subsequent polymerization lead to the formation of three-dimensionally (3D) ordered colloidal crystals trapped inside a polymer matrix. The thickness of as-synthesized colloidal crystal-polymer nanocomposite is highly uniform and can be controlled simply by changing the spin speed and time. Selective removal of the polymer matrix and silica spheres lead to the formation of large-area colloidal crystals and macroporous polymers, respectively. The wafer-scale process is compatible with standard semiconductor microfabrication, as multiple micrometer-sized patterns can be created simultaneously for potential device applications. Normal-incidence transmission spectra in the visible and near-infrared regions show distinct peaks due to Bragg diffraction from 3D ordered structures. The spin-coating process opens a new route to the fundamental studies of shear-induced crystallization, melting and relaxation.

  12. Engineering liver tissue spheroids with inverted colloidal crystal scaffolds.

    PubMed

    Lee, Jungwoo; Cuddihy, Meghan J; Cater, George M; Kotov, Nicholas A

    2009-09-01

    Multicellular spheroids provide a new three-dimensional (3D) level of control over morphology and function of ex vivo cultured tissues. They also represent a valuable experimental technique for drug discovery and cell biology. Nevertheless, the dependence of many cellular processes on the cluster diameter remains unclear. To provide a tool for the systematic evaluation of such dependences, we introduce here inverted colloidal crystal (ICC) scaffolds. Uniformly sized pores in ICC cell matrixes afford a high yield production of controlled size spheroids in standard 96 well-plates. Transparent hydrogel matrix and ship-in-bottle effect also allows for convenient monitoring of cell processes by traditional optical techniques. Different developmental stages of 46.5-151.6 microm spheroids from HepG2 hepatocytes with vivid morphological similarities to liver tissue (bile canaliculi) were observed. The liver-specific functions of HepG2 cells were systematically investigated and compared for spheroids of different diameters as well as 2D cultures. Clear trends of albumin production and CYP450 activity were observed; diffusion processes and effect of cellular aggregation on metabolic activity were identified to be the primary contributors to the size dependence of the liver functions in HepG2 spheroids in ICC scaffolds. Since the aggregation of cells into clusters is a universal biological process, these findings and scaffolds can be applied to many other relevant cell types.

  13. Gelled colloidal crystals as tunable optical filters for spectrophotometers

    NASA Astrophysics Data System (ADS)

    Sugao, Yukihiro; Onda, Sachiko; Toyotama, Akiko; Takiguchi, Yoshihiro; Sawada, Tsutomu; Hara, Shigeo; Nishikawa, Suguru; Yamanaka, Junpei

    2016-08-01

    We examined the performance of charged colloidal crystals immobilized in a polymer gel as tunable optical filters. The colloidal crystals of charged silica particles (particle diameter = 121 nm; particle concentration = 3.5 vol %; and Bragg wavelength λB = 630-720 nm) were produced by unidirectional crystallization under a temperature gradient. Photocurable gelation reagents were dissolved in the sample beforehand; this enabled gel immobilization of the crystals under ultraviolet illumination. The crystals had dimensions of more than 25 mm2 in area and 1 mm in thickness, and spatial λB variations of less than 1%. Upon mechanical compression, λB values shifted linearly and reversibly over almost the entire visible spectrum. Using the gelled crystals as tunable optical filters, we measured the transmittance spectra of various samples and found them to be in close agreement with those determined using a spectrophotometer equipped with optical gratings.

  14. 3D-modeling of deformed halite hopper crystals by Object Based Image Analysis

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph; Hofmann, Peter; Marschallinger, Robert

    2014-12-01

    Object Based Image Analysis (OBIA) is an established method for analyzing multiscale and multidimensional imagery in a range of disciplines. In the present study this method was used for the 3D reconstruction of halite hopper crystals in a mudrock sample, based on Computed Tomography data. To quantitatively assess the reliability of OBIA results, they were benchmarked against a corresponding "gold standard", a reference 3D model of the halite crystals that was derived by manual expert digitization of the CT images. For accuracy assessment, classical per-scene statistics were extended to per-object statistics. The strength of OBIA was to recognize all objects similar to halite hopper crystals and in particular to eliminate cracks. Using a support vector machine (SVM) classifier on top of OBIA, unsuitable objects like halite crystal clusters, polyhalite-coated crystals and spherical halite crystals were effectively dismissed, but simultaneously the number of well-shaped halites was reduced.

  15. Conventional and nonlinear optical microscopy of liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Lee, Taewoo; Smalyukh, Ivan I.

    The fast-growing field of liquid crystal colloids requires increasingly sophisticated optical microscopy tools for experimental studies. Recent technological advances have resulted in a vast body of new imaging modalities, such as nonlinear optical microscopy techniques, that were developed to achieve high resolution while probing director structures and material composition at length scales ranging from hundreds of nanometers to oscopic. These techniques are ideally suited for experimental exploration of liquid crystal colloids. The goal of this chapter is to introduce a variety of optical microscopy techniques available to researchers in the field, starting from basic principles and finishing with a discussion of the most advanced microscopy systems. We describe traditional imaging tools, such as bright field and polarizing optical microscopy, along with state-of-the-art orientationsensitive three-dimensional imaging techniques, such as various nonlinear optical microscopies. Applications of these different imaging approaches are illustrated by providing specific examples of imaging of liquid crystal colloids and other soft matter systems.

  16. Kossel diffraction and conformation investigation of colloidal crystals

    NASA Astrophysics Data System (ADS)

    Yang, Hao; Wang, Chao; Sun, Zhibin; Cao, Song; Zhai, Guangjie; Li, Ming

    2010-10-01

    Kossel-line diffraction method is an important way to measure the structure of crystals. Colloidal crystal is one of the hotspots on the condensed physics research. The paper investigates the kinetics process of crystallization on several hundreds nanometer particles in aqueous. In order to obtain the diffraction image, a 473nm wavelength laser is used to irradiate samples, and then the Kossel-line image of sample is projected onto the translucent screen and recorded by IEEE 1394 charge coupled device (CCD) cameras. Especially, gravity convection effects can be eliminated under microgravity environment, therefore the research of growth mechanism of colloidal crystals in the space has great scientific significance. The crystallization processes of three kinds of colloidal solution are investigated in the temperature field and electric field by means of the shear-flow assisted. Finally, laser diffraction images and white conformation images can be analyzed for exploring the phase-change rule of colloidal crystals. Besides, parameters can be adjusted online by remote control function in order to improve the flexibility of experiments.

  17. Liquid crystal lens array for 3D microscopy and endoscope application

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Hsieh, Po-Yuan; Hassanfiroozi, Amir; Chu, Chao-Yu; Hsuan, Yun; Martinez, Manuel; Javidi, Bahram

    2016-06-01

    In this paper, we demonstrate two liquid crystal (LC) lens array devices for 3D microscope and 3D endoscope applications respectively. Compared with the previous 3D biomedical system, the proposed LC lens arrays are not only switchable between 2D and 3D modes, but also are able to adjust focus in both modes. The multi-function liquid crystal lens (MFLC-lens) array with dual layer electrode has diameter 1.42 mm, which is much smaller than the conventional 3D endoscope with double fixed lenses. The hexagonal liquid crystal micro-lens array (HLC-MLA) instead of fixed micro-lens array in 3D light field microscope can extend the effective depth of field from 60 um to 780 um. To achieve the LC lens arrays, a high-resistance layer needs to be coated on the electrodes to generate an ideal gradient electric-field distribution, which can induce a lens-like form of LC molecules. The parameters and characteristics of high-resistance layer are investigated and discussed with an aim to optimize the performance of liquid crystal lens arrays.

  18. Bottom-Up Colloidal Crystal Assembly with a Twist.

    PubMed

    Mahynski, Nathan A; Rovigatti, Lorenzo; Likos, Christos N; Panagiotopoulos, Athanassios Z

    2016-05-24

    Globally ordered colloidal crystal lattices have broad utility in a wide range of optical and catalytic devices, for example, as photonic band gap materials. However, the self-assembly of stereospecific structures is often confounded by polymorphism. Small free-energy differences often characterize ensembles of different structures, making it difficult to produce a single morphology at will. Current techniques to handle this problem adopt one of two approaches: that of the "top-down" or "bottom-up" methodology, whereby structures are engineered starting from the largest or smallest relevant length scales, respectively. However, recently, a third approach for directing high fidelity assembly of colloidal crystals has been suggested which relies on the introduction of polymer cosolutes into the crystal phase [Mahynski, N.; Panagiotopoulos, A. Z.; Meng, D.; Kumar, S. K. Nat. Commun. 2014, 5, 4472]. By tuning the polymer's morphology to interact uniquely with the void symmetry of a single desired crystal, the entropy loss associated with polymer confinement has been shown to strongly bias the formation of that phase. However, previously, this approach has only been demonstrated in the limiting case of close-packed crystals. Here, we show how this approach may be generalized and extended to complex open crystals, illustrating the utility of this "structure-directing agent" paradigm in engineering the nanoscale structure of ordered colloidal materials. The high degree of transferability of this paradigm's basic principles between relatively simple crystals and more complex ones suggests that this represents a valuable addition to presently known self-assembly techniques.

  19. Fast-response liquid-crystal lens for 3D displays

    NASA Astrophysics Data System (ADS)

    Liu, Yifan; Ren, Hongwen; Xu, Su; Li, Yan; Wu, Shin-Tson

    2014-02-01

    Three-dimensional (3D) display has become an increasingly important technology trend for information display applications. Dozens of different 3D display solutions have been proposed. The autostereoscopic 3D display based on lenticular microlens array is a promising approach, and fast-switching microlens array enables this system to display both 3D and conventional 2D images. Here we report two different fast-response microlens array designs. The first one is a blue phase liquid crystal lens driven by the Pedot: PSS resistive film electrodes. This BPLC lens exhibits several attractive features, such as polarization insensitivity, fast response time, simple driving scheme, and relatively low driving voltage, as compared to other BPLC lens designs. The second lens design has a double-layered structure. The first layer is a polarization dependent polymer microlens array, and the second layer is a thin twisted-nematic (TN) liquid crystal cell. When the TN cell is switched on/off, the traversing light through the polymeric lens array is either focused or defocused, so that 2D/3D images are displayed correspondingly. This lens design has low driving voltage, fast response time, and simple driving scheme. Simulation and experiment demonstrate that the performance of both switchable lenses meet the requirement of 3D display system design.

  20. Overview: Experimental studies of crystal nucleation: Metals and colloids

    NASA Astrophysics Data System (ADS)

    Herlach, Dieter M.; Palberg, Thomas; Klassen, Ina; Klein, Stefan; Kobold, Raphael

    2016-12-01

    Crystallization is one of the most important phase transformations of first order. In the case of metals and alloys, the liquid phase is the parent phase of materials production. The conditions of the crystallization process control the as-solidified material in its chemical and physical properties. Nucleation initiates the crystallization of a liquid. It selects the crystallographic phase, stable or meta-stable. Its detailed knowledge is therefore mandatory for the design of materials. We present techniques of containerless processing for nucleation studies of metals and alloys. Experimental results demonstrate the power of these methods not only for crystal nucleation of stable solids but in particular also for investigations of crystal nucleation of metastable solids at extreme undercooling. This concerns the physical nature of heterogeneous versus homogeneous nucleation and nucleation of phases nucleated under non-equilibrium conditions. The results are analyzed within classical nucleation theory that defines the activation energy of homogeneous nucleation in terms of the interfacial energy and the difference of Gibbs free energies of solid and liquid. The interfacial energy acts as barrier for the nucleation process. Its experimental determination is difficult in the case of metals. In the second part of this work we therefore explore the potential of colloidal suspensions as model systems for the crystallization process. The nucleation process of colloids is observed in situ by optical observation and ultra-small angle X-ray diffraction using high intensity synchrotron radiation. It allows an unambiguous discrimination of homogeneous and heterogeneous nucleation as well as the determination of the interfacial free energy of the solid-liquid interface. Our results are used to construct Turnbull plots of colloids, which are discussed in relation to Turnbull plots of metals and support the hypothesis that colloids are useful model systems to investigate crystal

  1. Spherical 3D photonic crystal with conducting nanoshell and particle core

    NASA Astrophysics Data System (ADS)

    Zamudio-Lara, A.; Sánchez-Mondragón, J.; Escobedo-Alatorre, J.; Pérez-Careta, E.; Torres-Cisneros, M.; Tecpoyotl-Torres, Margarita; Vázquez-Buenos Aires, O.

    2009-06-01

    We discuss a structured 3D Dielectric Photonic Crystal with both a metallic core and a metallic shell. We discuss the role of each one, the stack, the core as well as the cavity formed between the core and the shell. The low frequency metallic core features becomes much more significant as it gets smaller and get diluted by the cavity.

  2. Hydrodynamic interactions slow down crystallization of soft colloids.

    PubMed

    Roehm, Dominic; Kesselheim, Stefan; Arnold, Axel

    2014-08-14

    Colloidal suspensions are often argued to be an ideal model for studying phase transitions such as crystallization, as they have the advantage of tunable interactions and experimentally tractable time and length scales. Because crystallization is assumed to be unaffected by details of particle transport other than the bulk diffusion coefficient, findings are frequently argued to be transferable to pure melts without solvent. In this article, we present molecular dynamics simulations of crystallization in a suspension of colloids with Yukawa interactions which challenge this assumption. In order to investigate the role of hydrodynamic interactions mediated by the solvent, we model the solvent both implicitly and explicitly, using Langevin dynamics and the fluctuating lattice Boltzmann method, respectively. Our simulations show a significant reduction of the crystal growth velocity due to hydrodynamic interactions even at moderate hydrodynamic coupling. This slowdown is accompanied by a reduction of the width of the layering region in front of the growing crystal. Thus the dynamics of a colloidal suspension differ strongly from that of a melt, making it less useful as a model for solvent-free melts than previously thought.

  3. Crystallization and reentrant melting of charged colloids in nonpolar solvents.

    PubMed

    Kanai, Toshimitsu; Boon, Niels; Lu, Peter J; Sloutskin, Eli; Schofield, Andrew B; Smallenburg, Frank; van Roij, René; Dijkstra, Marjolein; Weitz, David A

    2015-03-01

    We explore the crystallization of charged colloidal particles in a nonpolar solvent mixture. We simultaneously charge the particles and add counterions to the solution with aerosol-OT (AOT) reverse micelles. At low AOT concentrations, the charged particles crystallize into body-centered-cubic (bcc) or face-centered-cubic (fcc) Wigner crystals; at high AOT concentrations, the increased screening drives a thus far unobserved reentrant melting transition. We observe an unexpected scaling of the data with particle size, and account for all behavior with a model that quantitatively predicts both the reentrant melting and the data collapse.

  4. Optical manipulation and imaging of assemblies of topological defects and colloids in liquid crystals

    NASA Astrophysics Data System (ADS)

    Trivedi, Rahul P.

    Liquid Crystals (LCs) have proven to be important for electro-optic device applications such as displays, spatial light modulators, non-mechanical beam-steerers, etc. Owing to their unique mechanical, electrical, and optical properties, they are also being explored for wide array of advanced technological applications such as biosensors, tunable lenses, distributed feedback lasers, muscle-like actuators, etc. The thesis explores LC media from the standpoint of controlling their elastic and optical properties by generating and manipulating assemblies of defects and colloidal particles. To achieve the goal of optically manipulating these configurations comprising defects and particles at microscale with an unprecedented control, and then to visualize the resultant molecular director patterns, requires development of powerful optical system. The thesis discusses design and implementation of such an integrated system capable of 3D holographic optical manipulation and multi-modal 3D imaging (in nonlinear optical modes like multiphoton fluorescence, coherent anti-Stokes Raman scattering, etc.) and how they are used to extensively study a vast number of LC based systems. Understanding of LCs and topological defects go hand in hand. Appreciation of defects leads to their precise control, which in turn can lead to applications. The thesis describes discovery of optically generated stable, quasiparticle-like, localized defect structures in a LC cell, that we call "Torons". Torons enable twist of molecules in three dimensions and resemble both Skyrmion-like and Hopf fibration features. Under different conditions of generation, we optically realize an intriguing variety of novel solitonic defect structures comprising rather complicated configurations of point and line topological defects. Introducing colloidal particles to LC systems imparts to these hybrid material system a fascinating degree of richness of properties on account of colloidal assemblies supported by networks

  5. Straining soft colloids in aqueous nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Spagnolie, Saverio; Mushenheim, Peter; Pendery, Joel; Weibel, Douglas; Abbott, Nicholas

    2016-11-01

    Liquid crystals (LCs) are anisotropic, viscoelastic fluids that can be used to direct colloids into organized assemblies with unusual optical, mechanical, and electrical properties. In past studies, the colloids have been sufficiently rigid that their individual shapes and properties have not been strongly coupled to elastic stresses imposed by the LCs. We will discuss how soft colloids (micrometer-sized shells) behave in LCs. We reveal a sharing of strain between the LC and shells, resulting in formation of spindle-like shells and other complex shapes. These results hint at previously unidentified designs of reconfigurable soft materials with applications in sensing and biology. Related effects relevant to biolocomotion will also be touched upon. Wisconsin MRSEC Grant DMR-1121288.

  6. Crystallization kinetics of binary colloidal monolayers.

    PubMed

    Pham, An T; Seto, Ryohei; Schönke, Johannes; Joh, Daniel Y; Chilkoti, Ashutosh; Fried, Eliot; Yellen, Benjamin B

    2016-10-07

    Experiments and simulations are used to study the kinetics of crystal growth in a mixture of magnetic and nonmagnetic particles suspended in ferrofluid. The growth process is quantified using both a bond order parameter and a mean domain size parameter. The largest single crystals obtained in experiments consist of approximately 1000 particles and form if the area fraction is held between 65-70% and the field strength is kept in the range of 8.5-10.5 Oe. Simulations indicate that much larger single crystals containing as many as 5000 particles can be obtained under impurity-free conditions within a few hours. If our simulations are modified to include impurity concentrations as small as 1-2%, then the results agree quantitatively with the experiments. These findings provide an important step toward developing strategies for growing single crystals that are large enough to enable follow-on investigations across many subdisciplines in condensed matter physics.

  7. Differences in crystal habitus of natural and synthetic colloids

    NASA Astrophysics Data System (ADS)

    Wieczorek, Arkadiusz K.; Händel, Matthias; Totsche, Kai Uwe

    2014-05-01

    The formation of colloids from natural aqueous solutions is influenced by a multitude of biogeochemical and physicochemical processes and the presence of a large diversity of geogen and biogen, inorganic and organic solution phase components. A thereby frequently neglected class of components is the dissolved and colloidal phase organic matter (DOM). As DOM will interact with other solution phase components, we hypothesize that nanosized and colloidal particles formed in DOM bearing solutions may differ from synthetic precipitates either by size, shape, crystal habitus, crystallinity, composition or combinations of that. To investigate this, we analyzed natural colloidal particles collected from a limestone aquifer of the Upper Muschelkalk formation at Hainich National Park, Thuringia, Germany. Major groundwater components are Ca2+, Mg2+, Na+, SO42-, Cl-, HCO3- , and about 1 ppm of total organic carbon (TOC) in dissolved and colloidal form. Synthetic nanoparticles were precipitated from a series of oversaturated solutions containing single or mixtures of the following salts CaSO4, MgSO4, Ca(HCO3)2 NaCl typical for limestone environments. The solutions were produced with both natural groundwater and pure water (milli-Q). Droplets of such produced colloidal suspension were pipetted on silicon wafers and subject to air drying. The wafers were then analyzed by scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) and atomic force microscopy (AFM). We found that particles from oversaturated CaSO4 solution in pure water precipitate as large needle shaped crystals, whereas precipitates from CaSO4 solution in natural water were much smaller and showed a rosette like shape - similar in size and shape to gypsum crystals collected from the limestone formation water. Similar differences we found for other aqueous solution compositions. From this pilot study we presume that even minute amounts of dissolved and colloidal phase organic matter in

  8. Fabrication of colloidal photonic crystal heterostructures free of interface imperfection based on solvent vapor annealing.

    PubMed

    Liu, Xiaomiao; Zhao, Duobiao; Geng, Chong; Zhang, Lijing; Tan, Tianya; Hu, Mingzhe; Yan, Qingfeng

    2014-11-15

    We describe the transformation of a colloidal photonic crystal into a photonic crystal heterostructure. It was achieved by annealing a polystyrene multilayer colloidal photonic crystal partially immersed in water using a solvent vapor. The floating polystyrene colloidal photonic crystal was divided into two parts by the liquid level, which can be manipulated by the addition of ethanol into the water. The top part protruding out of the water experienced a uniform lattice stretching upon exposure to the solvent vapor. The bottom part that stayed immersed in the water remained unaffected due to the protection by the water. The inconsistent behaviors of the two parts resulted in the formation of a colloidal photonic crystal heterostructure. Such a heterostructure was free of interface imperfection since it was a direct descendant of the original colloidal crystal. Meanwhile, optical measurements demonstrated the presence of a wider photonic band gap along the crystallographic [111] direction in these photonic crystal heterostructures compared with the original colloidal photonic crystals.

  9. Bottom-Up Colloidal Crystal Assembly with a Twist

    PubMed Central

    2016-01-01

    Globally ordered colloidal crystal lattices have broad utility in a wide range of optical and catalytic devices, for example, as photonic band gap materials. However, the self-assembly of stereospecific structures is often confounded by polymorphism. Small free-energy differences often characterize ensembles of different structures, making it difficult to produce a single morphology at will. Current techniques to handle this problem adopt one of two approaches: that of the “top-down” or “bottom-up” methodology, whereby structures are engineered starting from the largest or smallest relevant length scales, respectively. However, recently, a third approach for directing high fidelity assembly of colloidal crystals has been suggested which relies on the introduction of polymer cosolutes into the crystal phase [Mahynski, N.; Panagiotopoulos, A. Z.; Meng, D.; Kumar, S. K. Nat. Commun.2014, 5, 4472]. By tuning the polymer’s morphology to interact uniquely with the void symmetry of a single desired crystal, the entropy loss associated with polymer confinement has been shown to strongly bias the formation of that phase. However, previously, this approach has only been demonstrated in the limiting case of close-packed crystals. Here, we show how this approach may be generalized and extended to complex open crystals, illustrating the utility of this “structure-directing agent” paradigm in engineering the nanoscale structure of ordered colloidal materials. The high degree of transferability of this paradigm’s basic principles between relatively simple crystals and more complex ones suggests that this represents a valuable addition to presently known self-assembly techniques. PMID:27124487

  10. Anomalous Fluorescence Enhancement from Double Heterostructure 3D Colloidal Photonic Crystals–A Multifunctional Fluorescence-Based Sensor Platform

    PubMed Central

    Eftekhari, Ehsan; Li, Xiang; Kim, Tak H.; Gan, Zongsong; Cole, Ivan S.; Zhao, Dongyuan; Kielpinski, Dave; Gu, Min; Li, Qin

    2015-01-01

    Augmenting fluorescence intensity is of vital importance to the development of chemical and biochemical sensing, imaging and miniature light sources. Here we report an unprecedented fluorescence enhancement with a novel architecture of multilayer three-dimensional colloidal photonic crystals self-assembled from polystyrene spheres. The new technique uses a double heterostructure, which comprises a top and a bottom layer with a periodicity overlapping the excitation wavelength (E) of the emitters, and a middle layer with a periodicity matching the fluorescence wavelength (F) and a thickness that supports constructive interference for the excitation wavelength. This E-F-E double heterostructure displays direction-dependent light trapping for both excitation and fluorescence, coupling the modes of photonic crystal with multiple-beam interference. The E-F-E double heterostructure renders an additional 5-fold enhancement to the extraordinary FL amplification of Rhodamine B in monolithic E CPhCs, and 4.3-fold acceleration of emission dynamics. Such a self-assembled double heterostructue CPhCs may find significant applications in illumination, laser, chemical/biochemical sensing, and solar energy harvesting. We further demonstrate the multi-functionality of the E-F-E double heterostructure CPhCs in Hg (II) sensing. PMID:26400503

  11. Preparation of multilayered trimodal colloid crystals and binary inverse opals.

    PubMed

    Wang, Jianjun; Li, Qin; Knoll, Wolfgang; Jonas, Ulrich

    2006-12-13

    We report for the first time the preparation of multilayered trimodal colloid crystals (tCC) and their corresponding binary inverse opals (bIO), which present complex hierarchical structures that may have significant potential in photonics, phononics, separations, and catalysis, among others. A trimodal colloidal mixture of 465 nm polystyrene (PS), 84 nm poly(methyl methacrylate) (PMMA), and 6 nm silica particles in suspension was transferred onto a glass substrate and self-assembled into highly ordered trimodal crystal structures during vertical lifting deposition. Pyrolysis of the organic particles in the tCC resulted in silica bIO with interconnected meso- and macropores. Vis-NIR spectra of all structures were analyzed to reveal the internal architecture with each PS sphere correlating to 21-23 PMMA particles (a LI21-23 stoichiometry), which corresponded well with computer models.

  12. Two-dimensional freezing criteria for crystallizing colloidal monolayers

    SciTech Connect

    Wang Ziren; Han Yilong; Alsayed, Ahmed M.

    2010-04-21

    Video microscopy was employed to explore crystallization of colloidal monolayers composed of diameter-tunable microgel spheres. Two-dimensional (2D) colloidal liquids were frozen homogenously into polycrystalline solids, and four 2D criteria for freezing were experimentally tested in thermal systems for the first time: the Hansen-Verlet freezing rule, the Loewen-Palberg-Simon dynamical freezing criterion, and two other rules based, respectively, on the split shoulder of the radial distribution function and on the distribution of the shape factor of Voronoi polygons. Importantly, these freezing criteria, usually applied in the context of single crystals, were demonstrated to apply to the formation of polycrystalline solids. At the freezing point, we also observed a peak in the fluctuations of the orientational order parameter and a percolation transition associated with caged particles. Speculation about these percolated clusters of caged particles casts light on solidification mechanisms and dynamic heterogeneity in freezing.

  13. Deformation and failure of curved colloidal crystal shells

    PubMed Central

    Negri, Carlotta; Sellerio, Alessandro L.; Zapperi, Stefano

    2015-01-01

    Designing and controlling particle self-assembly into robust and reliable high-performance smart materials often involves crystalline ordering in curved spaces. Examples include carbon allotropes like graphene, synthetic materials such as colloidosomes, or biological systems like lipid membranes, solid domains on vesicles, or viral capsids. Despite the relevance of these structures, the irreversible deformation and failure of curved crystals is still mostly unexplored. Here, we report simulation results of the mechanical deformation of colloidal crystalline shells that illustrate the subtle role played by geometrically necessary topological defects in controlling plastic yielding and failure. We observe plastic deformation attributable to the migration and reorientation of grain boundary scars, a collective process assisted by the intermittent proliferation of disclination pairs or abrupt structural failure induced by crack nucleating at defects. Our results provide general guiding principles to optimize the structural and mechanical stability of curved colloidal crystals. PMID:26553975

  14. Inverse colloidal crystal membranes for hydrophobic interaction membrane chromatography.

    PubMed

    Vu, Anh T; Wang, Xinying; Wickramasinghe, S Ranil; Yu, Bing; Yuan, Hua; Cong, Hailin; Luo, Yongli; Tang, Jianguo

    2015-08-01

    Hydrophobic interaction membrane chromatography has gained interest due to its excellent performance in the purification of humanized monoclonal antibodies. The membrane material used in hydrophobic interaction membrane chromatography has typically been commercially available polyvinylidene fluoride. In this contribution, newly developed inverse colloidal crystal membranes that have uniform pores, high porosity and, therefore, high surface area for protein binding are used as hydrophobic interaction membrane chromatography membranes for humanized monoclonal antibody immunoglobulin G purification. The capacity of the inverse colloidal crystal membranes developed here is up to ten times greater than commercially available polyvinylidene fluoride membranes with a similar pore size. This work highlights the importance of developing uniform pore size high porosity membranes in order to maximize the capacity of hydrophobic interaction membrane chromatography.

  15. Orientation-dependent impurity partitioning of colloidal crystals

    NASA Astrophysics Data System (ADS)

    Nozawa, Jun; Uda, Satoshi; Hu, Sumeng; Fujiwara, Kozo; Koizumi, Haruhiko

    2016-04-01

    Impurity partitioning during colloidal crystallization was investigated for grains with different orientations. Particles of various sizes were doped as impurities during the growth of colloidal polycrystals. The effective partition coefficient, keff, which is the impurity concentration in the solid (CS) divided by that in initial solution (CL), was measured for grains oriented in the [111] and [100] directions normal to the growth direction. The [111]-oriented grains were found to have a larger keff than [100]-oriented grains. This was analyzed by using the Thurmond and Struthers model. Though both [111]- and [100]-oriented grains were face centered cubic (fcc) structures, within several layers of crystals, the volume fraction of [111]-oriented grains was larger than that of [100]-oriented grains, yielding a larger driving force for nucleation, ΔGTr, and thus a larger equilibrium partition coefficient, k0, for [111]-oriented grains.

  16. Dynamic arrest of nematic liquid-crystal colloid networks

    NASA Astrophysics Data System (ADS)

    Zou, Lu; Hwang, Jeoung-Yeon; Kim, Chanjoong

    2013-10-01

    We report interesting self-assembly structures of nematic liquid-crystal colloid (NLCC) networks, which are arrested during cooling from the isotropic temperature to room temperature. The NLCC is composed of sterically stabilized colloidal particles and a nematic liquid crystal (NLC) with nematic-isotropic transition temperature (TNI) that is much higher than those of previously studied 4-Cyano-4'-pentylbiphenyl and N-(4-Methoxybenzylidene)-4-butylaniline. We find that the structure of NLCCs depends on TNI, cooling rates, and boundary conditions, varying from cellular network to hierarchical fern structures in different length scales. Our time-lapse study shows that the transition from the cellular network to the fern structure directly corresponds to the transition from a spinodal demixing to a nucleation-and-growth mechanism.

  17. 3D printed low-loss THz waveguide based on Kagome photonic crystal structure.

    PubMed

    Yang, Jing; Zhao, Jiayu; Gong, Cheng; Tian, Haolin; Sun, Lu; Chen, Ping; Lin, Lie; Liu, Weiwei

    2016-10-03

    A low-loss hollow core terahertz waveguide based on Kagome photonic crystal structure has been designed and fabricated by 3D printing. The 3D printed waveguide has been characterized by using THz time-domain spectroscopy. The results demonstrate that the obtained waveguide features average power propagation loss of 0.02 cm-1 for 0.2-1.0 THz (the minimum is about 0.002 cm-1 at 0.75 THz). More interesting, it could be simply mechanically spliced without any additional alignment, while maintaining the excellent performance. The 3D printing technique will be a promising solution to fabricate Kagome THz waveguide with well controllable characteristics and low cost.

  18. Ionic colloidal crystals: Ordered, multicomponent structures via controlled heterocoagulation.

    PubMed

    Maskaly, Garry R; García, R Edwin; Carter, W Craig; Chiang, Yet-Ming

    2006-01-01

    We propose a new type of ordered colloid, the "ionic colloidal crystal" (ICC), which is stabilized by attractive electrostatic interactions analogous to those in atomic ionic materials. The rapid self-organization of colloids via this method should result in a diversity of orderings that are analogous to ionic compounds. Most of these complex structures would be difficult to produce by other methods. We use a Madelung summation approach to evaluate the conditions where ICC's are thermodynamically stable. Using this model, we compare the relative electrostatic energies of various structures showing that the regions of ICC stability are determined by two dimensionless parameters representing charge balance and the spatial extent of the electrostatic interactions. Parallels and distinctions between ICC's and classical ionic crystals are discussed. Monte Carlo simulations are utilized to examine the glass transition and melting temperatures, between which crystallization can occur, of a model system having the rocksalt structure. These tools allow us to make a first-order prediction of the experimentally accessible regions of surface charge, particle size, ionic strength, and temperature where ICC formation is probable.

  19. Preliminary 3-D site-scale studies of radioactive colloid transortin the unsaturated zone at Yucca Mountain, Nevada

    SciTech Connect

    Moridis, G.J.; Hu, Q.; Wu, Y.-S.; Bodvarsson, G.S.

    2001-09-01

    The U.S: Department of Energy is actively investigating the technical feasibility of permanent disposal of high-level nuclear waste in a repository to be situated in the unsaturated zone at Yucca Mountain, Nevada. In this study we investigate, by means of numerical simulation, the transport of radioactive colloids under ambient conditions from the potential repository horizon to the water table. The site hydrology and the effects of the spatial distribution of hydraulic and transport properties in the Yucca Mountain subsurface are considered. The study of migration and retardation of colloids accounts for the complex processes in the unsaturated zone of Yucca Mountain, and includes advection, diffusion, hydrodynamic dispersion, kinetic colloid filtration, colloid straining, and radioactive decay. The results of the study indicate that the most important factors affecting colloid transport are the subsurface geology and site hydrology, i.e., the presence of faults (they dominate and control transport), fractures (the main migration pathways), and the relative distribution of zeolitic and vitric tuffs. The transport of colloids is strongly influenced by their size (as it affects diffusion into the matrix, straining at hydrogeologic unit interfaces, and transport velocity) and by the parameters of the kinetic-filtration model used for the simulations. Arrival times at the water table decrease with an increasing colloid size because of smaller diffusion, increased straining, and higher transport velocities. The importance of diffusion as a retardation mechanism increases with a decreasing colloid size, but appears to be minimal in large colloids.

  20. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.

  1. DNA-guided crystallization of colloidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Nykypanchuk, Dmytro; Maye, Mathew M.; van der Lelie, Daniel; Gang, Oleg

    2008-01-01

    Many nanometre-sized building blocks will readily assemble into macroscopic structures. If the process is accompanied by effective control over the interactions between the blocks and all entropic effects, then the resultant structures will be ordered with a precision hard to achieve with other fabrication methods. But it remains challenging to use self-assembly to design systems comprised of different types of building blocks-to realize novel magnetic, plasmonic and photonic metamaterials, for example. A conceptually simple idea for overcoming this problem is the use of `encodable' interactions between building blocks; this can in principle be straightforwardly implemented using biomolecules. Strategies that use DNA programmability to control the placement of nanoparticles in one and two dimensions have indeed been demonstrated. However, our theoretical understanding of how to extend this approach to three dimensions is limited, and most experiments have yielded amorphous aggregates and only occasionally crystallites of close-packed micrometre-sized particles. Here, we report the formation of three-dimensional crystalline assemblies of gold nanoparticles mediated by interactions between complementary DNA molecules attached to the nanoparticles' surface. We find that the nanoparticle crystals form reversibly during heating and cooling cycles. Moreover, the body-centred-cubic lattice structure is temperature-tuneable and structurally open, with particles occupying only ~4% of the unit cell volume. We expect that our DNA-mediated crystallization approach, and the insight into DNA design requirements it has provided, will facilitate both the creation of new classes of ordered multicomponent metamaterials and the exploration of the phase behaviour of hybrid systems with addressable interactions.

  2. A phenomenological introduction to liquid crystals and colloids

    NASA Astrophysics Data System (ADS)

    Lagerwall, Jan P. F.

    This chapter aims to give the reader an overview of the full scope of the liquid crystalline state of matter and a first contact with colloids. The ambition is to introduce and explain all key phenomena and concepts that will be needed in the following chapters in a concise yet understandable way. We begin by introducing the nematic phase and defining the director concept. We then introduce the two classes of liquid crystals, thermotropics and lyotropics, discussing similarities and differences and defining necessary help concepts such as mesogenicity, amphiphilicity and micelle formation. In the context of lyotropic liquid crystals we also introduce some key concepts of colloids, which form a minimum base that the following more detailed chapter on colloids by Paul van der Schoot takes as a starting point. Thermotropic smectic and lyotropic lamellar phases are then discussed together, emphasizing shared aspects as well as their respective unique features. This is followed by columnar phases of disc-shaped thermotropic molecules and in lyotropic suspensions of nanorods, and then we introduce the modifications of the phase structures that chirality typically induces...

  3. Spectral element method for band-structure calculations of 3D phononic crystals

    NASA Astrophysics Data System (ADS)

    Shi, Linlin; Liu, Na; Zhou, Jianyang; Zhou, Yuanguo; Wang, Jiamin; Huo Liu, Qing

    2016-11-01

    The spectral element method (SEM) is a special kind of high-order finite element method (FEM) which combines the flexibility of a finite element method with the accuracy of a spectral method. In contrast to the traditional FEM, the SEM exhibits advantages in the high-order accuracy as the error decreases exponentially with the increase of interpolation degree by employing the Gauss-Lobatto-Legendre (GLL) polynomials as basis functions. In this study, the spectral element method is developed for the first time for the determination of band structures of 3D isotropic/anisotropic phononic crystals (PCs). Based on the Bloch theorem, we present a novel, intuitive discretization formulation for Navier equation in the SEM scheme for periodic media. By virtue of using the orthogonal Legendre polynomials, the generalized eigenvalue problem is converted to a regular one in our SEM implementation to improve the efficiency. Besides, according to the specific geometry structure, 8-node and 27-node hexahedral elements as well as an analytic mesh have been used to accurately capture curved PC models in our SEM scheme. To verify its accuracy and efficiency, this study analyses the phononic-crystal plates with square and triangular lattice arrangements, and the 3D cubic phononic crystals consisting of simple cubic (SC), bulk central cubic (BCC) and faced central cubic (FCC) lattices with isotropic or anisotropic scatters. All the numerical results considered demonstrate that SEM is superior to the conventional FEM and can be an efficient alternative method for accurate determination of band structures of 3D phononic crystals.

  4. Fluorescence Enhancement on Large Area Self-Assembled Plasmonic-3D Photonic Crystals.

    PubMed

    Chen, Guojian; Wang, Dongzhu; Hong, Wei; Sun, Lu; Zhu, Yongxiang; Chen, Xudong

    2017-03-01

    Discontinuous plasmonic-3D photonic crystal hybrid structures are fabricated in order to evaluate the coupling effect of surface plasmon resonance and the photonic stop band. The nanostructures are prepared by silver sputtering deposition on top of hydrophobic 3D photonic crystals. The localized surface plasmon resonance of the nanostructure has a symbiotic relationship with the 3D photonic stop band, leading to highly tunable characteristics. Fluorescence enhancements of conjugated polymer and quantum dot based on these hybrid structures are studied. The maximum fluorescence enhancement for the conjugated polymer of poly(5-methoxy-2-(3-sulfopropoxy)-1,4-phenylenevinylene) potassium salt by a factor of 87 is achieved as compared with that on a glass substrate due to the enhanced near-field from the discontinuous plasmonic structures, strong scattering effects from rough metal surface with photonic stop band, and accelerated decay rates from metal-coupled excited state of the fluorophore. It is demonstrated that the enhancement induced by the hybrid structures has a larger effective distance (optimum thickness ≈130 nm) than conventional plasmonic systems. It is expected that this approach has tremendous potential in the field of sensors, fluorescence-imaging, and optoelectronic applications.

  5. Dielectric Anisotropy of Gold Nanoparticle Colloids in Nematic Liquid Crystals

    NASA Astrophysics Data System (ADS)

    Visco, Angelo; Foust, Jon; Mahmood, Rizwan

    We present electrical and optical studies of hexanethiol-treated gold nanoparticle (GNPs) colloids in 4-cyano-4 '-pentyl-biphenyl (5CB) liquid crystals. Preliminary data analysis suggests an unusual behavior of sudden drop and then rise in the dielectric anisotropy at a critical concentration of 0.0862% by wt. GNPs and a sudden rise and then drop in the nematic to isotropic transition temperature. Above the critical concentration the data level off to within the uncertainty of the experimental errors. This colloidal system will help us to understand the interaction and the effects of nanoparticles on the self-assembly of LC molecules and the manner in which these particles organize in LC. This study is important for further developments in nanotechnology, sharp and fast display panels, and within the medical field.

  6. Globular and Optically Transparent Photonic Crystals Based on 3D-opal Matrix and REE

    NASA Astrophysics Data System (ADS)

    Ivicheva, S. N.; Kargin, Yu. F.; Gorelik, V. S.

    By repeatedly filling the octahedral and tetrahedral pores of 3D-silica opal matrices with silica sol doped with rare-earth elements with subsequent heat treatment globular photonic crystals filled with mesoporous glass and optically transparent photonic crystals (quantytes) containing 10-30 ppm REE were produced, depending on the annealing temperature. Voids of fcc lattice formed by amorphous spherical globules of SiO2 in globular photonic crystals are filled (up to 70%) by mesoporous glass doped with rare earth elements. Pores in the transparent photonic crystals disappear during sintering of globules of silica and mesoporous glass, but the periodic arrangement of REE-enriched silica areas (quantum dots) is retained. The reflection and luminescence spectra of photonic crystals filled with sols doped with europium Eu3+ and terbium Tb3+ were experimentally studied. A significant increase in the photoluminescence intensity of Eu3+ ions at the approach of the spectral position of the transition 5D0 → 7F2 to the edge of the bandgaps of the photonic crystal was determined. The authors come to the conclusion that a lowering of the threshold for lasing transitions in ions of rare elements is possible.

  7. The crystal structure of Aspergillus fumigatus cyclophilin reveals 3D domain swapping of a central element.

    PubMed

    Limacher, Andreas; Kloer, Daniel P; Flückiger, Sabine; Folkers, Gerd; Crameri, Reto; Scapozza, Leonardo

    2006-02-01

    The crystal structure of Aspergillus fumigatus cyclophilin (Asp f 11) was solved by the multiwavelength anomalous dispersion method and was refined to a resolution of 1.85 A with R and R(free) values of 18.9% and 21.4%, respectively. Many cyclophilin structures have been solved to date, all showing the same monomeric conformation. In contrast, the structure of A. fumigatus cyclophilin reveals dimerization by 3D domain swapping and represents one of the first proteins with a swapped central domain. The domain-swapped element consists of two beta strands and a subsequent loop carrying a conserved tryptophan. The tryptophan binds into the active site, inactivating cis-trans isomerization. This might be a means of biological regulation. The two hinge loops leave the protein prone to misfolding. In this context, alternative forms of 3D domain swapping that can lead to N- or C-terminally swapped dimers, oligomers, and aggregates are discussed.

  8. High-resistance liquid-crystal lens array for rotatable 2D/3D autostereoscopic display.

    PubMed

    Chang, Yu-Cheng; Jen, Tai-Hsiang; Ting, Chih-Hung; Huang, Yi-Pai

    2014-02-10

    A 2D/3D switchable and rotatable autostereoscopic display using a high-resistance liquid-crystal (Hi-R LC) lens array is investigated in this paper. Using high-resistance layers in an LC cell, a gradient electric-field distribution can be formed, which can provide a better lens-like shape of the refractive-index distribution. The advantages of the Hi-R LC lens array are its 2D/3D switchability, rotatability (in the horizontal and vertical directions), low driving voltage (~2 volts) and fast response (~0.6 second). In addition, the Hi-R LC lens array requires only a very simple fabrication process.

  9. Stability of orientationally disordered crystal structures of colloidal hard dumbbells.

    PubMed

    Marechal, Matthieu; Dijkstra, Marjolein

    2008-06-01

    We study the stability of orientationally disordered crystal phases in a suspension of colloidal hard dumbbells using Monte Carlo simulations. For dumbbell bond length L/sigma<0.4 with L the separation of the two spheres of the dumbbell and sigma the diameter of the spheres, we determine the difference in Helmholtz free energy of a plastic crystal with a hexagonal-close-packed (hcp) and a face-centered-cubic (fcc) structure using thermodynamic integration and the lattice-switch Monte Carlo method. We find that the plastic crystal with the hcp structure is more stable than the one with the fcc structure for a large part of the stable plastic crystal regime. In addition, we study the stability of an orientationally disordered aperiodic crystal structure in which the spheres of the dumbbells are on a random-hexagonal-close-packed lattice, and the dumbbells are formed by taking random pairs of neighboring spheres. Using free-energy calculations, we determine the fluid-aperiodic crystal and periodic-aperiodic crystal coexistence regions for L/sigma>0.88 .

  10. Colloidal Crystal Growth Monitored By Bragg Diffraction Interference Fringes

    PubMed Central

    Bohn, Justin J.; Tikhonov, Alexander; Asher, Sanford A.

    2010-01-01

    We monitor the crystal growth kinetics of crystallization of a shear melted crystalline colloidal array (CCA). The fcc CCA heterogeneously nucleates at the flow cell wall surface. We examined the evolution of the (111) Bragg diffraction peak, and, for the first time, quantitatively monitored growth by measuring the temporal evolution of the Bragg diffraction interference fringes. Modeling of the evolution of the fringe patterns exposes the time dependence of the increasing crystal thickness. The initial diffusion driven linear growth is followed by ripening-driven growth. Between 80 to 90 μM NaCl concentrations the fcc crystals first linearly grow at rates between 1.9 and 4.2 μm/sec until they contact homogeneously nucleated crystals in the bulk. At lower salt concentrations interference fringes are not visible because the strong electrostatic interactions between particles result in high activation barriers, preventing defect annealing and leading to a lower crystal quality. The fcc crystals melt to a liquid phase at >90 μM NaCl concentrations. Increasing NaCl concentrations slows the fcc CCA growth rate consistent with the expectation of the classical Wilson-Frenkel growth theory. The final thickness of wall nucleated CCA is determined by the competition between growth of heterogeneously and homogenously nucleated CCA and increases with higher NaCl concentrations. PMID:20542277

  11. Assembly of colloidal molecules, polymers, and crystals in acoustic and magnetic fields.

    PubMed

    Yang, Ye; Pham, An T; Cruz, Daniela; Reyes, Christopher; Wiley, Benjamin J; Lopez, Gabriel P; Yellen, Benjamin B

    2015-08-26

    A dynamically adjustable colloidal assembly technique is presented, which combines magnetic and acoustic fields to produce a wide range of colloidal structures, ranging from discrete colloidal molecules, to polymer networks and crystals. The structures can be stabilized and dried, making them suitable for the fabrication of advanced materials.

  12. Kinetically driven ordered phase formation in binary colloidal crystals

    NASA Astrophysics Data System (ADS)

    Bochicchio, D.; Videcoq, A.; Ferrando, R.

    2013-02-01

    The aggregation of binary colloids of the same size and balanced charges is studied by Brownian dynamics simulations for dilute suspensions. It is shown that, under appropriate conditions, the formation of colloidal crystals is dominated by kinetic effects leading to the growth of well-ordered crystallites of the sodium-chloride (NaCl) bulk phase. These crystallites form with very high probability even when the cesium-chloride (CsCl) phase is more stable thermodynamically. Global optimization searches show that this result is not related to the most favorable structures of small clusters, which are either amorphous or of the CsCl structure. The formation of the NaCl phase is related to the specific kinetics of the crystallization process, which takes place by a two-step mechanism. In this mechanism, dense fluid aggregates form at first and then crystallization follows. It is shown that the type of short-range order in these dense fluid aggregates determines which phase is finally formed in the crystallites. The role of hydrodynamic effects in the aggregation process is analyzed by stochastic rotation dynamics - molecular dynamics simulations, and we find that these effects do not play a major role in the formation of the crystallites.

  13. Electron crystallography of ultrathin 3D protein crystals: atomic model with charges.

    PubMed

    Yonekura, Koji; Kato, Kazuyuki; Ogasawara, Mitsuo; Tomita, Masahiro; Toyoshima, Chikashi

    2015-03-17

    Membrane proteins and macromolecular complexes often yield crystals too small or too thin for even the modern synchrotron X-ray beam. Electron crystallography could provide a powerful means for structure determination with such undersized crystals, as protein atoms diffract electrons four to five orders of magnitude more strongly than they do X-rays. Furthermore, as electron crystallography yields Coulomb potential maps rather than electron density maps, it could provide a unique method to visualize the charged states of amino acid residues and metals. Here we describe an attempt to develop a methodology for electron crystallography of ultrathin (only a few layers thick) 3D protein crystals and present the Coulomb potential maps at 3.4-Å and 3.2-Å resolution, respectively, obtained from Ca(2+)-ATPase and catalase crystals. These maps demonstrate that it is indeed possible to build atomic models from such crystals and even to determine the charged states of amino acid residues in the Ca(2+)-binding sites of Ca(2+)-ATPase and that of the iron atom in the heme in catalase.

  14. Surface-induced structures in nematic liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Chernyshuk, S. B.; Tovkach, O. M.; Lev, B. I.

    2014-08-01

    We predict theoretically the existence of a class of colloidal structures in nematic liquid crystal (NLC) cells, which are induced by surface patterns on the plates of the cell (like cells with UV-irradiated polyamide surfaces using micron sized masks in front of the cell). These bulk structures arise from nonuniform boundary conditions for the director distortions at the confining surfaces. In particular, we demonstrate that quadrupole spherical particles (like spheres with boojums or Saturn-ring director configurations) form a square lattice inside a planar NLC cell, which has checkerboard patterns on both its plates.

  15. Review on Chalcogenide 3D Nano-structured Crystals: Synthesis and Growth Mechanism.

    PubMed

    Qiu, Qi

    2015-01-01

    Three dimensional (3D) nano-structured crystals have received extensive attention for their superior properties over zero dimensional (0D), one dimensional (1D), or two dimensional (2D) nanomaterials in many areas. This review is generalized for the group of chalcogenide nanoflowers (NFs) by the synthetic techniques, such as solvothermal, wet chemical, sol-gel, surface oxidation, microwave, coating, electrochemical, and several other methods. The formation mechanism was also described for the purpose of opening up new food for thoughts to bring up new functionality of materials by tuning the morphology of crystals. The pH value or the template plays fundamental role in forming the nano-flowered structure. Moreover, the correlations between the surface area (SA), contact angle (CA), and the NFs are also discussed within the context. Here, we also discussed some patents relevant to the topic.

  16. Cylindrical liquid crystal lenses system for autostereoscopic 2D/3D display

    NASA Astrophysics Data System (ADS)

    Chen, Chih-Wei; Huang, Yi-Pai; Chang, Yu-Cheng; Wang, Po-Hao; Chen, Po-Chuan; Tsai, Chao-Hsu

    2012-06-01

    The liquid crystal lenses system, which could be electrically controlled easily for autostereoscopic 2D/3D switchable display was proposed. The High-Resistance liquid crystal (HRLC) lens utilized less controlled electrodes and coated a high-resistance layer between the controlled-electrodes was proposed and was used in this paper. Compare with the traditional LC lens, the HR-LC Lens could provide smooth electric-potential distribution within the LC layer under driving status. Hence, the proposed HR-LC Lens had less circuit complexity, low driving voltage, and good optical performance also could be obtained. In addition, combining with the proposed driving method called dual-directional overdriving method, the above method could reduce the switching time by applying large voltage onto cell. Consequently, the total switching time could be further reduced to around 2second. It is believed that the LC lens system has high potential in the future.

  17. Colloidal Material Box: In-situ Observations of Colloidal Self-Assembly and Liquid Crystal Phase Transitions in Microgravity

    NASA Astrophysics Data System (ADS)

    Li, WeiBin; Lan, Ding; Sun, ZhiBin; Geng, BaoMing; Wang, XiaoQing; Tian, WeiQian; Zhai, GuangJie; Wang, YuRen

    2016-05-01

    To study the self-assembly behavior of colloidal spheres in the solid/liquid interface and elucidate the mechanism of liquid crystal phase transition under microgravity, a Colloidal Material Box (CMB) was designed which consists of three modules: (i) colloidal evaporation experimental module, made up of a sample management unit, an injection management unit and an optical observation unit; (ii) liquid crystal phase transition experimental module, including a sample management unit and an optical observation unit; (iii) electronic control module. The following two experimental plans will be performed inside the CMB aboard the SJ-10 satellite in space. (i) Self-assembly of colloidal spheres (with and without Au shell) induced by droplet evaporation, allowing observation of the dynamic process of the colloidal spheres within the droplet and the change of the droplet outer profile during evaporation; (ii) Phase behavior of Mg2Al LDHs suspensions in microgravity. The experimental results will be the first experimental observations of depositing ordered colloidal crystals and their self-assembly behavior under microgravity, and will illustrate the influence of gravity on liquid crystal phase transition.

  18. Fabrication of 3D polymer photonic crystals for near-IR applications

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric

    2008-02-01

    Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem

  19. Digital holographic tomography method for 3D observation of domain patterns in ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Vápenka, David; Doleček, Roman; Vojtíšek, Petr; Sládek, Juraj; Lédl, Vít.

    2016-11-01

    We report on the development and implementation of the digital holographic tomography for the three-dimensio- nal (3D) observations of the domain patterns in the ferroelectric single crystals. Ferroelectric materials represent a group of materials, whose macroscopic dielectric, electromechanical, and elastic properties are greatly in uenced by the presence of domain patterns. Understanding the role of domain patterns on the aforementioned properties require the experimental techniques, which allow the precise 3D measurements of the spatial distribution of ferroelectric domains in the single crystal. Unfortunately, such techniques are rather limited at this time. The most frequently used piezoelectric atomic force microscopy allows 2D observations on the ferroelectric sample surface. Optical methods based on the birefringence measurements provide parameters of the domain patterns averaged over the sample volume. In this paper, we analyze the possibility that the spatial distribution of the ferroelectric domains can be obtained by means of the measurement of the wavefront deformation of the transmitted optical wave. We demonstrate that the spatial distribution of the ferroelectric domains can be determined by means of the measurement of the spatial distribution of the refractive index. Finally, it is demonstrated that the measurements of wavefront deformations generated in ferroelectric polydomain systems with small variations of the refractive index provide data, which can be further processed by means of the conventional tomographic methods.

  20. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    PubMed Central

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.

    2016-01-01

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field. PMID:26817823

  1. Faceting and commensurability in crystal structures of colloidal thin films.

    PubMed

    Ramiro-Manzano, F; Meseguer, F; Bonet, E; Rodriguez, I

    2006-07-14

    This Letter investigates the influence of finite size effects on the particle arrangement of thin film colloidal crystals. A rich variety of crystallographic faceting with large single domain microcrystallites is shown. Optical reflectance experiments together with scanning electron microscopy permit the identification of the crystal symmetry and the facet orientation, as well as the exact number of monolayers. When the cell thickness is not commensurable with a high symmetry layering, particles arrange themselves in a periodic distribution of (111)- and (100)-orientated face centered cubic (fcc) microcrystallites separated by planar defects. These structures can be described as a fcc ordering orientated along a vicinal surface, modified by a periodic distribution of fcc (111) stacking faults.

  2. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    DOE PAGES

    Shuai, M.; Klittnick, A.; Shen, Y.; ...

    2016-01-28

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, includingmore » liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.« less

  3. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    SciTech Connect

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.

    2016-01-28

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. We find Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth’s magnetic field.

  4. Spontaneous liquid crystal and ferromagnetic ordering of colloidal magnetic nanoplates

    NASA Astrophysics Data System (ADS)

    Shuai, M.; Klittnick, A.; Shen, Y.; Smith, G. P.; Tuchband, M. R.; Zhu, C.; Petschek, R. G.; Mertelj, A.; Lisjak, D.; Čopič, M.; Maclennan, J. E.; Glaser, M. A.; Clark, N. A.

    2016-01-01

    Ferrofluids are familiar as colloidal suspensions of ferromagnetic nanoparticles in aqueous or organic solvents. The dispersed particles are randomly oriented but their moments become aligned if a magnetic field is applied, producing a variety of exotic and useful magnetomechanical effects. A longstanding interest and challenge has been to make such suspensions macroscopically ferromagnetic, that is having uniform magnetic alignment in the absence of a field. Here we report a fluid suspension of magnetic nanoplates that spontaneously aligns into an equilibrium nematic liquid crystal phase that is also macroscopically ferromagnetic. Its zero-field magnetization produces distinctive magnetic self-interaction effects, including liquid crystal textures of fluid block domains arranged in closed flux loops, and makes this phase highly sensitive, with it dramatically changing shape even in the Earth's magnetic field.

  5. Crystal growth and electronic properties of a 3D Rashba material, BiTeI, with adjusted carrier concentrations.

    PubMed

    Kanou, Manabu; Sasagawa, Takao

    2013-04-03

    3D Rashba materials can be a leading player in spin-related novel phenomena, ranging from the metallic extreme (unconventional superconductivity) to the transport intermediate (spin Hall effects) to the novel insulating variant (3D topological insulating states). As the essential backbone for both fundamental and applied research of such a 3D Rashba material, this study established the growth of sizeable single crystals of a candidate compound BiTeI with adjusted carrier concentrations. Three techniques (standard vertical Bridgman, modified horizontal Bridgman, and vapour transport) were employed, and BiTeI crystals (>1 × 1 × 0.2 mm(3)) with fundamentally different electronic states from metallic to insulating were successfully grown by the chosen technique. The 3D Rashba electronic states, including the Fermi surface topology, for the corresponding carrier concentrations of the obtained BiTeI crystals were revealed by relativistic first-principles calculations.

  6. Straining soft colloids in aqueous nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Mushenheim, Peter C.; Pendery, Joel S.; Weibel, Douglas B.; Spagnolie, Saverio E.; Abbott, Nicholas L.

    2016-05-01

    Liquid crystals (LCs), because of their long-range molecular ordering, are anisotropic, elastic fluids. Herein, we report that elastic stresses imparted by nematic LCs can dynamically shape soft colloids and tune their physical properties. Specifically, we use giant unilamellar vesicles (GUVs) as soft colloids and explore the interplay of mechanical strain when the GUVs are confined within aqueous chromonic LC phases. Accompanying thermal quenching from isotropic to LC phases, we observe the elasticity of the LC phases to transform initially spherical GUVs (diameters of 2-50 µm) into two distinct populations of GUVs with spindle-like shapes and aspect ratios as large as 10. Large GUVs are strained to a small extent (R/r < 1.54, where R and r are the major and minor radii, respectively), consistent with an LC elasticity-induced expansion of lipid membrane surface area of up to 3% and conservation of the internal GUV volume. Small GUVs, in contrast, form highly elongated spindles (1.54 < R/r < 10) that arise from an efflux of LCs from the GUVs during the shape transformation, consistent with LC-induced straining of the membrane leading to transient membrane pore formation. A thermodynamic analysis of both populations of GUVs reveals that the final shapes adopted by these soft colloids are dominated by a competition between the LC elasticity and an energy (˜0.01 mN/m) associated with the GUV-LC interface. Overall, these results provide insight into the coupling of strain in soft materials and suggest previously unidentified designs of LC-based responsive and reconfigurable materials.

  7. Photonic liquid crystal fibers tuning by four electrode system produced with 3D printing technology

    NASA Astrophysics Data System (ADS)

    Ertman, Slawomir; Bednarska, Karolina; Czapla, Aleksandra; Woliński, Tomasz R.

    2015-09-01

    Photonic liquid crystal fiber has been intensively investigated in last few years. It has been proved that guiding properties of such fibers could be tuned with an electric field. In particular efficient tuning could be obtained if multi-electrode system allowing for dynamic change of not only intensity of the electric field, but also its direction. In this work we report a simple to build four electrode system, which is based on a precisely aligned four cylindrical microelectrodes. As an electrodes we use enameled copper wire with diameter adequate to the diameter of the fiber to be tuned. To ensure uniform and parallel alignment of the wires a special micro-profiles has been designed and then produced with filament 3D printer. The possibility of the dynamic change of the electric field direction in such scalable and cost effective electrode assembly has been experimentally confirmed.

  8. 3D lattice distortions and defect structures in ion-implanted nano-crystals

    DOE PAGES

    Hofmann, Felix; Robinson, Ian K.; Tarleton, Edmund; ...

    2017-04-06

    The ability of Focused Ion Beam (FIB) techniques to cut solid matter at the nano-scale revolutionized the study of material structure across the life-, earth- and material sciences. But a detailed understanding of the damage caused by the ion beam and its effect on material properties remains elusive. We examine this damage in 3D using coherent X-ray diffraction to measure the full lattice strain tensor in FIB-milled gold nano-crystals. We also found that even very low ion doses, previously thought to be negligible, cause substantial lattice distortions. At higher doses, extended self-organized defect structures appear. Combined with detailed numerical calculations,more » these observations allow fundamental insight into the nature of the damage created and the structural instabilities that lead to a surprisingly inhomogeneous morphology.« less

  9. Structural Color for Additive Manufacturing: 3D-Printed Photonic Crystals from Block Copolymers.

    PubMed

    Boyle, Bret M; French, Tracy A; Pearson, Ryan M; McCarthy, Blaine G; Miyake, Garret M

    2017-03-28

    The incorporation of structural color into 3D printed parts is reported, presenting an alternative to the need for pigments or dyes for colored parts produced through additive manufacturing. Thermoplastic build materials composed of dendritic block copolymers were designed, synthesized, and used to additively manufacture plastic parts exhibiting structural color. The reflection properties of the photonic crystals arise from the periodic nanostructure formed through block copolymer self-assembly during polymer processing. The wavelength of reflected light could be tuned across the visible spectrum by synthetically controlling the block copolymer molecular weight and manufacture parts that reflected violet, green, or orange light with the capacity to serve as selective optical filters and light guides.

  10. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity.

  11. Spectral selectivity of 3D magnetophotonic crystal film fabricated from single butterfly wing scales.

    PubMed

    Peng, Wenhong; Zhu, Shenmin; Zhang, Wang; Yang, Qingqing; Zhang, Di; Chen, Zhixin

    2014-06-07

    3D magnetophotonic crystal (3D-MPC) film is an excellent platform for tailoring the magneto-optical response of magnetic materials. However, its fabrication is a great challenge due to the limitation of commonly used artificial synthesis methods. Inspired by the unique structures of biospecies, we hereby manipulate the pristine single wing scales of Morpho didius precisely and successfully fabricate Fe3O4 films with photonic structure. The synthesis strategy involves the fabrication of Fe2O3 film from a single wing scale using an improved sol-gel method followed by a subsequent reduction. The intrinsic hierarchical photonic structures as well as the anisotropic optical properties of the pristine butterfly wing scale have been retained in the obtained Fe2O3 and Fe3O4 films. When investigated under an external magnetic field, a spectral blue shift about 43 nm is observed in the designated orientation of the Fe3O4 film, which is useful for the design and creation of novel magnetic-optical modulator devices. Furthermore, these single scales can be used as building blocks to fabricate designable and more complicated assembled nano systems. This biomimetic technique combined with the variety of structures of butterfly wing scales provides an effective approach to produce magneto-photonic films with desired structure, paving a new way for theoretical research and practical applications.

  12. Simulation of light transport in scintillators based on 3D characterization of crystal surfaces.

    PubMed

    Roncali, Emilie; Cherry, Simon R

    2013-04-07

    In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte-Carlo simulations play an important role in guiding research in detector designs and popular software such as GATE now include models of light transport in scintillators. Although current simulation toolkits are able to provide accurate models of perfectly polished surfaces, they do not successfully predict light output for other surface finishes, for example those often used in DOI-encoding detectors. The lack of accuracy of those models mainly originates from a simplified description of rough surfaces as an ensemble of micro-facets determined by the distribution of their normal, typically a gaussian distribution. The user can specify the standard deviation of this distribution, but this parameter does not provide a full description of the surface reflectance properties. We propose a different approach based on 3D measurements of the surface using atomic force microscopy. Polished and rough (unpolished) crystals were scanned to compute the surface reflectance properties. The angular distributions of reflectance and reflected rays were computed and stored in look-up tables (LUTs). The LUTs account for the effect of incidence angle and were integrated in a light transport model. Crystals of different sizes were simulated with and without reflector. The simulated maximum light output and the light output as a function of DOI showed very good agreement with experimental characterization of the crystals, indicating that our approach provides an accurate model of polished and rough surfaces and could be used to predict light collection in scintillators. This model is based on a true 3D representation of the surface, makes no assumption about the surface and provides insight on the optical

  13. Simulation of light transport in scintillators based on 3D characterization of crystal surfaces

    NASA Astrophysics Data System (ADS)

    Roncali, Emilie; Cherry, Simon R.

    2013-04-01

    In the development of positron emission tomography (PET) detectors, understanding and optimizing scintillator light collection is critical for achieving high performance, particularly when the design incorporates depth-of-interaction (DOI) encoding or time-of-flight information. Monte-Carlo simulations play an important role in guiding research in detector designs and popular software such as GATE now include models of light transport in scintillators. Although current simulation toolkits are able to provide accurate models of perfectly polished surfaces, they do not successfully predict light output for other surface finishes, for example those often used in DOI-encoding detectors. The lack of accuracy of those models mainly originates from a simplified description of rough surfaces as an ensemble of micro-facets determined by the distribution of their normal, typically a Gaussian distribution. The user can specify the standard deviation of this distribution, but this parameter does not provide a full description of the surface reflectance properties. We propose a different approach based on 3D measurements of the surface using atomic force microscopy. Polished and rough (unpolished) crystals were scanned to compute the surface reflectance properties. The angular distributions of reflectance and reflected rays were computed and stored in look-up tables (LUTs). The LUTs account for the effect of incidence angle and were integrated in a light transport model. Crystals of different sizes were simulated with and without reflector. The simulated maximum light output and the light output as a function of DOI showed very good agreement with experimental characterization of the crystals, indicating that our approach provides an accurate model of polished and rough surfaces and could be used to predict light collection in scintillators. This model is based on a true 3D representation of the surface, makes no assumption about the surface and provides insight on the optical

  14. Hands-on Symmetry, Building and Using 3-D Crystal Models in Mineralogy

    NASA Astrophysics Data System (ADS)

    Cole, K.

    2002-12-01

    Symmetry has historically been the most difficult subject in mineralogy and because so much of the science of mineralogy and crystallography builds on the fundamentals of form and symmetry, it is essential students understand it well. I concluded in recent years that better manipulatives might hold the key to better student comprehension. Mineralogy lab exercises related to symmetry typically involve the use of line drawings of 3-D crystal shapes sometimes augmented with a selection of small wooden models. Many students find the line drawings difficult to envision as 3-D solids. This makes the leap to identifying symmetry elements almost impossible for them and very time consuming for the instructor. The few line drawings for which models were available to my students were readily understood. Following the purchase of a new chop saw, I discovered that it is easy to cut most crystal models from scrap lumber and spent two weeks calculating, cutting, and finishing wooden models. For each of the line drawings used in my symmetry labs two models were cut, 200 models total. Models were also cut to show form development, distorted growth, enantiomorphism, and twinning. The models were cut to a final size of 5 to 15 cm and can be written on with chalk. The large model size and chalkability allowed students to more easily identify, mark, and erase mirrors, axes, forms, etc. Use of these models resulted in 50% less lab time needed in teaching the concepts of symmetry and form and 75% less time for students to complete the exercises. Scores on the symmetry labs averaged 55% to 65% in 1999-2001. The Fall 2002 averages were 85% and the errors made were much more trivial in nature, a dramatic improvement indeed.

  15. Programming Colloidal Crystal Habit with Anisotropic Nanoparticle Building Blocks and DNA Bonds.

    PubMed

    O'Brien, Matthew N; Lin, Hai-Xin; Girard, Martin; Olvera de la Cruz, Monica; Mirkin, Chad A

    2016-11-09

    Colloidal crystallization can be programmed using building blocks consisting of a nanoparticle core and DNA bonds to form materials with controlled crystal symmetry, lattice parameters, stoichiometry, and dimensionality. Despite this diversity of colloidal crystal structures, only spherical nanoparticles crystallized with BCC symmetry experimentally yield single crystals with well-defined crystal habits. Here, we use low-symmetry, anisotropic nanoparticles to overcome this limitation and to access single crystals with different equilibrium Wulff shapes: a cubic habit from cube-shaped nanoparticles, a rhombic dodecahedron habit from octahedron-shaped nanoparticles, and an octahedron habit from rhombic dodecahedron-shaped nanoparticles. The observation that one can control the microscopic shape of single crystals based upon control of particle building block and crystal symmetry has important fundamental and technological implications for this novel class of colloidal matter.

  16. Germanium FCC structure from a colloidal crystal template

    SciTech Connect

    Miguez, H.; Meseguer, F.; Lopez, C.; Holgado, M.; Andreasen, G.; Mifsud, A.; Fornes, V.

    2000-05-16

    Here, the authors show a method to fabricate a macroporous structure in which the pores, essentially identical, arrange regularly in a face-centered cubic (FCC) lattice. The result is a network of air spheres in a germanium medium. This structure presents the highest dielectric contrast ({epsilon}{sub Ge}/{epsilon}{sub air} = 16) ever achieved in the optical regime in such periodic structures, which could result in important applications in photonics. The authors employ solid silica colloidal crystals (opals) as templates within which a cyclic germanium growth process is carried out. Thus, the three-dimensional periodicity of the host is inherited by the guest. Afterward, the silica is removed and a germanium opal replica is obtained.

  17. Grain-boundary fluctuations in two-dimensional colloidal crystals.

    PubMed

    Skinner, Thomas O E; Aarts, Dirk G A L; Dullens, Roel P A

    2010-10-15

    We study grain-boundary fluctuations in two-dimensional colloidal crystals in real space and time using video microscopy. The experimentally obtained static and dynamic correlation functions are very well described by expressions obtained using capillary wave theory. This directly leads to values for the interfacial stiffness and the interface mobility, the key parameters in curvature-driven grain-boundary migration. Furthermore, we show that the average grain-boundary position exhibits a one-dimensional random walk as recently suggested by computer simulations [Z. T. Trautt, M. Upmanyu, and A. Karma, Science 314, 632 (2006)]. The interface mobility determined from the mean-square displacement of the average grain-boundary position is in good agreement with values inferred from grain-boundary fluctuations.

  18. Colloidal photonic crystal pigments with low angle dependence.

    PubMed

    Aguirre, Carlos I; Reguera, Edilso; Stein, Andreas

    2010-11-01

    Poly(methyl methacrylate) (PMMA)-based colloidal photonic crystals have an incomplete photonic band gap (PBG) and typically appear iridescent in the visible range. As powders, synthetic PMMA opals are white, but when infiltrated with carbon black nanoparticles, they exhibit a well-defined color that shows little dependence on the viewing angle. The quantity of black pigment determines the lightness of the color by controlling scattering. The combined effects of internal order within each particle and random orientation among the particles in the powder are responsible for this behavior. These pigments were employed as paints, using a mixture of polyvinyl acetate as a binder and deionized water as the solvent, and were applied to wood and paper surfaces for color analysis.

  19. Nanoscale Morphology of Water in Silica Colloidal Crystals.

    PubMed

    Blanco, A; Gallego-Gómez, F; López, C

    2013-04-04

    We show a simple method to visualize the morphology of water adsorbed within the pore network of colloidal crystals made of submicrometer silica spheres. Water is replicated into silica by modified silicon tetrachloride hydrolysation under standard ambient conditions, making it visible to standard electronic microscopy and thus allowing one to discern the original water distribution. Different distribution patterns are identified depending on the water content, surface condition, and spheres arrangement. The dimension and shape of wetting layers (covering the submicrometer spheres) and capillary bridges (joining them) are measurable at the nanoscale. We finally use these findings to demonstrate proof-of-principle of fabrication of isolated and freestanding silica nanorings by using hydrophobic polymeric templates and selective etching.

  20. Microstructure and phase behavior in colloids and liquid crystals

    NASA Astrophysics Data System (ADS)

    Lohr, Matthew Alan

    This thesis describes our investigation of microstructure and phase behavior in colloids and liquid crystals. The first set of experiments explores the phase behavior of helical packings of thermoresponsive microspheres inside glass capillaries as a function of volume fraction. Stable helical packings are observed with long-range orientational order. Some of these packings evolve abruptly to disordered states as the volume fraction is reduced. We quantify these transitions using correlation functions and susceptibilities of an orientational order parameter. The emergence of coexisting metastable packings, as well as coexisting ordered and disordered states, is also observed. These findings support the notion of phase-transition-like behavior in quasi-one-dimensional systems. The second set of experiments investigates cross-over behavior from glasses with attractive interactions to sparse gel-like states. In particular, the vibrational modes of quasi-two-dimensional disordered colloidal packings of hard colloidal spheres with short-range attractions are measured as a function of packing fraction. A crossover from glassy to sparse gel-like states is indicated by an excess of low-frequency phonon modes. This change in vibrational mode distribution appears to arise from highly localized vibrations that tend to involve individual and/or small clusters of particles with few local bonds. These mode behaviors and corresponding structural insights may serve as a useful signature for glass-gel transitions in wider classes of attractive packings. A third set of experiments explores the director structures of aqueous lyotropic chromonic liquid crystal (LCLC) films created on square lattice cylindrical-micropost substrates. The structures are manipulated by modulating of the concentration-dependent elastic properties of LCLC s via drying. Nematic LCLC films exhibit preferred bistable alignment along the diagonals of the micropost lattice. Columnar LCLC films form two distinct

  1. Facile Assembly of Large-Area 2D Microgel Colloidal Crystals Using Charge-Reversible Substrates.

    PubMed

    Weng, Junying; Li, Xiaoyun; Guan, Ying; Zhu, X X; Zhang, Yongjun

    2016-12-06

    2D colloidal crystals (CCs) have important applications; however, the fabrication of large-area, high-quality 2D CCs is still far from being trivial, and the fabrication of 2D microgel CCs is even harder. Here, we have demonstrated that they can be facilely fabricated using charge-reversible substrates. The charge-reversible substrates were prepared by modification with amino groups. The amino groups were then protected by amidation with 2,2-dimethylsuccinic anhydride. At acidic pH, the surface charge of the modified substrate will change from negative to positive as a result of the hydrolysis of the amide bonds and the regeneration of the amino groups. 2D microgel CCs can be simply fabricated by applying a concentrated microgel dispersion on the modified substrate. The negatively charged surface of the substrate allows the negatively charged microgel spheres, especially those close to the substrate, to self-assemble into 3D CCs. With the gradual hydrolysis of the amide bonds and the charge reversal of the substrate, the first 111 plane of the 3D assembly is fixed in situ on the substrate. The resulting 2D CC has a high degree of ordering because of the high quality of the parent 3D microgel CC. Because large-area 3D microgel CCs can be facilely fabricated, this method allows for the fabrication of 2D CCs of any size. Nonplanar substrates can also be used. In addition, the interparticle distance of the 2D array can be tuned by the concentration of the microgel dispersion. Besides rigid substrates (such as glass slides, quartz slides, and silicon wafers), flexible polymer films, including polyethylene terephthalate and poly(vinyl chloride) films, were also successfully used as substrates for the fabrication of 2D microgel CCs.

  2. A Navier-Stokes phase-field crystal model for colloidal suspensions

    SciTech Connect

    Praetorius, Simon Voigt, Axel

    2015-04-21

    We develop a fully continuous model for colloidal suspensions with hydrodynamic interactions. The Navier-Stokes Phase-Field Crystal model combines ideas of dynamic density functional theory with particulate flow approaches and is derived in detail and related to other dynamic density functional theory approaches with hydrodynamic interactions. The derived system is numerically solved using adaptive finite elements and is used to analyze colloidal crystallization in flowing environments demonstrating a strong coupling in both directions between the crystal shape and the flow field. We further validate the model against other computational approaches for particulate flow systems for various colloidal sedimentation problems.

  3. Recrystallization and zone melting of charged colloids by thermally induced crystallization.

    PubMed

    Shinohara, Mariko; Toyotama, Akiko; Suzuki, Misaki; Sugao, Yukihiro; Okuzono, Tohru; Uchida, Fumio; Yamanaka, Junpei

    2013-08-06

    We examined the application of recrystallization and zone-melting crystallization methods, which have been used widely to fabricate large, high-purity crystals of atomic and molecular systems, to charged colloidal crystals. Our samples were aqueous dispersions of colloidal silica (with particle diameters of d = 108 or 121 nm and particle volume fractions of ϕ = 0.035-0.05) containing the weak base pyridine. The samples crystallized upon heating because of increases in the particle charge numbers, and they melted reversibly on cooling. During the recrystallization experiments, the polycrystalline colloids were partially melted in a Peltier cooling device and then were crystallized by stopping the cooling and allowing the system to return to ambient temperature. The zone-melting crystallization was carried out by melting a narrow zone (millimeter-sized in width) of the polycrystalline colloid samples and then moving the sample slowly over a cooling device to recrystallize the molten region. Using both methods, we fabricated a few centimeter-sized crystals, starting from millimeter-sized original polycrystals when the crystallization rates were sufficiently slow (33 μm/s). Furthermore, the optical quality of the colloidal crystals, such as the half-band widths of the diffraction peaks, was significantly improved. These methods were also useful for refining. Small amounts of impurity particles (fluorescent polystyrene particles, d = 333 nm, ϕ = 5 × 10(-5)), added to the colloidal crystals, were excluded from the crystals when the crystallization rates were sufficiently slow (∼0.1 μm/s). We expect that the present findings will be useful for fabricating large, high-purity colloidal crystals.

  4. Nonsingular defects and self-assembly of colloidal particles in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Trivedi, Rahul P.; Tasinkevych, Mykola; Smalyukh, Ivan I.

    2016-12-01

    Cholesteric liquid crystals can potentially provide a means for tunable self-organization of colloidal particles. However, the structures of particle-induced defects and the ensuing elasticity-mediated colloidal interactions in these media remain much less explored and understood as compared to their nematic liquid crystal counterparts. Here we demonstrate how colloidal microspheres of varying diameter relative to the helicoidal pitch can induce dipolelike director field configurations in cholesteric liquid crystals, where these particles are accompanied by point defects and a diverse variety of nonsingular line defects forming closed loops. Using laser tweezers and nonlinear optical microscopy, we characterize the ensuing medium-mediated elastic interactions and three-dimensional colloidal assemblies. Experimental findings show a good agreement with numerical modeling based on minimization of the Landau-de Gennes free energy and promise both practical applications in the realization of colloidal composite materials and a means of controlling nonsingular topological defects that attract a great deal of fundamental interest.

  5. Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS.

    PubMed

    Yilmaz, Mehmet; Senlik, Erhan; Biskin, Erhan; Yavuz, Mustafa Selman; Tamer, Ugur; Demirel, Gokhan

    2014-03-28

    The detection of molecules at an ultralow level by Surface-Enhanced Raman Spectroscopy (SERS) has recently attracted enormous interest for various applications especially in biological, medical, and environmental fields. Despite the significant progress, SERS systems are still facing challenges for practical applications related to their sensitivity, reliability, and selectivity. To overcome these limitations, in this study, we have proposed a simple yet facile concept by combining 3-D anisotropic gold nanorod arrays with colloidal gold nanoparticles having different shapes for highly reliable, selective, and sensitive detection of some hazardous chemical and biological warfare agents in trace amounts through SERS. The gold nanorod arrays were created on the BK7 glass slides or silicon wafer surfaces via the oblique angle deposition (OAD) technique without using any template material or lithography technique and their surface densities were adjusted by manipulating the deposition angle (α). It is found that gold nanorod arrays fabricated at α = 10° exhibited the highest SERS enhancement in the absence of colloidal gold nanoparticles. Synergetic enhancement was obviously observed in SERS signals when combining gold nanorod arrays with colloidal gold nanoparticles having different shapes (i.e., spherical, rod, and cage). Due to their ability to produce localized surface plasmons (LSPs) in transverse and longitudinal directions, utilization of colloidal gold nanorods as a synergetic agent led to an increase in the enhancement factor by about tenfold compared to plain gold nanorod arrays. Moreover, we have tested our approach to detect some chemical and biological toxins namely dipicolinic acid (DIP), methyl parathion (MP), and diethyl phosphoramidate (DP). For all toxins, Raman spectra with high signal-to-noise ratios and reproducibility were successfully obtained over a broad concentration range (5 ppm-10 ppb). Our results suggest that the slightly tangled and

  6. Graphitized pitch-based carbons with ordered nanopores synthesized by using colloidal crystals as templates.

    PubMed

    Yoon, Suk Bon; Chai, Geun Seok; Kang, Soon Ki; Yu, Jong-Sung; Gierszal, Kamil P; Jaroniec, Mietek

    2005-03-30

    A highly graphitized ordered nanoporous carbon (ONC) was synthesized by using commercial mesophase pitch as carbon precursor and siliceous colloidal crystal as template. Since silica colloids of different sizes (above 6 nm) and narrow particle size distribution are commercially available, the pore size tailoring in the resulting ONCs is possible.

  7. Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithography

    NASA Astrophysics Data System (ADS)

    Tian, Yaolan; Isotalo, Tero J.; Konttinen, Mikko P.; Li, Jiawei; Heiskanen, Samuli; Geng, Zhuoran; Maasilta, Ilari J.

    2017-02-01

    We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional (3D) colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 160 °C, the exposure to the resist developer and the exposure to acetone, all of which are required for the electron-beam lithography step. Moreover, we show that by depositing an aluminum oxide capping layer on top of the colloidal crystal after the e-beam irradiation, the surface is smooth enough so that continuous metal wiring can be deposited by the electron-beam lithography. Finally, we also demonstrate a way to self-assemble PS colloidal crystals into a microscale container, which was fabricated using direct-write 3D laser-lithography. Metallic wiring was also successfully integrated with the combination of a container structure and a PS colloidal crystal. Our goal is to make a device for studies of thermal transport in 3D phononic crystals, but other phononic or photonic crystal applications could also be envisioned.

  8. Probing the intrinsic optical Bloch-mode emission from a 3D photonic crystal

    NASA Astrophysics Data System (ADS)

    Hsieh, Mei-Li; Bur, James A.; Du, Qingguo; John, Sajeev; Lin, Shawn-Yu

    2016-10-01

    We report experimental observation of intrinsic Bloch-mode emission from a 3D tungsten photonic crystal at low thermal excitation. After the successful removal of conventional metallic emission (normal emission), it is possible to make an accurate comparison of the Bloch-mode and the normal emission. For all biases, we found that the emission intensity of the Bloch-mode is higher than that of the normal emission. The Bloch-mode emission also exhibits a slower dependence on (\\hslash ω /{k}bT) than that of the normal emission. The observed higher emission intensity and a different T-dependence is attributed to Bloch-mode assisted emission where emitters have been located into a medium having local density of states different than the isotropic case. Furthermore, our finite-difference time-domain (FDTD) simulation shows the presence of localized spots at metal-air boundaries and corners, having intense electric field. The enhanced plasmonic field and local non-equilibrium could induce a strong thermally stimulated emission and may be the cause of our unusual observation.

  9. The crystal structure of the dimeric colicin M immunity protein displays a 3D domain swap.

    PubMed

    Usón, Isabel; Patzer, Silke I; Rodríguez, Dayté Dayana; Braun, Volkmar; Zeth, Kornelius

    2012-04-01

    Bacteriocins are proteins secreted by many bacterial cells to kill related bacteria of the same niche. To avoid their own suicide through reuptake of secreted bacteriocins, these bacteria protect themselves by co-expression of immunity proteins in the compartment of colicin destination. In Escherichia coli the colicin M (Cma) is inactivated by the interaction with the Cma immunity protein (Cmi). We have crystallized and solved the structure of Cmi at a resolution of 1.95Å by the recently developed ab initio phasing program ARCIMBOLDO. The monomeric structure of the mature 10kDa protein comprises a long N-terminal α-helix and a four-stranded C-terminal β-sheet. Dimerization of this fold is mediated by an extended interface of hydrogen bond interactions between the α-helix and the four-stranded β-sheet of the symmetry related molecule. Two intermolecular disulfide bridges covalently connect this dimer to further lock this complex. The Cmi protein resembles an example of a 3D domain swapping being stalled through physical linkage. The dimer is a highly charged complex with a significant surplus of negative charges presumably responsible for interactions with Cma. Dimerization of Cmi was also demonstrated to occur in vivo. Although the Cmi-Cma complex is unique among bacteria, the general fold of Cmi is representative for a class of YebF-like proteins which are known to be secreted into the external medium by some Gram-negative bacteria.

  10. Light-directing chiral liquid crystal nanostructures: from 1D to 3D.

    PubMed

    Bisoyi, Hari Krishna; Li, Quan

    2014-10-21

    Endowing external, remote, and dynamic control to self-organized superstructures with desired functionalities is a principal driving force in the bottom-up nanofabrication of molecular devices. Light-driven chiral molecular switches or motors in liquid crystal (LC) media capable of self-organizing into optically tunable one-dimensional (1D) and three-dimensional (3D) superstructures represent such an elegant system. As a consequence, photoresponsive cholesteric LCs (CLCs), i.e., self-organized 1D helical superstructures, and LC blue phases (BPs), i.e., self-organized 3D periodic cubic lattices, are emerging as a new generation of multifunctional supramolecular 1D and 3D photonic materials in their own right because of their fundamental academic interest and technological significance. These smart stimuli-responsive materials can be facilely fabricated from achiral LC hosts by the addition of a small amount of a light-driven chiral molecular switch or motor. The photoresponsiveness of these materials is a result of both molecular interaction and geometry changes in the chiral molecular switch upon light irradiation. The doped photoresponsive CLCs undergo light-driven pitch modulation and/or helix inversion, which has many applications in color filters, polarizers, all-optical displays, optical lasers, sensors, energy-saving smart devices, and so on. Recently, we have conceptualized and rationally synthesized different light-driven chiral molecular switches that have very high helical twisting powers (HTPs) and exhibit large changes in HTP in different states, thereby enabling wide phototunability of the systems by the addition of very small amounts of the molecular switches into commercially available achiral LCs. The light-driven chiral molecular switches are based on well-recognized azobenzene, dithienylcyclopentene, and spirooxazine derivatives. We have demonstrated high-resolution and lightweight photoaddressable displays without patterned electronics on

  11. Single crystal growth and anisotropic crystal-fluid interfacial free energy in soft colloidal systems.

    PubMed

    Nguyen, Van Duc; Hu, Zhibing; Schall, Peter

    2011-07-01

    We measure the anisotropy of the crystal-fluid interfacial free energy in soft colloidal systems. A temperature gradient is used to direct crystal nucleation and control the growth of large single crystals in order to achieve well-equilibrated crystal-fluid interfaces. Confocal microscopy is used to follow both the growth process and the equilibrium crystal-fluid interface at the particle scale: heterogeneous crystal nucleation, the advancing interface, and the stationary equilibrium interface. We use the measured growth velocity to determine the chemical potential difference between crystal and fluid phases. Well-equilibrated, large crystal-fluid interfaces are then used to determine the interfacial free energy and its anisotropy directly from thermally excited interface fluctuations. We find that while the measured average interfacial free energy is in good agreement with values found in simulations, the anisotropy is significantly larger than simulation values. Finally, we investigate the effect of impurities on the advancing interface. We determine the critical force needed to overcome impurity particles from the local interface curvature.

  12. Recent Advances in Colloidal and Interfacial Phenomena Involving Liquid Crystals

    PubMed Central

    Bai, Yiqun; Abbott, Nicholas L.

    2011-01-01

    This article describes recent advances in several areas of research involving the interfacial ordering of liquid crystals (LCs). The first advance revolves around the ordering of LCs at bio/chemically functionalized surfaces. Whereas the majority of past studies of surface-induced ordering of LCs have involved surfaces of solids that present a limited diversity of chemical functional groups (surfaces at which van der Waals forces dominate surface-induced ordering), recent studies have moved to investigate the ordering of LCs on chemically complex surfaces. For example, surfaces decorated with biomolecules (e.g. oligopeptides and proteins) and transition metal ions have been investigated, leading to an understanding of the roles that metal-ligand coordination interactions, electrical double-layers, acid-base interactions, and hydrogen bonding can have on the interfacial ordering of LCs. The opportunity to create chemically-responsive LCs capable of undergoing ordering transitions in the presence of targeted molecular events (e.g., ligand exchange around a metal center) has emerged from these fundamental studies. A second advance has focused on investigations of the ordering of LCs at interfaces with immiscible isotropic fluids, particularly water. In contrast to prior studies of surface-induced ordering of LCs on solid surfaces, LC- aqueous interfaces are deformable and molecules at these interfaces exhibit high levels of mobility and thus can reorganize in response to changes in interfacial environment. A range of fundamental investigations involving these LC-aqueous interfaces have revealed that (i) the spatial and temporal characteristics of assemblies formed from biomolecular interactions can be reported by surface-driven ordering transitions in the LCs, (ii) the interfacial phase behaviour of molecules and colloids can be coupled to (and manipulated via) the ordering (and nematic elasticity) of LCs, and (iii) confinement of LCs leads to unanticipated size

  13. The crystal nucleation theory revisited: The case of 2D colloidal crystals

    NASA Astrophysics Data System (ADS)

    González, A. E.; Ixtlilco-Cortés, L.

    2011-03-01

    Most of the theories and studies of crystallization and crystal nucleation consider the boundaries between the crystallites and the fluid as smooth. The crystallites are the small clusters of atoms, molecules and/or particles with the symmetry of the crystal lattice that, with a slight chance of success, would grow to form the crystal grains. In fact, in the classical nucleation theory, the crystallites are assumed to have a spherical shape (circular in 2D). As far are we are aware, there is only one experimental work [1] on colloidal crystals that founds rough surfaces for the crystallites and for the crystal grains. Motivated by this work, we performed large Kinetic Monte Carlo simulations in 2D, that would follow the eventual growing of a few crystallites to form the crystal grains. The used potential has, besides the impenetrable hard core, a soft core followed by a potential well. We found that indeed the crystallites have a fractal boundary, whose value we were able to obtain. See the figure below of a typical isolated crystallite. We were also able to obtain the critical crystallite size, measured by its number of particles, Nc, and not by any critical radius. The boundaries of the crystals above Nc also have a fractal structure but of a lower value, closer to one. Finally, we also obtained the line tension between the crystallites and the surrounding fluid, as function of temperature and particle diameter, as well as the chemical potential difference between these two phases. In the URL: www.fis.unam.mx˜˜agus˜ there are posted two movies that can be downloaded: (1) 2D_crystal_nucleation.mp4, and (2) 2D_crystal_growth.mp4, that illustrate the crystal nucleation and its further growth.

  14. Shape-sensitive crystallization in colloidal superball fluids

    PubMed Central

    Rossi, Laura; Soni, Vishal; Ashton, Douglas J.; Pine, David J.; Philipse, Albert P.; Chaikin, Paul M.; Dijkstra, Marjolein; Sacanna, Stefano; Irvine, William T. M.

    2015-01-01

    Guiding the self-assembly of materials by controlling the shape of the individual particle constituents is a powerful approach to material design. We show that colloidal silica superballs crystallize into canted phases in the presence of depletants. Some of these phases are consistent with the so-called “Λ1” lattice that was recently predicted as the densest packing of superdisks. As the size of the depletant is reduced, however, we observe a transition to a square phase. The differences in these entropically stabilized phases result from an interplay between the size of the depletants and the fine structure of the superball shape. We find qualitative agreement of our experimental results both with a phase diagram computed on the basis of the volume accessible to the depletants and with simulations. By using a mixture of depletants, one of which is thermosensitive, we induce solid-to-solid phase transitions between square and canted structures. The use of depletant size to leverage fine features of the shape of particles in driving their self-assembly demonstrates a general and powerful mechanism for engineering novel materials. PMID:25870301

  15. Organized assemblies of colloids formed at the poles of micrometer-sized droplets of liquid crystal.

    PubMed

    Wang, Xiaoguang; Miller, Daniel S; de Pablo, Juan J; Abbott, Nicholas L

    2014-11-28

    We report on the formation of organized assemblies of 1 μm-in-diameter colloids (polystyrene (PS)) at the poles of water-dispersed droplets (diameters 7-20 μm) of nematic liquid crystal (LC). For 4-cyano-4'-pentylbiphenyl droplets decorated with two to five PS colloids, we found 32 distinct arrangements of the colloids to form at the boojums of bipolar droplet configurations. Significantly, all but one of these configurations (a ring comprised of five PS colloids) could be mapped onto a local (non-close packed) hexagonal lattice. To provide insight into the origin of the hexagonal lattice, we investigated planar aqueous-LC interfaces, and found that organized assemblies of PS colloids did not form at these interfaces. Experiments involving the addition of salts revealed that a repulsive interaction of electrostatic origin prevented formation of assemblies at planar interfaces, and that regions of high splay near the poles of the LC droplets generated cohesive interactions between colloids that could overcome the repulsion. Support for this interpretation was obtained from a model that included (i) a long-range attraction between adsorbed colloids and the boojum due to the increasing rate of strain (splay) of LC near the boojum (splay attraction), (ii) an attractive inter-colloid interaction that reflects the quadrupolar symmetry of the strain in the LC around the colloids, and (iii) electrostatic repulsion between colloids. The model predicts that electrostatic repulsion between colloids can lead to a ∼1000kBT energy barrier at planar interfaces of LC films, and that the repulsive interaction can be overcome by splay attraction of the colloids to the boojums of the LC droplets. Overall, the results reported in this paper advance our understanding of the directed assembly of colloids at interfaces of LC droplets.

  16. Colloidal crystals and water: Perspectives on liquid-solid nanoscale phenomena in wet particulate media.

    PubMed

    Gallego-Gómez, Francisco; Morales-Flórez, Víctor; Morales, Miguel; Blanco, Alvaro; López, Cefe

    2016-08-01

    Solid colloidal ensembles inherently contain water adsorbed from the ambient moisture. This water, confined in the porous network formed by the building submicron spheres, greatly affects the ensemble properties. Inversely, one can benefit from such influence on collective features to explore the water behavior in such nanoconfinements. Recently, novel approaches have been developed to investigate in-depth where and how water is placed in the nanometric pores of self-assembled colloidal crystals. Here, we summarize these advances, along with new ones, that are linked to general interfacial water phenomena like adsorption, capillary forces, and flow. Water-dependent structural properties of the colloidal crystal give clues to the interplay between nanoconfined water and solid fine particles that determines the behavior of ensembles. We elaborate on how the knowledge gained on water in colloidal crystals provides new opportunities for multidisciplinary study of interfacial and nanoconfined liquids and their essential role in the physics of utmost important systems such as particulate media.

  17. 2D and 3D crystallization of a bacterial homologue of human vitamin C membrane transport proteins.

    PubMed

    Jeckelmann, Jean-Marc; Harder, Daniel; Ucurum, Zöhre; Fotiadis, Dimitrios

    2014-10-01

    Most organisms are able to synthesize vitamin C whereas humans are not. In order to contribute to the elucidation of the molecular working mechanism of vitamin C transport through biological membranes, we cloned, overexpressed, purified, functionally characterized, and 2D- and 3D-crystallized a bacterial protein (UraDp) with 29% of amino acid sequence identity to the human sodium-dependent vitamin C transporter 1 (SVCT1). Ligand-binding experiments by scintillation proximity assay revealed that uracil is a substrate preferably bound to UraDp. For structural analysis, we report on the production of tubular 2D crystals and present a first projection structure of UraDp from negatively stained tubes. On the other hand the successful growth of UraDp 3D crystals and their crystallographic analysis is described. These 3D crystals, which diffract X-rays to 4.2Å resolution, pave the way towards the high-resolution crystal structure of a bacterial homologue with high amino acid sequence identity to human SVCT1.

  18. A 3D hybrid praseodymium-antimony-oxochloride compound: single-crystal-to-single-crystal transformation and photocatalytic properties.

    PubMed

    Zou, Guo-Dong; Zhang, Gui-Gang; Hu, Bing; Li, Jian-Rong; Feng, Mei-Ling; Wang, Xin-Chen; Huang, Xiao-Ying

    2013-11-04

    A 3D organic-inorganic hybrid compound, (2-MepyH)3[{Fe(1,10-phen)3}3][{Pr4Sb12O18(OH)Cl(11.5)}(TDC)(4.5)({Pr4Sb12O18(OH)Cl(9.5)} Cl)]·3(2-Mepy)·28H2O (1; 2-Mepy=2-methylpyridine, 1,10-phen=1,10-phenanthroline, H2TDC=thiophene-2,5-dicarboxylic acid), was hydrothermally synthesized and structurally characterized. Unusually, two kinds of high-nuclearity clusters, namely [(Pr4Sb12O18(OH)Cl11)(COO)5](5-) and [(Pr4Sb12O18(OH)Cl9)Cl(COO)5](4-), coexist in the structure of compound 1; two of the latter clusters are doubly bridged by two μ2-Cl(-) moieties to form a new centrosymmetric dimeric cluster. An unprecedented spontaneous and reversible single-crystal-to-single-crystal transformation was observed, which simultaneously involved a notable organic-ligand movement between the metal ions and an alteration of the bridging ion in the dimeric cluster, induced by guest-release/re-adsorption, thereby giving rise to the interconversion between compound 1 and the compound (2-MepyH)3[{Fe(1,10-phen)3}3][{Pr4Sb12O18(OH)Cl(11.5)}(TDC)4({Pr4Sb12O18Cl(10.5)(TDC)(0.5)(H2O)(1.5)}O(0.5))]·25H2O (1'). The mechanism of this transformation has also been discussed in great detail. Photocatalytic H2-evolution activity was observed for compound 1' under UV light with Pt as a co-catalyst and MeOH as a sacrificial electron donor.

  19. Breakup of Finite-Size Colloidal Aggregates in Turbulent Flow Investigated by Three-Dimensional (3D) Particle Tracking Velocimetry.

    PubMed

    Saha, Debashish; Babler, Matthaus U; Holzner, Markus; Soos, Miroslav; Lüthi, Beat; Liberzon, Alex; Kinzelbach, Wolfgang

    2016-01-12

    Aggregates grown in mild shear flow are released, one at a time, into homogeneous isotropic turbulence, where their motion and intermittent breakup is recorded by three-dimensional particle tracking velocimetry (3D-PTV). The aggregates have an open structure with a fractal dimension of ∼2.2, and their size is 1.4 ± 0.4 mm, which is large, compared to the Kolmogorov length scale (η = 0.15 mm). 3D-PTV of flow tracers allows for the simultaneous measurement of aggregate trajectories and the full velocity gradient tensor along their pathlines, which enables us to access the Lagrangian stress history of individual breakup events. From this data, we found no consistent pattern that relates breakup to the local flow properties at the point of breakup. Also, the correlation between the aggregate size and both shear stress and normal stress at the location of breakage is found to be weaker, when compared with the correlation between size and drag stress. The analysis suggests that the aggregates are mostly broken due to the accumulation of the drag stress over a time lag on the order of the Kolmogorov time scale. This finding is explained by the fact that the aggregates are large, which gives their motion inertia and increases the time for stress propagation inside the aggregate. Furthermore, it is found that the scaling of the largest fragment and the accumulated stress at breakup follows an earlier established power law, i.e., dfrag ∼ σ(-0.6) obtained from laminar nozzle experiments. This indicates that, despite the large size and the different type of hydrodynamic stress, the microscopic mechanism causing breakup is consistent over a wide range of aggregate size and stress magnitude.

  20. Bulk crystal growth and electronic characterization of the 3D Dirac semimetal Na{sub 3}Bi

    SciTech Connect

    Kushwaha, Satya K.; Krizan, Jason W.; Cava, R. J.; Feldman, Benjamin E.; Gyenis, András; Randeria, Mallika T.; Xiong, Jun; Xu, Su-Yang; Alidoust, Nasser; Belopolski, Ilya; Liang, Tian; Zahid Hasan, M.; Ong, N. P.; Yazdani, A.

    2015-04-01

    High quality hexagon plate-like Na{sub 3}Bi crystals with large (001) plane surfaces were grown from a molten Na flux. The freshly cleaved crystals were analyzed by low temperature scanning tunneling microscopy and angle-resolved photoemission spectroscopy, allowing for the characterization of the three-dimensional (3D) Dirac semimetal (TDS) behavior and the observation of the topological surface states. Landau levels were observed, and the energy-momentum relations exhibited a linear dispersion relationship, characteristic of the 3D TDS nature of Na{sub 3}Bi. In transport measurements on Na{sub 3}Bi crystals, the linear magnetoresistance and Shubnikov-de Haas quantum oscillations are observed for the first time.

  1. Growth of columnar hydrogel colloidal crystals in water-organic solvent mixture.

    PubMed

    Zhou, Jun; Cai, Tong; Tang, Shijun; Marquez, Manuel; Hu, Zhibing

    2006-01-31

    A novel emulsion method has been demonstrated to grow columnar hydrogel colloidal crystals by mixing an aqueous suspension of poly-N-isopropylacrylamide-co-allylamine microgels with organic solvent, driven by the coalescence of micelles consisting of organic oil droplets coated by many microgels. This method leads to microgel colloidal crystals of several centimeters growing from the top to the bottom along the gravity direction. Both temperature and polymer concentration play critical roles for the formation of columnar crystals. A phase diagram has been determined, and it can be used as a guide to selectively grow different crystals, including columnar crystals and randomly oriented crystals, and enable the coexistence of columnar crystals and randomly oriented crystals.

  2. Avalanches, plasticity, and ordering in colloidal crystals under compression.

    PubMed

    McDermott, D; Reichhardt, C J Olson; Reichhardt, C

    2016-06-01

    Using numerical simulations we examine colloids with a long-range Coulomb interaction confined in a two-dimensional trough potential undergoing dynamical compression. As the depth of the confining well is increased, the colloids move via elastic distortions interspersed with intermittent bursts or avalanches of plastic motion. In these avalanches, the colloids rearrange to minimize their colloid-colloid repulsive interaction energy by adopting an average lattice constant that is isotropic despite the anisotropic nature of the compression. The avalanches take the form of shear banding events that decrease or increase the structural order of the system. At larger compression, the avalanches are associated with a reduction of the number of rows of colloids that fit within the confining potential, and between avalanches the colloids can exhibit partially crystalline or anisotropic ordering. The colloid velocity distributions during the avalanches have a non-Gaussian form with power-law tails and exponents that are consistent with those found for the velocity distributions of gliding dislocations. We observe similar behavior when we subsequently decompress the system, and find a partially hysteretic response reflecting the irreversibility of the plastic events.

  3. Facile surface immobilization of ATRP initiators on colloidal polymers for grafting brushes and application to colloidal crystals.

    PubMed

    Liu, Yi-Yu; Chen, Hui; Ishizu, Koji

    2011-02-01

    Bromo-initiators for atom transfer radical polymerization (ATRP) were successfully immobilized on the surfaces of cross-linked poly(methyl methacrylate) (PMMA) spheres by soap-free emulsion polymerization using CBr(4) as the chain transfer agent. Subsequent surface-initiated ATRP (SI-ATRP) afforded a layer of PMMA brushes covalently attached to the sphere surfaces. Colloidal crystal films of these monodisperse spheres were then studied to identify the relationship between variation in particle diameter and the optical properties. The particle diameters were controlled by varying the feed monomer proportions in soap-free emulsion polymerization and the thickness of the grafted brush layer. It was found that the particle diameter could successfully be controlled to obtain crystal films that produce a variety of brilliant colors in the visible region. The results of this study can provide useful information for facile preparation of surface-immobilized ATRP initiators on colloidal polymers and can be employed for grafting polymer brushes.

  4. Strain-responsive structural colored elastomers by fixing colloidal crystal assembly.

    PubMed

    Ito, Tatsunori; Katsura, Chihiro; Sugimoto, Hideki; Nakanishi, Eiji; Inomata, Katsuhiro

    2013-11-12

    Colloidal crystal assembly film was prepared by using monodispersed colloidal particles of cross-linked random copolymer of methyl methacrylate and ethyl acrylate prepared by soap-free emulsion polymerization. The colloidal crystal film exhibited structural color when swollen with ethyl acrylate monomer. The structural color was maintained even after polymerization of the swelling monomer and cross-linker, suggesting the colloidal crystalline order was successfully fixed and embedded in the matrix of poly(ethyl acrylate) elastomer. Stretching deformation of the structural colored elastomer induced a sensitive change to shorter wavelength color. Peak wavelength of the UV-vis absorption spectrum of the stretched elastomer revealed an excellent proportional relationship with film thickness. In the swollen colloidal crystal film, ethyl acrylate was absorbed in the colloidal particle; therefore, poly(ethyl acrylate) chain should be penetrating into the colloidal particle after the polymerization of the matrix elastomer. This interpenetrated polymer network structure was considered to be effective for the rubber-like elasticity and sensitive strain-responsive color-changing phenomena of the structural colored elastomer.

  5. Mineral crystal alignment in mineralized fracture callus determined by 3D small-angle X-ray scattering

    NASA Astrophysics Data System (ADS)

    Liu, Yifei; Manjubala, Inderchand; Roschger, Paul; Schell, Hanna; Duda, Georg N.; Fratzl, Peter

    2010-10-01

    Callus tissue formed during bone fracture healing is a mixture of different tissue types as revealed by histological analysis. But the structural characteristics of mineral crystals within the healing callus are not well known. Since two-dimensional (2D) scanning small-angle X-ray scattering (sSAXS) patterns showed that the size and orientation of callus crystals vary both spatially and temporally [1] and 2D electron microscopic analysis implies an anisotropic property of the callus morphology, the mineral crystals within the callus are also expected to vary in size and orientation in 3D. Three-dimensional small-angle X-ray scattering (3D SAXS), which combines 2D SAXS patterns collected at different angles of sample tilting, has been previously applied to investigate bone minerals in horse radius [2] and oim/oim mouse femur/tibia [3]. We implement a similar 3D SAXS method but with a different way of data analysis to gather information on the mineral alignment in fracture callus. With the proposed accurate yet fast assessment of 3D SAXS information, it was shown that the plate shaped mineral particles in the healing callus were aligned in groups with their predominant orientations occurring as a fiber texture.

  6. A 3D profile function suitable for integration of neutron time-of-flight single crystal diffraction peaks

    NASA Astrophysics Data System (ADS)

    Gutmann, Matthias J.

    2017-03-01

    A 3D profile function is presented suitable to integrate reflections arising in time-of-flight (TOF) single crystal neutron diffraction experiments. In order to account for the large asymmetry of the peak shape in the TOF direction, a 3D Gaussian ellipsoid in the pixel (x, z) and time-of-flight coordinates is convoluted with a rising and falling exponential along the time-of-flight direction. An analytic expression is derived, making it suitable for least-squares fitting. The application of this function in detector space or reciprocal space is straightforward.

  7. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids

    NASA Astrophysics Data System (ADS)

    Urrutia Bañuelos, Efraín; Contreras Aburto, Claudio; Maldonado Arce, Amir

    2016-03-01

    The topological analysis tool known as the common neighbor analysis (CNA) is used for the first time in this work to analyze crystallization kinetics and excess entropy of charge-stabilized colloidal suspensions. For this purpose, Brownian dynamics computer simulations are implemented to investigate the crystallization kinetics of homogeneously melted colloidal crystals that are composed of hard-core-screened-Coulomb interacting particles. The results are in agreement with recent static structure factor measurements that could indicate the presence of icosahedral units in the metastable melt, and with the fact that weakly screened charged colloids crystallize into body-centered-cubic (bcc) ordering. A two-step crystallization pathway is found, in which the population of bcc-subunit CNA-pairs satisfactorily obeys a Verhulst model. Moreover, the CNA helped to unveil that the excess entropy obeys a quasi-universal functional form, relating the behavior of colloidal, molecular, and metallic liquid systems. The work contributes to the scientific understanding of the crystallization pathway of charged colloids, and to the development of new ways to assess the degree of crystalline order, starting from the excess entropy.

  8. A common neighbor analysis of crystallization kinetics and excess entropy of charged spherical colloids.

    PubMed

    Urrutia Bañuelos, Efraín; Contreras Aburto, Claudio; Maldonado Arce, Amir

    2016-03-07

    The topological analysis tool known as the common neighbor analysis (CNA) is used for the first time in this work to analyze crystallization kinetics and excess entropy of charge-stabilized colloidal suspensions. For this purpose, Brownian dynamics computer simulations are implemented to investigate the crystallization kinetics of homogeneously melted colloidal crystals that are composed of hard-core-screened-Coulomb interacting particles. The results are in agreement with recent static structure factor measurements that could indicate the presence of icosahedral units in the metastable melt, and with the fact that weakly screened charged colloids crystallize into body-centered-cubic (bcc) ordering. A two-step crystallization pathway is found, in which the population of bcc-subunit CNA-pairs satisfactorily obeys a Verhulst model. Moreover, the CNA helped to unveil that the excess entropy obeys a quasi-universal functional form, relating the behavior of colloidal, molecular, and metallic liquid systems. The work contributes to the scientific understanding of the crystallization pathway of charged colloids, and to the development of new ways to assess the degree of crystalline order, starting from the excess entropy.

  9. 3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode.

    PubMed

    Liang, Yi-Ran; Zhu, Li-Na; Gao, Jie; Zhao, Hong-Xia; Zhu, Ying; Ye, Sheng; Fang, Qun

    2017-03-23

    Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20-100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.

  10. Physico-chemical properties of giant colloidal single crystals in deionized suspension

    SciTech Connect

    Okubo, T.

    1995-12-01

    Very large single crystals (8 mm in maximum) of monodispersed polystyrene and silica spheres have been observed. Close-up and microscopic photographs, video-tapes, reflection spectra, elastic moduli, viscosities and dynamic light scattering and others have been made. Crystal growing processes are studied from the direct observation and reflection spectroscopy. Crystal size decreases sharply as sphere concentration increases. Block-like crystals and the pillar-like crystals from the homogeneous- and heterogeneous-nucleation mechanisms are observed in the bulk phase and along the cell wall, respectively. Phase diagram, melting temperature, rigidity, viscosity and diffusion properties of colloidal crystals have been studied. These characteristic properties of colloidal crystals are explained by the intersphere repulsive interactions and the expanded electrical double layers around the particles.

  11. Co-axial association of recombinant eye lens aquaporin-0 observed in loosely packed 3D crystals.

    PubMed

    Palanivelu, Dinesh V; Kozono, David E; Engel, Andreas; Suda, Kitaru; Lustig, Ariel; Agre, Peter; Schirmer, Tilman

    2006-01-27

    Aquaporin-0 (AQP0) is the major membrane protein in vertebrate eye lenses. It has been proposed that AQP0 tetramers mediate contact between membranes of adjacent lens fiber cells, which would be consistent with the extraordinarily narrow inter-cellular spacing. We have obtained 3D crystals of recombinant bovine AQP0 that diffract to 7.0 A resolution. The crystal packing was determined by molecular replacement and shows that, within the cubic lattice, AQP0 tetramers are associated head-to-head along their 4-fold axes. Oligomeric states larger than the tetramer were also observed in solution by native gel electrophoresis and analytical ultracentrifugation methods. In the crystals, there are no direct contacts between octamers, and it can thus be inferred that crystalline order is mediated solely by the detergent belts surrounding the membrane protein. Across the tetramer-tetramer interface, extracellular loops A and C interdigitate at the center and the perimeter of the octamer, respectively. The octamer structure is compared with that of the recently determined structure of truncated ovine AQP0 derived from electron diffraction of 2D crystals. Intriguingly, also in these crystals, octamers are observed, but with significantly different relative tetramer-tetramer orientations. The interactions observed in the loosely packed 3D crystals reported here may in fact represent an in vivo association mode between AQP0 tetramers from juxtaposed membranes in the eye lens.

  12. On the crystal structure of colloidally prepared CsPbBr3 quantum dots.

    PubMed

    Cottingham, Patrick; Brutchey, Richard L

    2016-04-18

    Colloidally synthesized quantum dots of CsPbBr3 are highly promising for light-emitting applications. Previous reports based on benchtop diffraction conflict as to the crystal structure of CsPbBr3 quantum dots. We present X-ray diffraction and PDF analysis of X-ray total scattering data that indicate that the crystal structure is unequivocally orthorhombic (Pnma).

  13. Mechanistic principles of colloidal crystal growth by evaporation-induced convective steering.

    PubMed

    Brewer, Damien D; Allen, Joshua; Miller, Michael R; de Santos, Juan M; Kumar, Satish; Norris, David J; Tsapatsis, Michael; Scriven, L E

    2008-12-02

    We simulate evaporation-driven self-assembly of colloidal crystals using an equivalent network model. Relationships between a regular hexagonally close-packed array of hard, monodisperse spheres, the associated pore space, and selectivity mechanisms for face-centered cubic microstructure propagation are described. By accounting for contact line rearrangement and evaporation at a series of exposed menisci, the equivalent network model describes creeping flow of solvent into and through a rigid colloidal crystal. Observations concerning colloidal crystal growth are interpreted in terms of the convective steering hypothesis, which posits that solvent flow into and through the pore space of the crystal may play a major role in colloidal self-assembly. Aspects of the convective steering and deposition of high-Peclet-number rigid spherical particles at a crystal boundary are inferred from spatially resolved solvent flow into the crystal. Gradients in local flow through boundary channels were predicted due to the channels' spatial distribution relative to a pinned free surface contact line. On the basis of a uniform solvent and particle flux as the criterion for stability of a particular growth plane, these network simulations suggest the stability of a declining {311} crystal interface, a symmetry plane which exclusively propagates fcc microstructure. Network simulations of alternate crystal planes suggest preferential growth front evolution to the declining {311} interface, in consistent agreement with the proposed stability mechanism for preferential fcc microstructure propagation in convective assembly.

  14. Controlling the shape and alignment of mesopores by confinement in colloidal crystals: designer pathways to silica monoliths with hierarchical porosity.

    PubMed

    Li, Fan; Wang, Zhiyong; Ergang, Nicholas S; Fyfe, Colin A; Stein, Andreas

    2007-03-27

    Monolithic pieces of hierarchically structured silica, containing both periodic macropores and mesopores with well-controlled architecture, are synthesized by dual templating methods. Colloidal crystal templating with close-packed arrays of poly(methyl methacrylate) spheres yields regular, highly interconnected macropores a few hundred nanometers in diameter, and templating with nonionic surfactants produces mesoporosity (2.5-5.1 nm pore diameters) in the macropore walls. Several distinct mesostructures can be achieved within the silica skeleton, depending on the choice of surfactant, co-surfactant, and processing conditions. In the three-dimensional (3D) confinement of the colloidal crystal template, wormlike channels, cubic (Pm3n), or two-dimensional (2D) hexagonal (P6mm) mesostructures are produced with the surfactant Brij 56 (C16H33(OCH2CH2)nOH (n approximately 10) and dodecane as cosurfactant. In the 2D hexagonal structure, channels are oriented perpendicular to the polymer spheres, thereby connecting adjacent macropores through the silica walls. This orientation contrasts with channel alignment parallel to latex spheres when the polymeric surfactant Pluronic P123 (EO20PO70EO20) is used. On the basis of high-resolution 3D transmission electron microscopy, scanning electron microscopy, small-angle X-ray scattering, and nitrogen sorption measurements, structural and textural properties of the monoliths are described in detail as a function of the synthesis parameters. The control over the mesoarchitecture of these silica-surfactant systems in 3D confinement is explained by considering the relative dimensions of the mesostructures with respect to the interstitial space in the latex template, interfacial interactions, entropic effects, and structural frustration.

  15. Introducing Defects in 3D Photonic Crystals: State of the Art

    DTIC Science & Technology

    2006-01-01

    for ma- nipulating the building blocks. Through the use of a nanorobot ,[48] the first diamond struc- ture formed out of colloidal microspheres was...placement of poly- styrene microspheres, point defects could be embedded into the resulting structure. The same nanorobot was also used to fabricate...robotically stacked and aligned with the nanorobot to form structures of up to 20 layers. An advantage of using microfabricated InP plates over microspheres

  16. Preparation and Optical Properties of Spherical Inverse Opals by Liquid Phase Deposition Using Spherical Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Aoi, Y.; Tominaga, T.

    2013-03-01

    Titanium dioxide (TiO2) inverse opals in spherical shape were prepared by liquid phase deposition (LPD) using spherical colloidal crystals as templates. Spherical colloidal crystals were produced by ink-jet drying technique. Aqueous emulsion droplets that contain polystyrene latex particles were ejected into air and dried. Closely packed colloidal crystals with spherical shape were obtained. The obtained spherical colloidal crystals were used as templates for the LPD. The templates were dispersed in the deposition solution of the LPD, i.e. a mixed solution of ammonium hexafluorotitanate and boric acid and reacted for 4 h at 30 °C. After the LPD process, the interstitial spaces of the spherical colloidal crystals were completely filled with titanium oxide. Subsequent heat treatment resulted in removal of templates and spherical titanium dioxide inverse opals. The spherical shape of the template was retained. SEM observations indicated that the periodic ordered voids were surrounded by titanium dioxide. The optical reflectance spectra indicated that the optical properties of the spherical titanium dioxide inverse opals were due to Bragg diffractions from the ordered structure. Filling in the voids of the inverse opals with different solvents caused remarkable changes in the reflectance peak.

  17. Imitation of variable structural color in Paracheirodon innesi using colloidal crystal films.

    PubMed

    Cong, Hailin; Yu, Bing; Zhao, Xiu Song

    2011-06-20

    Spacing variation of adjoining reflecting thin films in iridophore is responsible for the variable interference color in the paracheirodon innesi. On the basis of this phenomenon, colloidal crystal thin films with different structures are fabricated from monodisperse poly(styrene-methyl methacrylate-acrylic acid) (PSMA) colloids. The relationship between the colors and structures of the films is investigated and discussed according to the principle of light interference. A two-layer colloidal film having uniform color is researched and it displays diverse colors before and after swelling by styrene (St), which can be used to mimic the variable structural color of the paracheirodon innesi.

  18. Calculation of the Slip System Activity in Deformed Zinc Single Crystals Using Digital 3-D Image Correlation Data

    SciTech Connect

    Florando, J; Rhee, M; Arsenlis, A; LeBlanc, M; Lassila, D

    2006-02-21

    A 3-D image correlation system, which measures the full-field displacements in 3 dimensions, has been used to experimentally determine the full deformation gradient matrix for two zinc single crystals. Based on the image correlation data, the slip system activity for the two crystals has been calculated. The results of the calculation show that for one crystal, only the primary slip system is active, which is consistent with traditional theory. The other crystal however, shows appreciable deformation on slip systems other than the primary. An analysis has been conducted which confirms the experimental observation that these other slip system deform in such a manner that the net result is slip which is approximately one third the magnitude and directly orthogonal to the primary system.

  19. Direct laser-writing of ferroelectric single-crystal waveguide architectures in glass for 3D integrated optics

    PubMed Central

    Stone, Adam; Jain, Himanshu; Dierolf, Volkmar; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Miura, Kiyotaka; Hirao, Kazuyuki; Lapointe, Jerome; Kashyap, Raman

    2015-01-01

    Direct three-dimensional laser writing of amorphous waveguides inside glass has been studied intensely as an attractive route for fabricating photonic integrated circuits. However, achieving essential nonlinear-optic functionality in such devices will also require the ability to create high-quality single-crystal waveguides. Femtosecond laser irradiation is capable of crystallizing glass in 3D, but producing optical-quality single-crystal structures suitable for waveguiding poses unique challenges that are unprecedented in the field of crystal growth. In this work, we use a high angular-resolution electron diffraction method to obtain the first conclusive confirmation that uniform single crystals can be grown inside glass by femtosecond laser writing under optimized conditions. We confirm waveguiding capability and present the first quantitative measurement of power transmission through a laser-written crystal-in-glass waveguide, yielding loss of 2.64 dB/cm at 1530 nm. We demonstrate uniformity of the crystal cross-section down the length of the waveguide and quantify its birefringence. Finally, as a proof-of-concept for patterning more complex device geometries, we demonstrate the use of dynamic phase modulation to grow symmetric crystal junctions with single-pass writing. PMID:25988599

  20. Molding resonant energy transfer by colloidal crystal: Dexter transfer and electroluminescence

    NASA Astrophysics Data System (ADS)

    González-Urbina, Luis; Kolaric, Branko; Libaers, Wim; Clays, Koen

    2010-05-01

    Building photonic crystals by combination of colloidal ordering and metal sputtering we were able to construct a system sensitive to an electrical field. In corresponding crystals we embedded the Dexter pair (Ir(ppy3) and BAlq) and investigated the influence of the band gap on the resonant energy transfer when the system is excited by light and by an electric field respectively. Our investigations extend applications of photonic crystals into the field of electroluminescence and LED technologies.

  1. 3D Dewetting for Crystal Patterning: Toward Regular Single-Crystalline Belt Arrays and Their Functionality.

    PubMed

    Wu, Yuchen; Feng, Jiangang; Su, Bin; Jiang, Lei

    2016-03-16

    Arrays of unidirectional dewetting behaviors can be generated by using 3D-wettability-difference micropillars, yielding highly ordered organic single-crystalline belt arrays. These patterned organic belts show an improved mobility record and can be used as flexible pressure sensors with high sensitivity.

  2. Structural characterization of colloidal crystals and inverse opals using transmission X-ray microscopy.

    PubMed

    Huang, Bo-Han; Wang, Chun-Chieh; Liao, Chen-Hong; Wu, Pu-Wei; Song, Yen-Fang

    2014-07-15

    A nondestructive tomographic technique was used to determine the crystallographic information of colloidal crystals comprising of polystyrene (PS) microspheres, as well as their silver inverse opals. The properties of the colloidal crystals, such as defects, grain size, grain boundaries, stacking sequence, and grain orientation, were determined using the full field transmission X-ray microscopy (TXM) with a spatial resolution of 50 nm. The PS microspheres (500-750 nm) which underwent a vertical electrophoresis process to form a face-centered cubic (fcc) close-packed structure with an ABCABC packing sequence. In addition, the colloidal crystal exhibited multiple grains, and an orientation variation of 6.1° in the stacking direction between two neighboring grains.

  3. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

    PubMed Central

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-01-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals. PMID:26984298

  4. Spontaneous Formation of Eutectic Crystal Structures in Binary and Ternary Charged Colloids due to Depletion Attraction

    NASA Astrophysics Data System (ADS)

    Toyotama, Akiko; Okuzono, Tohru; Yamanaka, Junpei

    2016-03-01

    Crystallization of colloids has extensively been studied for past few decades as models to study phase transition in general. Recently, complex crystal structures in multi-component colloids, including alloy and eutectic structures, have attracted considerable attention. However, the fabrication of 2D area-filling colloidal eutectics has not been reported till date. Here, we report formation of eutectic structures in binary and ternary aqueous colloids due to depletion attraction. We used charged particles + linear polyelectrolyte systems, in which the interparticle interaction could be represented as a sum of the electrostatic, depletion, and van der Waals forces. The interaction was tunable at a lengthscale accessible to direct observation by optical microscopy. The eutectic structures were formed because of interplay of crystallization of constituent components and accompanying fractionation. An observed binary phase diagram, defined by a mixing ratio and inverse area fraction of the particles, was analogous to that for atomic and molecular eutectic systems. This new method also allows the adjustment of both the number and wavelengths of Bragg diffraction peaks. Furthermore, these eutectic structures could be immobilized in polymer gel to produce self-standing materials. The present findings will be useful in the design of the optical properties of colloidal crystals.

  5. Integral scaling behavior of different morphologies of 3D xenon crystals

    NASA Astrophysics Data System (ADS)

    Singer, H. M.; Bilgram, J. H.

    2006-07-01

    Three-dimensional crystals have been observed in situ during the growth from supercooled melt. Depending on growth conditions three crystal morphologies were formed: dendrites, doublons and seaweed. Fractal dimensions of contour and area have been determined using correlation and box dimension techniques. Algorithms have been developed on the basis of fractal geometry to extract quantities from contour and area of projections of a crystal to characterise the crystal morphology. A method is presented to find hidden length scales in apparently scale invariant physical systems. We show that intrinsic length scales found by this method can be used to characterise morphologies of xenon crystals. It is shown that scaling relations by conventional tools of fractal geometry omit important intrinsical behavior and provide only averaged quantities.

  6. Shear moduli in bcc-fcc structure transition of colloidal crystals.

    PubMed

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Zhu, Ruzeng

    2015-10-14

    Shear moduli variation in the metastable-stable structure transition of charged colloidal crystals was investigated by the combination techniques of torsional resonance spectroscopy and reflection spectrometer. Modulus of the system increases with the proceeding of the transition process and it finally reaches the maximum value at the end of the transition. For colloidal crystals in stable state, the experimental moduli show good consistence with theoretical expectations. However, in the transition process, the moduli are much smaller than theoretical ones and this can be chalked up to crystalline imperfection in the transition state.

  7. Shear moduli in bcc-fcc structure transition of colloidal crystals

    NASA Astrophysics Data System (ADS)

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Zhu, Ruzeng

    2015-10-01

    Shear moduli variation in the metastable-stable structure transition of charged colloidal crystals was investigated by the combination techniques of torsional resonance spectroscopy and reflection spectrometer. Modulus of the system increases with the proceeding of the transition process and it finally reaches the maximum value at the end of the transition. For colloidal crystals in stable state, the experimental moduli show good consistence with theoretical expectations. However, in the transition process, the moduli are much smaller than theoretical ones and this can be chalked up to crystalline imperfection in the transition state.

  8. Defect topologies in a nematic liquid crystal near a patchy colloid

    NASA Astrophysics Data System (ADS)

    Melle, Michael; Schlotthauer, Sergej; Mazza, Marco G.; Klapp, Sabine H. L.; Schoen, Martin

    2012-05-01

    Using isothermal-isobaric Monte Carlo simulations we investigate defect topologies due to a spherical colloidal particle immersed in a nematic liquid crystal. Defects arise because of the competition between the preferential orientation at the colloid's surface and the far-field director widehat{{n}}0. Considering a chemically homogeneous colloid as a special case we observe the well-known surface and saturn ring defect topologies for weak and strong perpendicular anchoring, respectively; for homogeneous, strong parallel anchoring we find a boojum defect topology that has been seen experimentally [see P. Poulin and D. A. Weitz, Phys. Rev. E 57, 626 (1998)] but not in computer simulations. We also consider a heterogeneous, patchy colloid where the liquid-crystal molecules anchor either preferentially planar or perpendicular at the surface of the colloid. For a patchy colloid we observe a boojum ring defect topology in agreement with recent experimental studies [see M. Conradi, M. Ravnik, M. Bele, M. Zorko, S. Žumer, and I. Muševič, Soft Matter 5, 3905 (2009)]. We also observe two other novel defect topologies that have not been reported thus far neither experimentally nor theoretically.

  9. Edge pinning and transformation of defect lines induced by faceted colloidal rings in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Senyuk, Bohdan; Liu, Qingkun; Yuan, Ye; Smalyukh, Ivan I.

    2016-06-01

    Nematic colloids exhibit a large diversity of topological defects and structures induced by colloidal particles in the orientationally ordered liquid crystal host fluids. These defects and field configurations define elastic interactions and medium-mediated self-assembly, as well as serve as model systems in exploiting the richness of interactions between topologies and geometries of colloidal surfaces, nematic fields, and topological singularities induced by particles in the nematic bulk and at nematic-colloidal interfaces. Here we demonstrate formation of quarter-strength surface-pinned disclinations, as well as a large variety of director field configurations with splitting and reconnections of singular defect lines, prompted by colloidal particles with sharp edges and size large enough to define strong boundary conditions. Using examples of faceted ring-shaped particles of genus g =1 , we explore transformation of defect lines as they migrate between locations in the bulk of the nematic host to edge-pinned locations at the surfaces of particles and vice versa, showing that this behavior is compliant with topological constraints defined by mathematical theorems. We discuss how transformation of bulk and surface defect lines induced by faceted colloids can enrich the diversity of elasticity-mediated colloidal interactions and how these findings may impinge on prospects of their controlled reconfigurable self-assembly in nematic hosts.

  10. Disclination lines at homogeneous and heterogeneous colloids immersed in a chiral liquid crystal.

    PubMed

    Melle, Michael; Schlotthauer, Sergej; Hall, Carol K; Diaz-Herrera, Enrique; Schoen, Martin

    2014-08-14

    In the present work we perform Monte Carlo simulations in the isothermal-isobaric ensemble to study defect topologies formed in a cholesteric liquid crystal due to the presence of a spherical colloidal particle. Topological defects arise because of the competition between anchoring at the colloidal surface and the local director. We consider homogeneous colloids with either local homeotropic or planar anchoring to validate our model by comparison with earlier lattice Boltzmann studies. Furthermore, we perform simulations of a colloid in a twisted nematic cell and discuss the difference between induced and intrinsic chirality on the formation of topological defects. We present a simple geometrical argument capable of describing the complex three-dimensional topology of disclination lines evolving near the surface of the colloid. The presence of a Janus colloid in a cholesteric host fluid reveals a rich variety of defect structures. Using the Frank free energy we analyze these defects quantitatively indicating a preferred orientation of the Janus colloid relative to the cholesteric helix.

  11. A 3D Optical Surface Profilometer Using a Dual-Frequency Liquid Crystal-Based Dynamic Fringe Pattern Generator

    PubMed Central

    Joo, Kyung-Il; Kim, Mugeon; Park, Min-Kyu; Park, Heewon; Kim, Byeonggon; Hahn, JoonKu; Kim, Hak-Rin

    2016-01-01

    We propose a liquid crystal (LC)-based 3D optical surface profilometer that can utilize multiple fringe patterns to extract an enhanced 3D surface depth profile. To avoid the optical phase ambiguity and enhance the 3D depth extraction, 16 interference patterns were generated by the LC-based dynamic fringe pattern generator (DFPG) using four-step phase shifting and four-step spatial frequency varying schemes. The DFPG had one common slit with an electrically controllable birefringence (ECB) LC mode and four switching slits with a twisted nematic LC mode. The spatial frequency of the projected fringe pattern could be controlled by selecting one of the switching slits. In addition, moving fringe patterns were obtainable by applying voltages to the ECB LC layer, which varied the phase difference between the common and the selected switching slits. Notably, the DFPG switching time required to project 16 fringe patterns was minimized by utilizing the dual-frequency modulation of the driving waveform to switch the LC layers. We calculated the phase modulation of the DFPG and reconstructed the depth profile of 3D objects using a discrete Fourier transform method and geometric optical parameters. PMID:27801812

  12. The crystal structure of human CD21: Implications for Epstein-Barr virus and C3d binding.

    PubMed

    Prota, Andrea E; Sage, David R; Stehle, Thilo; Fingeroth, Joyce D

    2002-08-06

    Human complement receptor type 2 (CD21) is the cellular receptor for Epstein-Barr virus (EBV), a human tumor virus. The N-terminal two short consensus repeats (SCR1-SCR2) of the receptor interact with the EBV glycoprotein gp350/220 and also with the natural CD21 ligand C3d. Here we present the crystal structure of the CD21 SCR1-SCR2 fragment in the absence of ligand and demonstrate that it is able to bind EBV. Based on a functional analysis of wild-type and mutant CD21 and molecular modeling, we identify a likely region for EBV attachment and demonstrate that this region is not involved in the interaction with C3d. A comparison with the previously determined structure of CD21 SCR1-SCR2 in complex with C3d shows that, in both cases, CD21 assumes compact V-shaped conformations. However, our analysis reveals a surprising degree of flexibility at the SCR1-SCR2 interface, suggesting interactions between the two domains are not specific. We present evidence that the V-shaped conformation is induced by deglycosylation of the protein, and that physiologic glycosylation of CD21 would result in a more extended conformation, perhaps with additional epitopes for C3d binding.

  13. Surface-modified silica colloidal crystals: nanoporous films and membranes with controlled ionic and molecular transport.

    PubMed

    Zharov, Ilya; Khabibullin, Amir

    2014-02-18

    Nanoporous membranes are important for the study of the transport of small molecules and macromolecules through confined spaces and in applications ranging from separation of biomacromolecules and pharmaceuticals to sensing and controlled release of drugs. For many of these applications, chemists need to gate the ionic and molecular flux through the nanopores, which in turn depends on the ability to control the nanopore geometry and surface chemistry. Most commonly used nanoporous membrane materials are based on polymers. However, the nanostructure of polymeric membranes is not well-defined, and their surface is hard to modify. Inorganic nanoporous materials are attractive alternatives for polymers in the preparation of nanoporous membranes. In this Account, we describe the preparation and surface modification of inorganic nanoporous films and membranes self-assembled from silica colloidal spheres. These spheres form colloidal crystals with close-packed face centered cubic lattices upon vertical deposition from colloidal solutions. Silica colloidal crystals contain ordered arrays of interconnected three dimensional voids, which function as nanopores. We can prepare silica colloidal crystals as supported thin films on various flat solid surfaces or obtain free-standing silica colloidal membranes by sintering the colloidal crystals above 1000 °C. Unmodified silica colloidal membranes are capable of size-selective separation of macromolecules, and we can surface-modify them in a well-defined and controlled manner with small molecules and polymers. For the surface modification with small molecules, we use silanol chemistry. We grow polymer brushes with narrow molecular weight distribution and controlled length on the colloidal nanopore surface using atom transfer radical polymerization or ring-opening polymerization. We can control the flux in the resulting surface-modified nanoporous films and membranes by pH and ionic strength, temperature, light, and small molecule

  14. Polystyrene colloidal crystals: Interface controlled thermal conductivity in an open-porous mesoparticle superstructure.

    PubMed

    Nutz, Fabian A; Ruckdeschel, Pia; Retsch, Markus

    2015-11-01

    Colloidal crystals typically consist of sub-micron sized monodisperse particles, which are densely packed on a face centered cubic lattice. While many properties of this material class have been studied over the past decades, little is known about their thermal transport properties. The high amount of interfaces and their small interparticle contact area should result in efficient thermal insulation. Using laser flash analysis we report for the first time on the temperature dependent thermal conductivity of a freestanding 366 nm polystyrene (PS) colloidal crystal. Macroscopic monoliths of these samples were fabricated by colloidal self-assembly. We demonstrate a very low thermal conductivity κ of 51 mW K(-1) m(-1) (κ of bulk PS∼140 mW K(-1) m(-1)). Remarkably, this low thermal conductivity is reached at a comparatively high density of 750 kg m(-3). It can be further increased by almost 300% upon film formation and loss of the colloidal mesostructure. Additionally, this open porous structure is largely independent of the surrounding atmosphere. This can be rationalized by the small size (∼100 nm) of the pores present within this colloidal crystal.

  15. Fabrication of colloidal crystals composed of pore-expanded mesoporous silica nanoparticles prepared by a controlled growth method.

    PubMed

    Yamamoto, Eisuke; Mori, Seiya; Shimojima, Atsushi; Wada, Hiroaki; Kuroda, Kazuyuki

    2017-02-16

    Colloidal crystals composed of mesoporous silica nanoparticles (MSNs) are expected to have various applications because of their unique hierarchical structures and tunable functions. The expansion of the mesopore size is important for introducing guest species which cannot be accommodated by using conventional colloidal crystals of MSNs; however, the preparation of MSNs with a controllable pore size, suitable for the fabrication of colloidal crystals, still remains a challenge. In this study, we fabricated colloidal crystals composed of pore-expanded MSNs using a sophisticated particle growth method to control the pore size of colloidal MSNs while retaining their monodispersity high enough to form colloidal crystals. By adding triisopropylbenzene (TIPB) only during the growth process with the stepwise addition of tetrapropoxysilane (TPOS), the particle size can be tuned from 60 nm to 100 nm, while the pore size can be tuned from 3 nm to ten plus several nm which is the largest size among the previous MSNs capable of forming colloidal crystals. These novel colloidal crystals should contribute to the expansion of nanomaterials science.

  16. An extended 3D discrete-continuous model and its application on single- and bi-crystal micropillars

    NASA Astrophysics Data System (ADS)

    Huang, Minsheng; Liang, Shuang; Li, Zhenhuan

    2017-04-01

    A 3D discrete-continuous model (3D DCM), which couples the 3D discrete dislocation dynamics (3D DDD) and finite element method (FEM), is extended in this study. New schemes for two key information transfers between DDD and FEM, i.e. plastic-strain distribution from DDD to FEM and stress transfer from FEM to DDD, are suggested. The plastic strain induced by moving dislocation segments is distributed to an elementary spheroid (ellipsoid or sphere) via a specific new distribution function. The influence of various interfaces (such as free surfaces and grain boundaries (GBs)) on the plastic-strain distribution is specially considered. By these treatments, the deformation fields can be solved accurately even for dislocations on slip planes severely inclined to the FE mesh, with no spurious stress concentration points produced. In addition, a stress correction by singular and non-singular theoretical solutions within a cut-off sphere is introduced to calculate the stress on the dislocations accurately. By these schemes, the present DCM becomes less sensitive to the FE mesh and more numerically efficient, which can also consider the interaction between neighboring dislocations appropriately even though they reside in the same FE mesh. Furthermore, the present DCM has been employed to model the compression of single-crystal and bi-crystal micropillars with rigid and dislocation-absorbed GBs. The influence of internal GB on the jerky stress-strain response and deformation mode is studied in detail to shed more light on these important micro-plastic problems.

  17. Image Forces on 3-D Dislocation Structures in Crystals of Finite Volume

    SciTech Connect

    El-Azab, Anter ); V.V. Bulatov

    1999-01-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  18. Image forces on 3d dislocation structures in crystals of finite volume

    SciTech Connect

    El-Azab, A.

    1999-07-01

    The present work aims at studying the image stress and image Peach-Koehler force fields for three-dimensional dislocation configurations in a single crystal of finite volume. It is shown that the image stress field is significant within the entire crystal volume, and that the image Peach-Koehler force can be of the same order of magnitude as the direct interaction force calculated from the infinite domain solution. The results demonstrate that image stress gives rise to long-range interaction forces that are important in meso-scale dynamics of dislocation structures.

  19. Solid microparticles in nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Muševič, Igor

    A brief historic overview of colloidal experiments in the 1990's is given in the introduction. These experiments have later inspired research on nematic colloids, after the technique of laser tweezers manipulation of particles was introduced to this field. Basic topological properties of colloidal inclusions in the nematic liquid crystals are discussed and the nematic-mediated forces between dipolar and quadrupolar colloidal particles in bulk nematic are explained. Structural and topological properties of 2D and 3D colloidal crystals and superstructures made of colloidal particles of different size and symmetry in bulk nematic liquid crystal are described. Laser-tweezer manipulation and rewiring of topological defect loops around colloidal particles is introduced. This results in the colloidal entanglement, as well as knotting and linking of defect loops of the order parameter field. Shape and size-dependent colloidal interactions in the nematic liquid crystals are reviewed. The chapter concludes with the discussion of bulk chiral nematic and blue phase colloids.

  20. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals.

    PubMed

    Gârlea, Ioana C; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G A L; Lettinga, M Pavlik; Koenderink, Gijsje H; Mulder, Bela M

    2016-06-29

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals.

  1. Colloidal CdTe Nano Crystals Synthesis and Characterization

    DTIC Science & Technology

    2008-09-01

    spectrum of CdTe nano crystals grown at different times.............................3 Figure 3. Luminescence spectrum of CdTe nano crystals after 30 and...500 600 700 800 900 1000 Wavelength in Nanometers Ab so rb an ce 15 Minutes 30 Minutes 45 Minutes 60 Minutes Figure 2. Absorption spectrum of CdTe ...nano crystals grown at different times. The luminescence spectrum of the CdTe nano crystals synthesized 30 minutes and 45 minutes after injection of

  2. Unidirectional Wave Propagation in Low-Symmetric Colloidal Photonic-Crystal Heterostructures

    PubMed Central

    Yannopapas, Vassilios

    2015-01-01

    We show theoretically that photonic crystals consisting of colloidal spheres exhibit unidirectional wave propagation and one-way frequency band gaps without breaking time-reversal symmetry via, e.g., the application of an external magnetic field or the use of nonlinear materials. Namely, photonic crystals with low symmetry such as the monoclinic crystal type considered here as well as with unit cells formed by the heterostructure of different photonic crystals show significant unidirectional electromagnetic response. In particular, we show that the use of scatterers with low refractive-index contrast favors the formation of unidirectional frequency gaps which is the optimal route for achieving unidirectional wave propagation.

  3. Dynamic broadening of the crystal-fluid interface of colloidal hard spheres.

    PubMed

    Dullens, Roel P A; Aarts, Dirk G A L; Kegel, Willem K

    2006-12-01

    We investigate the structure and dynamics of the crystal-fluid interface of colloidal hard spheres in real space by confocal microscopy. Tuning the buoyancy of the particles allows us to study the interface close to and away from equilibrium. We find that the interface broadens from 8-9 particle diameters close to equilibrium to 15 particle diameters away from equilibrium. Furthermore, the interfacial velocity, i.e., the velocity by which the interface moves upwards, increases significantly. The increasing gravitational drive leads to supersaturation of the fluid above the crystal surface. This dramatically affects crystal nucleation and growth, resulting in the observed dynamic broadening of the crystal-fluid interface.

  4. A generalized crystal-cutting method for modeling arbitrarily oriented crystals in 3D periodic simulation cells with applications to crystal-crystal interfaces

    NASA Astrophysics Data System (ADS)

    Kroonblawd, Matthew P.; Mathew, Nithin; Jiang, Shan; Sewell, Thomas D.

    2016-10-01

    A Generalized Crystal-Cutting Method (GCCM) is developed that automates construction of three-dimensionally periodic simulation cells containing arbitrarily oriented single crystals and thin films, two-dimensionally (2D) infinite crystal-crystal homophase and heterophase interfaces, and nanostructures with intrinsic N-fold interfaces. The GCCM is based on a simple mathematical formalism that facilitates easy definition of constraints on cut crystal geometries. The method preserves the translational symmetry of all Bravais lattices and thus can be applied to any crystal described by such a lattice including complicated, low-symmetry molecular crystals. Implementations are presented with carefully articulated combinations of loop searches and constraints that drastically reduce computational complexity compared to simple loop searches. Orthorhombic representations of monoclinic and triclinic crystals found using the GCCM overcome some limitations in standard distributions of popular molecular dynamics software packages. Stability of grain boundaries in β-HMX was investigated using molecular dynamics and molecular statics simulations with 2D infinite crystal-crystal homophase interfaces created using the GCCM. The order of stabilities for the four grain boundaries studied is predicted to correlate with the relative prominence of particular crystal faces in lab-grown β-HMX crystals. We demonstrate how nanostructures can be constructed through simple constraints applied in the GCCM framework. Example GCCM constructions are shown that are relevant to some current problems in materials science, including shock sensitivity of explosives, layered electronic devices, and pharmaceuticals.

  5. Experimental studies of cobalt ferrite nanoparticles doped silica matrix 3D magneto-photonic crystals

    NASA Astrophysics Data System (ADS)

    Abou Diwan, E.; Royer, F.; Kekesi, R.; Jamon, D.; Blanc-Mignon, M. F.; Neveu, S.; Rousseau, J. J.

    2013-05-01

    In this paper, we present the synthesis and the optical properties of 3D magneto-photonic structures. The elaboration process consists in firstly preparing then infiltrating polystyrene direct opals with a homogeneous solution of sol-gel silica precursors doped by cobalt ferrite nanoparticles, and finally dissolving the polystyrene spheres. Scanning Electron Microscopy (SEM) images of the prepared samples clearly evidence a periodic arrangement. Using a home-made polarimetric optical bench, the transmittance as a function of the wavelength, the Faraday rotation as a function of the applied magnetic field, and the Faraday ellipticity as a function of the wavelength and as a function of the applied magnetic field were measured. The existence of deep photonic band gaps (PBG), the unambiguous magnetic character of the samples and the qualitative modification of the Faraday ellipticity in the area of the PBG are evidenced.

  6. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion.

    PubMed

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O'Hanlon, Sally; Geaney, Hugh; O'Dwyer, Colm

    2016-01-01

    This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic-photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided.

  7. 2D and 3D photonic crystal materials for photocatalysis and electrochemical energy storage and conversion

    PubMed Central

    Collins, Gillian; Armstrong, Eileen; McNulty, David; O’Hanlon, Sally; Geaney, Hugh; O’Dwyer, Colm

    2016-01-01

    Abstract This perspective reviews recent advances in inverse opal structures, how they have been developed, studied and applied as catalysts, catalyst support materials, as electrode materials for batteries, water splitting applications, solar-to-fuel conversion and electrochromics, and finally as photonic photocatalysts and photoelectrocatalysts. Throughout, we detail some of the salient optical characteristics that underpin recent results and form the basis for light-matter interactions that span electrochemical energy conversion systems as well as photocatalytic systems. Strategies for using 2D as well as 3D structures, ordered macroporous materials such as inverse opals are summarized and recent work on plasmonic–photonic coupling in metal nanoparticle-infiltrated wide band gap inverse opals for enhanced photoelectrochemistry are provided. PMID:27877904

  8. The Kinetics of Crystallization of Colloids and Proteins: A Light Scattering Study

    NASA Technical Reports Server (NTRS)

    McClymer, Jim

    2002-01-01

    Hard-sphere colloidal systems serve as model systems for aggregation, nucleation, crystallization and gelation as well as interesting systems in their own right.There is strong current interest in using colloidal systems to form photonic crystals. A major scientific thrust of NASA's microgravity research is the crystallization of proteins for structural determination. The crystallization of proteins is a complicated process that requires a great deal of trial and error experimentation. In spite of a great deal of work, "better" protein crystals cannot always be grown in microgravity and conditions for crystallization are not well understood. Crystallization of colloidal systems interacting as hard spheres and with an attractive potential induced by entropic forces have been studied in a series of static light scattering experiments. Additionally, aggregation of a protein as a function of pH has been studied using dynamic light scattering. For our experiments we used PMMA (polymethylacrylate) spherical particles interacting as hard spheres, with no attractive potential. These particles have a radius of 304 nanometers, a density of 1.22 gm/ml and an index of refraction of 1.52. A PMMA colloidal sample at a volume fraction of approximately 54% was index matched in a solution of cycloheptyl bromide (CHB) and cis-decalin. The sample is in a glass cylindrical vial that is placed in an ALV static and dynamic light scattering goniometer system. The vial is immersed in a toluene bath for index matching to minimize flair. Vigorous shaking melts any colloidal crystals initially present. The sample is illuminated with diverging laser light (632.8 nanometers) from a 4x microscope objective placed so that the beam is approximately 1 cm in diameter at the sample location. The sample is rotated about its long axis at approximately 3.5 revolutions per minute (highest speed) as the colloidal crystal system is non-ergodic. The scattered light is detected at various angles using the

  9. Extended depth-of-focus 3D micro integral imaging display using a bifocal liquid crystal lens.

    PubMed

    Shen, Xin; Wang, Yu-Jen; Chen, Hung-Shan; Xiao, Xiao; Lin, Yi-Hsin; Javidi, Bahram

    2015-02-15

    We present a three dimensional (3D) micro integral imaging display system with extended depth of focus by using a polarized bifocal liquid crystal lens. This lens and other optical components are combined as the relay optical element. The focal length of the relay optical element can be controlled to project an elemental image array in multiple positions with various lenslet image planes, by applying different voltages to the liquid crystal lens. The depth of focus of the proposed system can therefore be extended. The feasibility of our proposed system is experimentally demonstrated. In our experiments, the depth of focus of the display system is extended from 3.82 to 109.43 mm.

  10. Two studies of colloidal interactions: electric polarizability and protein crystallization. Final report

    SciTech Connect

    Fraden, Seth; Hu, Yue

    2001-08-06

    (I)Electric polarizability. During this grant period, the focus was on five topics concerning electric field effects on colloids. The first topic focuses on electric interactions between charged colloids in the absence of external fields, and the remaining four deal with colloids in the presence of external fields. The topics are (1) calculation of the effect of confinement on the pair-potential between like-charged colloids, (2) experimental determination of the interparticle potential under the conditions of dielectric polarization, (3) measurement of the evolution of structure of ER fluids, (4) synthesis of novel colloids designed for ER studies, and (5) computer modeling of polarization of surface charge. (II) Protein crystallization. Studies of the phase behavior of mixtures of proteins and polymers were initiated. The motivation was to test recent theories that suggested that optimal conditions for protein crystallization could be obtained using such mixtures. Combined light scattering measurements of the virial coefficients and determination of the phase diagram of protein/polymer mixtures revealed that the theoretical picture needs to be substantially modified.

  11. Direct current electric field assembly of colloidal crystals displaying reversible structural color.

    PubMed

    Shah, Aayush A; Ganesan, Mahesh; Jocz, Jennifer; Solomon, Michael J

    2014-08-26

    We report the application of low-voltage direct current (dc) electric fields to self-assemble close-packed colloidal crystals in nonaqueous solvents from colloidal spheres that vary in size from as large as 1.2 μm to as small as 0.1 μm. The assemblies are created rapidly (∼2 min) from an initially low volume fraction colloidal particle suspension using a simple capacitor-like electric field device that applies a steady dc electric voltage. Confocal microscopy is used to observe the ordering that is produced by the assembly method. This spatial evidence for ordering is consistent with the 6-fold diffraction patterns identified by light scattering. Red, green, and blue structural color is observed for the ordered assemblies of colloids with diameters of 0.50, 0.40, and 0.29 μm, respectively, consistent with spectroscopic measurements of reflectance. The diffraction and spectrophotometry results were found to be consistent with the theoretical Bragg's scattering expected for closed-packed crystals. By switching the dc electric field from on to off, we demonstrate reversibility of the structural color response on times scales ∼60 s. The dc electric field assembly method therefore represents a simple method to produce reversible structural color in colloidal soft matter.

  12. Growth of defect-free colloidal hard-sphere crystals using colloidal epitaxy

    NASA Astrophysics Data System (ADS)

    Dasgupta, Tonnishtha; Edison, John R.; Dijkstra, Marjolein

    2017-02-01

    Using event-driven Brownian dynamics simulations, we investigate the epitaxial growth of hard-sphere crystals with a face-centered-cubic (fcc) structure on the three densest cross-sectional planes of the fcc: (i) fcc (100), (ii) fcc (111), and (iii) fcc (110). We observe that for high settling velocities, large fcc crystals with very few extended defects grow on the fcc (100) template. Our results show good agreement with the experiments of Jensen et al. [Soft Matter 9, 320 (2013)], who observed such large fcc crystals upon centrifugation on an fcc (100) template. We also compare the quality of the fcc crystal formed on the fcc (111) and fcc (110) templates with that of the fcc (100) template and conclude that the latter yields the best crystal. We also briefly discuss the dynamical behavior of stacking faults that occur in the sediments.

  13. Growth of defect-free colloidal hard-sphere crystals using colloidal epitaxy.

    PubMed

    Dasgupta, Tonnishtha; Edison, John R; Dijkstra, Marjolein

    2017-02-21

    Using event-driven Brownian dynamics simulations, we investigate the epitaxial growth of hard-sphere crystals with a face-centered-cubic (fcc) structure on the three densest cross-sectional planes of the fcc: (i) fcc (100), (ii) fcc (111), and (iii) fcc (110). We observe that for high settling velocities, large fcc crystals with very few extended defects grow on the fcc (100) template. Our results show good agreement with the experiments of Jensen et al. [Soft Matter 9, 320 (2013)], who observed such large fcc crystals upon centrifugation on an fcc (100) template. We also compare the quality of the fcc crystal formed on the fcc (111) and fcc (110) templates with that of the fcc (100) template and conclude that the latter yields the best crystal. We also briefly discuss the dynamical behavior of stacking faults that occur in the sediments.

  14. Design of a 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) System

    NASA Astrophysics Data System (ADS)

    Grothe, Rob; Rixon, Greg; Dabiri, Dana

    2007-11-01

    A novel 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) system has been designed and fabricated. By combining 3D Defocusing Particle Image Velocimetry (3DDPIV) and Digital Particle Image Thermometry (DPIT) into one system, this technique provides simultaneous temperature and velocity data using temperature-sensitive liquid crystal particles (LCP) as flow sensors. A custom water-filled prism corrects for astigmatism caused by off-axis imaging. New optics equations are derived to account for multi-surface refractions. This redesign also maximizes the use of the CCD area to more efficiently image the volume of interest. Six CCD cameras comprise the imaging system, with three allocated for velocity measurements and three for temperature measurements. The cameras are optically aligned to sub-pixel accuracy using a precision grid and high-resolution translation stages. Two high-intensity custom-designed xenon flashlamps provide illumination. Temperature calibration of the LCP is then performed. These results and proof-of-concept experiments will be discussed in detail.

  15. High-contrast step-index waveguides in borate nonlinear laser crystals by 3D laser writing.

    PubMed

    Rodenas, Airan; Kar, Ajoy K

    2011-08-29

    We report the ultrafast fabrication of high-contrast step-index channel waveguides in Nd(3+):YCa(4)O(BO(3))(3) borate laser crystals by means of 3D direct laser writing. Guiding up to 3.4 μm wavelength is demonstrated for the first time in a laser written crystalline waveguide. Modeling the measured fundamental modes at the wavelengths of 1.9 µm and 3.4 µm allowed us to estimate the high laser-induced refractive index increments (index contrasts) to be 0.010 (0.59%), and 0.005 (0.29%), respectively. Confocal µ-Raman spectral imaging of the waveguides cross-sections confirmed that the cores have very well defined step profiles, and that the increase in the refractive index can be linked to the localized creation of permanent intrinsic defects. These results indicate that this crystalline waveguides are a potential candidate for the development of 3D active waveguide circuits, due to the laser and electro-optic properties of rare earth doped borate crystals.

  16. Crystal, magnetic and electronic structures of 3d-5d ordered double perovskite Ba2CoReO6

    NASA Astrophysics Data System (ADS)

    Musa Saad H.-E., M.; Rammeh, N.

    2016-12-01

    A comprehensive study on crystal, magnetic and electronic structures of ordered double perovskite Ba2CoReO6 was carried out using X-ray powder diffraction (XRD) and superconducting quantum interference device (SQUID). Also, the density functional theory (DFT) calculations were performed by full potential linear muffin-tin orbital (FP-LMTO) method within the localized spin density approximation (LSDA+U) and generalized gradient approximation (GGA+U). At room temperature, the crystal structure of Ba2CoReO6 is face-centered cubic, space group Fm 3 bar m , containing an almost completely ordered arrangement of CoO6-ReO6 octahedra. Magnetic structure showed an antiferromagnetic (AF) behavior below TN=41 K. The magnetic and electronic structures are consistent with the electronic configurations Co2+(3d7)-Re6+(5d1) having a total spin magnetic moment of about 2.0 μB/f.u. DFT electronic structures predicted half-metallic yields from 3d-t2g↓ and 5d-t2g↓ through O2-.

  17. 3D photonic crystal-based biosensor functionalized with quantum dot-based aptamer for thrombine detection

    NASA Astrophysics Data System (ADS)

    Lim, Chae Young; Choi, Eunpyo; Park, Youngkyu; Park, Jungyul

    2013-05-01

    In this paper, we propose a new technique for protein detection by using the enhancement of intensity in quantum dots (Qdot) whose emission is guided by 3D photonic crystal (PC) structures. For easy to use, we design the emitted light from the sensor can be recovered, when the chemical antibody (aptamer) conjugated with guard DNA (g-DNA) labeled with a quencher (Black FQ) hybridizes with the target proteins. In detail, we synthesis a Qdot-aptamer complex and then immobilize these complex on the PC surfaces. Next, we perform the hybridization of the Qdot-aptamer complex with g-DNA labeled with the quencher. It induces the quenching effect of fluoresce intensity in the Qdot-aptamer. In presence of target protein (thrombin), the Qdot-aptamer complex prefers to form the thrombin-aptamer complex: this results in the release of Black FQ-g-DNA and the quenched light intensity recovers into the original high intensity with Qdot. The intensity recovery varies quantitatively according to the level of the target protein concentration. This proposed sensor shows much higher detection sensitivity than the general fluorescent detection mechanism, which is functionalized on the flat surfaces because of the light guiding effect from 3D photonic crystal structures.

  18. 3D modeling of doping from the atmosphere in floating zone silicon crystal growth

    NASA Astrophysics Data System (ADS)

    Sabanskis, A.; Surovovs, K.; Virbulis, J.

    2017-01-01

    Three-dimensional numerical simulations of the inert gas flow, melt flow and dopant transport in both phases are carried out for silicon single crystal growth using the floating zone method. The mathematical model allows to predict the cooling heat flux density at silicon surfaces and realistically describes the dopant transport in case of doping from the atmosphere. A very good agreement with experiment is obtained for the radial resistivity variation profiles by taking into account the temperature dependence of chemical reaction processes at the free surface.

  19. The calculation of static polarizabilities of 1-3D periodic compounds. the implementation in the crystal code.

    PubMed

    Ferrero, Mauro; Rérat, Michel; Orlando, Roberto; Dovesi, Roberto

    2008-07-15

    The Coupled Perturbed Hartree-Fock (CPHF) scheme has been implemented in the CRYSTAL06 program, that uses a gaussian type basis set, for systems periodic in 1D (polymers), 2D (slabs), 3D (crystals) and, as a limiting case, 0D (molecules), which enables comparison with molecular codes. CPHF is applied to the calculation of the polarizability alpha of LiF in different aggregation states: finite and infinite chains, slabs, and cubic crystal. Correctness of the computational scheme for the various dimensionalities and its numerical efficiency are confirmed by the correct trend of alpha: alpha for a finite linear chain containing N LiF units with large N tends to the value for the infinite chain, N parallel chains give the slab value when N is sufficiently large, and N superimposed slabs tend to the bulk value. CPHF results compare well with those obtained with a saw-tooth potential approach, previously implemented in CRYSTAL. High numerical accuracy can easily be achieved at relatively low cost, with the same kind of dependence on the computational parameters as for the SCF cycle. Overall, the cost of one component of the dielectric tensor is roughly the same as for the SCF cycle, and it is dominated by the calculation of two-electron four-center integrals.

  20. Fabrication of fully undercut ZnO-based photonic crystal membranes with 3D optical confinement

    NASA Astrophysics Data System (ADS)

    Hoffmann, Sandro Phil; Albert, Maximilian; Meier, Cedrik

    2016-09-01

    For studying nonlinear photonics, a highly controllable emission of photons with specific properties is essential. Two-dimensional photonic crystals (PhCs) have proven to be an excellent candidate for manipulating photon emission due to resonator-based effects. Additionally, zinc oxide (ZnO) has high susceptibility coefficients and therefore shows pronounced nonlinear effects. However, in order to fabricate such a cavity, a fully undercut ZnO membrane is required, which is a challenging problem due to poor selectivity of the known etching chemistry for typical substrates such as sapphire or ZnO. The aim of this paper is to demonstrate and characterize fully undercut photonic crystal membranes based on a thin ZnO film sandwiched between two layers of silicon dioxide (SiO2) on silicon substrates, from the initial growth of the heterostructure throughout the entire fabrication process. This process leads to a fully undercut ZnO-based membrane with adjustable optical confinement in all three dimensions. Finally, photonic resonances within the tailored photonic band gap are achieved due to optimized PhC-design (in-plane) and total internal reflection in the z-direction. The presented approach enables a variety of photon based resonator structures in the UV regime for studying nonlinear effects, including photon-exciton coupling and all-optical switching.

  1. Colloidal liquid crystals in square confinement: isotropic, nematic and smectic phases

    NASA Astrophysics Data System (ADS)

    Cortes, Louis B. G.; Gao, Yongxiang; Dullens, Roel P. A.; Aarts, Dirk G. A. L.

    2017-02-01

    We report on the confinement of colloidal liquid crystals in three dimensional chambers with a square footprint. To this end we use colloidal silica rods and exploit their relatively large density difference with respect to the dispersing solvent to study isotropic, nematic and smectic phases confined into a single chamber. Combining laser scanning confocal microscopy and soft-lithography techniques enables us to characterize the configurations down to the single particle level. We will focus on the smectic phase and compare to recent theories and simulations.

  2. Structure beyond pair correlations: X-ray cross-correlation from colloidal crystals1

    PubMed Central

    Lehmkühler, Felix; Fischer, Birgit; Müller, Leonard; Ruta, Beatrice; Grübel, Gerhard

    2016-01-01

    The results of an X-ray cross-correlation analysis (XCCA) study on hard-sphere colloidal crystals and glasses are presented. The article shows that cross-correlation functions can be used to extract structural information beyond the static structure factor in such systems. In particular, the powder average can be overcome by accessing the crystals’ unit-cell structure. In this case, the results suggest that the crystal is of face-centered cubic type. It is demonstrated that XCCA is a valuable tool for X-ray crystallography, in particular for studies on colloidal systems. These are typically characterized by a rather poor crystalline quality due to size polydispersity and limitations in experimental resolution because of the small q values probed. Furthermore, nontrivial correlations are observed that allow a more detailed insight into crystal structures beyond conventional crystallography, especially to extend knowledge in structure formation processes and phase transitions. PMID:27980511

  3. Predicting out-of-Equilibrium Phase Behavior in the Dynamic Self-Assembly of Colloidal Crystals

    NASA Astrophysics Data System (ADS)

    Swan, James; Sherman, Zachary

    Crystals self-assembled from colloidal particles are useful in an array of well demonstrated applications. During fabrication however, gelation and glassification often leave these materials arrested in defective or disordered metastable states. We show how time-dependent, pulsed interparticle interactions can avoid kinetic barriers and yield well-ordered crystalline domains for a suspension of hard, spherical colloidal particles interacting through short-range attractions. This dynamic self-assembly process is analogous to the flashing Brownian rachet. Although this is an inherently unsteady, out-of-equilibrium process, we can predict its outcome using appropriate time averages of equilibrium equations of state. The predicted phase behavior is tested and validated by examining the fluid/crystal coexistence of such dynamically self-assembling dispersions in Brownian dynamics simulations of sedimentation equilibrium and homogeneous nucleation. We also show that our dynamic self-assembly scheme offers control and tunability over the crystal growth kinetics and can even stabilize nonequilibrium structures.

  4. Growth of mesoporous materials within colloidal crystal films by spin-coating.

    PubMed

    Villaescusa, Luis A; Mihi, Agustín; Rodríguez, Isabel; García-Bennett, Alfonso E; Míguez, Hernan

    2005-10-27

    A combination of colloidal crystal planarization, stabilization, and novel infiltration techniques is used to build a bimodal porous silica film showing order at both the micron and the nanometer length scale. An infiltration method based on the spin-coating of the mesophase precursor onto a three-dimensional polystyrene colloidal crystal film allows a nanometer control tuning of the filling fraction of the mesoporous phase while preserving the optical quality of the template. These materials combine a high specific surface arising from the nanopores with increased mass transport and photonic crystal properties provided by the order of the macropores. Optical Bragg diffraction from these type of hierarchically ordered oxides is observed, allowing performing of optical monitoring of the different processes involved in the formation of the bimodal silica structure.

  5. Modeling of elastic and plastic waves for HCP single crystals in a 3D formulation based on zinc single crystal

    NASA Astrophysics Data System (ADS)

    Krivosheina, Marina; Kobenko, Sergey; Tuch, Elena; Kozlova, Maria

    2016-11-01

    This paper investigates elastic and plastic waves in HCP single crystals through the numerical simulation of strain processes in anisotropic materials based on a zinc single crystal. Velocity profiles for compression waves in the back surfaces of single-crystal zinc plates with impact loading oriented in 0001 and 10 1 ¯0 are presented in this work as a part of results obtained in numerical simulations. The mathematical model implemented in this study reflects the following characteristics of the mechanical properties inherent in anisotropic (transtropic) materials: varying degree of anisotropy of elastic and plastic properties, which includes reverse anisotropy, dependence of distribution of all types of waves on the velocity orientation, and the anisotropy of compressibility. Another feature of elastic and plastic waves in HCP single crystals is that the shock wave does not split into an elastic precursor and "plastic" compression shock wave, which is inherent in zinc single crystals with loading oriented in 0001. The study compares numerical results obtained in a three-dimensional formulation with the results of velocity profiles from the back surfaces of target plates obtained in real experiments. These results demonstrate that the mathematical model is capable of describing the properties of the above-mentioned anisotropic (transtropic) materials.

  6. Efficient Design Tool for 2D and 3D NIMS Photonic Crystals

    DTIC Science & Technology

    2008-01-28

    and  Le‐Wei  Li, “Analysis  of  Probe‐fed  Conformal  Microstrip   Antennas  on Finite Ground Plane and Substrate”, IEEE Transactions on  Antennas  and...approach will be very  flexible   in handling many different  types of photonic crystals of  various geometrical  structures. Most  importantly,  the...Because of many different choices of the basis functions for the volume cells, the approach will be very flexible in handling many different types of

  7. A Metal Organic Framework with Spherical Protein Nodes: Rational Chemical Design of 3D Protein Crystals.

    PubMed

    Sontz, Pamela A; Bailey, Jake B; Ahn, Sunhyung; Tezcan, F Akif

    2015-09-16

    We describe here the construction of a three-dimensional, porous, crystalline framework formed by spherical protein nodes that assemble into a prescribed lattice arrangement through metal-organic linker-directed interactions. The octahedral iron storage enzyme, ferritin, was engineered in its C3 symmetric pores with tripodal Zn coordination sites. Dynamic light scattering and crystallographic studies established that this Zn-ferritin construct could robustly self-assemble into the desired bcc-type crystals upon coordination of a ditopic linker bearing hydroxamic acid functional groups. This system represents the first example of a ternary protein-metal-organic crystalline framework whose formation is fully dependent on each of its three components.

  8. Effects of Gamma Irradiation on Optical Properties of Colloidal Nano-crystals

    SciTech Connect

    Withers, Nathan J.; Sankar, Krishnaprasad; Akins, Brian A.; Memon, Tosifa A.; Smolyakov, Gennady A.; Osinski, Marek; Gu, Jiangjiang; Gu, Tingyi; Bowers, Shin T. |; Greenberg, Melisa R. |; Busch, Robert D.

    2008-07-01

    The effects of {sup 137}Cs gamma irradiation on photoluminescence properties, such as spectra, light output, and lifetime, of several types of colloidal nano-crystals have been investigated. Irradiation-induced damage testing was performed on CdSe/ZnS, LaF{sub 3}:Eu, LaF{sub 3}:Ce, ZnO, and PbI{sub 2} nano-crystals synthesized on a Schlenk line using appropriate solvents and precursors. Optical degradation of the nano-crystals was evaluated based on the measured dependence of their photoluminescence intensity on the irradiation dose. Radiation hardness varies significantly between various nano-crystalline material systems. (authors)

  9. A polycrystalline SiO2 colloidal crystal film with ultra-narrow reflections.

    PubMed

    Fu, Qianqian; Chen, Ang; Shi, Lei; Ge, Jianping

    2015-04-30

    This work reported a high quality photonic crystal film with an ultra-narrow photonic bandgap obtained via a chemical synthetic route. The bandgap is much narrower than that of traditional colloidal crystals, which makes the film qualified for use in optical devices. The narrow PBG originates from not only the high crystallinity and uniform orientations of microcrystals within the film but also the very close refractive indices between the silica and the polymer matrix. Due to the matching of the refractive index, the amorphous contents of the film are optically transparent and do not interfere with the reflection, so that the photonic crystal film is tolerant of the existence of disordered contents.

  10. Post-synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals

    PubMed Central

    Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau; Guillerm, Vincent; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2016-01-01

    Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, via acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, among these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution. PMID:26458081

  11. Post-Synthetic Anisotropic Wet-Chemical Etching of Colloidal Sodalite ZIF Crystals.

    PubMed

    Avci, Civan; Ariñez-Soriano, Javier; Carné-Sánchez, Arnau; Guillerm, Vincent; Carbonell, Carlos; Imaz, Inhar; Maspoch, Daniel

    2015-11-23

    Controlling the shape of metal-organic framework (MOF) crystals is important for understanding their crystallization and useful for myriad applications. However, despite the many advances in shaping of inorganic nanoparticles, post-synthetic shape control of MOFs and, in general, molecular crystals remains embryonic. Herein, we report using a simple wet-chemistry process at room temperature to control the anisotropic etching of colloidal ZIF-8 and ZIF-67 crystals. Our work enables uniform reshaping of these porous materials into unprecedented morphologies, including cubic and tetrahedral crystals, and even hollow boxes, by an acid-base reaction and subsequent sequestration of leached metal ions. Etching tests on these ZIFs reveal that etching occurs preferentially in the crystallographic directions richer in metal-ligand bonds; that, along these directions, the etching rate tends to be faster on the crystal surfaces of higher dimensionality; and that the etching can be modulated by adjusting the pH of the etchant solution.

  12. 3D lattice distortions and defect structures in ion-implanted nano-crystals

    PubMed Central

    Hofmann, Felix; Tarleton, Edmund; Harder, Ross J.; Phillips, Nicholas W.; Ma, Pui-Wai; Clark, Jesse N.; Robinson, Ian K.; Abbey, Brian; Liu, Wenjun; Beck, Christian E.

    2017-01-01

    Focussed Ion Beam (FIB) milling is a mainstay of nano-scale machining. By manipulating a tightly focussed beam of energetic ions, often gallium (Ga+), FIB can sculpt nanostructures via localised sputtering. This ability to cut solid matter on the nano-scale revolutionised sample preparation across the life, earth and materials sciences. Despite its widespread usage, detailed understanding of the FIB-induced structural damage, intrinsic to the technique, remains elusive. Here we examine the defects caused by FIB in initially pristine objects. Using Bragg Coherent X-ray Diffraction Imaging (BCDI), we are able to spatially-resolve the full lattice strain tensor in FIB-milled gold nano-crystals. We find that every use of FIB causes large lattice distortions. Even very low ion doses, typical of FIB imaging and previously thought negligible, have a dramatic effect. Our results are consistent with a damage microstructure dominated by vacancies, highlighting the importance of free-surfaces in determining which defects are retained. At larger ion fluences, used during FIB-milling, we observe an extended dislocation network that causes stresses far beyond the bulk tensile strength of gold. These observations provide new fundamental insight into the nature of the damage created and the defects that lead to a surprisingly inhomogeneous morphology. PMID:28383028

  13. Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells.

    PubMed

    Hands, Philip J W; Tatarkova, Svetlana A; Kirby, Andrew K; Love, Gordon D

    2006-05-15

    We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 mum and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 mum. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation.

  14. Modal liquid crystal devices in optical tweezing: 3D control and oscillating potential wells

    NASA Astrophysics Data System (ADS)

    Hands, Philip J. W.; Tatarkova, Svetlana A.; Kirby, Andrew K.; Love, Gordon D.

    2006-05-01

    We investigate the use of liquid crystal (LC) adaptive optics elements to provide full 3 dimensional particle control in an optical tweezer. These devices are suitable for single controllable traps, and so are less versatile than many of the competing technologies which can be used to control multiple particles. However, they have the advantages of simplicity and light efficiency. Furthermore, compared to binary holographic optical traps they have increased positional accuracy. The transmissive LC devices could be retro-fitted to an existing microscope system. An adaptive modal LC lens is used to vary the z-focal position over a range of up to 100 μm and an adaptive LC beam-steering device is used to deflect the beam (and trapped particle) in the x-y plane within an available radius of 10 μm. Furthermore, by modifying the polarisation of the incident light, these LC components also offer the opportunity for the creation of dual optical traps of controllable depth and separation.

  15. The Calculation of the Band Structure in 3D Phononic Crystal with Hexagonal Lattice

    NASA Astrophysics Data System (ADS)

    Aryadoust, Mahrokh; Salehi, H.

    2015-12-01

    In this article, the propagation of acoustic waves in the phononic crystals (PCs) of three dimensions with the hexagonal (HEX) lattice is studied theoretically. The PCs are constituted of nickel (Ni) spheres embedded in epoxy. The calculations of the band structure and the density of states are performed using the plane wave expansion (PWE) method in the irreducible part of the Brillouin zone (BZ). In this study, we analyse the dependence of the band structures inside (the complete band gap width) on c/a and filling fraction in the irreducible part of the first BZ. Also, we have analysed the band structure of the ALHA and MLHKM planes. The results show that the maximum width of absolute elastic band gap (AEBG) (0.045) in the irreducible part of the BZ of HEX lattice is formed for c/a=6 and filling fraction equal to 0.01. In addition, the maximum of the first and second AEBG widths are 0.0884 and 0.0474, respectively, in the MLHKM plane, and the maximum of the first and second AEBG widths are 0.0851 and 0.0431, respectively, in the ALHA plane.

  16. Colloidal crystals with diamond symmetry at optical lengthscales.

    PubMed

    Wang, Yifan; Jenkins, Ian C; McGinley, James T; Sinno, Talid; Crocker, John C

    2017-02-13

    Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require-a regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals that contain a suitable diamond structure, using DNA to direct the self-assembly process. While diamond symmetry crystals have been grown from much smaller nanoparticles, none of those previous methods suffice for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, the crystals we observe do not readily form in previously validated simulations; nor have they been predicted theoretically. This finding suggests that other unexpected microstructures may be accessible using this approach and bodes well for future efforts to inexpensively mass-produce metamaterials for an array of photonic applications.

  17. Colloidal crystals with diamond symmetry at optical lengthscales

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Jenkins, Ian C.; McGinley, James T.; Sinno, Talid; Crocker, John C.

    2017-02-01

    Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require--a regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals that contain a suitable diamond structure, using DNA to direct the self-assembly process. While diamond symmetry crystals have been grown from much smaller nanoparticles, none of those previous methods suffice for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, the crystals we observe do not readily form in previously validated simulations; nor have they been predicted theoretically. This finding suggests that other unexpected microstructures may be accessible using this approach and bodes well for future efforts to inexpensively mass-produce metamaterials for an array of photonic applications.

  18. Colloidal crystals with diamond symmetry at optical lengthscales

    PubMed Central

    Wang, Yifan; Jenkins, Ian C.; McGinley, James T.; Sinno, Talid; Crocker, John C.

    2017-01-01

    Future optical materials promise to do for photonics what semiconductors did for electronics, but the challenge has long been in creating the structure they require—a regular, three-dimensional array of transparent microspheres arranged like the atoms in a diamond crystal. Here we demonstrate a simple approach for spontaneously growing double-diamond (or B32) crystals that contain a suitable diamond structure, using DNA to direct the self-assembly process. While diamond symmetry crystals have been grown from much smaller nanoparticles, none of those previous methods suffice for the larger particles needed for photonic applications, whose size must be comparable to the wavelength of visible light. Intriguingly, the crystals we observe do not readily form in previously validated simulations; nor have they been predicted theoretically. This finding suggests that other unexpected microstructures may be accessible using this approach and bodes well for future efforts to inexpensively mass-produce metamaterials for an array of photonic applications. PMID:28194025

  19. Modes of surface premelting in colloidal crystals composed of attractive particles

    NASA Astrophysics Data System (ADS)

    Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong

    2016-03-01

    Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface

  20. Modes of surface premelting in colloidal crystals composed of attractive particles.

    PubMed

    Li, Bo; Wang, Feng; Zhou, Di; Peng, Yi; Ni, Ran; Han, Yilong

    2016-03-24

    Crystal surfaces typically melt into a thin liquid layer at temperatures slightly below the melting point of the crystal. Such surface premelting is prevalent in all classes of solids and is important in a variety of metallurgical, geological and meteorological phenomena. Premelting has been studied using X-ray diffraction and differential scanning calorimetry, but the lack of single-particle resolution makes it hard to elucidate the underlying mechanisms. Colloids are good model systems for studying phase transitions because the thermal motions of individual micrometre-sized particles can be tracked directly using optical microscopy. Here we use colloidal spheres with tunable attractions to form equilibrium crystal-vapour interfaces, and study their surface premelting behaviour at the single-particle level. We find that monolayer colloidal crystals exhibit incomplete premelting at their perimeter, with a constant liquid-layer thickness. In contrast, two- and three-layer crystals exhibit conventional complete melting, with the thickness of the surface liquid diverging as the melting point is approached. The microstructures of the surface liquids differ in certain aspects from what would be predicted by conventional premelting theories. Incomplete premelting in the monolayer crystals is triggered by a bulk isostructural solid-solid transition and truncated by a mechanical instability that separately induces homogeneous melting within the bulk. This finding is in contrast to the conventional assumption that two-dimensional crystals melt heterogeneously from their free surfaces (that is, at the solid-vapour interface). The unexpected bulk melting that we observe for the monolayer crystals is accompanied by the formation of grain boundaries, which supports a previously proposed grain-boundary-mediated two-dimensional melting theory. The observed interplay between surface premelting, bulk melting and solid-solid transitions challenges existing theories of surface

  1. 3D visualization of XFEL beam focusing properties using LiF crystal X-ray detector

    PubMed Central

    Pikuz, Tatiana; Faenov, Anatoly; Matsuoka, Takeshi; Matsuyama, Satoshi; Yamauchi, Kazuto; Ozaki, Norimasa; Albertazzi, Bruno; Inubushi, Yuichi; Yabashi, Makina; Tono, Kensuke; Sato, Yuya; Yumoto, Hirokatsu; Ohashi, Haruhiko; Pikuz, Sergei; Grum-Grzhimailo, Alexei N.; Nishikino, Masaharu; Kawachi, Tetsuya; Ishikawa, Tetsuya; Kodama, Ryosuke

    2015-01-01

    Here, we report, that by means of direct irradiation of lithium fluoride a (LiF) crystal, in situ 3D visualization of the SACLA XFEL focused beam profile along the propagation direction is realized, including propagation inside photoluminescence solid matter. High sensitivity and large dynamic range of the LiF crystal detector allowed measurements of the intensity distribution of the beam at distances far from the best focus as well as near the best focus and evaluation of XFEL source size and beam quality factor M2. Our measurements also support the theoretical prediction that for X-ray photons with energies ~10 keV the radius of the generated photoelectron cloud within the LiF crystal reaches about 600 nm before thermalization. The proposed method has a spatial resolution ~ 0.4–2.0 μm for photons with energies 6–14 keV and potentially could be used in a single shot mode for optimization of different focusing systems developed at XFEL and synchrotron facilities. PMID:26634431

  2. Crystals of Janus colloids at various interaction ranges

    NASA Astrophysics Data System (ADS)

    Preisler, Z.; Vissers, T.; Smallenburg, F.; Sciortino, F.

    2016-08-01

    We investigate the effect of interaction range on the phase behaviour of Janus particles with a Kern-Frenkel potential. Specifically, we study interaction ranges Δ = 0.1σ, 0.3σ, 0.4σ, 0.5σ with σ the particle diameter, and use variable box shape simulations to predict crystal structures. We found that changing the interaction range beyond 0.2σ drastically increases the variety of possible crystal structures. In addition to close-packed structures, we find body-centered tetragonal and AA-stacked hexagonal crystals, as well as several lamellar crystals. For long interaction ranges and low temperatures, we also observe an extremely large number of metastable structures which compete with the thermodynamically stable ones. These competing structures hinder the detection of the lowest-energy crystal structures, and are also likely to interfere with the spontaneous formation of the ground-state structure. Finally, we determine the gas-liquid coexistence curves for several interaction ranges, and observe that these are metastable with respect to crystallization.

  3. Entropically Driven Self-Assembly of Colloidal Crystals on Templates in Space

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.; Zimmerli, Gregory A.

    2002-01-01

    These experiments aim to create new colloidal crystalline materials, to study the assembly and thermodynamics of these materials, to measure the optical properties of these materials. and to fix the resulting structures so that they can be brought back and studied on earth. In microgravity, the elimination of particle sedimentation effects creates a purely "thermodynamic" environment for colloidal suspensions wherein particle size, volume fraction, and interparticle interactions are the primary determinants of the assembled structures. We will control the colloidal assembly process using attractive, entropic particle interactions brought about by the depletion effect. By using attractive interactions for colloidal assembly we create conditions for growth that resemble those associated with "conventional" microscopic systems such as atoms and molecules. This approach differs qualitatively from the more common "space-filling" mode of colloidal crystal growth that is driven purely by packing constraints. It is anticipated that at least some of the solidified structures will survive reentry to earth's gravitational field, and that their optical, magnetic, and electrical properties can then be studied in detail upon return.

  4. Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals.

    PubMed

    Senyuk, Bohdan; Varney, Michael C M; Lopez, Javier A; Wang, Sijia; Wu, Ning; Smalyukh, Ivan I

    2014-08-28

    Particle shape and medium chirality are two key features recently used to control anisotropic colloidal self-assembly and dynamics in liquid crystals. Here, we study magnetically responsive gourd-shaped colloidal particles dispersed in cholesteric liquid crystals with periodicity comparable or smaller than the particle's dimensions. Using magnetic manipulation and optical tweezers, which allow one to position colloids near the confining walls, we measured the elastic repulsive interactions of these particles with confining surfaces and found that separation-dependent particle-wall interaction force is a non-monotonic function of separation and shows oscillatory behavior. We show that gourd-shaped particles in cholesterics reside not on a single sedimentation level, but on multiple long-lived metastable levels separated by a distance comparable to cholesteric periodicity. Finally, we demonstrate three-dimensional laser tweezers assisted assembly of gourd-shaped particles taking advantage of both orientational order and twist periodicity of cholesterics, potentially allowing new forms of orientationally and positionally ordered colloidal organization in these media.

  5. Magnetically responsive gourd-shaped colloidal particles in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Senyuk, Bohdan; Varney, Michael C. M.; Lopez, Javier A.; Wang, Sijia; Wu, Ning; Smalyukh, Ivan I.

    2014-07-01

    Particle shape and medium chirality are two key features recently used to control anisotropic colloidal self-assembly and dynamics in liquid crystals. Here, we study magnetically responsive gourd-shaped colloidal particles dispersed in cholesteric liquid crystals with periodicity comparable or smaller than the particle's dimensions. Using magnetic manipulation and optical tweezers, which allow one to position colloids near the confining walls, we measured the elastic repulsive interactions of these particles with confining surfaces and found that separation-dependent particle-wall interaction force is a non-monotonic function of separation and shows oscillatory behavior. We show that gourd-shaped particles in cholesterics reside not on a single sedimentation level, but on multiple long-lived metastable levels separated by a distance comparable to cholesteric periodicity. Finally, we demonstrate three-dimensional laser tweezers assisted assembly of gourd-shaped particles taking advantage of both orientational order and twist periodicity of cholesterics, potentially allowing new forms of orientationally and positionally ordered colloidal organization in these media.

  6. Flow-induced alignment of (100) fcc thin film colloidal crystals.

    PubMed

    Joy, Midhun; Muangnapoh, Tanyakorn; Snyder, Mark A; Gilchrist, James F

    2015-09-28

    The realization of structural diversity in colloidal crystals obtained by self-assembly techniques remains constrained by thermodynamic considerations and current limits on our ability to alter structure over large scales using imposed fields and confinement. In this work, a convective-based procedure to fabricate multi-layer colloidal crystal films with extensive square-like symmetry is enabled by periodic substrate motion imposed during the continuous assembly. The formation of film-spanning domains of (100) fcc symmetry as a result of added vibration is robust across a range of micron-scale monosized spherical colloidal suspensions (e.g., polystyrene, silica) as well as substrate surface chemistries (e.g., hydrophobic, hydrophilic). The generation of extensive single crystalline (100) fcc domains as large as 15 mm(2) and covering nearly 40% of the colloidal crystalline film is possible by simply tuning coating conditions and multi-layer film thickness. Preferential orientation of the square-packed domains with respect to the direction of deposition is attributed to domain generation based upon a shear-related mechanism. Visualization during assembly gives clues toward the mechanism of this flow-driven self-assembly method.

  7. Modeling the crystal distribution of lead-sulfate in lead-acid batteries with 3D spatial resolution

    NASA Astrophysics Data System (ADS)

    Huck, Moritz; Badeda, Julia; Sauer, Dirk Uwe

    2015-04-01

    For the reliability of lead-acid batteries it is important to have an accurate prediction of its response to load profiles. A model for the lead-sulfate growth is presented, which is embedded in a physical-chemical model with 3D spatial resolution is presented which is used for analyzing the different mechanism influencing the cell response. One import factor is the chemical dissolution and precipitation of lead-sulfate, since its dissolution speed limits the charging reaction and the accumulation of indissolvable of lead-sulfate leads to capacity degradation. The cell performance/behavior is not only determined by the amount of the sulfate but also by the radii and distribution of the crystals. The presented model can be used to for an improved understanding of the interaction of the different mechanisms.

  8. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  9. Liquid-crystal enabled electrophoresis: Scenarios for driving and reconfigurable assembling of colloids

    NASA Astrophysics Data System (ADS)

    Hernàndez-Navarro, S.; Tierno, P.; Ignés-Mullol, J.; Sagués, F.

    2015-07-01

    We demonstrate several examples of driving and steering of colloids when dispersed in nematic liquid crystals. The driving mechanism is based on the principle of nonlinear electrophoresis which is mediated by the asymmetry in the structure of the defects that the inclusions generate in the host elastic matrix. The steering mechanism originates in the photoactivation of the anchoring conditions of the nematic liquid crystal on one of the enclosing plates. As experimental realizations we first review a scenario of water microdroplets being phoretically transported for cargo release and chemical reaction. Steering is illustrated in terms of the reconfigurable assembly of colloidal particles, either in the form of asters or rotating-mills, commanded by predesigned patterns of illumination.

  10. A Self-Quenched Defect Glass in a Colloid-Nematic Liquid Crystal Composite

    NASA Astrophysics Data System (ADS)

    Wood, T. A.; Lintuvuori, J. S.; Schofield, A. B.; Marenduzzo, D.; Poon, W. C. K.

    2011-10-01

    Colloidal particles immersed in liquid crystals frustrate orientational order. This generates defect lines known as disclinations. At the core of these defects, the orientational order drops sharply. We have discovered a class of soft solids, with shear moduli up to 104 pascals, containing high concentrations of colloidal particles (volume fraction ϕ>∼20%) directly dispersed into a nematic liquid crystal. Confocal microscopy and computer simulations show that the mechanical strength derives from a percolated network of defect lines entangled with the particles in three dimensions. Such a “self-quenched glass” of defect lines and particles can be considered a self-organized analog of the “vortex glass” state in type II superconductors.

  11. Self-diffraction at a dynamic photonic crystal formed in a colloidal solution of quantum dots

    NASA Astrophysics Data System (ADS)

    Smirnov, A. M.; Golinskaya, A. D.; Ezhova, K. V.; Mantsevich, V. N.; Dneprovskii, V. S.

    2016-11-01

    Self-diffraction at a one-dimensional dynamic photonic crystal formed in the colloidal solution of CdSe/ZnS quantum dots has been discovered. This self-diffraction appears simultaneously with self-diffraction at induced transparency channels at the resonant excitation of the main electron-hole (excitonic) transition of quantum dots by two laser beams with a Gaussian intensity distribution over the cross section. It is shown that a nonlinear change in the absorption of colloidal quantum dots results in the formation of a transparency channel and an induced amplitude diffraction grating, and a significant nonlinear change in the refractive index (Δ n ≈ 10-3) in the absorbing medium is responsible for the formation of the dynamic photonic crystal. Self-diffracted laser beams are revealed propagating not only in directions corresponding to self-diffraction at the induced diffraction grating but also in directions satisfying the Laue condition.

  12. Magnetic domains and defects in ferromagnetic liquid crystal colloids realized with optical patterning

    NASA Astrophysics Data System (ADS)

    Hess, Andrew; Liu, Qingkun; Smalyukh, Ivan

    A promising approach in designing composite materials with unusual physical behavior combines solid nanostructures and orientationally ordered soft matter at the mesoscale. Such composites not only inherit properties of their constituents but also can exhibit emergent behavior, such as ferromagnetic ordering of colloidal metal nanoparticles forming mesoscopic magnetization domains when dispersed in a nematic liquid crystal. Here we demonstrate the optical patterning of domain structures and topological defects in such ferromagnetic liquid crystal colloids which allows for altering their response to magnetic fields. Our findings reveal the nature of the defects in this soft matter system which is different as compared to non-polar nematic and ferromagnetic systems alike. This research was supported by the NSF Grant DMR-1420736.

  13. Highly cooperative stress relaxation in two-dimensional soft colloidal crystals

    PubMed Central

    van der Meer, Berend; Qi, Weikai; Fokkink, Remco G.; van der Gucht, Jasper; Dijkstra, Marjolein; Sprakel, Joris

    2014-01-01

    Stress relaxation in crystalline solids is mediated by the formation and diffusion of defects. Although it is well established how externally generated stresses relax, through the proliferation and motion of dislocations in the lattice, it remains relatively unknown how crystals cope with internal stresses. We investigate, both experimentally and in simulations, how highly localized stresses relax in 2D soft colloidal crystals. When a single particle is actively excited, by means of optical tweezing, a rich variety of highly collective stress relaxation mechanisms results. These relaxation processes manifest in the form of open strings of cooperatively moving particles through the motion of dissociated vacancy-interstitial pairs, and closed loops of mobile particles, which either result from cooperative rotations in transiently generated circular grain boundaries or through the closure of an open string by annihilation of a vacancy-interstitial pair. Surprisingly, we find that the same collective events occur in crystals that are excited by thermal fluctuations alone; a large thermal agitation inside the crystal lattice can trigger the irreversible displacements of hundreds of particles. Our results illustrate how local stresses can induce large-scale cooperative dynamics in 2D soft colloidal crystals and shed light on the stabilization mechanisms in ultrasoft crystals. PMID:25319262

  14. Using Two-Dimensional Colloidal Crystals to Understand Crystallography

    ERIC Educational Resources Information Center

    Bosse, Stephanie A.; Loening, Nikolaus M.

    2008-01-01

    X-ray crystallography is an essential technique for modern chemistry and biochemistry, but it is infrequently encountered by undergraduate students owing to lack of access to equipment, the time-scale for generating diffraction-quality molecular crystals, and the level of mathematics involved in analyzing the resulting diffraction patterns.…

  15. Spontaneous emission enhancement and saturable absorption of colloidal quantum dots coupled to photonic crystal cavity.

    PubMed

    Gupta, Shilpi; Waks, Edo

    2013-12-02

    We demonstrate spontaneous emission rate enhancement and saturable absorption of cadmium selenide colloidal quantum dots coupled to a nanobeam photonic crystal cavity. We perform time-resolved lifetime measurements and observe an average enhancement of 4.6 for the spontaneous emission rate of quantum dots located at the cavity as compared to those located on an unpatterned surface. We also demonstrate that the cavity linewidth narrows with increasing pump intensity due to quantum dot saturable absorption.

  16. Self-assembly of colloidal particles in deformation landscapes of electrically driven layer undulations in cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Varney, Michael C. M.; Zhang, Qiaoxuan; Senyuk, Bohdan; Smalyukh, Ivan I.

    2016-10-01

    We study elastic interactions between colloidal particles and deformation landscapes of undulations in a cholesteric liquid crystal under an electric field applied normal to cholesteric layers. The onset of undulation instability is influenced by the presence of colloidal inclusions and, in turn, layers' undulations mediate the spatial patterning of particle locations. We find that the bending of cholesteric layers around a colloidal particle surface prompts the local nucleation of an undulations lattice at electric fields below the well-defined threshold known for liquid crystals without inclusions, and that the onset of the resulting lattice is locally influenced, both dimensionally and orientationally, by the initial arrangements of colloids defined using laser tweezers. Spherical particles tend to spatially localize in the regions of strong distortions of the cholesteric layers, while colloidal nanowires exhibit an additional preference for multistable alignment offset along various vectors of the undulations lattice. Magnetic rotation of superparamagnetic colloidal particles couples with the locally distorted helical axis and undulating cholesteric layers in a manner that allows for a controlled three-dimensional translation of these particles. These interaction modes lend insight into the physics of liquid crystal structure-colloid elastic interactions, as well as point the way towards guided self-assembly of reconfigurable colloidal composites with potential applications in diffraction optics and photonics.

  17. Design and functionality of colloidal-crystal-templated materials--chemical applications of inverse opals.

    PubMed

    Stein, Andreas; Wilson, Benjamin E; Rudisill, Stephen G

    2013-04-07

    Templating with colloidal crystals composed of monodisperse spheres is a convenient chemical method to obtain porous materials with well-ordered periodicity and interconnected pore systems. The three-dimensionally ordered macroporous (3DOM) products or inverse opals are of interest for numerous applications, both for the optical properties related to structural color of these photonic crystal materials and because of their bicontinuous nanostructure, i.e., a continuous nanostructured skeleton with large interfacial area and a three-dimensionally interconnected pore system with low tortuosity. This review outlines various synthetic methods used to control the morphology of 3DOM materials with different compositions. It highlights aspects of the choice of colloidal particles, assembly of the colloidal crystal template, infiltration and processing, template removal, and other necessary modifications to enhance the functionality of the materials. It also considers syntheses within the confinement of 3DOM materials and summarizes characterization methods that are particularly useful in the analysis of 3DOM materials. The review then discusses chemical applications of 3DOM materials, namely sorption and controlled release, optical and electrochemical sensors, solar cells, lithium ion batteries, supercapacitors, fuel cells, and environmental and chemical fuel catalysis. A focus is on structural features and materials properties that enable these applications.

  18. Hypersonic acoustic excitations in binary colloidal crystals: big versus small hard sphere control.

    PubMed

    Tommaseo, G; Petekidis, G; Steffen, W; Fytas, G; Schofield, A B; Stefanou, N

    2007-01-07

    The phononic band structure of two binary colloidal crystals, at hypersonic frequencies, is studied by means of Brillouin light scattering and analyzed in conjunction with corresponding dispersion diagrams of the single colloidal crystals of the constituent particles. Besides the acoustic band of the average medium, the authors' results show the existence of narrow bands originating from resonant multipole modes of the individual particles as well as Bragg-type modes due to the (short-range) periodicity. Strong interaction, leading to the occurrence of hybridization gaps, is observed between the acoustic band and the band of quadrupole modes of the particles that occupy the largest fractional volume of the mixed crystal; the effective radius is either that of the large (in the symmetric NaCl-type crystalline phase) or the small (in the asymmetric NaZn(13)-type crystalline phase) particles. The possibility to reveal a universal behavior of the phononic band structure for different single and binary colloidal crystalline suspensions, by representing in the dispersion diagrams reduced quantities using an appropriate length scale, is discussed.

  19. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution.

    PubMed

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution. Graphical Abstract ᅟ.

  20. 3D ToF-SIMS Analysis of Peptide Incorporation into MALDI Matrix Crystals with Sub-micrometer Resolution

    NASA Astrophysics Data System (ADS)

    Körsgen, Martin; Pelster, Andreas; Dreisewerd, Klaus; Arlinghaus, Heinrich F.

    2016-02-01

    The analytical sensitivity in matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) is largely affected by the specific analyte-matrix interaction, in particular by the possible incorporation of the analytes into crystalline MALDI matrices. Here we used time-of-flight secondary ion mass spectrometry (ToF-SIMS) to visualize the incorporation of three peptides with different hydrophobicities, bradykinin, Substance P, and vasopressin, into two classic MALDI matrices, 2,5-dihydroxybenzoic acid (DHB) and α-cyano-4-hydroxycinnamic acid (HCCA). For depth profiling, an Ar cluster ion beam was used to gradually sputter through the matrix crystals without causing significant degradation of matrix or biomolecules. A pulsed Bi3 ion cluster beam was used to image the lateral analyte distribution in the center of the sputter crater. Using this dual beam technique, the 3D distribution of the analytes and spatial segregation effects within the matrix crystals were imaged with sub-μm resolution. The technique could in the future enable matrix-enhanced (ME)-ToF-SIMS imaging of peptides in tissue slices at ultra-high resolution.

  1. Non-linear Imaging of Nanoscale Surface Defects on Alphabet Letter Shaped Colloids in a Uniformly Aligned Nematic Liquid Crystal

    NASA Astrophysics Data System (ADS)

    Giller, Julian; Lapointe, Clayton P.; Smalyukh, Ivan I.

    2012-03-01

    The formation of defect structures on the surfaces of colloids immersed in uniformly aligned nematic liquid crystals is a phenomenon which, if better understood, could lead to advances in micro and nanoscale colloidal self assembly techniques. In this study, three photon fluorescence microscopy (3PFM) was used in conjunction with holographic optical tweezers (HOT) in order to stabilize and image surface defects on English alphabet letter shaped colloids suspended in a uniformly aligned nematic liquid crystal. This data made it possible to characterize the location and strength of these defects for a robust variety of shapes. A relationship between particle shape and angle of orientation vs the host nematic was also observed.

  2. Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture

    DOE PAGES

    Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; ...

    2016-06-17

    Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na+; Li+) to tetragonal Mn3O4 to spinel LiMn2O4. The first reaction step involves topotactic exchange of interlayer Na+ by Li+ in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layered oxide throughout the macroscale nanofoam paper into amore » spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn2O4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.« less

  3. Phase shift on reflection from polystyrene colloidal photonic crystal film on hydrogel surface

    NASA Astrophysics Data System (ADS)

    Rutirawut, T.; Sinsarp, A.; Tivakornsasithorn, K.; Srikhirin, T.; Osotchan, T.

    2015-07-01

    The phase shift on reflection from the colloidal photonic crystal film was measured by the Fabry-Pérot resonant cavity along the cross-section of the photonic crystal film without additional optical parts. The wet colloidal photonic crystal film was fabricated by dip-coating an agarose-gel-coated glass substrate into a suspension containing monodisperse polystyrene nanospheres with the diameter about 188 nm. The ordered structure of monodisperse spheres in the wet film on hydrogel contributed the reflection stopband of photonic crystals together with Fabry-Pérot interference fringes of this uniform wet film over the entire visible region. The spectrum of reflectance was observed under the reflected microscope with the optical fiber spectrometer. The analyzed experimental results show the thickness of film about 20 μm and the photonic stopband peak at ~470 nm. The variation of phase shift values between both edges of the peak varies from 0.07π to 0.88π which is in range of 0 to π as reported by other works. Moreover, these extracted optical properties are slightly changed due to the gradual water evaporation of the wet film. This stopband peak of photonic crystal is shifted to a shorter wavelength due to the more packing of nanospheres after drying.

  4. Fabrication of FCC-SiO{sub 2} colloidal crystals using the vertical convective self-assemble method

    SciTech Connect

    Castañeda-Uribe, O. A.; Salcedo-Reyes, J. C.; Méndez-Pinzón, H. A.; Pedroza-Rodríguez, A. M.

    2014-05-15

    In order to determine the optimal conditions for the growth of high-quality 250 nm-SiO{sub 2} colloidal crystals by the vertical convective self-assemble method, the Design of Experiments (DoE) methodology is applied. The influence of the evaporation temperature, the volume fraction, and the pH of the colloidal suspension is studied by means of an analysis of variance (ANOVA) in a 3{sup 3} factorial design. Characteristics of the stacking lattice of the resulting colloidal crystals are determined by scanning electron microscopy and angle-resolved transmittance spectroscopy. Quantitative results from the statistical test show that the temperature is the most critical factor influencing the quality of the colloidal crystal, obtaining highly ordered structures with FCC stacking lattice at a growth temperature of 40°C.

  5. Graphene and Other 2D Colloids: Liquid Crystals and Macroscopic Fibers.

    PubMed

    Liu, Yingjun; Xu, Zhen; Gao, Weiwei; Cheng, Zhengdong; Gao, Chao

    2017-02-24

    Two-dimensional colloidal nanomaterials are running into renaissance after the enlightening researches of graphene. Macroscopic one-dimensional fiber is an optimal ordered structural form to express the in-plane merits of 2D nanomaterials, and the formation of liquid crystals (LCs) allows the creation of continuous fibers. In the correlated system from LCs to fibers, understanding their macroscopic organizing behavior and transforming them into new solid fibers is greatly significant for applications. Herein, we retrospect the history of 2D colloids and discuss about the concept of 2D nanomaterial fibers in the context of LCs, elaborating the motivation, principle and possible strategies of fabrication. Then we highlight the creation, development and typical applications of graphene fibers. Additionally, the latest advances of other 2D nanomaterial fibers are also summarized. Finally, conclusions, challenges and perspectives are provided to show great expectations of better and more fibrous materials of 2D nanomaterials. This review gives a comprehensive retrospect of the past century-long effort about the whole development of 2D colloids, and plots a clear roadmap - "lamellar solid - LCs - macroscopic fibers - flexible devices", which will certainly open a new era of structural-multifunctional application for the conventional 2D colloids.

  6. Experimental Studies of Pinning Effects in 2D Colloidal Crystals Using Microstructured Substrates

    NASA Astrophysics Data System (ADS)

    Smullin, Sylvia; Gerritsen, H. J.; Ling, Xinsheng

    1998-03-01

    We use microstructured substrates as tunable quenched symmetry-breaking fields to study the pinning effects in 2D colloidal crystals. The colloids are monodisperse charged polystyrene microspheres in pure water. In the sealed sample cell, the colloids are confined by two glass slides. A patterned plastic grating is glued on one side of the confining slides. The corrugated surface of the plastic grating becomes charged in water and exerts a periodic electric field on the charged microspheres, tunable by adjusting the confinement distance. We show that, for the first time, by using video microscopy one can observe in real time the novel effects due to the competing interactions. For example, with a square grating we have observed the Novaco-McTague rotation in a floating phase and the Pokrovsky-Talapov domain wall superlattice in a pinned phase. The results from a rough plastic substrate which simulates a random potential (in an attempt to search for a colloidal Bragg glass phase) will also be discussed. This work was supported by the startup funds and a Richard Salomon Faculty Research Award from Brown.

  7. Single-Crystal to Single-Crystal Phase Transition and Segmented Thermochromic Luminescence in a Dynamic 3D Interpenetrated Ag(I) Coordination Network.

    PubMed

    Yan, Zhi-Hao; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Wang, Xing-Po; Sun, Di

    2016-02-01

    A new 3D Ag(I)-based coordination network, [Ag2(pz)(bdc)·H2O]n (1; pz = pyrazine and H2bdc = benzene-1,3-dicarboxylic acid), was constructed by one-pot assembly and structurally established by single-crystal X-ray diffraction at different temperatures. Upon cooling from 298 to 93 K, 1 undergo an interesting single-crystal to single-crystal phase transition from orthorhombic Ibca (Z = 16) to Pccn (Z = 32) at around 148 K. Both phases show a rare 2-fold-interpenetrated 4-connected lvt network but incorporate different [Ag2(COO)2] dimeric secondary building units. It is worth mentioning that complex 1 shows red- and blue-shifted luminescences in the 290-170 and 140-80 K temperature ranges, respectively. The variable-temperature single-crystal X-ray crystallographic studies suggest that the argentophilic interactions and rigidity of the structure dominated the luminescence chromism trends at the respective temperature ranges. Upon being mechanically ground, 1 exhibits a slight mechanoluminescence red shift from 589 to 604 nm at 298 K.

  8. Thermo-responsive cross-linked liquid crystal bowl-shaped colloids

    NASA Astrophysics Data System (ADS)

    Wei, Wei-Shao; Xia, Yu; Yang, Shu; Yodh, A. G.

    In this work we create and investigate cross-linked bowl-shaped nematic liquid crystal (NLC) colloidal particles. Janus colloids are first formed via solvent-induced phase separation in emulsions consisting of NLC monomers and isotropic polymers. This scheme enables us to realize different particle morphologies such as bowl-shape by fine-tuning the confinement of NLCs within the droplets, e.g. by varying the size of droplets, the volume ratio between NLC and polymer, and the type/concentration of surfactants in aqueous background phase. The NLC compartment is composed of RM82 (1,4-Bis-[4-(6-acryloyloxyhexyloxy)benzoyloxy]-2-methylbenzene) monomers, which are then photocrosslinked by dithiol groups to form nematic liquid crystal elastomer. Finally, we remove the polymer parts of Janus colloids to obtain the target structures, which are temperature sensitive due to change of elasticity and molecular alignment of NLC near the isotropic to nematic phase transition temperature. We will explore novel mechanical and optical properties from the thermo-responsive structures as well as their applications, such as biomimic swimming behaviors and adjustable lensing effects. This work is supported by the foundation through NSF Grant DMR12-05463, NSF-MRSEC Grant DMR11-20901, and NASA Grant NNX08AO0G.

  9. Motion, relaxation dynamics, and diffusion processes in two-dimensional colloidal crystals confined between walls.

    PubMed

    Wilms, Dorothea; Virnau, Peter; Snook, Ian K; Binder, Kurt

    2012-11-01

    The dynamical behavior of single-component two-dimensional colloidal crystals confined in a slit geometry is studied by Langevin dynamics simulation of a simple model. The colloids are modeled as pointlike particles, interacting with the repulsive part of the Lennard-Jones potential, and the fluid molecules in the colloidal suspension are not explicitly considered. Considering a crystalline strip of triangular lattice structure with n=30 rows, the (one-dimensional) walls confining the strip are chosen as two rigidly fixed crystalline rows at each side, commensurate with the lattice structure and, thus, stabilizing long-range order. The case when the spacing between the walls is incommensurate with the ideal triangular lattice is also studied, where (due to a transition in the number of rows, n → n-1) the confined crystal is incommensurate with the confining boundaries, and a soliton staircase forms along the walls. It is shown that mean-square displacements (MSDs) of particles as a function of time show an overshoot and then saturate at a horizontal plateau in the commensurate case, the value of the plateau being largest in the center of the strip. Conversely, when solitons are present, MSDs are largest in the rows containing the solitons, and all MSDs do not settle down at well-defined plateaus in the direction parallel to the boundaries, due to the lack of positional long-range order in ideal two-dimensional crystals. The MSDs of the solitons (which can be treated like quasiparticles at very low temperature) have also been studied and their dynamics are found to be about an order of magnitude slower than that of the colloidal particles themselves. Finally, transport of individual colloidal particles by diffusion processes is studied: both standard vacancy-interstitial pair formation and cooperative ring rotation processes are identified. These processes require thermal activation, with activation energies of the order of 10T(m) (T(m) being the melting

  10. Finite particle size drives defect-mediated domain structures in strongly confined colloidal liquid crystals

    PubMed Central

    Gârlea, Ioana C.; Mulder, Pieter; Alvarado, José; Dammone, Oliver; Aarts, Dirk G. A. L.; Lettinga, M. Pavlik; Koenderink, Gijsje H.; Mulder, Bela M.

    2016-01-01

    When liquid crystals are confined to finite volumes, the competition between the surface anchoring imposed by the boundaries and the intrinsic orientational symmetry-breaking of these materials gives rise to a host of intriguing phenomena involving topological defect structures. For synthetic molecular mesogens, like the ones used in liquid-crystal displays, these defect structures are independent of the size of the molecules and well described by continuum theories. In contrast, colloidal systems such as carbon nanotubes and biopolymers have micron-sized lengths, so continuum descriptions are expected to break down under strong confinement conditions. Here, we show, by a combination of computer simulations and experiments with virus particles in tailor-made disk- and annulus-shaped microchambers, that strong confinement of colloidal liquid crystals leads to novel defect-stabilized symmetrical domain structures. These finite-size effects point to a potential for designing optically active microstructures, exploiting the as yet unexplored regime of highly confined liquid crystals. PMID:27353002

  11. Seven 3d-4f coordination polymers of macrocyclic oxamide with polycarboxylates: Syntheses, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xin, Na; Sun, Ya-Qiu; Zheng, Yan-Feng; Xu, Yan-Yan; Gao, Dong-Zhao; Zhang, Guo-Ying

    2016-11-01

    Seven new 3d-4f heterometallic coordination polymers, [Ln(CuL)2(Hbtca)(btca)(H2O)]·2H2O (Ln = TbIII1, PrIII2, SmIII3, EuIII4, YbIII5), [Nd(NiL)(nip)(Rnip)]·0·25H2O·0.25CH3OH (R= 0.6CH3, 0.4H) 6 and [Nd2(NiL)(nip)3(H2O)]·2H2O 7(CuL or NiL, H2L = 2, 3-dioxo-5, 6, 14, 15-dibenzo-1, 4, 8, 12-tetraazacyclo-pentadeca-7, 13-dien; H2btca = benzotriazole-5-carboxylic acid; H2nip = 5-nitroisophthalic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1-5 exhibit a double-strand meso-helical chain structures formed by [LnIIICuII2] units via the oxamide and benzotriazole-5-carboxylate bridges, while complex 6 exhibits a four-strand meso-helical chain formed by NdNi unit via the oxamide and 5-nitroisophthalate bridges. Complex 7 consists of a 2D layer framework formed by four-strand meso-helical chain via the nip2- bridges. Moreover, the magnetic properties of them were investigated, and the best-fit analysis of χMT versus T show that the anisotropic contribution of Ln(III) ions (arising from the spin-orbit coupling or the crystal field perturbation) dominates (weak exchange limit) in these complexes(for 3, λ = 214.6 cm-1, zj' = -0.33 cm-1, gav = 1.94; for 5, Δ = 6.98 cm-1, zj' = 1.53 cm-1, gav = 1.85).

  12. A comparative study of inverted-opal titania photonic crystals made from polymer and silica colloidal crystal templates

    SciTech Connect

    Kuai, S.-L.; Truong, V.-V.; Hache, Alain; Hu, X.-F.

    2004-12-01

    Photonic crystals with an inverted-opal structure using polymer and silica colloidal crystal templates were prepared and compared. We show that the behaviors of the template during the removal process and heat treatment are determinant factors on the crystal formation. While both templates result in ordered macroporous structures, the optical quality in each case is quite different. The removal of the polymer template by sintering causes a large shrinkage of the inverted framework and produces a high density of cracks in the sample. With a silica template, sintering actually improves the quality of the inverted structure by enhancing the template's mechanical stability, helping increase the filling fraction, and consolidating the titania framework. The role of the other important factors such as preheating and multiple infiltrations is also investigated.

  13. Direct measurement of force between colloidal particles in a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Takahashi, Kenji; Ichikawa, Masatoshi; Kimura, Yasuyuki

    2008-02-01

    The interparticle force between two colloidal particles in a nematic liquid crystal is directly measured as a function of the interparticle distance R by two different experimental methods: the free-release method and the optical tweezing method. The obtained force between an elastic 'dipole', which constitutes a colloidal particle and an accompanying hyperbolic hedgehog defect, confirms previous theoretical predictions that the force is attractive and proportional to R-4. We also observe that a repulsive component emerges at short distances to preclude direct contact of the particles. We find that the magnitudes of the forces obtained by the two methods are different. The origin of this discrepancy is discussed by a comparison between the static and the non-static measurements.

  14. Preparation and characterization of pluronic-colloidal silicon dioxide composite particles as liquid crystal precursor.

    PubMed

    Maheshwari, Manish; Paradkar, Anant; Yamamura, Shigeo; Kadam, Shivajirao

    2006-01-01

    The purpose of this study was to produce spray-dried Pluronic-colloidal silicon dioxide (Aerosil) composite particles as a liquid crystal precursor that would form a liquid crystalline phase upon hydration. A Pluronic-colloidal silicon dioxide dispersion in isopropyl alcohol was spray-dried to obtain composite particles using different concentrations of Aerosil. Polarizing microscopy, gelation, gel melting, and rheological studies were employed to characterize the composite particles. The composite particles obtained were irregular, with concave depression. Gelation was found to decrease with the addition of Aerosil, while gel melting was found to increase with the concentration of Aerosil. Rheological studies showed an increase in elasticity as well as viscosity with an increase in the concentration of Aerosil. Composite particles showed improved gelation and rheological properties. These composite particles and the process by which they were obtained may be useful for designing various drug delivery systems.

  15. Intrinsic spatial resolution evaluation of the X'tal cube PET detector based on a 3D crystal block segmented by laser processing.

    PubMed

    Yoshida, Eiji; Tashima, Hideaki; Inadama, Naoko; Nishikido, Fumihiko; Moriya, Takahiro; Omura, Tomohide; Watanabe, Mitsuo; Murayama, Hideo; Yamaya, Taiga

    2013-01-01

    The X'tal cube is a depth-of-interaction (DOI)-PET detector which is aimed at obtaining isotropic resolution by effective readout of scintillation photons from the six sides of a crystal block. The X'tal cube is composed of the 3D crystal block with isotropic resolution and arrays of multi-pixel photon counters (MPPCs). In this study, to fabricate the 3D crystal block efficiently and precisely, we applied a sub-surface laser engraving (SSLE) technique to a monolithic crystal block instead of gluing segmented small crystals. The SSLE technique provided micro-crack walls which carve a groove into a monolithic scintillator block. Using the fabricated X'tal cube, we evaluated its intrinsic spatial resolution to show a proof of concept of isotropic resolution. The 3D grids of 2 mm pitch were fabricated into an 18 × 18 × 18 mm(3) monolithic lutetium yttrium orthosilicate (LYSO) crystal by the SSLE technique. 4 × 4 MPPCs were optically coupled to each surface of the crystal block. The X'tal cube was uniformly irradiated by (22)Na gamma rays, and all of the 3D grids on the 3D position histogram were separated clearly by an Anger-type calculation from the 96-channel MPPC signals. Response functions of the X'tal cube were measured by scanning with a (22)Na point source. The gamma-ray beam with a 1.0 mm slit was scanned in 0.25 mm steps by positioning of the X'tal cube at vertical and 45° incident angles. The average FWHM resolution at both incident angles was 2.1 mm. Therefore, we confirmed the isotropic spatial resolution performance of the X'tal cube.

  16. Colloidal liquid crystals in rectangular confinement: theory and experiment.

    PubMed

    Lewis, Alexander H; Garlea, Ioana; Alvarado, José; Dammone, Oliver J; Howell, Peter D; Majumdar, Apala; Mulder, Bela M; Lettinga, M P; Koenderink, Gijsje H; Aarts, Dirk G A L

    2014-10-21

    We theoretically and experimentally study nematic liquid crystal equilibria within shallow rectangular wells. We model the wells within a two-dimensional Oseen-Frank framework, with strong tangent anchoring, and obtain explicit analytical expressions for the director fields and energies of the 'diagonal' and 'rotated' solutions reported in the literature. These expressions separate the leading-order defect energies from the bulk distortion energy for both families of solutions. The continuum Oseen-Frank study is complemented by a microscopic mean-field approach. We numerically minimize the mean-field functional, including the effects of weak anchoring, variable order and random initial conditions. In particular, these simulations suggest the existence of higher-energy metastable states with internal defects. We compare our theoretical results to experimental director profiles, obtained using two types of filamentous virus particles, wild-type fd-virus and a modified stiffer variant (Y21M), which display nematic ordering in rectangular chambers, as found by confocal scanning laser microscopy. We combine our analytical energy expressions with experimentally recorded frequencies of the different equilibrium states to obtain explicit estimates for the extrapolation length, defined to be the ratio of the nematic elastic constant to the anchoring coefficient, of the fd-virus.

  17. Crystal engineering in 3D: Converting nanoscale lamellar manganese oxide to cubic spinel while affixed to a carbon architecture

    SciTech Connect

    Donakowski, Martin D.; Wallace, Jean M.; Sassin, Megan B.; Chapman, Karena W.; Parker, Joseph F.; Long, Jeffrey W.; Rolison, Debra R.

    2016-06-17

    Here, by applying differential pair distribution function (DPDF) analyses to the energy–storage relevant MnOx/carbon system— but in a 3D architectural rather than powder–composite configuration—we can remove contributions of the carbon nanofoam paper scaffold and quantify the multiphasic oxide speciation as the nanoscale, disordered MnOx grafted to the carbon walls (MnOx@CNF) structurally rearranges in situ from birnessite AMnOx (A = Na+; Li+) to tetragonal Mn3O4 to spinel LiMn2O4. The first reaction step involves topotactic exchange of interlayer Na+ by Li+ in solution followed by thermal treatments to crystal engineer the –10–nm–thick 2D layered oxide throughout the macroscale nanofoam paper into a spinel phase. The oxide remains affixed to the walls of the nanofoam throughout the phase transformations. The DPDF fits are improved by retention of one plane of birnessite–like oxide after conversion to spinel. We support the DPDF–derived assignments by X–ray photoelectron spectroscopy and Raman spectroscopy, the latter of which tracks how crystal engineering the oxide affects the disorder of the carbon substrate. We further benchmark MnOx@CNF with nonaqueous electrochemical measurements versus lithium as the oxide converts from X–ray–amorphous birnessite to interlayer-registered LiMnOx to spinel. The lamellar AMnOx displays pseudocapacitive electrochemical behavior, with a doubling of specific capacitance for the interlayer–registered LiMnOx, while the spinel LiMn2O4@CNF displays a faradaic electrochemical response characteristic of Li–ion insertion. Our results highlight the need for holistic understanding when crystal engineering an (atomistic) charge–storing phase within the (architectural) structure of practical electrodes.

  18. Photonic crystal heterostructures fabricated by TiO2 and ZnO inverse opals using colloidal crystal template with single kind of microspheres

    NASA Astrophysics Data System (ADS)

    Zhang, Yongna; Fu, Ming; Wang, Jigang; He, Dawei; Wang, Yongsheng

    2012-09-01

    The fabrication of photonic crystal heterostructures is important for the applications in the fields of integrated photonic crystal chips, multi-frequency optical Bragg filters or mirrors. However, multiple steps of self-assembly process of microspheres are always employed in the fabrication of photonic crystal heterostructures, which may produce lattice mismatches of colloidal crystals. Therefore, photonic crystal heterostructures fabricated by using colloidal crystal template with single kind of microspheres were investigated in this paper. A colloidal crystal template with uniform periodicity was firstly formed by monodispersed polystyrene microsphere. Then ZnO was electrodeposited into the interstices of the template. The thickness of ZnO was controlled to be less than the thickness of the template by varying the deposition time. After the TiO2 precursor was filled into the top voids in the template, the polystyrene colloidal crystal template was removed and photonic crystal heterostructures fabricated by ZnO and TiO2 were formed. Both the dielectric constant and the periodicity of the two parts of the heterostructures are different due to the shrinkage of the sol-gel process. The ZnO/TiO2 heterostructures have a broad photonic stop band which is the superposition of photonic stop bands of ZnO inverse opals and TiO2 inverse opals.

  19. Zigzag line defects and manipulation of colloids in a nematic liquid crystal in microwrinkle grooves

    PubMed Central

    Ohzono, Takuya; Fukuda, Jun-ichi

    2012-01-01

    Spatially confined liquid crystals exhibit non-uniform alignment, often accompanied by self-organised topological defects of non-trivial shape in response to imposed boundary conditions and geometry. Here we show that a nematic liquid crystal, when confined in a sinusoidal microwrinkle groove, exhibits a new periodic arrangement of twist deformations and a zigzag line defect. This periodic ordering results from the inherent liquid crystal elastic anisotropy and the antagonistic boundary conditions at the flat liquid crystal–air and the curved liquid crystal–groove interfaces. The periodic structure can be tuned by controlling the groove geometry and the molecular chirality, which demonstrates the importance of boundary conditions and introduced asymmetry for the engineering of topological defects. Moreover, the kinks in the zigzag defects can trap small particles, which may afford a new method for manipulation of colloids. Our system, which uses easily fabricated microwrinkle grooves, provides a new microfabrication method based on the arrangement of controllable defects. PMID:22426222

  20. Direct observation of liquid nucleus growth in homogeneous melting of colloidal crystals

    PubMed Central

    Wang, Ziren; Wang, Feng; Peng, Yi; Han, Yilong

    2015-01-01

    The growth behaviour of liquid nucleus is crucial for crystal melting, but its kinetics is difficult to predict and remains challenging in experiment. Here we directly observed the growth of individual liquid nuclei in homogeneous melting of three-dimensional superheated colloidal crystals with single-particle dynamics by video microscopy. The growth rate of nucleus at weak superheating is well fitted by generalizing the Wilson–Frenkel law of crystallization to melting and including the surface tension effects and non-spherical-shape effects. As the degree of superheating increases, the growth rate is enhanced by nucleus shape fluctuation, nuclei coalescence and multimer attachment. The results provide new guidance for the refinement of nucleation theory, especially for the poorly understood strong-superheating regime. The universal Lindemann parameter observed at the superheat limit and solid–liquid interfaces indicates a connection between homogeneous and heterogeneous melting. PMID:25897801

  1. Kinetics study of crystallization with the disorder-bcc-fcc phase transition of charged colloidal dispersions.

    PubMed

    Zhou, Hongwei; Xu, Shenghua; Sun, Zhiwei; Du, Xuan; Liu, Lixia

    2011-06-21

    Structure transformation (disorder-bcc-fcc) in charged colloidal dispersions, as a manifestation of the Ostwald's step rule, was confirmed by means of reflection spectrum (RS) measurements in our previous study. By taking advantage of a reflection spectrum containing plenty of information about the crystallization behaviors, time-dependent changes of parameters associated with the crystal structure and composition during the disorder-bcc-fcc transition are reported by treating the data from RS in this article. In addition, Avrami's model is adopted to analyze the transition process and investigate the transition rate. On the basis of the above investigations, associated kinetic features of crystallization with the disorder-bcc-fcc transition are described.

  2. A transparent silica colloidal crystal/PDMS composite and its application for crack suppression of metallic coatings.

    PubMed

    Sun, Shaofan; Pan, Zihe; Yang, Fut K; Huang, Yudong; Zhao, Boxin

    2016-01-01

    A silica colloidal crystal (SCC)-polydimethylsiloxane (PDMS) composite with a heterogeneous surface of silica and PDMS was prepared by spreading a premixed PDMS solution on the 3D structured SCCs and curing the solution in-situ. Although the SCCs had a light blue color, the obtained composite of SCC and PDMS, due to the close effective refractive indexes of the materials, was colorless and transparent; the UV-vis spectra indicated a negligible effect of the added SCC on the transmittance of the PDMS sheet (1% reduction). Interestingly, the transparent composite sheet became translucent under stress and became clear again when relaxed. It was found that the wrinkles formed on the surface under stress were responsible for the optical change; and, the formation of the wrinkles was ascribed to the rigid nature of the SCC layer embedded in PDMS. We had applied this SCC/PDMS composite as a substrate to support a thin gold film of nanoscale thickness and found that the embedded SCC layer worked well as a transitional interface for bonding materials of mismatched mechanical properties. The incorporation of SCC layer significantly suppressed the crack generation and propagation of the gold film. The results demonstrated a potential approach for fabricating compliant and crackfree metallic films on polymeric substrates.

  3. Crystallization of Hard Sphere Colloids in Microgravity: Results of the Colloidal Disorder-Order Transition, CDOT on USML-2. Experiment 33

    NASA Technical Reports Server (NTRS)

    Zhu, Ji-Xiang; Chaikin, P. M.; Li, Min; Russel, W. B.; Ottewill, R. H.; Rogers, R.; Meyer, W. V.

    1998-01-01

    Classical hard spheres have long served as a paradigm for our understanding of the structure of liquids, crystals, and glasses and the transitions between these phases. Ground-based experiments have demonstrated that suspensions of uniform polymer colloids are near-ideal physical realizations of hard spheres. However, gravity appears to play a significant and unexpected role in the formation and structure of these colloidal crystals. In the microgravity environment of the Space Shuttle, crystals grow purely via random stacking of hexagonal close-packed planes, lacking any of the face-centered cubic (FCC) component evident in crystals grown in 1 g beyond melting and allowed some time to settle. Gravity also masks 33-539 the natural growth instabilities of the hard sphere crystals which exhibit striking dendritic arms when grown in microgravity. Finally, high volume fraction "glass" samples which fail to crystallize after more than a year in 1 g begin nucleation after several days and fully crystallize in less than 2 weeks on the Space Shuttle.

  4. Holographic fabrication of 3D photonic crystal templates with 4, 5, and 6-fold rotational symmetry using a single beam and single exposure

    NASA Astrophysics Data System (ADS)

    Lowell, David; George, David; Lutkenhaus, Jeffery; Philipose, Usha; Zhang, Hualiang; Lin, Yuankun

    2016-03-01

    A method of fabricating large-volume three-dimensional (3D) photonic crystal and quasicrystal templates using holographic lithography is presented. Fabrication is accomplished using a single-beam and single exposure by a reflective optical element (ROE). The ROE is 3D printed support structure which holds reflecting surfaces composed of silicon or gallium arsenide. Large-volume 3D photonic crystal and quasicrystal templates with 4-fold, 5-fold, and 6-fold symmetry were fabricated and found to be in good agreement with simulation. Although the reflective surfaces were setup away from the Brewster's angle, the interference among the reflected s and p-polarizations still generated bicontinuous structures, demonstrating the flexibility of the ROE. The ROE, being a compact and inexpensive alternative to diffractive optical elements and top-cut prisms, facilitates the large-scale integration of holographically fabricated photonic structures into on-chip applications.

  5. High-quality colloidal photonic crystals obtained by optimizing growth parameters in a vertical deposition technique

    NASA Astrophysics Data System (ADS)

    Kuai, Su-Lan; Hu, Xing-Fang; Haché, Alain; Truong, Vo-Van

    2004-06-01

    High-quality polystyrene colloidal crystals were fabricated from aqueous solutions with a vertical deposition technique. The role of sphere size, volume fraction, relative humidity (RH), evaporation temperature and the final drying conditions on the film quality were investigated. We found that all those parameters must be taken into account in order to achieve highest quality for a given particle size. With particles of 300 nm in diameter, the optimal conditions were found to be a 0.1-0.2% volume fraction, an RH between 80% and 90%, an evaporation temperature near 60°C and a quasi-equilibrium drying process.

  6. Light-Induced Resistance Effect Observed in Nano Au Films Covered Two-Dimensional Colloidal Crystals.

    PubMed

    Liu, Shuai; Huang, Meizhen; Yao, Yanjie; Wang, Hui; Jin, Kui-juan; Zhan, Peng; Wang, Zhenlin

    2015-09-09

    Tailoring resistance response using periodic nanostructures is one of the key issues in the current research. Two-dimensional colloidal crystals (CCs) structure is one of popular periodic nanospheres' structures and most of reports are focused on anomalous transmission of light or biomedical applications. In this work, a light-induced resistance effect is observed on silicon-based Au films covered CCs, featuring a remarkable resistance change as much as 56% and resistance switching characteristic. The diffusion and recombination of photocarriers is the crucial factor for this effect. This finding will expand photoelectricity functionality and be useful for future development of CC-based photoelectric devices.

  7. Colloidal quantum dot lasers built on a passive two-dimensional photonic crystal backbone.

    PubMed

    Chang, Hojun; Min, Kyungtaek; Lee, Myungjae; Kang, Minsu; Park, Yeonsang; Cho, Kyung-Sang; Roh, Young-Geun; Hwang, Sung Woo; Jeon, Heonsu

    2016-03-28

    We report the room-temperature lasing action from two-dimensional photonic crystal (PC) structures composed of a passive Si3N4 backbone with an over-coat of CdSe/CdS/ZnS colloidal quantum dots (CQDs) for optical gain. When optically excited, devices lased in dual PC band-edge modes, with the modal dominance governed by the thickness of the CQD over-layer. The demonstrated laser platform should have an impact on future photonic integrated circuits as the on-chip coupling between active and passive components is readily achievable.

  8. Topology and self-assembly of defect-colloidal superstructure in confined chiral nematic liquid crystals

    NASA Astrophysics Data System (ADS)

    Pandey, M. B.; Ackerman, P. J.; Burkart, A.; Porenta, T.; Žumer, S.; Smalyukh, Ivan I.

    2015-01-01

    We describe formation of defect-colloidal superstructures induced by microspheres with normal surface anchoring dispersed in chiral nematic liquid crystals in confinement-unwound homeotropic cells. Using three-dimensional nonlinear optical imaging of the director field, we demonstrate that some of the induced defects have nonsingular solitonic nature while others are singular point and line topological defects. The common director structures induced by individual microspheres have dipolar symmetry. These topological dipoles are formed by the particle and a hyperbolic point defect (or small disclination loop) of elementary hedgehog charge opposite to that of a sphere with perpendicular boundary conditions, which in cells with thickness over equilibrium cholesteric pitch ratio approaching unity are additionally interspaced by a looped double-twist cylinder of continuous director deformations. The long-range elastic interactions are probed by holographic optical tweezers and videomicroscopy, providing insights to the physical underpinnings behind self-assembled colloidal structures entangled by twisted solitons. Computer-simulated field and defect configurations induced by the colloidal particles and their assemblies, which are obtained by numerically minimizing the Landau-de Gennes free energy, are in agreement with the experimental findings.

  9. Silica colloidal crystals as porous substrates for total internal reflection fluorescence microscopy of live cells.

    PubMed

    Velarde, Tomika R C; Wirth, Mary J

    2008-06-01

    Total internal reflection fluorescence (TIRF) microscopy is a powerful means of probing biological cells because it reduces autofluorescence, but the need for direct contact between the cell surface and the microscope slide hinders chemical access to the cell surface. In this work, a submicrometer crystalline layer of colloidal silica on the microscope coverslip is shown to allow TIRF microscopy while also allowing chemical access to the cell surface. A 750 nm layer of 165 nm silica colloidal crystals was sintered onto a fused silica coverslip, and Chinese hamster ovary cells were successfully grown on this surface. This cell line over-expresses the human delta-opioid receptor, which enabled probing of the binding of a labeled ligand to the receptors on the cell surface. Total internal reflection and chemical access to the cell surface are demonstrated. The range of angles for total internal reflection is reduced only by 1/3 due to the lower index of refraction of the colloidal multilayer relative to fused silica.

  10. Binary Colloidal Alloy Test-5: Three-Dimensional Melt

    NASA Technical Reports Server (NTRS)

    Yodh, Arjun G.

    2008-01-01

    Binary Colloidal Alloy Test - 5: Three-Dimensional Melt (BCAT-5-3DMelt) photographs initially randomized colloidal samples in microgravity to determine their resulting structure over time. BCAT-5-3D-Melt will allow the scientists to capture the kinetics (evolution) of their samples, as well as the final equilibrium state of each sample. BCAT-5-3D-Melt will look at the mechanisms of melting using three-dimensional temperature sensitive colloidal crystals. Results will help scientists develop fundamental physics concepts previously shadowed by the effects of gravity.

  11. Introducing high-quality planar defects into colloidal crystals via self-assembly at the air/water interface

    NASA Astrophysics Data System (ADS)

    Zhong, Kuo; Demeyer, Pieter-Jan; Zhou, Xingping; Kruglova, Olga; Verellen, Niels; Moshchalkov, Victor V.; Song, Kai; Clays, Koen

    2015-02-01

    We demonstrate a facile method for fabrication of colloidal crystals containing a planar defect by using PS@SiO2 core-shell spheres as building blocks. A monolayer of solid spheres was embedded in core-shell colloidal crystals serving as the defect layer, which formed by means of self-assembly at the air/water interface. Compared with previous methods, this fabrication method results in pronounced passbands in the band gaps of the colloidal photonic crystal. The FWHM of the obtained passband is only ~16nm, which is narrower than the previously reported results. The influence of the defect layer thickness on the optical properties of these sandwiched structures was also investigated. No high-cost processes or specific equipment is needed in our approach. Inverse opals with planar defects can be obtained via calcination of the PS cores, without the need of infiltration. The experimental results are in good agreement with simulations performed using the FDTD method.

  12. Old relief printing applied to the current preparation of multi-color and high resolution colloidal photonic crystal patterns.

    PubMed

    Yang, Dongpeng; Ye, Siyun; Ge, Jianping

    2015-12-11

    Monodisperse SiO2 colloids are assembled into colloidal crystals in the mixture of monomer and solvent, which is transformed into a mechanochromic photonic crystal paper by polymerization. Following the relief printing strategy, the printing plates are pressed onto the paper to generate letters or images due to the contrast of structural color between the deformed and the undeformed paper, and the images can be permanently retained through UV curing. The wide tunable range of structural color for the current paper under deformation helps to realize multi-color printing. The localized deformation among or even inside the colloidal microcrystals renders the paper with a precise mechanochromic response to the printing plates and leads to the production of high resolution photonic crystal patterns.

  13. Hexatic-to-disorder transition in colloidal crystals near electrodes: rapid annealing of polycrystalline domains.

    PubMed

    Dutcher, C S; Woehl, T J; Talken, N H; Ristenpart, W D

    2013-09-20

    Colloids are known to form planar, hexagonal closed packed (hcp) crystals near electrodes in response to electrohydrodynamic (EHD) flow. Previous work has established that the EHD velocity increases as the applied ac frequency decreases. Here we report the existence of an order-to-disorder transition at sufficiently low frequencies, despite the increase in the attractive EHD driving force. At large frequencies (~500 Hz), spherical micron-scale particles form hcp crystals; as the frequency is decreased below ~250 Hz, however, the crystalline structure transitions to randomly closed packed (rcp). The transition is reversible and second order with respect to frequency, and independent measurements of the EHD aggregation rate confirm that the EHD driving force is indeed higher at the lower frequencies. We present evidence that the transition is instead caused by an increased particle diffusivity due to increased particle height over the electrode at lower frequencies, and we demonstrate that the hcp-rcp transition facilitates rapid annealing of polycrystalline domains.

  14. Living Clusters and Crystals from Low-Density Suspensions of Active Colloids

    NASA Astrophysics Data System (ADS)

    Mognetti, B. M.; Šarić, A.; Angioletti-Uberti, S.; Cacciuto, A.; Valeriani, C.; Frenkel, D.

    2013-12-01

    Recent studies aimed at investigating artificial analogs of bacterial colonies have shown that low-density suspensions of self-propelled particles confined in two dimensions can assemble into finite aggregates that merge and split, but have a typical size that remains constant (living clusters). In this Letter, we address the problem of the formation of living clusters and crystals of active particles in three dimensions. We study two systems: self-propelled particles interacting via a generic attractive potential and colloids that can move toward each other as a result of active agents (e.g., by molecular motors). In both cases, fluidlike “living” clusters form. We explain this general feature in terms of the balance between active forces and regression to thermodynamic equilibrium. This balance can be quantified in terms of a dimensionless number that allows us to collapse the observed clustering behavior onto a universal curve. We also discuss how active motion affects the kinetics of crystal formation.

  15. Colloidal crystal based plasma polymer patterning to control Pseudomonas aeruginosa attachment to surfaces.

    PubMed

    Pingle, Hitesh; Wang, Peng-Yuan; Thissen, Helmut; McArthur, Sally; Kingshott, Peter

    2015-12-02

    Biofilm formation on medical implants and subsequent infections are a global problem. A great deal of effort has focused on developing chemical contrasts based on micro- and nanopatterning for studying and controlling cells and bacteria at surfaces. It has been known that micro- and nanopatterns on surfaces can influence biomolecule adsorption, and subsequent cell and bacterial adhesion. However, less focus has been on precisely controlling patterns to study the initial bacterial attachment mechanisms and subsequently how the patterning influences the role played by biomolecular adsorption on biofilm formation. In this work, the authors have used colloidal self-assembly in a confined area to pattern surfaces with colloidal crystals and used them as masks during allylamine plasma polymer (AAMpp) deposition to generate highly ordered patterns from the micro- to the nanoscale. Polyethylene glycol (PEG)-aldehyde was grafted to the plasma regions via "cloud point" grafting to prevent the attachment of bacteria on the plasma patterned surface regions, thereby controlling the adhesive sites by choice of the colloidal crystal morphology. Pseudomonas aeruginosa was chosen to study the bacterial interactions with these chemically patterned surfaces. Scanning electron microscope, x-ray photoelectron spectroscopy (XPS), atomic force microscopy, and epifluorescence microscopy were used for pattern characterization, surface chemical analysis, and imaging of attached bacteria. The AAMpp influenced bacterial attachment because of the amine groups displaying a positive charge. XPS results confirm the successful grafting of PEG on the AAMpp surfaces. The results showed that PEG patterns can be used as a surface for bacterial patterning including investigating the role of biomolecular patterning on bacterial attachment. These types of patterns are easy to fabricate and could be useful in further applications in biomedical research.

  16. Two-stage crystallization of charged colloids under low supersaturation conditions.

    PubMed

    Kratzer, Kai; Arnold, Axel

    2015-03-21

    We report simulations on the homogeneous liquid-fcc nucleation of charged colloids for both low and high contact energy values. As a precursor for crystal formation, we observe increased local order at the position where the crystal will form, but no correlations with the local density. Thus, the nucleation is driven by order fluctuations rather than density fluctuations. Our results also show that the transition involves two stages in both cases, first a transition of liquid → bcc, followed by a bcc → hcp/fcc transition. Both transitions have to overcome free energy barriers, so that a spherical bcc-like cluster is formed first, in which the final fcc structure is nucleated mainly at the surface of the crystallite. This means that the second stage bcc-fcc phase transition is a heterogeneous nucleation in the partially grown solid phase, even though we start from a homogeneous bulk liquid. The height of the bcc → hcp/fcc free energy barrier strongly depends on the contact energies of the colloids. For low contact energy this barrier is low, so that the bcc → hcp/fcc transition occurs spontaneously. For the higher contact energy, the second barrier is too high to be crossed spontaneously by the colloidal system. However, it was possible to ratchet the system over the second barrier and to transform the bcc nuclei into the stable hcp/fcc phase. The transitions are dominated by the first liquid-bcc transition and can be described by classical nucleation theory using an effective surface tension.

  17. Crystal nuclei in melts: a Monte Carlo simulation of a model for attractive colloids

    NASA Astrophysics Data System (ADS)

    Statt, Antonia; Virnau, Peter; Binder, Kurt

    2015-09-01

    As a model for a suspension of hard-sphere-like colloidal particles where small non-adsorbing dissolved polymers create a depletion attraction, we introduce an effective colloid-colloid potential closely related to the Asakura-Oosawa model, but that does not have any discontinuities. In simulations, this model straightforwardly allows the calculation of the pressure from the virial formula, and the phase transition in the bulk from the liquid to crystalline solid can be accurately located from a study where a stable coexistence of a crystalline slab with a surrounding liquid phase occurs. For this model, crystalline nuclei surrounded by fluid are studied both by identifying the crystal-fluid interface on the particle level (using suitable bond orientational order parameters to distinguish the phases) and by 'thermodynamic' means, i.e. the latter method amounts to compute the enhancement of chemical potential and pressure relative to their coexistence values. We show that the chemical potential can be obtained from simulating thick films, where one wall with a rather long-range repulsion is present, since near this wall, the Widom particle insertion method works, exploiting the fact that the chemical potential in the system is homogeneous. Finally, the surface excess free energy of the nucleus is obtained, for a wide range of nuclei volumes. From this method, it is established that classical nucleation theory works, showing that for the present model, the anisotropy of the interface excess free energy of crystals and their resulting non-spherical shape has only a very small effect on the barrier.

  18. Colloid-in-Liquid Crystal Gels that Respond to Biomolecular Interactions

    PubMed Central

    Agarwal, Ankit; Sidiq, Sumyra; Setia, Shilpa; Bukusoglu, Emre; de Pablo, Juan J.; Pal, Santanu Kumar; Abbott, Nicholas L.

    2014-01-01

    This paper advances the design of stimuli-responsive materials based on colloidal particles dispersed in liquid crystals (LCs). Specifically, we report that thin films of colloid-in-liquid crystal (CLC) gels can undergo easily visualized ordering transitions in response to reversible and irreversible (enzymatic) biomolecular interactions occurring at aqueous interfaces of the gels. In particular, we demonstrate that LC ordering transitions can propagate across the entire thickness of the gels. We observe, however, that confinement of the LC to small domains with lateral sizes of ~10 µm does change the nature of the anchoring transitions, as compared to films of pure LC, due to the effects of confinement on the elastic energy stored in the LC. The effects of confinement are also observed to cause the response of individual domains of the LC within the CLC gel to vary significantly from one another, indicating that manipulation of LC domain size and shape can provide the basis of a general and facile method to tune the response of these LC-basedphysical gels to interfacial phenomena. Overall, the results presented in this paper establish that CLC gels offer a promising approach to the preparation of self-supporting, LC-based stimuli-responsive materials. PMID:23554243

  19. Colloid-in-liquid crystal gels that respond to biomolecular interactions.

    PubMed

    Agarwal, Ankit; Sidiq, Sumyra; Setia, Shilpa; Bukusoglu, Emre; de Pablo, Juan J; Pal, Santanu Kumar; Abbott, Nicholas L

    2013-08-26

    This paper advances the design of stimuli-responsive materials based on colloidal particles dispersed in liquid crystals (LCs). Specifically, thin films of colloid-in-liquid crystal (CLC) gels undergo easily visualized ordering transitions in response to reversible and irreversible (enzymatic) biomolecular interactions occurring at the aqueous interfaces of the gels. In particular, LC ordering transitions can propagate across the entire thickness of the gels. However, confinement of the LC to small domains with lateral sizes of ∼10 μm does change the nature of the anchoring transitions, as compared to films of pure LC, due to the effects of confinement on the elastic energy stored in the LC. The effects of confinement are also observed to cause the response of individual domains of the LC within the CLC gel to vary significantly from one to another, indicating that manipulation of LC domain size and shape can provide the basis of a general and facile method to tune the response of these LC-based physical gels to interfacial phenomena. Overall, the results presented in this paper establish that CLC gels offer a promising approach to the preparation of self-supporting, LC-based stimuli-responsive materials.

  20. Crystals, colloids, or molecules?: Early controversies about the origin of life and synthetic life.

    PubMed

    Deichmann, Ute

    2012-01-01

    Crystals, colloids, and (macro-)molecules have played major roles in theoretical concepts and experimental approaches concerning the generation of life from the mid-19th century on. The notion of the crystallization of life out of a nonliving fluid, a special case of the doctrine of spontaneous generation, was most prominently incorporated into Schleiden's and Schwann's version of cell theory. Refutation at the end of the 19th century of spontaneous generation of life and cells, in particular by Pasteur, Remak, and Virchow, not only gave rise to the flourishing fields of microbiology and cytology, but it also opened up research on synthetic life. These approaches focused on growth and form and colloidal chemistry on the one hand, and on the specificity of organisms' macromolecules and chemical reactions on the other. This article analyzes the contribution of these approaches to synthetic life research and argues that researchers' philosophical predilections and basic beliefs have played important roles in the choice of experimental and theoretical approaches towards synthetic life.

  1. Plate heights below 50 nm for protein electrochromatography using silica colloidal crystals.

    PubMed

    Wei, Bingchuan; Malkin, Douglas S; Wirth, Mary J

    2010-12-15

    Silica colloidal crystals formed from 330 nm nonporous silica spheres inside of 75 μm i.d. fused silica capillaries were evaluated for the efficiency of capillary electrochromatography of proteins. Three proteins, ribonuclease A, cytochrome C, and lysozyme, each covalently labeled with fluorophor, were well separated over a distance of 1 cm by isocratic electromigration, using 40:60 acetonitrile/water with 0.1% formic acid. A van Deemter plot showed that the plate height for lysozyme, which was the purest of the three proteins, was diffusion-limited for electric fields ranging from 400 to 1400 V/cm. The plate height for lysozyme was below 50 nm at almost all of the migration velocities, and it approached 10 nm at the highest velocity. Eddy diffusion was negligible. Lysozyme migrated over a 12 mm separation length with more than 10(6) plates in 1.5 min. These results indicate that silica colloidal crystals are well suited for electrically driven separations of large, highly charged analytes such as proteins. The 10(6) plates observed for a separation length of barely more than a centimeter means they are potentially valuable for miniaturized separations in microchip and lab-on-a-chip devices.

  2. 3D Micro-topography of Transferred Laboratory and Natural Ice Crystal Surfaces Imaged by Cryo and Environmental Scanning Electron Microscopy

    NASA Astrophysics Data System (ADS)

    Magee, N. B.; Boaggio, K.; Bancroft, L.; Bandamede, M.

    2015-12-01

    Recent work has highlighted micro-scale roughness on the surfaces of ice crystals grown and imaged in-situ within the chambers of environmental scanning electron microscopes (ESEM). These observations appear to align with theoretical and satellite observations that suggest a prevalence of rough ice in cirrus clouds. However, the atmospheric application of the lab observations are indeterminate because the observations have been based only on crystals grown on substrates and in pure-water vapor environments. In this work, we present details and results from the development of a transfer technique which allows natural and lab-grown ice and snow crystals to be captured, preserved, and transferred into the ESEM for 3D imaging. Ice crystals were gathered from 1) natural snow, 2) a balloon-borne cirrus particle capture device, and 3) lab-grown ice crystals from a diffusion chamber. Ice crystals were captured in a pre-conditioned small-volume (~1 cm3) cryo-containment cell. The cell was then sealed closed and transferred to a specially-designed cryogenic dewer (filled with liquid nitrogen or crushed dry ice) for transport to a new Hitachi Field Emission, Variable Pressure SEM (SU-5000). The cryo-cell was then removed from the dewer and quickly placed onto the pre-conditioned cryo transfer stage attached to the ESEM (Quorum 3010T). Quantitative 3D topographical digital elevation models of ice surfaces are reported from SEM for the first time, including a variety of objective measures of statistical surface roughness. The surfaces of the transported crystals clearly exhibit signatures of mesoscopic roughening that are similar to examples of roughness seen in ESEM-grown crystals. For most transported crystals, the habits and crystal edges are more intricate that those observed for ice grown directly on substrates within the ESEM chamber. Portions of some crystals do appear smooth even at magnification greater than 1000x, a rare observation in our ESEM-grown crystals. The

  3. Enhanced trion emission from colloidal quantum dots with photonic crystals by two-photon excitation.

    PubMed

    Xu, Xingsheng

    2013-11-15

    For colloidal quantum dots, the ongoing biggest problem is their fluorescence blinking. Until now, there is no generally accepted model for this fluorescence blinking. Here, two-photon excited fluorescence from CdSe/ZnS nanocrystals on silicon nitride photonic crystals is studied using a femtosecond laser. From analysis of the spectra and decay processes, most of the relative trion efficiency is larger than 10%, and the largest relative trion efficiency reaches 46.7%. The photonic crystals enhance the trion emission of CdSe/ZnS nanocrystals, where the enhancement is due to the coupling of the trion emission to the leaky mode of the photonic crystal slab. Moreover, the photonic crystals enhance the Auger-assisted trapping efficiency of electrons/holes to surface states, and then enhance the efficiency of the generations of charge separation and DC electric field, which modifies the trion spectrum. Therefore, a model is present for explaining the mechanism of fluorescence blinking including the effect of the environment.

  4. Langevin dynamics simulations of a two-dimensional colloidal crystal under confinement and shear.

    PubMed

    Wilms, D; Virnau, P; Sengupta, S; Binder, K

    2012-06-01

    Langevin dynamics simulations are used to study the effect of shear on a two-dimensional colloidal crystal (with implicit solvent) confined by structured parallel walls. When walls are sheared very slowly, only two or three crystalline layers next to the walls move along with them, while the inner layers of the crystal are only slightly tilted. At higher shear velocities, this inner part of the crystal breaks into several pieces with different orientations. The velocity profile across the slit is reminiscent of shear banding in flowing soft materials, where liquid and solid regions coexist; the difference, however, is that in the latter case the solid regions are glassy while here they are crystalline. At even higher shear velocities, the effect of the shearing becomes smaller again. Also the effective temperature near the walls (deduced from the velocity distributions of the particles) decreases again when the wall velocity gets very large. When the walls are placed closer together, thereby introducing an incommensurability between the periodicity of the confined crystal and the walls, a structure containing a soliton staircase arises in simulations without shear. Introducing shear increases the disorder in these systems until no solitons are visible anymore. Instead, similar structures like in the case without mismatch result. At high shear rates, configurations where the incommensurability of the crystalline structure is compensated by the creation of holes become relevant.

  5. Peculiarities of electro-optic properties of the ferroelectric particles-liquid crystal colloids

    NASA Astrophysics Data System (ADS)

    Ibragimov, T. D.; Imamaliyev, A. R.; Bayramov, G. M.

    2016-04-01

    Influence of ferroelectric barium titanate particles on electro-optic properties of the liquid crystal (LC) 4-cyano-4'-pentylbiphenyl (5CB) with positive dielectric anisotropy and the LC mixture (H37) consisting of 4-methoxybezylidene-4'-butylaniline and 4-ethoxybezylidene-4'-butylaniline with negative dielectric anisotropy was investigated. It was shown that a presence of particles (1 wt%) in 5CB and H37 decreased the clearing temperature from 35.2 °C to 32.4°C and from 61.2°C to 60.1°C, respectively. The threshold voltage of the Freedericksz effect became 0.3 V for the BaTiO3-5CB colloid while the beginning of this effect for the pure 5CB was observed at 2.1 V. The threshold voltage of the Freedericksz effect increased from 2.8 V to up 3.1 V at additive of particles in H37. A rise time of the BaTiO3-5CB colloid improved while a decay time worsened in comparison with the pure 5CB at all applied voltages. The inverse trends were observed for the H37 matrix, namely, a rise time worsened and a decay time improved. Among other things, the pecularities of Williams' domain formation (WDF) were also investigated in the colloid based on the H37 matrix. It was established that the WDF voltage decreased, a rise time increased and a decay time decreased in comparison with the pure H37. Experimental results are explained by appearance of local electric fields near the polarized ferroelectric particles at application of external electric field and an existence of the additional obstacles (particles) for movement of ions.

  6. A SiPM-based isotropic-3D PET detector X'tal cube with a three-dimensional array of 1 mm(3) crystals.

    PubMed

    Yamaya, Taiga; Mitsuhashi, Takayuki; Matsumoto, Takahiro; Inadama, Naoko; Nishikido, Fumihiko; Yoshida, Eiji; Murayama, Hideo; Kawai, Hideyuki; Suga, Mikio; Watanabe, Mitsuo

    2011-11-07

    We are developing a novel, general purpose isotropic-3D PET detector X'tal cube which has high spatial resolution in all three dimensions. The research challenge for this detector is implementing effective detection of scintillation photons by covering six faces of a segmented crystal block with silicon photomultipliers (SiPMs). In this paper, we developed the second prototype of the X'tal cube for a proof-of-concept. We aimed at realizing an ultimate detector with 1.0 mm(3) cubic crystals, in contrast to our previous development using 3.0 mm(3) cubic crystals. The crystal block was composed of a 16 × 16 × 16 array of lutetium gadolinium oxyorthosilicate (LGSO) crystals 0.993 × 0.993 × 0.993 mm(3) in size. The crystals were optically glued together without inserting any reflector inside and 96 multi-pixel photon counters (MPPCs, S10931-50P, i.e. six faces each with a 4 × 4 array of MPPCs), each having a sensitive area of 3.0 × 3.0 mm(2), were optically coupled to the surfaces of the crystal block. Almost all 4096 crystals were identified through Anger-type calculation due to the finely adjusted reflector sheets inserted between the crystal block and light guides. The reflector sheets, which formed a belt of 0.5 mm width, were placed to cover half of the crystals of the second rows from the edges in order to improve identification performance of the crystals near the edges. Energy resolution of 12.7% was obtained at 511 keV with almost uniform light output for all crystal segments thanks to the effective detection of the scintillation photons.

  7. Optical properties of electrochemically deposited ZnO thin films on colloidal crystal film of SiO2 microspheres.

    PubMed

    Oh, Yong Taeg; Choi, Bum Ho; Shin, Dong Chan

    2012-02-01

    The optical properties of electrochemically deposited ZnO thin films on colloidal crystal film of SiO2 microspheres structures were studied. Colloidal crystal film of SiO2 microspheres were self-assembled by evaporation using SiO2 in solution at a constant 0.1 wt%. ZnO in thin films was then electrochemically deposited on to colloidal crystal film of SiO2 microspheres. During electrochemical deposition, the content of Zn(NO3)2 x 6H2O in solution was 5 wt%, and the process's conditions were varied between of 2-4 V and 30-120 s at room temperature, with subsequent heat-treatment between 200 and 400 degrees C. A smooth surface and uniform thickness of 1.8 microm were obtained at 3 V for 90 s. The highest PL peak intensity was obtained in the ZnO thin film heat-treated at 400 degrees C. The double layered ZnO/SiO2 colloidal crystals showed clearly better emission properties than the SiO2/ZnO and ZnO structures.

  8. Extended depth-of-field 3D endoscopy with synthetic aperture integral imaging using an electrically tunable focal-length liquid-crystal lens.

    PubMed

    Wang, Yu-Jen; Shen, Xin; Lin, Yi-Hsin; Javidi, Bahram

    2015-08-01

    Conventional synthetic-aperture integral imaging uses a lens array to sense the three-dimensional (3D) object or scene that can then be reconstructed digitally or optically. However, integral imaging generally suffers from a fixed and limited range of depth of field (DOF). In this Letter, we experimentally demonstrate a 3D integral-imaging endoscopy with tunable DOF by using a single large-aperture focal-length-tunable liquid crystal (LC) lens. The proposed system can provide high spatial resolution and an extended DOF in synthetic-aperture integral imaging 3D endoscope. In our experiments, the image plane in the integral imaging pickup process can be tuned from 18 to 38 mm continuously using a large-aperture LC lens, and the total DOF is extended from 12 to 51 mm. To the best of our knowledge, this is the first report on synthetic aperture integral imaging 3D endoscopy with a large-aperture LC lens that can provide high spatial resolution 3D imaging with an extend DOF.

  9. Recent advancement on micro-/nano-spherical lens photolithography based on monolayer colloidal crystals.

    PubMed

    Zhang, Ziming; Geng, Chong; Hao, Zhibiao; Wei, Tongbo; Yan, Qingfeng

    2016-02-01

    Highly ordered nanostructures have gained substantial interest in the research community due to their fascinating properties and wide applications.Micro-/nano-spherical lens photolithography (SLPL) has been recognized as an inexpensive, inherently parallel, and high-throughput approach to the creation of highly ordered nanostructures. SLPL based on monolayer colloidal crystals (MCCs) of self-assembled colloidal micro-/nano-spheres have recently made remarkable progress in overcoming the constraints of conventional photolithography in terms of cost, feature size, tunability, and pattern complexity. In this review, we highlight the current state-of-the-art in this field with an emphasis on the fabrication of a variety of highly ordered nanostructures based on this technique and their demonstrated applications in light emitting diodes, nano-patterning semiconductors, and localized surface plasmon resonance devices. Finally, we present a perspective on the future development of MCC-based SLPL technique, including a discussion on the improvement of the quality of MCCs and the compatibility of this technique with other semiconductor micromachining process for nanofabrication.

  10. Visual detection of 2,4,6-trinitrotolune by molecularly imprinted colloidal array photonic crystal.

    PubMed

    Lu, Wei; Asher, Sanford A; Meng, Zihui; Yan, Zequn; Xue, Min; Qiu, Lili; Yi, Da

    2016-10-05

    We developed a photonic crystal (PhC) sensor for the quantification of 2,4,6-trinitrotoluene (TNT) in solution. Monodisperse (210nm in diameter) molecularly imprinted colloidal particles (MICs) for TNT were prepared by the emulsion polymerization of methyl methacrylate and acrylamide in the presence of TNT as a template. The MICs were then self-assembled into close-packed opal PhC films. The adsorption capacity of the MICs for TNT was 64mg TNT/g. The diffraction from the PhC depended on the TNT concentration in a methanol/water (3/2, v/v) potassium dihydrogen phosphate buffer solution (pH=7.0, 30mM). The limit of detection (LOD) of the sensor was 1.03μg. The color of the molecularly imprinted colloidal array (MICA) changed from green to red with an 84nm diffraction red shift when the TNT concentration increased to 20mM. The sensor response time was 3min. The PhC sensor was selective for TNT compared to similar compounds such as 2,4,6-trinitrophenol, 2,4-dinitrotoluene, 2,6-dinitrotoluene, 2-nitromesitylene, 4-nitrotoluene, 2-nitrotoluene, 1,3-dinitrobenzene, methylbenzene, 4-nitrophenol, 2-nitroaniline, 3-aminophenol and 3-nitroaniline. The sensor showed high stability with little response change after three years storage. This sensor technology might be useful for the visual determination of TNT.

  11. Stability enhancement of an electrically tunable colloidal photonic crystal using modified electrodes with a large electrochemical potential window

    SciTech Connect

    Shim, HongShik; Gyun Shin, Chang; Heo, Chul-Joon; Jeon, Seog-Jin; Jin, Haishun; Woo Kim, Jung; Jin, YongWan; Lee, SangYoon; Gyu Han, Moon E-mail: jinklee@snu.ac.kr; Lim, Joohyun; Lee, Jin-Kyu E-mail: jinklee@snu.ac.kr

    2014-02-03

    The color tuning behavior and switching stability of an electrically tunable colloidal photonic crystal system were studied with particular focus on the electrochemical aspects. Photonic color tuning of the colloidal arrays composed of monodisperse particles dispersed in water was achieved using external electric field through lattice constant manipulation. However, the number of effective color tuning cycle was limited due to generation of unwanted ions by electrolysis of the water medium during electrical switching. By introducing larger electrochemical potential window electrodes, such as conductive diamond-like carbon or boron-doped diamond, the switching stability was appreciably enhanced through reducing the number of ions generated.

  12. Directionally controlled 3D ferroelectric single crystal growth in LaBGeO5 glass by femtosecond laser irradiation.

    PubMed

    Stone, Adam; Sakakura, Masaaki; Shimotsuma, Yasuhiko; Stone, Greg; Gupta, Pradyumna; Miura, Kiyotaka; Hirao, Kazuyuki; Dierolf, Volkmar; Jain, Himanshu

    2009-12-07

    Laser-fabrication of complex, highly oriented three-dimensional ferroelectric single crystal architecture with straight lines and bends is demonstrated in lanthanum borogermanate model glass using a high repetition rate femtosecond laser. Scanning micro-Raman microscopy shows that the c-axis of the ferroelectric crystal is aligned with the writing direction even after bending. A gradual rather than an abrupt transition is observed for the changing lattice orientation through bends up to approximately 14 degrees. Thus the single crystal character of the line is preserved along the bend through lattice straining rather than formation of a grain boundary.

  13. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets.

    PubMed

    Johnson, Phillip S; García-Lastra, J M; Kennedy, Colton K; Jersett, Nathan J; Boukahil, Idris; Himpsel, F J; Cook, Peter L

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  14. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    SciTech Connect

    Johnson, Phillip S.; Boukahil, Idris; Himpsel, F. J.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Cook, Peter L.

    2014-03-21

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  15. Crystal fields of porphyrins and phthalocyanines from polarization-dependent 2p-to-3d multiplets

    NASA Astrophysics Data System (ADS)

    Johnson, Phillip S.; García-Lastra, J. M.; Kennedy, Colton K.; Jersett, Nathan J.; Boukahil, Idris; Himpsel, F. J.; Cook, Peter L.

    2014-03-01

    Polarization-dependent X-ray absorption spectroscopy is combined with density functional calculations and atomic multiplet calculations to determine the crystal field parameters 10Dq, Ds, and Dt of transition metal phthalocyanines and octaethylporphyrins (Mn, Fe, Co, Ni). The polarization dependence facilitates the assignment of the multiplets in terms of in-plane and out-of-plane orbitals and avoids ambiguities. Crystal field values from density functional calculations provide starting values close to the optimum fit of the data. The resulting systematics of the crystal field can be used for optimizing electron-hole separation in dye-sensitized solar cells.

  16. Near-liquidus growth of feldspar spherulites in trachytic melts: 3D morphologies and implications in crystallization mechanisms

    NASA Astrophysics Data System (ADS)

    Arzilli, Fabio; Mancini, Lucia; Voltolini, Marco; Cicconi, Maria Rita; Mohammadi, Sara; Giuli, Gabriele; Mainprice, David; Paris, Eleonora; Barou, Fabrice; Carroll, Michael R.

    2015-02-01

    The nucleation and growth processes of spherulitic alkali feldspar have been investigated in this study through X-ray microtomography and electron backscatter diffraction (EBSD) data. Here we present the first data on Shape Preferred Orientation (SPO) and Crystal Preferred Orientation (CPO) of alkali feldspar within spherulites. The analysis of synchrotron X-ray microtomography and EBSD datasets allowed us to study the morphometric characteristics of spherulites in trachytic melts in quantitative fashion, highlighting the three-dimensional shape, preferred orientation, branching of lamellae and crystal twinning, providing insights about the nucleation mechanism involved in the crystallization of the spherulites. The nucleation starts with a heterogeneous nucleus (pre-existing crystal or bubble) and subsequently it evolves forming "bow tie" morphologies, reaching radially spherulitic shapes in few hours. Since each lamella within spherulite is also twinned, these synthetic spherulites cannot be considered as single nuclei but crystal aggregates originated by heterogeneous nucleation. A twin boundary may have a lower energy than general crystal-crystal boundaries and many of the twinned grains show evidence of strong local bending which, combined with twin plane, creates local sites for heterogeneous nucleation. This study shows that the growth rates of the lamellae (10- 6-10- 7 cm/s) in spherulites are either similar or slightly higher than that for single crystals by up to one order of magnitude. Furthermore, the highest volumetric growth rates (10- 11-10- 12 cm3/s) show that the alkali feldspar within spherulites can grow fast reaching a volumetric size of ~ 10 μm3 in 1 s.

  17. In situ 3D topographic and shape analysis by synchrotron radiation X-ray microtomography for crystal form identification in polymorphic mixtures

    NASA Astrophysics Data System (ADS)

    Yin, Xian-Zhen; Xiao, Ti-Qiao; Nangia, Ashwini; Yang, Shuo; Lu, Xiao-Long; Li, Hai-Yan; Shao, Qun; He, You; York, Peter; Zhang, Ji-Wen

    2016-04-01

    Polymorphism denotes the existence of more than one crystal structure of a substance, and great practical and theoretical interest for the chemical and pharmaceutical industries. In many cases, it is challenging to produce a pure crystal form and establish a sensitive detection method for the identification of crystal form in a mixture of polymorphs. In this study, an accurate and sensitive method based on synchrotron radiation X-ray computed microtomography (SR-μCT) was devised to identify the polymorphs of clopidogrel bisulphate (CLP). After 3D reconstruction, crystal particles were extracted and dozens of structural parameters were calculated. Whilst, the particle shapes of the two crystal forms were all irregular, the surface of CLP II was found to be rougher than CLP I. In order to classify the crystal form based on the quantitative morphological property of particles, Volume Bias Percentage based on Surface Smoothing (VBP) was defined and a new method based on VBP was successfully developed, with a total matching rate of 99.91% for 4544 particles and a lowest detectable limit of 1%. More important for the mixtures in solid pharmaceutical formulations, the interference of excipients can be avoided, a feature cannot achieved by other available analytical methods.

  18. Panoscopic organization of anisotropic colloidal structures from photofunctional inorganic nanosheet liquid crystals.

    PubMed

    Nakato, Teruyuki; Nono, Yoshihiro; Mouri, Emiko; Nakata, Munetaka

    2014-01-21

    Colloidal liquid crystals of inorganic nanosheets with thickness of around 1 nm and lateral dimensions of several micrometers prepared by exfoliation of a layered niobate are converted to hierarchically organized arrays whose structures are controlled from the nano to macroscopic length scale through the growth of liquid crystalline domains called tactoids as the secondary building blocks followed by controlled application of external fields. Growth of the tactoids is attained by incubation of the liquid crystals at room temperature. The tactoids are then assembled into higher-order structures with characteristic lengths of sub-mm to mm under the simultaneous application of an ac electric field and gravity, whose directions determine the final textural motif of the arrays. Whereas a net-like texture is observed when applying the electric and gravitational forces in the same direction, a striped texture where the nanosheets are unidirectionally aligned is observed when the electric field is applied in the direction perpendicular to gravity. The use of well-grown tactoids is key to the macroscopic structural control. Since the niobate nanosheets have wide band-gap semiconducting nature, the nanosheet stripe arrays exhibit photocatalysis that reflected the alignment of the nanosheets with respect to the polarized direction of impinging light.

  19. Monodisperse Colloidal Gallium Nanoparticles: Synthesis, Low Temperature Crystallization, Surface Plasmon Resonance and Li-Ion Storage

    PubMed Central

    2015-01-01

    We report a facile colloidal synthesis of gallium (Ga) nanoparticles with the mean size tunable in the range of 12–46 nm and with excellent size distribution as small as 7–8%. When stored under ambient conditions, Ga nanoparticles remain stable for months due to the formation of native and passivating Ga-oxide layer (2–3 nm). The mechanism of Ga nanoparticles formation is elucidated using nuclear magnetic resonance spectroscopy and with molecular dynamics simulations. Size-dependent crystallization and melting of Ga nanoparticles in the temperature range of 98–298 K are studied with X-ray powder diffraction, specific heat measurements, transmission electron microscopy, and X-ray absorption spectroscopy. The results point to delta (δ)-Ga polymorph as a single low-temperature phase, while phase transition is characterized by the large hysteresis and by the large undercooling of crystallization and melting points down to 140–145 and 240–250 K, respectively. We have observed size-tunable plasmon resonance in the ultraviolet and visible spectral regions. We also report stable operation of Ga nanoparticles as anode material for Li-ion batteries with storage capacities of 600 mAh g–1, 50% higher than those achieved for bulk Ga under identical testing conditions. PMID:25133552

  20. Active colloids

    NASA Astrophysics Data System (ADS)

    Aranson, Igor S.

    2013-01-01

    A colloidal suspension is a heterogeneous fluid containing solid microscopic particles. Colloids play an important role in our everyday life, from food and pharmaceutical industries to medicine and nanotechnology. It is useful to distinguish two major classes of colloidal suspensions: equilibrium and active, i.e., maintained out of thermodynamic equilibrium by external electric or magnetic fields, light, chemical reactions, or hydrodynamic shear flow. While the properties of equilibrium colloidal suspensions are fairly well understood, active colloids pose a formidable challenge, and the research is in its early exploratory stage. One of the most remarkable properties of active colloids is the possibility of dynamic self-assembly, a natural tendency of simple building blocks to organize into complex functional architectures. Examples range from tunable, self-healing colloidal crystals and membranes to self-assembled microswimmers and robots. Active colloidal suspensions may exhibit material properties not present in their equilibrium counterparts, e.g., reduced viscosity and enhanced self-diffusivity, etc. This study surveys the most recent developments in the physics of active colloids, both in synthetic and living systems, with the aim of elucidation of the fundamental physical mechanisms governing self-assembly and collective behavior.

  1. Final LDRD report : enhanced spontaneous emission rate in visible III-nitride LEDs using 3D photonic crystal cavities.

    SciTech Connect

    Fischer, Arthur Joseph; Subramania, Ganapathi S.; Coley, Anthony J.; Lee, Yun-Ju; Li, Qiming; Wang, George T.; Luk, Ting Shan; Koleske, Daniel David; Fullmer, Kristine Wanta

    2009-09-01

    The fundamental spontaneous emission rate for a photon source can be modified by placing the emitter inside a periodic dielectric structure allowing the emission to be dramatically enhanced or suppressed depending on the intended application. We have investigated the relatively unexplored realm of interaction between semiconductor emitters and three dimensional photonic crystals in the visible spectrum. Although this interaction has been investigated at longer wavelengths, very little work has been done in the visible spectrum. During the course of this LDRD, we have fabricated TiO{sub 2} logpile photonic crystal structures with the shortest wavelength band gap ever demonstrated. A variety of different emitters with emission between 365 nm and 700 nm were incorporated into photonic crystal structures. Time-integrated and time-resolved photoluminescence measurements were performed to measure changes to the spontaneous emission rate. Both enhanced and suppressed emission were demonstrated and attributed to changes to the photonic density of states.

  2. 3D-Modeling of deformed halite hopper crystals: Object based image analysis and support vector machine, a first evaluation

    NASA Astrophysics Data System (ADS)

    Leitner, Christoph; Hofmann, Peter; Marschallinger, Robert

    2014-05-01

    Halite hopper crystals are thought to develop by displacive growth in unconsolidated mud (Gornitz & Schreiber, 1984). The Alpine Haselgebirge, but also e.g. the salt deposits of the Rhine graben (mined at the beginning of the 20th century), comprise hopper crystals with shapes of cuboids, parallelepipeds and rhombohedrons (Görgey, 1912). Obviously, they deformed under oriented stress, which had been tried to reconstruct with respect to the sedimentary layering (Leitner et al., 2013). In the present work, deformed halite hopper crystals embedded in mudrock were automated reconstructed. Object based image analysis (OBIA) has been used successfully in remote sensing for 2D images before. The present study represents the first time that the method was used for reconstruction of three dimensional geological objects. First, manually a reference (gold standard) was created by redrawing contours of the halite crystals on each HRXCT scanning slice. Then, for OBIA, the computer program eCognition was used. For the automated reconstruction a rule set was developed. Thereby, the strength of OBIA was to recognize all objects similar to halite hopper crystals and in particular to eliminate cracks. In a second step, all the objects unsuitable for a structural deformation analysis were dismissed using a support vector machine (SVM) (clusters, polyhalite-coated crystals and spherical halites) The SVM simultaneously drastically reduced the number of halites. From 184 OBIA-objects 67 well shaped remained, which comes close to the number of pre-selected 52 objects. To assess the accuracy of the automated reconstruction, the result before and after SVM was compared to the reference, i.e. the gold standard. State-of the art per-scene statistics were extended to a per-object statistics. Görgey R (1912) Zur Kenntnis der Kalisalzlager von Wittelsheim im Ober-Elsaß. Tschermaks Mineral Petrogr Mitt 31:339-468 Gornitz VM, Schreiber BC (1981) Displacive halite hoppers from the dead sea

  3. Uranyl and uranyl-3d block cation complexes with 1,3-adamantanedicarboxylate: crystal structures, luminescence, and magnetic properties.

    PubMed

    Thuéry, Pierre; Rivière, Eric; Harrowfield, Jack

    2015-03-16

    The reaction of 1,3-adamantanedicarboxylic acid (LH2) with uranyl nitrate under solvo-hydrothermal conditions, either alone or in the presence of additional metal cations (Co(2+), Ni(2+), or Cu(2+)) gives a series of nine complexes displaying a wide range of architectures. While [UO2(L)(H2O)]·1.25CH3CN (1) and [UO2(L)(DMF)] (2) are one-dimensional (1D) species analogous to that previously known, [H2NMe2]2[(UO2)2(L)3]·1.5H2O (3), which includes dimethylammonium counterions generated in situ, is a three-dimensional (3D) framework, and [UO2(L)(NMP)] (4) (NMP = N-methyl-2-pyrrolidone) is a braid-shaped 1D polymer. When 3d block metal ions are present and bound to 2,2'-bipyridine (bipy) coligands, their role is reduced to that of decorating species attached to uranyl-containing 1D polymers, as in [UO2M(L)2(bipy)2]·0.5H2O with M = Co (5) or Ni (6), and [(UO2)2Cu2(L)3(NO3)2(bipy)2]·0.5H2O (9), or of counterions, as in [Ni(bipy)3][(UO2)4(O)2(L)3]·3H2O (7), in which a two-dimensional (2D) assembly is built from tetranuclear uranyl-containing building units. In contrast, the heterometallic 3D framework [UO2Cu(L)2] (8) can be isolated in the absence of bipy. The emission spectra measured in the solid state display the usual uranyl vibronic fine structure, with various degrees of resolution and quenching, except for that of complex 7, which shows emission from the nickel(II) centers. The magnetic properties of complexes 5, 6, 8, and 9 were investigated, showing, in particular, the presence of zero-field splitting effects in 6 and weak antiferromagnetic interactions in 9.

  4. Controlling statics and dynamics of colloids by photo-patterned liquid crystals (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Lavrentovich, Oleg D.; Peng, Chenhui; Guo, Yubing; Shiyanovskii, Sergij V.; Wei, Qi-Huo

    2016-09-01

    Transport of fluids and particles at the microscale is an important theme both in fundamental and applied science. We demonstrate how an advanced approach to photo-induced alignment of liquid crystals can be used to generate nonlinear electrokinetics. The photoalignment technique is based on irradiation of a photosensitive substrate with light through nanoaperture arrays in metal films. The resulting pattern of surface alignment induces predesigned 2D and 3D distortions of local molecular orientation. In presence of a static electric field, these distortions generate spatial charge and drive electrokinetic flows of the new type, in which the velocities depend on the square of the applied electric field. The patterned liquid crystal electrolyte converts the electric energy into the flows and transport of embedded particles of any type (fluid, solid, gaseous) along a predesigned trajectory, posing no limitation on the electric nature (charge, polarizability) of these particles and interfaces. The patterned liquid crystal electrolyte induces persistent vortices of controllable rotation speed and direction that are quintessential for micro- and nanoscale mixing applications.

  5. Topological defect transformation and structural transition of two-dimensional colloidal crystals across the nematic to smectic-A phase transition

    NASA Astrophysics Data System (ADS)

    Zuhail, K. P.; Sathyanarayana, P.; Seč, D.; Čopar, S.; Škarabot, M.; Muševič, I.; Dhara, S.

    2015-03-01

    We observe that topological defects in nematic colloids are strongly influenced by the elasticity and onset of smectic layering across the nematic (N ) to smectic-A (Sm A ) phase transition. When approaching the Sm A phase from above, the nematic hyperbolic hedgehog defect that accompanies a spherical colloidal inclusion is transformed into a focal conic line in the Sm A phase. This phase transformation has a strong influence on the pairwise colloidal interaction and is responsible for a structural transition of two-dimensional colloidal crystals. The pretransitional behavior of the point defect is supported by Landau-de Gennes Q -tensor modeling accounting for the increasing elastic anisotropy.

  6. Self-assembled dynamic 3D fingerprints in liquid-crystal coatings towards controllable friction and adhesion.

    PubMed

    Liu, Danqing; Broer, Dirk J

    2014-04-25

    Chiral-nematic polymer network coatings form a "fingerprint" texture through self-assembly. For this purpose the molecular helix of the coating is oriented parallel to the substrate. The coating has a flat surface but when actuated by light in the presence of a copolymerized azobenzene compound, 3D fingerprint structures appear in the coating. The helix forms protrusions at the positions where the molecules are aligned parallel to the surface and withdraws at the positions where the orientation is perpendicular. This process proceeds rapidly and is reversible, that is, the fingerprint-shaped protrusions disappear when the light is switched off. The texture in the on-state resembles that of a human fingerprint and is used to manipulate the gripping friction of a robotic finger. The friction coefficient drops by a factor of four to five when the fingerprint switched on because of reduced surface contacts.

  7. Fabrication of ordered poly(methyl methacrylate) nanobowl arrays using SiO2 colloidal crystal templates.

    PubMed

    Deng, Lier; Fu, Ming; Tao, Yinglei; Guo, Xiaoyun

    2014-06-01

    A simple approach is presented for the fabrication of poly(methyl methacrylate) (PMMA) nanobowl arrays over cm2 areas using SiO2 colloidal crystal templates. SiO2 colloidal crystal templates were prepared on a clean glass substrate by self-assembled SiO2 spheres of 410 nm in diameter. The air between the silica spheres was filled by the superfluous monomer of PMMA that can be subsequently polymerized. After infiltration, the SiO2-PMMA templates were immersed in a 3 wt% hydrofluoric acid (HF) aqueous solution. After 24 h, silica spheres were etched and a free-standing nanobowl sheet was obtained. The size of the nanobowls could be controlled by the size of the SiO2 spheres and the area of the nanobowl sheet could be altered by the size of the glass substrate.

  8. Light-induced changes of the refractive indices in a colloid of gold nanoparticles in a nematic liquid crystal.

    PubMed

    Lysenko, D; Ouskova, E; Ksondzyk, S; Reshetnyak, V; Cseh, L; Mehl, G H; Reznikov, Y

    2012-05-01

    It was shown that irradiation of a nematic liquid crystal doped with metal nanoparticles in the visible near the plasmon resonance band led to strong thermal changes of the refractive indices. The effect was studied by recording of dynamic optical gratings in the colloid. Nanoparticles "worked" as effective nano-heaters in a matrix causing the order parameter decrease around the particles. A large nonlinearity parameter (n (2) ≈ 10(-2) cm(2)/kW and fast response (≈ 0.7 ms), with no detectable particles' aggregation and excellent photo- thermo-stability make these colloids potentially attractive nonlinear optical media. Application of a dynamic holography technique allowed measuring the coefficients of thermal conductivity of the liquid crystal along the director k (||) = (0.4 ± 0.02) W m(-1)K(-1) and perpendicular to the director k (⊥) = (0.2 ± 0.01) W m(-1)K(-1).

  9. Exciting discrete breathers of two types in a computer 3D model of Pt3Al crystal

    NASA Astrophysics Data System (ADS)

    Medvedev, N. N.; Starostenkov, M. D.; Zakharov, P. V.; Dmitriev, S. V.

    2015-10-01

    The possibility of exciting discrete breathers (DBs) with both soft and hard nonlinearity in a threedimensional crystal has been shown for the first time using molecular dynamics simulation by example of an ordered Pt3Al crystal model. The oscillation frequencies of DBs of the first (soft) type fall in the gap of the phonon spectrum and decrease with increasing amplitude. For DBs of the second type, the oscillation frequencies are above the phonon spectrum and increase with the amplitude, i.e., exhibit hard nonlinearity. An example of the transformation of a hard DB into a set of gap (soft) DBs with soft nonlinearity is presented. The influence of various factors on the lifetime of interacting DBs is considered.

  10. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming.

    PubMed

    Ristanović, Zoran; Hofmann, Jan P; De Cremer, Gert; Kubarev, Alexey V; Rohnke, Marcus; Meirer, Florian; Hofkens, Johan; Roeffaers, Maarten B J; Weckhuysen, Bert M

    2015-05-27

    Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data.

  11. Quantitative 3D Fluorescence Imaging of Single Catalytic Turnovers Reveals Spatiotemporal Gradients in Reactivity of Zeolite H-ZSM-5 Crystals upon Steaming

    PubMed Central

    2015-01-01

    Optimizing the number, distribution, and accessibility of Brønsted acid sites in zeolite-based catalysts is of a paramount importance to further improve their catalytic performance. However, it remains challenging to measure real-time changes in reactivity of single zeolite catalyst particles by ensemble-averaging characterization methods. In this work, a detailed 3D single molecule, single turnover sensitive fluorescence microscopy study is presented to quantify the reactivity of Brønsted acid sites in zeolite H-ZSM-5 crystals upon steaming. This approach, in combination with the oligomerization of furfuryl alcohol as a probe reaction, allowed the stochastic behavior of single catalytic turnovers and temporally resolved turnover frequencies of zeolite domains smaller than the diffraction limited resolution to be investigated with great precision. It was found that the single turnover kinetics of the parent zeolite crystal proceeds with significant spatial differences in turnover frequencies on the nanoscale and noncorrelated temporal fluctuations. Mild steaming of zeolite H-ZSM-5 crystals at 500 °C led to an enhanced surface reactivity, with up to 4 times higher local turnover rates than those of the parent H-ZSM-5 crystals, and revealed remarkable heterogeneities in surface reactivity. In strong contrast, severe steaming at 700 °C significantly dealuminated the zeolite H-ZSM-5 material, leading to a 460 times lower turnover rate. The differences in measured turnover activities are explained by changes in the 3D aluminum distribution due to migration of extraframework Al-species and their subsequent effect on pore accessibility, as corroborated by time-of-flight secondary ion mass spectrometry (TOF-SIMS) sputter depth profiling data. PMID:25867455

  12. Syntheses, crystal structures, and characterization of three 1D, 2D and 3D complexes based on mixed multidentate N- and O-donor ligands

    SciTech Connect

    Yang, Huai-Xia; Liang, Zhen; Hao, Bao-Lian; Meng, Xiang-Ru

    2014-10-15

    Three new 1D to 3D complexes, namely, ([Ni(btec)(Himb){sub 2}(H{sub 2}O){sub 2}]·6H{sub 2}O){sub n} (1), ([Cd(btec){sub 0.5}(imb)(H{sub 2}O)]·1.5H{sub 2}O){sub n} (2), and ([Zn(btec){sub 0.5}(imb)]·H{sub 2}O){sub n} (3) (H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, imb=2-(1H-imidazol-1-methyl)-1H-benzimidazole) have been synthesized by adjusting the central metal ions. Single-crystal X-ray diffraction analyses reveal that complex 1 possesses a 1D chain structure which is further extended into the 3D supramolecular architecture via hydrogen bonds. Complex 2 features a 2D network with Schla¨fli symbol (5{sup 3}·6{sup 2}·7)(5{sup 2}·6{sup 4}). Complex 3 presents a 3D framework with a point symbol of (4·6{sup 4}·8)(4{sup 2}·6{sup 2}·8{sup 2}). Moreover, their IR spectra, PXRD patterns, thermogravimetric curves, and luminescent emissions were studied at room temperature. - Graphical abstract: Three new 1D to 3D complexes with different structural and topological motifs have been obtained by modifying the central metal ions. Additionally, their IR, TG analyses and fluorescent properties are also investigated. - Highlights: • Three complexes based on mixed multidentate N- and O-donor ligands. • The complexes are characterized by IR, luminescence and TGA techniques. • Benzenetetracarboxylates display different coordination modes in complexes 1–3. • Changing the metal ions can result in complexes with completely different structures.

  13. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots.

    PubMed

    Bertolotti, Federica; Dirin, Dmitry N; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H; Kovalenko, Maksym V; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  14. Dynamics of colloidal particles in electrohydrodynamic convection of nematic liquid crystal.

    PubMed

    Takahashi, Kentaro; Kimura, Yasuyuki

    2014-07-01

    We have studied the dynamics of micrometer-sized colloidal particles in electrohydrodynamic convection of nematic liquid crystal. Above the onset voltage of electroconvection, the parallel array of convection rolls appears to be perpendicular to the nematic field at first. The particles are forced to rotate by convection flow and are trapped within a single roll in this voltage regime. A slow glide motion along the roll axis is also observed. The frequency of rotational motion and the glide velocity increase with the applied voltage. Under a much larger voltage where the roll axis temporally fluctuates, the particles occasionally hop to the neighbor rolls. In this voltage regime, the motion of the particles becomes two-dimensional. The motion perpendicular to the roll axis exhibits diffusion behavior at a long time period. The effective diffusion constant is 10(3)-10(4) times larger than the molecular one. The observed behavior is compared with the result obtained by a simple stochastic model for the transport of the particles in convection. The enhancement of diffusion can be quantitatively described well by the rotation frequency in a roll, the width of the roll, and the hopping probability to the neighbor rolls.

  15. Liquid crystal colloidal structures for increased silicone deposition efficiency on colour-treated hair.

    PubMed

    Brown, M A; Hutchins, T A; Gamsky, C J; Wagner, M S; Page, S H; Marsh, J M

    2010-06-01

    An approach is described to increase the deposition efficiency of silicone conditioning actives from a shampoo on colour-treated hair via liquid crystal (LC) colloidal structures, created with a high charge density cationic polymer, poly(diallyldimethyl ammonium chloride) and negatively charged surfactants. LCs are materials existing structurally between the solid crystalline and liquid phases, and several techniques, including polarized light microscopy, small angle X-Ray analysis, and differential scanning calorimetry, were used to confirm the presence of the LC structures in the shampoo formula. Silicone deposition from the LC-containing shampoo and a control shampoo was measured on a range of hair substrates, and data from inductively coupled plasma optical emission spectroscopy analysis and ToF-SIMS imaging illustrate the enhancement in silicone deposition for the LC shampoo on all hair types tested, with the most pronounced enhancement occurring on hair that had undergone oxidative treatments, such as colouring. A model is proposed in which the LC structure deposits from the shampoo onto the hair to: (i) provide 'slip planes' along the hair surface for wet conditioning purposes and (ii) form a hydrophobic layer which changes the surface energy of the fibres. This increase in hydrophobicity of the hair surface thereby increases the deposition efficiency of silicone conditioning ingredients. Zeta potential measurements, dynamic absorbency testing analysis and ToF-SIMS imaging were used to better understand the mechanisms of action. This approach to increasing silicone deposition is an improvement relative to conventional conditioning shampoos, especially for colour-treated hair.

  16. Crystal symmetry breaking and vacancies in colloidal lead chalcogenide quantum dots

    NASA Astrophysics Data System (ADS)

    Bertolotti, Federica; Dirin, Dmitry N.; Ibáñez, Maria; Krumeich, Frank; Cervellino, Antonio; Frison, Ruggero; Voznyy, Oleksandr; Sargent, Edward H.; Kovalenko, Maksym V.; Guagliardi, Antonietta; Masciocchi, Norberto

    2016-09-01

    Size and shape tunability and low-cost solution processability make colloidal lead chalcogenide quantum dots (QDs) an emerging class of building blocks for innovative photovoltaic, thermoelectric and optoelectronic devices. Lead chalcogenide QDs are known to crystallize in the rock-salt structure, although with very different atomic order and stoichiometry in the core and surface regions; however, there exists no convincing prior identification of how extreme downsizing and surface-induced ligand effects influence structural distortion. Using forefront X-ray scattering techniques and density functional theory calculations, here we have identified that, at sizes below 8 nm, PbS and PbSe QDs undergo a lattice distortion with displacement of the Pb sublattice, driven by ligand-induced tensile strain. The resulting permanent electric dipoles may have implications on the oriented attachment of these QDs. Evidence is found for a Pb-deficient core and, in the as-synthesized QDs, for a rhombic dodecahedral shape with nonpolar {110} facets. On varying the nature of the surface ligands, differences in lattice strains are found.

  17. Effect of the polydispersion in the crystallization and micro-structure of the high charged colloids

    NASA Astrophysics Data System (ADS)

    Urrutia-Bañuelos, Efraín; Aranda-Espinosa, Helim; Chasvez-Paez, Martin

    2008-03-01

    In this work we investigate the effect of the polydipersion in the crystallization and micro-structure of the high charged colloids particles with tow and three different types and different concentrations of that types. This results were obtained by computer simulation, the particles interaction was modeled by a screened Coulomb potential. We used 4000 particles in our simulation cell to let them evolution from an initial random configuration, periodic boundary conditions was imposed to simulate the bulk. The temporal evolutions of the configuration show long-ranged self-ordering and a crystalline transition, the crystalline nucleation depend of the concentrations of different kinds as well as of types of particle. The common neighbor analysis (CNA) exhibit the competition of two micro-structures, icosahedral and bcc, in the equilibrium bcc crystalline order is dominant with relative abundance over the other micro-structures. 1.- U. Gasser, Eric R. Weeks et al, Science, 292 (258), 2001. 2.- Stefan Auer, Daan Frenkel, Letter of Nature, 409 (1020), 2001. 3.- J.P. Hoogenboom, et al , Phys. Rev. Leeters, 89 (256104), 2002. 4.- M. Ch'avez-P'aez, E. Urrutia-Bañuelos and M. Medina --Noyola, Phys. Rev. E, 58 (681),1998 5.- Andrew S. Clarke and Hannes J'onsson, Phys. Rev. E, 47 (3975), 1993.

  18. Synthesis and characterization of magnetic opal/Fe3O4 colloidal crystal

    NASA Astrophysics Data System (ADS)

    Carmona-Carmona, A. J.; Palomino-Ovando, M. A.; Hernández-Cristobal, Orlando; Sánchez-Mora, E.; Toledo-Solano, M.

    2017-03-01

    We report an experimental study of colloidal crystals based on SiO2 artificial opals, infiltrated with 1.34(M1), 2.03(M2) and 24.4(M3) wt% Fe3O4 nanoparticles, using the co-assembly method. Scanning electron microscopy (SEM), X-ray diffraction (XRD), Raman spectroscopy and Vibration sample magnetometer (VSM) were used to study the structural, magnetic and optical properties of the samples. At 300 K all the samples exhibit superparamagnetic behavior due to the magnetic coupling of Fe3O4 nanoparticles infiltrated into opal. However, for higher concentration of nanoparticles this strong coupling distorts the opal network. The UV-vis diffuse reflectance spectroscopy and Kubelka-Munk theory were applied to determine that the energy band gap of the opal-magnetite composites can be adjusted by varying the concentration of Fe3O4 nanoparticles. This values are between the energy band gap of SiO2 and Fe3O4.

  19. Monitoring the formation of carbide crystal phases during the thermal decomposition of 3d transition metal dicarboxylate complexes

    SciTech Connect

    Huba, ZJ; Carpenter, EE

    2014-06-06

    Single molecule precursors can help to simplify the synthesis of complex alloys by minimizing the amount of necessary starting reagents. However, single molecule precursors are time consuming to prepare with very few being commercially available. In this study, a simple precipitation method is used to prepare Fe, Co, and Ni fumarate and succinate complexes. These complexes were then thermally decomposed in an inert atmosphere to test their efficiency as single molecule precursors for the formation of metal carbide phases. Elevated temperature X-ray diffraction was used to identify the crystal phases produced upon decomposition of the metal dicarboxylate complexes. Thermogravimetric analysis coupled with an infrared detector was used to identify the developed gaseous decomposition products. All complexes tested showed a reduction from the starting M2+ oxidation state to the M oxidation state, upon decomposition. Also, each complex tested showed CO2 and H2O as gaseous decomposition products. Nickel succinate, iron succinate, and iron fumarate complexes were found to form carbide phases upon decomposition. This proves that transition metal dicarboxylate salts can be employed as efficient single molecule precursors for the formation of metal carbide crystal phases.

  20. Crystal Structure of the Mycoplasma arthritidis-Derived Mitogen in Apo Form Reveals a 3D Domain-Swapped Dimer

    SciTech Connect

    Liu, L.; Li, Z; Guo, Y; VanVranken, S; Mourad, W; Li, H

    2010-01-01

    Mycoplasma arthritidis-derived mitogen (MAM) is a superantigen that can activate large fractions of T cells bearing particular V{beta} elements of T cell receptor. Here, we report the crystal structure of a MAM mutant K201A in apo form (unliganded) at 2.8-{angstrom} resolutions. We also partially refined the crystal structures of the MAM wild type and another MAM mutant L50A in apo forms at low resolutions. Unexpectedly, the structures of these apo MAM molecules display a three-dimensional domain-swapped dimer. The entire C-terminal domains of these MAM molecules are involved in the domain swapping. Functional analyses demonstrated that the K201A and L50A mutants do not show altered ability to bind to their host receptors and that they stimulate the activation of T cells as efficiently as does the wild type. Structural comparisons indicated that the 'reconstituted' MAM monomer from the domain-swapped dimer displays large differences at the hinge regions from the MAM{sub wt} molecule in the receptor-bound form. Further comparison indicated that MAM has a flexible N-terminal loop, implying that conformational changes could occur upon receptor binding.

  1. Encapsulation of Polymer Colloids in a Sol-Gel Matrix. Direct-Writing of Coassembling Organic-Inorganic Hybrid Photonic Crystals.

    PubMed

    Mikosch, Annabel; Kuehne, Alexander J C

    2016-03-22

    The spontaneous self-assembly of polymer colloids into ordered arrangements provides a facile strategy for the creation of photonic crystals. However, these structures often suffer from defects and insufficient cohesion, which result in flaking and delamination from the substrate. A coassembly process has been developed for convective assembly, resulting in large-area encapsulated colloidal crystals. However, to generate patterns or discrete deposits in designated places, convective assembly is not suitable. Here we experimentally develop conditions for direct-writing of coassembling monodisperse dye-doped polystyrene particles with a sol-gel precursor to form solid encapsulated photonic crystals. In a simple procedure the colloids are formulated in a sol-gel precursor solution, drop-cast on a flat substrate, and dried. We here establish the optimal parameters to form reproducible highly ordered photonic crystals with good optical performance. The obtained photonic crystals interact with light in the visible spectrum with a narrow optical stop-gap.

  2. Periodic dynamics, localization metastability, and elastic interaction of colloidal particles with confining surfaces and helicoidal structure of cholesteric liquid crystals

    NASA Astrophysics Data System (ADS)

    Varney, Michael C. M.; Zhang, Qiaoxuan; Tasinkevych, Mykola; Silvestre, Nuno M.; Bertness, Kris A.; Smalyukh, Ivan I.

    2014-12-01

    Nematic and cholesteric liquid crystals are three-dimensional fluids that possess long-range orientational ordering and can support both topological defects and chiral superstructures. Implications of this ordering remain unexplored even for simple dynamic processes such as the ones found in so-called "fall experiments," or motion of a spherical inclusion under the effects of gravity. Here we show that elastic and surface anchoring interactions prompt periodic dynamics of colloidal microparticles in confined cholesterics when gravity acts along the helical axis. We explore elastic interactions between colloidal microparticles and confining surfaces as well as with an aligned ground-state helical structure of cholesterics for different sizes of spheres relative to the cholesteric pitch, demonstrating unexpected departures from Stokes-like behavior at very low Reynolds numbers. We characterize metastable localization of microspheres under the effects of elastic and surface anchoring periodic potential landscapes seen by moving spheres, demonstrating the important roles played by anchoring memory, confinement, and topological defect transformation. These experimental findings are consistent with the results of numerical modeling performed through minimizing the total free energy due to colloidal inclusions at different locations along the helical axis and with respect to the confining substrates. A potential application emerging from this work is colloidal sorting based on particle shapes and sizes.

  3. Nonclassical crystallization in vivo et in vitro (II): Nanogranular features in biomimetic minerals disclose a general colloid-mediated crystal growth mechanism.

    PubMed

    Rodríguez-Navarro, Carlos; Ruiz-Agudo, Encarnación; Harris, Joe; Wolf, Stephan E

    2016-11-01

    Recent research has shown that biominerals and their biomimetics (i) typically form via an amorphous precursor phase, and (ii) commonly display a nanogranular texture. Apparently, these two key features are closely related, underlining the fact that the formation of biominerals and their biomimetics does not necessarily follow classical crystallization routes, and leaves a characteristic nanotextural imprint which may help to disclose their origins and formation mechanisms. Here we present a general overview of the current theories and models of nonclassical crystallization and their applicability for the advance of our current understanding of biomineralization and biomimetic mineralization. We pay particular attention to the link between nonclassical crystallization routes and the resulting nanogranular textures of biomimetic CaCO3 mineral structures. After a general introductory section, we present an overview of classical nucleation and crystal growth theories and their limitations. Then, we introduce the Ostwald's step rule as a general framework to explain nonclassical crystallization. Subsequently, we describe nonclassical crystallization routes involving stable prenucleation clusters, dense liquid and solid amorphous precursor phases, as well as current nonclassical crystal growth models. The latter include oriented attachment, mesocrystallization and the new model based on the colloidal growth of crystals via attachment of amorphous nanoparticles. Biomimetic examples of nanostructured CaCO3 minerals formed via these nonclassical routes are presented which help us to show that colloid-mediated crystal growth can be regarded as a wide-spread growth mechanism. Implications of these observations for the advance in the current understanding on the formation of biomimetic materials and biominerals are finally outlined.

  4. Evaluation of the effects of 3D diffusion, crystal geometry, and initial conditions on retrieved time-scales from Fe-Mg zoning in natural oriented orthopyroxene crystals

    NASA Astrophysics Data System (ADS)

    Krimer, Daniel; Costa, Fidel

    2017-01-01

    Volcano petrologists and geochemists increasingly use time-scale determinations of magmatic processes from modeling the chemical zoning patterns in crystals. Most determinations are done using one-dimensional traverses across a two-dimensional crystal section. However, crystals are three-dimensional objects with complex shapes, and diffusion and re-equilibration occurs in multiple dimensions. Given that we can mainly study the crystals in two-dimensional petrographic thin sections, the determined time-scales could be in error if multiple dimensional and geometrical effects are not identified and accounted for. Here we report the results of a numerical study where we investigate the role of multiple dimensions, geometry, and initial conditions of Fe-Mg diffusion in an orthopyroxene crystal with the view towards proper determinations of time scales from modeling natural crystals. We found that merging diffusion fronts (i.e. diffusion from multiple directions) causes 'additional' diffusion that has the greatest influence close to the crystal's corners (i.e. where two crystal faces meet), and with longer times the affected area widens. We also found that the one-dimensional traverses that can lead to the most accurate calculated time-scales from natural crystals are along the b- crystallographic axis on the ab-plane when model inputs (concentration and zoning geometry) are taken as measured (rather than inferred from other observations). More specifically, accurate time-scales are obtained if the compositional traverses are highly symmetrical and contain a concentration plateau measured through the crystal center. On the other hand, for two-dimensional models the ab- and ac-planes are better suited if the initial (pre-diffusion) concentration and zoning geometry inputs are known or can be estimated, although these are a priory unknown, and thus, may be difficult to use in practical terms. We also found that under certain conditions, a combined one-dimensional and two

  5. A new 3D Co(II)–organic framework with acylamide-containing tetracarboxylate ligand: Solvothermal synthesis, crystal structure, gas adsorption and magnetic property

    SciTech Connect

    Zhang, Qingfu Zhang, Haina; Geng, Aijing; Wang, Suna; Zhang, Chong

    2014-04-01

    A new cobalt(II)–organic framework, [Co{sub 2}(L)(py){sub 2}(DMSO)]{sub n}• 0.5nDMF• 2nDMSO (1) [H{sub 4}L=5,5'-((naphthalene-2,6-dicarbonyl)bis(azanediyl))diisophthalic acid, py=pyridine, DMSO=dimethyl sulfoxide, DMF=N,N-dimethylformamide], has been solvothermally synthesized and characterized by elemental analysis, IR, TGA, PXRD and single-crystal X-ray crystallography. The structural analysis reveals that complex 1 is a 3D framework built from nanosized acylamide-containing tetracarboxylate ligands (L{sup 4−}) and dinuclear [Co{sub 2}(CO{sub 2}){sub 4}] secondary building units (SBUs), exhibiting a uninodal (4,4)-connected crb topology with the Schläfli symbol of (4• 6{sup 5}). The desolvated complex (1a) displays higher adsorption capability for CO{sub 2} than N{sub 2}, which may be due to the relatively strong binding affinity between the CO{sub 2} molecules and acylamide groups in the framework. The magnetic investigation shows that the dominant antiferromagnetic interaction is observed in complex 1. - Graphical abstract: A new 3D Co(II)–organic framework with nanosized acylamide-containing tetracarboxylate ligand was solvothermally synthesized and structurally characterized, its thermal stability, gas adsorption and magnetic property were studied. - Highlights: • A new 3D Co(II)–organic framework with nanosized acylamide-containing tetracarboxylate ligand has been solvothermally synthesized and characterized. • Complex 1 exhibits a uninodal (4,4)-connected crb topology. • The thermal stability, gas adsorption and magnetic property were studied.

  6. Facile fabrication of a superhydrophobic cage by laser direct writing for site-specific colloidal self-assembled photonic crystal.

    PubMed

    Yoo, Jae-Hyuck; Kwon, Hyuk-Jun; Paeng, Dongwoo; Yeo, Junyeob; Elhadj, Selim; Grigoropoulos, Costas P

    2016-04-08

    Micron-sized ablated surface structures with nano-sized 'bumpy' structures were produced by femtosecond (fs) laser ablation of polytetrafluoroethylene (PTFE) film under ambient conditions. Upon just a single step, the processed surface exhibited hierarchical micro/nano morphology. In addition, due to the tribological properties of PTFE, polydimethylsiloxane (PDMS) could be replicated from the laser-ablated PTFE surface without anti-adhesive surface treatment. By controlling the design of the ablated patterns, tunable wettability and superhydrophobicity were achieved on both PTFE and PDMS replica surfaces. Furthermore, using fs laser ablation direct writing, a flexible superhydrophobic PDMS cage formed by superhydrophobic patterns encompassing the unmodified region was demonstrated for aqueous droplet positioning and trapping. Through evaporation-driven colloidal self-assembly in this superhydrophobic cage, a colloidal droplet containing polystyrene (PS) particles dried into a self-assembled photonic crystal, whose optical band gap could be manipulated by the particle size.

  7. Self-assembly of silica colloidal crystal thin films with tuneable structural colours over a wide visible spectrum

    NASA Astrophysics Data System (ADS)

    Gao, Weihong; Rigout, Muriel; Owens, Huw

    2016-09-01

    Colloidal crystal (CC) thin films that produce structural colours over a wide visible spectrum have been self-assembled from silica nanoparticles (SNPs) using a natural sedimentation method. A series of colloidal suspensions containing uniform SNPs (207-350 nm) were prepared using the Stöber method. The prepared silica suspensions were directly subjected to natural sedimentation at an elevated temperature. The SNPs were deposited under the force of gravity and self-assembled into an ordered array. The solid CC thin films produced structural colours over a wide visible spectrum from red to violet. Visual inspection and colorimetric measurements indicated that the structural colour of the CC thin film is tuneable by varying the SNPs diameters and the viewing angles. The closely packed face-centred cubic (fcc) structure of the CC thin film was confirmed using SEM imaging and was in agreement with the intense colour observed from the film surface.

  8. Hexadecapolar colloids

    NASA Astrophysics Data System (ADS)

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of `colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  9. Hexadecapolar colloids

    PubMed Central

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-01-01

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and f-orbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms' displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. Here we describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and describe the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously. PMID:26864184

  10. Hexadecapolar Colloids

    DOE PAGES

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; ...

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Becausemore » of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.« less

  11. Hexadecapolar Colloids

    SciTech Connect

    Senyuk, Bohdan; Puls, Owen; Tovkach, Oleh M.; Chernyshuk, Stanislav B.; Smalyukh, Ivan I.

    2016-02-11

    Outermost occupied electron shells of chemical elements can have symmetries resembling that of monopoles, dipoles, quadrupoles and octupoles corresponding to filled s-, p-, d- and forbitals. Theoretically, elements with hexadecapolar outer shells could also exist, but none of the known elements have filled g-orbitals. On the other hand, the research paradigm of ‘colloidal atoms’ displays complexity of particle behaviour exceeding that of atomic counterparts, which is driven by DNA functionalization, geometric shape and topology and weak external stimuli. We describe elastic hexadecapoles formed by polymer microspheres dispersed in a liquid crystal, a nematic fluid of orientationally ordered molecular rods. Because of conically degenerate boundary conditions, the solid microspheres locally perturb the alignment of the nematic host, inducing hexadecapolar distortions that drive anisotropic colloidal interactions. We uncover physical underpinnings of formation of colloidal elastic hexadecapoles and report the ensuing bonding inaccessible to elastic dipoles, quadrupoles and other nematic colloids studied previously.

  12. Role of surfactant during microemulsion photopolymerization for the creation of three-dimensional (3D) liquid crystal elastomer microsphere spatial cell scaffolds

    NASA Astrophysics Data System (ADS)

    Hegmann, Elda; Bera, Tanmay; Malcuit, Christopher; Clements, Robert

    2016-06-01

    Three-dimensional (3D) cell scaffolds based on connected nematic liquid crystal elastomer microsphere architectures support the attachment and proliferation of C2C12 myoblasts, neuroblastomas (SHSY5Y) and human dermal fibroblasts (hDF). The microsphere spatial cell scaffolds were prepared by an oil-in-water microemulsion photopolymerization of reactive nematic mesogens in the presence of various surfactants, and the as-prepared scaffold constructs are composed of smooth surface microspheres with diameter ranging from 10 to 30 μm. We here investigate how the nature and type of surfactant used during the microemulsion photopolymerization impacts both the size and size distribution of the resulting microspheres as well as their surface morphology, i.e. the surface roughness.

  13. Microwave assistant one pot synthesis, crystal structure, antifungal activities and 3D-QSAR of novel 1,2,4-triazolo[4,3-a]pyridines.

    PubMed

    Liu, Xing-Hai; Sun, Zhao-Hui; Yang, Ming-Yan; Tan, Cheng-Xia; Weng, Jian-Quan; Zhang, Yong-Gang; Ma, Yi

    2014-09-01

    A series of novel 1,2,4-triazolo[4,3-a]pyridines were synthesized, and their structures were characterized by (1) H NMR, MS, elemental analysis, and single-crystal X-ray diffraction analysis. The antifungal activities were evaluated. The antifungal activity results indicated that the compound 2b, 2g, 2p, and 2i exhibited good activities. The activity of compound 2b, 2g, 2p, and 2i can compare with the commercial pesticide. The 3D-QSAR model was developed using CoMFA method. Both the steric and electronic field distributions of CoMFA are in good agreement in this work and will be very helpful in designing a new set of analogues.

  14. Identifying Structure-Property Relationships Through DREAM.3D Representative Volume Elements and DAMASK Crystal Plasticity Simulations: An Integrated Computational Materials Engineering Approach

    NASA Astrophysics Data System (ADS)

    Diehl, Martin; Groeber, Michael; Haase, Christian; Molodov, Dmitri A.; Roters, Franz; Raabe, Dierk

    2017-03-01

    Predicting, understanding, and controlling the mechanical behavior is the most important task when designing structural materials. Modern alloy systems—in which multiple deformation mechanisms, phases, and defects are introduced to overcome the inverse strength-ductility relationship—give raise to multiple possibilities for modifying the deformation behavior, rendering traditional, exclusively experimentally-based alloy development workflows inappropriate. For fast and efficient alloy design, it is therefore desirable to predict the mechanical performance of candidate alloys by simulation studies to replace time- and resource-consuming mechanical tests. Simulation tools suitable for this task need to correctly predict the mechanical behavior in dependence of alloy composition, microstructure, texture, phase fractions, and processing history. Here, an integrated computational materials engineering approach based on the open source software packages DREAM.3D and DAMASK (Düsseldorf Advanced Materials Simulation Kit) that enables such virtual material development is presented. More specific, our approach consists of the following three steps: (1) acquire statistical quantities that describe a microstructure, (2) build a representative volume element based on these quantities employing DREAM.3D, and (3) evaluate the representative volume using a predictive crystal plasticity material model provided by DAMASK. Exemplarily, these steps are here conducted for a high-manganese steel.

  15. Photonic bandgap extension of surface-disordered 3D photonic crystals based on the TiO2 inverse opal architecture.

    PubMed

    Wang, Aijun; Liu, Wenfang; Tang, Junjie; Chen, Sheng-Li; Dong, Peng

    2014-04-15

    A photonic bandgap (PBG) extension of surface-disordered 3D photonic crystals (PCs) based on the TiO2 inverse opal (TiO2-IO) architecture has been demonstrated. By using a liquid phase deposition (LPD) process based on the controlled hydrolysis of ammonium hexafluorotitanate and boric acid, an extra layer of TiO2 nanoparticles were deposited onto the internal surface of the air voids in the TiO2-IOs to increase their surface roughness, thereby introducing surface disorder in the 3D order structures. The PBG relative width of surface-disordered TiO2-IOs has been broadened significantly, and, compared to the original TiO2-IO, its largest rate of increase (27%) has been obtained. It was found that the PBG relative width increased rapidly at first and then to a much slower rate of change with increase of the duration of the LPD time. A possible cause for this finding is discussed in this Letter.

  16. Structure and magnetism of a binuclear Cu(II) pyrophosphate: transition to a 3D magnetic behaviour studied by single crystal EPR.

    PubMed

    Sartoris, Rosana P; Nascimento, Otaciro R; Santana, Ricardo C; Perec, Mireille; Baggio, Ricardo F; Calvo, Rafael

    2015-03-14

    A binuclear Cu(II) compound [Cu2(bpa)2(P2O7)(H2O)2]·2.5H2O, 1, (bpa = 2,2'-bipyridylamine), with pairs of Cu(II) ions bridged by one pyrophosphate tetra-anion, was synthesized and crystallized. Its triclinic structure was determined by single-crystal X-ray diffraction. Electron paramagnetic resonance (EPR) spectra of single crystal samples of 1 were recorded for a fixed orientation of the magnetic field (B0) as a function of temperature (T) between 4.7 and 293 K, and at T = 4.7, 50 and 293 K, as a function of the orientation of B0. Below ∼8 K, the spectra are assigned to two types of mononuclear crystal defects hyperfine-coupled to one copper and two nitrogen nuclei. The g-matrices and hyperfine couplings at these T provide information about the structures of these defects. Above 10 K, the spectrum is dominated by the response of the bulk binuclear Cu(II) material, showing hyperfine interactions with two copper nuclei, collapsing to a single peak above 18 K when the units are magnetically connected, and the magnetic behaviour becomes 3D. We attribute the results above 10 K to the interplay of an AFM intrabinuclear exchange interaction J0 = -28(3) cm(-1) (defined as Hex = -J0S1·S2), and three orders of magnitude weaker exchange coupling with average magnitude |J1| ≥ 0.022 cm(-1) between Cu(II) ions in neighbouring binuclear units. The interplays between structure, exchange couplings, magnetic dimension and spin dynamics in the binuclear compound are discussed. A previously unreported situation, where the structure of the spectra arising from the anisotropic spin-spin interaction term (D) within the binuclear unit is averaged out, but the forbidden half field transition is not, is observed and explained.

  17. Colloidal Defect-Free Silicalite-1 Single Crystals: Preparation, Structure Characterization, Adsorption, and Separation Properties for Alcohol/Water Mixtures.

    PubMed

    Zhou, Han; Mouzon, Johanne; Farzaneh, Amirfarrokh; Antzutkin, Oleg N; Grahn, Mattias; Hedlund, Jonas

    2015-08-04

    In this work, colloidal silicalite-1 single crystals are for the first time synthesized using fluoride as mineralizing agent at near neutral pH. SEM, TEM, DLS, XRD, solid-state (29)Si MAS NMR, and adsorption/desorption experiments using nitrogen, water, n-butanol, and ethanol as adsorbates were used to characterize the crystals. The single crystals have a platelike habit with a length of less than 170 nm and an aspect ratio (length/width) of about 1.2, and the thickness of the crystals is less than 40 nm. Compared with silicalite-1 crystals grown using hydroxide as mineralizing agent, the amount of structural defects in the lattice is significantly reduced and the hydrophobicity is increased. Membrane separation and adsorption results show that the synthesized defect-free crystals present high selectivity to alcohols from alcohol/water mixtures. The n-butanol/water adsorption selectivities were ca. 165 and 14 for the defect-free crystals and a reference sample containing defects, respectively, illustrating the improvement in n-butanol/water selectivity by eliminating the polar silanol defects.

  18. A combined dislocation fan-finite element (DF-FE) method for stress field simulation of dislocations emerging at the free surfaces of 3D elastically anisotropic crystals

    NASA Astrophysics Data System (ADS)

    Balusu, K.; Huang, H.

    2017-04-01

    A combined dislocation fan-finite element (DF-FE) method is presented for efficient and accurate simulation of dislocation nodal forces in 3D elastically anisotropic crystals with dislocations intersecting the free surfaces. The finite domain problem is decomposed into half-spaces with singular traction stresses, an infinite domain, and a finite domain with non-singular traction stresses. As such, the singular and non-singular parts of the traction stresses are addressed separately; the dislocation fan (DF) method is introduced to balance the singular traction stresses in the half-spaces while the finite element method (FEM) is employed to enforce the non-singular boundary conditions. The accuracy and efficiency of the DF method is demonstrated using a simple isotropic test case, by comparing it with the analytical solution as well as the FEM solution. The DF-FE method is subsequently used for calculating the dislocation nodal forces in a finite elastically anisotropic crystal, which produces dislocation nodal forces that converge rapidly with increasing mesh resolutions. In comparison, the FEM solution fails to converge, especially for nodes closer to the surfaces.

  19. Direct visualization of spatiotemporal structure of self-assembled colloidal particles in electrohydrodynamic flow of a nematic liquid crystal.

    PubMed

    Sasaki, Yuji; Hoshikawa, Hikaru; Seto, Takafumi; Kobayashi, Fumiaki; Jampani, V S R; Herminghaus, Stephan; Bahr, Christian; Orihara, Hiroshi

    2015-04-07

    Characterization of spatiotemporal dynamics is of vital importance to soft matter systems far from equilibrium. Using a confocal laser scanning microscopy, we directly reveal three-dimensional motion of surface-modified particles in the electrohydrodynamic convection of a nematic liquid crystal. Particularly, visualizing a caterpillar-like motion of a self-assembled colloidal chain demonstrates the mechanism of the persistent transport enabled by the elastic, electric, and hydrodynamic contributions. We also precisely show how the particles' trajectory is spatially modified by simply changing the surface boundary condition.

  20. Guided mode extraction in monolayer colloidal crystals based on the phase variation of reflection and transmission coefficients

    NASA Astrophysics Data System (ADS)

    Nekuee, Seyed Amir Hossein; Akbari, Mahmood; Khavasi, Amin

    2016-04-01

    An accurate and fast method for guided modes extraction in monolayer colloidal crystals and their inverse replicas is presented. These three-dimensional structures are composed of a monolayer of spherical particles that can easily and simply be prepared by self-assembly method in close packed hexagonal lattices. In this work, we describe how the guided modes, even or odd modes and light cone boundary can be easily determined using phase variations of reflection and transmission coefficients. These coefficients are quickly calculated by Fourier modal method. The band structures are obtained for a monolayer of polystyrene particles and two-dimensional TiO2 inverse opal by this proposed method.

  1. Effect of direction of an external force on crystallization of colloidal particles in a V-shaped groove by sedimentation

    NASA Astrophysics Data System (ADS)

    Sato, Masahide

    2016-09-01

    We carried out Langevin dynamics simulations to study the effect of the direction of a uniform external force on the crystallization of colloidal particles in a V-shaped groove. When the inclination of the side walls of a groove was set to a suitable value and the external force bisected the angle, the face-centered-cubic (fcc) structure grew with a {100} growth interface. When the external force was inclined, the number of solidified particles decreased with increasing inclination, which is different from the growth in an inverted pyramidal container.

  2. 3D visualization of polymer nanostructure

    SciTech Connect

    Werner, James H

    2009-01-01

    Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout a nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials

  3. An in-vitro assessment of a NanoCrystal beclomethasone dipropionate colloidal dispersion via ultrasonic nebulization.

    PubMed

    Ostrander, K D; Bosch, H W; Bondanza, D M

    1999-11-01

    Short duration ultrasonic nebulization of a concentrated NanoCrystal colloidal dispersion of beclomethasone dipropionate demonstrated an increased respirable fraction and decreased throat deposition when evaluated in an Andersen 8-stage cascade impactor in comparison to the commercially available propellant-based product Vanceril. An aqueous-based 1.25% w/w colloidal dispersion of beclomethasone dipropionate when aerosolized via an Omron NE-U03 ultrasonic nebulizer generated a respirable drug dose from 22.6 to 39.4 micrograms per 2 s actuation period, compared to 12.8 micrograms for a single actuation of Vanceril. When viewed as a percentage of the emitted dose (through the actuator or mouthpiece), the respirable fraction ranged from 56 to 72% for the nanocrystalline formulation versus 36% for the propellant system. In addition, the throat deposition as seen in the induction port was 9-10% of the emitted dose for the novel suspension, as compared to 53% for the commercial product. Thus, when used with the device outlined herein, a nanocrystalline colloidal suspension of beclomethasone dipropionate affords greater potential drug delivery to the conductive airways of the lung in both quantity and as a percent of emitted dose. Additionally, lower potential throat deposition values were observed which may retard the development of undesirable side effects, such as candidiasis, when compared to a propellant based delivery system. Lastly, the ability to atomize aqueous-based nanocrystalline colloidal dispersions represents an environmentally sound alternative to the current chlorofluorocarbon (CFC)-based products and may avoid the technical difficulties of reformulating with chlorine-free propellants.

  4. Preparation of highly permeable BPPO microfiltration membrane with binary porous structures on a colloidal crystal substrate by the breath figure method.

    PubMed

    Yuan, Hua; Yu, Bing; Cong, Hailin; Peng, Qiaohong; Yang, Zhen; Luo, Yongli; Chi, Ming

    2016-01-01

    A highly permeable brominated poly(phenylene oxide) (BPPO) microfiltration membrane with binary porous structures was fabricated by combination of the breath figure and colloidal crystal template methods. The pore size in the bottom layer of the membrane was adjusted by the diameter of SiO2 microspheres in the colloidal crystal template, while the pore size in the top layer of the membrane was adjusted by varying the BPPO concentration in the casting solution. The permeability of the membrane cast on the colloidal crystal substrate was much higher than that of the membrane cast on a bare silicon wafer. The binary porous BPPO membrane with high permeability and antifouling property was used for microfiltration applications.

  5. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow.

    PubMed

    Gerloff, Sascha; Klapp, Sabine H L

    2016-12-01

    Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.

  6. Depinning and heterogeneous dynamics of colloidal crystal layers under shear flow

    NASA Astrophysics Data System (ADS)

    Gerloff, Sascha; Klapp, Sabine H. L.

    2016-12-01

    Using Brownian dynamics (BD) simulations and an analytical approach we investigate the shear-induced, nonequilibrium dynamics of dense colloidal suspensions confined to a narrow slit-pore. Focusing on situations where the colloids arrange in well-defined layers with solidlike in-plane structure, the confined films display complex, nonlinear behavior such as collective depinning and local transport via density excitations. These phenomena are reminiscent of colloidal monolayers driven over a periodic substrate potential. In order to deepen this connection, we present an effective model that maps the dynamics of the shear-driven colloidal layers to the motion of a single particle driven over an effective substrate potential. This model allows us to estimate the critical shear rate of the depinning transition based on the equilibrium configuration, revealing the impact of important parameters, such as the slit-pore width and the interaction strength. We then turn to heterogeneous systems where a layer of small colloids is sheared with respect to bottom layers of large particles. For these incommensurate systems we find that the particle transport is dominated by density excitations resembling the so-called "kink" solutions of the Frenkel-Kontorova (FK) model. In contrast to the FK model, however, the corresponding "antikinks" do not move.

  7. Colloidal Covalent Organic Frameworks

    PubMed Central

    2017-01-01

    Covalent organic frameworks (COFs) are two- or three-dimensional (2D or 3D) polymer networks with designed topology and chemical functionality, permanent porosity, and high surface areas. These features are potentially useful for a broad range of applications, including catalysis, optoelectronics, and energy storage devices. But current COF syntheses offer poor control over the material’s morphology and final form, generally providing insoluble and unprocessable microcrystalline powder aggregates. COF polymerizations are often performed under conditions in which the monomers are only partially soluble in the reaction solvent, and this heterogeneity has hindered understanding of their polymerization or crystallization processes. Here we report homogeneous polymerization conditions for boronate ester-linked, 2D COFs that inhibit crystallite precipitation, resulting in stable colloidal suspensions of 2D COF nanoparticles. The hexagonal, layered structures of the colloids are confirmed by small-angle and wide-angle X-ray scattering, and kinetic characterization provides insight into the growth process. The colloid size is modulated by solvent conditions, and the technique is demonstrated for four 2D boronate ester-linked COFs. The diameter of individual COF nanoparticles in solution is monitored and quantified during COF growth and stabilization at elevated temperature using in situ variable-temperature liquid cell transmission electron microscopy imaging, a new characterization technique that complements conventional bulk scattering techniques. Solution casting of the colloids yields a free-standing transparent COF film with retained crystallinity and porosity, as well as preferential crystallite orientation. Collectively this structural control provides new opportunities for understanding COF formation and designing morphologies for device applications. PMID:28149954

  8. Pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} on amorphous dielectric layers towards monolithic 3D photonic integration

    SciTech Connect

    Li, Haofeng; Brouillet, Jeremy; Wang, Xiaoxin; Liu, Jifeng

    2014-11-17

    We demonstrate pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} crystallized on amorphous layers at <450 °C towards 3D Si photonic integration. We developed two approaches to seed the lateral single crystal growth: (1) utilize the Gibbs-Thomson eutectic temperature depression at the tip of an amorphous GeSn nanotaper for selective nucleation; (2) laser-induced nucleation at one end of a GeSn strip. Either way, the crystallized Ge{sub 0.89}Sn{sub 0.11} is dominated by a single grain >18 μm long that forms optoelectronically benign twin boundaries with others grains. These pseudo single crystal, direct-band-gap Ge{sub 0.89}Sn{sub 0.11} patterns are suitable for monolithic 3D integration of active photonic devices on Si.

  9. EDITORIAL: Colloidal suspensions Colloidal suspensions

    NASA Astrophysics Data System (ADS)

    Petukhov, Andrei; Kegel, Willem; van Duijneveldt, Jeroen

    2011-05-01

    N W 2002 Nature 416 811 [9] Borsboom M et al 1998 J. Synchrotron Radiat. 5 518 [10] Zernike F and Prins J A 1927 Z. Phys. 41 184 Colloidal suspensions contents How much does the core structure of a three-phase contact line contribute to the line tension near a wetting transition? J O Indekeu, K Koga and B Widom A systematic coarse-graining strategy for semi-dilute copolymer solutions: from monomers to micelles Barbara Capone, Ivan Coluzza and Jean-Pierre Hansen Structural searches using isopointal sets as generators: densest packings for binary hard sphere mixtures Toby S Hudson and Peter Harrowell The theory of delamination during drying of confined colloidal suspensions K J Wallenstein and W B Russel Electrostatics Modeling of equilibrium hollow objects stabilized by electrostatics Ethayaraja Mani, Jan Groenewold and Willem K Kegel The Donnan equilibrium: I. On the thermodynamic foundation of the Donnan equation of state A Philipse and A Vrij Colloidal rods and platelets Cholesteric order in systems of helical Yukawa rods H H Wensink and G Jackson Magnetic-field-induced nematic-nematic phase separation and droplet formation in colloidal goethite E van den Pol, A A Verhoeff, A Lupascu, M A Diaconeasa, P Davidson, I Dozov, B W M Kuipers, D M E Thies-Weesie and G J Vroege Structure of colloidal sphere-plate mixtures N Doshi, G Cinacchi, J S van Duijneveldt, T Cosgrove, S W Prescott, I Grillo, J Phipps and D I Gittins 3D structure of nematic and columnar phases of hard colloidal platelets A B G M Leferink op Reinink, J M Meijer, D Kleshchanok, D V Byelov, G J Vroege, A V Petukhov and H N W Lekkerkerker Phase behaviour of binary mixtures of diamagnetic colloidal platelets in an external magnetic field Jonathan Phillips and Matthias Schmidt Rheo-SAXS investigation of shear-thinning behaviour of very anisometric repulsive disc-like clay suspensions A M Philippe, C Baravian, M Imperor-Clerc, J De Silva, E Paineau, I Bihannic, P Davidson, F Meneau, P Levitz and L J Michot

  10. Transport and crystallization of colloidal particles in a thin nematic cell

    NASA Astrophysics Data System (ADS)

    Karabot, M. Å.; Tkalec, U.; Muševič, I.

    2007-09-01

    In a thin planar nematic cell, the application of an AC electric field induces a macroscopic transport of micrometer-sized colloidal particles along the nematic director. We have analyzed the dependence of particle velocities on the electric-field amplitude and frequency and found that it decreases exponentially with increasing frequency. Using specially designed electrodes we have observed that colloidal particles could be pumped and accelerated across the field-no-field interface, and measured the structural force and the corresponding potential, which is of the order of 10000 kBT for 4μm particles. We demonstrate that spatially periodic close-packed crystalline colloidal structures can be obtained, which are thermodinamically metastable for many days after turning off the electric field and slowly decay into linear chains. Above the nematic-isotropic phase transition, such crystalline structures are non-stable and decay in few minutes.

  11. New Synthetic and Assembly Methodology for Guiding Nanomaterial Assembly with High Fidelity into 1D Clusters and 3D Crystals Using Biomimetic Interactions

    DTIC Science & Technology

    2015-03-26

    mediated electrostatic assembly of nanoparticles" J. Colloid Interface Sci. 2014, 432, 144-150. (4) C. M. Alexander, K. L. Hamner, M.M. Maye*, J.D...electrostatic assembly of nanoparticles" J. Colloid Interface Sci. 2014, 15, 144-150. 7. C. M. Alexander, K. L. Hamner, M.M. Maye*, J.D. Dabrowiak...nanoparticles assembled by DNA and thermosensitive co-polymers" ACS Fall Meeting, Colloids /Nanoscience Section, Indianapolis, 2013 14. P. Lutz, W. Wu, M.M. Maye

  12. New five coordinated supramolecular structured cadmium complex as precursor for CdO nanoparticles: Synthesis, crystal structure, theoretical and 3D Hirshfeld surface analyses

    NASA Astrophysics Data System (ADS)

    Ghanbari Niyaky, S.; Montazerozohori, M.; Masoudiasl, A.; White, J. M.

    2017-03-01

    In this paper, a combined experimental and theoretical study on a new CdLBr2 complex (L = N1-(2-bromobenzylidene)-N2-(2-((E)-(2-bromobenzylidene) amino)ethyl) ethane-1,2-diamine) synthesized via template method, is described. The crystal structure analysis of the complex indicates that, the Cd(II) ion is centered in a distorted square pyramidal space constructed by three iminic nitrogens of the ligand as well as two bromide anions. More analysis of crystal packing proposed a supramolecular structure stabilized by some non-covalent interactions such as Br⋯Br and Xsbnd H⋯Br (X = N and C) in solid state. Furthermore, 3D Hirshfeld surface analyses and DFT studies were applied for theoretical investigation of the complexes. Theoretical achievements were found in a good agreement with respect to the experimental data. To evaluate the nature of bonding and the strength of the intra and inter-molecular interactions a natural bond orbital (NBO) analysis on the complex structure was performed. Time dependent density functional theory (TD-DFT) was also applied to predict the electronic spectral data of the complex as compared with the experimental ones. CdLBr2 complex as nano-structure compound was also prepared under ultrasonic conditions and characterized by scanning electron microscopy (SEM) and X-ray powder diffraction (XRPD). Finally, it was found that the cadmium complex can be used as a suitable precursor for preparation of CdO nanoparticles via calcination process at 600 °C under air atmosphere.

  13. Site-specific colloidal crystal nucleation by template-enhanced particle transport

    NASA Astrophysics Data System (ADS)

    Mishra, Chandan K.; Sood, A. K.; Ganapathy, Rajesh

    2016-10-01

    The monomer surface mobility is the single most important parameter that decides the nucleation density and morphology of islands during thin-film growth. During template-assisted surface growth in particular, low surface mobilities can prevent monomers from reaching target sites and this results in a partial to complete loss of nucleation control. Whereas in atomic systems a broad range of surface mobilities can be readily accessed, for colloids, owing to their large size, this window is substantially narrow and therefore imposes severe restrictions in extending template-assisted growth techniques to steer their self-assembly. Here, we circumvented this fundamental limitation by designing templates with spatially varying feature sizes, in this case moiré patterns, which in the presence of short-range depletion attraction presented surface energy gradients for the diffusing colloids. The templates serve a dual purpose: first, directing the particles to target sites by enhancing their surface mean-free paths and second, dictating the size and symmetry of the growing crystallites. Using optical microscopy, we directly followed the nucleation and growth kinetics of colloidal islands on these surfaces at the single-particle level. We demonstrate nucleation control, with high fidelity, in a regime that has remained unaccessed in theoretical, numerical, and experimental studies on atoms and molecules as well. Our findings pave the way for fabricating nontrivial surface architectures composed of complex colloids and nanoparticles as well.

  14. Ga, Ca, and 3d transition element (Cr through Zn) partitioning among spinel-lherzolite phases from the Lanzo massif, Italy: Analytical results and crystal chemistry

    SciTech Connect

    Wogelius, R.A.; Fraser, D.G.

    1994-06-01

    Ultramafic rocks exposed in Lanzo massif, Italy is a record of mantle geochemistry, melting, sub-solidus re-equilibration. Plagioclase(+ spinel)-lherzolite samples were analyzed by Scanning Proton Microscopy, other techniques. Previous work postulated partial melting events and a two-stage sub-solidus cooling history; this paper notes Ga enrichment on spinel-clinopyroxene grain boundaries, high Ga and transition element content of spinel, and pyroxene zonation in Ca and Al. Trace element levels in olivine and orthopyroxene are also presented. Zoning trends are interpreted as due to diffusion during cooling. Olivine-clinopyroxene Cr and Ca exchange as well as clinopyroxene and spinel zonation trends indicate that the massif experienced at least two sub-solidus cooling episodes, one at 20 kbar to 1000 C and one at 8 kbar <750C. Ga levels in cores of Lanzo high-Cr spinels are high (82-66 ppM) relative to other mantle spinels (66-40 ppM), indicating enrichment. Ga content of ultramafic spinels apparently increases with Cr content; this may be due to: increased Ga solubility stemming from crystal chemical effects and/or higher Ga activities in associated silicate melts. Thus, during melting, high-Cr residual spinel may tend to buffer solid-phase Ga level. These spinels are not only rich in Ga and Cr (max 26.37 el. wt %), but also in Fe (max 21.07 el. wt %), Mn (max 3400 ppM), and Zn (max 2430 ppM). These enrichments are again due to melt extraction and partitioning into spinel structure. Low Ni (min 1050 ppM) levels are due to unsuccessful competition of Ni with Cr for octahedral structural sites caused by crystal field. Comparisons of change in partitioning vs Cr content among several 3d transition elements for spinels from Lanzo, other localities allow us to separate crystal field effects from bulk chemical effects and to show that in typical assemblages, inversion of olivine-spinel partition coefficient for Ni from <1 to >1 should occur at 11% el. wt. Cr in spinel.

  15. High-resolution 3D structural and optical analyses of hybrid or composite materials by means of scanning probe microscopy combined with the ultramicrotome technique: an example of application to engineering of liquid crystals doped with fluorescent quantum dots

    NASA Astrophysics Data System (ADS)

    Mochalov, Konstantin E.; Efimov, Anton E.; Bobrovsky, Alexey Yu.; Agapov, Igor I.; Chistyakov, Anton A.; Oleinikov, Vladimir A.; Nabiev, Igor

    2013-05-01

    Combination of nanometer-scale 3D structural analysis with optical characterization of the same material is a challenging task. Its results may be important for nanophotonics, materials science, and quality control. We have developed a new technique for complementary high-resolution structural and optical characterization followed by optical spectroscopic and microscopic measurements accompanied by reconstruction of the 3D structure in the same area of the sample. The 3D structure is reconstructed by combination of ultramicrotomic and SPM techniques allowing the study of the 3D distribution of implanted nanoparticles and their effect on the matrix structure. The combination of scanning probe nanotomography (SPN) and optical microspectroscopy makes it possible to direct estimate how the 3D structural characteristics of materials affect their macroscopic optical properties. The technique developed has been applied to the engineering of materials made from cholesteric liquid crystals and fluorescent quantum dots (QDs). These materials permit photochemical patterning and image recording through the changes in the dissymmetry factor of circular polarization of QD emission. The differences in the polarisation images and morphological characteristics of the liquid crystal matrix have proved to be correlated with the arrangement of the areas of homogeneous distribution and nonhomogeneous clustering of QDs. The reconstruction of the 3D structure of the liquid crystal matrix in the areas of homogeneous QD distribution has shown that QDs embedded into cholesteric liquid crystal matrices do not perturb their periodic planar texture. The combined optical/SPM/ultramicrotome technique will be indispensable for evaluating the effects of inorganic nanoparticles on the organisation of organic and liquid crystal matrices, biomedical materials, cells, and tissues.

  16. Thermally-induced single-crystal-to-single-crystal transformations from a 2D two-fold interpenetrating square lattice layer to a 3D four-fold interpenetrating diamond framework and its application in dye-sensitized solar cells.

    PubMed

    Gao, Song; Fan, Rui Qing; Wang, Xin Ming; Wei, Li Guo; Song, Yang; Du, Xi; Xing, Kai; Wang, Ping; Yang, Yu Lin

    2016-07-28

    In this work, a rare 2D → 3D single-crystal-to-single-crystal transformation (SCSC) is observed in metal-organic coordination complexes, which is triggered by thermal treatment. The 2D two-fold interpenetrating square lattice layer [Cd(IBA)2]n (1) is irreversibly converted into a 3D four-fold interpenetrating diamond framework {[Cd(IBA)2(H2O)]·2.5H2O}n (2) (HIBA = 4-(1H-imidazol-1-yl)benzoic acid). Consideration is given to these two complexes with different interpenetrating structures and dimensionality, and their influence on photovoltaic properties are studied. Encouraged by the UV-visible absorption and HOMO-LUMO energy states matched for sensitizing TiO2, the two complexes are employed in combination with N719 in dye-sensitized solar cells (DSSCs) to compensate absorption in the ultraviolet and blue-violet region, offset competitive visible light absorption of I3(-) and reducing charge the recombination of injected electrons. After co-sensitization with 1 and 2, the device co-sensitized by 1/N719 and 2/N719 to yield overall efficiencies of 7.82% and 8.39%, which are 19.94% and 28.68% higher than that of the device sensitized only by N719 (6.52%). Consequently, high dimensional interpenetrating complexes could serve as excellent co-sensitizers and have application in DSSCs.

  17. 3D cone-sheet and crystal-settling models reveal magma-reservoir structure of the Carlingford central complex, Ireland

    NASA Astrophysics Data System (ADS)

    Schauroth, Jenny; Burchardt, Steffi; Meade, Fiona; Troll, Valentin R.

    2014-05-01

    The Palaeogene Carlingford central complex, northeast Ireland, hosts a swarm of mostly basaltic cone-sheets with several lithological subsets (Halsall, 1974). The two most abundant sets are aphyric and highly porphyritic cone-sheets with up to 80% of cm-sized plagioclase phenocrysts. The abundance of highly porphyritic cone-sheets seems to systematically increase with altitude compared to the aphyric type (Meade, 2008). We hypothesised that this observation might be explained by the zonation of the source magma reservoir. In order to test this hypothesis, we modelled the 3D cone-sheet structure at depth and the settling of plagioclase phenocrysts. The 3D model of the Carlingford cone-sheet swarm reveals that lithological types of Carlingford cone-sheets are not systematically distributed in space. Using the method proposed by Burchardt et al. (2013), we constructed the likely source reservoir of the cone-sheets, which is saucer-shaped, elongated in NW direction, 7 km long and 3 km wide, and located at a depth of 1 km below the present-day land surface. Our calculation of the terminal velocity of the plagioclase phenocrysts shows that the large phenocrysts in the porphyritic cone-sheets were too big to float at the conditions present in the Carlingford magma reservoir. We can therefore exclude vertical magma-chamber stratification as an explanation for the formation and distribution of porphyritic and aphyric cone-sheets. Instead, we envisage the formation of a crystal mush at the base and sides of the Carlingford magma reservoir. Cone-sheet injection and magma-cha,ber replenishments have remobilised plagioclase cumulates, which may explain the occurrence and distribution of aphyric and highly porphyritic cone-sheets. REFERENCES Burchardt, S., Troll, V. R., Mathieu, L., Emeleus, H. C., Donaldson, C., 2013, Scientific Reports 3, 2891. Halsall, T.J., 1974, The minor intrusions and structure of the Carlingford complex, Eire (PhD thesis): University of Leicester. Meade

  18. Nano-engineering of colloidal particles, synthetic biomimetic blood cells, synthetic opals, photonic crystals and the physics of self-assembling nanostructures

    NASA Astrophysics Data System (ADS)

    Landon, Preston Boone

    2005-11-01

    Lithographically patterned substrates serving as geometric guides that force colloidal spheres to assemble into a face centered cubic (FCC) crystal lattice vertically along the [100] direction are demonstrated. The self assembly of spherical colloidal particles and their interaction forces are also described. Colloidal silica spheres are shown to sediment over large areas in a way that is similar to that of uncharged particles and to self assemble along the [100] direction of the FCC crystal lattice under the described conditions. The liquid phase in colloidal silica dispersions is shown to be a collection of partially interacting granulated regions and not a global network of interacting spheres resulting from strong horizontal forces. The experimental data is tied together with the traditional interaction forces from colloidal theory to explain the self assembly process for large populations of charged spheres. This new understanding resulted in the formation of opalescent crystallites (1.2cm x 8mm x 4mm) with 250nm diameter silica spheres and was used to create 1 mm wide opalescent crystallites with sphere diameters up to 2.3mum. The model predicts that under certain laboratory created conditions, polystyrene spheres will sediment vertically along the [100] direction of the FCC crystal lattice with sphere volume/volume fractions as high as 10%. Experimental verification was achieved using polystyrene spheres with various diameters between 200--500nm. Metallic, metallodielectric, chalcogenide and electro-luminescent polymer photonic crystals were made from synthetic silica opal templates with various sphere diameters between 200nm and 2.3mum. Hollow colloidal discs 1.5mum thick with 4mum diameters were fabricated using human red blood cells as templates. The blood cells were chemically encapsulated in a thin golden shell of controllable thickness. Control of the osmotic pressure during the encapsulation process allowed control over the shape of the resulting

  19. Role of surface ligands in the nanoparticle assemblies: a case study of regularly shaped colloidal crystals composed of sodium rare earth fluoride.

    PubMed

    Feng, Wei; Sun, Ling-Dong; Yan, Chun-Hua

    2011-04-05

    Assembly of nanoparticles is a promising route to fabricate devices from nanomaterials. Colloidal crystals are well-defined three-dimensional assemblies of nanoparticles with long-range ordered structures and crystalline symmetries. Here, we use a solvent evaporation induced assembly method to obtain colloidal crystals composed of polyhedral sodium rare earth fluoride nanoparticles. The building blocks exhibit the same crystalline orientation in each colloidal crystal as indicated in electron diffraction patterns. The driving force of the oriented assembly is ascribed to the facet-selected capping of oleic acid molecules on {110} facets of the nanoparticles, and the favorable coordination behavior of OA molecules is explained by the steric hindrance determined adsorption based on the studies of the surface atomic structure of nanocrystals and molecular mechanics simulation of OA molecules. The capping ligands also provide hydrophobic interactions between nanoparticles and further direct the oriented assembly process to construct a face-centered cubic structure. These results not only provide a new type of building block for colloidal crystals, but also clarify the important role of surface ligands, which determine the packed structure and orientations of nanoparticles in the assemblies.

  20. Fabrication of Inverted Colloidal Crystal Poly(ethylene glycol) Scaffold: A Three-dimensional Cell Culture Platform for Liver Tissue Engineering.

    PubMed

    Shirahama, Hitomi; Kumar, Supriya K; Jeon, Won-Yong; Kim, Myung Hee; Lee, Jae Ho; Ng, Soon Seng; Tabaei, Seyed R; Cho, Nam-Joon

    2016-08-27

    The ability to maintain hepatocyte function in vitro, for the purpose of testing xenobiotics' cytotoxicity, studying virus infection and developing drugs targeted at the liver, requires a platform in which cells receive proper biochemical and mechanical cues. Recent liver tissue engineering systems have employed three-dimensional (3D) scaffolds composed of synthetic or natural hydrogels, given their high water retention and their ability to provide the mechanical stimuli needed by the cells. There has been growing interest in the inverted colloidal crystal (ICC) scaffold, a recent development, which allows high spatial organization, homotypic and heterotypic cell interaction, as well as cell-extracellular matrix (ECM) interaction. Herein, we describe a protocol to fabricate the ICC scaffold using poly (ethylene glycol) diacrylate (PEGDA) and the particle leaching method. Briefly, a lattice is made from microsphere particles, after which a pre-polymer solution is added, properly polymerized, and the particles are then removed, or leached, using an organic solvent (e.g., tetrahydrofuran). The dissolution of the lattice results in a highly porous scaffold with controlled pore sizes and interconnectivities that allow media to reach cells more easily. This unique structure allows high surface area for the cells to adhere to as well as easy communication between pores, and the ability to coat the PEGDA ICC scaffold with proteins also shows a marked effect on cell performance. We analyze the morphology of the scaffold as well as the hepatocarcinoma cell (Huh-7.5) behavior in terms of viability and function to explore the effect of ICC structure and ECM coatings. Overall, this paper provides a detailed protocol of an emerging scaffold that has wide applications in tissue engineering, especially liver tissue engineering.

  1. Direct-writing colloidal photonic crystal microfluidic chips by inkjet printing for label-free protein detection.

    PubMed

    Shen, Weizhi; Li, Mingzhu; Ye, Changqing; Jiang, Lei; Song, Yanlin

    2012-09-07

    Integrating photonic crystals (PC) into microfluidic systems has attracted immense interest for its novel functions. However, it is still a great challenge to fabricate PC microfluidic chips rapidly with complex functions. In this work, a direct-writing colloidal PC microchannel was firstly achieved by inkjet printing and was used for the surface-tension-confined microfluidic immune assay. PC channels with different structure colors have been successfully integrated on one chip. The fabricated chip has the advantages of rapid fabrication, quick fluidic transport and can monitor the fluidic fluxion using the naked eye. Utilizing this PC microfluidic chip, a colorimetric label-free immune assay was realized without nonspecific adsorption interference of the target.

  2. Colloidal behavior of proteins: effects of the second virial coefficient on solubility, crystallization and aggregation of proteins in aqueous solution.

    PubMed

    Valente, Joseph J; Payne, Robert W; Manning, Mark Cornell; Wilson, W William; Henry, Charles S

    2005-12-01

    There has been an increasing awareness that proteins, like other biopolymers, are large enough to exhibit colloidal behavior in aqueous solution. Net attractive or repulsive forces have been found to govern important physical properties, such as solubility and aggregation. The extent of intermolecular interactions, usually expressed in terms of the osmotic second virial coefficient, B, is most often measured using static light scattering. More recently, self-interaction chromatography (SIC) has emerged as a method for rapid determination of B in actual formulations, as it uses much less protein and has higher throughput. This review will summarize the relationship of B to crystallization, solubility, and aggregation of proteins in aqueous solution. Moreover, the capability of SIC to obtain B values in a rapid and reproducible fashion will be described in detail. Finally, the use of miniaturized devices to measure B is presented.

  3. Phase diagram, design of monolayer binary colloidal crystals, and their fabrication based on ethanol-assisted self-assembly at the air/water interface.

    PubMed

    Dai, Zhengfei; Li, Yue; Duan, Guotao; Jia, Lichao; Cai, Weiping

    2012-08-28

    Flexible structural design and accurate controlled fabrication with structural tunability according to need for binary or multicomponent colloidal crystals have been expected. However, it is still a challenge. In this work, the phase diagram of monolayer binary colloidal crystals (bCCs) is established on the assumption that both large and small polystyrene (PS) colloidal spheres can stay at the air/water interface, and the range diagram for the size ratio and number ratio of small to large colloidal spheres is presented. From this phase diagram, combining the range diagram, we can design and relatively accurately control fabrication of the bCCs with specific structures (or patterns) according to need, including single or mixed patterns with the given relative content. Further, a simple and facile approach is presented to fabricate large-area (more than 10 cm(2)) monolayer bCCs without any surfactants, using differently sized PS spheres, based on ethanol-assisted self-assembly at the air/water interface. bCCs with different patterns and stoichiometries are thus designed from the established phase diagram and then successfully fabricated based on the volume ratios (V(S/L)) of the small to large PS suspensions using the presented colloidal self-assembling method. Interestingly, these monolayer bCCs can be transferred to any desired substrates using water as the medium. This study allows us to design desired patterns of monolayer bCCs and to more accurately control their structures with the used V(S/L).

  4. Optical studies of random disorder of colloidal photonic crystals and its evolution in evaporation induced self-assembly.

    PubMed

    Wang, Jinze; Yang, Lei; Lin, Dongfeng; Luo, Yanhong; Li, Dongmei; Meng, Qingbo

    2012-12-21

    Self-assembled photonic structures have been under theoretical and experimental study for decades, whereas previous theories on optical properties were mainly concerned with perfect structure or some certain limited kinds of disordered photonic crystals (PCs), making them unsuitable for characterizing the real self-assembled PCs. In order to improve our understanding of the mechanism of self-assembly and provide more crucial clues to further grow perfect crystals, we extended previous widely used scalar wave approximation (SWA), making it be able to characterize long-range disorder (β) and short-range disorder (α) in PCs synthetically in a simple and effective way. Excellent agreement with in situ observed reflectance of evaporation induced self-assembled colloidal photonic crystals (CPCs) was obtained, demonstrating that the introduction of the parameters α and β in SWA can successfully characterize the disorder in self-assembled CPCs. Furthermore, extended SWA was further used to study the disorder formation in self-assembly, and it was found that during growing stage both β and α drop down, whereas in drying stage β stays nearly unchanged while α increases significantly. It turned out that the growing stage of self-assembly is a stage when the structure transforms from disordered to ordered one, and growth induced disorder mainly arises in drying stage. The results obtained provide an insight into the growth mechanisms of self-assembly and theoretical basis for characterizing optical properties of disordered PCs.

  5. Ring around the colloid

    NASA Astrophysics Data System (ADS)

    Cavallaro, Marcello, Jr.; Gharbi, Mohamed A.; Beller, Daniel A.; Čopar, Simon; Shi, Zheng; Kamien, Randall D.; Yang, Shu; Baumgart, Tobias; Stebe, Kathleen J.

    In this work, we show that Janus washers, genus-one colloids with hybrid anchoring conditions, form topologically required defects in nematic liquid crystals. Experiments under crossed polarizers reveal the defect structure to be a rigid disclination loop confined within the colloid, with an accompanying defect in the liquid crystal. When confined to a homeotropic cell, the resulting colloid-defect ring pair tilts relative to the far field director, in contrast to the behavior of toroidal colloids with purely homeotropic anchoring. We show that this tilting behavior can be reversibly suppressed by the introduction of a spherical colloid into the center of the toroid, creating a new kind of multi-shape colloidal assemblage.

  6. Out-of-equilibrium processes in suspensions of oppositely charged colloids: liquid-to-crystal nucleation and gel formation

    NASA Astrophysics Data System (ADS)

    Sanz, Eduardo

    2009-03-01

    We study the kinetics of the liquid-to-crystal transformation and of gel formation in colloidal suspensions of oppositely charged particles. We analyse, by means of both computer simulations and experiments, the evolution of a fluid quenched to a state point of the phase diagram where the most stable state is either a homogeneous crystalline solid or a solid phase in contact with a dilute gas. On the one hand, at high temperatures and high packing fractions, close to an ordered-solid/disordered-solid coexistence line, we find that the fluid-to-crystal pathway does not follow the minimum free energy route. On the other hand, a quench to a state point far from the ordered-crystal/disordered-crystal coexistence border is followed by a fluid-to-solid transition through the minimum free energy pathway. At low temperatures and packing fractions we observe that the system undergoes a gas-liquid spinodal decomposition that, at some point, arrests giving rise to a gel-like structure. Both our simulations and experiments suggest that increasing the interaction range favors crystallization over vitrification in gel-like structures. [4pt] In collaboration with Chantal Valeriani, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University, Princetonplein 5, 3584 CC Utrecht, The Netherlands and SUPA, School of Physics, University of Edinburgh, JCMB King's Buildings, Mayfield Road, Edinburgh EH9 3JZ, UK; Teun Vissers, Andrea Fortini, Mirjam E. Leunissen, and Alfons van Blaaderen, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University; Daan Frenke, FOM Institute for Atomic and Molecular Physics, Kruislaan 407, 1098 SJ Amsterdam, The Netherlands and Department of Chemistry, University of Cambridge, Lensfield Road, CB2 1EW, Cambridge, UK; and Marjolein Dijkstra, Soft Condensed Matter, Debye Institute for Nanomaterials Science, Utrecht University.

  7. Microfluidic colloid filtration

    NASA Astrophysics Data System (ADS)

    Linkhorst, John; Beckmann, Torsten; Go, Dennis; Kuehne, Alexander J. C.; Wessling, Matthias

    2016-03-01

    Filtration of natural and colloidal matter is an essential process in today’s water treatment processes. The colloidal matter is retained with the help of micro- and nanoporous synthetic membranes. Colloids are retained in a “cake layer” – often coined fouling layer. Membrane fouling is the most substantial problem in membrane filtration: colloidal and natural matter build-up leads to an increasing resistance and thus decreasing water transport rate through the membrane. Theoretical models exist to describe macroscopically the hydrodynamic resistance of such transport and rejection phenomena; however, visualization of the various phenomena occurring during colloid retention is extremely demanding. Here we present a microfluidics based methodology to follow filter cake build up as well as transport phenomena occuring inside of the fouling layer. The microfluidic colloidal filtration methodology enables the study of complex colloidal jamming, crystallization and melting processes as well as translocation at the single particle level.

  8. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  9. Lattice Dynamics of Colloidal Crystals During Photopolymerization of Acrylic Monomer Matrix

    NASA Technical Reports Server (NTRS)

    Sunkara, Hari B.; Benjamin, Penn G.; Donald, Frazier O.; Ramachandran, N.

    1997-01-01

    Polymerization process are the major contributors for observed lattice compression and lattice disorder of the Crystalline Colloidal Arrays (CCA) of silica spheres in polymerized acrylic/methacrylic ester films. The effect of orientation of photocell with respect to the readiation source on Bragg diffraction of CCA indicated the presence of convective stirring in thin fluid system during the photopolymerization that deleteriously affect the periodic array structures. To devise reproducible and more efficient optical filters, experimental methods to minimize or eliminate convective instabilities in monomeric dispersions during polymerization are suggested.

  10. Binary colloidal crystals (BCCs) as a feeder-free system to generate human induced pluripotent stem cells (hiPSCs)

    PubMed Central

    Wang, Peng-Yuan; Hung, Sandy Shen-Chi; Thissen, Helmut; Kingshott, Peter; Wong, Raymond Ching-Bong

    2016-01-01

    Human induced pluripotent stem cells (hiPSCs) are capable of differentiating into any cell type and provide significant advances to cell therapy and regenerative medicine. However, the current protocol for hiPSC generation is relatively inefficient and often results in many partially reprogrammed colonies, which increases the cost and reduces the applicability of hiPSCs. Biophysical stimulation, in particular from tuning cell-surface interactions, can trigger specific cellular responses that could in turn promote the reprogramming process. In this study, human fibroblasts were reprogrammed into hiPSCs using a feeder-free system and episomal vectors using novel substrates based on binary colloidal crystals (BCCs). BCCs are made from two different spherical particle materials (Si and PMMA) ranging in size from nanometers to micrometers that self-assemble into hexagonal close-packed arrays. Our results show that the BCCs, particularly those made from a crystal of 2 μm Si and 0.11 μm PMMA particles (2SiPM) facilitate the reprogramming process and increase the proportion of fully reprogrammed hiPSC colonies, even without a vitronectin coating. Subsequent isolation of clonal hiPSC lines demonstrates that they express pluripotent markers (OCT4 and TRA-1-60). This proof-of-concept study demonstrates that cell reprogramming can be improved on substrates where surface properties are tailored to the application. PMID:27833126

  11. Control of periodic, quasicrystalline, and arbitrary arrays of liquid crystal defects stabilized by topological colloids and chirality

    NASA Astrophysics Data System (ADS)

    Smalyukh, Ivan

    2013-03-01

    Condensed matter systems with ground-state arrays of defects range from the Abrikosov phases in superconductors, to various blue phases and twist grain boundary phases in liquid crystals, and to skyrmion lattices in chiral ferromagnets. In nematic and chiral nematic liquid crystals, which are true fluids with long-range orientational ordering of constituent anisotropic molecules, point and line defects spontaneously occur as a result of symmetry-breaking phase transitions or due to flow, but they typically annihilate with time and cannot be controlled. This lecture will discuss physical underpinnings of optically patterned and self-assembled two-dimensional arrays of long-term stable point defects and disclination loops bound together by elastic energy-minimizing twisted director structures and/or stabilized by colloids. The topological charge conservation and the interplay of topologies of genus g> 1 particles, fields, and defects provide robust means for controlling three-dimensional textures with arrays of optically- and electrically-reconfigurable defects. In the periodic lattices of defects, we introduce various dislocations (i.e., defects in positional ordering of defects) and use them to generate optical vortices in diffracted laser beams. The lecture will conclude with a discussion of how these findings bridge the studies of defects in condensed matter physics and optics and may enable applications in data storage, singular optics, displays, electro-optic devices, and diffraction gratings. We acknowledge the support of NSF grants DMR-0820579 and DMR-0847782.

  12. Rupture and regeneration of colloidal crystals as studied by two-dimensional ultra-small-angle X-ray scattering.

    PubMed

    Konishi, Toshiki; Ise, Norio

    2006-11-21

    The structure of colloidal crystals of silica particles in water was studied by using the two-dimensional (2D) ultra-small-angle X-ray scattering (USAXS) technique. By violent shaking of the dispersion, large (body-centered cubic, bcc) crystals were broken into microcrystals while the lattice structure and lattice constant were preserved. The 2D-USAXS profiles revealed that the [111] direction of bcc microcrystals was parallel to the capillary axis and their orientational distribution with respect to the capillary axis was random. While a prepeak was observed in the one-dimensional USAXS measurements, no such peak was detected by the 2D-USAXS technique. The prepeak was concluded to be due to {110} being rotated by 54.7 degrees (the angle between [001] and [111]) from the capillary axis. The diffraction from the plane was out of the horizontal plane and was observed at a lower angle as a prepeak by detector scanning in the horizontal direction.

  13. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  14. Lattice Dynamics of Colloidal Crystals During Photopolymerization of Acrylic Monomer Matrix

    NASA Technical Reports Server (NTRS)

    Sunkara, H. B,; Penn, B. G.; Frazier, D. O.; Ramachandran, N.

    1998-01-01

    The photoinitiated bulk polymerization process, which has been used recently in the manufacture of solid optical diffraction filters, is examined to understand the dynamics of both the crystalline colloidal arrays (CCA) and the host monomer species. Our analysis indicates that volume shrinkage of the monomer, changes in the dielectric properties of the monomer, and inhomogeneities of polymerization reaction rate across the dispersion during the polymerization process, are the major contributors for observed lattice compression and lattice disorder of the CCA of silica spheres in polymerized acrylic/methacrylic ester films. The effect of orientation of photocell with respect to the radiation source on Bragg diffraction of CCA indicated the presence of convective stirring in the thin fluid system during the photopolymerization that deleteriously affects the periodic array structures. To devise reproducible and more efficient optical filters, experimental methods to minimize or eliminate convective instabilities in monomeric dispersions during polymerization are suggested.

  15. 3D Nanostructuring of Semiconductors

    NASA Astrophysics Data System (ADS)

    Blick, Robert

    2000-03-01

    Modern semiconductor technology allows to machine devices on the nanometer scale. I will discuss the current limits of the fabrication processes, which enable the definition of single electron transistors with dimensions down to 8 nm. In addition to the conventional 2D patterning and structuring of semiconductors, I will demonstrate how to apply 3D nanostructuring techniques to build freely suspended single-crystal beams with lateral dimension down to 20 nm. In transport measurements in the temperature range from 30 mK up to 100 K these nano-crystals are characterized regarding their electronic as well as their mechanical properties. Moreover, I will present possible applications of these devices.

  16. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  17. Preparation of Poly[Styrene(ST)-co-Allyloxy-2-Hydroxypropane Sulfonic Acid Sodium Salt(COPS-I)] Colloidal Crystalline Photonic Crystals.

    PubMed

    Choo, Hun Seung; Lee, Ki Chang

    2015-10-01

    Colloidal crystalline photonic crystals using highly monodisperse poly[Styrene(ST)-co-Allyloxy-2-hydroxypropane sulfonic acid sodium salt(COPS-I)] microspheres were prepared to study their optical properties under visible light. For this purpose, a series of surfactant-free emulsion copolymerizations was carried out at various reaction conditions such as the changes of ST/COPS-I ratio, polymerization temperature, KPS initiator and DVB crosslinker concentration. All the latices showed highly uniform spherical particles in the size range of 165-550 nm and the respective opaline structural colors from their colloidal photonic crystals. It is found that the changes in such polymerization factors greatly affect the number of particles and particle diameter, polymerization rate, molecular weight, zeta-potential, and refractive indices.

  18. Giant colloidal silver crystals for low-loss linear and nonlinear plasmonics

    NASA Astrophysics Data System (ADS)

    Wang, Chun-Yuan; Chen, Hung-Ying; Sun, Liuyang; Chen, Wei-Liang; Chang, Yu-Ming; Ahn, Hyeyoung; Li, Xiaoqin; Gwo, Shangjr

    2015-07-01

    The development of ultrasmooth, macroscopic-sized silver (Ag) crystals exhibiting reduced losses is critical to fully characterize the ultimate performance of Ag as a plasmonic material, and to enable cascaded and integrated plasmonic devices. Here we demonstrate the growth of single-crystal Ag plates with millimetre lateral sizes for linear and nonlinear plasmonic applications. Using these Ag crystals, surface plasmon polariton propagation lengths beyond 100 μm in the red wavelength region are measured. These lengths exceed the predicted values using the widely cited Johnson and Christy data. Furthermore, they allow the fabrication of highly reproducible plasmonic nanostructures by focused ion beam milling. We have designed and fabricated double-resonant nanogroove arrays using these crystals for spatially uniform and spectrally tunable second-harmonic generation. In conventional `hot-spot'-based nonlinear processes such as surface-enhanced Raman scattering and second-harmonic generation, strong enhancement can only occur in random, localized regions. In contrast, our approach enables uniform nonlinear signal generation over a large area.

  19. A new class of tunable hypersonic phononic crystals based on polymer-tethered colloids

    PubMed Central

    Alonso-Redondo, E.; Schmitt, M.; Urbach, Z.; Hui, C. M.; Sainidou, R.; Rembert, P.; Matyjaszewski, K.; Bockstaller, M. R.; Fytas, G.

    2015-01-01

    The design and engineering of hybrid materials exhibiting tailored phononic band gaps are fundamentally relevant to innovative material technologies in areas ranging from acoustics to thermo-optic devices. Phononic hybridization gaps, originating from the anti-crossing between local resonant and propagating modes, have attracted particular interest because of their relative robustness to structural disorder and the associated benefit to ‘manufacturability'. Although hybridization gap materials are well known, their economic fabrication and efficient control of the gap frequency have remained elusive because of the limited property variability and expensive fabrication methodologies. Here we report a new strategy to realize hybridization gap materials by harnessing the ‘anisotropic elasticity' across the particle–polymer interface in densely polymer-tethered colloidal particles. Theoretical and Brillouin scattering analysis confirm both the robustness to disorder and the tunability of the resulting hybridization gap and provide guidelines for the economic synthesis of new materials with deliberately controlled gap position and width frequencies. PMID:26390851

  20. Micro-CT observations of the 3D distribution of calcium oxalate crystals in cotyledons during maturation and germination in Lotus miyakojimae seeds.

    PubMed

    Yamauchi, Daisuke; Tamaoki, Daisuke; Hayami, Masato; Takeuchi, Miyuki; Karahara, Ichirou; Sato, Mayuko; Toyooka, Kiminori; Nishioka, Hiroshi; Terada, Yasuko; Uesugi, Kentaro; Takano, Hidekazu; Kagoshima, Yasushi; Mineyuki, Yoshinobu

    2013-06-01

    The cotyledon of legume seeds is a storage organ that provides nutrients for seed germination and seedling growth. The spatial and temporal control of the degradation processes within cotyledons has not been elucidated. Calcium oxalate (CaOx) crystals, a common calcium deposit in plants, have often been reported to be present in legume seeds. In this study, micro-computed tomography (micro-CT) was employed at the SPring-8 facility to examine the three-dimensional distribution of crystals inside cotyledons during seed maturation and germination of Lotus miyakojimae (previously Lotus japonicus accession Miyakojima MG-20). Using this technique, we could detect the outline of the embryo, void spaces in seeds and the cotyledon venation pattern. We found several sites that strongly inhibited X-ray transmission within the cotyledons. Light and polarizing microscopy confirmed that these areas corresponded to CaOx crystals. Three-dimensional observations of dry seeds indicated that the CaOx crystals in the L. miyakojimae cotyledons were distributed along lateral veins; however, their distribution was limited to the abaxial side of the procambium. The CaOx crystals appeared at stage II (seed-filling stage) of seed development, and their number increased in dry seeds. The number of crystals in cotyledons was high during germination, suggesting that CaOx crystals are not degraded for their calcium supply. Evidence for the conservation of CaOx crystals in cotyledons during the L. miyakojimae germination process was also supported by the biochemical measurement of oxalic acid levels.

  1. Experimental design applied to spin coating of 2D colloidal crystal masks: a relevant method?

    PubMed

    Colson, Pierre; Cloots, Rudi; Henrist, Catherine

    2011-11-01

    Monolayers of colloidal spheres are used as masks in nanosphere lithography (NSL) for the selective deposition of nanostructured layers. Several methods exist for the formation of self-organized particle monolayers, among which spin coating appears to be very promising. However, a spin coating process is defined by several parameters like several ramps, rotation speeds, and durations. All parameters influence the spreading and drying of the droplet containing the particles. Moreover, scientists are confronted with the formation of numerous defects in spin coated layers, limiting well-ordered areas to a few micrometers squared. So far, empiricism has mainly ruled the world of nanoparticle self-organization by spin coating, and much of the literature is experimentally based. Therefore, the development of experimental protocols to control the ordering of particles is a major goal for further progress in NSL. We applied experimental design to spin coating, to evaluate the efficiency of this method to extract and model the relationships between the experimental parameters and the degree of ordering in the particles monolayers. A set of experiments was generated by the MODDE software and applied to the spin coating of latex suspension (diameter 490 nm). We calculated the ordering by a homemade image analysis tool. The results of partial least squares (PLS) modeling show that the proposed mathematical model only fits data from strictly monolayers but is not predictive for new sets of parameters. We submitted the data to principal component analysis (PCA) that was able to explain 91% of the results when based on strictly monolayered samples. PCA shows that the ordering was positively correlated to the ramp time and negatively correlated to the first rotation speed. We obtain large defect-free domains with the best set of parameters tested in this study. This protocol leads to areas of 200 μm(2), which has never been reported so far.

  2. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  3. Two-dimensional colloid-based photonic crystals for distributed feedback polymer lasers

    SciTech Connect

    Mafouana, Rodrigue; Rehspringer, Jean-Luc; Hirlimann, Charles; Estournes, Claude; Dorkenoo, Kokou D.

    2004-11-08

    We report on a process to design highly ordered monolayers of two-dimensional photonic crystals, made of silica nanoparticules, that can be used for the development of organic optical devices. We have used a photopolymerization process to incorporate a dye gain medium into the nanoparticle layers in order to achieve a laser cavity. The high spatial coherence of the deposits allows for single-mode laser emission in the plane of the layer when the light excitation is perpendicular to the plane. Such periodic films should help in reducing the number of layers needed for future electrically pumped distributed feedback lasers.

  4. Manipulation of colloids by optical and electrical control of disclination lines in liquid crystals

    NASA Astrophysics Data System (ADS)

    Kasyanyuk, D.; Pagliusi, P.; Mazzulla, A.; Tomylko, S.; Reshetnyak, V.; Reznikov, Yu.; Provenzano, C.; Giocondo, M.; Vasnetsov, M.; Yaroshchuk, O.; Cipparrone, G.

    2016-12-01

    We report two viable strategies to assemble and manipulate arrays of nano- and micro-particles by means of topological defects (TDs) in anisotropic fluids. Exploiting different boundary conditions, single TD, 1D arrays of TDs are tailored in liquid crystal twist cells. In a first approach, light-guided control of particles captured in disclination lines is demonstrated involving the use of a photosensitive chiral dopant within a nematic host. In the second one, an applied voltage enables a continuous displacement and deformation of the particles arrays. The reported results open up new possibilities for managing nano- and micro-metric objects over large distances.

  5. Facile construction of dual bandgap optical encoding materials with PS@P(HEMA-co-AA)/SiO2-TMPTA colloidal photonic crystals

    NASA Astrophysics Data System (ADS)

    Tian, Yu; Zhang, Jing; Liu, Si-Si; Yang, Shengyang; Yin, Su-Na; Wang, Cai-Feng; Chen, Li; Chen, Su

    2016-07-01

    An operable strategy for the construction of dual-reflex optical code materials from bilayer or Janus-structure colloidal photonic crystals (CPCs) has been established in this work. In this process, monodispersed submicrometer polystryene@poly(2-hydroxyethyl methacrylate-co-acrylic acid) hydrogel microspheres with soft-shell/hard-core structure and monodispersed colloidal silica spheres were fabricated. These two kinds of colloidal units can be facilely integrated into a single material without optical signal interference because they are well isolated for the immiscibility between water and ethoxylated trimethylolpropane triacrylate (TMPTA) and the upper layer of SiO2-TMPTA is a kind of transparent. Moreover, diverse optical code series with different dual photonic bandgaps can be obtained via tuning the colloid sizes. Compared to the conventional single-reflex CPCs, the as-prepared dual-reflex optical code materials represented high information capacity in encoding process. More interesting, delicate code pattern has been also achieved on the optical film via the silk-screen printing technique, which will greatly extend the dual-reflex optical code materials to practical uses in areas containing bio-encoding, anti-counterfeiting, and flexible displays.

  6. Structure of finite sphere packings via exact enumeration: Implications for colloidal crystal nucleation

    NASA Astrophysics Data System (ADS)

    Hoy, Robert S.; Harwayne-Gidansky, Jared; O'Hern, Corey S.

    2012-05-01

    We analyze the geometric structure and mechanical stability of a complete set of isostatic and hyperstatic sphere packings obtained via exact enumeration. The number of nonisomorphic isostatic packings grows exponentially with the number of spheres N, and their diversity of structure and symmetry increases with increasing N and decreases with increasing hyperstaticity H≡Nc-NISO, where Nc is the number of pair contacts and NISO=3N-6. Maximally contacting packings are in general neither the densest nor the most symmetric. Analyses of local structure show that the fraction f of nuclei with order compatible with the bulk (rhcp) crystal decreases sharply with increasing N due to a high propensity for stacking faults, five- and near-fivefold symmetric structures, and other motifs that preclude rhcp order. While f increases with increasing H, a significant fraction of hyperstatic nuclei for N as small as 11 retain non-rhcp structure. Classical theories of nucleation that consider only spherical nuclei, or only nuclei with the same ordering as the bulk crystal, cannot capture such effects. Our results provide an explanation for the failure of classical nucleation theory for hard-sphere systems of N≲10 particles; we argue that in this size regime, it is essential to consider nuclei of unconstrained geometry. Our results are also applicable to understanding kinetic arrest and jamming in systems that interact via hard-core-like repulsive and short-ranged attractive interactions.

  7. Two novel lead(II) carboxyphosphonates with a layered and a 3D framework structure: syntheses, crystal structures, reversible dehydration/hydration, and luminescence properties.

    PubMed

    Chu, Wei; Sun, Zhen-Gang; Jiao, Cheng-Qi; Zhu, Yan-Yu; Sun, Shou-Hui; Tian, Hui; Zheng, Ming-Jing

    2013-06-14

    Two novel lead(II) carboxyphosphonates with a layered and a 3D framework structure, namely, [Pb2Cl3(H2L)]·H2O (1) and [Pb2(HL)(HBTC)] (2) (H3L = H2O3PCH2-NC5H9-COOH, H3BTC = 1,3,5-benzenetricarboxylic acid), have been synthesized under hydrothermal conditions and structurally characterized. For compound 1, the interconnection of Pb(1)O2Cl3, Pb(2)O2Cl3, and CPO3 polyhedra via corner- and edge-sharing forms a 1D chain. The adjacent chains connect with each other by sharing the chloride anion, thereby generating a 2D layered structure in the ab-plane. The lattice water molecules are located between adjacent layers. Compound 2 exhibits a 3D pillared-layered structure. The Pb(1)O5, Pb(2)O5, and CPO3 polyhedra are interconnected into a 1D double chain via corner- and edge-sharing, which is further linked to adjacent chains through carboxyphosphonate ligands to form a 2D double layer structure. Neighboring double layers are bridged through the second linkers HBTC(2-), leading to a 3D pillared-layered structure with a 1D channel system along the a-axis. An interesting feature of compound 1 is the presence of the dehydration/hydration properties. It is worth noting that compound 2 can be stable up to a high temperature. The luminescent properties of compounds 1 and 2 have also been studied.

  8. Motion of a colloidal particle in a nonuniform director field of a nematic liquid crystal

    NASA Astrophysics Data System (ADS)

    Lee, Beom-Kyu; Kim, Sung-Jo; Lev, Bohdan; Kim, Jong-Hyun

    2017-01-01

    We investigate the dynamics of a single spherical particle immersed in a nematic liquid crystal. A nonuniform director field is imposed on the substrate by a stripe alignment pattern with splay deformation. The particle of homeotropic anchoring at the surface is accompanied by hyperbolic hedgehog or Saturn-ring defects. The particle motion is dependent on the defect structure. We study the two types of motions theoretically and confirm the obtained results experimentally. The particle accompanied by a hyperbolic hedgehog defect is pulled to a deformed region to relax the elastic deformation energy. The motion occurs in the direction heading the hyperbolic hedgehog defect of a particle in a twist region. The position exhibits a weak S-shaped change as a function of time. The particle accompanied by a Saturn-ring defect shows insignificant motion due to its relatively small deformation energy.

  9. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  10. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals.

    PubMed

    Ichikawa, Takahiro; Yoshio, Masafumi; Hamasaki, Atsushi; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2011-02-23

    Thermotropic bicontinuous cubic (Cub(bi)) liquid-crystalline (LC) compounds based on a polymerizable ammonium moiety complexed with a lithium salt have been designed to obtain lithium ion-conductive all solid polymeric films having 3D interconnected ionic channels. The monomer shows a Cub(bi) phase from -5 to 19 °C on heating. The complexes retain the ability to form the Cub(bi) LC phase. They also form hexagonal columnar (Col(h)) LC phases at temperatures higher than those of the Cub(bi) phases. The complex of the monomer and LiBF(4) at the molar ratio of 4:1 exhibits the Cub(bi) and Col(h) phases between -6 to 19 °C and 19 to 56 °C, respectively, on heating. The Cub(bi) LC structure formed by the complex has been successfully preserved by in situ photopolymerization through UV irradiation in the presence of a photoinitiator. The resultant nanostructured film is optically transparent and free-standing. The X-ray analysis of the film confirms the preservation of the self-assembled nanostructure. The polymer film with the Cub(bi) LC nanostructure exhibits higher ionic conductivities than the polymer films obtained by photopolymerization of the complex in the Col(h) and isotropic phases. It is found that the 3D interconnected ionic channels derived from the Cub(bi) phase function as efficient ion-conductive pathways.

  11. 3D coordination networks based on supramolecular chains as building units: synthesis and crystal structures of two silver(I) pyridyldiethynides.

    PubMed

    Zhang, Tianle; Kong, Jianxi; Hu, Yuejie; Meng, Xianggao; Yin, Hongbing; Hu, Dongshuang; Ji, Changpeng

    2008-04-21

    Two silver(I) pyridyldiethynides, [Ag2(3,5-C2PyC2).4CF3CO2Ag.4H2O] ( A) and [Ag 2(3,5-C2PyC2).3AgNO3.H2O](B), were synthesized by reactions of 3,5-diethynylpyridine with silver trifluoroacetate and silver nitrate in high yield, respectively. X-ray crystallographic studies revealed that in A pyridyldiethynide groups connect Ag 11 cluster units to generate 1D supramolecular chains as bridging ligands, where each ethynide group interacts with four silver atoms. These supramolecular chains bearing pyridyl groups are linked by silver ions to form wavelike layers, which are further connected by trifluoroacetate ligands to afford a 3D coordination network. However, B exhibits a different structural feature, where two ethynide groups in one pyridyldiethynide ligand coordinate to three and four silver atoms, respectively. These silver ethynide cluster units are linked through silver-ethynide and argentophilic interactions, leading to a double silver chain by sharing silver atoms in these units. In B, the silver double chains are further connected by bridging pyridyldiethynide groups to generate 2D networks, which interact through the Ag-N coordination bonds between silver atoms and pyridyl groups in the adjacent layers to generate a 3D coordination network. In these two compounds, trifluoroacetate and nitrate groups exhibit different bonding modes, indicating that the counterion is an important factor influencing the structures of supramolecular chains and coordination networks.

  12. Crystal structure and carrier transport properties of a new 3D mixed-valence Cu(I)-Cu(II) coordination polymer including pyrrolidine dithiocarbamate ligand.

    PubMed

    Okubo, Takashi; Tanaka, Naoya; Kim, Kyung Ho; Anma, Haruho; Seki, Shu; Saeki, Akinori; Maekawa, Masahiko; Kuroda-Sowa, Takayoshi

    2011-03-14

    A novel mixed-valence Cu(i)-Cu(ii) coordination polymer having an infinite three-dimensional (3D) structure, {[Cu(I)(4)Cu(II)(2)Br(4)(Pyr-dtc)(4)]·CHCl(3)}(n) (1) (Pyr-dtc(-) = pyrrolidine dithiocarbamate), has been prepared and structurally characterized via X-ray diffraction. This complex consists of 1D Cu(i)-Br chains and bridging mononuclear copper(ii) units of Cu(II)(Pyr-dtc)(2), which form an infinite 3D network. A magnetic study indicates that this complex includes copper(ii) ions exhibiting a weak antiferromagnetic interaction (θ = -0.086 K) between the unpaired electrons of the copper(ii) ions present in the diamagnetic Cu(i)-Br chains. The carrier transport properties of 1 are investigated using an impedance spectroscopy technique and flash-photolysis time-resolved microwave conductivity measurement (FP-TRMC). The impedance spectroscopy reveals that this complex exhibits intriguing semiconducting properties at a small activation energy (E(a) = 0.29 eV (bulk)). The sum of the mobilities of the negative and positive carriers estimated via FP-TRMC is Σμ∼ 0.4 cm(2) V(-1) s(-1).

  13. 3D Rare earth porous coordination frameworks with formamide generated in situ syntheses: Crystal structure and down- and up-conversion luminescence

    SciTech Connect

    Ma, Xue; Tian, Jing; Yang, Hong-Y.; Zhao, Kai; Li, Xia

    2013-05-01

    The reaction of RE(NO)₃·6H₂O and formamide yielded the coordination polymers, [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ (RE=Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Er 6, and Yb 7). They possess 3D porous frameworks with the 1D rhombic channels occupied by [NH₂CHNH₂]⁺ cations. Complexes 2 and 4 display the characteristic down-conversion emissions corresponding to ⁵D₀→⁷FJ (J=1–4) transitions of Eu(III) ion and ⁵D₄→⁷FJ (J=6–3) transitions of Tb(III) ion, respectively. Longer lifetime values of 2.128±0.002 ms (⁵D₀) for 2 and 2.132±0.002 ms (⁵D₄) for 4 have been observed. The up-conversion spectra of the Y:Yb,Er and Gd:Yb,Er codoped complexes exhibit three emission bands around 410 (⁴H9/2→⁴I15/2, blue), 518–570 (⁴S3/2, ²H11/2→⁴I15/2, green), and 655 nm (⁴F9/2→⁴I15/2, red). - Graphical Abstract: The complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ possess 3D porous frameworks. Eu(III) and Tb(III) complexes show characteristic emission of Ln(III) ions. The up-conversion emission of the Y:Yb,Er and Gd:Yb,Er codoped complexes was observed. Highlights: •The reaction of RE(NO)₃·6H₂O and formamide produced complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺. • The complexes possess 3D frameworks with the 1D channels occupied by [NH₂CHNH₂]+ cations. • Eu(III)/Tb(III) complexes display the characteristic down-conversion emission of Ln(III) ions. • The Y:Yb,Er and Gd:Yb,Er doped complexes exhibit the up-conversion emission.

  14. 3D Anhydrous proton-transporting nanochannels formed by self-assembly of liquid crystals composed of a sulfobetaine and a sulfonic acid.

    PubMed

    Soberats, Bartolome; Yoshio, Masafumi; Ichikawa, Takahiro; Taguchi, Satomi; Ohno, Hiroyuki; Kato, Takashi

    2013-10-16

    Herein we describe anhydrous proton transportation through 3D interconnected pathways formed by self-assembled molecular complexes. A thermotropic bicontinuous cubic (Cub(bi)) phase has been successfully obtained by mixing a wedge-shaped sulfobetaine with benzenesulfonic acid in different ratios. These ionic complexes exhibit the Cub(bi) phase in a wide range of temperatures, while the single zwitterionic compound shows only a columnar hexagonal phase, and benzenesulfonic acid is nonmesomorphic. Anhydrous proton conduction on the order of 10(-4) S cm(-1) has been achieved for the mixture in the Cub(bi) phase over 100 °C, which can be useful for the development of new electrolytes for the next generation of fuel cells.

  15. Assembly of Dimer-Based Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Liddell Watson, Chekesha M.

    2011-03-01

    Recent advances in colloid synthesis to prepare monodisperse shape anisotropic particles provide the opportunity to address challenges related to structural diversity in ordered colloidal solids. In particular, computational simulations and mechanical models suggest that upon system densification nonspherical dimer colloids undergo disorder-order and order-order phase transitions to unconventional solid structures including, base-centered monoclinic crystals, degenerate aperiodic crystals, plastic crystal or rotator, etc. based on free energy minimization. The particle systems have notable analogy to molecular systems, where the shape of molecules and their packing density has been shown to critically influence structural phase behavior and lead to a rich variety of structures, both natural and synthetic. The materials engineering challenges have been in attaining sufficiently monodisperse (size uniformity) colloidal building blocks, as well as the lack of understanding and control of self-assembly processes for non-spherical colloids. This talk highlights our investigations of how particle shape programs the self-organization of colloidal structures. Methods including evaporation mediated assembly and confinement provide a platform to understand the formation of complex colloidal structures from non-spherical building blocks (silica-coated iron oxide, polystyrene, hollow silica shell). Optical property simulations for unconventional 2D and 3D structures with nonspherical particle bases will also be discussed.

  16. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  17. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  18. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  19. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  20. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties

    PubMed Central

    2016-01-01

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3+, X = Br– or I–) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites’ precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material’s resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(BrxI1–x)3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors. PMID:27163050

  1. High-Pressure Single-Crystal Structures of 3D Lead-Halide Hybrid Perovskites and Pressure Effects on their Electronic and Optical Properties.

    PubMed

    Jaffe, Adam; Lin, Yu; Beavers, Christine M; Voss, Johannes; Mao, Wendy L; Karunadasa, Hemamala I

    2016-04-27

    We report the first high-pressure single-crystal structures of hybrid perovskites. The crystalline semiconductors (MA)PbX3 (MA = CH3NH3 (+), X = Br(-) or I(-)) afford us the rare opportunity of understanding how compression modulates their structures and thereby their optoelectronic properties. Using atomic coordinates obtained from high-pressure single-crystal X-ray diffraction we track the perovskites' precise structural evolution upon compression. These structural changes correlate well with pressure-dependent single-crystal photoluminescence (PL) spectra and high-pressure bandgaps derived from density functional theory. We further observe dramatic piezochromism where the solids become lighter in color and then transition to opaque black with compression. Indeed, electronic conductivity measurements of (MA)PbI3 obtained within a diamond-anvil cell show that the material's resistivity decreases by 3 orders of magnitude between 0 and 51 GPa. The activation energy for conduction at 51 GPa is only 13.2(3) meV, suggesting that the perovskite is approaching a metallic state. Furthermore, the pressure response of mixed-halide perovskites shows new luminescent states that emerge at elevated pressures. We recently reported that the perovskites (MA)Pb(Br x I1-x )3 (0.2 < x < 1) reversibly form light-induced trap states, which pin their PL to a low energy. This may explain the low voltages obtained from solar cells employing these absorbers. Our high-pressure PL data indicate that compression can mitigate this PL redshift and may afford higher steady-state voltages from these absorbers. These studies show that pressure can significantly alter the transport and thermodynamic properties of these technologically important semiconductors.

  2. Specific features of insulator-metal transitions under high pressure in crystals with spin crossovers of 3 d ions in tetrahedral environment

    NASA Astrophysics Data System (ADS)

    Lobach, K. A.; Ovchinnikov, S. G.; Ovchinnikova, T. M.

    2015-01-01

    For Mott insulators with tetrahedral environment, the effective Hubbard parameter U eff is obtained as a function of pressure. This function is not universal. For crystals with d 5 configuration, the spin crossover suppresses electron correlations, while for d 4 configurations, the parameter U eff increases after a spin crossover. For d 2 and d 7 configurations, U eff increases with pressure in the high-spin (HS) state and is saturated after the spin crossover. Characteristic features of the insulator-metal transition are considered as pressure increases; it is shown that there may exist cascades of several transitions for various configurations.

  3. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  4. Synthesis, crystal structure and properties of a new 3D supramolecular unsymmetrical tetradentate Schiff bases copper (II) framework with stable tunnels

    NASA Astrophysics Data System (ADS)

    Al-Noaimi, Mousa; Awwadi, Firas F.; Al-Razagg, Raiid; Esmadi, Fatima T.

    2016-12-01

    Flexible unsymmetrical Schiff base ligand (L) which is derived from the half unit Y = C6H5COCH2C(Ndbnd CH2C6H4NH2)CH3 (obtained from the reaction of benzoylacetone and 2-aminobenzylamine) and 2- quinolinecarboxaldehyde have been successfully co-assembled with Cu(ClO4)2 to give out the [Cu(L)]ClO4 complex. The complex crystallizes in two different space groups; P21/n and P-1. The crystal structure of the P-1 phase indicates the presence of tunnels; the volume of these tunnels is 157 Å3 which is big enough to accommodate solvent molecules. The X-ray data indicates that these tunnels are most probably filled by highly disordered solvent molecules or solvent molecules with partial occupancy. The tunneled structure is stabilized via π-π stacking interactions to give a supramolecular MOF with 1D rhomboidal tunnels array. The copper(II) atom assumes a distorted-square pyrimidal coordination geometry where the perchlorate is located on the apex of the pyramide. In addition, this work presents and discusses the spectroscopic (IR, UV/vis), electro-chemical (cyclic voltammetry) behavior of the Cu(II) complexes. The Cu(II) oxidation state is stabilized by the novel tetradentate ligands, showing Cu(I/II) couple around 0.1 vs. Cp2Fe/Cp2Fe+.

  5. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  6. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges.

  7. Specific features of insulator-metal transitions under high pressure in crystals with spin crossovers of 3d ions in tetrahedral environment

    SciTech Connect

    Lobach, K. A. Ovchinnikov, S. G.; Ovchinnikova, T. M.

    2015-01-15

    For Mott insulators with tetrahedral environment, the effective Hubbard parameter U{sub eff} is obtained as a function of pressure. This function is not universal. For crystals with d{sup 5} configuration, the spin crossover suppresses electron correlations, while for d{sup 4} configurations, the parameter U{sub eff} increases after a spin crossover. For d{sup 2} and d{sup 7} configurations, U{sub eff} increases with pressure in the high-spin (HS) state and is saturated after the spin crossover. Characteristic features of the insulator-metal transition are considered as pressure increases; it is shown that there may exist cascades of several transitions for various configurations.

  8. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries.

    PubMed

    Huang, Shao-Zhuan; Jin, Jun; Cai, Yi; Li, Yu; Deng, Zhao; Zeng, Jun-Yang; Liu, Jing; Wang, Chao; Hasan, Tawfique; Su, Bao-Lian

    2015-10-06

    Bicontinuous hierarchically porous Mn2O3 single crystals (BHP-Mn2O3-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn2O3-SCs exhibit high specific surface area and three dimensional interconnected bimodal mesoporosity throughout the entire crystal. Such hierarchical interpenetrating porous framework can not only provide a large number of active sites for Li ion insertion, but also good conductivity and short diffusion length for Li ions, leading to a high lithium storage capacity and enhanced rate capability. Furthermore, owing to their specific porosity, these BHP-Mn2O3-SCs as anode materials can accommodate the volume expansion/contraction that occurs with lithium insertion/extraction during discharge/charge processes, resulting in their good cycling performance. Our synthesized BHP-Mn2O3-SCs with a size of ~700 nm display the best electrochemical performance, with a large reversible capacity (845 mA h g(-1) at 100 mA g(-1) after 50 cycles), high coulombic efficiency (>95%), excellent cycling stability and superior rate capability (410 mA h g(-1) at 1 Ag(-1)). These values are among the highest reported for Mn2O3-based bulk solids and nanostructures. Also, electrochemical impedance spectroscopy study demonstrates that the BHP-Mn2O3-SCs are suitable for charge transfer at the electrode/electrolyte interface.

  9. Three-Dimensional (3D) Bicontinuous Hierarchically Porous Mn2O3 Single Crystals for High Performance Lithium-Ion Batteries

    NASA Astrophysics Data System (ADS)

    Huang, Shao-Zhuan; Jin, Jun; Cai, Yi; Li, Yu; Deng, Zhao; Zeng, Jun-Yang; Liu, Jing; Wang, Chao; Hasan, Tawfique; Su, Bao-Lian

    2015-10-01

    Bicontinuous hierarchically porous Mn2O3 single crystals (BHP-Mn2O3-SCs) with uniform parallelepiped geometry and tunable sizes have been synthesized and used as anode materials for lithium-ion batteries (LIBs). The monodispersed BHP-Mn2O3-SCs exhibit high specific surface area and three dimensional interconnected bimodal mesoporosity throughout the entire crystal. Such hierarchical interpenetrating porous framework can not only provide a large number of active sites for Li ion insertion, but also good conductivity and short diffusion length for Li ions, leading to a high lithium storage capacity and enhanced rate capability. Furthermore, owing to their specific porosity, these BHP-Mn2O3-SCs as anode materials can accommodate the volume expansion/contraction that occurs with lithium insertion/extraction during discharge/charge processes, resulting in their good cycling performance. Our synthesized BHP-Mn2O3-SCs with a size of ~700 nm display the best electrochemical performance, with a large reversible capacity (845 mA h g-1 at 100 mA g-1 after 50 cycles), high coulombic efficiency (>95%), excellent cycling stability and superior rate capability (410 mA h g-1 at 1 Ag-1). These values are among the highest reported for Mn2O3-based bulk solids and nanostructures. Also, electrochemical impedance spectroscopy study demonstrates that the BHP-Mn2O3-SCs are suitable for charge transfer at the electrode/electrolyte interface.

  10. Linear expansion of the eigenvalues of a Hermitian matrix and its application to the analysis of the electronic spectra of 3 d ions in crystals

    NASA Astrophysics Data System (ADS)

    Seijo, L.; Pueyo, L.

    1985-02-01

    It is shown that the eigenvalues Ei of a Hermitian matrix H with matrix elements Hij = ΣkAkijak, where Akij are known numbers and ak a set of parameters, can be exactly expanded as E i = Σ k( {∂E i}/{∂a k})a k. This property is applied to the analysis of the optical spectra of transition metal ions in crystals proposed by L. Pueyo, M. Bermejo, and J. W. Richardson ( J. Solid State Chem.31, 217, 1980), and it is shown that this method represents the best fit of the Hamiltonian eigenvalues to the observed (or calculated) spectrum. Further advantages of using this property, in connection with the spectral analysis, are the minimization of the errors associated with the numerical approximations and a reduction in computer time. In the molecular orbital calculation of the optical or uv spectra of these systems, this linear expansion of the eigenvalues give a detailed interpretation of the improvements produced by refined calculations, such as those including configuration interaction. In particular, the changes in one-electron energy and in open-shell repulsion interactions associated with the refinement can be clearly and easily formulated. As examples, the computed spectra of CrF 4-6 and CrF 3-6 are discussed.

  11. Colloidal Phenomena.

    ERIC Educational Resources Information Center

    Russel, William B.; And Others

    1979-01-01

    Described is a graduate level engineering course offered at Princeton University in colloidal phenomena stressing the physical and dynamical side of colloid science. The course outline, reading list, and requirements are presented. (BT)

  12. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  13. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  14. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  15. Patterning hierarchy in direct and inverse opal crystals.

    PubMed

    Mishchenko, Lidiya; Hatton, Benjamin; Kolle, Mathias; Aizenberg, Joanna

    2012-06-25

    Biological strategies for bottom-up synthesis of inorganic crystalline and amorphous materials within topographic templates have recently become an attractive approach for fabricating complex synthetic structures. Inspired by these strategies, herein the synthesis of multi-layered, hierarchical inverse colloidal crystal films formed directly on topographically patterned substrates via evaporative deposition, or "co-assembly", of polymeric spheres with a silicate sol-gel precursor solution and subsequent removal of the colloidal template, is described. The response of this growing composite colloid-silica system to artificially imposed 3D spatial constraints of various geometries is systematically studied, and compared with that of direct colloidal crystal assembly on the same template. Substrates designed with arrays of rectangular, triangular, and hexagonal prisms and cylinders are shown to control crystallographic domain nucleation and orientation of the direct and inverse opals. With this bottom-up topographical approach, it is demonstrated that the system can be manipulated to either form large patterned single crystals, or crystals with a fine-tuned extent of disorder, and to nucleate distinct colloidal domains of a defined size, location, and orientation in a wide range of length-scales. The resulting ordered, quasi-ordered, and disordered colloidal crystal films show distinct optical properties. Therefore, this method provides a means of controlling bottom-up synthesis of complex, hierarchical direct and inverse opal structures designed for altering optical properties and increased functionality.

  16. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  17. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  19. Hydrogen in polar intermetallics: Syntheses and structures of the ternary Ca5Bi3D0.93, Yb5Bi3Hx, and Sm5Bi3H~1 by powder neutron or single crystal X-ray diffraction

    SciTech Connect

    Leon-Escamilla, E. Alejandro; Dervenagas, Panagiotis; Stasis, Constantine; Corbett, John D.

    2010-01-01

    The syntheses of the title compounds are described in detail. Structural characterizations from refinements of single crystal X-ray diffraction data for Yb{sub 5}Bi{sub 3}H{sub x} and Sm{sub 5}Bi{sub 3}H{sub 1} and of powder neutron diffraction data for Ca{sub 5}Bi{sub 3}D{sub 0.93(3)} are reported. These confirm that all three crystallize with the heavy atom structure type of {beta}-Yb{sub 5}Sb{sub 3}, and the third gives the first proof that the deuterium lies in the center of nominal calcium tetrahedra, isostructural with the Ca{sub 5}Sb{sub 3}F-type structure. These Ca and Yb phases are particularly stable with respect to dissociation to Mn{sub 5}Si{sub 3}-type product plus H{sub 2}. Some contradictions in the literature regarding Yb{sub 5}Sb{sub 3} and Yb{sub 5}Sb{sub 3}H{sub x} phases are considered in terms of adventitious hydrogen impurities that are generated during reactions in fused silica containers at elevated temperatures.

  20. Ligational behaviour of (E)-2-amino-N‧-[1-(2-hydroxyphenyl)ethylidene]benzohydrazide towards later 3d metal ions: X-ray crystal structure of nickel(IV) complex

    NASA Astrophysics Data System (ADS)

    Gudasi, Kalagouda B.; Patil, Siddappa A.; Bakale, Raghavendra P.; Nethaji, Munirathinum

    2014-05-01

    Ligational behaviour of (E)-2-amino-N‧-[1-(2-hydroxyphenyl)ethylidene]benzohydrazide (Aheb) towards later 3d metal ions[copper(II), cobalt(II), manganese(II), zinc(II), cadmium(II) and nickel(IV)] has been studied. Their structures have been elucidated on the basis of spectral (IR, 1H NMR, UV-Vis, EPR and FAB-mass), elemental analyses, conductance measurements, magnetic moments, and thermal studies. During complexation Ni(II) ion has got oxidized to Ni(IV). The changes in the bond parameters of the ligand on complexation has been discussed by comparing the crystal structure of the ligand with that of its Ni(IV) complex. The X-ray single crystal analysis of [Ni(aheb)2]Cl2·4H2O has confirmed an octahedral geometry around the metal ion. EPR spectra of the Cu(II) complex in polycrystalline state at room (300 K) and liquid nitrogen temperature (77 K) were recorded and their salient features are reported.

  1. Engineering novel mesoscopic structures using DNA-programmed colloidal self-assembly

    NASA Astrophysics Data System (ADS)

    Kim, Anthony Ji

    Controlling interactions between colloidal suspensions has been a fascinating challenge both experimentally and theoretically. Three-dimensional colloidal crystals assembled from monodisperse colloidal particles have generated a significant interest because of their potential application as photonic band gap materials (PBG), chemical sensors, optical filters, and switches. DNA-mediated colloidal assembly offers a unique tool for controlling the range and magnitude of interparticle interaction to promote novel crystal formation. We try to delimit those conditions under which the DNA-mediated interaction gives rise to well-ordered 3-D colloidal crystals, as well as to discuss the applications, optimization, and ultimate limitations of such DNA-mediated particle self-assembly. There are many unknowns regarding the expected colloidal phase diagram and the strength and kinetics of the DNA-mediated interaction, as well as the nonspecific interactions between colloids with different surface chemistries. We start with the simplest case of one-component system, where every colloid has a DNA-mediated attraction to every other, since the phase behavior and kinetics of one-component dispersions is well understood from previous studies. We determine and model the temperature and DNA-density dependence of the self-assembly phase diagram and kinetics. We find that crystals only form with the sterically stabilized DNA-particles in a rather narrow range of temperatures and have acceptably fast nucleation and growth in a small range of grafted-DNA density. In addition, the phase behavior of binary alloy solid solutions is studied using the same sterically stabilized colloidal particles. A competition between DNA single-base mismatches is used to create energy penalties for the substitution of a few KBTs'. The minority species substitute into the crystal lattice when the pair interaction difference is a fraction of a K BT, however, they exclude from the growing crystal when the pair

  2. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  3. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  4. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range.

    PubMed

    Shamsi, Javad; Dang, Zhiya; Bianchini, Paolo; Canale, Claudio; Stasio, Francesco Di; Brescia, Rosaria; Prato, Mirko; Manna, Liberato

    2016-06-15

    We report the nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells (i.e., below 5 nm), hence in the strong quantum confinement regime, by introducing short ligands (octanoic acid and octylamine) in the synthesis together with longer ones (oleic acid and oleylamine). The lateral size is tunable by varying the ratio of shorter ligands over longer ligands, while the thickness is mainly unaffected by this parameter and stays practically constant at 3 nm in all the syntheses conducted at short-to-long ligands volumetric ratio below 0.67. Beyond this ratio, control over the thickness is lost and a multimodal thickness distribution is observed.

  6. Colloidal Synthesis of Quantum Confined Single Crystal CsPbBr3 Nanosheets with Lateral Size Control up to the Micrometer Range

    PubMed Central

    2016-01-01

    We report the nontemplated colloidal synthesis of single crystal CsPbBr3 perovskite nanosheets with lateral sizes up to a few micrometers and with thickness of just a few unit cells (i.e., below 5 nm), hence in the strong quantum confinement regime, by introducing short ligands (octanoic acid and octylamine) in the synthesis together with longer ones (oleic acid and oleylamine). The lateral size is tunable by varying the ratio of shorter ligands over longer ligands, while the thickness is mainly unaffected by this parameter and stays practically constant at 3 nm in all the syntheses conducted at short-to-long ligands volumetric ratio below 0.67. Beyond this ratio, control over the thickness is lost and a multimodal thickness distribution is observed. PMID:27228475

  7. PREFACE: Special issue containing the Proceedings of an ESF PESC Exploratory Workshop on Liquid Crystal Colloid Dispersions

    NASA Astrophysics Data System (ADS)

    Cleaver, Doug; Ziherl, Primoz

    2004-05-01

    This special issue of Journal of Physics: Condensed Matter collects together a series of contributions first reported at the workshop `Structural Arrest Transitions in Colloidal Systems With Short-Range Attractions' which was held in Messina (Italy) on 17-20 December 2003. The aim of the workshop was to discuss, in depth, the recent progress on both the mode coupling theory predictions and their experimental tests on various aspects of structural arrest transitions in colloidal systems with short-range attractions. Indeed, the last five years had seen an incredible progress in the understanding of the slow dynamics in colloidal suspensions and of the formation of disordered arrested states in these systems, both at low and at high packing fraction. The time was ripe for an open discussion, not only of the previous achievements, but also of foreseeable future developments. Browsing through this issue, the reader will immediately notice the presence of words and ideas indicating a flowering of the original novel idea of the structural arrest transition in densely packed systems. The dynamical arrest phenomena close to the colloidal glass transition is discussed together with several other types of dynamic arrest, in particular the ones also able to generate arrested states at extremely low packing fractions. In this issue, studies of glass and gel formation are often found together. Novel and/or deeper connections between dynamical arrest and cluster formation, both in equilibrium and out of equilibrium conditions were presented and discussed during the workshop and reported in the accompanying articles. The theoretical frontier is pushed toward systems where short-range attractions are complemented by long-range repulsions, favouring the description of supramolecular ordering in protein solutions, in the same theoretical framework developed for charged colloidal systems. Mode-coupling theory calculations, strengthened by the notable agreement between theoretical

  8. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    PubMed Central

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-01-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials. PMID:27897209

  9. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties

    NASA Astrophysics Data System (ADS)

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-01

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80–250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  10. Lightweight NiFe2O4 with controllable 3D network structure and enhanced microwave absorbing properties.

    PubMed

    Wang, Fen; Wang, Xing; Zhu, Jianfeng; Yang, Haibo; Kong, Xingang; Liu, Xiao

    2016-11-29

    3D network structure NiFe2O4 was successfully synthesized by a templated salt precipitation method using PMMA colloid crystal as templates. The morphology, phase composition and microwave absorbing properties of as-prepared samples were characterized by scanning electron microscopy (SEM), X-ray diffraction (XRD), vector network analyzer (VNA), and so on. The results revealed that the 3D network structure was configurated with smooth spherical walls composed of NiFe2O4 nanocrystals and their pore diameters being in the range of 80-250 nm. The microwave absorption properties of the 3D network structure NiFe2O4 were crucially determined by the special structure. The synergy of intrinsic magnetic loss of magnetic NiFe2O4 and the interfacial polarization enhanced by 3D network structure and the interaction of multiple mechanisms endowed the sample with the feature of strong absorption, broad bandwidth and lightweight. There is more than one valley in the reflection loss curves and the maximum reflection loss is 27.5 dB with a bandwidth of 4 GHz. Moreover, the 3D network structure NiFe2O4 show a greater reflection loss with the same thickness comparing to the ordinary NiFe2O4 nanoparticles, which could achieve the feature of lightweight of the microwave absorbing materials.

  11. Nucleation and crystal growth in a suspension of charged colloidal silica spheres with bi-modal size distribution studied by time-resolved ultra-small-angle X-ray scattering.

    PubMed

    Hornfeck, Wolfgang; Menke, Dirk; Forthaus, Martin; Subatzus, Sebastian; Franke, Markus; Schöpe, Hans-Joachim; Palberg, Thomas; Perlich, Jan; Herlach, Dieter

    2014-12-07

    A suspension of charged colloidal silica spheres exhibiting a bi-modal size distribution of particles, thereby mimicking a binary mixture, was studied using time-resolved ultra-small-angle synchrotron X-ray scattering (USAXS). The sample, consisting of particles of diameters d(A) = (104.7 ± 9.0) nm and d(B) = (88.1 ± 7.8) nm (d(A)/d(B) ≈ 1.2), and with an estimated composition A(0.6(1))B(0.4(1)), was studied with respect to its phase behaviour in dependance of particle number density and interaction, of which the latter was modulated by varying amounts of added base (NaOH). Moreover, its short-range order in the fluid state and its eventual solidification into a long-range ordered colloidal crystal were observed in situ, allowing the measurement of the associated kinetics of nucleation and crystal growth. Key parameters of the nucleation kinetics such as crystallinity, crystallite number density, and nucleation rate density were extracted from the time-resolved scattering curves. By this means an estimate on the interfacial energy for the interface between the icosahedral short-range ordered fluid and a body-centered cubic colloidal crystal was obtained, comparable to previously determined values for single-component colloidal systems.

  12. Atomic resolution 3D electron diffraction microscopy

    SciTech Connect

    Miao, Jianwei; Ohsuna, Tetsu; Terasaki, Osamu; O'Keefe, Michael A.

    2002-03-01

    Electron lens aberration is the major barrier limiting the resolution of electron microscopy. Here we describe a novel form of electron microscopy to overcome electron lens aberration. By combining coherent electron diffraction with the oversampling phasing method, we show that the 3D structure of a 2 x 2 x 2 unit cell nano-crystal (framework of LTA [Al12Si12O48]8) can be ab initio determined at the resolution of 1 Angstrom from a series of simulated noisy diffraction pattern projections with rotation angles ranging from -70 degrees to +70 degrees in 5 degrees increments along a single rotation axis. This form of microscopy (which we call 3D electron diffraction microscopy) does not require any reference waves, and can image the 3D structure of nanocrystals, as well as non-crystalline biological and materials science samples, with the resolution limited only by the quality of sample diffraction.

  13. Binary Colloidal Alloy Test Conducted on Mir

    NASA Technical Reports Server (NTRS)

    Hoffmann, Monica I.; Ansari, Rafat R.

    1999-01-01

    Colloids are tiny (submicron) particles suspended in fluid. Paint, ink, and milk are examples of colloids found in everyday life. The Binary Colloidal Alloy Test (BCAT) is part of an extensive series of experiments planned to investigate the fundamental properties of colloids so that scientists can make colloids more useful for technological applications. Some of the colloids studied in BCAT are made of two different sized particles (binary colloidal alloys) that are very tiny, uniform plastic spheres. Under the proper conditions, these colloids can arrange themselves in a pattern to form crystals. These crystals may form the basis of new classes of light switches, displays, and optical devices. Windows made of liquid crystals are already in the marketplace. These windows change their appearance from transparent to opaque when a weak electric current is applied. In the future, if the colloidal crystals can be made to control the passage of light through them, such products could be made much more cheaply. These experiments require the microgravity environment of space because good quality crystals are difficult to produce on Earth because of sedimentation and convection in the fluid. The BCAT experiment hardware included two separate modules for two different experiments. The "Slow Growth" hardware consisted of a 35-mm camera with a 250- exposure photo film cartridge. The camera was aimed toward the sample module, which contained 10 separate colloid samples. A rack of small lights provided backlighting for the photographs. The BCAT hardware was launched on the shuttle and was operated aboard the Russian space station Mir by American astronauts John Blaha and David Wolf (launched September 1996 and returned January 1997; reflown September 1997 and returned January 1998). To begin the experiment, one of these astronauts would mix the samples to disperse the colloidal particles and break up any crystals that might have already formed. Once the samples were mixed and

  14. Synthesis of submicrometer-sized titania spherical particles with a sol-gel method and their application to colloidal photonic crystals.

    PubMed

    Mine, Eiichi; Hirose, Mitsuaki; Nagao, Daisuke; Kobayashi, Yoshio; Konno, Mikio

    2005-11-01

    A synthetic method for preparing submicrometer-sized titania particles is proposed, which is based on hydrolysis of titanium alkoxide with the use of a cosolvent and an amine catalyst for alkoxide hydrolysis. The preparation was performed with different amines of ammonia, methylamine (MA), and dimethylamine (DMA) in different solvents of ethanol/acetonitrile, ethanol/methanol, ethanol/acetone, ethanol/acetonitrile, and ethanol/formamide for 0.1-0.3 M water and 0.03 M titanium tetraisopropoxide (TTIP) at temperatures of 10-50 degrees C. The use of the ethanol/acetonitrile solvent with MA was required for preparing monodispersed, spherical particles. The number average of the titania particle sizes and their coefficient of variation were varied from 143 to 551 nm and from 5.7 to 20.6%, respectively, with reaction temperature and concentrations of water and MA. Colloidal crystals of titania particles fabricated with a sedimentation method revealed reflection peaks attributed to Bragg's diffraction. Annealing at 100-1000 degrees C led to shrinkage and crystallization of titania particles followed by an increase in the refractive index of titania particles.

  15. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  16. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    PubMed Central

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-01-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications. PMID:27586562

  17. Ordered array of Ag semishells on different diameter monolayer polystyrene colloidal crystals: An ultrasensitive and reproducible SERS substrate

    NASA Astrophysics Data System (ADS)

    Yi, Zao; Niu, Gao; Luo, Jiangshan; Kang, Xiaoli; Yao, Weitang; Zhang, Weibin; Yi, Yougen; Yi, Yong; Ye, Xin; Duan, Tao; Tang, Yongjian

    2016-09-01

    Ag semishells (AgSS) ordered arrays for surface-enhanced Raman scattering (SERS) spectroscopy have been prepared by depositing Ag film onto polystyrene colloidal particle (PSCP) monolayer templates array. The diversified activity for SERS activity with the ordered AgSS arrays mainly depends on the PSCP diameter and Ag film thickness. The high SERS sensitivity and reproducibility are proved by the detection of rhodamine 6G (R6G) and 4-aminothiophenol (4-ATP) molecules. The prominent enhancements of SERS are mainly from the “V”-shaped or “U”-shaped nanogaps on AgSS, which are experimentally and theoretically investigated. The higher SERS activity, stability and reproducibility make the ordered AgSS a promising choice for practical SERS low concentration detection applications.

  18. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  19. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  20. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  1. Investigation of the formation process of zeolite-like 3D frameworks constructed with ε-Keggin-type polyoxovanadomolybdates with binding bismuth ions and preparation of a nano-crystal.

    PubMed

    Zhang, Zhenxin; Sadakane, Masahiro; Murayama, Toru; Ueda, Wataru

    2014-09-28

    Reaction conditions for the synthesis of an ε-Keggin-type polyoxometalate-based 3D framework, (NH4)2.8H0.9[ε-VMo9.4V2.6O40Bi2]·7.2H2O (denoted as Mo-V-Bi oxide), are studied. It is found that the reaction time, temperature, pH of the solution, and starting compounds affect the production of Mo-V-Bi oxide. The crystal size of Mo-V-Bi oxide is controllable by changing bismuth compounds. Nanometer-sized Mo-V-Bi oxide is produced using a water-soluble bismuth compound, Bi(NO3)3·5H2O, whereas micrometer to submicrometer-sized Mo-V-Bi oxide is produced using Bi(OH)3, which is less soluble in water. The particle size of the material affects the properties of the material, such as surface area and catalysis. The investigation of the formation process of the material is carried out with Raman spectroscopy, which indicates that mixing (NH4)6Mo7O24·4H2O, VOSO4·5H2O, and bismuth ions in water produces the ε-Keggin polyoxovanadomolybdate together with a ball-shaped polyoxovanadomolybdate, [Mo72V30O282(H2O)56(SO4)12](36-) (denoted as {Mo72V30}). By heating the reaction mixture, the ε-Keggin polyoxovanadomolybdate assembles with bismuth ions to form Mo-V-Bi oxide, whereas {Mo72V30} assembles with other vanadium and molybdenum ions to form orthorhombic Mo-V oxide.

  2. Colloidal polypyrrole

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized aromatic heterocyclic monomer, a stabilizing effective amount of a vinyl pyridine-containing polymer and dopant anions and a method of preparing such polymer compositions are disclosed.

  3. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  4. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  5. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  6. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  7. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  8. Solution-Processed Transistors Using Colloidal Nanocrystals with Composition-Matched Molecular "Solders": Approaching Single Crystal Mobility.

    PubMed

    Jang, Jaeyoung; Dolzhnikov, Dmitriy S; Liu, Wenyong; Nam, Sooji; Shim, Moonsub; Talapin, Dmitri V

    2015-10-14

    Crystalline silicon-based complementary metal-oxide-semiconductor transistors have become a dominant platform for today's electronics. For such devices, expensive and complicated vacuum processes are used in the preparation of active layers. This increases cost and restricts the scope of applications. Here, we demonstrate high-performance solution-processed CdSe nanocrystal (NC) field-effect transistors (FETs) that exhibit very high carrier mobilities (over 400 cm(2)/(V s)). This is comparable to the carrier mobilities of crystalline silicon-based transistors. Furthermore, our NC FETs exhibit high operational stability and MHz switching speeds. These NC FETs are prepared by spin coating colloidal solutions of CdSe NCs capped with molecular solders [Cd2Se3](2-) onto various oxide gate dielectrics followed by thermal annealing. We show that the nature of gate dielectrics plays an important role in soldered CdSe NC FETs. The capacitance of dielectrics and the NC electronic structure near gate dielectric affect the distribution of localized traps and trap filling, determining carrier mobility and operational stability of the NC FETs. We expand the application of the NC soldering process to core-shell NCs consisting of a III-V InAs core and a CdSe shell with composition-matched [Cd2Se3](2-) molecular solders. Soldering CdSe shells forms nanoheterostructured material that combines high electron mobility and near-IR photoresponse.

  9. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  10. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  11. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  12. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  13. Binodal Colloidal Aggregation Test - 4: Polydispersion

    NASA Technical Reports Server (NTRS)

    Chaikin, Paul M.

    2008-01-01

    Binodal Colloidal Aggregation Test - 4: Polydispersion (BCAT-4-Poly) will use model hard-spheres to explore seeded colloidal crystal nucleation and the effects of polydispersity, providing insight into how nature brings order out of disorder. Crewmembers photograph samples of polymer and colloidal particles (tiny nanoscale spheres suspended in liquid) that model liquid/gas phase changes. Results will help scientists develop fundamental physics concepts previously cloaked by the effects of gravity.

  14. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  15. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  16. Three-dimensional colloidal lithography.

    PubMed

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A; Chang, Chih-Hao

    2017-03-24

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd's mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  17. Three-dimensional colloidal lithography

    NASA Astrophysics Data System (ADS)

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A.; Chang, Chih-Hao

    2017-03-01

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle–light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd’s mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  18. The New Realm of 3-D Vision

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Dimension Technologies Inc., developed a line of 2-D/3-D Liquid Crystal Display (LCD) screens, including a 15-inch model priced at consumer levels. DTI's family of flat panel LCD displays, called the Virtual Window(TM), provide real-time 3-D images without the use of glasses, head trackers, helmets, or other viewing aids. Most of the company initial 3-D display research was funded through NASA's Small Business Innovation Research (SBIR) program. The images on DTI's displays appear to leap off the screen and hang in space. The display accepts input from computers or stereo video sources, and can be switched from 3-D to full-resolution 2-D viewing with the push of a button. The Virtual Window displays have applications in data visualization, medicine, architecture, business, real estate, entertainment, and other research, design, military, and consumer applications. Displays are currently used for computer games, protein analysis, and surgical imaging. The technology greatly benefits the medical field, as surgical simulators are helping to increase the skills of surgical residents. Virtual Window(TM) is a trademark of Dimension Technologies Inc.

  19. Stability and Occurrence of the Molecule-Containing SiO2 Clathrate Melanophlogite: Metastable Crystallization from a Colloid or Gel?

    NASA Astrophysics Data System (ADS)

    Geiger, C. A.; Dachs, E.

    2008-12-01

    The mineral melanophlogite is the only known natural SiO2 clathrate. It has been found in a number of localities worldwide in different low-temperature geologic environments. Melanophlogite's thermodynamic stability is not known. Low-temperature hydrothermal laboratory experiments indicate that structure-directing agents and colloid formation are needed for crystallization. The formation of silica-rich colloids/gels and following crystal growth can be observed in glass-ampoule synthesis experiments. In order to better address these issues, the heat capacities of two different molecule-containing melanophlogites of approximate composition 46SiO2·1.80CH4·3.54N2·1.02CO2 from Mt. Hamilton, CA and 46SiO2·3.59CH4·3.10N2·1.31CO2 from Racalmuto, Sicily, along with a heated (molecule-free) sample of composition SiO2, were studied between 5 and 300 K using heat- pulse microcalorimetry. The molecule-free sample was obtained by heating a natural Racalmuto sample at 1173 K for 24 hr. It has a slightly larger low-temperature heat capacity and standard third-law entropy compared to other low-density SiO2 polymorphs such as various zeosils. The standard third-law entropy of the molecule-free sample is S° = 2216.3 J/(mol·K) for 46SiO2 and the natural Mt. Hamilton and Racalmuto samples give S° = 2805.7 J/(mol·K) and S° = 2956.8 J/(mol· K), respectively. The entropy and Gibbs free energy for molecule-free melanophlogite relative to quartz at 298 K are Δ Strans = 6.7 J/(mol·K) and Δ Gtrans = 7.5 kJ/mol, respectively and, thus, it does not have a thermodynamic field of stability in the SiO2 system. The difference in Cp values between molecule-containing and molecule-free melanophlogite is characterized by an increase in Cp from 0 K to approximately 70 K and then reaches a roughly constant value at 70 K < T < 250 K. The Δ Srxn at 298 K for 46SiO2(melan.) + xCH4(gas) + yCO2(gas) + zN2(gas) = 46SiO2·(xCH4)12·(yCO2, zN2)14 is estimated to be about -642 J/(mol·K) and -802

  20. One-, Two-, and Three-Dimensional Heterospin Complexes Consisting of 4-(N-tert-Butyloxylamino)pyridine (4NOpy), Dicyanamide Ion (DCA), and 3d Metal Ions: Crystal Structures and Magnetic Properties of [M(II)(4NOpy)x(DCA)y(CH3CN)z]n (M = Mn, Co, Ni, Cu, Zn).

    PubMed

    Ogawa, Hiraku; Mori, Koya; Murashima, Kensuke; Karasawa, Satoru; Koga, Noboru

    2016-01-19

    Solutions of 3d metal ion salts, M(NO3)2, 4-(N-tert-butyloxylamino)pyridine (4NOpy), and dicyanamide (DCA) in CH3CN were mixed to afford single crystals of the polymeric complexes [M(II)(4NOpy)x(DCA)y(CH3CN)z]n (M(II) = Mn (1), Co (2), Ni (3), Cu (4a and 4b), Zn (5)). X-ray crystallography revealed that the crystal structures are a three-dimensional (3-D) network for 1, 2-D networks for 2, 3, 4a, and 5, and a 1-D chain for 4b. Crystals of 2, 3, 4a, and 5 contained CH3CN molecules as crystal solvents, which were readily desorbed in the ambient atmosphere. After desorption of the CH3CN molecules, the crystal structures of 2 and 3 were confirmed to be slightly shrunk without destruction of the crystal lattice. Crystals of 2, 3, 4a, and 5 after desorption of crystal solvents were used for investigations of the magnetic properties. Complex 1 showed antiferromagnetic interactions to form a ferrimagnetic chain and exhibited the magnetic behavior of a 2-D (or 3-D) spin-canted antiferromagnet with TN = 12 K. Complex 2 containing anisotropic Co(II) ions also showed the behavior of a 1-D (or 2-D) spin-canted antiferromagnet with TN = 6 K. In 3, 4a, and 4b, the aminoxyl of 4NOpy ferromagnetically interacted with the metal ion with coupling constants of JM-NO/kB = 45, 45, and 43 K, respectively. In 5, the magnetic couplings between the aminoxyls in 4NOpy through the diamagnetic Zn(II) ion were weakly antiferromagntic (JNO-NO = -1.2 K). DCA might be a weak antiferromagnetic connector for the metal chains.

  1. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  2. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  3. Large-scale assembly of colloidal particles

    NASA Astrophysics Data System (ADS)

    Yang, Hongta

    This study reports a simple, roll-to-roll compatible coating technology for producing three-dimensional highly ordered colloidal crystal-polymer composites, colloidal crystals, and macroporous polymer membranes. A vertically beveled doctor blade is utilized to shear align silica microsphere-monomer suspensions to form large-area composites in a single step. The polymer matrix and the silica microspheres can be selectively removed to create colloidal crystals and self-standing macroporous polymer membranes. The thickness of the shear-aligned crystal is correlated with the viscosity of the colloidal suspension and the coating speed, and the correlations can be qualitatively explained by adapting the mechanisms developed for conventional doctor blade coating. Five important research topics related to the application of large-scale three-dimensional highly ordered macroporous films by doctor blade coating are covered in this study. The first topic describes the invention in large area and low cost color reflective displays. This invention is inspired by the heat pipe technology. The self-standing macroporous polymer films exhibit brilliant colors which originate from the Bragg diffractive of visible light form the three-dimensional highly ordered air cavities. The colors can be easily changed by tuning the size of the air cavities to cover the whole visible spectrum. When the air cavities are filled with a solvent which has the same refractive index as that of the polymer, the macroporous polymer films become completely transparent due to the index matching. When the solvent trapped in the cavities is evaporated by in-situ heating, the sample color changes back to brilliant color. This process is highly reversible and reproducible for thousands of cycles. The second topic reports the achievement of rapid and reversible vapor detection by using 3-D macroporous photonic crystals. Capillary condensation of a condensable vapor in the interconnected macropores leads to the

  4. Nucleation in food colloids

    NASA Astrophysics Data System (ADS)

    Povey, Malcolm J. W.

    2016-12-01

    Nucleation in food colloids has been studied in detail using ultrasound spectroscopy. Our data show that classical nucleation theory (CNT) remains a sound basis from which to understand nucleation in food colloids and analogous model systems using n-alkanes. Various interpretations and modifications of CNT are discussed with regard to their relevance to food colloids. Much of the evidence presented is based on the ultrasound velocity spectrometry measurements which has many advantages for the study of nucleating systems compared to light scattering and NMR due to its sensitivity at low solid contents and its ability to measure true solid contents in the nucleation and early crystal growth stages. Ultrasound attenuation spectroscopy also responds to critical fluctuations in the induction region. We show, however, that a periodic pressure fluctuation such as a quasi-continuous (as opposed to a pulse comprising only a few pressure cycles) ultrasound field can alter the nucleation process, even at very low acoustic intensity. Thus care must be taken when using ultrasound techniques that the measurements do not alter the studied processes. Quasi-continuous ultrasound fields may enhance or suppress nucleation and the criteria to determine such effects are derived. The conclusions of this paper are relevant to colloidal systems in foods, pharmaceuticals, agro-chemicals, cosmetics, and personal products.

  5. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  6. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  7. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  8. Novel Colloidal and Dynamic Interfacial Phenomena in Liquid Crystalline Systems

    DTIC Science & Technology

    2014-09-13

    investigation supported by this grant moved beyond past studies of interfacial and colloidal phenomena involving isotropic liquids to explore and understand a...2010 20-May-2014 Approved for Public Release; Distribution Unlimited Final Report: Novel Colloidal and Dynamic Interfacial Phenomena in Liquid...Army Research Office P.O. Box 12211 Research Triangle Park, NC 27709-2211 liquid crystals, interfacial phenomena, colloids , amphiphiles

  9. Laser processing in 3D diamond detectors

    NASA Astrophysics Data System (ADS)

    Murphy, S. A.; Booth, M.; Li, L.; Oh, A.; Salter, P.; Sun, B.; Whitehead, D.; Zadoroshnyj, A.

    2017-02-01

    A technique for electrode production within diamond using a femtosecond laser system is described. Diagnosis tests to quantify the stress, the diamond to graphite ratio, and the resistivity of these electrodes are discussed. A 3D electronic grade single crystal diamond detector produced using this technique is shown, and the electrodes have a resistivity of O(1 Ω cm). An improvement to the technique through the use of an adaptive wavefront shows a reduction of the diamond to graphite ratio, and smaller, higher quality electrodes were manufactured.

  10. Swimming in a crystal.

    PubMed

    Brown, Aidan T; Vladescu, Ioana D; Dawson, Angela; Vissers, Teun; Schwarz-Linek, Jana; Lintuvuori, Juho S; Poon, Wilson C K

    2016-01-07

    We study catalytic Janus particles and Escherichia coli bacteria swimming in a two-dimensional colloidal crystal. The Janus particles orbit individual colloids and hop between colloids stochastically, with a hopping rate that varies inversely with fuel (hydrogen peroxide) concentration. At high fuel concentration, these orbits are stable for 100s of revolutions, and the orbital speed oscillates periodically as a result of hydrodynamic, and possibly also phoretic, interactions between the swimmer and the six neighbouring colloids. Motile E. coli bacteria behave very differently in the same colloidal crystal: their circular orbits on plain glass are rectified into long, straight runs, because the bacteria are unable to turn corners inside the crystal.

  11. Ultrasensitive SERS performance in 3D "sunflower-like" nanoarrays decorated with Ag nanoparticles.

    PubMed

    Zhang, Xiaolei; Xiao, Xiangheng; Dai, Zhigao; Wu, Wei; Zhang, Xingang; Fu, Lei; Jiang, Changzhong

    2017-03-02

    Low-cost, stabilized and ultrasensitive three-dimensional (3D) hierarchical surface-enhanced Raman scattering substrates ("sunflower-like" nanoarrays decorated with Ag nanoparticles, denoted as SLNAs-Ag) have been obtained by fabricating binary colloidal crystals and then decorating with Ag nanoparticles. In order to provide a larger density of hot spots within the laser-illumination area, the silica sphere arrays were chosen as the island-type platform for the polystyrene (PS) nanosphere deposition, and the distances between the PS nanospheres were tuned by etching for different durations. Compared with conventional 2D planar systems, the as-fabricated 3D SLNAs-Ag exhibited extremely high SERS sensitivity ascribed to the larger SERS active regions. Quantitative detection of molecules with an extremely low incident laser power was achieved on the "sunflower-like" nanoarrays in which the PS nanospheres were etched for 5 minutes and decorated with Ag nanoparticles, and the corresponding analytical enhancement factor is calculated to be 2 × 10(14) with the concentration of rhodamine 6G down to 10(-15) M. Based on the achieved SERS substrates, we have further demonstrated the highly sensitive detection of molecules such as melamine for food safety inspection.

  12. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  13. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  14. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  15. Colloidal polyaniline

    DOEpatents

    Armes, Steven P.; Aldissi, Mahmoud

    1990-01-01

    Processable electrically conductive latex polymer compositions including colloidal particles of an oxidized, polymerized amino-substituted aromatic monomer, a stabilizing effective amount of a random copolymer containing amino-benzene type moieties as side chain constituents, and dopant anions, and a method of preparing such polymer compositions are provided.

  16. Final Report: The Impact of Carbonate on Surface Protonation, Electron Transfer and Crystallization Reactions in Iron Oxide Nanoparticles and Colloids

    SciTech Connect

    Dixon, David Adams

    2013-07-02

    This project addresses key issues of importance in the geochemical behavior of iron oxides and in the geochemical cycling of carbon and iron. For Fe, we are specifically studying the influence of carbonate on electron transfer reactions, solid phase transformations, and the binding of carbonate to reactive sites on the edges of particles. The emphasis on carbonate arises because it is widely present in the natural environment, is known to bind strongly to oxide surfaces, is reactive on the time scales of interest, and has a speciation driven by acid-base reactions. The geochemical behavior of carbonate strongly influences global climate change and CO{sub 2} sequestration technologies. Our goal is to answer key questions with regards to specific site binding, electron transfer reactions, and crystallization reactions of iron oxides that impact both the geochemical cycling of iron and CO{sub 2} species. Our work is focused on the molecular level description of carbonate chemistry in solution including the prediction of isotope fractionation factors. We have also done work on critical atmospheric species.

  17. Colloidal Stability and Magnetic Field-Induced Ordering of Magnetorheological Fluids Studied with a Quartz Crystal Microbalance

    PubMed Central

    Rodriguez-López, Jaime; Castro, Pedro; de Vicente, Juan; Johannsmann, Diethelm; Elvira, Luis; Morillas, Jose R.; Montero de Espinosa, Francisco

    2015-01-01

    This work proposes the use of quartz crystal microbalances (QCMs) as a method to analyze and characterize magnetorheological (MR) fluids. QCM devices are sensitive to changes in mass, surface interactions, and viscoelastic properties of the medium contacting its surface. These features make the QCM suitable to study MR fluids and their response to variable environmental conditions. MR fluids change their structure and viscoelastic properties under the action of an external magnetic field, this change being determined by the particle volume fraction, the magnetic field strength, and the presence of thixotropic agents among other factors. In this work, the measurement of the resonance parameters (resonance frequency and dissipation factor) of a QCM are used to analyze the behavior of MR fluids in static conditions (that is, in the absence of external mechanical stresses). The influence of sedimentation under gravity and the application of magnetic fields on the shifts of resonance frequency and dissipation factor were measured and discussed in the frame of the coupled resonance produced by particles touching the QCM surface. Furthermore, the MR-fluid/QCM system has a great potential for the study of high-frequency contact mechanics because the translational and rotational stiffness of the link between the surface and the particles can be tuned by the magnetic field. PMID:26690152

  18. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  19. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  20. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right