Science.gov

Sample records for 3d computational fluid

  1. Multitasking the code ARC3D. [for computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Barton, John T.; Hsiung, Christopher C.

    1986-01-01

    The CRAY multitasking system was developed in order to utilize all four processors and sharply reduce the wall clock run time. This paper describes the techniques used to modify the computational fluid dynamics code ARC3D for this run and analyzes the achieved speedup. The ARC3D code solves either the Euler or thin-layer N-S equations using an implicit approximate factorization scheme. Results indicate that multitask processing can be used to achieve wall clock speedup factors of over three times, depending on the nature of the program code being used. Multitasking appears to be particularly advantageous for large-memory problems running on multiple CPU computers.

  2. SALE-3D: a simplified ALE computer program for calculating three-dimensional fluid flow

    SciTech Connect

    Amsden, A.A.; Ruppel, H.M.

    1981-11-01

    This report presents a simplified numerical fluid-dynamics computing technique for calculating time-dependent flows in three dimensions. An implicit treatment of the pressure equation permits calculation of flows far subsonic without stringent constraints on the time step. In addition, the grid vertices may be moved with the fluid in Lagrangian fashion or held fixed in an Eulerian manner, or moved in some prescribed manner to give a continuous rezoning capability. This report describes the combination of Implicit Continuous-fluid Eulerian (ICE) and Arbitrary Lagrangian-Eulerian (ALE) to form the ICEd-ALE technique in the framework of the Simplified-ALE (SALE-3D) computer program, for which a general flow diagram and complete FORTRAN listing are included. Sample problems show how to modify the code for a variety of applications. SALE-3D is patterned as closely as possible on the previously reported two-dimensional SALE program.

  3. Analysis of thoracic aorta hemodynamics using 3D particle tracking velocimetry and computational fluid dynamics.

    PubMed

    Gallo, Diego; Gülan, Utku; Di Stefano, Antonietta; Ponzini, Raffaele; Lüthi, Beat; Holzner, Markus; Morbiducci, Umberto

    2014-09-22

    Parallel to the massive use of image-based computational hemodynamics to study the complex flow establishing in the human aorta, the need for suitable experimental techniques and ad hoc cases for the validation and benchmarking of numerical codes has grown more and more. Here we present a study where the 3D pulsatile flow in an anatomically realistic phantom of human ascending aorta is investigated both experimentally and computationally. The experimental study uses 3D particle tracking velocimetry (PTV) to characterize the flow field in vitro, while finite volume method is applied to numerically solve the governing equations of motion in the same domain, under the same conditions. Our findings show that there is an excellent agreement between computational and measured flow fields during the forward flow phase, while the agreement is poorer during the reverse flow phase. In conclusion, here we demonstrate that 3D PTV is very suitable for a detailed study of complex unsteady flows as in aorta and for validating computational models of aortic hemodynamics. In a future step, it will be possible to take advantage from the ability of 3D PTV to evaluate velocity fluctuations and, for this reason, to gain further knowledge on the process of transition to turbulence occurring in the thoracic aorta.

  4. Validation of a 3D computational fluid-structure interaction model simulating flow through an elastic aperture

    PubMed Central

    Quaini, A.; Canic, S.; Glowinski, R.; Igo, S.; Hartley, C.J.; Zoghbi, W.; Little, S.

    2011-01-01

    This work presents a validation of a fluid-structure interaction computational model simulating the flow conditions in an in vitro mock heart chamber modeling mitral valve regurgitation during the ejection phase during which the trans-valvular pressure drop and valve displacement are not as large. The mock heart chamber was developed to study the use of 2D and 3D color Doppler techniques in imaging the clinically relevant complex intra-cardiac flow events associated with mitral regurgitation. Computational models are expected to play an important role in supporting, refining, and reinforcing the emerging 3D echocardiographic applications. We have developed a 3D computational fluid-structure interaction algorithm based on a semi-implicit, monolithic method, combined with an arbitrary Lagrangian-Eulerian approach to capture the fluid domain motion. The mock regurgitant mitral valve corresponding to an elastic plate with a geometric orifice, was modeled using 3D elasticity, while the blood flow was modeled using the 3D Navier-Stokes equations for an incompressible, viscous fluid. The two are coupled via the kinematic and dynamic conditions describing the two-way coupling. The pressure, the flow rate, and orifice plate displacement were measured and compared with numerical simulation results. In-line flow meter was used to measure the flow, pressure transducers were used to measure the pressure, and a Doppler method developed by one of the authors was used to measure the axial displacement of the orifice plate. The maximum recorded difference between experiment and numerical simulation for the flow rate was 4%, the pressure 3.6%, and for the orifice displacement 15%, showing excellent agreement between the two. PMID:22138194

  5. Separation efficiency of a hydrodynamic separator using a 3D computational fluid dynamics multiscale approach.

    PubMed

    Schmitt, Vivien; Dufresne, Matthieu; Vazquez, Jose; Fischer, Martin; Morin, Antoine

    2014-01-01

    The aim of this study is to investigate the use of computational fluid dynamics (CFD) to predict the solid separation efficiency of a hydrodynamic separator. The numerical difficulty concerns the discretization of the geometry to simulate both the global behavior and the local phenomena that occur near the screen. In this context, a CFD multiscale approach was used: a global model (at the scale of the device) is used to observe the hydrodynamic behavior within the device; a local model (portion of the screen) is used to determine the local phenomena that occur near the screen. The Eulerian-Lagrangian approach was used to model the particle trajectories in both models. The global model shows the influence of the particles' characteristics on the trapping efficiency. A high density favors the sedimentation. In contrast, particles with small densities (1,040 kg/m(3)) are steered by the hydrodynamic behavior and can potentially be trapped by the separator. The use of the local model allows us to observe the particle trajectories near the screen. A comparison between two types of screens (perforated plate vs expanded metal) highlights the turbulent effects created by the shape of the screen.

  6. Users manual for CAFE-3D : a computational fluid dynamics fire code.

    SciTech Connect

    Khalil, Imane; Lopez, Carlos; Suo-Anttila, Ahti Jorma

    2005-03-01

    The Container Analysis Fire Environment (CAFE) computer code has been developed to model all relevant fire physics for predicting the thermal response of massive objects engulfed in large fires. It provides realistic fire thermal boundary conditions for use in design of radioactive material packages and in risk-based transportation studies. The CAFE code can be coupled to commercial finite-element codes such as MSC PATRAN/THERMAL and ANSYS. This coupled system of codes can be used to determine the internal thermal response of finite element models of packages to a range of fire environments. This document is a user manual describing how to use the three-dimensional version of CAFE, as well as a description of CAFE input and output parameters. Since this is a user manual, only a brief theoretical description of the equations and physical models is included.

  7. Rapid Reconstitution Packages (RRPs) implemented by integration of computational fluid dynamics (CFD) and 3D printed microfluidics.

    PubMed

    Chi, Albert; Curi, Sebastian; Clayton, Kevin; Luciano, David; Klauber, Kameron; Alexander-Katz, Alfredo; D'hers, Sebastian; Elman, Noel M

    2014-08-01

    Rapid Reconstitution Packages (RRPs) are portable platforms that integrate microfluidics for rapid reconstitution of lyophilized drugs. Rapid reconstitution of lyophilized drugs using standard vials and syringes is an error-prone process. RRPs were designed using computational fluid dynamics (CFD) techniques to optimize fluidic structures for rapid mixing and integrating physical properties of targeted drugs and diluents. Devices were manufactured using stereo lithography 3D printing for micrometer structural precision and rapid prototyping. Tissue plasminogen activator (tPA) was selected as the initial model drug to test the RRPs as it is unstable in solution. tPA is a thrombolytic drug, stored in lyophilized form, required in emergency settings for which rapid reconstitution is of critical importance. RRP performance and drug stability were evaluated by high-performance liquid chromatography (HPLC) to characterize release kinetics. In addition, enzyme-linked immunosorbent assays (ELISAs) were performed to test for drug activity after the RRPs were exposed to various controlled temperature conditions. Experimental results showed that RRPs provided effective reconstitution of tPA that strongly correlated with CFD results. Simulation and experimental results show that release kinetics can be adjusted by tuning the device structural dimensions and diluent drug physical parameters. The design of RRPs can be tailored for a number of applications by taking into account physical parameters of the active pharmaceutical ingredients (APIs), excipients, and diluents. RRPs are portable platforms that can be utilized for reconstitution of emergency drugs in time-critical therapies.

  8. Development, Verification and Use of Gust Modeling in the NASA Computational Fluid Dynamics Code FUN3D

    NASA Technical Reports Server (NTRS)

    Bartels, Robert E.

    2012-01-01

    This paper presents the implementation of gust modeling capability in the CFD code FUN3D. The gust capability is verified by computing the response of an airfoil to a sharp edged gust. This result is compared with the theoretical result. The present simulations will be compared with other CFD gust simulations. This paper also serves as a users manual for FUN3D gust analyses using a variety of gust profiles. Finally, the development of an Auto-Regressive Moving-Average (ARMA) reduced order gust model using a gust with a Gaussian profile in the FUN3D code is presented. ARMA simulated results of a sequence of one-minus-cosine gusts is shown to compare well with the same gust profile computed with FUN3D. Proper Orthogonal Decomposition (POD) is combined with the ARMA modeling technique to predict the time varying pressure coefficient increment distribution due to a novel gust profile. The aeroelastic response of a pitch/plunge airfoil to a gust environment is computed with a reduced order model, and compared with a direct simulation of the system in the FUN3D code. The two results are found to agree very well.

  9. Computational Fluid Dynamic Analyses for the High-Lift Common Research Model Using the USM3D and FUN3D Flow Solvers

    NASA Technical Reports Server (NTRS)

    Rivers, Melissa; Hunter, Craig; Vatsa, Veer

    2017-01-01

    Two Navier-Stokes codes were used to compute flow over the High-Lift Common Research Model (HL-CRM) in preparation for a wind tunnel test to be performed at the NASA Langley Research Center 14-by-22-Foot Subsonic Tunnel in fiscal year 2018. Both flight and wind tunnel conditions were simulated by the two codes at set Mach numbers and Reynolds numbers over a full angle-of-attack range for three configurations: cruise, landing and takeoff. Force curves, drag polars and surface pressure contour comparisons are shown for the two codes. The lift and drag curves compare well for the cruise configuration up to 10deg angle of attack but not as well for the other two configurations. The drag polars compare reasonably well for all three configurations. The surface pressure contours compare well for some of the conditions modeled but not as well for others.

  10. 3D Reconstruction of Chick Embryo Vascular Geometries Using Non-invasive High-Frequency Ultrasound for Computational Fluid Dynamics Studies.

    PubMed

    Tan, Germaine Xin Yi; Jamil, Muhammad; Tee, Nicole Gui Zhen; Zhong, Liang; Yap, Choon Hwai

    2015-11-01

    Recent animal studies have provided evidence that prenatal blood flow fluid mechanics may play a role in the pathogenesis of congenital cardiovascular malformations. To further these researches, it is important to have an imaging technique for small animal embryos with sufficient resolution to support computational fluid dynamics studies, and that is also non-invasive and non-destructive to allow for subject-specific, longitudinal studies. In the current study, we developed such a technique, based on ultrasound biomicroscopy scans on chick embryos. Our technique included a motion cancelation algorithm to negate embryonic body motion, a temporal averaging algorithm to differentiate blood spaces from tissue spaces, and 3D reconstruction of blood volumes in the embryo. The accuracy of the reconstructed models was validated with direct stereoscopic measurements. A computational fluid dynamics simulation was performed to model fluid flow in the generated construct of a Hamburger-Hamilton (HH) stage 27 embryo. Simulation results showed that there were divergent streamlines and a low shear region at the carotid duct, which may be linked to the carotid duct's eventual regression and disappearance by HH stage 34. We show that our technique has sufficient resolution to produce accurate geometries for computational fluid dynamics simulations to quantify embryonic cardiovascular fluid mechanics.

  11. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  12. Velocity Measurement in Carotid Artery: Quantitative Comparison of Time-Resolved 3D Phase-Contrast MRI and Image-based Computational Fluid Dynamics

    PubMed Central

    Sarrami-Foroushani, Ali; Nasr Esfahany, Mohsen; Nasiraei Moghaddam, Abbas; Saligheh Rad, Hamidreza; Firouznia, Kavous; Shakiba, Madjid; Ghanaati, Hossein; Wilkinson, Iain David; Frangi, Alejandro Federico

    2015-01-01

    Background: Understanding hemodynamic environment in vessels is important for realizing the mechanisms leading to vascular pathologies. Objectives: Three-dimensional velocity vector field in carotid bifurcation is visualized using TR 3D phase-contrast magnetic resonance imaging (TR 3D PC MRI) and computational fluid dynamics (CFD). This study aimed to present a qualitative and quantitative comparison of the velocity vector field obtained by each technique. Subjects and Methods: MR imaging was performed on a 30-year old male normal subject. TR 3D PC MRI was performed on a 3 T scanner to measure velocity in carotid bifurcation. 3D anatomical model for CFD was created using images obtained from time-of-flight MR angiography. Velocity vector field in carotid bifurcation was predicted using CFD and PC MRI techniques. A statistical analysis was performed to assess the agreement between the two methods. Results: Although the main flow patterns were the same for the both techniques, CFD showed a greater resolution in mapping the secondary and circulating flows. Overall root mean square (RMS) errors for all the corresponding data points in PC MRI and CFD were 14.27% in peak systole and 12.91% in end diastole relative to maximum velocity measured at each cardiac phase. Bland-Altman plots showed a very good agreement between the two techniques. However, this study was not aimed to validate any of methods, instead, the consistency was assessed to accentuate the similarities and differences between Time-resolved PC MRI and CFD. Conclusion: Both techniques provided quantitatively consistent results of in vivo velocity vector fields in right internal carotid artery (RCA). PC MRI represented a good estimation of main flow patterns inside the vasculature, which seems to be acceptable for clinical use. However, limitations of each technique should be considered while interpreting results. PMID:26793288

  13. Application of computational fluid dynamics and fluid structure interaction techniques for calculating the 3D transient flow of journal bearings coupled with rotor systems

    NASA Astrophysics Data System (ADS)

    Li, Qiang; Yu, Guichang; Liu, Shulian; Zheng, Shuiying

    2012-09-01

    Journal bearings are important parts to keep the high dynamic performance of rotor machinery. Some methods have already been proposed to analysis the flow field of journal bearings, and in most of these methods simplified physical model and classic Reynolds equation are always applied. While the application of the general computational fluid dynamics (CFD)-fluid structure interaction (FSI) techniques is more beneficial for analysis of the fluid field in a journal bearing when more detailed solutions are needed. This paper deals with the quasi-coupling calculation of transient fluid dynamics of oil film in journal bearings and rotor dynamics with CFD-FSI techniques. The fluid dynamics of oil film is calculated by applying the so-called "dynamic mesh" technique. A new mesh movement approach is presented while the dynamic mesh models provided by FLUENT are not suitable for the transient oil flow in journal bearings. The proposed mesh movement approach is based on the structured mesh. When the journal moves, the movement distance of every grid in the flow field of bearing can be calculated, and then the update of the volume mesh can be handled automatically by user defined function (UDF). The journal displacement at each time step is obtained by solving the moving equations of the rotor-bearing system under the known oil film force condition. A case study is carried out to calculate the locus of the journal center and pressure distribution of the journal in order to prove the feasibility of this method. The calculating results indicate that the proposed method can predict the transient flow field of a journal bearing in a rotor-bearing system where more realistic models are involved. The presented calculation method provides a basis for studying the nonlinear dynamic behavior of a general rotor-bearing system.

  14. SALE3D. ICEd-ALE Treatment of 3-D Fluid Flow

    SciTech Connect

    Amsden, A.A.; Ruppel, H.M.

    1992-01-14

    SALE3D calculates three-dimensional fluid flow at all speeds, from the incompressible limit to highly supersonic. An implicit treatment of the pressure calculation similar to that in the Implicit Continuous-fluid Eulerian (ICE) technique provides this flow speed flexibility. In addition, the computing mesh may move with the fluid in a typical Lagrangian fashion, be held in an Eulerian manner, or move in some arbitrarily specified way to provide a continuous rezoning capability. This latitude results from use of an Arbitrary Lagrangian-Eulerian (ALE) treatment of the mesh. The partial differential equations solved are the Navier-Stokes equations and the mass and internal energy equations. The fluid pressure is determined from an equation of state and supplemented with an artificial viscous pressure for the computation of shock waves. The computing mesh consists of a three-dimensional network of arbitrarily shaped, six-sided deformable cells, and a variety of user-selectable boundary conditions are provided in the program.

  15. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  16. Fast 3D fluid registration of brain magnetic resonance images

    NASA Astrophysics Data System (ADS)

    Leporé, Natasha; Chou, Yi-Yu; Lopez, Oscar L.; Aizenstein, Howard J.; Becker, James T.; Toga, Arthur W.; Thompson, Paul M.

    2008-03-01

    Fluid registration is widely used in medical imaging to track anatomical changes, to correct image distortions, and to integrate multi-modality data. Fluid mappings guarantee that the template image deforms smoothly into the target, without tearing or folding, even when large deformations are required for accurate matching. Here we implemented an intensity-based fluid registration algorithm, accelerated by using a filter designed by Bro-Nielsen and Gramkow. We validated the algorithm on 2D and 3D geometric phantoms using the mean square difference between the final registered image and target as a measure of the accuracy of the registration. In tests on phantom images with different levels of overlap, varying amounts of Gaussian noise, and different intensity gradients, the fluid method outperformed a more commonly used elastic registration method, both in terms of accuracy and in avoiding topological errors during deformation. We also studied the effect of varying the viscosity coefficients in the viscous fluid equation, to optimize registration accuracy. Finally, we applied the fluid registration algorithm to a dataset of 2D binary corpus callosum images and 3D volumetric brain MRIs from 14 healthy individuals to assess its accuracy and robustness.

  17. 3D liver surgery simulation: computer-assisted surgical planning with 3D simulation software and 3D printing.

    PubMed

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-03-27

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-aided surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, that enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  18. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    NASA Astrophysics Data System (ADS)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  19. Comparison of 2D and 3D Computational Multiphase Fluid Flow Models of Oxygen Lancing of Pyrometallurgical Furnace Tap-Holes

    NASA Astrophysics Data System (ADS)

    Erwee, M. W.; Reynolds, Q. G.; Zietsman, J. H.

    2016-06-01

    Furnace tap-holes vary in design depending on the type of furnace and process involved, but they share one common trait: The tap-hole must be opened and closed periodically. In general, tap-holes are plugged with refractory clay after tapping, thereby stopping the flow of molten material. Once a furnace is ready to be tapped, drilling and/or lancing with oxygen are typically used to remove tap-hole clay from the tap-hole. Lancing with oxygen is an energy-intensive, mostly manual process, which affects the performance and longevity of the tap-hole refractory material as well as the processes inside the furnace. Computational modeling offers an opportunity to gain insight into the possible effects of oxygen lancing on various aspects of furnace operation.

  20. Computational modeling of RNA 3D structures and interactions.

    PubMed

    Dawson, Wayne K; Bujnicki, Janusz M

    2016-04-01

    RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling.

  1. Computational astrophysical fluid dynamics

    NASA Technical Reports Server (NTRS)

    Norman, Michael L.; Clarke, David A.; Stone, James M.

    1991-01-01

    The field of astrophysical fluid dynamics (AFD) is described as an emerging discipline which derives historically from both the theory of stellar evolution and space plasma physics. The fundamental physical assumption behind AFD is that fluid equations of motion accurately describe the evolution of plasmas on scales that are large in comparison with particle interaction length scales. Particular attention is given to purely fluid models of large-scale astrophysical plasmas. The role of computer simulation in AFD research is also highlighted and a suite of general-purpose application codes for AFD research is discussed. The codes are called ZEUS-2D and ZEUS-3D and solve the equations of AFD in two and three dimensions, respectively, in several coordinate geometries for general initial and boundary conditions. The topics of bipolar outflows from protostars, galactic superbubbles and supershells, and extragalactic radio sources are addressed.

  2. Computational challenges of emerging novel true 3D holographic displays

    NASA Astrophysics Data System (ADS)

    Cameron, Colin D.; Pain, Douglas A.; Stanley, Maurice; Slinger, Christopher W.

    2000-11-01

    A hologram can produce all the 3D depth cues that the human visual system uses to interpret and perceive real 3D objects. As such it is arguably the ultimate display technology. Computer generated holography, in which a computer calculates a hologram that is then displayed using a highly complex modulator, combines the ultimate qualities of a traditional hologram with the dynamic capabilities of a computer display producing a true 3D real image floating in space. This technology is set to emerge over the next decade, potentially revolutionizing application areas such as virtual prototyping (CAD-CAM, CAID etc.), tactical information displays, data visualization and simulation. In this paper we focus on the computational challenges of this technology. We consider different classes of computational algorithms from true computer-generated holograms (CGH) to holographic stereograms. Each has different characteristics in terms of image qualities, computational resources required, total CGH information content, and system performance. Possible trade- offs will be discussed including reducing the parallax. The software and hardware architectures used to implement the CGH algorithms have many possible forms. Different schemes, from high performance computing architectures to graphics based cluster architectures will be discussed and compared. Assessment will be made of current and future trends looking forward to a practical dynamic CGH based 3D display.

  3. Image quality enhancement and computation acceleration of 3D holographic display using a symmetrical 3D GS algorithm.

    PubMed

    Zhou, Pengcheng; Bi, Yong; Sun, Minyuan; Wang, Hao; Li, Fang; Qi, Yan

    2014-09-20

    The 3D Gerchberg-Saxton (GS) algorithm can be used to compute a computer-generated hologram (CGH) to produce a 3D holographic display. But, using the 3D GS method, there exists a serious distortion in reconstructions of binary input images. We have eliminated the distortion and improved the image quality of the reconstructions by a maximum of 486%, using a symmetrical 3D GS algorithm that is developed based on a traditional 3D GS algorithm. In addition, the hologram computation speed has been accelerated by 9.28 times, which is significant for real-time holographic displays.

  4. 3D measurement system based on computer-generated gratings

    NASA Astrophysics Data System (ADS)

    Zhu, Yongjian; Pan, Weiqing; Luo, Yanliang

    2010-08-01

    A new kind of 3D measurement system has been developed to achieve the 3D profile of complex object. The principle of measurement system is based on the triangular measurement of digital fringe projection, and the fringes are fully generated from computer. Thus the computer-generated four fringes form the data source of phase-shifting 3D profilometry. The hardware of system includes the computer, video camera, projector, image grabber, and VGA board with two ports (one port links to the screen, another to the projector). The software of system consists of grating projection module, image grabbing module, phase reconstructing module and 3D display module. A software-based synchronizing method between grating projection and image capture is proposed. As for the nonlinear error of captured fringes, a compensating method is introduced based on the pixel-to-pixel gray correction. At the same time, a least square phase unwrapping is used to solve the problem of phase reconstruction by using the combination of Log Modulation Amplitude and Phase Derivative Variance (LMAPDV) as weight. The system adopts an algorithm from Matlab Tool Box for camera calibration. The 3D measurement system has an accuracy of 0.05mm. The execution time of system is 3~5s for one-time measurement.

  5. The 3-D inelastic analyses for computational structural mechanics

    NASA Technical Reports Server (NTRS)

    Hopkins, D. A.; Chamis, C. C.

    1989-01-01

    The 3-D inelastic analysis method is a focused program with the objective to develop computationally effective analysis methods and attendant computer codes for three-dimensional, nonlinear time and temperature dependent problems present in the hot section of turbojet engine structures. Development of these methods was a major part of the Hot Section Technology (HOST) program over the past five years at Lewis Research Center.

  6. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    ERIC Educational Resources Information Center

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  7. FUN3D and CFL3D Computations for the First High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Lee-Rausch, Elizabeth M.; Rumsey, Christopher L.

    2011-01-01

    Two Reynolds-averaged Navier-Stokes codes were used to compute flow over the NASA Trapezoidal Wing at high lift conditions for the 1st AIAA CFD High Lift Prediction Workshop, held in Chicago in June 2010. The unstructured-grid code FUN3D and the structured-grid code CFL3D were applied to several different grid systems. The effects of code, grid system, turbulence model, viscous term treatment, and brackets were studied. The SST model on this configuration predicted lower lift than the Spalart-Allmaras model at high angles of attack; the Spalart-Allmaras model agreed better with experiment. Neglecting viscous cross-derivative terms caused poorer prediction in the wing tip vortex region. Output-based grid adaptation was applied to the unstructured-grid solutions. The adapted grids better resolved wake structures and reduced flap flow separation, which was also observed in uniform grid refinement studies. Limitations of the adaptation method as well as areas for future improvement were identified.

  8. NASA's 3D Flight Computer for Space Applications

    NASA Technical Reports Server (NTRS)

    Alkalai, Leon

    2000-01-01

    The New Millennium Program (NMP) Integrated Product Development Team (IPDT) for Microelectronics Systems was planning to validate a newly developed 3D Flight Computer system on its first deep-space flight, DS1, launched in October 1998. This computer, developed in the 1995-97 time frame, contains many new computer technologies previously never used in deep-space systems. They include: advanced 3D packaging architecture for future low-mass and low-volume avionics systems; high-density 3D packaged chip-stacks for both volatile and non-volatile mass memory: 400 Mbytes of local DRAM memory, and 128 Mbytes of Flash memory; high-bandwidth Peripheral Component Interface (Per) local-bus with a bridge to VME; high-bandwidth (20 Mbps) fiber-optic serial bus; and other attributes, such as standard support for Design for Testability (DFT). Even though this computer system did not complete on time for delivery to the DS1 project, it was an important development along a technology roadmap towards highly integrated and highly miniaturized avionics systems for deep-space applications. This continued technology development is now being performed by NASA's Deep Space System Development Program (also known as X2000) and within JPL's Center for Integrated Space Microsystems (CISM).

  9. Computational issues connected with 3D N-body simulations

    NASA Astrophysics Data System (ADS)

    Pfenniger, D.; Friedli, D.

    1993-03-01

    Computational problems related to modeling gravitational systems, and running and analyzing 3D N-body models are discussed. N-body simulations using Particle-Mesh techniques with polar grids are especially well-suited, and physically justified, when studying quiet evolutionary processes in disk galaxies. This technique allows large N, high central resolution, and is still the fastest one. Regardless of the method chosen to compute gravitation, softening is a compromise between HF amplification and resolution. Softened spherical and ellipsoidal kernels with variable resolution are set up. Detailed characteristics of the 3D polar grid, tests, code performances, and vectorization rates are also given. For integrating motion in rotating coordinates, a stable symplectic extension of the leap-frog algorithm is described. The technique used to search for periodic orbits in arbitrary N-body potentials and to determine their stability is explained.

  10. Advanced computational tools for 3-D seismic analysis

    SciTech Connect

    Barhen, J.; Glover, C.W.; Protopopescu, V.A.

    1996-06-01

    The global objective of this effort is to develop advanced computational tools for 3-D seismic analysis, and test the products using a model dataset developed under the joint aegis of the United States` Society of Exploration Geophysicists (SEG) and the European Association of Exploration Geophysicists (EAEG). The goal is to enhance the value to the oil industry of the SEG/EAEG modeling project, carried out with US Department of Energy (DOE) funding in FY` 93-95. The primary objective of the ORNL Center for Engineering Systems Advanced Research (CESAR) is to spearhead the computational innovations techniques that would enable a revolutionary advance in 3-D seismic analysis. The CESAR effort is carried out in collaboration with world-class domain experts from leading universities, and in close coordination with other national laboratories and oil industry partners.

  11. Development of a computer controlled 3-d braiding machine

    SciTech Connect

    Yan Jianhua; Li Jialu

    1994-12-31

    This paper deals with development of a large size, multiuse, controlled 3-D cartesian grid braiding machine, its function and application. The 180 column and 120 tracks, the flexible and low power consuming driving system, the error detector systems and the computer controlling system are the major parts of the machine. The machine can produce wide variety of size. shape and pattern of fabrics and can also produce several fabrics at a time.

  12. Noninvasive computational imaging of cardiac electrophysiology for 3-D infarct.

    PubMed

    Wang, Linwei; Wong, Ken C L; Zhang, Heye; Liu, Huafeng; Shi, Pengcheng

    2011-04-01

    Myocardial infarction (MI) creates electrophysiologically altered substrates that are responsible for ventricular arrhythmias, such as tachycardia and fibrillation. The presence, size, location, and composition of infarct scar bear significant prognostic and therapeutic implications for individual subjects. We have developed a statistical physiological model-constrained framework that uses noninvasive body-surface-potential data and tomographic images to estimate subject-specific transmembrane-potential (TMP) dynamics inside the 3-D myocardium. In this paper, we adapt this framework for the purpose of noninvasive imaging, detection, and quantification of 3-D scar mass for postMI patients: the framework requires no prior knowledge of MI and converges to final subject-specific TMP estimates after several passes of estimation with intermediate feedback; based on the primary features of the estimated spatiotemporal TMP dynamics, we provide 3-D imaging of scar tissue and quantitative evaluation of scar location and extent. Phantom experiments were performed on a computational model of realistic heart-torso geometry, considering 87 transmural infarct scars of different sizes and locations inside the myocardium, and 12 compact infarct scars (extent between 10% and 30%) at different transmural depths. Real-data experiments were carried out on BSP and magnetic resonance imaging (MRI) data from four postMI patients, validated by gold standards and existing results. This framework shows unique advantage of noninvasive, quantitative, computational imaging of subject-specific TMP dynamics and infarct mass of the 3-D myocardium, with the potential to reflect details in the spatial structure and tissue composition/heterogeneity of 3-D infarct scar.

  13. 3D seismic imaging on massively parallel computers

    SciTech Connect

    Womble, D.E.; Ober, C.C.; Oldfield, R.

    1997-02-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is a key to reducing the risk and cost associated with oil and gas exploration. Imaging these structures, however, is computationally expensive. Datasets can be terabytes in size, and the processing time required for the multiple iterations needed to produce a velocity model can take months, even with the massively parallel computers available today. Some algorithms, such as 3D, finite-difference, prestack, depth migration remain beyond the capacity of production seismic processing. Massively parallel processors (MPPs) and algorithms research are the tools that will enable this project to provide new seismic processing capabilities to the oil and gas industry. The goals of this work are to (1) develop finite-difference algorithms for 3D, prestack, depth migration; (2) develop efficient computational approaches for seismic imaging and for processing terabyte datasets on massively parallel computers; and (3) develop a modular, portable, seismic imaging code.

  14. Dynamic coupling between fluid flow and vein growth in fractures: a 3D numerical model

    NASA Astrophysics Data System (ADS)

    Schwarz, J.-O.; Enzmann, F.

    2012-04-01

    Fluid flow is one of the main mass transport mechanisms in the Earth's crust and abundant mineral vein networks are important indicators for fluid flow and fluid rock interaction. These systems are dynamic and part of the so called RTM processes (reaction-transport-mechanics). Understanding of mineral vein systems requires coupling of these processes. Here we present a conceptional model for dynamic vein growth of syntaxial, posttectonic veins generated by advective fluid flow and show first results of a numerical model for this scenario. Vein generation requires three processes to occur: (i) fracture generation by mechanical stress e.g. hydro-fracturing, (ii) flow of a supersaturated fluid on that fracture and (iii) crystallization of phase(s) on or in the fracture. 3D synthetic fractures are generated with the SynFrac code (Ogilvie, et al. 2006). Subsequently solutions of the Navier-Stokes equation for this fracture are computed by a computational fluid dynamics code called GeoDict (Wiegmann 2007). Transport (advective and diffusive) of chemical species to growth sites in the fracture and vein growth are computed by a self-written MATLAB script. The numerical model discretizes the wall rock and fracture geometry by volumetric pixels (voxels). Based on this representation, the model computes the three basic functions for vein generation: (a) nucleation, (b) fluid flow with transport of chemical species and (c) growth. The following conditions were chosen for these three modules. Nucleation is heterogeneous and occurs instantaneously at the wall rock/fracture interface. Advective and diffusive flow of a supersaturated fluid and related transport of chemical species occurs according to the computed fluid flow field by GeoDict. Concentration of chemical species at the inflow is constant, representing external fluid buffering. Changes/decrease in the concentration of chemical species occurs only due to vein growth. Growth of nuclei is limited either by transport of

  15. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone.

    PubMed

    Fan, Lixia; Pei, Shaopeng; Lucas Lu, X; Wang, Liyun

    2016-01-01

    The transport of fluid, nutrients, and signaling molecules in the bone lacunar-canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30-50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in treating

  16. A multiscale 3D finite element analysis of fluid/solute transport in mechanically loaded bone

    PubMed Central

    Fan, Lixia; Pei, Shaopeng; Lucas Lu, X; Wang, Liyun

    2016-01-01

    The transport of fluid, nutrients, and signaling molecules in the bone lacunar–canalicular system (LCS) is critical for osteocyte survival and function. We have applied the fluorescence recovery after photobleaching (FRAP) approach to quantify load-induced fluid and solute transport in the LCS in situ, but the measurements were limited to cortical regions 30–50 μm underneath the periosteum due to the constrains of laser penetration. With this work, we aimed to expand our understanding of load-induced fluid and solute transport in both trabecular and cortical bone using a multiscaled image-based finite element analysis (FEA) approach. An intact murine tibia was first re-constructed from microCT images into a three-dimensional (3D) linear elastic FEA model, and the matrix deformations at various locations were calculated under axial loading. A segment of the above 3D model was then imported to the biphasic poroelasticity analysis platform (FEBio) to predict load-induced fluid pressure fields, and interstitial solute/fluid flows through LCS in both cortical and trabecular regions. Further, secondary flow effects such as the shear stress and/or drag force acting on osteocytes, the presumed mechano-sensors in bone, were derived using the previously developed ultrastructural model of Brinkman flow in the canaliculi. The material properties assumed in the FEA models were validated against previously obtained strain and FRAP transport data measured on the cortical cortex. Our results demonstrated the feasibility of this computational approach in estimating the fluid flux in the LCS and the cellular stimulation forces (shear and drag forces) for osteocytes in any cortical and trabecular bone locations, allowing further studies of how the activation of osteocytes correlates with in vivo functional bone formation. The study provides a promising platform to reveal potential cellular mechanisms underlying the anabolic power of exercises and physical activities in

  17. Computing Radiative Transfer in a 3D Medium

    NASA Technical Reports Server (NTRS)

    Von Allmen, Paul; Lee, Seungwon

    2012-01-01

    A package of software computes the time-dependent propagation of a narrow laser beam in an arbitrary three- dimensional (3D) medium with absorption and scattering, using the transient-discrete-ordinates method and a direct integration method. Unlike prior software that utilizes a Monte Carlo method, this software enables simulation at very small signal-to-noise ratios. The ability to simulate propagation of a narrow laser beam in a 3D medium is an improvement over other discrete-ordinate software. Unlike other direct-integration software, this software is not limited to simulation of propagation of thermal radiation with broad angular spread in three dimensions or of a laser pulse with narrow angular spread in two dimensions. Uses for this software include (1) computing scattering of a pulsed laser beam on a material having given elastic scattering and absorption profiles, and (2) evaluating concepts for laser-based instruments for sensing oceanic turbulence and related measurements of oceanic mixed-layer depths. With suitable augmentation, this software could be used to compute radiative transfer in ultrasound imaging in biological tissues, radiative transfer in the upper Earth crust for oil exploration, and propagation of laser pulses in telecommunication applications.

  18. 3D ultrasound computer tomography: update from a clinical study

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  19. Computational analysis of flow in 3D propulsive transition ducts

    NASA Technical Reports Server (NTRS)

    Sepri, Paavo

    1990-01-01

    A numerical analysis of fully three dimensional, statistically steady flows in propulsive transition ducts being considered for use in future aircraft of higher maneuverability is investigated. The purpose of the transition duct is to convert axisymmetric flow from conventional propulsion systems to that of a rectangular geometry of high aspect ratio. In an optimal design, the transition duct would be of minimal length in order to reduce the weight penalty, while the geometrical change would be gradual enough to avoid detrimental flow perturbations. Recent experiments conducted at the Propulsion Aerodynamics Branch have indicated that thrust losses in ducts of superelliptic cross-section can be surprisingly low, even if flow separation occurs near the divergent walls. In order to address the objective of developing a rational design procedure for optimal transition ducts, it is necessary to have available a reliable computational tool for the analysis of flows achieved in a sequence of configurations. Current CFD efforts involving complicated geometries usually must contend with two separate but interactive aspects: namely, grid generation and flow solution. The first two avenues of the present investigation were comprised of suitable grid generation for a class of transition ducts of superelliptic cross-section, and the subsequent application of the flow solver PAB3D to this geometry. The code, PAB3D, was developed as a comprehensive tool for the solution of both internal and external high speed flows. The third avenue of investigation has involved analytical formulations to aid in the understanding of the nature of duct flows, and also to provide a basis of comparison for subsequent numerical solutions. Numerical results to date include the generation of two preliminary grid systems for duct flows, and the initial application of PAB3D to the corresponding geometries, which are of the class tested experimentally.

  20. Computational model of mesenchymal migration in 3D under chemotaxis

    PubMed Central

    Ribeiro, F. O.; Gómez-Benito, M. J.; Folgado, J.; Fernandes, P. R.; García-Aznar, J. M.

    2017-01-01

    Abstract Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell–matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices – collagen and fibrin – and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL−1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency. PMID:27336322

  1. Computational model of mesenchymal migration in 3D under chemotaxis.

    PubMed

    Ribeiro, F O; Gómez-Benito, M J; Folgado, J; Fernandes, P R; García-Aznar, J M

    2017-01-01

    Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL(-1) a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.

  2. TOPICAL REVIEW: Computational approaches to 3D modeling of RNA

    NASA Astrophysics Data System (ADS)

    Laing, Christian; Schlick, Tamar

    2010-07-01

    Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research.

  3. Curvilinear Immersed Boundary Method for Simulating Fluid Structure Interaction with Complex 3D Rigid Bodies

    PubMed Central

    Borazjani, Iman; Ge, Liang; Sotiropoulos, Fotis

    2010-01-01

    The sharp-interface CURVIB approach of Ge and Sotiropoulos [L. Ge, F. Sotiropoulos, A Numerical Method for Solving the 3D Unsteady Incompressible Navier-Stokes Equations in Curvilinear Domains with Complex Immersed Boundaries, Journal of Computational Physics 225 (2007) 1782–1809] is extended to simulate fluid structure interaction (FSI) problems involving complex 3D rigid bodies undergoing large structural displacements. The FSI solver adopts the partitioned FSI solution approach and both loose and strong coupling strategies are implemented. The interfaces between immersed bodies and the fluid are discretized with a Lagrangian grid and tracked with an explicit front-tracking approach. An efficient ray-tracing algorithm is developed to quickly identify the relationship between the background grid and the moving bodies. Numerical experiments are carried out for two FSI problems: vortex induced vibration of elastically mounted cylinders and flow through a bileaflet mechanical heart valve at physiologic conditions. For both cases the computed results are in excellent agreement with benchmark simulations and experimental measurements. The numerical experiments suggest that both the properties of the structure (mass, geometry) and the local flow conditions can play an important role in determining the stability of the FSI algorithm. Under certain conditions unconditionally unstable iteration schemes result even when strong coupling FSI is employed. For such cases, however, combining the strong-coupling iteration with under-relaxation in conjunction with the Aitken’s acceleration technique is shown to effectively resolve the stability problems. A theoretical analysis is presented to explain the findings of the numerical experiments. It is shown that the ratio of the added mass to the mass of the structure as well as the sign of the local time rate of change of the force or moment imparted on the structure by the fluid determine the stability and convergence of the

  4. Quasi-3D Cytoskeletal Dynamics of Osteocytes under Fluid Flow

    PubMed Central

    Baik, Andrew D.; Lu, X. Lucas; Qiu, Jun; Huo, Bo; Hillman, Elizabeth M.C.; Dong, Cheng; Guo, X. Edward

    2010-01-01

    Osteocytes respond to dynamic fluid shear loading by activating various biochemical pathways, mediating a dynamic process of bone formation and resorption. Whole-cell deformation and regional deformation of the cytoskeleton may be able to directly regulate this process. Attempts to image cellular deformation by conventional microscopy techniques have been hindered by low temporal or spatial resolution. In this study, we developed a quasi-three-dimensional microscopy technique that enabled us to simultaneously visualize an osteocyte's traditional bottom-view profile and a side-view profile at high temporal resolution. Quantitative analysis of the plasma membrane and either the intracellular actin or microtubule (MT) cytoskeletal networks provided characterization of their deformations over time. Although no volumetric dilatation of the whole cell was observed under flow, both the actin and MT networks experienced primarily tensile strains in all measured strain components. Regional heterogeneity in the strain field of normal strains was observed in the actin networks, especially in the leading edge to flow, but not in the MT networks. In contrast, side-view shear strains exhibited similar subcellular distribution patterns in both networks. Disruption of MT networks caused actin normal strains to decrease, whereas actin disruption had little effect on the MT network strains, highlighting the networks' mechanical interactions in osteocytes. PMID:21044578

  5. 3D finite-difference seismic migration with parallel computers

    SciTech Connect

    Ober, C.C.; Gjertsen, R.; Minkoff, S.; Womble, D.E.

    1998-11-01

    The ability to image complex geologies such as salt domes in the Gulf of Mexico and thrusts in mountainous regions is essential for reducing the risk associated with oil exploration. Imaging these structures, however, is computationally expensive as datasets can be terabytes in size. Traditional ray-tracing migration methods cannot handle complex velocity variations commonly found near such salt structures. Instead the authors use the full 3D acoustic wave equation, discretized via a finite difference algorithm. They reduce the cost of solving the apraxial wave equation by a number of numerical techniques including the method of fractional steps and pipelining the tridiagonal solves. The imaging code, Salvo, uses both frequency parallelism (generally 90% efficient) and spatial parallelism (65% efficient). Salvo has been tested on synthetic and real data and produces clear images of the subsurface even beneath complicated salt structures.

  6. Glasses for 3D ultrasound computer tomography: phase compensation

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Hopp, T.; Ruiter, N. V.

    2016-03-01

    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  7. Computational and methodological developments towards 3D full waveform inversion

    NASA Astrophysics Data System (ADS)

    Etienne, V.; Virieux, J.; Hu, G.; Jia, Y.; Operto, S.

    2010-12-01

    Full waveform inversion (FWI) is one of the most promising techniques for seismic imaging. It relies on a formalism taking into account every piece of information contained in the seismic data as opposed to more classical techniques such as travel time tomography. As a result, FWI is a high resolution imaging process able to reach a spatial accuracy equal to half a wavelength. FWI is based on a local optimization scheme and therefore the main limitation concerns the starting model which has to be closed enough to the real one in order to converge to the global minimum. Another counterpart of FWI is the required computational resources when considering models and frequencies of interest. The task becomes even more tremendous when one tends to perform the inversion using the elastic equation instead of using the acoustic approximation. This is the reason why until recently most studies were limited to 2D cases. In the last few years, due to the increase of the available computational power, FWI has focused a lot of interests and continuous efforts towards inversion of 3D models, leading to remarkable applications up to the continental scale. We investigate the computational burden induced by FWI in 3D elastic media and propose some strategic features leading to the reduction of the numerical cost while providing a great flexibility in the inversion parametrization. First, in order to release the memory requirements, we developed our FWI algorithm in the frequency domain and take benefit of the wave-number redundancy in the seismic data to process a quite reduced number of frequencies. To do so, we extract frequency solutions from time marching techniques which are efficient for 3D structures. Moreover, this frequency approach permits a multi-resolution strategy by proceeding from low to high frequencies: the final model at one frequency is used as the starting model for the next frequency. This procedure overcomes partially the non-linear behavior of the inversion

  8. Protein 3D structure computed from evolutionary sequence variation.

    PubMed

    Marks, Debora S; Colwell, Lucy J; Sheridan, Robert; Hopf, Thomas A; Pagnani, Andrea; Zecchina, Riccardo; Sander, Chris

    2011-01-01

    The evolutionary trajectory of a protein through sequence space is constrained by its function. Collections of sequence homologs record the outcomes of millions of evolutionary experiments in which the protein evolves according to these constraints. Deciphering the evolutionary record held in these sequences and exploiting it for predictive and engineering purposes presents a formidable challenge. The potential benefit of solving this challenge is amplified by the advent of inexpensive high-throughput genomic sequencing.In this paper we ask whether we can infer evolutionary constraints from a set of sequence homologs of a protein. The challenge is to distinguish true co-evolution couplings from the noisy set of observed correlations. We address this challenge using a maximum entropy model of the protein sequence, constrained by the statistics of the multiple sequence alignment, to infer residue pair couplings. Surprisingly, we find that the strength of these inferred couplings is an excellent predictor of residue-residue proximity in folded structures. Indeed, the top-scoring residue couplings are sufficiently accurate and well-distributed to define the 3D protein fold with remarkable accuracy.We quantify this observation by computing, from sequence alone, all-atom 3D structures of fifteen test proteins from different fold classes, ranging in size from 50 to 260 residues, including a G-protein coupled receptor. These blinded inferences are de novo, i.e., they do not use homology modeling or sequence-similar fragments from known structures. The co-evolution signals provide sufficient information to determine accurate 3D protein structure to 2.7-4.8 Å C(α)-RMSD error relative to the observed structure, over at least two-thirds of the protein (method called EVfold, details at http://EVfold.org). This discovery provides insight into essential interactions constraining protein evolution and will facilitate a comprehensive survey of the universe of protein structures

  9. Fluid and cell behaviors along a 3D printed alginate/gelatin/fibrin channel.

    PubMed

    Xu, Yufan; Wang, Xiaohong

    2015-08-01

    Three-dimensional (3D) cell manipulation is available with the integration of microfluidic technology and rapid prototyping techniques. High-Fidelity (Hi-Fi) constructs hold enormous therapeutic potential for organ manufacturing and regenerative medicine. In the present paper we introduced a quasi-three-dimensional (Q3D) model with parallel biocompatible alginate/gelatin/fibrin hurdles. The behaviors of fluids and cells along the microfluidic channels with various widths were studied. Cells inside the newly designed microfluidic channels attached and grew well. Morphological changes of adipose-derived stem cells (ADSCs) in both two-dimensional (2D) and 3D milieu were found on the printed constructs. Endothelialization occurred with the co-cultures of ADSCs and hepatocytes. This study provides insights into the interactions among fluids, cells and biomaterials, the behaviors of fluids and cells along the microfluidic channels, and the applications of Q3D techniques.

  10. Tools for 3D scientific visualization in computational aerodynamics

    NASA Technical Reports Server (NTRS)

    Bancroft, Gordon; Plessel, Todd; Merritt, Fergus; Watson, Val

    1989-01-01

    The purpose is to describe the tools and techniques in use at the NASA Ames Research Center for performing visualization of computational aerodynamics, for example visualization of flow fields from computer simulations of fluid dynamics about vehicles such as the Space Shuttle. The hardware used for visualization is a high-performance graphics workstation connected to a super computer with a high speed channel. At present, the workstation is a Silicon Graphics IRIS 3130, the supercomputer is a CRAY2, and the high speed channel is a hyperchannel. The three techniques used for visualization are post-processing, tracking, and steering. Post-processing analysis is done after the simulation. Tracking analysis is done during a simulation but is not interactive, whereas steering analysis involves modifying the simulation interactively during the simulation. Using post-processing methods, a flow simulation is executed on a supercomputer and, after the simulation is complete, the results of the simulation are processed for viewing. The software in use and under development at NASA Ames Research Center for performing these types of tasks in computational aerodynamics is described. Workstation performance issues, benchmarking, and high-performance networks for this purpose are also discussed as well as descriptions of other hardware for digital video and film recording.

  11. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    SciTech Connect

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-04

    This paper presents results from an explanatory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected in the resulting steady-state analyses using NASA's FUN3D CFD software.

  12. Computational Analysis of the Transonic Dynamics Tunnel Using FUN3D

    NASA Technical Reports Server (NTRS)

    Chwalowski, Pawel; Quon, Eliot; Brynildsen, Scott E.

    2016-01-01

    This paper presents results from an exploratory two-year effort of applying Computational Fluid Dynamics (CFD) to analyze the empty-tunnel flow in the NASA Langley Research Center Transonic Dynamics Tunnel (TDT). The TDT is a continuous-flow, closed circuit, 16- x 16-foot slotted-test-section wind tunnel, with capabilities to use air or heavy gas as a working fluid. In this study, experimental data acquired in the empty tunnel using the R-134a test medium was used to calibrate the computational data. The experimental calibration data includes wall pressures, boundary-layer profiles, and the tunnel centerline Mach number profiles. Subsonic and supersonic flow regimes were considered, focusing on Mach 0.5, 0.7 and Mach 1.1 in the TDT test section. This study discusses the computational domain, boundary conditions, and initial conditions selected and the resulting steady-state analyses using NASA's FUN3D CFD software.

  13. 3D Vectorial Time Domain Computational Integrated Photonics

    SciTech Connect

    Kallman, J S; Bond, T C; Koning, J M; Stowell, M L

    2007-02-16

    The design of integrated photonic structures poses considerable challenges. 3D-Time-Domain design tools are fundamental in enabling technologies such as all-optical logic, photonic bandgap sensors, THz imaging, and fast radiation diagnostics. Such technologies are essential to LLNL and WFO sponsors for a broad range of applications: encryption for communications and surveillance sensors (NSA, NAI and IDIV/PAT); high density optical interconnects for high-performance computing (ASCI); high-bandwidth instrumentation for NIF diagnostics; micro-sensor development for weapon miniaturization within the Stockpile Stewardship and DNT programs; and applications within HSO for CBNP detection devices. While there exist a number of photonics simulation tools on the market, they primarily model devices of interest to the communications industry. We saw the need to extend our previous software to match the Laboratory's unique emerging needs. These include modeling novel material effects (such as those of radiation induced carrier concentrations on refractive index) and device configurations (RadTracker bulk optics with radiation induced details, Optical Logic edge emitting lasers with lateral optical inputs). In addition we foresaw significant advantages to expanding our own internal simulation codes: parallel supercomputing could be incorporated from the start, and the simulation source code would be accessible for modification and extension. This work addressed Engineering's Simulation Technology Focus Area, specifically photonics. Problems addressed from the Engineering roadmap of the time included modeling the Auston switch (an important THz source/receiver), modeling Vertical Cavity Surface Emitting Lasers (VCSELs, which had been envisioned as part of fast radiation sensors), and multi-scale modeling of optical systems (for a variety of applications). We proposed to develop novel techniques to numerically solve the 3D multi-scale propagation problem for both the microchip

  14. A 3D-CFD code for accurate prediction of fluid flows and fluid forces in seals

    NASA Technical Reports Server (NTRS)

    Athavale, M. M.; Przekwas, A. J.; Hendricks, R. C.

    1994-01-01

    Current and future turbomachinery requires advanced seal configurations to control leakage, inhibit mixing of incompatible fluids and to control the rotodynamic response. In recognition of a deficiency in the existing predictive methodology for seals, a seven year effort was established in 1990 by NASA's Office of Aeronautics Exploration and Technology, under the Earth-to-Orbit Propulsion program, to develop validated Computational Fluid Dynamics (CFD) concepts, codes and analyses for seals. The effort will provide NASA and the U.S. Aerospace Industry with advanced CFD scientific codes and industrial codes for analyzing and designing turbomachinery seals. An advanced 3D CFD cylindrical seal code has been developed, incorporating state-of-the-art computational methodology for flow analysis in straight, tapered and stepped seals. Relevant computational features of the code include: stationary/rotating coordinates, cylindrical and general Body Fitted Coordinates (BFC) systems, high order differencing schemes, colocated variable arrangement, advanced turbulence models, incompressible/compressible flows, and moving grids. This paper presents the current status of code development, code demonstration for predicting rotordynamic coefficients, numerical parametric study of entrance loss coefficients for generic annular seals, and plans for code extensions to labyrinth, damping, and other seal configurations.

  15. Computer acquisition of 3D images utilizing dynamic speckles

    NASA Astrophysics Data System (ADS)

    Kamshilin, Alexei A.; Semenov, Dmitry V.; Nippolainen, Ervin; Raita, Erik

    2006-05-01

    We present novel technique for fast non-contact and continuous profile measurements of rough surfaces by use of dynamic speckles. The dynamic speckle pattern is generated when the laser beam scans the surface under study. The most impressive feature of the proposed technique is its ability to work at extremely high scanning speed of hundreds meters per second. The technique is based on the continuous frequency measurements of the light-power modulation after spatial filtering of the scattered light. The complete optical-electronic system was designed and fabricated for fast measurement of the speckles velocity, its recalculation into the distance, and further data acquisition into computer. The measured surface profile is displayed in a PC monitor in real time. The response time of the measuring system is below 1 μs. Important parameters of the system such as accuracy, range of measurements, and spatial resolution are analyzed. Limits of the spatial filtering technique used for continuous tracking of the speckle-pattern velocity are shown. Possible ways of further improvement of the measurements accuracy are demonstrated. Owing to its extremely fast operation, the proposed technique could be applied for online control of the 3D-shape of complex objects (e.g., electronic circuits) during their assembling.

  16. Spontaneous mirror-symmetry breaking induces inverse energy cascade in 3D active fluids

    PubMed Central

    Słomka, Jonasz; Dunkel, Jörn

    2017-01-01

    Classical turbulence theory assumes that energy transport in a 3D turbulent flow proceeds through a Richardson cascade whereby larger vortices successively decay into smaller ones. By contrast, an additional inverse cascade characterized by vortex growth exists in 2D fluids and gases, with profound implications for meteorological flows and fluid mixing. The possibility of a helicity-driven inverse cascade in 3D fluids had been rejected in the 1970s based on equilibrium-thermodynamic arguments. Recently, however, it was proposed that certain symmetry-breaking processes could potentially trigger a 3D inverse cascade, but no physical system exhibiting this phenomenon has been identified to date. Here, we present analytical and numerical evidence for the existence of an inverse energy cascade in an experimentally validated 3D active fluid model, describing microbial suspension flows that spontaneously break mirror symmetry. We show analytically that self-organized scale selection, a generic feature of many biological and engineered nonequilibrium fluids, can generate parity-violating Beltrami flows. Our simulations further demonstrate how active scale selection controls mirror-symmetry breaking and the emergence of a 3D inverse cascade. PMID:28193853

  17. Deformation of a 3D granular media caused by fluid invasion

    NASA Astrophysics Data System (ADS)

    Dalbe, Marie-Julie; Juanes, Ruben

    2016-11-01

    Multiphase flow in porous media plays a fundamental role in many natural and engineered subsurface processes. The interplay between fluid flow, medium deformation and fracture is essential in geoscience problems as disparate as fracking for unconventional hydrocarbon production, conduit formation and methane venting from lake and ocean sediments, and desiccation cracks in soil. Several experimental and computational studies have shown that the competition between capillary and friction forces can lead to different regimes of deformation, from frictional fingering to hydro-capillary fracturing. Most of these investigations have focused, however, on 2D or quasi-2D systems. Here, we develop an experimental set-up that allows us to observe two-phase flow in a fully 3D granular bed and measure the fluid pressure while controlling the level of confining stress. We use an index matching technique to directly visualize the injection of a liquid in a granular media saturated with another, immiscible liquid. We extract the deformation the whole granular bulk as well as at the particle level. Our results show the existence of different regimes of invasion patterns depending on key dimensionless groups that control the system.

  18. Experimental study of 3D Rayleigh-Taylor convection between miscible fluids in a porous medium

    NASA Astrophysics Data System (ADS)

    Nakanishi, Yuji; Hyodo, Akimitsu; Wang, Lei; Suekane, Tetsuya

    2016-11-01

    The natural convection of miscible fluids in porous media has applications in several fields, such as geoscience and geoengineering, and can be employed for the geological storage of CO2. In this study, we used X-ray computer tomography to visualize 3D fingering structures associated with the Rayleigh-Taylor instability between miscible fluids in a porous medium. In the early stages of the onset of the Rayleigh-Taylor instability, a fine crinkling pattern gradually appeared at the interface. As the wavelength and amplitude increased, descending fingers formed on the interface and extended vertically downward; in addition, ascending and highly symmetric fingers formed. The adjacent fingers were cylindrical in shape and coalesced to form large fingers. The fingers appearing on the interface tended to become finer with increasing Rayleigh number, which is consistent with linear perturbation theory. When the Péclet number exceeded 10, transverse dispersion increased the finger diameter and enhanced the finger coalescence, strongly impacting the decrease in finger number density. When mechanical dispersion was negligible, the finger-extension velocity and the dimensionless mass-transfer rate scaled with the characteristic velocity and the Rayleigh number with an appropriate length scale. Mechanical dispersion not only reduced the onset time but also enhanced the mass transport.

  19. Three-dimensional two-fluid investigation of 3D-localized magnetic reconnection and its relation to whistler waves

    NASA Astrophysics Data System (ADS)

    Yoon, Young Dae; Bellan, Paul M.

    2016-10-01

    A full three-dimensional computer code was developed in order to simulate a 3D-localized magnetic reconnection. We assume an incompressible two-fluid regime where the ions are stationary, and electron inertia and Hall effects are present. We solve a single dimensionless differential equation for perturbed magnetic fields with arbitrary background fields. The code has successfully reproduced both experimental and analytic solutions to resonance and Gendrin mode whistler waves in a uniform background field. The code was then modified to model 3D-localized magnetic reconnection as a 3D-localized perturbation on a hyperbolic-tangent background field. Three-dimensional properties that are asymmetric in the out-of-plane direction have been observed. These properties pertained to magnetic field lines, electron currents and their convection. Helicity and energy have also been examined, as well as the addition of a guide field.

  20. 3D-printed soft microrobot for swimming in biological fluids.

    PubMed

    Qiu, Tian; Palagi, Stefano; Fischer, Peer

    2015-08-01

    Microscopic artificial swimmers hold the potential to enable novel non-invasive medical procedures. In order to ease their translation towards real biomedical applications, simpler designs as well as cheaper yet more reliable materials and fabrication processes should be adopted, provided that the functionality of the microrobots can be kept. A simple single-hinge design could already enable micro-swimming in non-Newtonian fluids, which most bodily fluids are. Here, we address the fabrication of such single-hinge microrobots with a 3D-printed soft material. Firstly, a finite element model is developed to investigate the deformability of the 3D-printed microstructure under typical values of the actuating magnetic fields. Then the microstructures are fabricated by direct 3D-printing of a soft material and their swimming performances are evaluated. The speeds achieved with the 3D-printed microrobots are comparable to those obtained in previous work with complex fabrication procedures, thus showing great promise for 3D-printed microrobots to be operated in biological fluids.

  1. Modeling Computer Communication Networks in a Realistic 3D Environment

    DTIC Science & Technology

    2010-03-01

    visualization in OPNET . . . . . . . . . . . . 13 6. Sample NetViz visualization . . . . . . . . . . . . . . . . . . . 15 7. Realistic 3D terrains...scenario in OPNET . . . 19 10. OPNET 3DNV only displays connectivity . . . . . . . . . . . . 29 11. The digitally connected battlefield...confirmation tool 12 OPNET Optimized Network Evaluation Tool . . . . . . . . . . . . 13 NetViz Network Visualization

  2. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    PubMed Central

    Lukeneder, Alexander

    2012-01-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal. PMID:24850976

  3. Computed 3D visualisation of an extinct cephalopod using computer tomographs

    NASA Astrophysics Data System (ADS)

    Lukeneder, Alexander

    2012-08-01

    The first 3D visualisation of a heteromorph cephalopod species from the Southern Alps (Dolomites, northern Italy) is presented. Computed tomography, palaeontological data and 3D reconstructions were included in the production of a movie, which shows a life reconstruction of the extinct organism. This detailed reconstruction is according to the current knowledge of the shape and mode of life as well as habitat of this animal. The results are based on the most complete shell known thus far of the genus Dissimilites. Object-based combined analyses from computed tomography and various computed 3D facility programmes help to understand morphological details as well as their ontogentical changes in fossil material. In this study, an additional goal was to show changes in locomotion during different ontogenetic phases of such fossil, marine shell-bearing animals (ammonoids). Hence, the presented models and tools can serve as starting points for discussions on morphology and locomotion of extinct cephalopods in general, and of the genus Dissimilites in particular. The heteromorph ammonoid genus Dissimilites is interpreted here as an active swimmer of the Tethyan Ocean. This study portrays non-destructive methods of 3D visualisation applied on palaeontological material, starting with computed tomography resulting in animated, high-quality video clips. The here presented 3D geometrical models and animation, which are based on palaeontological material, demonstrate the wide range of applications, analytical techniques and also outline possible limitations of 3D models in earth sciences and palaeontology. The realistic 3D models and motion pictures can easily be shared amongst palaeontologists. Data, images and short clips can be discussed online and, if necessary, adapted in morphological details and motion-style to better represent the cephalopod animal.

  4. Validation of a numerical 3-D fluid-structure interaction model for a prosthetic valve based on experimental PIV measurements.

    PubMed

    Guivier-Curien, Carine; Deplano, Valérie; Bertrand, Eric

    2009-10-01

    A numerical 3-D fluid-structure interaction (FSI) model of a prosthetic aortic valve was developed, based on a commercial computational fluid dynamics (CFD) software program using an Arbitrary Eulerian Lagrangian (ALE) formulation. To make sure of the validity of this numerical model, an equivalent experimental model accounting for both the geometrical features and the hydrodynamic conditions was also developed. The leaflet and the flow behaviours around the bileaflet valve were investigated numerically and experimentally by performing particle image velocimetry (PIV) measurements. Through quantitative and qualitative comparisons, it was shown that the leaflet behaviour and the velocity fields were similar in both models. The present study allows the validation of a fully coupled 3-D FSI numerical model. The promising numerical tool could be therefore used to investigate clinical issues involving the aortic valve.

  5. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid

    PubMed Central

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS—Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a ‘solid tank’ (which reduces noise, and the volume of refractively matched fluid from 1ltr to 10cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system. PMID:27019460

  6. Optical-CT 3D Dosimetry Using Fresnel Lenses with Minimal Refractive-Index Matching Fluid.

    PubMed

    Bache, Steven; Malcolm, Javian; Adamovics, John; Oldham, Mark

    2016-01-01

    Telecentric optical computed tomography (optical-CT) is a state-of-the-art method for visualizing and quantifying 3-dimensional dose distributions in radiochromic dosimeters. In this work a prototype telecentric system (DFOS-Duke Fresnel Optical-CT Scanner) is evaluated which incorporates two substantial design changes: the use of Fresnel lenses (reducing lens costs from $10-30K t0 $1-3K) and the use of a 'solid tank' (which reduces noise, and the volume of refractively matched fluid from 1 ltr to 10 cc). The efficacy of DFOS was evaluated by direct comparison against commissioned scanners in our lab. Measured dose distributions from all systems were compared against the predicted dose distributions from a commissioned treatment planning system (TPS). Three treatment plans were investigated including a simple four-field box treatment, a multiple small field delivery, and a complex IMRT treatment. Dosimeters were imaged within 2 h post irradiation, using consistent scanning techniques (360 projections acquired at 1 degree intervals, reconstruction at 2mm). DFOS efficacy was evaluated through inspection of dose line-profiles, and 2D and 3D dose and gamma maps. DFOS/TPS gamma pass rates with 3%/3mm dose difference/distance-to-agreement criteria ranged from 89.3% to 92.2%, compared to from 95.6% to 99.0% obtained with the commissioned system. The 3D gamma pass rate between the commissioned system and DFOS was 98.2%. The typical noise rates in DFOS reconstructions were up to 3%, compared to under 2% for the commissioned system. In conclusion, while the introduction of a solid tank proved advantageous with regards to cost and convenience, further work is required to improve the image quality and dose reconstruction accuracy of the new DFOS optical-CT system.

  7. Fluids escape in subduction zones: new constraints from 3-D microtomography data

    NASA Astrophysics Data System (ADS)

    Le Roux, V.; Gaetani, G. A.; Slaugenwhite, J.; Miller, K.

    2013-12-01

    Large amounts of H2O are carried into trenches via subduction of the sediments, basaltic crust and uppermost mantle that make up the oceanic lithosphere. A major question is how much of this subducted H2O is released into the overlying mantle wedge, promoting melting, and how much is carried deeper into the mantle. This depends, at least in part, on whether H2O is able to form an interconnected network among the mineral grains that make up the rock down to very low fluid fractions. In order to achieve connectivity and allow the fluid phase to escape, a minimum amount of fluid (critical porosity) is required when dihedral angles are more than 60 degrees. We investigated the distribution of seawater in simplified sediment analogs (i.e. quartz for siliceous sediments; calcite for carbonate sediments), in natural clays (kaolinite and montmorillonite) and in bulk eclogite. Experiments were performed in a piston-cylinder apparatus at 2 GPa and 650°C. Fluid fractions ranged from ~10% to ~1% to determine the porosity at which connectivity of the seawater network is lost for each rock type. We used synchrotron X-ray microtomographic techniques (at Argonne National Laboratory, IL) to obtain 3-D images of the pore space network in order to constrain the grain scale distribution of fluids in a subducted slab. This nondestructive 3-D imaging technique has a spatial resolution of 0.7 μm and provides quantitative information on geometrical parameters of fluid topology, such as porosity, dihedral angle distribution, fluid channel sizes and connectivity. The geometrical parameters were extracted using the VSG Avizo software. This study lays the groundwork for determining the 3-D grain scale distribution of fluids in a range of subducted lithologies. Results from this study provide important new insights into the amount of fluid that can be transported into the deep mantle by subduction.

  8. Implementation Of True 3D Cursors In Computer Graphics

    NASA Astrophysics Data System (ADS)

    Butts, David R.; McAllister, David F.

    1988-06-01

    The advances in stereoscopic image display techniques have shown an increased need for real-time interaction with the three-dimensional image. We have developed a prototype real-time stereoscopic cursor to investigate this interaction. The results have pointed out areas where hardware speeds are a limiting factor, as well as areas where various methodologies cause perceptual difficulties. This paper addresses the psychological and perceptual anomalies involved in stereo image techniques, cursor generation and motion, and the use of the device as a 3D drawing and depth measuring tool.

  9. FluidCam 1&2 - UAV-Based Fluid Lensing Instruments for High-Resolution 3D Subaqueous Imaging and Automated Remote Biosphere Assessment of Reef Ecosystems

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2015-12-01

    We present NASA ESTO FluidCam 1 & 2, Visible and NIR Fluid-Lensing-enabled imaging payloads for Unmanned Aerial Vehicles (UAVs). Developed as part of a focused 2014 earth science technology grant, FluidCam 1&2 are Fluid-Lensing-based computational optical imagers designed for automated 3D mapping and remote sensing of underwater coastal targets from airborne platforms. Fluid Lensing has been used to map underwater reefs in 3D in American Samoa and Hamelin Pool, Australia from UAV platforms at sub-cm scale, which has proven a valuable tool in modern marine research for marine biosphere assessment and conservation. We share FluidCam 1&2 instrument validation and testing results as well as preliminary processed data from field campaigns. Petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk reefs demonstrate broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to improving bathymetry data for physical oceanographic models and understanding climate change's impact on coastal zones, global oxygen production, carbon sequestration.

  10. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls.

    PubMed

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S; Kim, Namwon; Park, Sunggook

    2017-01-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.Graphical abstractIn this paper we show that a micromixer with patterned walls can be fabricated using 3D nanomolding and solvent-assisted bonding to manipulate the flow patterns to improve mixing.

  11. Computational study of 3-D Benard convection with gravitational modulation

    NASA Technical Reports Server (NTRS)

    Biringen, S.; Peltier, L. J.

    1989-01-01

    In this numerical study the effects of a modulated gravitational field on three-dimensional Rayleigh-Benard convection with heating from above or from below is investigated. The full, nonlinear, time-dependent, Boussinesq Navier-Stokes equations and the energy equation are solved by a semiimplicit, pseudo-spectral procedure. This study has been motivated by the need to better understand the effects of vibration (G-Jitter) on fluids systems especially in the low gravity environment.

  12. 3D Numerical Simulations of Coupled Solid and Fluid Mechanics in Volcanic Conduit Erosion and Crater Formation

    NASA Astrophysics Data System (ADS)

    Wohletz, K. H.; Ogden, D. E.

    2008-12-01

    An essential element of explosive volcanic eruptions is the effect of the evolving conduit and vent on the erupting multiphase flow and the effect of the flow upon the conduit and vent rocks, a 3D geological nozzle problem. This coupling of the host rock solid mechanics with the fluid dynamics of an erupting multiphase fluid has never been directly simulated and is poorly understood. We apply a library of computer codes called CFDLib, which has been developed by the Theoretical Division at Los Alamos National Laboratory. This code provides the unique capability of being able to solve the interaction of an Eulerian fluid with a Lagrangian solid in 3D while treating multiphase turbulence that this interaction generates. Our previous work with CFDLib has been directed at validating results with laboratory experiments, verification against analytical models, and free-jet decompression. This work demonstrated the importance of vent overpressure in determining the characteristics of an erupted column of gas and tephra. However, eruption of an overpressured jet is strongly coupled to the dynamics of the vent shape that in turn is dependent upon conduit dynamics. For this reason most previous computer simulations of volcanic eruptions have assumed pressure-balanced conditions of flow from the vent. Here we demonstrate our progress in simulating vent evolution during eruption of an overpressured multiphase (steam and magma/rock) fluid. With increasing overpressure the evolved vent radius increases with the formation of a crater. The Mach Stem structure of the erupted jet resembles those of our previous simulations from a fixed vent, but the evolving vent nozzle and contributions of eroded material to the jet make its structure more complicated and variable with time. Future work will focus on study of the effects of host rock properties and 3D conduit shape.

  13. Simultaneous measurement of 3D zooplankton trajectories and surrounding fluid velocity field in complex flows.

    PubMed

    Adhikari, Deepak; Gemmell, Brad J; Hallberg, Michael P; Longmire, Ellen K; Buskey, Edward J

    2015-11-01

    We describe an automated, volumetric particle image velocimetry (PIV) and tracking method that measures time-resolved, 3D zooplankton trajectories and surrounding volumetric fluid velocity fields simultaneously and non-intrusively. The method is demonstrated for groups of copepods flowing past a wall-mounted cylinder. We show that copepods execute escape responses when subjected to a strain rate threshold upstream of a cylinder, but the same threshold range elicits no escape responses in the turbulent wake downstream. The method was also used to document the instantaneous slip velocity of zooplankton and the resulting differences in trajectory between zooplankton and non-inertial fluid particles in the unsteady wake flow, showing the method's capability to quantify drift for both passive and motile organisms in turbulent environments. Applications of the method extend to any group of organisms interacting with the surrounding fluid environment, where organism location, larger-scale eddies and smaller-scale fluid deformation rates can all be tracked and analyzed.

  14. Conservation of Fluid Mass and Energy by RELAP5-3D during a SBLOCA

    SciTech Connect

    Cliff B. Davis

    2009-08-01

    Mass and energy balances were performed to check the accuracy of RELAP5-3D’s solution during a loss-of-coolant accident initiated by a small break in a typical pressurized water reactor. Mass and energy balances were performed for the combined liquid and gas phases and the gas phase by itself. The analysis showed that RELAP5-3D adequately conserved mass and energy for the combined fluid and the gas phase.

  15. Navier-Stokes Neutral and Plasma Fluid Modelling in 3D

    SciTech Connect

    Riemann, J; Borchardt, M; Schneider, R; Mutzke, A; Rognlien, T; Umansky, M

    2004-05-17

    The 3D finite volume transport code BoRiS is applied to a system of coupled plasma and neutral fluid equations in a slab. Demonstrating easy implementation of new equations, a new parallel BoRiS version is tested on three different models for the neutral fluid - diffusive, parallel Navier-Stokes and full Navier-Stokes - and the results are compared to each other. Typical effects like density enhancement by ionization of recycled neutrals in front of a target plate can be seen and differences are linked to the neutral models in use.

  16. Computation of tooth axes of existent and missing teeth from 3D CT images.

    PubMed

    Wang, Yang; Wu, Lin; Guo, Huayan; Qiu, Tiantian; Huang, Yuanliang; Lin, Bin; Wang, Lisheng

    2015-12-01

    Orientations of tooth axes are important quantitative information used in dental diagnosis and surgery planning. However, their computation is a complex problem, and the existing methods have respective limitations. This paper proposes new methods to compute 3D tooth axes from 3D CT images for existent teeth with single root or multiple roots and to estimate 3D tooth axes from 3D CT images for missing teeth. The tooth axis of a single-root tooth will be determined by segmenting the pulp cavity of the tooth and computing the principal direction of the pulp cavity, and the estimation of tooth axes of the missing teeth is modeled as an interpolation problem of some quaternions along a 3D curve. The proposed methods can either avoid the difficult teeth segmentation problem or improve the limitations of existing methods. Their effectiveness and practicality are demonstrated by experimental results of different 3D CT images from the clinic.

  17. Computational ocean acoustics: Advances in 3D ocean acoustic modeling

    NASA Astrophysics Data System (ADS)

    Schmidt, Henrik; Jensen, Finn B.

    2012-11-01

    The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].

  18. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  19. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.

    PubMed

    Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J

    2012-05-01

    Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.

  20. Tensor3D: A computer graphics program to simulate 3D real-time deformation and visualization of geometric bodies

    NASA Astrophysics Data System (ADS)

    Pallozzi Lavorante, Luca; Dirk Ebert, Hans

    2008-07-01

    Tensor3D is a geometric modeling program with the capacity to simulate and visualize in real-time the deformation, specified through a tensor matrix and applied to triangulated models representing geological bodies. 3D visualization allows the study of deformational processes that are traditionally conducted in 2D, such as simple and pure shears. Besides geometric objects that are immediately available in the program window, the program can read other models from disk, thus being able to import objects created with different open-source or proprietary programs. A strain ellipsoid and a bounding box are simultaneously shown and instantly deformed with the main object. The principal axes of strain are visualized as well to provide graphical information about the orientation of the tensor's normal components. The deformed models can also be saved, retrieved later and deformed again, in order to study different steps of progressive strain, or to make this data available to other programs. The shape of stress ellipsoids and the corresponding Mohr circles defined by any stress tensor can also be represented. The application was written using the Visualization ToolKit, a powerful scientific visualization library in the public domain. This development choice, allied to the use of the Tcl/Tk programming language, which is independent on the host computational platform, makes the program a useful tool for the study of geometric deformations directly in three dimensions in teaching as well as research activities.

  1. 3D nanomolding and fluid mixing in micromixers with micro-patterned microchannel walls

    NASA Astrophysics Data System (ADS)

    Farshchian, Bahador; Amirsadeghi, Alborz; Choi, Junseo; Park, Daniel S.; Kim, Namwon; Park, Sunggook

    2017-03-01

    Microfluidic devices where the microchannel walls were decorated with micro and nanostructures were fabricated using 3D nanomolding. Using 3D molded microfluidic devices with microchannel walls decorated with microscale gratings, the fluid mixing behavior was investigated through experiments and numerical simulation. The use of microscale gratings in the micromixer was predicated by the fact that large obstacles in a microchannel enhances the mixing performance. Slanted ratchet gratings on the channel walls resulted in a helical flow along the microchannel, thus increasing the interfacial area between fluids and cutting down the diffusion length. Increasing the number of walls decorated with continuous ratchet gratings intensified the strength of the helical flow, enhancing mixing further. When ratchet gratings on the surface of the top cover plate were aligned in a direction to break the continuity of gratings from the other three walls, a stack of two helical flows was formed one above each other. This work concludes that the 3D nanomolding process can be a cost-effective tool for scaling-up the fabrication of microfluidic mixers with improved mixing efficiencies.[Figure not available: see fulltext.

  2. Building a 3D Computed Tomography Scanner From Surplus Parts.

    PubMed

    Haidekker, Mark A

    2014-01-01

    Computed tomography (CT) scanners are expensive imaging devices, often out of reach for small research groups. Designing and building a CT scanner from modular components is possible, and this article demonstrates that realization of a CT scanner from components is surprisingly easy. However, the high costs of a modular X-ray source and detector limit the overall cost savings. In this article, the possibility of building a CT scanner with available surplus X-ray parts is discussed, and a practical device is described that incurred costs of less than $16,000. The image quality of this device is comparable with commercial devices. The disadvantage is that design constraints imposed by the available components lead to slow scan speeds and a resolution of 0.5 mm. Despite these limitations, a device such as this is attractive for imaging studies in the biological and biomedical sciences, as well as for advancing CT technology itself.

  3. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  4. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging.

  5. Computational fluid dynamic applications

    SciTech Connect

    Chang, S.-L.; Lottes, S. A.; Zhou, C. Q.

    2000-04-03

    The rapid advancement of computational capability including speed and memory size has prompted the wide use of computational fluid dynamics (CFD) codes to simulate complex flow systems. CFD simulations are used to study the operating problems encountered in system, to evaluate the impacts of operation/design parameters on the performance of a system, and to investigate novel design concepts. CFD codes are generally developed based on the conservation laws of mass, momentum, and energy that govern the characteristics of a flow. The governing equations are simplified and discretized for a selected computational grid system. Numerical methods are selected to simplify and calculate approximate flow properties. For turbulent, reacting, and multiphase flow systems the complex processes relating to these aspects of the flow, i.e., turbulent diffusion, combustion kinetics, interfacial drag and heat and mass transfer, etc., are described in mathematical models, based on a combination of fundamental physics and empirical data, that are incorporated into the code. CFD simulation has been applied to a large variety of practical and industrial scale flow systems.

  6. 3D insight into fault geometries, deformation, and fluid-migration within the Hosgri Fault Zone offshore central California: Results from high-resolution 3D seismic data

    NASA Astrophysics Data System (ADS)

    Kluesner, J.; Brothers, D. S.; Johnson, S. Y.; Watt, J. T.

    2015-12-01

    High-resolution 3D seismic P-Cable data and advanced seismic attribute analyses were used to detect and interpret complex strike-slip fault geometries, deformation patterns, and fluid-pathways across a portion of the Hosgri Fault Zone (HFZ) offshore central California. Combination of the fault attribute results with structural analysis provides 3D insight into the geometry and internal structure of restraining and releasing bends, step-over zones, fault convergence zones, and apparent paired fault bends. The 3D seismic volume covers a 13.7 km2 region along the HFZ offshore of Point Sal and was collected in 2012 as part of the PG&E Central California Seismic Imaging Project (PG&E, 2014). Application of the fault attribute workflow isolated and delineated fault strands within the 3D volume. These results revealed that the northern and southern edges of the survey region are characterized by single fault strands that exhibit an approximate 6° change in strike across the 3D volume. Between these single faults strands is a complex network of fault splays, bends, stepovers, and convergence zones. Structural analysis reveals that the southern portion of the HFZ in the region is characterized by transtensional deformation, whereas transpressional-related folding dominates the central and northern portions of the HFZ. In the central region, convergence of the Lions Head Fault from the southeast results in an apparent impinging block, leading to development of a "paired fault bend" to the west. Combination of the fault and "chimney" attribute results indicates a strong connection between faults and fluid-migration pathways. Fluid-pathways are concentrated along discrete faults in the transtensional zones, but appear to be more broadly distributed amongst fault bounded anticlines and structurally controlled traps in the transpressional zones.

  7. Computation of a high-resolution MRI 3D stereotaxic atlas of the sheep brain.

    PubMed

    Ella, Arsène; Delgadillo, José A; Chemineau, Philippe; Keller, Matthieu

    2017-02-15

    The sheep model was first used in the fields of animal reproduction and veterinary sciences and then was utilized in fundamental and preclinical studies. For more than a decade, magnetic resonance (MR) studies performed on this model have been increasingly reported, especially in the field of neuroscience. To contribute to MR translational neuroscience research, a brain template and an atlas are necessary. We have recently generated the first complete T1-weighted (T1W) and T2W MR population average images (or templates) of in vivo sheep brains. In this study, we 1) defined a 3D stereotaxic coordinate system for previously established in vivo population average templates; 2) used deformation fields obtained during optimized nonlinear registrations to compute nonlinear tissues or prior probability maps (nlTPMs) of cerebrospinal fluid (CSF), gray matter (GM), and white matter (WM) tissues; 3) delineated 25 external and 28 internal sheep brain structures by segmenting both templates and nlTPMs; and 4) annotated and labeled these structures using an existing histological atlas. We built a quality high-resolution 3D atlas of average in vivo sheep brains linked to a reference stereotaxic space. The atlas and nlTPMs, associated with previously computed T1W and T2W in vivo sheep brain templates and nlTPMs, provide a complete set of imaging space that are able to be imported into other imaging software programs and could be used as standardized tools for neuroimaging studies or other neuroscience methods, such as image registration, image segmentation, identification of brain structures, implementation of recording devices, or neuronavigation. J. Comp. Neurol. 525:676-692, 2017. © 2016 Wiley Periodicals, Inc.

  8. 3D Global Two-Fluid Simulations of Turbulence in LAPD

    NASA Astrophysics Data System (ADS)

    Fisher, Dustin; Rogers, Barrett; Ricci, Paolo

    2012-10-01

    3D global two-fluid simulations are presented in an ongoing effort to identify and understand the physics of instabilities that arise in the Large Plasma Device (LAPD) at UCLA's Basic Science Facility. The LAPD, with its wide range of tunable parameters and device configurations, is ideally suited for studying space and laboratory plasmas. Moreover, the highly detailed and reproducible measurements of the LAPD lend themselves amicably to comparisons with simulations. Ongoing modeling is done using a modified version of the Global Braginskii Solver (GBS) [1] that models the plasma from source to edge region in a fully 3D two-fluid code. The reduced Braginskii equations are solved on a field-aligned grid using a finite difference method and 4th order Runge-Kutta time stepping and are parallelized on Dartmouth's Discovery cluster. Recent progress has been made to account for the thermionic cathode emission of fast electrons at the source, the axial dependence of the plasma source, and it is now possible to vary the potential on the front and side walls. Preliminary results, seen from the density and temperature profiles, show that the low frequency Kelvin Helmholtz instability still dominates the turbulence in the device.[4pt] [1] B. Rogers and P. Ricci. Phys. Rev. Lett. 104:225002, 2010

  9. Code verification for unsteady 3-D fluid-solid interaction problems

    NASA Astrophysics Data System (ADS)

    Yu, Kintak Raymond; Étienne, Stéphane; Hay, Alexander; Pelletier, Dominique

    2015-12-01

    This paper describes a procedure to synthesize Manufactured Solutions for Code Verification of an important class of Fluid-Structure Interaction (FSI) problems whose behaviors can be modeled as rigid body vibrations in incompressible fluids. We refer this class of FSI problems as Fluid-Solid Interaction problems, which can be found in many practical engineering applications. The methodology can be utilized to develop Manufactured Solutions for both 2-D and 3-D cases. We demonstrate the procedure with our numerical code. We present details of the formulation and methodology. We also provide the reasonings behind our proposed approach. Results from grid and time step refinement studies confirm the verification of our solver and demonstrate the versatility of the simple synthesis procedure. In addition, the results also demonstrate that the modified decoupled approach to verify flow problems with high-order time-stepping schemes can be employed equally well to verify code for multi-physics problems (here, those of the Fluid-Solid Interaction) when the numerical discretization is based on the Method of Lines.

  10. A Hybrid Geophysical Fluid Dynamics and Fully 3D Fluid Dynamics Approach to Simulate Multiphysics Coastal Flows

    NASA Astrophysics Data System (ADS)

    Tang, H.; Qu, K.

    2014-12-01

    A hybrid method that couples a geophysical fluid dynamics model to a fully 3D fluid dynamics model is the most feasible and promising approach to simulate coastal ocean flow phenomena that involve multiple types of physics spanning a vast range of temporal and spatial scales. We propose such a hybrid method that couples the Finite Volume Coastal Ocean Model (FVCOM) with the Solver for Incompressible Flow on Overset Meshes (SIFOM); the former is used to simulate large-scale estuary flows, and the latter is employed to capture small-scale local processes. The coupling involves distinct governing equations, different numerical algorithms, and dissimilar grids, and it is two-way and realized using the Schwartz alternative iteration. In this presentation, the proposed method will be outlined, and a few applications that are newly produced by it but cannot be handled by other conventional approaches will be presented.

  11. Electro-holography display using computer generated hologram of 3D objects based on projection spectra

    NASA Astrophysics Data System (ADS)

    Huang, Sujuan; Wang, Duocheng; He, Chao

    2012-11-01

    A new method of synthesizing computer-generated hologram of three-dimensional (3D) objects is proposed from their projection images. A series of projection images of 3D objects are recorded with one-dimensional azimuth scanning. According to the principles of paraboloid of revolution in 3D Fourier space and 3D central slice theorem, spectra information of 3D objects can be gathered from their projection images. Considering quantization error of horizontal and vertical directions, the spectrum information from each projection image is efficiently extracted in double circle and four circles shape, to enhance the utilization of projection spectra. Then spectra information of 3D objects from all projection images is encoded into computer-generated hologram based on Fourier transform using conjugate-symmetric extension. The hologram includes 3D information of objects. Experimental results for numerical reconstruction of the CGH at different distance validate the proposed methods and show its good performance. Electro-holographic reconstruction can be realized by using an electronic addressing reflective liquid-crystal display (LCD) spatial light modulator. The CGH from the computer is loaded onto the LCD. By illuminating a reference light from a laser source to the LCD, the amplitude and phase information included in the CGH will be reconstructed due to the diffraction of the light modulated by the LCD.

  12. 3D visualization of deformation structures and potential fluid pathways at the Grimsel Test Site

    NASA Astrophysics Data System (ADS)

    Schneeberger, Raphael; Kober, Florian; Berger, Alfons; Spillmann, Thomas; Herwegh, Marco

    2015-04-01

    Knowledge on the ability of fluids to infiltrate subsurface rocks is of major importance for underground constructions, geothermal or radioactive waste disposal projects. In this study, we focus on the characterization of water infiltration pathways, their 3D geometries and origins. Based on surface and subsurface mapping in combination with drill core data, we developed by the use of MoveTM (Midland Valley Exploration Ltd.) a 3D structural model of the Grimsel Test Site (GTS). GTS is an underground laboratory operated by NAGRA, the Swiss organisation responsible for the management of nuclear waste. It is located within a suite of post-Variscan magmatic bodies comprising former granitic and granodioritic melts, which are dissected by mafic and aplitic dikes. During Alpine orogeny, the suite was tectonically overprinted within two stages of ductile deformation (Wehrens et al., in prep.) followed by brittle overprint of some of the shear zones during the retrograde exhumation history. It is this brittle deformation, which controls today's water infiltration network. However, the associated fractures, cataclasites and fault gouges are controlled themselves by aforementioned pre-existing mechanical discontinuities, whose origin ranges back as far as to the magmatic stage. For example, two sets of vertically oriented mafic dikes (E-W and NW-SE striking) and compositional heterogeneities induced by magmatic segregation processes in the plutonic host rocks served as nucleation sites for Alpine strain localization. Subsequently, NE-SW, E-W and NW-SE striking ductile shear zones were formed, in combination with high temperature fracturing while dissecting the host rocks in a complex 3D pattern (Wehrens et al, in prep.). Whether the ductile shear zones have been subjected to brittle reactivation and can serve as infiltration pathways or not, depends strongly on their orientations with respect to the principal stress field. Especially where deformation structures intersect

  13. Nanoscale 3D distribution of low melt and fluid fractions in mantle rocks

    NASA Astrophysics Data System (ADS)

    Gardes, Emmanuel; Morales, Luiz; Heinrich, Wilhelm; Sifre, David; Hashim, Leila; Gaillard, Fabrice; Katharina, Marquardt

    2016-04-01

    The presence of melts or fluids in the intergranular medium of rocks strongly influences their bulk physico-chemical properties (e.g. mass transport and chemical reactivity, electrical conductivity, seismic wave velocity, etc). Actually, the effects can be so large that only small melt or fluid fractions must sometimes be involved for explaining mantle geophysical discontinuities and anomalies. The investigation of the distribution of such small fractions in the intergranular medium of mantle rocks is therefore crucial for relating them to bulk and large scale properties. However, it involves submicrometric structures which are hardly characterizable using conventional techniques. Here we present how the FIB-SEM-STEM microscope can be used to produce 3D imaging at unequalled resolution. We show that low melt and fluid fractions can form films as thin as 20 nm at olivine grain boundaries, and that they can modify the physico-chemical properties of mantle rocks by orders of magnitude. The fine relationships between films at grain boundaries, tubules at triple junctions and pockets at grain corners can be explored, and appear to be complex and to differ from usual visions.

  14. Global Existence and Asymptotic Behavior of Affine Motion of 3D Ideal Fluids Surrounded by Vacuum

    NASA Astrophysics Data System (ADS)

    Sideris, Thomas C.

    2017-03-01

    The 3D compressible and incompressible Euler equations with a physical vacuum free boundary condition and affine initial conditions reduce to a globally solvable Hamiltonian system of ordinary differential equations for the deformation gradient in {GL^+(3, R)} . The evolution of the fluid domain is described by a family of ellipsoids whose diameter grows at a rate proportional to time. Upon rescaling to a fixed diameter, the asymptotic limit of the fluid ellipsoid is determined by a positive semi-definite quadratic form of rank r = 1, 2, or 3, corresponding to the asymptotic degeneration of the ellipsoid along 3-r of its principal axes. In the compressible case, the asymptotic limit has rank r = 3, and asymptotic completeness holds, when the adiabatic index {γ} satisfies {4/3 < γ < 2} . The number of possible degeneracies, 3-r, increases with the value of the adiabatic index {γ} . In the incompressible case, affine motion reduces to geodesic flow in {SL(3, R)} with the Euclidean metric. For incompressible affine swirling flow, there is a structural instability. Generically, when the vorticity is nonzero, the domains degenerate along only one axis, but the physical vacuum boundary condition fails over a finite time interval. The rescaled fluid domains of irrotational motion can collapse along two axes.

  15. Active 3-D microscaffold system with fluid perfusion for culturing in vitro neuronal networks.

    PubMed

    Rowe, Laura; Almasri, Mahmoud; Lee, Kil; Fogleman, Nick; Brewer, Gregory J; Nam, Yoonkey; Wheeler, Bruce C; Vukasinovic, Jelena; Glezer, Ari; Frazier, A Bruno

    2007-04-01

    This work demonstrated the design, fabrication, packaging, and characterization of an active microscaffold system with fluid perfusion/nutrient delivery functionalities for culturing in vitro neuronal networks from dissociated hippocampal rat pup neurons. The active microscaffold consisted of an 8 x 8 array of hollow, microfabricated, SU-8 towers (1.0 mm or 1.5 mm in height), with integrated, horizontal, SU-8 cross-members that connect adjacent towers, thus forming a 3-D grid that is conducive to branching, growth, and increased network formation of dissociated hippocampal neurons. Each microtower in the microscaffold system contained a hollow channel and multiple fluid ports for media delivery and perfusion of nutrients to the in vitro neuronal network growing within the microscaffold system. Additionally, there were two exposed Au electrodes on the outer wall of each microtower at varying heights (with insulated leads running within the microtower walls), which will later allow for integration of electrical stimulation/recording functionalities into the active microscaffold system. However, characterization of the stimulation/recording electrodes was not included in the scope of this paper. Design, fabrication, fluid packaging, and characterization of the active microscaffold system were performed. Furthermore, use of the active microscaffold system was demonstrated by culturing primary hippocampal embryonic rat pup neurons, and characterizing cell viability within the microscaffold system.

  16. 3D time dependent thermo-fluid dynamic model of ground deformation at Campi Flegrei caldera

    NASA Astrophysics Data System (ADS)

    Castaldo, R.; Tizzani, P.; Manconi, A.; Manzo, M.; Pepe, S.; Pepe, A.; Lanari, R.

    2012-04-01

    In active volcanic areas deformation signals are generally characterized by non-linear spatial and temporal variations [Tizzani P. et al., 2007]. This behaviour has been revealed in the last two decades by the so-called advanced DInSAR processing algorithms, developed to analyze surface deformation phenomena [Berardino P. et al., 2002; Ferretti C. et al., 2001]. Notwithstanding, most of the inverse modelling attempts to characterize the evolution of the volcanic sources are based on the assumption that the Earth's crust behaves as a homogeneous linear elastic material. However, the behaviour of the upper lithosphere in thermally anomalous regions (as active volcanoes are) might be well described as a non-Newtonian fluid, where some of the material proprieties of the rocks (i.e., apparent viscosities) can change over time [Pinkerton H. et al., 1995]. In this context, we considered the thermal proprieties and mechanical heterogeneities of the upper crust in order to develop a new 3D time dependent thermo-fluid dynamic model of Campi Flegrei (CF) caldera, Southern Italy. More specifically, according to Tizzani P. et al. (2010), we integrated in a FEM environment geophysical information (gravimetric, seismic, and borehole data) available for the considered area and performed two FEM optimization procedures to constrain the 3D distribution of unknown physical parameters (temperature and viscosity distributions) that might help explaining the data observed at surface (geothermal wells and DInSAR measurements). First, we searched for the heat production, the volume source distribution and surface emissivity parameters providing the best-fit of the geothermal profiles data measured at six boreholes [Agip ESGE, 1986], by solving the Fourier heat equation over time (about 40 kys). The 3D thermal field resulting from this optimization was used to calculate the 3D brittle-ductile transition. This analysis revealed the presence of a ductile region, located beneath the centre of

  17. 3D hybrid simulations with gyrokinetic particle ions and fluid electrons

    SciTech Connect

    Belova, E.V.; Park, W.; Fu, G.Y.; Strauss, H.R.; Sugiyama, L.E.

    1998-12-31

    The previous hybrid MHD/particle model (MH3D-K code) represented energetic ions as gyrokinetic (or drift-kinetic) particles coupled to MHD equations using the pressure or current coupling scheme. A small energetic to bulk ion density ratio was assumed, n{sub h}/n{sub b} {much_lt} 1, allowing the neglect of the energetic ion perpendicular inertia in the momentum equation and the use of MHD Ohm`s law E = {minus}v{sub b} {times} B. A generalization of this model in which all ions are treated as gyrokinetic/drift-kinetic particles and fluid description is used for the electron dynamics is considered in this paper.

  18. Influence of Young's moduli in 3D fluid-structure coupled models of the human cochlea

    NASA Astrophysics Data System (ADS)

    Böhnke, Frank; Semmelbauer, Sebastian; Marquardt, Torsten

    2015-12-01

    The acoustic wave propagation in the human cochlea was studied using a tapered box-model with linear assumptions respective to all mechanical parameters. The discretisation and evaluation is conducted by a commercial finite element package (ANSYS). The main difference to former models of the cochlea was the representation of the basilar membrane by a 3D elastic solid. The Young's moduli of this solid were modified to study their influence on the travelling wave. The lymph in the scala vestibuli and scala tympani was represented by a viscous and nearly incompressible fluid finite element approach. Our results show the maximum displacement for f = 2kHz at half of the length of the cochlea in accordance with former experiments. For low frequencies f <200 Hz nearly zero phase shifts were found, whereas for f =1 kHz it reaches values up to -12 cycles depending on the degree of orthotropy.

  19. Fluid force and static symmetry breaking modes of 3D bluff bodies.

    NASA Astrophysics Data System (ADS)

    Cadot, Olivier; Evrard, Antoine; DFA Team

    2015-11-01

    A cavity at the base of the squareback Ahmed model at Re =6.106 is able to reduce the base suction by 18% and the drag coefficient by 9%, while the flow at the separation remains unaffected. Instantaneous pressure measurements at the body base, fluid force measurements and wake velocity measurements are investigated varying the cavity depth from 0 to 35% of the base height. Due to the reflectional symmetry of the rectangular base, there are two Reflectional Symmetry Breaking (RSB) mirror modes present in the natural wake that switch from one to the other randomly in accordance with the recent findings of Grandemange et al. (2013). It is shown that these modes exhibit an energetic 3D static vortex system close to the base of the body. A sufficiently deep cavity is able to stabilize the wake toward a symmetry preserved wake, thus suppressing the RSB modes and leading to a weaker elliptical toric recirculation. The stabilization can be modeled with a Langevin equation. The plausible mechanism for drag reduction with the base cavity is based on the interaction of the static 3D vortex system of the RSB modes with the base and their suppression by stabilization. There are some strong evidences that this mechanism may be generalized to axisymmetric bodies with base cavity.

  20. Time- and computation-efficient calibration of MEMS 3D accelerometers and gyroscopes.

    PubMed

    Stančin, Sara; Tomažič, Sašo

    2014-08-13

    We propose calibration methods for microelectromechanical system (MEMS) 3D accelerometers and gyroscopes that are efficient in terms of time and computational complexity. The calibration process for both sensors is simple, does not require additional expensive equipment, and can be performed in the field before or between motion measurements. The methods rely on a small number of defined calibration measurements that are used to obtain the values of 12 calibration parameters. This process enables the static compensation of sensor inaccuracies. The values detected by the 3D sensor are interpreted using a generalized 3D sensor model. The model assumes that the values detected by the sensor are equal to the projections of the measured value on the sensor sensitivity axes. Although this finding is trivial for 3D accelerometers, its validity for 3D gyroscopes is not immediately apparent; thus, this paper elaborates on this latter topic. For an example sensor device, calibration parameters were established using calibration measurements of approximately 1.5 min in duration for the 3D accelerometer and 2.5 min in duration for the 3D gyroscope. Correction of each detected 3D value using the established calibration parameters in further measurements requires only nine addition and nine multiplication operations.

  1. Extended gray level co-occurrence matrix computation for 3D image volume

    NASA Astrophysics Data System (ADS)

    Salih, Nurulazirah M.; Dewi, Dyah Ekashanti Octorina

    2017-02-01

    Gray Level Co-occurrence Matrix (GLCM) is one of the main techniques for texture analysis that has been widely used in many applications. Conventional GLCMs usually focus on two-dimensional (2D) image texture analysis only. However, a three-dimensional (3D) image volume requires specific texture analysis computation. In this paper, an extended 2D to 3D GLCM approach based on the concept of multiple 2D plane positions and pixel orientation directions in the 3D environment is proposed. The algorithm was implemented by breaking down the 3D image volume into 2D slices based on five different plane positions (coordinate axes and oblique axes) resulting in 13 independent directions, then calculating the GLCMs. The resulted GLCMs were averaged to obtain normalized values, then the 3D texture features were calculated. A preliminary examination was performed on a 3D image volume (64 x 64 x 64 voxels). Our analysis confirmed that the proposed technique is capable of extracting the 3D texture features from the extended GLCMs approach. It is a simple and comprehensive technique that can contribute to the 3D image analysis.

  2. 3-D Maxwell fluid flow over an exponentially stretching surface using 3-stage Lobatto IIIA formula

    NASA Astrophysics Data System (ADS)

    Awais, M.; Hayat, T.; Ali, Aamir

    2016-05-01

    The present study looks at the three dimensional boundary layer flow driven by an exponentially stretching surface. An upper-convected Maxwell (UCM) fluid is considered. Characteristics here are characterized by rheological constitutive equations of upper convected Maxwell (UCM) fluid. Involved mathematical modeling constitutes a nonlinear differential system. 3-stage Lobatto IIIA formula is employed to construct the numerical solutions whereas analytic solutions are computed using HAM. Both solutions are compared and found in good agreement. The velocity components are analyzed for the Deborah number and ratio parameters.

  3. Computing 3-D structure of rigid objects using stereo and motion

    NASA Technical Reports Server (NTRS)

    Nguyen, Thinh V.

    1987-01-01

    Work performed as a step toward an intelligent automatic machine vision system for 3-D imaging is discussed. The problem considered is the quantitative 3-D reconstruction of rigid objects. Motion and stereo are the two clues considered in this system. The system basically consists of three processes: the low level process to extract image features, the middle level process to establish the correspondence in the stereo (spatial) and motion (temporal) modalities, and the high level process to compute the 3-D coordinates of the corner points by integrating the spatial and temporal correspondences.

  4. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, M.; Halisch, M.; Müller, C.; Fernandes, C. P.

    2015-12-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.

  5. 3-D field computation: The near-triumph of commerical codes

    SciTech Connect

    Turner, L.R.

    1995-07-01

    In recent years, more and more of those who design and analyze magnets and other devices are using commercial codes rather than developing their own. This paper considers the commercial codes and the features available with them. Other recent trends with 3-D field computation include parallel computation and visualization methods such as virtual reality systems.

  6. A new 3D computational model for shaped charge jet breakup

    SciTech Connect

    Zernow, L.; Chapyak, E.J.; Mosso, S.J.

    1996-09-01

    This paper reviews prior 1D and 2D axisymmetric, analytical and computational studies, as well as empirical studies of the shaped charge jet particulation problem and discusses their associated insights and problems. It proposes a new 3D computational model of the particulation process, based upon a simplified version of the observed counter-rotating, double helical surface perturbations, found on softly recovered shaped charge jet particles, from both copper and tantalum jets. This 3D approach contrasts with the random, axisymmetric surface perturbations which have previously been used, to try to infer the observed length distribution of jet particles, on the basis of the most unstable wavelength concept, which leads to the expectation of a continuous distribution of particle lengths. The 3D model, by its very nature, leads to a non-random, periodic distribution of potential initial necking loci, on alternate sides of the stretching jet. This in turn infers a potentially periodic, overlapping, multi-modal distribution of associated jet particle lengths. Since it is unlikely that all potential initial necking sites will be activated simultaneously, the 3D model also suggests that longer jet particles containing partial, but unseparated necks, should be observed fairly often. The computational analysis is in its very early stages and the problems involved in inserting the two helical grooves and in defining the initial conditions and boundary conditions for the computation will be discussed. Available initial results from the 3D computation will be discussed and interpreted.

  7. Computing elastic moduli on 3-D X-ray computed tomography image stacks

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.; Kushch, V. I.

    2015-03-01

    A numerical task of current interest is to compute the effective elastic properties of a random composite material by operating on a 3D digital image of its microstructure obtained via X-ray computed tomography (CT). The 3-D image is usually sub-sampled since an X-ray CT image is typically of order 10003 voxels or larger, which is considered to be a very large finite element problem. Two main questions for the validity of any such study are then: can the sub-sample size be made sufficiently large to capture enough of the important details of the random microstructure so that the computed moduli can be thought of as accurate, and what boundary conditions should be chosen for these sub-samples? This paper contributes to the answer of both questions by studying a simulated X-ray CT cylindrical microstructure with three phases, cut from a random model system with known elastic properties. A new hybrid numerical method is introduced, which makes use of finite element solutions coupled with exact solutions for elastic moduli of square arrays of parallel cylindrical fibers. The new method allows, in principle, all of the microstructural data to be used when the X-ray CT image is in the form of a cylinder, which is often the case. Appendix A describes a similar algorithm for spherical sub-samples, which may be of use when examining the mechanical properties of particles. Cubic sub-samples are also taken from this simulated X-ray CT structure to investigate the effect of two different kinds of boundary conditions: forced periodic and fixed displacements. It is found that using forced periodic displacements on the non-geometrically periodic cubic sub-samples always gave more accurate results than using fixed displacements, although with about the same precision. The larger the cubic sub-sample, the more accurate and precise was the elastic computation, and using the complete cylindrical sample with the new method gave still more accurate and precise results. Fortran 90

  8. High-Performance Active Liquid Crystalline Shutters for Stereo Computer Graphics and Other 3-D Technologies

    NASA Astrophysics Data System (ADS)

    Sergan, Tatiana; Sergan, Vassili; MacNaughton, Boyd

    2007-03-01

    Stereoscopic computer displays create a 3-D image by alternating two separate images for each of the viewer's eyes. Field-sequential viewing systems supply each eye with the appropriate image by blocking the wrong image for the wrong eye. In our work, we have developed a new mode of operation of a liquid crystal shutter that provides for highly effective blockage of undesired images when the screen is viewed in all viewing directions and eliminates color shifts associated with long turn-off times. The goal was achieved by using a π-cell filled with low-rotational-viscosity and high-birefringence fluid and additional negative birefringence films with splay optic axis distribution. The shutter demonstrates a contrast ratio higher than 800:1 for head-on viewing and 10:1 in the viewing cone of about 45°. The relaxation time of the shutter does not exceed 2 ms and is the same for all three primary colors.

  9. 3D Slicer as an Image Computing Platform for the Quantitative Imaging Network

    PubMed Central

    Fedorov, Andriy; Beichel, Reinhard; Kalpathy-Cramer, Jayashree; Finet, Julien; Fillion-Robin, Jean-Christophe; Pujol, Sonia; Bauer, Christian; Jennings, Dominique; Fennessy, Fiona; Sonka, Milan; Buatti, John; Aylward, Stephen; Miller, James V.; Pieper, Steve; Kikinis, Ron

    2012-01-01

    Quantitative analysis has tremendous but mostly unrealized potential in healthcare to support objective and accurate interpretation of the clinical imaging. In 2008, the National Cancer Institute began building the Quantitative Imaging Network (QIN) initiative with the goal of advancing quantitative imaging in the context of personalized therapy and evaluation of treatment response. Computerized analysis is an important component contributing to reproducibility and efficiency of the quantitative imaging techniques. The success of quantitative imaging is contingent on robust analysis methods and software tools to bring these methods from bench to bedside. 3D Slicer is a free open source software application for medical image computing. As a clinical research tool, 3D Slicer is similar to a radiology workstation that supports versatile visualizations but also provides advanced functionality such as automated segmentation and registration for a variety of application domains. Unlike a typical radiology workstation, 3D Slicer is free and is not tied to specific hardware. As a programming platform, 3D Slicer facilitates translation and evaluation of the new quantitative methods by allowing the biomedical researcher to focus on the implementation of the algorithm, and providing abstractions for the common tasks of data communication, visualization and user interface development. Compared to other tools that provide aspects of this functionality, 3D Slicer is fully open source and can be readily extended and redistributed. In addition, 3D Slicer is designed to facilitate the development of new functionality in the form of 3D Slicer extensions. In this paper, we present an overview of 3D Slicer as a platform for prototyping, development and evaluation of image analysis tools for clinical research applications. To illustrate the utility of the platform in the scope of QIN, we discuss several use cases of 3D Slicer by the existing QIN teams, and we elaborate on the future

  10. Optimal design of a new 3D haptic gripper for telemanipulation, featuring magnetorheological fluid brakes

    NASA Astrophysics Data System (ADS)

    Nguyen, Q. H.; Choi, S. B.; Lee, Y. S.; Han, M. S.

    2013-01-01

    In this research work, a new configuration of a 3D haptic gripper for telemanipulation is proposed and optimally designed. The proposed haptic gripper, featuring three magnetorheological fluid brakes (MRBs), reflects the rolling torque, the grasping force and the approach force from the slave manipulator to the master operator. After describing the operational principle of the haptic gripper, an optimal design of the MRBs for the gripper is performed. The purpose of the optimization problem is to find the most compact MRB that can provide a required braking torque/force to the master operator while the off-state torque/force is kept as small as possible. In the optimal design, different types of MRBs and different MR fluids (MRFs) are considered. In order to obtain the optimal solution of the MRBs, an optimization approach based on finite element analysis (FEA) integrated with an optimization tool is used. The optimal solutions of the MRBs are then obtained and the optimized MRBs for the haptic gripper are identified. In addition, discussions on the optimal solutions and performance of the optimized MRBs are given.

  11. Visualization of unsteady computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1994-01-01

    A brief summary of the computer environment used for calculating three dimensional unsteady Computational Fluid Dynamic (CFD) results is presented. This environment requires a super computer as well as massively parallel processors (MPP's) and clusters of workstations acting as a single MPP (by concurrently working on the same task) provide the required computational bandwidth for CFD calculations of transient problems. The cluster of reduced instruction set computers (RISC) is a recent advent based on the low cost and high performance that workstation vendors provide. The cluster, with the proper software can act as a multiple instruction/multiple data (MIMD) machine. A new set of software tools is being designed specifically to address visualizing 3D unsteady CFD results in these environments. Three user's manuals for the parallel version of Visual3, pV3, revision 1.00 make up the bulk of this report.

  12. 3D Multislice and Cone-beam Computed Tomography Systems for Dental Identification.

    PubMed

    Eliášová, Hana; Dostálová, Taťjana

    2017-01-01

    3D Multislice and Cone-beam computed tomography (CBCT) in forensic odontology has been shown to be useful not only in terms of one or a few of dead bodies but also in multiple fatality incidents. 3D Multislice and Cone-beam computed tomography and digital radiography were demonstrated in a forensic examination form. 3D images of the skull and teeth were analysed and validated for long ante mortem/post mortem intervals. The image acquisition was instantaneous; the images were able to be optically enlarged, measured, superimposed and compared prima vista or using special software and exported as a file. Digital radiology and computer tomography has been shown to be important both in common criminalistics practices and in multiple fatality incidents. Our study demonstrated that CBCT imaging offers less image artifacts, low image reconstruction times, mobility of the unit and considerably lower equipment cost.

  13. Meta!Blast computer game: a pipeline from science to 3D art to education

    NASA Astrophysics Data System (ADS)

    Schneller, William; Campbell, P. J.; Bassham, Diane; Wurtele, Eve Syrkin

    2012-03-01

    Meta!Blast (http://www.metablast.org) is designed to address the challenges students often encounter in understanding cell and metabolic biology. Developed by faculty and students in biology, biochemistry, computer science, game design, pedagogy, art and story, Meta!Blast is being created using Maya (http://usa.autodesk.com/maya/) and the Unity 3D (http://unity3d.com/) game engine, for Macs and PCs in classrooms; it has also been exhibited in an immersive environment. Here, we describe the pipeline from protein structural data and holographic information to art to the threedimensional (3D) environment to the game engine, by which we provide a publicly-available interactive 3D cellular world that mimics a photosynthetic plant cell.

  14. Visualization of unsteady computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1995-01-01

    The current computing environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array) provide the required computation bandwidth for CFD calculations of transient problems. Work is in progress on a set of software tools designed specifically to address visualizing 3D unsteady CFD results in these super-computer-like environments. The visualization is concurrently executed with the CFD solver. The parallel version of Visual3, pV3 required splitting up the unsteady visualization task to allow execution across a network of workstation(s) and compute servers. In this computing model, the network is almost always the bottleneck so much of the effort involved techniques to reduce the size of the data transferred between machines.

  15. Computational methods for constructing protein structure models from 3D electron microscopy maps.

    PubMed

    Esquivel-Rodríguez, Juan; Kihara, Daisuke

    2013-10-01

    Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided.

  16. Introduction of the ASP3D Computer Program for Unsteady Aerodynamic and Aeroelastic Analyses

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    2005-01-01

    A new computer program has been developed called ASP3D (Advanced Small Perturbation 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The new ASP3D code is the result of a decade of developmental work on improvements to the small perturbation formulation, performed while the author was employed as a Senior Research Scientist in the Configuration Aerodynamics Branch at the NASA Langley Research Center. The ASP3D code is a significant improvement to the state-of-the-art for transonic aeroelastic analyses over the CAP-TSD code (Computational Aeroelasticity Program Transonic Small Disturbance), which was developed principally by the author in the mid-1980s. The author is in a unique position as the developer of both computer programs to compare, contrast, and ultimately make conclusions regarding the underlying formulations and utility of each code. The paper describes the salient features of the ASP3D code including the rationale for improvements in comparison with CAP-TSD. Numerous results are presented to demonstrate the ASP3D capability. The general conclusion is that the new ASP3D capability is superior to the older CAP-TSD code because of the myriad improvements developed and incorporated.

  17. Efficient curve-skeleton computation for the analysis of biomedical 3d images - biomed 2010.

    PubMed

    Brun, Francesco; Dreossi, Diego

    2010-01-01

    Advances in three dimensional (3D) biomedical imaging techniques, such as magnetic resonance (MR) and computed tomography (CT), make it easy to reconstruct high quality 3D models of portions of human body and other biological specimens. A major challenge lies in the quantitative analysis of the resulting models thus allowing a more comprehensive characterization of the object under investigation. An interesting approach is based on curve-skeleton (or medial axis) extraction, which gives basic information concerning the topology and the geometry. Curve-skeletons have been applied in the analysis of vascular networks and the diagnosis of tracheal stenoses as well as a 3D flight path in virtual endoscopy. However curve-skeleton computation is a crucial task. An effective skeletonization algorithm was introduced by N. Cornea in [1] but it lacks in computational performances. Thanks to the advances in imaging techniques the resolution of 3D images is increasing more and more, therefore there is the need for efficient algorithms in order to analyze significant Volumes of Interest (VOIs). In the present paper an improved skeletonization algorithm based on the idea proposed in [1] is presented. A computational comparison between the original and the proposed method is also reported. The obtained results show that the proposed method allows a significant computational improvement making more appealing the adoption of the skeleton representation in biomedical image analysis applications.

  18. PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain

    NASA Astrophysics Data System (ADS)

    Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.

    2009-12-01

    A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007

  19. Computer-Assisted Hepatocellular Carcinoma Ablation Planning Based on 3-D Ultrasound Imaging.

    PubMed

    Li, Kai; Su, Zhongzhen; Xu, Erjiao; Guan, Peishan; Li, Liu-Jun; Zheng, Rongqin

    2016-08-01

    To evaluate computer-assisted hepatocellular carcinoma (HCC) ablation planning based on 3-D ultrasound, 3-D ultrasound images of 60 HCC lesions from 58 patients were obtained and transferred to a research toolkit. Compared with virtual manual ablation planning (MAP), virtual computer-assisted ablation planning (CAP) consumed less time and needle insertion numbers and exhibited a higher rate of complete tumor coverage and lower rate of critical structure injury. In MAP, junior operators used less time, but had more critical structure injury than senior operators. For large lesions, CAP performed better than MAP. For lesions near critical structures, CAP resulted in better outcomes than MAP. Compared with MAP, CAP based on 3-D ultrasound imaging was more effective and achieved a higher rate of complete tumor coverage and a lower rate of critical structure injury; it is especially useful for junior operators and with large lesions, and lesions near critical structures.

  20. Fluid-structure interaction and structural analyses using a comprehensive mitral valve model with 3D chordal structure.

    PubMed

    Toma, Milan; Einstein, Daniel R; Bloodworth, Charles H; Cochran, Richard P; Yoganathan, Ajit P; Kunzelman, Karyn S

    2016-06-25

    Over the years, three-dimensional models of the mitral valve have generally been organized around a simplified anatomy. Leaflets have been typically modeled as membranes, tethered to discrete chordae typically modeled as one-dimensional, non-linear cables. Yet, recent, high-resolution medical images have revealed that there is no clear boundary between the chordae and the leaflets. In fact, the mitral valve has been revealed to be more of a webbed structure whose architecture is continuous with the chordae and their extensions into the leaflets. Such detailed images can serve as the basis of anatomically accurate, subject-specific models, wherein the entire valve is modeled with solid elements that more faithfully represent the chordae, the leaflets, and the transition between the two. These models have the potential to enhance our understanding of mitral valve mechanics and to re-examine the role of the mitral valve chordae, which heretofore have been considered to be 'invisible' to the fluid and to be of secondary importance to the leaflets. However, these new models also require a rethinking of modeling assumptions. In this study, we examine the conventional practice of loading the leaflets only and not the chordae in order to study the structural response of the mitral valve apparatus. Specifically, we demonstrate that fully resolved 3D models of the mitral valve require a fluid-structure interaction analysis to correctly load the valve even in the case of quasi-static mechanics. While a fluid-structure interaction mode is still more computationally expensive than a structural-only model, we also show that advances in GPU computing have made such models tractable. Copyright © 2016 John Wiley & Sons, Ltd.

  1. Computational Fluid Dynamics Technology for Hypersonic Applications

    NASA Technical Reports Server (NTRS)

    Gnoffo, Peter A.

    2003-01-01

    Several current challenges in computational fluid dynamics and aerothermodynamics for hypersonic vehicle applications are discussed. Example simulations are presented from code validation and code benchmarking efforts to illustrate capabilities and limitations. Opportunities to advance the state-of-art in algorithms, grid generation and adaptation, and code validation are identified. Highlights of diverse efforts to address these challenges are then discussed. One such effort to re-engineer and synthesize the existing analysis capability in LAURA, VULCAN, and FUN3D will provide context for these discussions. The critical (and evolving) role of agile software engineering practice in the capability enhancement process is also noted.

  2. Computer-assisted 3D planned corrective osteotomies in eight malunited radius fractures.

    PubMed

    Walenkamp, M M J; de Muinck Keizer, R J O; Dobbe, J G G; Streekstra, G J; Goslings, J C; Kloen, P; Strackee, S D; Schep, N W L

    2015-08-01

    In corrective osteotomy of the radius, detailed preoperative planning is essential to optimising functional outcome. However, complex malunions are not completely addressed with conventional preoperative planning. Computer-assisted preoperative planning may optimise the results of corrective osteotomy of the radius. We analysed the pre- and postoperative radiological result of computer-assisted 3D planned corrective osteotomy in a series of patients with a malunited radius and assessed postoperative function. We included eight patients aged 13-64 who underwent a computer-assisted 3D planned corrective osteotomy of the radius for the treatment of a symptomatic radius malunion. We evaluated pre- and postoperative residual malpositioning on 3D reconstructions as expressed in six positioning parameters (three displacements along and three rotations about the axes of a 3D anatomical coordinate system) and assessed postoperative wrist range of motion. In this small case series, dorsopalmar tilt was significantly improved (p = 0.05). Ulnoradial shift, however, increased by the correction osteotomy (6 of 8 cases, 75 %). Postoperative 3D evaluation revealed improved positioning parameters for patients in axial rotational alignment (62.5 %), radial inclination (75 %), proximodistal shift (83 %) and volodorsal shift (88 %), although the cohort was not large enough to confirm this by statistical significance. All but one patient experienced improved range of motion (88 %). Computer-assisted 3D planning ameliorates alignment of radial malunions and improves functional results in patients with a symptomatic malunion of the radius. Further development is required to improve transfer of the planned position to the intra-operative bone. Level of evidence IV.

  3. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    PubMed

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  4. Novel fully integrated computer system for custom footwear: from 3D digitization to manufacturing

    NASA Astrophysics Data System (ADS)

    Houle, Pascal-Simon; Beaulieu, Eric; Liu, Zhaoheng

    1998-03-01

    This paper presents a recently developed custom footwear system, which integrates 3D digitization technology, range image fusion techniques, a 3D graphical environment for corrective actions, parametric curved surface representation and computer numerical control (CNC) machining. In this system, a support designed with the help of biomechanics experts can stabilize the foot in a correct and neutral position. The foot surface is then captured by a 3D camera using active ranging techniques. A software using a library of documented foot pathologies suggests corrective actions on the orthosis. Three kinds of deformations can be achieved. The first method uses previously scanned pad surfaces by our 3D scanner, which can be easily mapped onto the foot surface to locally modify the surface shape. The second kind of deformation is construction of B-Spline surfaces by manipulating control points and modifying knot vectors in a 3D graphical environment to build desired deformation. The last one is a manual electronic 3D pen, which may be of different shapes and sizes, and has an adjustable 'pressure' information. All applied deformations should respect a G1 surface continuity, which ensure that the surface can accustom a foot. Once the surface modification process is completed, the resulting data is sent to manufacturing software for CNC machining.

  5. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  6. Analyzing 3D xylem networks in Vitis vinifera using High Resolution Computed Tomography (HRCT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in High Resolution Computed Tomography (HRCT) have made it possible to visualize three dimensional (3D) xylem networks without time consuming, labor intensive physical sectioning. Here we describe a new method to visualize complex vessel networks in plants and produce a quantitat...

  7. Using 3D Computer Graphics Multimedia to Motivate Preservice Teachers' Learning of Geometry and Pedagogy

    ERIC Educational Resources Information Center

    Goodson-Espy, Tracy; Lynch-Davis, Kathleen; Schram, Pamela; Quickenton, Art

    2010-01-01

    This paper describes the genesis and purpose of our geometry methods course, focusing on a geometry-teaching technology we created using NVIDIA[R] Chameleon demonstration. This article presents examples from a sequence of lessons centered about a 3D computer graphics demonstration of the chameleon and its geometry. In addition, we present data…

  8. Adaptive 3D single-block grids for the computation of viscous flows around wings

    SciTech Connect

    Hagmeijer, R.; Kok, J.C.

    1996-12-31

    A robust algorithm for the adaption of a 3D single-block structured grid suitable for the computation of viscous flows around a wing is presented and demonstrated by application to the ONERA M6 wing. The effects of grid adaption on the flow solution and accuracy improvements is analyzed. Reynolds number variations are studied.

  9. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Peres Fernandes, Celso

    2016-02-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock-fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.

  10. A 3D-printed device for a smartphone-based chemiluminescence biosensor for lactate in oral fluid and sweat.

    PubMed

    Roda, Aldo; Guardigli, Massimo; Calabria, Donato; Calabretta, Maria Maddalena; Cevenini, Luca; Michelini, Elisa

    2014-12-21

    Increasingly, smartphones are used as portable personal computers, revolutionizing communication styles and entire lifestyles. Using 3D-printing technology we have made a disposable minicartridge that can be easily prototyped to turn any kind of smartphone or tablet into a portable luminometer to detect chemiluminescence derived from enzyme-coupled reactions. As proof-of-principle, lactate oxidase was coupled with horseradish peroxidase for lactate determination in oral fluid and sweat. Lactate can be quantified in less than five minutes with detection limits of 0.5 mmol L(-1) (corresponding to 4.5 mg dL(-1)) and 0.1 mmol L(-1) (corresponding to 0.9 mg dL(-1)) in oral fluid and sweat, respectively. A smartphone-based device shows adequate analytical performance to offer a cost-effective alternative for non-invasive lactate measurement. It could be used to evaluate lactate variation in relation to the anaerobic threshold in endurance sport and for monitoring lactic acidosis in critical-care patients.

  11. 3D Computational Modeling of Proteins Using Sparse Paramagnetic NMR Data.

    PubMed

    Pilla, Kala Bharath; Otting, Gottfried; Huber, Thomas

    2017-01-01

    Computational modeling of proteins using evolutionary or de novo approaches offers rapid structural characterization, but often suffers from low success rates in generating high quality models comparable to the accuracy of structures observed in X-ray crystallography or nuclear magnetic resonance (NMR) spectroscopy. A computational/experimental hybrid approach incorporating sparse experimental restraints in computational modeling algorithms drastically improves reliability and accuracy of 3D models. This chapter discusses the use of structural information obtained from various paramagnetic NMR measurements and demonstrates computational algorithms implementing pseudocontact shifts as restraints to determine the structure of proteins at atomic resolution.

  12. Initial results obtained from a 3D computational model of the shaped charge jet particulation process

    SciTech Connect

    Zernow, L.; Chapyak, E.J.

    1998-02-01

    In a previous paper, the authors discussed a 3D computational model for the particulation of a stretching shaped charge jet, based on the experimentally observed double-helix surface perturbations on softly recovered jet particles. The 3D problem was derived from the unperturbed 2D problem, which was first used to generate a stretching jet. A portion of this 2D jet was selected for study in the cylindrical 3D mode, and the double-helix perturbations were placed on the cylinder surface. This initial computation was greatly simplified, to make it feasible to run on a CM 200 massively parallel processor. The initial output of this computation, which is being published here for the first time, leads to a significant simplification of the analysis of the particulation process, by avoiding the search for the elusive ``most favored wavelength`` which is characteristic of 2D axi-symmetric analyses. Previously unnoticed characteristics of flash radiographs from Viper jets, appear to support the computational results obtained, despite a counter-intuitive prediction of the location of necking loci, relative to the perturbing helices. The approximations used in this initial computation are discussed critically. Planned improvements are defined. A vision of future fundamental computations, which become possible with more powerful ASCI machines, is projected.

  13. Fluid Lensing, Applications to High-Resolution 3D Subaqueous Imaging & Automated Remote Biosphere Assessment from Airborne and Space-borne Platforms

    NASA Astrophysics Data System (ADS)

    Chirayath, V.

    2014-12-01

    Fluid Lensing is a theoretical model and algorithm I present for fluid-optical interactions in turbulent flows as well as two-fluid surface boundaries that, when coupled with an unique computer vision and image-processing pipeline, may be used to significantly enhance the angular resolution of a remote sensing optical system with applicability to high-resolution 3D imaging of subaqueous regions and through turbulent fluid flows. This novel remote sensing technology has recently been implemented on a quadcopter-based UAS for imaging shallow benthic systems to create the first dataset of a biosphere with unprecedented sub-cm-level imagery in 3D over areas as large as 15 square kilometers. Perturbed two-fluid boundaries with different refractive indices, such as the surface between the ocean and air, may be exploited for use as lensing elements for imaging targets on either side of the interface with enhanced angular resolution. I present theoretical developments behind Fluid Lensing and experimental results from its recent implementation for the Reactive Reefs project to image shallow reef ecosystems at cm scales. Preliminary results from petabyte-scale aerial survey efforts using Fluid Lensing to image at-risk coral reefs in American Samoa (August, 2013) show broad applicability to large-scale automated species identification, morphology studies and reef ecosystem characterization for shallow marine environments and terrestrial biospheres, of crucial importance to understanding climate change's impact on coastal zones, global oxygen production and carbon sequestration.

  14. 3D dynamic computer model of the head-neck complex.

    PubMed

    Sierra, Daniel A; Enderle, John D

    2006-01-01

    A 3D dynamic computer model for the movement of the head is presented that incorporates anatomically correct information about the diverse elements forming the system. The skeleton is considered as a set of interconnected rigid 3D bodies following the Newton-Euler laws of movement. The muscles are modeled using Enderle's linear model. Finally, the soft tissues, namely the ligaments, intervertebral disks, and zigapophysial joints, are modeled using the finite elements approach. The model is intended to study the neural network that controls movement and maintains the balance of the head-neck complex during eye movements.

  15. Influence of C3 level on the determination of C3d in plasma and synovial fluid by radial immunodiffusion.

    PubMed

    Hack, C E; Paardekooper, J; Hannema, A J

    1986-02-12

    The influence of C3 levels on the determination of C3d in plasma and synovial fluid by radial immunodiffusion was investigated. In the method used, C3 is precipitated by 11% polyethylene glycol (PEG), and C3d is measured in the supernatant. In 51 healthy donors, a weak though significant correlation between C3 and C3d levels was found. The mean concentration of C3d was 1.6% of that in aged serum from healthy donors. So, small amounts of C3 (i.e., 1-2% of the normal plasma level) in the 11% PEG supernatants may contribute significantly to the C3d levels measured. A radioimmunoassay that detects C3, C3b, iC3b and C3c was used to measure C3 levels in the PEG supernatants. In PEG supernatants of 4 plasma samples, 0.3-0.6% of the C3 level in normal plasma was found, whereas in those of 2 synovial fluids much higher levels were found (4-10% of the normal plasma level). When purified 125I-labeled antibodies against C3c were added to the gel of the radial immunodiffusion, C3c antigen was detected in the precipitation rings obtained with all PEG supernatants of plasma samples from patients. Therefore, the quantitative contribution of C3 to the precipitation rings in the C3d radial immunodiffusion was analyzed after the addition of an excess of anti-C3c antibodies to the gel. No effect on the size of the C3d-precipitation rings obtained with plasma samples from patients was observed. However, the C3d precipitation rings obtained with synovial fluids were significantly smaller when the gel used in the radial immunodiffusion contained an excess of anti-C3c antibodies together with the anti-C3d serum. We conclude that it is necessary to add an excess of anti-C3c antibodies to the gel used for the radial immunodiffusion, for the determination of C3d levels in synovial fluid. An antiserum against human C3b, which contains both anti-C3c and anti-C3d antibodies, can be used for this purpose.

  16. Computer animation challenges for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Vines, Mauricio; Lee, Won-Sook; Mavriplis, Catherine

    2012-07-01

    Computer animation requirements differ from those of traditional computational fluid dynamics (CFD) investigations in that visual plausibility and rapid frame update rates trump physical accuracy. We present an overview of the main techniques for fluid simulation in computer animation, starting with Eulerian grid approaches, the Lattice Boltzmann method, Fourier transform techniques and Lagrangian particle introduction. Adaptive grid methods, precomputation of results for model reduction, parallelisation and computation on graphical processing units (GPUs) are reviewed in the context of accelerating simulation computations for animation. A survey of current specific approaches for the application of these techniques to the simulation of smoke, fire, water, bubbles, mixing, phase change and solid-fluid coupling is also included. Adding plausibility to results through particle introduction, turbulence detail and concentration on regions of interest by level set techniques has elevated the degree of accuracy and realism of recent animations. Basic approaches are described here. Techniques to control the simulation to produce a desired visual effect are also discussed. Finally, some references to rendering techniques and haptic applications are mentioned to provide the reader with a complete picture of the challenges of simulating fluids in computer animation.

  17. Using the CAVE virtual-reality environment as an aid to 3-D electromagnetic field computation

    SciTech Connect

    Turner, L.R.; Levine, D.; Huang, M.; Papka, M; Kettunen, L.

    1995-08-01

    One of the major problems in three-dimensional (3-D) field computation is visualizing the resulting 3-D field distributions. A virtual-reality environment, such as the CAVE, (CAVE Automatic Virtual Environment) is helping to overcome this problem, thus making the results of computation more usable for designers and users of magnets and other electromagnetic devices. As a demonstration of the capabilities of the CAVE, the elliptical multipole wiggler (EMW), an insertion device being designed for the Advanced Photon Source (APS) now being commissioned at Argonne National Laboratory (ANL), wa made visible, along with its fields and beam orbits. Other uses of the CAVE in preprocessing and postprocessing computation for electromagnetic applications are also discussed.

  18. Synesthetic art through 3-D projection: The requirements of a computer-based supermedium

    NASA Technical Reports Server (NTRS)

    Mallary, Robert

    1989-01-01

    A computer-based form of multimedia art is proposed that uses the computer to fuse aspects of painting, sculpture, dance, music, film, and other media into a one-to-one synthesia of image and sound for spatially synchronous 3-D projection. Called synesthetic art, this conversion of many varied media into an aesthetically unitary experience determines the character and requirements of the system and its software. During the start-up phase, computer stereographic systems are unsuitable for software development. Eventually, a new type of illusory-projective supermedium will be required to achieve the needed combination of large-format projection and convincing real life presence, and to handle the vast amount of 3-D visual and acoustic information required. The influence of the concept on the author's research and creative work is illustrated through two examples.

  19. Organ printing: computer-aided jet-based 3D tissue engineering.

    PubMed

    Mironov, Vladimir; Boland, Thomas; Trusk, Thomas; Forgacs, Gabor; Markwald, Roger R

    2003-04-01

    Tissue engineering technology promises to solve the organ transplantation crisis. However, assembly of vascularized 3D soft organs remains a big challenge. Organ printing, which we define as computer-aided, jet-based 3D tissue-engineering of living human organs, offers a possible solution. Organ printing involves three sequential steps: pre-processing or development of "blueprints" for organs; processing or actual organ printing; and postprocessing or organ conditioning and accelerated organ maturation. A cell printer that can print gels, single cells and cell aggregates has been developed. Layer-by-layer sequentially placed and solidified thin layers of a thermo-reversible gel could serve as "printing paper". Combination of an engineering approach with the developmental biology concept of embryonic tissue fluidity enables the creation of a new rapid prototyping 3D organ printing technology, which will dramatically accelerate and optimize tissue and organ assembly.

  20. Application of the ASP3D Computer Program to Unsteady Aerodynamic and Aeroelastic Analyses

    NASA Technical Reports Server (NTRS)

    Batina, John T.

    2006-01-01

    A new computer program has been developed called ASP3D (Advanced Small Perturbation - 3D), which solves the small perturbation potential flow equation in an advanced form including mass-consistent surface and trailing wake boundary conditions, and entropy, vorticity, and viscous effects. The purpose of the program is for unsteady aerodynamic and aeroelastic analyses, especially in the nonlinear transonic flight regime. The program exploits the simplicity of stationary Cartesian meshes with the movement or deformation of the configuration under consideration incorporated into the solution algorithm through a planar surface boundary condition. The paper presents unsteady aerodynamic and aeroelastic applications of ASP3D to assess the time dependent capability and demonstrate various features of the code.

  1. Computational study of 3-D hot-spot initiation in shocked insensitive high-explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.; Manaa, M. R.; Nichols, A., III; Levesque, G.

    2012-03-01

    High-explosive (HE) material consists of large-sized grains with micron-sized embedded impurities and pores. Under various mechanical/thermal insults, these pores collapse generating hightemperature regions leading to ignition. A hydrodynamic study has been performed to investigate the mechanisms of pore collapse and hot spot initiation in TATB crystals, employing a multiphysics code, ALE3D, coupled to the chemistry module, Cheetah. This computational study includes reactive dynamics. Two-dimensional high-resolution large-scale meso-scale simulations have been performed. The parameter space is systematically studied by considering various shock strengths, pore diameters and multiple pore configurations. Preliminary 3-D simulations are undertaken to quantify the 3-D dynamics.

  2. Fluid Flow Processes Study: from a 3D seismic data set in the Pointer Ridge offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Han, Wei-Chung; Liu, Char-Shine; Chen, Liwen; Chi, Wu-Cheng; Lin, Che-Chuan

    2016-04-01

    This study analyzes a 3D seismic cube in the Pointer Ridge for understanding the fluid flow processes in subsurface. Pointer Ridge is a ridge situated on the passive China continental margin and is suggested as a potential prospect for future gas hydrate development. High methane flux rate, active gas venting and seismic chimneys have been observed in this area, which are direct evidences for active ongoing fluid migration processes. To find the possible fluid conduits and to understand how the fluids have migrated along those conduits, we firstly identify the structural and sedimentary features from this 3D seismic cube in our study area. Secondly, seismic attribute analyses are carried out for detecting fluid conduits and evaluating the contribution of recognized faults/fractures for fluid flow, respectively. Finally, we propose conceptual models to illustrate how fluids have migrated along those conduits to the seafloor and how those conduits have developed. The results show: 1) a major NE-SW striking normal fault (PR Fault) separates a depositional field on the hanging wall and a erosional field on the footwall; 2) the PR Fault zone itself and the chimneys in its footwall act as main conduits for focused fluid flow migrating to the seafloor; 3) the development of the chimneys in the Pointer Ridge area are highly controlled by the erosion and deposition processes. Since the ongoing fluid flow processes will increase the seafloor instabilities and the Pointer Ridge is a gas hydrate leaking site, our results could provide useful information for further risk evaluation.

  3. Analysis of 3-D images of dental imprints using computer vision

    NASA Astrophysics Data System (ADS)

    Aubin, Michele; Cote, Jean; Laurendeau, Denis; Poussart, Denis

    1992-05-01

    This paper addressed two important aspects of dental analysis: (1) location and (2) identification of the types of teeth by means of 3-D image acquisition and segmentation. The 3-D images of both maxillaries are acquired using a wax wafer as support. The interstices between teeth are detected by non-linear filtering of the 3-D and grey-level data. Two operators are presented: one for the detection of the interstices between incisors, canines, and premolars and one for those between molars. Teeth are then identified by mapping the imprint under analysis on the computer model of an 'ideal' imprint. For the mapping to be valid, a set of three reference points is detected on the imprint. Then, the points are put in correspondence with similar points on the model. Two such points are chosen based on a least-squares fit of a second-order polynomial of the 3-D data in the area of canines. This area is of particular interest since the canines show a very characteristic shape and are easily detected on the imprint. The mapping technique is described in detail in the paper as well as pre-processing of the 3-D profiles. Experimental results are presented for different imprints.

  4. Full 3D correlation tensor computed from double field stereoscopic PIV in a high Reynolds number turbulent boundary layer

    NASA Astrophysics Data System (ADS)

    Foucaut, Jean-Marc; Coudert, Sebastien; Stanislas, Michel; Delville, Joel

    2011-04-01

    The turbulence structure near a wall is a very active subject of research and a key to the understanding and modeling of this flow. Many researchers have worked on this subject since the fifties Hama et al. (J Appl Phys 28:388-394, 1957). One way to study this organization consists of computing the spatial two-point correlations. Stanislas et al. (C R Acad Sci Paris 327(2b):55-61, 1999) and Kahler (Exp Fluids 36:114-130, 2004) showed that double spatial correlations can be computed from stereoscopic particle image velocimetry (SPIV) fields and can lead to a better understanding of the turbulent flow organization. The limitation is that the correlation is only computed in the PIV plane. The idea of the present paper is to propose a new method based on a specific stereoscopic PIV experiment that allows the computation of the full 3D spatial correlation tensor. The results obtained are validated by comparison with 2D computation from SPIV. They are in very good agreement with the results of Ganapthisubramani et al. (J Fluid Mech 524:57-80, 2005a).

  5. Finite element computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Baker, A. J.

    1983-01-01

    Finite element analysis as applied to the broad spectrum of computational fluid mechanics is analyzed. The finite element solution methodology is derived, developed, and applied directly to the differential equation systems governing classes of problems in fluid mechanics. The heat conduction equation is used to reveal the essence and elegance of finite element theory, including higher order accuracy and convergence. The algorithm is extended to the pervasive nonlinearity of the Navier-Stokes equations. A specific fluid mechanics problem class is analyzed with an even mix of theory and applications, including turbulence closure and the solution of turbulent flows.

  6. User's guide to the NOZL3D and NOZLIC computer programs

    NASA Technical Reports Server (NTRS)

    Thomas, P. D.

    1980-01-01

    Complete FORTRAN listings and running instructions are given for a set of computer programs that perform an implicit numerical solution to the unsteady Navier-Stokes equations to predict the flow characteristics and performance of nonaxisymmetric nozzles. The set includes the NOZL3D program, which performs the flow computations; the NOZLIC program, which sets up the flow field initial conditions for general nozzle configurations, and also generates the computational grid for simple two dimensional and axisymmetric configurations; and the RGRIDD program, which generates the computational grid for complicated three dimensional configurations. The programs are designed specifically for the NASA-Langley CYBER 175 computer, and employ auxiliary disk files for primary data storage. Input instructions and computed results are given for four test cases that include two dimensional, three dimensional, and axisymmetric configurations.

  7. Buoyancy effects on the 3D MHD stagnation-point flow of a Newtonian fluid

    NASA Astrophysics Data System (ADS)

    Borrelli, A.; Giantesio, G.; Patria, M. C.; Roşca, N. C.; Roşca, A. V.; Pop, I.

    2017-02-01

    This work examines the steady three-dimensional stagnation-point flow of an electrically conducting Newtonian fluid in the presence of a uniform external magnetic field H0 under the Oberbeck-Boussinesq approximation. We neglect the induced magnetic field and examine the three possible directions of H0 which coincide with the directions of the axes. In all cases it is shown that the governing nonlinear partial differential equations admit similarity solutions. We find that the flow has to satisfy an ordinary differential problem whose solution depends on the Hartmann number M, the buoyancy parameter λ and the Prandtl number Pr. The skin-friction components along the axes are computed and the stagnation-point is classified. The numerical integration shows the existence of dual solutions and the occurrence of the reverse flow for some values of the parameters.

  8. Computational fluid mechanics

    NASA Technical Reports Server (NTRS)

    Hassan, H. A.

    1993-01-01

    Two papers are included in this progress report. In the first, the compressible Navier-Stokes equations have been used to compute leading edge receptivity of boundary layers over parabolic cylinders. Natural receptivity at the leading edge was simulated and Tollmien-Schlichting waves were observed to develop in response to an acoustic disturbance, applied through the farfield boundary conditions. To facilitate comparison with previous work, all computations were carried out at a free stream Mach number of 0.3. The spatial and temporal behavior of the flowfields are calculated through the use of finite volume algorithms and Runge-Kutta integration. The results are dominated by strong decay of the Tollmien-Schlichting wave due to the presence of the mean flow favorable pressure gradient. The effects of numerical dissipation, forcing frequency, and nose radius are studied. The Strouhal number is shown to have the greatest effect on the unsteady results. In the second paper, a transition model for low-speed flows, previously developed by Young et al., which incorporates first-mode (Tollmien-Schlichting) disturbance information from linear stability theory has been extended to high-speed flow by incorporating the effects of second mode disturbances. The transition model is incorporated into a Reynolds-averaged Navier-Stokes solver with a one-equation turbulence model. Results using a variable turbulent Prandtl number approach demonstrate that the current model accurately reproduces available experimental data for first and second-mode dominated transitional flows. The performance of the present model shows significant improvement over previous transition modeling attempts.

  9. Gust Acoustics Computation with a Space-Time CE/SE Parallel 3D Solver

    NASA Technical Reports Server (NTRS)

    Wang, X. Y.; Himansu, A.; Chang, S. C.; Jorgenson, P. C. E.; Reddy, D. R. (Technical Monitor)

    2002-01-01

    The benchmark Problem 2 in Category 3 of the Third Computational Aero-Acoustics (CAA) Workshop is solved using the space-time conservation element and solution element (CE/SE) method. This problem concerns the unsteady response of an isolated finite-span swept flat-plate airfoil bounded by two parallel walls to an incident gust. The acoustic field generated by the interaction of the gust with the flat-plate airfoil is computed by solving the 3D (three-dimensional) Euler equations in the time domain using a parallel version of a 3D CE/SE solver. The effect of the gust orientation on the far-field directivity is studied. Numerical solutions are presented and compared with analytical solutions, showing a reasonable agreement.

  10. The computer simulation of 3d gas dynamics in a gas centrifuge

    NASA Astrophysics Data System (ADS)

    Borman, V. D.; Bogovalov, S. V.; Borisevich, V. D.; Tronin, I. V.; Tronin, V. N.

    2016-09-01

    We argue on the basis of the results of 2D analysis of the gas flow in gas centrifuges that a reliable calculation of the circulation of the gas and gas content in the gas centrifuge is possible only in frameworks of 3D numerical simulation of gas dynamics in the gas centrifuge (hereafter GC). The group from National research nuclear university, MEPhI, has created a computer code for 3D simulation of the gas flow in GC. The results of the computer simulations of the gas flows in GC are presented. A model Iguassu centrifuge is explored for the simulations. A nonaxisymmetric gas flow is produced due to interaction of the hypersonic rotating flow with the scoops for extraction of the product and waste flows from the GC. The scoops produce shock waves penetrating into a working camera of the GC and form spiral waves there.

  11. Integration of 3D anatomical data obtained by CT imaging and 3D optical scanning for computer aided implant surgery

    PubMed Central

    2011-01-01

    Background A precise placement of dental implants is a crucial step to optimize both prosthetic aspects and functional constraints. In this context, the use of virtual guiding systems has been recognized as a fundamental tool to control the ideal implant position. In particular, complex periodontal surgeries can be performed using preoperative planning based on CT data. The critical point of the procedure relies on the lack of accuracy in transferring CT planning information to surgical field through custom-made stereo-lithographic surgical guides. Methods In this work, a novel methodology is proposed for monitoring loss of accuracy in transferring CT dental information into periodontal surgical field. The methodology is based on integrating 3D data of anatomical (impression and cast) and preoperative (radiographic template) models, obtained by both CT and optical scanning processes. Results A clinical case, relative to a fully edentulous jaw patient, has been used as test case to assess the accuracy of the various steps concurring in manufacturing surgical guides. In particular, a surgical guide has been designed to place implants in the bone structure of the patient. The analysis of the results has allowed the clinician to monitor all the errors, which have been occurring step by step manufacturing the physical templates. Conclusions The use of an optical scanner, which has a higher resolution and accuracy than CT scanning, has demonstrated to be a valid support to control the precision of the various physical models adopted and to point out possible error sources. A case study regarding a fully edentulous patient has confirmed the feasibility of the proposed methodology. PMID:21338504

  12. Effectiveness Evaluation of Force Protection Training Using Computer-Based Instruction and X3d Simulation

    DTIC Science & Technology

    2007-09-01

    to growing operational constraints accelerated by the Global War on Terror, the United States Navy is looking for alternative methods of training to...accomplished efficiently and effectively, saving the U.S. Navy time and resources while maintaining a high state of readiness. The goal of this thesis is...COMPUTER-BASED INSTRUCTION AND X3D SIMULATION Wilfredo Cruzbaez Lieutenant, United States Navy B.A., Norfolk State University, 2001 Submitted in

  13. Computed Tomography and its Application for the 3D Characterization of Coarse Grained Meteorites

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. P.; Carpenter, P. K.

    2004-01-01

    With judicious selection of parameters, computed tomography can provide high precision density data. Such data can lead to a non-destructive determination of the phases and phase distribution within large solid objects. Of particular interest is the structure of the Mundrabilla meteorite, which has 25 volumes, percent of a sulfide within a metallic meteorite. 3D digital imaging has enabled a quantitative evaluation of the distribution and contiguity of the phases to be determined.

  14. Investigations into the feasibility of optical-CT 3D dosimetry with minimal use of refractively matched fluids

    PubMed Central

    Chisholm, Kelsey; Miles, Devin; Rankine, Leith; Oldham, Mark

    2015-01-01

    Purpose: In optical-CT, the use of a refractively matched polyurethane solid-tank in place of a fluid bath has the potential to greatly increase practical convenience, reduce cost, and possibly improve the efficacy of flood corrections. This work investigates the feasibility of solid-tank optical-CT imaging for 3D dosimetry through computer simulation. Methods: A matlab ray-tracing simulation platform, ScanSim, was used to model a parallel-source telecentric optical-CT imaging system through a polyurethane solid-tank containing a central cylindrical hollow into which PRESAGE radiochromic dosimeters can be placed. A small amount of fluid fills the 1–5 mm gap between the dosimeter and the walls of the tank. The use of the solid-tank reduces the required amount of fluid by approximately 97%. To characterize the efficacy of solid-tank, optical-CT scanning simulations investigated sensitivity to refractive index (RI) mismatches between dosimeter, solid-tank, and fluid, for a variety of dosimeter (RI = 1.5–1.47) and fluid (RI = 1.55–1.0) combinations. Efficacy was evaluated through the usable radius (ru) metric, defined as the fraction of the radius of the dosimeter where measured dose is predicted to be within 2% of the ground truth entered into the simulation. Additional simulations examined the effect of increasing gap size (1–5 mm) between the dosimeter and solid-tank well. The effects of changing the lens tolerance (0.5°–5.0°) were also investigated. Results: As the RI mismatch between the dosimeter and solid-tank increased from 0 to 0.02, the usable radius decreased from 97.6% to 50.2%. The optimal fluid RI decreased nonlinearly from 1.5 to 1.34 as the mismatch increased and was up to 9% lower than the tank. Media mismatches between the dosimeter and solid-tank also exacerbate the effects of changing the gap size, with no easily quantifiable relationship with usable radius. Generally, the optimal fluid RI value increases as gap size increases and is

  15. Computer assisted 3D pre-operative planning tool for femur fracture orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Gamage, Pavan; Xie, Sheng Quan; Delmas, Patrice; Xu, Wei Liang

    2010-02-01

    Femur shaft fractures are caused by high impact injuries and can affect gait functionality if not treated correctly. Until recently, the pre-operative planning for femur fractures has relied on two-dimensional (2D) radiographs, light boxes, tracing paper, and transparent bone templates. The recent availability of digital radiographic equipment has to some extent improved the workflow for preoperative planning. Nevertheless, imaging is still in 2D X-rays and planning/simulation tools to support fragment manipulation and implant selection are still not available. Direct three-dimensional (3D) imaging modalities such as Computed Tomography (CT) are also still restricted to a minority of complex orthopedic procedures. This paper proposes a software tool which allows orthopedic surgeons to visualize, diagnose, plan and simulate femur shaft fracture reduction procedures in 3D. The tool utilizes frontal and lateral 2D radiographs to model the fracture surface, separate a generic bone into the two fractured fragments, identify the pose of each fragment, and automatically customize the shape of the bone. The use of 3D imaging allows full spatial inspection of the fracture providing different views through the manipulation of the interactively reconstructed 3D model, and ultimately better pre-operative planning.

  16. Computer-aided planning and reconstruction of cranial 3D implants.

    PubMed

    Gall, Markus; Xing Li; Xiaojun Chen; Schmalstieg, Dieter; Egger, Jan

    2016-08-01

    In this contribution, a prototype for semiautomatic computer-aided planning and reconstruction of cranial 3D Implants is presented. The software prototype guides the user through the workflow, beginning with loading and mirroring the patient's head to obtain an initial curvature of the cranial implant. However, naïve mirroring is not sufficient for an implant, because human heads are in general too asymmetric. Thus, the user can perform Laplacian smoothing, followed by Delaunay triangulation, for generating an aesthetic looking and well-fitting implant. Finally, our software prototype allows to save the designed 3D model of the implant as a STL-file for 3D printing. The 3D printed implant can be used for further pre-interventional planning or even as the final implant for the patient. In summary, our findings show that a customized MeVisLab prototype can be an alternative to complex commercial planning software, which may not be available in a clinic.

  17. 3D animation of facial plastic surgery based on computer graphics

    NASA Astrophysics Data System (ADS)

    Zhang, Zonghua; Zhao, Yan

    2013-12-01

    More and more people, especial women, are getting desired to be more beautiful than ever. To some extent, it becomes true because the plastic surgery of face was capable in the early 20th and even earlier as doctors just dealing with war injures of face. However, the effect of post-operation is not always satisfying since no animation could be seen by the patients beforehand. In this paper, by combining plastic surgery of face and computer graphics, a novel method of simulated appearance of post-operation will be given to demonstrate the modified face from different viewpoints. The 3D human face data are obtained by using 3D fringe pattern imaging systems and CT imaging systems and then converted into STL (STereo Lithography) file format. STL file is made up of small 3D triangular primitives. The triangular mesh can be reconstructed by using hash function. Top triangular meshes in depth out of numbers of triangles must be picked up by ray-casting technique. Mesh deformation is based on the front triangular mesh in the process of simulation, which deforms interest area instead of control points. Experiments on face model show that the proposed 3D animation facial plastic surgery can effectively demonstrate the simulated appearance of post-operation.

  18. THERM3D -- A boundary element computer program for transient heat conduction problems

    SciTech Connect

    Ingber, M.S.

    1994-02-01

    The computer code THERM3D implements the direct boundary element method (BEM) to solve transient heat conduction problems in arbitrary three-dimensional domains. This particular implementation of the BEM avoids performing time-consuming domain integrations by approximating a ``generalized forcing function`` in the interior of the domain with the use of radial basis functions. An approximate particular solution is then constructed, and the original problem is transformed into a sequence of Laplace problems. The code is capable of handling a large variety of boundary conditions including isothermal, specified flux, convection, radiation, and combined convection and radiation conditions. The computer code is benchmarked by comparisons with analytic and finite element results.

  19. Computation of an Underexpanded 3-D Rectangular Jet by the CE/SE Method

    NASA Technical Reports Server (NTRS)

    Loh, Ching Y.; Himansu, Ananda; Wang, Xiao Y.; Jorgenson, Philip C. E.

    2000-01-01

    Recently, an unstructured three-dimensional space-time conservation element and solution element (CE/SE) Euler solver was developed. Now it is also developed for parallel computation using METIS for domain decomposition and MPI (message passing interface). The method is employed here to numerically study the near-field of a typical 3-D rectangular under-expanded jet. For the computed case-a jet with Mach number Mj = 1.6. with a very modest grid of 1.7 million tetrahedrons, the flow features such as the shock-cell structures and the axis switching, are in good qualitative agreement with experimental results.

  20. Full 3-D OCT-based pseudophakic custom computer eye model

    PubMed Central

    Sun, M.; Pérez-Merino, P.; Martinez-Enriquez, E.; Velasco-Ocana, M.; Marcos, S.

    2016-01-01

    We compared measured wave aberrations in pseudophakic eyes implanted with aspheric intraocular lenses (IOLs) with simulated aberrations from numerical ray tracing on customized computer eye models, built using quantitative 3-D OCT-based patient-specific ocular geometry. Experimental and simulated aberrations show high correlation (R = 0.93; p<0.0001) and similarity (RMS for high order aberrations discrepancies within 23.58%). This study shows that full OCT-based pseudophakic custom computer eye models allow understanding the relative contribution of optical geometrical and surgically-related factors to image quality, and are an excellent tool for characterizing and improving cataract surgery. PMID:27231608

  1. Distributed network, wireless and cloud computing enabled 3-D ultrasound; a new medical technology paradigm.

    PubMed

    Meir, Arie; Rubinsky, Boris

    2009-11-19

    Medical technologies are indispensable to modern medicine. However, they have become exceedingly expensive and complex and are not available to the economically disadvantaged majority of the world population in underdeveloped as well as developed parts of the world. For example, according to the World Health Organization about two thirds of the world population does not have access to medical imaging. In this paper we introduce a new medical technology paradigm centered on wireless technology and cloud computing that was designed to overcome the problems of increasing health technology costs. We demonstrate the value of the concept with an example; the design of a wireless, distributed network and central (cloud) computing enabled three-dimensional (3-D) ultrasound system. Specifically, we demonstrate the feasibility of producing a 3-D high end ultrasound scan at a central computing facility using the raw data acquired at the remote patient site with an inexpensive low end ultrasound transducer designed for 2-D, through a mobile device and wireless connection link between them. Producing high-end 3D ultrasound images with simple low-end transducers reduces the cost of imaging by orders of magnitude. It also removes the requirement of having a highly trained imaging expert at the patient site, since the need for hand-eye coordination and the ability to reconstruct a 3-D mental image from 2-D scans, which is a necessity for high quality ultrasound imaging, is eliminated. This could enable relatively untrained medical workers in developing nations to administer imaging and a more accurate diagnosis, effectively saving the lives of people.

  2. Automatic procedure for realistic 3D finite element modelling of human brain for bioelectromagnetic computations

    NASA Astrophysics Data System (ADS)

    Aristovich, K. Y.; Khan, S. H.

    2010-07-01

    Realistic computer modelling of biological objects requires building of very accurate and realistic computer models based on geometric and material data, type, and accuracy of numerical analyses. This paper presents some of the automatic tools and algorithms that were used to build accurate and realistic 3D finite element (FE) model of whole-brain. These models were used to solve the forward problem in magnetic field tomography (MFT) based on Magnetoencephalography (MEG). The forward problem involves modelling and computation of magnetic fields produced by human brain during cognitive processing. The geometric parameters of the model were obtained from accurate Magnetic Resonance Imaging (MRI) data and the material properties - from those obtained from Diffusion Tensor MRI (DTMRI). The 3D FE models of the brain built using this approach has been shown to be very accurate in terms of both geometric and material properties. The model is stored on the computer in Computer-Aided Parametrical Design (CAD) format. This allows the model to be used in a wide a range of methods of analysis, such as finite element method (FEM), Boundary Element Method (BEM), Monte-Carlo Simulations, etc. The generic model building approach presented here could be used for accurate and realistic modelling of human brain and many other biological objects.

  3. A hybrid method for the computation of quasi-3D seismograms.

    NASA Astrophysics Data System (ADS)

    Masson, Yder; Romanowicz, Barbara

    2013-04-01

    The development of powerful computer clusters and efficient numerical computation methods, such as the Spectral Element Method (SEM) made possible the computation of seismic wave propagation in a heterogeneous 3D earth. However, the cost of theses computations is still problematic for global scale tomography that requires hundreds of such simulations. Part of the ongoing research effort is dedicated to the development of faster modeling methods based on the spectral element method. Capdeville et al. (2002) proposed to couple SEM simulations with normal modes calculation (C-SEM). Nissen-Meyer et al. (2007) used 2D SEM simulations to compute 3D seismograms in a 1D earth model. Thanks to these developments, and for the first time, Lekic et al. (2011) developed a 3D global model of the upper mantle using SEM simulations. At the local and continental scale, adjoint tomography that is using a lot of SEM simulation can be implemented on current computers (Tape, Liu et al. 2009). Due to their smaller size, these models offer higher resolution. They provide us with images of the crust and the upper part of the mantle. In an attempt to teleport such local adjoint tomographic inversions into the deep earth, we are developing a hybrid method where SEM computation are limited to a region of interest within the earth. That region can have an arbitrary shape and size. Outside this region, the seismic wavefield is extrapolated to obtain synthetic data at the Earth's surface. A key feature of the method is the use of a time reversal mirror to inject the wavefield induced by distant seismic source into the region of interest (Robertsson and Chapman 2000). We compute synthetic seismograms as follow: Inside the region of interest, we are using regional spectral element software RegSEM to compute wave propagation in 3D. Outside this region, the wavefield is extrapolated to the surface by convolution with the Green's functions from the mirror to the seismic stations. For now, these

  4. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  5. 3D histomorphometric quantification of trabecular bones by computed microtomography using synchrotron radiation.

    PubMed

    Nogueira, L P; Braz, D; Barroso, R C; Oliveira, L F; Pinheiro, C J G; Dreossi, D; Tromba, G

    2010-12-01

    Conventional bone histomorphometry is an important method for quantitative evaluation of bone microstructure. X-ray computed microtomography is a non-invasive technique, which can be used to evaluate histomorphometric indices in trabecular bones (BV/TV, BS/BV, Tb.N, Tb.Th, Tb.Sp). In this technique, 3D images are used to quantify the whole sample, differently from the conventional one, in which the quantification is performed in 2D slices and extrapolated for 3D case. In this work, histomorphometric quantification using synchrotron 3D X-ray computed microtomography was performed to quantify the bone structure at different skeletal sites as well as to investigate the effects of bone diseases on quantitative understanding of bone architecture. The images were obtained at Synchrotron Radiation for MEdical Physics (SYRMEP) beamline, at ELETTRA synchrotron radiation facility, Italy. Concerning the obtained results for normal and pathological bones from same skeletal sites and individuals, from our results, a certain declining bone volume fraction was achieved. The results obtained could be used in forming the basis for comparison of the bone microarchitecture and can be a valuable tool for predicting bone fragility.

  6. Design and highly accurate 3D displacement characterization of monolithic SMA microgripper using computer vision

    NASA Astrophysics Data System (ADS)

    Bellouard, Yves; Sulzmann, Armin; Jacot, Jacques; Clavel, Reymond

    1998-01-01

    In the robotics field, several grippers have been developed using SMA technologies, but, so far, SMA is only used as the actuating part of the mechanical device. However mechanical device requires assembly and in some cases this means friction. In the case of micro-grippers, this becomes a major problem due to the small size of the components. In this paper, a new monolithic concept of micro-gripper is presented. This concept is applied to the grasping of sub- millimeter optical elements such as Selfoc lenses and the fastening of optical fibers. Measurements are performed using a newly developed high precision 3D-computer vision tracking system to characterize the spatial positions of the micro-gripper in action. To characterize relative motion of the micro-gripper the natural texture of the micro-gripper is used to compute 3D displacement. The microscope image CCD receivers high frequency changes in light intensity from the surface of the ripper. Using high resolution camera calibration, passive auto focus algorithms and 2D object recognition, the position of the micro-gripper can be characterized in the 3D workspace and can be guided in future micro assembly tasks.

  7. Computed tomography measurement of 3D combustion chemiluminescence using single camera

    NASA Astrophysics Data System (ADS)

    Wang, Kuanliang; Li, Fei; Zeng, Hui; Zhang, Shaohua; Yu, Xilong

    2016-10-01

    Instantaneous measurement of flame spatial structure has been long desired for complicated combustion condition (gas turbine, ramjet et.). Three dimensional computed tomography of chemiluminescence (3D-CTC) is a potential testing technology for its simplicity, low cost, high temporal and spatial resolution. In most former studies, multi-lens and multi-CCD are used to capture projects from different view angles. In order to improve adaptability, only one CCD was utilized to build 3D-CTC system combined with customized fiber-based endoscopes (FBEs). It makes this technique more economic and simple. Validate experiments were made using 10 small CH4 diffusion flame arranging in a ring structure. Based on one instantaneous image, computed tomography can be conducted using Algebraic Reconstruction Technique (ART) algorithm. The reconstructed results, including the flame number, ring shape of the flames, the inner and outer diameter of ring, all well match the physical structure. It indicates that 3D combustion chemiluminescence could be well reconstructed using single camera.

  8. Computer-assisted three-dimensional surgical planning: 3D virtual articulator: technical note.

    PubMed

    Ghanai, S; Marmulla, R; Wiechnik, J; Mühling, J; Kotrikova, B

    2010-01-01

    This study presents a computer-assisted planning system for dysgnathia treatment. It describes the process of information gathering using a virtual articulator and how the splints are constructed for orthognathic surgery. The deviation of the virtually planned splints is shown in six cases on the basis of conventionally planned cases. In all cases the plaster models were prepared and scanned using a 3D laser scanner. Successive lateral and posterior-anterior cephalometric images were used for reconstruction before surgery. By identifying specific points on the X-rays and marking them on the virtual models, it was possible to enhance the 2D images to create a realistic 3D environment and to perform virtual repositioning of the jaw. A hexapod was used to transfer the virtual planning to the real splints. Preliminary results showed that conventional repositioning could be replicated using the virtual articulator.

  9. 3D image reconstruction on x-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Louk, Andreas C.

    2015-03-01

    A model for 3D image reconstruction of x-ray micro-computed tomography scanner (micro-CTScan) has been developed. A small object has been put under inspection on an x-ray micro-CTScan. The object cross-section was assumed on the x-y plane, while its height was along the z-axis. Using a radiography plane detector, a set of digital radiographs represents multiple angle of views from 0º to 360º with an interval of 1º was obtained. Then, a set of crosssectional tomography, slice by slice was reconstructed. At the end, all image slices were stacked together sequentially to obtain a 3D image model of the object being inspected. From this development, lessons on the way to have better understanding on the internal structure of the object can be approached based on the cross-sectional image slice by slice and surface skin.

  10. Effect of Random Geometric Uncertainty on the Computational Design of a 3-D Flexible Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, C. R.; Newman, P. A.; Hou, G. J.-W.

    2002-01-01

    The effect of geometric uncertainty due to statistically independent, random, normally distributed shape parameters is demonstrated in the computational design of a 3-D flexible wing. A first-order second-moment statistical approximation method is used to propagate the assumed input uncertainty through coupled Euler CFD aerodynamic / finite element structural codes for both analysis and sensitivity analysis. First-order sensitivity derivatives obtained by automatic differentiation are used in the input uncertainty propagation. These propagated uncertainties are then used to perform a robust design of a simple 3-D flexible wing at supercritical flow conditions. The effect of the random input uncertainties is shown by comparison with conventional deterministic design results. Sample results are shown for wing planform, airfoil section, and structural sizing variables.

  11. Calcaneal osteotomy preoperative planning system with 3D full-sized computer-assisted technology.

    PubMed

    Chou, Yi-Jiun; Sun, Shuh-Ping; Liu, Hsin-Hua

    2011-10-01

    In this study, we developed a CT-based computer-assisted pre-operative planning and simulating system for the calcaneal osteotomy by integrating different software's function. This system uses the full-scaled 3D reverse engineering technique in designing and developing preoperative planning modules for the calcaneal osteotomy surgery. The planning system presents a real-sized three-dimensional image of the calcaneus, and provides detailed interior measurements of the calcaneus from various cutting planes. This study applied computer-assisted technology to integrate different software's function to a surgical planning system. These functions include 3-D image model capturing, cutting, moving, rotating and measurement for relevant foot anatomy, and can be integrated as the user's function. Furthermore, the system is computer-based and computer-assisted technology. Surgeons can utilize it as part of preoperative planning to develop efficient operative procedures. This system also has a database that can be updated and extended and will provide the clinical cases to different users for experienced based learning.

  12. A novel iterative computation algorithm for Kinoform of 3D object

    NASA Astrophysics Data System (ADS)

    Jiang, Xiao-yu; Chuang, Pei; Wang, Xi; Zong, Yantao

    2012-11-01

    A novel method for computing kinoform of 3D object based on traditional iterate Fourier transform algorithm(IFTA) is proposed in this paper. Kinoform is a special kind of computer-generated holograms (CGH) which has very high diffraction efficiency since it only modulates the phase of illuminated light and doesn't have cross-interference from conjugate image. The traditional IFTA arithmetic assumes that reconstruction image is in infinity area(Fraunhofer diffraction region), and ignores the deepness of 3D object ,so it can only calculate two-dimensional kinoform. The proposed algorithm in this paper divides three-dimensional object into several object planes in deepness and treat every object plane as a target image then iterate computation is carried out between one input plane(kinoform) and multi-output planes(reconstruction images) .A space phase factor is added into iterate process to represent depth characters of 3D object, then reconstruction images is in Fresnel diffraction region. Optics reconstructed experiment of kinoform computed by this method is realized based on Liquid Crystals on Silicon (LCoS) Spatial Light Modulator(SLM). Mean Square Error(MSE) and Structure Similarity(SSIM) between original and reconstruction image is used to evaluate this method. The experimental result shows that this algorithm speed is fast and the result kinoform can reconstruct the object in different plane with high precision under the illumination of plane wave. The reconstruction images provide space sense of three-dimensional visual effect. At last, the influence of space and shelter between different object planes to reconstruction image is also discussed in the experiment.

  13. Viscous Incompressible Flow Computations for 3-D Steady and Unsteady Flows

    NASA Technical Reports Server (NTRS)

    Kwak, Dochan

    2001-01-01

    This viewgraph presentation gives an overview of viscous incompressible flow computations for three-dimensional steady and unsteady flows. Details are given on the use of computational fluid dynamics (CFD) as an engineering tool, solution methods for incompressible Navier-Stokes equations, numerical and physical characteristics of the primitive variable approach, and the role of CFD in the past and in current engineering and research applications.

  14. Computational fluid dynamics in coronary artery disease.

    PubMed

    Sun, Zhonghua; Xu, Lei

    2014-12-01

    Computational fluid dynamics (CFD) is a widely used method in mechanical engineering to solve complex problems by analysing fluid flow, heat transfer, and associated phenomena by using computer simulations. In recent years, CFD has been increasingly used in biomedical research of coronary artery disease because of its high performance hardware and software. CFD techniques have been applied to study cardiovascular haemodynamics through simulation tools to predict the behaviour of circulatory blood flow in the human body. CFD simulation based on 3D luminal reconstructions can be used to analyse the local flow fields and flow profiling due to changes of coronary artery geometry, thus, identifying risk factors for development and progression of coronary artery disease. This review aims to provide an overview of the CFD applications in coronary artery disease, including biomechanics of atherosclerotic plaques, plaque progression and rupture; regional haemodynamics relative to plaque location and composition. A critical appraisal is given to a more recently developed application, fractional flow reserve based on CFD computation with regard to its diagnostic accuracy in the detection of haemodynamically significant coronary artery disease.

  15. Analysis of the formation and evolution of vortex rings in non Newtonian fluids using 3D PTV

    NASA Astrophysics Data System (ADS)

    Bajpayee, Abhishek; Techet, Alexandra

    2013-11-01

    Formation and evolution of vortex rings have been studied for a long time but mostly only in Newtonian fluids. However, many fluids in nature and in the industry such as blood, crude oil, etc., exhibit non Newtonian characteristics. Palacios-Morales and Zenit recently studied the formation of vortex rings in shear thinning liquids for the first time using 2D PIV and compared experimental findings with theoretical predictions. The authors recently demonstrated the applicability of Light Field (LF) imaging to conduct 3D Particle Tracking Velocimetry (PTV) to study densely seeded flow fields and their evolution over time using synthetic data. LF based 3D PTV is now used to quantitatively study vortex rings created in Glycerin based on multiple parameters and the results are compared with previous findings. ONR (Grant #N00014-12-1-0787, Dr. Steven Russell), Naval Engineering Education Center.

  16. Crustal metamorphic fluid flux beneath the Dead Sea Basin: constraints from 2-D and 3-D magnetotelluric modelling

    NASA Astrophysics Data System (ADS)

    Meqbel, Naser; Weckmann, Ute; Muñoz, Gerard; Ritter, Oliver

    2016-12-01

    We report on a study to explore the deep electrical conductivity structure of the Dead Sea Basin (DSB) using magnetotelluric (MT) data collected along a transect across the DSB where the left lateral strike-slip Dead Sea transform (DST) fault splits into two fault strands forming one of the largest pull-apart basins of the world. A very pronounced feature of our 2-D inversion model is a deep, subvertical conductive zone beneath the DSB. The conductor extends through the entire crust and is sandwiched between highly resistive structures associated with Precambrian rocks of the basin flanks. The high electrical conductivity could be attributed to fluids released by dehydration of the uppermost mantle beneath the DSB, possibly in combination with fluids released by mid- to low-grade metamorphism in the lower crust and generation of hydrous minerals in the middle crust through retrograde metamorphism. Similar high conductivity zones associated with fluids have been reported from other large fault systems. The presence of fluids and hydrous minerals in the middle and lower crust could explain the required low friction coefficient of the DST along the eastern boundary of the DSB and the high subsidence rate of basin sediments. 3-D inversion models confirm the existence of a subvertical high conductivity structure underneath the DSB but its expression is far less pronounced. Instead, the 3-D inversion model suggests a deepening of the conductive DSB sediments off-profile towards the south, reaching a maximum depth of approximately 12 km, which is consistent with other geophysical observations. At shallower levels, the 3-D inversion model reveals salt diapirism as an upwelling of highly resistive structures, localized underneath the Al-Lisan Peninsula. The 3-D model furthermore contains an E-W elongated conductive structure to the northeast of the DSB. More MT data with better spatial coverage are required, however, to fully constrain the robustness of the above

  17. First direct 3D visualisation of microstructural evolutions during sintering through X-ray computed microtomography

    SciTech Connect

    Bernard, Dominique . E-mail: bernard@icmcb.u-bordeaux.fr; Gendron, Damien; Heintz, Jean-Marc; Bordere, Sylvie; Etourneau, Jean

    2005-01-03

    X-ray computed microtomography (XCMT) has been applied to ceramic samples of different materials to visualise, for the first time at this scale, real 3D microstructural evolutions during sintering. Using this technique, it has been possible to follow the whole sintering process of the same grains set. Two materials have been studied; a glass powder heat treated at 700 deg. C and a crystallised lithium borate (Li{sub 6}Gd(BO{sub 3}){sub 3}) powder heat treated at 720 deg. C. XCMT measurements have been done after different sintering times. For each material, a sub-volume was individualised and localised on the successive recordings and its 3D images numerically reconstructed. Description of the three-dimensional microstructures evolution is proposed. From the 3D experimental data, quantitative evolutions of parameters such as porosity and neck size are presented for the glass sample. Possibilities offered by this technique to study complex sintering processes, as for lithium borate, are illustrated.

  18. 3D cephalometric analysis obtained from computed tomography. Review of the literature

    PubMed Central

    Rossini, Giulia; Cavallini, Costanza; Cassetta, Michele; Barbato, Ersilia

    2012-01-01

    Summary Introduction The aim of this systematic review is to estimate accuracy and reproducibility of craniometric measurements and reliability of landmarks identified with computed tomography (CT) techniques in 3D cephalometric analysis. Methods Computerized and manual searches were conducted up to 2011 for studies that addressed these objectives. The selection criteria were: (1) the use of human specimen; (2) the comparison between 2D and 3D cephalometric analysis; (3) the assessment of accuracy, reproducibility of measurements and reliability of landmark identification with CT images compared with two-dimensional conventional radiographs. The Cochrane Handbook for Systematic Reviews of Interventions was used as the guideline for this article. Results Twenty-seven articles met the inclusion criteria. Most of them demonstrated high measurements accuracy and reproducibility, and landmarks reliability, but their cephalometric analysis methodology varied widely. Conclusion These differencies among the studies in making measurements don’t permit a direct comparison between them. The future developments in the knowledge of these techniques should provide a standardized method to conduct the 3D CT cephalometric analysis. PMID:22545187

  19. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  20. Pore detection in Computed Tomography (CT) soil 3D images using singularity map analysis

    NASA Astrophysics Data System (ADS)

    Sotoca, Juan J. Martin; Tarquis, Ana M.; Saa Requejo, Antonio; Grau, Juan B.

    2016-04-01

    X-ray Computed Tomography (CT) images have significantly helped the study of the internal soil structure. This technique has two main advantages: 1) it is a non-invasive technique, i.e., it doesńt modify the internal soil structure, and 2) it provides a good resolution. The major disadvantage is that these images are sometimes low-contrast in the solid/pore interface. One of the main problems in analyzing soil structure through CT images is to segment them in solid/pore space. To do so, we have different segmentation techniques at our disposal that are mainly based on thresholding methods in which global or local thresholds are calculated to separate pore space from solid space. The aim of this presentation is to develop the fractal approach to soil structure using "singularity maps" and the "Concentration-Area (CA) method". We will establish an analogy between mineralization processes in ore deposits and morphogenesis processes in soils. Resulting from this analogy a new 3D segmentation method is proposed, the "3D Singularity-CA" method. A comparison with traditional 3D segmentation methods will be performed to show the main differences among them.

  1. Computational-optical microscopy for 3D biological imaging beyond the diffraction limit

    NASA Astrophysics Data System (ADS)

    Grover, Ginni

    In recent years, super-resolution imaging has become an important fluorescent microscopy tool. It has enabled imaging of structures smaller than the optical diffraction limit with resolution less than 50 nm. Extension to high-resolution volume imaging has been achieved by integration with various optical techniques. In this thesis, development of a fluorescent microscope to enable high resolution, extended depth, three dimensional (3D) imaging is discussed; which is achieved by integration of computational methods with optical systems. In the first part of the thesis, point spread function (PSF) engineering for volume imaging is discussed. A class of PSFs, referred to as double-helix (DH) PSFs, is generated. The PSFs exhibit two focused spots in the image plane which rotate about the optical axis, encoding depth in rotation of the image. These PSFs extend the depth-of-field up to a factor of ˜5. Precision performance of the DH-PSFs, based on an information theoretical analysis, is compared with other 3D methods with conclusion that the DH-PSFs provide the best precision and the longest depth-of-field. Out of various possible DH-PSFs, a suitable PSF is obtained for super-resolution microscopy. The DH-PSFs are implemented in imaging systems, such as a microscope, with a special phase modulation at the pupil plane. Surface-relief elements which are polarization-insensitive and ˜90% light efficient are developed for phase modulation. The photon-efficient DH-PSF microscopes thus developed are used, along with optimal position estimation algorithms, for tracking and super-resolution imaging in 3D. Imaging at depths-of-field of up to 2.5 microm is achieved without focus scanning. Microtubules were imaged with 3D resolution of (6, 9, 39) nm, which is in close agreement with the theoretical limit. A quantitative study of co-localization of two proteins in volume was conducted in live bacteria. In the last part of the thesis practical aspects of the DH-PSF microscope are

  2. Predictions of bubbly flows in vertical pipes using two-fluid models in CFDS-FLOW3D code

    SciTech Connect

    Banas, A.O.; Carver, M.B.; Unrau, D.

    1995-09-01

    This paper reports the results of a preliminary study exploring the performance of two sets of two-fluid closure relationships applied to the simulation of turbulent air-water bubbly upflows through vertical pipes. Predictions obtained with the default CFDS-FLOW3D model for dispersed flows were compared with the predictions of a new model (based on the work of Lee), and with the experimental data of Liu. The new model, implemented in the CFDS-FLOW3D code, included additional source terms in the {open_quotes}standard{close_quotes} {kappa}-{epsilon} transport equations for the liquid phase, as well as modified model coefficients and wall functions. All simulations were carried out in a 2-D axisymmetric format, collapsing the general multifluid framework of CFDS-FLOW3D to the two-fluid (air-water) case. The newly implemented model consistently improved predictions of radial-velocity profiles of both phases, but failed to accurately reproduce the experimental phase-distribution data. This shortcoming was traced to the neglect of anisotropic effects in the modelling of liquid-phase turbulence. In this sense, the present investigation should be considered as the first step toward the ultimate goal of developing a theoretically sound and universal CFD-type two-fluid model for bubbly flows in channels.

  3. Multigrid Computations of 3-D Incompressible Internal and External Viscous Rotating Flows

    NASA Technical Reports Server (NTRS)

    Sheng, Chunhua; Taylor, Lafayette K.; Chen, Jen-Ping; Jiang, Min-Yee; Whitfield, David L.

    1996-01-01

    This report presents multigrid methods for solving the 3-D incompressible viscous rotating flows in a NASA low-speed centrifugal compressor and a marine propeller 4119. Numerical formulations are given in both the rotating reference frame and the absolute frame. Comparisons are made for the accuracy, efficiency, and robustness between the steady-state scheme and the time-accurate scheme for simulating viscous rotating flows for complex internal and external flow applications. Prospects for further increase in efficiency and accuracy of unsteady time-accurate computations are discussed.

  4. High-performance computational and geostatistical experiments for testing the capabilities of 3-d electrical tomography

    SciTech Connect

    Carle, S. F.; Daily, W. D.; Newmark, R. L.; Ramirez, A.; Tompson, A.

    1999-01-19

    This project explores the feasibility of combining geologic insight, geostatistics, and high-performance computing to analyze the capabilities of 3-D electrical resistance tomography (ERT). Geostatistical methods are used to characterize the spatial variability of geologic facies that control sub-surface variability of permeability and electrical resistivity Synthetic ERT data sets are generated from geostatistical realizations of alluvial facies architecture. The synthetic data sets enable comparison of the "truth" to inversion results, quantification of the ability to detect particular facies at particular locations, and sensitivity studies on inversion parameters

  5. Computing 3-D steady supersonic flow via a new Lagrangian approach

    NASA Technical Reports Server (NTRS)

    Loh, C. Y.; Liou, M.-S.

    1993-01-01

    The new Lagrangian method introduced by Loh and Hui (1990) is extended for 3-D steady supersonic flow computation. Details of the conservation form, the implementation of the local Riemann solver, and the Godunov and the high resolution TVD schemes are presented. The new approach is robust yet accurate, capable of handling complicated geometry and reactions between discontinuous waves. It keeps all the advantages claimed in the 2-D method of Loh and Hui, e.g., crisp resolution for a slip surface (contact discontinuity) and automatic grid generation along the stream.

  6. Characterization of immiscible fluid displacement processes with various capillary numbers and viscosity ratios in 3D natural sandstone

    NASA Astrophysics Data System (ADS)

    Tsuji, Takeshi; Jiang, Fei; Christensen, Kenneth T.

    2016-09-01

    To characterize the influence of reservoir conditions upon multiphase flow, we calculated fluid displacements (drainage processes) in 3D pore spaces of Berea sandstone using two-phase lattice Boltzmann (LB) simulations. The results of simulations under various conditions were used to classify the resulting two-phase flow behavior into three typical fluid displacement patterns on the diagram of capillary number (Ca) and viscosity ratio of the two fluids (M). In addition, the saturation of the nonwetting phase was calculated and mapped on the Ca-M diagram. We then characterized dynamic pore-filling events (i.e., Haines jumps) from the pressure variation of the nonwetting phase, and linked this behavior to the occurrence of capillary fingering. The results revealed the onset of capillary fingering in 3D natural rock at a higher Ca than in 2D homogeneous granular models, with the crossover region between typical displacement patterns broader than in the homogeneous granular model. Furthermore, saturation of the nonwetting phase mapped on the Ca-M diagram significantly depends on the rock models. These important differences between two-phase flow in 3D natural rock and in 2D homogeneous models could be due to the heterogeneity of pore geometry in the natural rock and differences in pore connectivity. By quantifying two-phase fluid behavior in the target reservoir rock under various conditions (e.g., saturation mapping on the Ca-M diagram), our approach could provide useful information for investigating suitable reservoir conditions for geo-fluid management (e.g., high CO2 saturation in CO2 storage).

  7. "Let's get physical": advantages of a physical model over 3D computer models and textbooks in learning imaging anatomy.

    PubMed

    Preece, Daniel; Williams, Sarah B; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their comparative efficacies remains scarce in the literature. This study developed and evaluated the use of a physical model in demonstrating the complex spatial relationships of the equine foot. It was hypothesized that the newly developed physical model would be more effective for students to learn magnetic resonance imaging (MRI) anatomy of the foot than textbooks or computer-based 3D models. Third year veterinary medicine students were randomly assigned to one of three teaching aid groups (physical model; textbooks; 3D computer model). The comparative efficacies of the three teaching aids were assessed through students' abilities to identify anatomical structures on MR images. Overall mean MRI assessment scores were significantly higher in students utilizing the physical model (86.39%) compared with students using textbooks (62.61%) and the 3D computer model (63.68%) (P < 0.001), with no significant difference between the textbook and 3D computer model groups (P = 0.685). Student feedback was also more positive in the physical model group compared with both the textbook and 3D computer model groups. Our results suggest that physical models may hold a significant advantage over alternative learning resources in enhancing visuospatial and 3D understanding of complex anatomical architecture, and that 3D computer models have significant limitations with regards to 3D learning.

  8. 3D virtual human atria: A computational platform for studying clinical atrial fibrillation.

    PubMed

    Aslanidi, Oleg V; Colman, Michael A; Stott, Jonathan; Dobrzynski, Halina; Boyett, Mark R; Holden, Arun V; Zhang, Henggui

    2011-10-01

    Despite a vast amount of experimental and clinical data on the underlying ionic, cellular and tissue substrates, the mechanisms of common atrial arrhythmias (such as atrial fibrillation, AF) arising from the functional interactions at the whole atria level remain unclear. Computational modelling provides a quantitative framework for integrating such multi-scale data and understanding the arrhythmogenic behaviour that emerges from the collective spatio-temporal dynamics in all parts of the heart. In this study, we have developed a multi-scale hierarchy of biophysically detailed computational models for the human atria--the 3D virtual human atria. Primarily, diffusion tensor MRI reconstruction of the tissue geometry and fibre orientation in the human sinoatrial node (SAN) and surrounding atrial muscle was integrated into the 3D model of the whole atria dissected from the Visible Human dataset. The anatomical models were combined with the heterogeneous atrial action potential (AP) models, and used to simulate the AP conduction in the human atria under various conditions: SAN pacemaking and atrial activation in the normal rhythm, break-down of regular AP wave-fronts during rapid atrial pacing, and the genesis of multiple re-entrant wavelets characteristic of AF. Contributions of different properties of the tissue to mechanisms of the normal rhythm and arrhythmogenesis were investigated. Primarily, the simulations showed that tissue heterogeneity caused the break-down of the normal AP wave-fronts at rapid pacing rates, which initiated a pair of re-entrant spiral waves; and tissue anisotropy resulted in a further break-down of the spiral waves into multiple meandering wavelets characteristic of AF. The 3D virtual atria model itself was incorporated into the torso model to simulate the body surface ECG patterns in the normal and arrhythmic conditions. Therefore, a state-of-the-art computational platform has been developed, which can be used for studying multi

  9. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals' Behaviour.

    PubMed

    Barnard, Shanis; Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs' behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals' quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog's shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  10. Quick, Accurate, Smart: 3D Computer Vision Technology Helps Assessing Confined Animals’ Behaviour

    PubMed Central

    Calderara, Simone; Pistocchi, Simone; Cucchiara, Rita; Podaliri-Vulpiani, Michele; Messori, Stefano; Ferri, Nicola

    2016-01-01

    Mankind directly controls the environment and lifestyles of several domestic species for purposes ranging from production and research to conservation and companionship. These environments and lifestyles may not offer these animals the best quality of life. Behaviour is a direct reflection of how the animal is coping with its environment. Behavioural indicators are thus among the preferred parameters to assess welfare. However, behavioural recording (usually from video) can be very time consuming and the accuracy and reliability of the output rely on the experience and background of the observers. The outburst of new video technology and computer image processing gives the basis for promising solutions. In this pilot study, we present a new prototype software able to automatically infer the behaviour of dogs housed in kennels from 3D visual data and through structured machine learning frameworks. Depth information acquired through 3D features, body part detection and training are the key elements that allow the machine to recognise postures, trajectories inside the kennel and patterns of movement that can be later labelled at convenience. The main innovation of the software is its ability to automatically cluster frequently observed temporal patterns of movement without any pre-set ethogram. Conversely, when common patterns are defined through training, a deviation from normal behaviour in time or between individuals could be assessed. The software accuracy in correctly detecting the dogs’ behaviour was checked through a validation process. An automatic behaviour recognition system, independent from human subjectivity, could add scientific knowledge on animals’ quality of life in confinement as well as saving time and resources. This 3D framework was designed to be invariant to the dog’s shape and size and could be extended to farm, laboratory and zoo quadrupeds in artificial housing. The computer vision technique applied to this software is innovative in non

  11. High performance computing approaches for 3D reconstruction of complex biological specimens.

    PubMed

    da Silva, M Laura; Roca-Piera, Javier; Fernández, José-Jesús

    2010-01-01

    Knowledge of the structure of specimens is crucial to determine the role that they play in cellular and molecular biology. To yield the three-dimensional (3D) reconstruction by means of tomographic reconstruction algorithms, we need the use of large projection images and high processing time. Therefore, we propose the use of the high performance computing (HPC) to cope with the huge computational demands of this problem. We have implemented a HPC strategy where the distribution of tasks follows the master-slave paradigm. The master processor distributes a slab of slices, a piece of the final 3D structure to reconstruct, among the slave processors and receives reconstructed slices of the volume. We have evaluated the performance of our HPC approach using different sizes of the slab. We have observed that it is possible to find out an optimal size of the slab for the number of processor used that minimize communications time while maintaining a reasonable grain of parallelism to be exploited by the set of processors.

  12. FaceWarehouse: a 3D facial expression database for visual computing.

    PubMed

    Cao, Chen; Weng, Yanlin; Zhou, Shun; Tong, Yiying; Zhou, Kun

    2014-03-01

    We present FaceWarehouse, a database of 3D facial expressions for visual computing applications. We use Kinect, an off-the-shelf RGBD camera, to capture 150 individuals aged 7-80 from various ethnic backgrounds. For each person, we captured the RGBD data of her different expressions, including the neutral expression and 19 other expressions such as mouth-opening, smile, kiss, etc. For every RGBD raw data record, a set of facial feature points on the color image such as eye corners, mouth contour, and the nose tip are automatically localized, and manually adjusted if better accuracy is required. We then deform a template facial mesh to fit the depth data as closely as possible while matching the feature points on the color image to their corresponding points on the mesh. Starting from these fitted face meshes, we construct a set of individual-specific expression blendshapes for each person. These meshes with consistent topology are assembled as a rank-3 tensor to build a bilinear face model with two attributes: identity and expression. Compared with previous 3D facial databases, for every person in our database, there is a much richer matching collection of expressions, enabling depiction of most human facial actions. We demonstrate the potential of FaceWarehouse for visual computing with four applications: facial image manipulation, face component transfer, real-time performance-based facial image animation, and facial animation retargeting from video to image.

  13. A 3D, fully Eulerian, VOF-based solver to study the interaction between two fluids and moving rigid bodies using the fictitious domain method

    NASA Astrophysics Data System (ADS)

    Pathak, Ashish; Raessi, Mehdi

    2016-04-01

    We present a three-dimensional (3D) and fully Eulerian approach to capturing the interaction between two fluids and moving rigid structures by using the fictitious domain and volume-of-fluid (VOF) methods. The solid bodies can have arbitrarily complex geometry and can pierce the fluid-fluid interface, forming contact lines. The three-phase interfaces are resolved and reconstructed by using a VOF-based methodology. Then, a consistent scheme is employed for transporting mass and momentum, allowing for simulations of three-phase flows of large density ratios. The Eulerian approach significantly simplifies numerical resolution of the kinematics of rigid bodies of complex geometry and with six degrees of freedom. The fluid-structure interaction (FSI) is computed using the fictitious domain method. The methodology was developed in a message passing interface (MPI) parallel framework accelerated with graphics processing units (GPUs). The computationally intensive solution of the pressure Poisson equation is ported to GPUs, while the remaining calculations are performed on CPUs. The performance and accuracy of the methodology are assessed using an array of test cases, focusing individually on the flow solver and the FSI in surface-piercing configurations. Finally, an application of the proposed methodology in simulations of the ocean wave energy converters is presented.

  14. Planned development of a 3D computer based on free-space optical interconnects

    NASA Astrophysics Data System (ADS)

    Neff, John A.; Guarino, David R.

    1994-05-01

    Free-space optical interconnection has the potential to provide upwards of a million data channels between planes of electronic circuits. This may result in the planar board and backplane structures of today giving away to 3-D stacks of wafers or multi-chip modules interconnected via channels running perpendicular to the processor planes, thereby eliminating much of the packaging overhead. Three-dimensional packaging is very appealing for tightly coupled fine-grained parallel computing where the need for massive numbers of interconnections is severely taxing the capabilities of the planar structures. This paper describes a coordinated effort by four research organizations to demonstrate an operational fine-grained parallel computer that achieves global connectivity through the use of free space optical interconnects.

  15. A review of automated image understanding within 3D baggage computed tomography security screening.

    PubMed

    Mouton, Andre; Breckon, Toby P

    2015-01-01

    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT.

  16. Applying 3D measurements and computer matching algorithms to two firearm examination proficiency tests.

    PubMed

    Ott, Daniel; Thompson, Robert; Song, Junfeng

    2017-02-01

    In order for a crime laboratory to assess a firearms examiner's training, skills, experience, and aptitude, it is necessary for the examiner to participate in proficiency testing. As computer algorithms for comparisons of pattern evidence become more prevalent, it is of interest to test algorithm performance as well, using these same proficiency examinations. This article demonstrates the use of the Congruent Matching Cell (CMC) algorithm to compare 3D topography measurements of breech face impressions and firing pin impressions from a previously distributed firearms proficiency test. In addition, the algorithm is used to analyze the distribution of many comparisons from a collection of cartridge cases used to construct another recent set of proficiency tests. These results are provided along with visualizations that help to relate the features used in optical comparisons by examiners to the features used by computer comparison algorithms.

  17. Can symmetry transitions of complex fields enable 3-d control of fluid vorticity?

    SciTech Connect

    Martin, James E.; Solis, Kyle Jameson

    2015-08-01

    Methods of inducing vigorous noncontact fluid flow are important to technologies involving heat and mass transfer and fluid mixing, since they eliminate the need for moving parts, pipes and seals, all of which compromise system reliability. Unfortunately, traditional noncontact flow methods are few, and have limitations of their own. We have discovered two classes of fields that can induce fluid vorticity without requiring either gravity or a thermal gradient. The first class we call Symmetry-Breaking Rational Fields. These are triaxial fields comprised of three orthogonal components, two ac and one dc. The second class is Rational Triad Fields, which differ in that all three components are alternating. In this report we quantify the induced vorticity for a wide variety of fields and consider symmetry transitions between these field types. These transitions give rise to orbiting vorticity vectors, a technology for non-contact, non-stationary fluid mixing.

  18. Using Computer-Aided Design Software and 3D Printers to Improve Spatial Visualization

    ERIC Educational Resources Information Center

    Katsio-Loudis, Petros; Jones, Millie

    2015-01-01

    Many articles have been published on the use of 3D printing technology. From prefabricated homes and outdoor structures to human organs, 3D printing technology has found a niche in many fields, but especially education. With the introduction of AutoCAD technical drawing programs and now 3D printing, learners can use 3D printed models to develop…

  19. The Effects of 3D Computer Modelling on Conceptual Change about Seasons and Phases of the Moon

    ERIC Educational Resources Information Center

    Kucukozer, Huseyin

    2008-01-01

    In this study, prospective science teachers' misconceptions about the seasons and the phases of the Moon were determined, and then the effects of 3D computer modelling on their conceptual changes were investigated. The topics were covered in two classes with a total of 76 students using a predict-observe-explain strategy supported by 3D computer…

  20. A brain-computer interface method combined with eye tracking for 3D interaction.

    PubMed

    Lee, Eui Chul; Woo, Jin Cheol; Kim, Jong Hwa; Whang, Mincheol; Park, Kang Ryoung

    2010-07-15

    With the recent increase in the number of three-dimensional (3D) applications, the need for interfaces to these applications has increased. Although the eye tracking method has been widely used as an interaction interface for hand-disabled persons, this approach cannot be used for depth directional navigation. To solve this problem, we propose a new brain computer interface (BCI) method in which the BCI and eye tracking are combined to analyze depth navigation, including selection and two-dimensional (2D) gaze direction, respectively. The proposed method is novel in the following five ways compared to previous works. First, a device to measure both the gaze direction and an electroencephalogram (EEG) pattern is proposed with the sensors needed to measure the EEG attached to a head-mounted eye tracking device. Second, the reliability of the BCI interface is verified by demonstrating that there is no difference between the real and the imaginary movements for the same work in terms of the EEG power spectrum. Third, depth control for the 3D interaction interface is implemented by an imaginary arm reaching movement. Fourth, a selection method is implemented by an imaginary hand grabbing movement. Finally, for the independent operation of gazing and the BCI, a mode selection method is proposed that measures a user's concentration by analyzing the pupil accommodation speed, which is not affected by the operation of gazing and the BCI. According to experimental results, we confirmed the feasibility of the proposed 3D interaction method using eye tracking and a BCI.

  1. Soft computing approach to 3D lung nodule segmentation in CT.

    PubMed

    Badura, P; Pietka, E

    2014-10-01

    This paper presents a novel, multilevel approach to the segmentation of various types of pulmonary nodules in computed tomography studies. It is based on two branches of computational intelligence: the fuzzy connectedness (FC) and the evolutionary computation. First, the image and auxiliary data are prepared for the 3D FC analysis during the first stage of an algorithm - the masks generation. Its main goal is to process some specific types of nodules connected to the pleura or vessels. It consists of some basic image processing operations as well as dedicated routines for the specific cases of nodules. The evolutionary computation is performed on the image and seed points in order to shorten the FC analysis and improve its accuracy. After the FC application, the remaining vessels are removed during the postprocessing stage. The method has been validated using the first dataset of studies acquired and described by the Lung Image Database Consortium (LIDC) and by its latest release - the LIDC-IDRI (Image Database Resource Initiative) database.

  2. Computational time analysis of the numerical solution of 3D electrostatic Poisson's equation

    NASA Astrophysics Data System (ADS)

    Kamboh, Shakeel Ahmed; Labadin, Jane; Rigit, Andrew Ragai Henri; Ling, Tech Chaw; Amur, Khuda Bux; Chaudhary, Muhammad Tayyab

    2015-05-01

    3D Poisson's equation is solved numerically to simulate the electric potential in a prototype design of electrohydrodynamic (EHD) ion-drag micropump. Finite difference method (FDM) is employed to discretize the governing equation. The system of linear equations resulting from FDM is solved iteratively by using the sequential Jacobi (SJ) and sequential Gauss-Seidel (SGS) methods, simulation results are also compared to examine the difference between the results. The main objective was to analyze the computational time required by both the methods with respect to different grid sizes and parallelize the Jacobi method to reduce the computational time. In common, the SGS method is faster than the SJ method but the data parallelism of Jacobi method may produce good speedup over SGS method. In this study, the feasibility of using parallel Jacobi (PJ) method is attempted in relation to SGS method. MATLAB Parallel/Distributed computing environment is used and a parallel code for SJ method is implemented. It was found that for small grid size the SGS method remains dominant over SJ method and PJ method while for large grid size both the sequential methods may take nearly too much processing time to converge. Yet, the PJ method reduces computational time to some extent for large grid sizes.

  3. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  4. Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.

    2011-06-01

    High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  5. Optimization of the aperture and the transducer characteristics of a 3D ultrasound computer tomography system

    NASA Astrophysics Data System (ADS)

    Ruiter, Nicole V.; Zapf, Michael; Hopp, Torsten; Dapp, Robin; Gemmeke, Hartmut

    2014-03-01

    A promising candidate for improved imaging of breast cancer is ultrasound computer tomography (USCT). The aim of this work was to design a new aperture for our full 3D USCT which extends the properties of the current aperture to a larger ROI fitting the buoyant breast in water and decreasing artifacts in transmission tomography. The optimization resulted in a larger opening angle of the transducers, a larger diameter of the aperture and an approximately homogeneous distribution of the transducers, with locally random distances. The developed optimization methods allow us to automatically generate an optimized aperture for given diameters of apertures and transducer arrays, as well as quantitative comparison to other arbitrary apertures. Thus, during the design phase of the next generation KIT 3D USCT, the image quality can be balanced against the specification parameters and given hardware and cost limitations. The methods can be applied for general aperture optimization, only limited by the assumptions of a hemispherical aperture and circular transducer arrays.

  6. An improved version of NCOREL: A computer program for 3-D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, Michael J.

    1988-01-01

    A computer code called NCOREL (for Nonconical Relaxation) has been developed to solve for supersonic full potential flows over complex geometries. The method first solves for the conical at the apex and then marches downstream in a spherical coordinate system. Implicit relaxation techniques are used to numerically solve the full potential equation at each subsequent crossflow plane. Many improvements have been made to the original code including more reliable numerics for computing wing-body flows with multiple embedded shocks, inlet flow through simulation, wake model and entropy corrections. Line relaxation or approximate factorization schemes are optionally available. Improved internal grid generation using analytic conformal mappings, supported by a simple geometric Harris wave drag input that was originally developed for panel methods and internal geometry package are some of the new features.

  7. Massively parallel computation of 3D flow and reactions in chemical vapor deposition reactors

    SciTech Connect

    Salinger, A.G.; Shadid, J.N.; Hutchinson, S.A.; Hennigan, G.L.; Devine, K.D.; Moffat, H.K.

    1997-12-01

    Computer modeling of Chemical Vapor Deposition (CVD) reactors can greatly aid in the understanding, design, and optimization of these complex systems. Modeling is particularly attractive in these systems since the costs of experimentally evaluating many design alternatives can be prohibitively expensive, time consuming, and even dangerous, when working with toxic chemicals like Arsine (AsH{sub 3}): until now, predictive modeling has not been possible for most systems since the behavior is three-dimensional and governed by complex reaction mechanisms. In addition, CVD reactors often exhibit large thermal gradients, large changes in physical properties over regions of the domain, and significant thermal diffusion for gas mixtures with widely varying molecular weights. As a result, significant simplifications in the models have been made which erode the accuracy of the models` predictions. In this paper, the authors will demonstrate how the vast computational resources of massively parallel computers can be exploited to make possible the analysis of models that include coupled fluid flow and detailed chemistry in three-dimensional domains. For the most part, models have either simplified the reaction mechanisms and concentrated on the fluid flow, or have simplified the fluid flow and concentrated on rigorous reactions. An important CVD research thrust has been in detailed modeling of fluid flow and heat transfer in the reactor vessel, treating transport and reaction of chemical species either very simply or as a totally decoupled problem. Using the analogy between heat transfer and mass transfer, and the fact that deposition is often diffusion limited, much can be learned from these calculations; however, the effects of thermal diffusion, the change in physical properties with composition, and the incorporation of surface reaction mechanisms are not included in this model, nor can transitions to three-dimensional flows be detected.

  8. The NCOREL computer program for 3D nonlinear supersonic potential flow computations

    NASA Technical Reports Server (NTRS)

    Siclari, M. J.

    1983-01-01

    An innovative computational technique (NCOREL) was established for the treatment of three dimensional supersonic flows. The method is nonlinear in that it solves the nonconservative finite difference analog of the full potential equation and can predict the formation of supercritical cross flow regions, embedded and bow shocks. The method implicitly computes a conical flow at the apex (R = 0) of a spherical coordinate system and uses a fully implicit marching technique to obtain three dimensional cross flow solutions. This implies that the radial Mach number must remain supersonic. The cross flow solutions are obtained by using type dependent transonic relaxation techniques with the type dependency linked to the character of the cross flow velocity (i.e., subsonic/supersonic). The spherical coordinate system and marching on spherical surfaces is ideally suited to the computation of wing flows at low supersonic Mach numbers due to the elimination of the subsonic axial Mach number problems that exist in other marching codes that utilize Cartesian transverse marching planes.

  9. A 3-D Computational Study of a Variable Camber Continuous Trailing Edge Flap (VCCTEF) Spanwise Segment

    NASA Technical Reports Server (NTRS)

    Kaul, Upender K.; Nguyen, Nhan T.

    2015-01-01

    Results of a computational study carried out to explore the effects of various elastomer configurations joining spanwise contiguous Variable Camber Continuous Trailing Edge Flap (VCCTEF) segments are reported here. This research is carried out as a proof-of-concept study that will seek to push the flight envelope in cruise with drag optimization as the objective. The cruise conditions can be well off design such as caused by environmental conditions, maneuvering, etc. To handle these off-design conditions, flap deflection is used so when the flap is deflected in a given direction, the aircraft angle of attack changes accordingly to maintain a given lift. The angle of attack is also a design parameter along with the flap deflection. In a previous 2D study,1 the effect of camber was investigated and the results revealed some insight into the relative merit of various camber settings of the VCCTEF. The present state of the art has not advanced sufficiently to do a full 3-D viscous analysis of the whole NASA Generic Transport Model (GTM) wing with VCCTEF deployed with elastomers. Therefore, this study seeks to explore the local effects of three contiguous flap segments on lift and drag of a model devised here to determine possible trades among various flap deflections to achieve desired lift and drag results. Although this approach is an approximation, it provides new insights into the "local" effects of the relative deflections of the contiguous spanwise flap systems and various elastomer segment configurations. The present study is a natural extension of the 2-D study to assess these local 3-D effects. Design cruise condition at 36,000 feet at free stream Mach number of 0.797 and a mean aerodynamic chord (MAC) based Reynolds number of 30.734x10(exp 6) is simulated for an angle of attack (AoA) range of 0 to 6 deg. In the previous 2-D study, the calculations revealed that the parabolic arc camber (1x2x3) and circular arc camber (VCCTEF222) offered the best L

  10. Visualization of Unsteady Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Haimes, Robert

    1997-01-01

    The current compute environment that most researchers are using for the calculation of 3D unsteady Computational Fluid Dynamic (CFD) results is a super-computer class machine. The Massively Parallel Processors (MPP's) such as the 160 node IBM SP2 at NAS and clusters of workstations acting as a single MPP (like NAS's SGI Power-Challenge array and the J90 cluster) provide the required computation bandwidth for CFD calculations of transient problems. If we follow the traditional computational analysis steps for CFD (and we wish to construct an interactive visualizer) we need to be aware of the following: (1) Disk space requirements. A single snap-shot must contain at least the values (primitive variables) stored at the appropriate locations within the mesh. For most simple 3D Euler solvers that means 5 floating point words. Navier-Stokes solutions with turbulence models may contain 7 state-variables. (2) Disk speed vs. Computational speeds. The time required to read the complete solution of a saved time frame from disk is now longer than the compute time for a set number of iterations from an explicit solver. Depending, on the hardware and solver an iteration of an implicit code may also take less time than reading the solution from disk. If one examines the performance improvements in the last decade or two, it is easy to see that depending on disk performance (vs. CPU improvement) may not be the best method for enhancing interactivity. (3) Cluster and Parallel Machine I/O problems. Disk access time is much worse within current parallel machines and cluster of workstations that are acting in concert to solve a single problem. In this case we are not trying to read the volume of data, but are running the solver and the solver outputs the solution. These traditional network interfaces must be used for the file system. (4) Numerics of particle traces. Most visualization tools can work upon a single snap shot of the data but some visualization tools for transient

  11. Hyperspeed data acquisition for 3D computer vision metrology as applied to law enforcement

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.

    1997-02-01

    cycling at 1 millisecond, each pattern is projected and recorded in a cycle time of 1/500th second. An entire set of patterns can then be recorded within 1/60th second. This pattern set contains all the information necessary to calculate a 3-D map. The use of hyper-speed parallel video cameras in conjunction with high speed modulators enables video data rate acquisition of all data necessary to calculate numerical digital 3-D metrological surface data. Thus a 3-D video camera can operate at the rate of a conventional 2-D video camera. The speed of actual 3-D output information is a function of the speed of the computer, a parallel processor being preferred for the task. With video rate 3-D data acquisition law enforcement could survey crime scenes, obtain evidence, watch and record people, packages, suitcases, and record disaster scenes very rapidly.

  12. Development of complex 3D microstructures based on computer generated holography and their usage for biomedical applications

    NASA Astrophysics Data System (ADS)

    Palevicius, Arvydas; Grigaliunas, Viktoras; Janusas, Giedrius; Palevicius, Paulius; Sakalys, Rokas

    2016-04-01

    The main focus of the paper is the development of technological route of the production of complex 3D microstructure, from designing it by the method of computer generated holography till its physical 3D patterning by exploiting the process of electron beam lithography and thermal replication which is used for biomedical application. A phase data of a complex 3D microstructure was generated by using Gerchberg-Saxton algorithm which later was used to produce a computer generated hologram. Physical implementation of microstructure was done using a single layer polymethyl methacrylate (PMMA) as a basis for 3D microstructure, which was exposed using e-beam lithography system e-Line and replicated, using high frequency vibration. Manufactured 3D microstructure is used for designing micro sensor for biomedical applications.

  13. Roughness receptivity studies in a 3-D boundary layer - Flight tests and computations

    NASA Astrophysics Data System (ADS)

    Carpenter, Andrew L.; Saric, William S.; Reed, Helen L.

    The receptivity of 3-D boundary layers to micron-sized, spanwise-periodic Discrete Roughness Elements (DREs) was studied. The DREs were applied to the leading edge of a 30-degree swept-wing at the wavelength of the most unstable disturbance. In this case, calibrated, multi-element hotfilm sensors were used to measure disturbance wall shear stress. The roughness height was varied from 0 to 50 microns. Thus, the disturbance-shear-stress amplitude variations were determined as a function of modulated DRE heights. The computational work was conducted parallel to the flight experiments. The complete viscous flowfield over the O-2 aircraft with the SWIFT model mounted on the port wing store pylon was successfully modeled and validated with the flight data. This highly accurate basic-state solution was incorporated into linear stability calculations and the wave growth associated with the crossflow instability was calculated.

  14. Ceramic scaffolds produced by computer-assisted 3D printing and sintering: characterization and biocompatibility investigations.

    PubMed

    Warnke, Patrick H; Seitz, Hermann; Warnke, Frauke; Becker, Stephan T; Sivananthan, Sureshan; Sherry, Eugene; Liu, Qin; Wiltfang, Jörg; Douglas, Timothy

    2010-04-01

    Hydroxyapatite (HAP) and tricalcium phosphate (TCP) are two very common ceramic materials for bone replacement. However, in general HAP and TCP scaffolds are not tailored to the exact dimensions of the defect site and are mainly used as granules or beads. Some scaffolds are available as ordinary blocks, but cannot be customized for individual perfect fit. Using computer-assisted 3D printing, an emerging rapid prototyping technique, individual three-dimensional ceramic scaffolds can be built up from TCP or HAP powder layer by layer with subsequent sintering. These scaffolds have precise dimensions and highly defined and regular internal characteristics such as pore size. External shape and internal characteristics such as pore size can be fabricated using Computer Assisted Design (CAD) based on individual patient data. Thus, these scaffolds could be designed as perfect fit replacements to reconstruct the patient's skeleton. Before their use as bone replacement materials in vivo, in vitro testing of these scaffolds is necessary. In this study, the behavior of human osteoblasts on HAP and TCP scaffolds was investigated. The commonly used bone replacement material BioOss(R) served as control. Biocompatibility was assessed by scanning electron microscopy (SEM), fluorescence microscopy after staining for cell vitality with fluorescin diacetate (FDA) and propidium iodide (PI) and the MTT, LDH, and WST biocompatibility tests. Both versions were colonised by human osteoblasts, however more cells were seen on HAP scaffolds than TCP scaffolds. Cell vitality staining and MTT, LDH, and WST tests showed superior biocompatibility of HAP scaffolds to BioOss, while BioOss was more compatible than TCP. Further experiments are necessary to determine biocompatibility in vivo. Future modifications of 3D printed scaffolds offer advantageous features for Tissue Engineering. The integration of channels could allow for vascular and nerve ingrowth into the scaffold. Also the complex shapes

  15. Real-time computer-generated integral imaging and 3D image calibration for augmented reality surgical navigation.

    PubMed

    Wang, Junchen; Suenaga, Hideyuki; Liao, Hongen; Hoshi, Kazuto; Yang, Liangjing; Kobayashi, Etsuko; Sakuma, Ichiro

    2015-03-01

    Autostereoscopic 3D image overlay for augmented reality (AR) based surgical navigation has been studied and reported many times. For the purpose of surgical overlay, the 3D image is expected to have the same geometric shape as the original organ, and can be transformed to a specified location for image overlay. However, how to generate a 3D image with high geometric fidelity and quantitative evaluation of 3D image's geometric accuracy have not been addressed. This paper proposes a graphics processing unit (GPU) based computer-generated integral imaging pipeline for real-time autostereoscopic 3D display, and an automatic closed-loop 3D image calibration paradigm for displaying undistorted 3D images. Based on the proposed methods, a novel AR device for 3D image surgical overlay is presented, which mainly consists of a 3D display, an AR window, a stereo camera for 3D measurement, and a workstation for information processing. The evaluation on the 3D image rendering performance with 2560×1600 elemental image resolution shows the rendering speeds of 50-60 frames per second (fps) for surface models, and 5-8 fps for large medical volumes. The evaluation of the undistorted 3D image after the calibration yields sub-millimeter geometric accuracy. A phantom experiment simulating oral and maxillofacial surgery was also performed to evaluate the proposed AR overlay device in terms of the image registration accuracy, 3D image overlay accuracy, and the visual effects of the overlay. The experimental results show satisfactory image registration and image overlay accuracy, and confirm the system usability.

  16. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  17. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  18. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S[sub 4]), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0[sub 2], H[sub 2]0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  19. FURN3D: A computer code for radiative heat transfer in pulverized coal furnaces

    SciTech Connect

    Ahluwalia, R.K.; Im, K.H.

    1992-08-01

    A computer code FURN3D has been developed for assessing the impact of burning different coals on heat absorption pattern in pulverized coal furnaces. The code is unique in its ability to conduct detailed spectral calculations of radiation transport in furnaces fully accounting for the size distributions of char, soot and ash particles, ash content, and ash composition. The code uses a hybrid technique of solving the three-dimensional radiation transport equation for absorbing, emitting and anisotropically scattering media. The technique achieves an optimal mix of computational speed and accuracy by combining the discrete ordinate method (S{sub 4}), modified differential approximation (MDA) and P, approximation in different range of optical thicknesses. The code uses spectroscopic data for estimating the absorption coefficients of participating gases C0{sub 2}, H{sub 2}0 and CO. It invokes Mie theory for determining the extinction and scattering coefficients of combustion particulates. The optical constants of char, soot and ash are obtained from dispersion relations derived from reflectivity, transmissivity and extinction measurements. A control-volume formulation is adopted for determining the temperature field inside the furnace. A simple char burnout model is employed for estimating heat release and evolution of particle size distribution. The code is written in Fortran 77, has modular form, and is machine-independent. The computer memory required by the code depends upon the number of grid points specified and whether the transport calculations are performed on spectral or gray basis.

  20. Enabling 3D-Liver Perfusion Mapping from MR-DCE Imaging Using Distributed Computing.

    PubMed

    Leporq, Benjamin; Camarasu-Pop, Sorina; Davila-Serrano, Eduardo E; Pilleul, Frank; Beuf, Olivier

    2013-01-01

    An MR acquisition protocol and a processing method using distributed computing on the European Grid Infrastructure (EGI) to allow 3D liver perfusion parametric mapping after Magnetic Resonance Dynamic Contrast Enhanced (MR-DCE) imaging are presented. Seven patients (one healthy control and six with chronic liver diseases) were prospectively enrolled after liver biopsy. MR-dynamic acquisition was continuously performed in free-breathing during two minutes after simultaneous intravascular contrast agent (MS-325 blood pool agent) injection. Hepatic capillary system was modeled by a 3-parameters one-compartment pharmacokinetic model. The processing step was parallelized and executed on the EGI. It was modeled and implemented as a grid workflow using the Gwendia language and the MOTEUR workflow engine. Results showed good reproducibility in repeated processing on the grid. The results obtained from the grid were well correlated with ROI-based reference method ran locally on a personal computer. The speed-up range was 71 to 242 with an average value of 126. In conclusion, distributed computing applied to perfusion mapping brings significant speed-up to quantification step to be used for further clinical studies in a research context. Accuracy would be improved with higher image SNR accessible on the latest 3T MR systems available today.

  1. A Computational Method for 3D Anisotropic Travel-time Tomography of Rocks in the Laboratory

    NASA Astrophysics Data System (ADS)

    Ghofranitabari, Mehdi; Young, R. Paul

    2013-04-01

    True triaxial loading in the laboratory applies three principal stresses on a cubic rock specimen. Elliptical anisotropy and distributed heterogeneities are introduced in the rock due to closure and opening of the pre-existing cracks and creation and growth of the new aligned cracks. The rock sample is tested in a Geophysical Imaging Cell that is armed with an Acoustic Emission monitoring system which can perform transducer to transducer velocity surveys to image velocity structure of the sample during the experiment. Ultrasonic travel-time tomography as a non-destructive method outfits a map of wave propagation velocity in the sample in order to detect the uniformly distributed or localised heterogeneities and provide the spatial variation and temporal evolution of induced damages in rocks at various stages of loading. The rock sample is partitioned into cubic grid cells as model space. Ray-based tomography method measuring body wave travel time along ray paths between pairs of emitting and receiving transducers is used to calculate isotropic ray-path segment matrix elements (Gij) which contain segment lengths of the ith ray in the jth cell in three dimensions. Synthetic P wave travel times are computed between pairs of transducers in a hypothetical isotropic heterogeneous cubic sample as data space along with an error due to precision of measurement. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in computations for further accuracy. Singular Value Decomposition method is used for the inversion from data space to model space. In the next step, the anisotropic ray-path segment matrix and the corresponded data space are computed for hypothetical anisotropic heterogeneous samples based on the elliptical anisotropic model of velocity which is obtained from the real laboratory experimental data. The method is examined for several different synthetic heterogeneous models. An "Inaccuracy factor" is utilized to inquire the

  2. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  3. A 3D Computational Study on the Air-Blast Atomization of a Planar Liquid Layer

    NASA Astrophysics Data System (ADS)

    Chiodi, Robert; Desjardins, Olivier

    2016-11-01

    The air-blast atomization of a planar liquid layer is a complex fluid phenomenon involving the destabilization of a low speed liquid layer by a high speed gas coflow. While progress has been made in recent years on understanding the instability of the liquid surface, it remains difficult to accurately predict using stability analysis and requires special expertise and equipment to perform thorough experiments. Simulations provide an excellent way to conduct parametric studies to determine the effect of splitter plate geometry and momentum flux ratio on the frequency and wavelengths of instability, however, they are extremely difficult due to the high density ratio and large range of length and time scales present in the flow. Using an accurate conservative level set method in conjunction with a newly reformulated reinitialization equation, we perform 3D simulations of the air-blast atomization of a planar liquid layer and compare them to experiments. We then go on to explore the role momentum flux ratio plays in the longitudinal and transverse wavelengths of instability.

  4. Computational modeling of pitching cylinder-type ocean wave energy converters using 3D MPI-parallel simulations

    NASA Astrophysics Data System (ADS)

    Freniere, Cole; Pathak, Ashish; Raessi, Mehdi

    2016-11-01

    Ocean Wave Energy Converters (WECs) are devices that convert energy from ocean waves into electricity. To aid in the design of WECs, an advanced computational framework has been developed which has advantages over conventional methods. The computational framework simulates the performance of WECs in a virtual wave tank by solving the full Navier-Stokes equations in 3D, capturing the fluid-structure interaction, nonlinear and viscous effects. In this work, we present simulations of the performance of pitching cylinder-type WECs and compare against experimental data. WECs are simulated at both model and full scales. The results are used to determine the role of the Keulegan-Carpenter (KC) number. The KC number is representative of viscous drag behavior on a bluff body in an oscillating flow, and is considered an important indicator of the dynamics of a WEC. Studying the effects of the KC number is important for determining the validity of the Froude scaling and the inviscid potential flow theory, which are heavily relied on in the conventional approaches to modeling WECs. Support from the National Science Foundation is gratefully acknowledged.

  5. A supervisor for the successive 3D computations of magnetic, mechanical and acoustic quantities in power oil inductors and transformers

    SciTech Connect

    Reyne, G.; Magnin, H.; Berliat, G.; Clerc, C.

    1994-09-01

    A supervisor has been developed so as to allow successive 3D computations of different quantities by different softwares on the same physical problem. Noise of a given power oil transformer can be deduced from the surface vibrations of the tank. These vibrations are obtained through a mechanic computation whose Inputs are the electromagnetic forces provided . by an electromagnetic computation. Magnetic, mechanic and acoustic experimental data are compared with the results of the 3D computations. Stress Is put on the main characteristics of the supervisor such as the transfer of a given quantity from one mesh to the other.

  6. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework.

    PubMed

    González-Avalos, P; Mürnseer, M; Deeg, J; Bachmann, A; Spatz, J; Dooley, S; Eils, R; Gladilin, E

    2017-03-07

    The mechanical cell environment is a key regulator of biological processes . In living tissues, cells are embedded into the 3D extracellular matrix and permanently exposed to mechanical forces. Quantification of the cellular strain state in a 3D matrix is therefore the first step towards understanding how physical cues determine single cell and multicellular behaviour. The majority of cell assays are, however, based on 2D cell cultures that lack many essential features of the in vivo cellular environment. Furthermore, nondestructive measurement of substrate and cellular mechanics requires appropriate computational tools for microscopic image analysis and interpretation. Here, we present an experimental and computational framework for generation and quantification of the cellular strain state in 3D cell cultures using a combination of 3D substrate stretcher, multichannel microscopic imaging and computational image analysis. The 3D substrate stretcher enables deformation of living cells embedded in bead-labelled 3D collagen hydrogels. Local substrate and cell deformations are determined by tracking displacement of fluorescent beads with subsequent finite element interpolation of cell strains over a tetrahedral tessellation. In this feasibility study, we debate diverse aspects of deformable 3D culture construction, quantification and evaluation, and present an example of its application for quantitative analysis of a cellular model system based on primary mouse hepatocytes undergoing transforming growth factor (TGF-β) induced epithelial-to-mesenchymal transition.

  7. A study of the variation of physical conditions in the cometary coma based on a 3D multi-fluid model

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Fougere, N.; Tenishev, V.; Toth, G.; Gombosi, T. I.; Huang, Z.; Jia, X.; Bieler, A. M.; Hansen, K. C.

    2015-12-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. One example is Direct Simulation Monte Carlo (DSMC) method, which has been successfully adopted to simulate the coma under various complex conditions. However, for bright comets with large production rates, the time step in DSMC model has to be tiny to accommodate the small mean free path and the high collision frequency. In addition a truly time-variable 3D DSMC model would still be computationally difficult or even impossible under most circumstances. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which can serve as a useful alternative to DSMC methods to compute both the inner and the outer coma and to treat time-variable phenomena. This model treats H2O, OH, H2, O, H and CO2 as separate fluids and each fluid has its own velocity and temperature. But collisional interactions can also couple all fluids together. Collisional interactions tend to decrease the velocity differences and are also able to re-distribute the excess energy deposited by chemical reactions among all species. To compute the momentum and energy transfer caused by such interactions self-consistently, collisions between fluids, whose efficiency is proportional to the densities, are included as well as heating from various chemical reactions. By applying the model to comets with different production rates (i.e. 67P/Churyumov-Gerasimenko, 1P/Halley, etc.), we are able to study how the heating efficiency varies with cometocentric distances and production rates. The preliminary results and comparison are presented and discussed. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  8. A new 3D texture feature based computer-aided diagnosis approach to differentiate pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Han, Fangfang; Wang, Huafeng; Song, Bowen; Zhang, Guopeng; Lu, Hongbing; Moore, William; Zhao, Hong; Liang, Zhengrong

    2013-02-01

    To distinguish malignant pulmonary nodules from benign ones is of much importance in computer-aided diagnosis of lung diseases. Compared to many previous methods which are based on shape or growth assessing of nodules, this proposed three-dimensional (3D) texture feature based approach extracted fifty kinds of 3D textural features from gray level, gradient and curvature co-occurrence matrix, and more derivatives of the volume data of the nodules. To evaluate the presented approach, the Lung Image Database Consortium public database was downloaded. Each case of the database contains an annotation file, which indicates the diagnosis results from up to four radiologists. In order to relieve partial-volume effect, interpolation process was carried out to those volume data with image slice thickness more than 1mm, and thus we had categorized the downloaded datasets to five groups to validate the proposed approach, one group of thickness less than 1mm, two types of thickness range from 1mm to 1.25mm and greater than 1.25mm (each type contains two groups, one with interpolation and the other without). Since support vector machine is based on statistical learning theory and aims to learn for predicting future data, so it was chosen as the classifier to perform the differentiation task. The measure on the performance was based on the area under the curve (AUC) of Receiver Operating Characteristics. From 284 nodules (122 malignant and 162 benign ones), the validation experiments reported a mean of 0.9051 and standard deviation of 0.0397 for the AUC value on average over 100 randomizations.

  9. Potential hazards of viewing 3-D stereoscopic television, cinema and computer games: a review.

    PubMed

    Howarth, Peter A

    2011-03-01

    The visual stimulus provided by a 3-D stereoscopic display differs from that of the real world because the image provided to each eye is produced on a flat surface. The distance from the screen to the eye remains fixed, providing a single focal distance, but the introduction of disparity between the images allows objects to be located geometrically in front of, or behind, the screen. Unlike in the real world, the stimulus to accommodation and the stimulus to convergence do not match. Although this mismatch is used positively in some forms of Orthoptic treatment, a number of authors have suggested that it could negatively lead to the development of asthenopic symptoms. From knowledge of the zone of clear, comfortable, single binocular vision one can predict that, for people with normal binocular vision, adverse symptoms will not be present if the discrepancy is small, but are likely if it is large, and that what constitutes 'large' and 'small' are idiosyncratic to the individual. The accommodation-convergence mismatch is not, however, the only difference between the natural and the artificial stimuli. In the former case, an object located in front of, or behind, a fixated object will not only be perceived as double if the images fall outside Panum's fusional areas, but it will also be defocused and blurred. In the latter case, however, it is usual for the producers of cinema, TV or computer game content to provide an image that is in focus over the whole of the display, and as a consequence diplopic images will be sharply in focus. The size of Panum's fusional area is spatial frequency-dependent, and because of this the high spatial frequencies present in the diplopic 3-D image will provide a different stimulus to the fusion system from that found naturally.

  10. Projection-based metal-artifact reduction for industrial 3D X-ray computed tomography.

    PubMed

    Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Kastner, Johann; Gröller, M Eduard

    2011-12-01

    Multi-material components, which contain metal parts surrounded by plastic materials, are highly interesting for inspection using industrial 3D X-ray computed tomography (3DXCT). Examples of this application scenario are connectors or housings with metal inlays in the electronic or automotive industry. A major problem of this type of components is the presence of metal, which causes streaking artifacts and distorts the surrounding media in the reconstructed volume. Streaking artifacts and dark-band artifacts around metal components significantly influence the material characterization (especially for the plastic components). In specific cases these artifacts even prevent a further analysis. Due to the nature and the different characteristics of artifacts, the development of an efficient artifact-reduction technique in reconstruction-space is rather complicated. In this paper we present a projection-space pipeline for metal-artifacts reduction. The proposed technique first segments the metal in the spatial domain of the reconstructed volume in order to separate it from the other materials. Then metal parts are forward-projected on the set of projections in a way that metal-projection regions are treated as voids. Subsequently the voids, which are left by the removed metal, are interpolated in the 2D projections. Finally, the metal is inserted back into the reconstructed 3D volume during the fusion stage. We present a visual analysis tool, allowing for interactive parameter estimation of the metal segmentation. The results of the proposed artifact-reduction technique are demonstrated on a test part as well as on real world components. For these specimens we achieve a significant reduction of metal artifacts, allowing an enhanced material characterization.

  11. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  12. Validity of computational hemodynamics in human arteries based on 3D time-of-flight MR angiography and 2D electrocardiogram gated phase contrast images

    NASA Astrophysics Data System (ADS)

    Yu, Huidan (Whitney); Chen, Xi; Chen, Rou; Wang, Zhiqiang; Lin, Chen; Kralik, Stephen; Zhao, Ye

    2015-11-01

    In this work, we demonstrate the validity of 4-D patient-specific computational hemodynamics (PSCH) based on 3-D time-of-flight (TOF) MR angiography (MRA) and 2-D electrocardiogram (ECG) gated phase contrast (PC) images. The mesoscale lattice Boltzmann method (LBM) is employed to segment morphological arterial geometry from TOF MRA, to extract velocity profiles from ECG PC images, and to simulate fluid dynamics on a unified GPU accelerated computational platform. Two healthy volunteers are recruited to participate in the study. For each volunteer, a 3-D high resolution TOF MRA image and 10 2-D ECG gated PC images are acquired to provide the morphological geometry and the time-varying flow velocity profiles for necessary inputs of the PSCH. Validation results will be presented through comparisons of LBM vs. 4D Flow Software for flow rates and LBM simulation vs. MRA measurement for blood flow velocity maps. Indiana University Health (IUH) Values Fund.

  13. Capturing the 3D Motion of an Infalling Galaxy via Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Su, Yuanyuan; Kraft, Ralph P.; Nulsen, Paul E. J.; Roediger, Elke; Forman, William R.; Churazov, Eugene; Randall, Scott W.; Jones, Christine; Machacek, Marie E.

    2017-01-01

    The Fornax Cluster is the nearest (≤slant 20 Mpc) galaxy cluster in the southern sky. NGC 1404 is a bright elliptical galaxy falling through the intracluster medium (ICM) of the Fornax Cluster. The sharp leading edge of NGC 1404 forms a classical “cold front” that separates 0.6 keV dense interstellar medium and 1.5 keV diffuse ICM. We measure the angular pressure variation along the cold front using a very deep (670 ks) Chandra X-ray observation. We are taking the classical approach—using stagnation pressure to determine a substructure’s speed—to the next level by not only deriving a general speed but also directionality, which yields the complete velocity field as well as the distance of the substructure directly from the pressure distribution. We find a hydrodynamic model consistent with the pressure jump along NGC 1404's atmosphere measured in multiple directions. The best-fit model gives an inclination of 33° and a Mach number of 1.3 for the infall of NGC 1404, in agreement with complementary measurements of the motion of NGC 1404. Our study demonstrates the successful treatment of a highly ionized ICM as ideal fluid flow, in support of the hypothesis that magnetic pressure is not dynamically important over most of the virial region of galaxy clusters.

  14. Three-fluid, 3D MHD solar wind modeling with turbulence transport and eddy viscosity

    NASA Astrophysics Data System (ADS)

    Usmanov, A. V.; Goldstein, M. L.; Matthaeus, W. H.

    2014-12-01

    We present results from a three-fluid, fully three-dimensional MHD solar wind model that includes turbulence transport, eddy viscosity, turbulent resistivity, and turbulent heating. The solar wind plasma is described as a co-moving system of three species: the solar wind protons, electrons, and interstellar pickup protons. Separate energy equations are employed for each species. We obtain numerical solutions of Reynolds-averaged solar wind equations coupled with turbulence transport equations in the region from 0.3 to 100 AU. The integrated system of equations includes the effects of electron heat conduction, Coulomb collisions, photoionization of interstellar hydrogen atoms and their charge exchange with the solar wind protons, turbulence energy generation by pickup protons, and turbulent heating of solar wind protons and electrons. Using either a dipole approximation for the solar magnetic field or synoptic solar magnetograms from the Wilcox Solar Observatory for assigning boundary conditions at the coronal base, we apply the model to study the global structure of the solar wind and its three-dimensional properties, including turbulence parameters, throughout the heliosphere. The model results are compared with observations on WIND, Ulysses and Voyager 2 spacecraft. This work is partially supported by LWS and Heliophysics Grand Challenges programs.

  15. Fluid-structure interaction involving large deformations: 3D simulations and applications to biological systems

    NASA Astrophysics Data System (ADS)

    Tian, Fang-Bao; Dai, Hu; Luo, Haoxiang; Doyle, James F.; Rousseau, Bernard

    2014-02-01

    Three-dimensional fluid-structure interaction (FSI) involving large deformations of flexible bodies is common in biological systems, but accurate and efficient numerical approaches for modeling such systems are still scarce. In this work, we report a successful case of combining an existing immersed-boundary flow solver with a nonlinear finite-element solid-mechanics solver specifically for three-dimensional FSI simulations. This method represents a significant enhancement from the similar methods that are previously available. Based on the Cartesian grid, the viscous incompressible flow solver can handle boundaries of large displacements with simple mesh generation. The solid-mechanics solver has separate subroutines for analyzing general three-dimensional bodies and thin-walled structures composed of frames, membranes, and plates. Both geometric nonlinearity associated with large displacements and material nonlinearity associated with large strains are incorporated in the solver. The FSI is achieved through a strong coupling and partitioned approach. We perform several validation cases, and the results may be used to expand the currently limited database of FSI benchmark study. Finally, we demonstrate the versatility of the present method by applying it to the aerodynamics of elastic wings of insects and the flow-induced vocal fold vibration.

  16. The effects of 3D interactive animated graphics on student learning and attitudes in computer-based instruction

    NASA Astrophysics Data System (ADS)

    Moon, Hye Sun

    Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition

  17. 3D printing meets computational astrophysics: deciphering the structure of η Carinae's inner colliding winds

    NASA Astrophysics Data System (ADS)

    Madura, T. I.; Clementel, N.; Gull, T. R.; Kruip, C. J. H.; Paardekooper, J.-P.

    2015-06-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (≳120 M⊙), highly eccentric (e ˜ 0.9) binary star system η Carinae. We demonstrate the methodology used to incorporate 3D interactive figures into a PDF (Portable Document Format) journal publication and the benefits of using 3D visualization and 3D printing as tools to analyse data from multidimensional numerical simulations. Using a consumer-grade 3D printer (MakerBot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of η Carinae's inner (r ˜ 110 au) wind-wind collision interface at multiple orbital phases. The 3D prints and visualizations reveal important, previously unknown `finger-like' structures at orbital phases shortly after periastron (φ ˜ 1.045) that protrude radially outwards from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. thin-shell, Rayleigh-Taylor) that arise at the interface between the radiatively cooled layer of dense post-shock primary-star wind and the fast (3000 km s-1), adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unrecognized physical features highlight the important role 3D printing and interactive graphics can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  18. A new approach of building 3D visualization framework for multimodal medical images display and computed assisted diagnosis

    NASA Astrophysics Data System (ADS)

    Li, Zhenwei; Sun, Jianyong; Zhang, Jianguo

    2012-02-01

    As more and more CT/MR studies are scanning with larger volume of data sets, more and more radiologists and clinician would like using PACS WS to display and manipulate these larger data sets of images with 3D rendering features. In this paper, we proposed a design method and implantation strategy to develop 3D image display component not only with normal 3D display functions but also with multi-modal medical image fusion as well as compute-assisted diagnosis of coronary heart diseases. The 3D component has been integrated into the PACS display workstation of Shanghai Huadong Hospital, and the clinical practice showed that it is easy for radiologists and physicians to use these 3D functions such as multi-modalities' (e.g. CT, MRI, PET, SPECT) visualization, registration and fusion, and the lesion quantitative measurements. The users were satisfying with the rendering speeds and quality of 3D reconstruction. The advantages of the component include low requirements for computer hardware, easy integration, reliable performance and comfortable application experience. With this system, the radiologists and the clinicians can manipulate with 3D images easily, and use the advanced visualization tools to facilitate their work with a PACS display workstation at any time.

  19. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  20. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  1. Research on Computational Fluid Dynamics and Turbulence

    NASA Technical Reports Server (NTRS)

    1986-01-01

    Preconditioning matrices for Chebyshev derivative operators in several space dimensions; the Jacobi matrix technique in computational fluid dynamics; and Chebyshev techniques for periodic problems are discussed.

  2. Dynamic 3-D computer graphics for designing a diagnostic tool for patients with schizophrenia.

    PubMed

    Farkas, Attila; Papathomas, Thomas V; Silverstein, Steven M; Kourtev, Hristiyan; Papayanopoulos, John F

    2016-11-01

    We introduce a novel procedure that uses dynamic 3-D computer graphics as a diagnostic tool for assessing disease severity in schizophrenia patients, based on their reduced influence of top-down cognitive processes in interpreting bottom-up sensory input. Our procedure uses the hollow-mask illusion, in which the concave side of the mask is misperceived as convex, because familiarity with convex faces dominates sensory cues signaling a concave mask. It is known that schizophrenia patients resist this illusion and their resistance increases with illness severity. Our method uses virtual masks rendered with two competing textures: (a) realistic features that enhance the illusion; (b) random-dot visual noise that reduces the illusion. We control the relative weights of the two textures to obtain psychometric functions for controls and patients and assess illness severity. The primary novelty is the use of a rotating mask that is easy to implement on a wide variety of portable devices and avoids the use of elaborate stereoscopic devices that have been used in the past. Thus our method, which can also be used to assess the efficacy of treatments, provides clinicians the advantage to bring the test to the patient's own environment, instead of having to bring patients to the clinic.

  3. Study of strength properties of ceramic composites with soft filler based on 3D computer simulation

    NASA Astrophysics Data System (ADS)

    Smolin, Alexey Yu.; Smolin, Igor Yu.; Smolina, Irina Yu.

    2016-11-01

    The movable cellular automaton method which is a computational method of particle mechanics is applied to simulating uniaxial compression of 3D specimens of a ceramic composite. Soft inclusions were considered explicitly by changing the sort (properties) of automata selected randomly from the original fcc packing. The distribution of inclusions in space, their size, and the total fraction were varied. For each value of inclusion fraction, there were generated several representative specimens with individual pore position in space. The resulting magnitudes of the elastic modulus and strength of the specimens were scattered and well described by the Weibull distribution. We showed that to reveal the dependence of the elastic and strength properties of the composite on the inclusion fraction it is much better to consider the mathematical expectation of the corresponding Weibull distribution, rather than the average of the values for the specimens of the same inclusion fraction. It is shown that the relation between the mechanical properties of material and its inclusion fraction depends significantly on the material structure. Namely, percolation transition from isolated inclusions to interconnected clusters of inclusions strongly manifests itself in the dependence of strength on the fraction of inclusions. Thus, the curve of strength versus inclusion fraction fits different equations for a different kind of structure.

  4. Craniosynostosis: prenatal diagnosis by 2D/3D ultrasound, magnetic resonance imaging and computed tomography.

    PubMed

    Helfer, Talita Micheletti; Peixoto, Alberto Borges; Tonni, Gabriele; Araujo Júnior, Edward

    2016-09-01

    Craniosynostosis is defined as the process of premature fusion of one or more of the cranial sutures. It is a common condition that occurs in about 1 to 2,000 live births. Craniosynostosis may be classified in primary or secondary. It is also classified as nonsyndromic or syndromic. According to suture commitment, craniosynostosis may affect a single suture or multiple sutures. There is a wide range of syndromes involving craniosynostosis and the most common are Apert, Pffeifer, Crouzon, Shaethre-Chotzen and Muenke syndromes. The underlying etiology of nonsyndromic craniosynostosis is unknown. Mutations in the fibroblast growth factor (FGF) signalling pathway play a crucial role in the etiology of craniosynostosis syndromes. Prenatal ultrasound`s detection rate of craniosynostosis is low. Nowadays, different methods can be applied for prenatal diagnosis of craniosynostosis, such as two-dimensional (2D) and three-dimensional (3D) ultrasound, magnetic resonance imaging (MRI), computed tomography (CT) scan and, finally, molecular diagnosis. The presence of craniosynostosis may affect the birthing process. Fetuses with craniosynostosis also have higher rates of perinatal complications. In order to avoid the risks of untreated craniosynostosis, children are usually treated surgically soon after postnatal diagnosis.

  5. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  6. GBM Volumetry using the 3D Slicer Medical Image Computing Platform

    PubMed Central

    Egger, Jan; Kapur, Tina; Fedorov, Andriy; Pieper, Steve; Miller, James V.; Veeraraghavan, Harini; Freisleben, Bernd; Golby, Alexandra J.; Nimsky, Christopher; Kikinis, Ron

    2013-01-01

    Volumetric change in glioblastoma multiforme (GBM) over time is a critical factor in treatment decisions. Typically, the tumor volume is computed on a slice-by-slice basis using MRI scans obtained at regular intervals. (3D)Slicer – a free platform for biomedical research – provides an alternative to this manual slice-by-slice segmentation process, which is significantly faster and requires less user interaction. In this study, 4 physicians segmented GBMs in 10 patients, once using the competitive region-growing based GrowCut segmentation module of Slicer, and once purely by drawing boundaries completely manually on a slice-by-slice basis. Furthermore, we provide a variability analysis for three physicians for 12 GBMs. The time required for GrowCut segmentation was on an average 61% of the time required for a pure manual segmentation. A comparison of Slicer-based segmentation with manual slice-by-slice segmentation resulted in a Dice Similarity Coefficient of 88.43 ± 5.23% and a Hausdorff Distance of 2.32 ± 5.23 mm. PMID:23455483

  7. Superresolution of 3-D computational integral imaging based on moving least square method.

    PubMed

    Kim, Hyein; Lee, Sukho; Ryu, Taekyung; Yoon, Jungho

    2014-11-17

    In this paper, we propose an edge directive moving least square (ED-MLS) based superresolution method for computational integral imaging reconstruction(CIIR). Due to the low resolution of the elemental images and the alignment error of the microlenses, it is not easy to obtain an accurate registration result in integral imaging, which makes it difficult to apply superresolution to the CIIR application. To overcome this problem, we propose the edge directive moving least square (ED-MLS) based superresolution method which utilizes the properties of the moving least square. The proposed ED-MLS based superresolution takes the direction of the edge into account in the moving least square reconstruction to deal with the abrupt brightness changes in the edge regions, and is less sensitive to the registration error. Furthermore, we propose a framework which shows how the data have to be collected for the superresolution problem in the CIIR application. Experimental results verify that the resolution of the elemental images is enhanced, and that a high resolution reconstructed 3-D image can be obtained with the proposed method.

  8. Estimating mass properties of dinosaurs using laser imaging and 3D computer modelling.

    PubMed

    Bates, Karl T; Manning, Phillip L; Hodgetts, David; Sellers, William I

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  9. Estimating Mass Properties of Dinosaurs Using Laser Imaging and 3D Computer Modelling

    PubMed Central

    Bates, Karl T.; Manning, Phillip L.; Hodgetts, David; Sellers, William I.

    2009-01-01

    Body mass reconstructions of extinct vertebrates are most robust when complete to near-complete skeletons allow the reconstruction of either physical or digital models. Digital models are most efficient in terms of time and cost, and provide the facility to infinitely modify model properties non-destructively, such that sensitivity analyses can be conducted to quantify the effect of the many unknown parameters involved in reconstructions of extinct animals. In this study we use laser scanning (LiDAR) and computer modelling methods to create a range of 3D mass models of five specimens of non-avian dinosaur; two near-complete specimens of Tyrannosaurus rex, the most complete specimens of Acrocanthosaurus atokensis and Strutiomimum sedens, and a near-complete skeleton of a sub-adult Edmontosaurus annectens. LiDAR scanning allows a full mounted skeleton to be imaged resulting in a detailed 3D model in which each bone retains its spatial position and articulation. This provides a high resolution skeletal framework around which the body cavity and internal organs such as lungs and air sacs can be reconstructed. This has allowed calculation of body segment masses, centres of mass and moments or inertia for each animal. However, any soft tissue reconstruction of an extinct taxon inevitably represents a best estimate model with an unknown level of accuracy. We have therefore conducted an extensive sensitivity analysis in which the volumes of body segments and respiratory organs were varied in an attempt to constrain the likely maximum plausible range of mass parameters for each animal. Our results provide wide ranges in actual mass and inertial values, emphasizing the high level of uncertainty inevitable in such reconstructions. However, our sensitivity analysis consistently places the centre of mass well below and in front of hip joint in each animal, regardless of the chosen combination of body and respiratory structure volumes. These results emphasize that future

  10. Hybrid grid-particle methods and Penalization: A Sherman-Morrison-Woodbury approach to compute 3D viscous flows using FFT

    NASA Astrophysics Data System (ADS)

    Chatelin, Robin; Poncet, Philippe

    2014-07-01

    Particle methods are very convenient to compute transport equations in fluid mechanics as their computational cost is linear and they are not limited by convection stability conditions. To achieve large 3D computations the method must be coupled to efficient algorithms for velocity computations, including a good treatment of non-homogeneities and complex moving geometries. The Penalization method enables to consider moving bodies interaction by adding a term in the conservation of momentum equation. This work introduces a new computational algorithm to solve implicitly in the same step the Penalization term and the Laplace operators, since explicit computations are limited by stability issues, especially at low Reynolds number. This computational algorithm is based on the Sherman-Morrison-Woodbury formula coupled to a GMRES iterative method to reduce the computations to a sequence of Poisson problems: this allows to formulate a penalized Poisson equation as a large perturbation of a standard Poisson, by means of algebraic relations. A direct consequence is the possibility to use fast solvers based on Fast Fourier Transforms for this problem with good efficiency from both the computational and the memory consumption point of views, since these solvers are recursive and they do not perform any matrix assembling. The resulting fluid mechanics computations are very fast and they consume a small amount of memory, compared to a reference solver or a linear system resolution. The present applications focus mainly on a coupling between transport equation and 3D Stokes equations, for studying biological organisms motion in a highly viscous flows with variable viscosity.

  11. Full parallax viewing-angle enhanced computer-generated holographic 3D display system using integral lens array.

    PubMed

    Choi, Kyongsik; Kim, Joohwan; Lim, Yongjun; Lee, Byoungho

    2005-12-26

    A novel full parallax and viewing-angle enhanced computer-generated holographic (CGH) three-dimensional (3D) display system is proposed and implemented by combining an integral lens array and colorized synthetic phase holograms displayed on a phase-type spatial light modulator. For analyzing the viewing-angle limitations of our CGH 3D display system, we provide some theoretical background and introduce a simple ray-tracing method for 3D image reconstruction. From our method we can get continuously varying full parallax 3D images with the viewing angle about +/-6 degrees . To design the colorized phase holograms, we used a modified iterative Fourier transform algorithm and we could obtain a high diffraction efficiency (~92.5%) and a large signal-to-noise ratio (~11dB) from our simulation results. Finally we show some experimental results that verify our concept and demonstrate the full parallax viewing-angle enhanced color CGH display system.

  12. RADStation3G: a platform for cardiovascular image analysis integrating PACS, 3D+t visualization and grid computing.

    PubMed

    Perez, F; Huguet, J; Aguilar, R; Lara, L; Larrabide, I; Villa-Uriol, M C; López, J; Macho, J M; Rigo, A; Rosselló, J; Vera, S; Vivas, E; Fernàndez, J; Arbona, A; Frangi, A F; Herrero Jover, J; González Ballester, M A

    2013-06-01

    RADStation3G is a software platform for cardiovascular image analysis and surgery planning. It provides image visualization and management in 2D, 3D and 3D+t; data storage (images or operational results) in a PACS (using DICOM); and exploitation of patients' data such as images and pathologies. Further, it provides support for computationally expensive processes with grid technology. In this article we first introduce the platform and present a comparison with existing systems, according to the platform's modules (for cardiology, angiology, PACS archived enriched searching and grid computing), and then RADStation3G is described in detail.

  13. Conceptual detector development and Monte Carlo simulation of a novel 3D breast computed tomography system

    NASA Astrophysics Data System (ADS)

    Ziegle, Jens; Müller, Bernhard H.; Neumann, Bernd; Hoeschen, Christoph

    2016-03-01

    A new 3D breast computed tomography (CT) system is under development enabling imaging of microcalcifications in a fully uncompressed breast including posterior chest wall tissue. The system setup uses a steered electron beam impinging on small tungsten targets surrounding the breast to emit X-rays. A realization of the corresponding detector concept is presented in this work and it is modeled through Monte Carlo simulations in order to quantify first characteristics of transmission and secondary photons. The modeled system comprises a vertical alignment of linear detectors hold by a case that also hosts the breast. Detectors are separated by gaps to allow the passage of X-rays towards the breast volume. The detectors located directly on the opposite side of the gaps detect incident X-rays. Mechanically moving parts in an imaging system increase the duration of image acquisition and thus can cause motion artifacts. So, a major advantage of the presented system design is the combination of the fixed detectors and the fast steering electron beam which enable a greatly reduced scan time. Thereby potential motion artifacts are reduced so that the visualization of small structures such as microcalcifications is improved. The result of the simulation of a single projection shows high attenuation by parts of the detector electronics causing low count levels at the opposing detectors which would require a flat field correction, but it also shows a secondary to transmission ratio of all counted X-rays of less than 1 percent. Additionally, a single slice with details of various sizes was reconstructed using filtered backprojection. The smallest detail which was still visible in the reconstructed image has a size of 0.2mm.

  14. Detection of bone erosions in early rheumatoid arthritis: 3D ultrasonography versus computed tomography.

    PubMed

    Peluso, G; Bosello, S L; Gremese, E; Mirone, L; Di Gregorio, F; Di Molfetta, V; Pirronti, T; Ferraccioli, G

    2015-07-01

    Three-dimensional (3D) volumetric ultrasonography (US) is an interesting tool that could improve the traditional approach to musculoskeletal US in rheumatology, due to its virtual operator independence and reduced examination time. The aim of this study was to investigate the performance of 3DUS in the detection of bone erosions in hand and wrist joints of early rheumatoid arthritis (ERA) patients, with computed tomography (CT) as the reference method. Twenty ERA patients without erosions on standard radiography of hands and wrists underwent 3DUS and CT evaluation of eleven joints: radiocarpal, intercarpal, ulnocarpal, second to fifth metacarpo-phalangeal (MCP), and second to fifth proximal interphalangeal (PIP) joints of dominant hand. Eleven (55.0%) patients were erosive with CT and ten of them were erosive also at 3DUS evaluation. In five patients, 3DUS identified cortical breaks that were not erosions at CT evaluation. Considering CT as the gold standard to identify erosive patients, the 3DUS sensitivity, specificity, PPV, and NPV were 0.9, 0.55, 0.71, and 0.83, respectively. A total of 32 erosions were detected with CT, 15 of them were also observed at the same sites with 3DUS, whereas 17 were not seen on 3DUS evaluation. The majority of these 3DUS false-negative erosions were in the wrist joints. Furthermore, 18 erosions recorded by 3DUS were false positive. The majority of these 3DUS false-positive erosions were located at PIP joints. This study underlines the limits of 3DUS in detecting individual bone erosion, mostly at the wrist, despite the good sensitivity in identifying erosive patients.

  15. 3D printing of preclinical X-ray computed tomographic data sets.

    PubMed

    Doney, Evan; Krumdick, Lauren A; Diener, Justin M; Wathen, Connor A; Chapman, Sarah E; Stamile, Brian; Scott, Jeremiah E; Ravosa, Matthew J; Van Avermaete, Tony; Leevy, W Matthew

    2013-03-22

    Three-dimensional printing allows for the production of highly detailed objects through a process known as additive manufacturing. Traditional, mold-injection methods to create models or parts have several limitations, the most important of which is a difficulty in making highly complex products in a timely, cost-effective manner.(1) However, gradual improvements in three-dimensional printing technology have resulted in both high-end and economy instruments that are now available for the facile production of customized models.(2) These printers have the ability to extrude high-resolution objects with enough detail to accurately represent in vivo images generated from a preclinical X-ray CT scanner. With proper data collection, surface rendering, and stereolithographic editing, it is now possible and inexpensive to rapidly produce detailed skeletal and soft tissue structures from X-ray CT data. Even in the early stages of development, the anatomical models produced by three-dimensional printing appeal to both educators and researchers who can utilize the technology to improve visualization proficiency. (3, 4) The real benefits of this method result from the tangible experience a researcher can have with data that cannot be adequately conveyed through a computer screen. The translation of pre-clinical 3D data to a physical object that is an exact copy of the test subject is a powerful tool for visualization and communication, especially for relating imaging research to students, or those in other fields. Here, we provide a detailed method for printing plastic models of bone and organ structures derived from X-ray CT scans utilizing an Albira X-ray CT system in conjunction with PMOD, ImageJ, Meshlab, Netfabb, and ReplicatorG software packages.

  16. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    NASA Astrophysics Data System (ADS)

    Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.

    2016-03-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.

  17. Investigation of mass transfer intensification under power ultrasound irradiation using 3D computational simulation: A comparative analysis.

    PubMed

    Sajjadi, Baharak; Asgharzadehahmadi, Seyedali; Asaithambi, Perumal; Raman, Abdul Aziz Abdul; Parthasarathy, Rajarathinam

    2017-01-01

    This paper aims at investigating the influence of acoustic streaming induced by low-frequency (24kHz) ultrasound irradiation on mass transfer in a two-phase system. The main objective is to discuss the possible mass transfer improvements under ultrasound irradiation. Three analyses were conducted: i) experimental analysis of mass transfer under ultrasound irradiation; ii) comparative analysis between the results of the ultrasound assisted mass transfer with that obtained from mechanically stirring; and iii) computational analysis of the systems using 3D CFD simulation. In the experimental part, the interactive effects of liquid rheological properties, ultrasound power and superficial gas velocity on mass transfer were investigated in two different sonicators. The results were then compared with that of mechanical stirring. In the computational part, the results were illustrated as a function of acoustic streaming behaviour, fluid flow pattern, gas/liquid volume fraction and turbulence in the two-phase system and finally the mass transfer coefficient was specified. It was found that additional turbulence created by ultrasound played the most important role on intensifying the mass transfer phenomena compared to that in stirred vessel. Furthermore, long residence time which depends on geometrical parameters is another key for mass transfer. The results obtained in the present study would help researchers understand the role of ultrasound as an energy source and acoustic streaming as one of the most important of ultrasound waves on intensifying gas-liquid mass transfer in a two-phase system and can be a breakthrough in the design procedure as no similar studies were found in the existing literature.

  18. CS651 Computer Systems Security Foundations 3d Imagination Cyber Security Management Plan

    SciTech Connect

    Nielsen, Roy S.

    2015-03-02

    3d Imagination is a new company that bases its business on selling and improving 3d open source related hardware. The devices that they sell include 3d imagers, 3d printers, pick and place machines and laser etchers. They have a fast company intranet for ease in sharing, storing and printing large, complex 3d designs. They have an employee set that requires a variety of operating systems including Windows, Mac and a variety of Linux both for running business services as well as design and test machines. There are a wide variety of private networks for testing transfer rates to and from the 3d devices, without interference with other network tra c. They do video conferencing conferencing with customers and other designers. One of their machines is based on the project found at delta.firepick.org(Krassenstein, 2014; Biggs, 2014), which in future, will perform most of those functions. Their devices all include embedded systems, that may have full blown operating systems. Most of their systems are designed to have swappable parts, so when a new technology is born, it can be quickly adopted by people with 3d Imagination hardware. This company is producing a fair number of systems and components, however to get the funding they need to mass produce quality parts, so they are preparing for an IPO to raise the funds they need. They would like to have a cyber-security audit performed so they can give their investors con dence that they are protecting their data, customers information and printers in a proactive manner.

  19. Using Computers in Fluids Engineering Education

    NASA Technical Reports Server (NTRS)

    Benson, Thomas J.

    1998-01-01

    Three approaches for using computers to improve basic fluids engineering education are presented. The use of computational fluid dynamics solutions to fundamental flow problems is discussed. The use of interactive, highly graphical software which operates on either a modern workstation or personal computer is highlighted. And finally, the development of 'textbooks' and teaching aids which are used and distributed on the World Wide Web is described. Arguments for and against this technology as applied to undergraduate education are also discussed.

  20. User's Guide for Subroutine PLOT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three dimensional hidden…

  1. Programmer's Guide for Subroutine PLOT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    This module is part of a series designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PLOT3D is a subroutine package which generates a variety of three-dimensional hidden…

  2. User's Guide for Subroutine PRNT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printer plot displays. The displays…

  3. Programmer's Guide for Subroutine PRNT3D. Physical Processes in Terrestrial and Aquatic Ecosystems, Computer Programs and Graphics Capabilities.

    ERIC Educational Resources Information Center

    Gales, Larry

    These materials were designed to be used by life science students for instruction in the application of physical theory to ecosystem operation. Most modules contain computer programs which are built around a particular application of a physical process. PRNT3D is a subroutine package which generates a variety of printed plot displays. The displays…

  4. DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROOVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    EPA Science Inventory

    DEVELOPMENT OF 3-D COMPUTER MODELS OF HUMAN LUNG MORPHOLOGY FOR IMPROVED RISK ASSESSMENT OF INHALED PARTICULATE MATTER

    Jeffry D. Schroeter, Curriculum in Toxicology, University of North Carolina, Chapel Hill, NC 27599; Ted B. Martonen, ETD, NHEERL, USEPA, RTP, NC 27711; Do...

  5. A collaborative computing framework of cloud network and WBSN applied to fall detection and 3-D motion reconstruction.

    PubMed

    Lai, Chin-Feng; Chen, Min; Pan, Jeng-Shyang; Youn, Chan-Hyun; Chao, Han-Chieh

    2014-03-01

    As cloud computing and wireless body sensor network technologies become gradually developed, ubiquitous healthcare services prevent accidents instantly and effectively, as well as provides relevant information to reduce related processing time and cost. This study proposes a co-processing intermediary framework integrated cloud and wireless body sensor networks, which is mainly applied to fall detection and 3-D motion reconstruction. In this study, the main focuses includes distributed computing and resource allocation of processing sensing data over the computing architecture, network conditions and performance evaluation. Through this framework, the transmissions and computing time of sensing data are reduced to enhance overall performance for the services of fall events detection and 3-D motion reconstruction.

  6. Does fluid infiltration affect the motion of sediment grains? - A 3-D numerical modelling approach using SPH

    NASA Astrophysics Data System (ADS)

    Bartzke, Gerhard; Rogers, Benedict D.; Fourtakas, Georgios; Mokos, Athanasios; Huhn, Katrin

    2016-04-01

    The processes that cause the creation of a variety of sediment morphological features, e.g. laminated beds, ripples, or dunes, are based on the initial motion of individual sediment grains. However, with experimental techniques it is difficult to measure the flow characteristics, i.e., the velocity of the pore water flow in sediments, at a sufficient resolution and in a non-intrusive way. As a result, the role of fluid infiltration at the surface and in the interior affecting the initiation of motion of a sediment bed is not yet fully understood. Consequently, there is a strong need for numerical models, since these are capable of quantifying fluid driven sediment transport processes of complex sediment beds composed of irregular shapes. The numerical method Smoothed Particle Hydrodynamics (SPH) satisfies this need. As a meshless and Lagrangian technique, SPH is ideally suited to simulating flows in sediment beds composed of various grain shapes, but also flow around single grains at a high temporal and spatial resolution. The solver chosen is DualSPHysics (www.dual.sphysics.org) since this is validated for a range of flow conditions. For the present investigation a 3-D numerical flume model was generated using SPH with a length of 4.0 cm, a width of 0.05 cm and a height of 0.2 cm where mobile sediment particles were deposited in a recess. An experimental setup was designed to test sediment configurations composed of irregular grain shapes (grain diameter, D50=1000 μm). Each bed consisted of 3500 mobile objects. After the bed generation process, the entire domain was flooded with 18 million fluid particles. To drive the flow, an oscillating motion perpendicular to the bed was applied to the fluid, reaching a peak value of 0.3 cm/s, simulating 4 seconds of real time. The model results showed that flow speeds decreased logarithmically from the top of the domain towards the surface of the beds, indicating a fully developed boundary layer. Analysis of the fluid

  7. HYDRA, A finite element computational fluid dynamics code: User manual

    SciTech Connect

    Christon, M.A.

    1995-06-01

    HYDRA is a finite element code which has been developed specifically to attack the class of transient, incompressible, viscous, computational fluid dynamics problems which are predominant in the world which surrounds us. The goal for HYDRA has been to achieve high performance across a spectrum of supercomputer architectures without sacrificing any of the aspects of the finite element method which make it so flexible and permit application to a broad class of problems. As supercomputer algorithms evolve, the continuing development of HYDRA will strive to achieve optimal mappings of the most advanced flow solution algorithms onto supercomputer architectures. HYDRA has drawn upon the many years of finite element expertise constituted by DYNA3D and NIKE3D Certain key architectural ideas from both DYNA3D and NIKE3D have been adopted and further improved to fit the advanced dynamic memory management and data structures implemented in HYDRA. The philosophy for HYDRA is to focus on mapping flow algorithms to computer architectures to try and achieve a high level of performance, rather than just performing a port.

  8. Computer Vision Tracking Using Particle Filters for 3D Position Estimation

    DTIC Science & Technology

    2014-03-27

    5 2.2 Photogrammetry ...focus on particle filters. 2.2 Photogrammetry Photogrammetry is the process of determining 3-D coordinates through images. The mathematical underpinnings...of photogrammetry are rooted in the 1480s with Leonardo da Vinci’s study of perspectives [8, p. 1]. However, digital photogrammetry did not emerge

  9. Comparison of Computational Aeroacoustics Prediction of Acoustic Transmission Through a 3D Stator with Experiment

    NASA Technical Reports Server (NTRS)

    Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel

    2014-01-01

    In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.

  10. Comparison of Computational Aeroacoustics Prediction of Acoustic Transmission Through a 3D Stator With Experiment

    NASA Technical Reports Server (NTRS)

    Hixon, Ray; Envia, Edmane; Dahl, Milo; Sutliff, Daniel L.

    2014-01-01

    In this paper, numerical predictions of acoustic transmission through a 3D stator obtained using the NASA BASS code are compared with experimentally measured data. The influence of vane count and stagger as well as frequency and mode order on the transmission loss is investigated. The data-theory comparisons indicate that BASS can predict all the important trends observed in the experimental data.

  11. Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.

    2014-01-01

    Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.

  12. TBIEM3D: A Computer Program for Predicting Ducted Fan Engine Noise. Version 1.1

    NASA Technical Reports Server (NTRS)

    Dunn, M. H.

    1997-01-01

    This document describes the usage of the ducted fan noise prediction program TBIEM3D (Thin duct - Boundary Integral Equation Method - 3 Dimensional). A scattering approach is adopted in which the acoustic pressure field is split into known incident and unknown scattered parts. The scattering of fan-generated noise by a finite length circular cylinder in a uniform flow field is considered. The fan noise is modeled by a collection of spinning point thrust dipoles. The program, based on a Boundary Integral Equation Method (BIEM), calculates circumferential modal coefficients of the acoustic pressure at user-specified field locations. The duct interior can be of the hard wall type or lined. The duct liner is axisymmetric, locally reactive, and can be uniform or axially segmented. TBIEM3D is written in the FORTRAN programming language. Input to TBIEM3D is minimal and consists of geometric and kinematic parameters. Discretization and numerical parameters are determined automatically by the code. Several examples are presented to demonstrate TBIEM3D capabilities.

  13. 3D Printing Meets Computational Astrophysics: Deciphering the Structure of Eta Carinae’s Colliding Winds Using 3D Prints of Smoothed Particle Hydrodynamics Simulations

    NASA Astrophysics Data System (ADS)

    Madura, Thomas; Gull, Theodore R.; Clementel, Nicola; Paardekooper, Jan-Pieter; Kruip, Chael; Corcoran, Michael F.; Hamaguchi, Kenji; Teodoro, Mairan

    2015-01-01

    We present the first 3D prints of output from a supercomputer simulation of a complex astrophysical system, the colliding stellar winds in the massive (>120 MSun), highly eccentric (e ~ 0.9) binary Eta Carinae. Using a consumer-grade 3D printer (Makerbot Replicator 2X), we successfully printed 3D smoothed particle hydrodynamics simulations of Eta Carinae's inner (r ~110 AU) wind-wind collision interface at multiple orbital phases. These 3D prints reveal important, previously unknown 'finger-like' structures at orbital phases shortly after periastron (φ ~1.045) that protrude radially outward from the spiral wind-wind collision region. We speculate that these fingers are related to instabilities (e.g. Rayleigh-Taylor) that arise at the interface between the radiatively-cooled layer of dense post-shock primary-star wind and the hot, adiabatic post-shock companion-star wind. The success of our work and easy identification of previously unknown physical features highlight the important role 3D printing can play in the visualization and understanding of complex 3D time-dependent numerical simulations of astrophysical phenomena.

  14. Remote Visualization and Remote Collaboration On Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val; Lasinski, T. A. (Technical Monitor)

    1995-01-01

    A new technology has been developed for remote visualization that provides remote, 3D, high resolution, dynamic, interactive viewing of scientific data (such as fluid dynamics simulations or measurements). Based on this technology, some World Wide Web sites on the Internet are providing fluid dynamics data for educational or testing purposes. This technology is also being used for remote collaboration in joint university, industry, and NASA projects in computational fluid dynamics and wind tunnel testing. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewer's local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit).

  15. Generating 3D anatomically detailed models of the retina from OCT data sets: implications for computational modelling

    NASA Astrophysics Data System (ADS)

    Shalbaf, Farzaneh; Dokos, Socrates; Lovell, Nigel H.; Turuwhenua, Jason; Vaghefi, Ehsan

    2015-12-01

    Retinal prosthesis has been proposed to restore vision for those suffering from the retinal pathologies that mainly affect the photoreceptors layer but keep the inner retina intact. Prior to costly risky experimental studies computational modelling of the retina will help to optimize the device parameters and enhance the outcomes. Here, we developed an anatomically detailed computational model of the retina based on OCT data sets. The consecutive OCT images of individual were subsequently segmented to provide a 3D representation of retina in the form of finite elements. Thereafter, the electrical properties of the retina were modelled by implementing partial differential equation on the 3D mesh. Different electrode configurations, that is bipolar and hexapolar configurations, were implemented and the results were compared with the previous computational and experimental studies. Furthermore, the possible effects of the curvature of retinal layers on the current steering through the retina were proposed and linked to the clinical observations.

  16. Fluid dynamics computer programs for NERVA turbopump

    NASA Technical Reports Server (NTRS)

    Brunner, J. J.

    1972-01-01

    During the design of the NERVA turbopump, numerous computer programs were developed for the analyses of fluid dynamic problems within the machine. Program descriptions, example cases, users instructions, and listings for the majority of these programs are presented.

  17. Computer-aided diagnosis of pulmonary nodules on CT scans: segmentation and classification using 3D active contours.

    PubMed

    Way, Ted W; Hadjiiski, Lubomir M; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N; Kazerooni, Ella A; Bogot, Naama; Zhou, Chuan

    2006-07-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (A(z)) of 0.83 +/- 0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D

  18. Computer-aided diagnosis of pulmonary nodules on CT scans: Segmentation and classification using 3D active contours

    PubMed Central

    Way, Ted W.; Hadjiiski, Lubomir M.; Sahiner, Berkman; Chan, Heang-Ping; Cascade, Philip N.; Kazerooni, Ella A.; Bogot, Naama; Zhou, Chuan

    2009-01-01

    We are developing a computer-aided diagnosis (CAD) system to classify malignant and benign lung nodules found on CT scans. A fully automated system was designed to segment the nodule from its surrounding structured background in a local volume of interest (VOI) and to extract image features for classification. Image segmentation was performed with a three-dimensional (3D) active contour (AC) method. A data set of 96 lung nodules (44 malignant, 52 benign) from 58 patients was used in this study. The 3D AC model is based on two-dimensional AC with the addition of three new energy components to take advantage of 3D information: (1) 3D gradient, which guides the active contour to seek the object surface, (2) 3D curvature, which imposes a smoothness constraint in the z direction, and (3) mask energy, which penalizes contours that grow beyond the pleura or thoracic wall. The search for the best energy weights in the 3D AC model was guided by a simplex optimization method. Morphological and gray-level features were extracted from the segmented nodule. The rubber band straightening transform (RBST) was applied to the shell of voxels surrounding the nodule. Texture features based on run-length statistics were extracted from the RBST image. A linear discriminant analysis classifier with stepwise feature selection was designed using a second simplex optimization to select the most effective features. Leave-one-case-out resampling was used to train and test the CAD system. The system achieved a test area under the receiver operating characteristic curve (Az) of 0.83±0.04. Our preliminary results indicate that use of the 3D AC model and the 3D texture features surrounding the nodule is a promising approach to the segmentation and classification of lung nodules with CAD. The segmentation performance of the 3D AC model trained with our data set was evaluated with 23 nodules available in the Lung Image Database Consortium (LIDC). The lung nodule volumes segmented by the 3D AC

  19. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs

    PubMed Central

    Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo

    2016-01-01

    Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries. PMID:26899876

  20. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs

    NASA Astrophysics Data System (ADS)

    Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo

    2016-02-01

    Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries.

  1. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule

    NASA Astrophysics Data System (ADS)

    Tesařová, M.; Zikmund, T.; Kaucká, M.; Adameyko, I.; Jaroš, J.; Paloušek, D.; Škaroupka, D.; Kaiser, J.

    2016-03-01

    Imaging of increasingly complex cartilage in vertebrate embryos is one of the key tasks of developmental biology. This is especially important to study shape-organizing processes during initial skeletal formation and growth. Advanced imaging techniques that are reflecting biological needs give a powerful impulse to push the boundaries of biological visualization. Recently, techniques for contrasting tissues and organs have improved considerably, extending traditional 2D imaging approaches to 3D . X-ray micro computed tomography (μCT), which allows 3D imaging of biological objects including their internal structures with a resolution in the micrometer range, in combination with contrasting techniques seems to be the most suitable approach for non-destructive imaging of embryonic developing cartilage. Despite there are many software-based ways for visualization of 3D data sets, having a real solid model of the studied object might give novel opportunities to fully understand the shape-organizing processes in the developing body. In this feasibility study we demonstrated the full procedure of creating a real 3D object of mouse embryo nasal capsule, i.e. the staining, the μCT scanning combined by the advanced data processing and the 3D printing.

  2. Computer-aided multiple-head 3D printing system for printing of heterogeneous organ/tissue constructs.

    PubMed

    Jung, Jin Woo; Lee, Jung-Seob; Cho, Dong-Woo

    2016-02-22

    Recently, much attention has focused on replacement or/and enhancement of biological tissues via the use of cell-laden hydrogel scaffolds with an architecture that mimics the tissue matrix, and with the desired three-dimensional (3D) external geometry. However, mimicking the heterogeneous tissues that most organs and tissues are formed of is challenging. Although multiple-head 3D printing systems have been proposed for fabricating heterogeneous cell-laden hydrogel scaffolds, to date only the simple exterior form has been realized. Here we describe a computer-aided design and manufacturing (CAD/CAM) system for this application. We aim to develop an algorithm to enable easy, intuitive design and fabrication of a heterogeneous cell-laden hydrogel scaffolds with a free-form 3D geometry. The printing paths of the scaffold are automatically generated from the 3D CAD model, and the scaffold is then printed by dispensing four materials; i.e., a frame, two kinds of cell-laden hydrogel and a support. We demonstrated printing of heterogeneous tissue models formed of hydrogel scaffolds using this approach, including the outer ear, kidney and tooth tissue. These results indicate that this approach is particularly promising for tissue engineering and 3D printing applications to regenerate heterogeneous organs and tissues with tailored geometries to treat specific defects or injuries.

  3. Computer-aided diagnosis for osteoporosis using chest 3D CT images

    NASA Astrophysics Data System (ADS)

    Yoneda, K.; Matsuhiro, M.; Suzuki, H.; Kawata, Y.; Niki, N.; Nakano, Y.; Ohmatsu, H.; Kusumoto, M.; Tsuchida, T.; Eguchi, K.; Kaneko, M.

    2016-03-01

    The patients of osteoporosis comprised of about 13 million people in Japan and it is one of the problems the aging society has. In order to prevent the osteoporosis, it is necessary to do early detection and treatment. Multi-slice CT technology has been improving the three dimensional (3-D) image analysis with higher body axis resolution and shorter scan time. The 3-D image analysis using multi-slice CT images of thoracic vertebra can be used as a support to diagnose osteoporosis and at the same time can be used for lung cancer diagnosis which may lead to early detection. We develop automatic extraction and partitioning algorithm for spinal column by analyzing vertebral body structure, and the analysis algorithm of the vertebral body using shape analysis and a bone density measurement for the diagnosis of osteoporosis. Osteoporosis diagnosis support system obtained high extraction rate of the thoracic vertebral in both normal and low doses.

  4. Computational Identification of Genomic Features That Influence 3D Chromatin Domain Formation

    PubMed Central

    Mourad, Raphaël; Cuvier, Olivier

    2016-01-01

    Recent advances in long-range Hi-C contact mapping have revealed the importance of the 3D structure of chromosomes in gene expression. A current challenge is to identify the key molecular drivers of this 3D structure. Several genomic features, such as architectural proteins and functional elements, were shown to be enriched at topological domain borders using classical enrichment tests. Here we propose multiple logistic regression to identify those genomic features that positively or negatively influence domain border establishment or maintenance. The model is flexible, and can account for statistical interactions among multiple genomic features. Using both simulated and real data, we show that our model outperforms enrichment test and non-parametric models, such as random forests, for the identification of genomic features that influence domain borders. Using Drosophila Hi-C data at a very high resolution of 1 kb, our model suggests that, among architectural proteins, BEAF-32 and CP190 are the main positive drivers of 3D domain borders. In humans, our model identifies well-known architectural proteins CTCF and cohesin, as well as ZNF143 and Polycomb group proteins as positive drivers of domain borders. The model also reveals the existence of several negative drivers that counteract the presence of domain borders including P300, RXRA, BCL11A and ELK1. PMID:27203237

  5. A 3-D liver segmentation method with parallel computing for selective internal radiation therapy.

    PubMed

    Goryawala, Mohammed; Guillen, Magno R; Cabrerizo, Mercedes; Barreto, Armando; Gulec, Seza; Barot, Tushar C; Suthar, Rekha R; Bhatt, Ruchir N; Mcgoron, Anthony; Adjouadi, Malek

    2012-01-01

    This study describes a new 3-D liver segmentation method in support of the selective internal radiation treatment as a treatment for liver tumors. This 3-D segmentation is based on coupling a modified k-means segmentation method with a special localized contouring algorithm. In the segmentation process, five separate regions are identified on the computerized tomography image frames. The merit of the proposed method lays in its potential to provide fast and accurate liver segmentation and 3-D rendering as well as in delineating tumor region(s), all with minimal user interaction. Leveraging of multicore platforms is shown to speed up the processing of medical images considerably, making this method more suitable in clinical settings. Experiments were performed to assess the effect of parallelization using up to 442 slices. Empirical results, using a single workstation, show a reduction in processing time from 4.5 h to almost 1 h for a 78% gain. Most important is the accuracy achieved in estimating the volumes of the liver and tumor region(s), yielding an average error of less than 2% in volume estimation over volumes generated on the basis of the current manually guided segmentation processes. Results were assessed using the analysis of variance statistical analysis.

  6. Continuing Validation of Computational Fluid Dynamics for Supersonic Retropropulsion

    NASA Technical Reports Server (NTRS)

    Schauerhamer, Daniel Guy; Trumble, Kerry A.; Kleb, Bil; Carlson, Jan-Renee; Edquist, Karl T.

    2011-01-01

    A large step in the validation of Computational Fluid Dynamics (CFD) for Supersonic Retropropulsion (SRP) is shown through the comparison of three Navier-Stokes solvers (DPLR, FUN3D, and OVERFLOW) and wind tunnel test results. The test was designed specifically for CFD validation and was conducted in the Langley supersonic 4 x4 Unitary Plan Wind Tunnel and includes variations in the number of nozzles, Mach and Reynolds numbers, thrust coefficient, and angles of orientation. Code-to-code and code-to-test comparisons are encouraging and possible error sources are discussed.

  7. Computer-aided segmentation and 3D analysis of in vivo MRI examinations of the human vocal tract during phonation

    NASA Astrophysics Data System (ADS)

    Wismüller, Axel; Behrends, Johannes; Hoole, Phil; Leinsinger, Gerda L.; Meyer-Baese, Anke; Reiser, Maximilian F.

    2008-03-01

    We developed, tested, and evaluated a 3D segmentation and analysis system for in vivo MRI examinations of the human vocal tract during phonation. For this purpose, six professionally trained speakers, age 22-34y, were examined using a standardized MRI protocol (1.5 T, T1w FLASH, ST 4mm, 23 slices, acq. time 21s). The volunteers performed a prolonged (>=21s) emission of sounds of the German phonemic inventory. Simultaneous audio tape recording was obtained to control correct utterance. Scans were made in axial, coronal, and sagittal planes each. Computer-aided quantitative 3D evaluation included (i) automated registration of the phoneme-specific data acquired in different slice orientations, (ii) semi-automated segmentation of oropharyngeal structures, (iii) computation of a curvilinear vocal tract midline in 3D by nonlinear PCA, (iv) computation of cross-sectional areas of the vocal tract perpendicular to this midline. For the vowels /a/,/e/,/i/,/o/,/ø/,/u/,/y/, the extracted area functions were used to synthesize phoneme sounds based on an articulatory-acoustic model. For quantitative analysis, recorded and synthesized phonemes were compared, where area functions extracted from 2D midsagittal slices were used as a reference. All vowels could be identified correctly based on the synthesized phoneme sounds. The comparison between synthesized and recorded vowel phonemes revealed that the quality of phoneme sound synthesis was improved for phonemes /a/ and /y/, if 3D instead of 2D data were used, as measured by the average relative frequency shift between recorded and synthesized vowel formants (p<0.05, one-sided Wilcoxon rank sum test). In summary, the combination of fast MRI followed by subsequent 3D segmentation and analysis is a novel approach to examine human phonation in vivo. It unveils functional anatomical findings that may be essential for realistic modelling of the human vocal tract during speech production.

  8. A graph theoretic approach for computing 3D+time biventricular cardiac strain from tagged MRI data.

    PubMed

    Li, Ming; Gupta, Himanshu; Lloyd, Steven G; Dell'Italia, Louis J; Denney, Thomas S

    2017-01-01

    Tagged magnetic resonance imaging (tMRI) is a well-established method for evaluating regional mechanical function of the heart. Many techniques have been developed to compute 2D or 3D cardiac deformation and strain from tMRI images. In this paper, we present a new method for measuring 3D plus time biventricular myocardial strain from tMRI data. The method is composed of two parts. First, we use a Gabor filter bank to extract tag points along tag lines. Second, each tag point is classified to one of a set of indexed reference tag lines using a point classification with graph cuts (PCGC) algorithm and a motion compensation technique. 3D biventricular deformation and strain is computed at each image time frame from the classified tag points using a previously published finite difference method. The strain computation is fully automatic after myocardial contours are defined near end-diastole and end-systole. An in-vivo dataset composed of 30 human imaging studies with a range of pathologies was used for validation. Strains computed with the PCGC method with no manual corrections were compared to strains computed from both manually placed tag points and a manually-corrected unwrapped phase method. A typical cardiac imaging study with 10 short-axis slices and 6 long-axis slices required 30 min for contouring followed by 44 min of automated processing. The results demonstrate that the proposed method can reconstruct accurate 3D plus time cardiac strain maps with minimal user intervention.

  9. Faster Aerodynamic Simulation With Cart3D

    NASA Technical Reports Server (NTRS)

    2003-01-01

    A NASA-developed aerodynamic simulation tool is ensuring the safety of future space operations while providing designers and engineers with an automated, highly accurate computer simulation suite. Cart3D, co-winner of NASA's 2002 Software of the Year award, is the result of over 10 years of research and software development conducted by Michael Aftosmis and Dr. John Melton of Ames Research Center and Professor Marsha Berger of the Courant Institute at New York University. Cart3D offers a revolutionary approach to computational fluid dynamics (CFD), the computer simulation of how fluids and gases flow around an object of a particular design. By fusing technological advancements in diverse fields such as mineralogy, computer graphics, computational geometry, and fluid dynamics, the software provides a new industrial geometry processing and fluid analysis capability with unsurpassed automation and efficiency.

  10. Computation of two-fluid, flowing equilibria

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren; Kanki, Takashi; Ishida, Akio

    2006-10-01

    Equilibria of flowing two-fluid plasmas are computed for realistic compact-toroid and spherical-tokamak parameters. In these examples the two-fluid parameter ɛ (ratio of ion inertial length to overall plasma size) is small, ɛ ˜ 0.03 -- 0.2, but hardly negligible. The algorithm is based on the nearby-fluids model [1] which avoids a singularity that otherwise occurs for small ɛ. These representative equilibria exhibit significant flows, both toroidal and poloidal. Further, the flow patterns display notable flow shear. The importance of two-fluid effects is demonstrated by comparing with analogous equilibria (e.g. fixed toroidal and poloidal current) for a static plasma (Grad-Shafranov solution) and a flowing single-fluid plasma. Differences between the two-fluid, single-fluid, and static equilibria are highlighted: in particular with respect to safety factor profile, flow patterns, and electrical potential. These equilibria are computed using an iterative algorithm: it employs a successive-over-relaxation procedure for updating the magnetic flux function and a Newton-Raphson procedure for updating the density. The algorithm is coded in Visual Basic in an Excel platform on a personal computer. The computational time is essentially instantaneous (seconds). [1] L.C. Steinhauer and A. Ishida, Phys. Plasmas 13, 052513 (2006).

  11. Fluid-Structure Interaction Analysis of Papillary Muscle Forces Using a Comprehensive Mitral Valve Model with 3D Chordal Structure.

    PubMed

    Toma, Milan; Jensen, Morten Ø; Einstein, Daniel R; Yoganathan, Ajit P; Cochran, Richard P; Kunzelman, Karyn S

    2016-04-01

    Numerical models of native heart valves are being used to study valve biomechanics to aid design and development of repair procedures and replacement devices. These models have evolved from simple two-dimensional approximations to complex three-dimensional, fully coupled fluid-structure interaction (FSI) systems. Such simulations are useful for predicting the mechanical and hemodynamic loading on implanted valve devices. A current challenge for improving the accuracy of these predictions is choosing and implementing modeling boundary conditions. In order to address this challenge, we are utilizing an advanced in vitro system to validate FSI conditions for the mitral valve system. Explanted ovine mitral valves were mounted in an in vitro setup, and structural data for the mitral valve was acquired with [Formula: see text]CT. Experimental data from the in vitro ovine mitral valve system were used to validate the computational model. As the valve closes, the hemodynamic data, high speed leaflet dynamics, and force vectors from the in vitro system were compared to the results of the FSI simulation computational model. The total force of 2.6 N per papillary muscle is matched by the computational model. In vitro and in vivo force measurements enable validating and adjusting material parameters to improve the accuracy of computational models. The simulations can then be used to answer questions that are otherwise not possible to investigate experimentally. This work is important to maximize the validity of computational models of not just the mitral valve, but any biomechanical aspect using computational simulation in designing medical devices.

  12. The impact of computer display height and desk design on 3D posture during information technology work by young adults.

    PubMed

    Straker, L; Burgess-Limerick, R; Pollock, C; Murray, K; Netto, K; Coleman, J; Skoss, R

    2008-04-01

    Computer display height and desk design to allow forearm support are two critical design features of workstations for information technology tasks. However there is currently no 3D description of head and neck posture with different computer display heights and no direct comparison to paper based information technology tasks. There is also inconsistent evidence on the effect of forearm support on posture and no evidence on whether these features interact. This study compared the 3D head, neck and upper limb postures of 18 male and 18 female young adults whilst working with different display and desk design conditions. There was no substantial interaction between display height and desk design. Lower display heights increased head and neck flexion with more spinal asymmetry when working with paper. The curved desk, designed to provide forearm support, increased scapula elevation/protraction and shoulder flexion/abduction.

  13. Analysis of shallow gas and fluid migration within the Plio-Pleistocene sedimentary succession of the SW Barents Sea continental margin using 3D seismic data

    NASA Astrophysics Data System (ADS)

    Andreassen, Karin; Nilssen, Espen Glad; Ødegaard, Christian M.

    2007-06-01

    Three-dimensional (3D) seismic data acquired for hydrocarbon exploration reveal that gas accumulations are common within the 2 3 km thick Plio-Pleistocene stratigraphic column of the south-western Barents Sea continental margin. The 3D seismic data have relatively low-frequency content (<40 Hz) but, due to dense spatial sampling, long source-receiver offsets, 3D migration and advanced interpretation techniques, they provide surprisingly detailed images of inferred gas accumulations and the sedimentary environments in which they occur. The presence of gas is inferred from seismic reflection segments with anomalously high amplitude and reversed phase, compared with the seafloor reflection, so-called bright spots. Fluid migration is inferred from vertical zones of acoustic masking and acoustic pipes. The 3D seismic volume allows a spatial analysis of amplitude anomalies inferred to reflect the presence of gas and fluids. At several locations, seismic attribute maps reveal detailed images of flat spots, inferred to represent gas water interfaces. The data indicate a focused fluid migration system, where sub-vertical faults and zones of highly fractured sediments are conduits for the migration of gas-bearing fluids in Plio-Pleistocene sediments. Gas is interpreted to appear in high-porosity fan-shaped sediment lobes, channel and delta deposits, glacigenic debris flows and sediment blocks, probably sealed by low-permeability, clayey till and/or (glacio)marine sediments. Gas and fluid flow are here attributed mainly to rapid Plio-Pleistocene sedimentation that loaded large amounts of sedimentary material over lower-density, fine-grained Eocene oozes. This probably caused pore-fluid dewatering of the high-fluid content oozes through a network of polygonal faults. The study area is suggested to have experienced cycles of fluid expulsion and hydrocarbon migration associated with glacial interglacial cycles.

  14. Implementation of Headtracking and 3D Stereo with Unity and VRPN for Computer Simulations

    NASA Technical Reports Server (NTRS)

    Noyes, Matthew A.

    2013-01-01

    This paper explores low-cost hardware and software methods to provide depth cues traditionally absent in monocular displays. The use of a VRPN server in conjunction with a Microsoft Kinect and/or Nintendo Wiimote to provide head tracking information to a Unity application, and NVIDIA 3D Vision for retinal disparity support, is discussed. Methods are suggested to implement this technology with NASA's EDGE simulation graphics package, along with potential caveats. Finally, future applications of this technology to astronaut crew training, particularly when combined with an omnidirectional treadmill for virtual locomotion and NASA's ARGOS system for reduced gravity simulation, are discussed.

  15. Isoparametric 3-D Finite Element Mesh Generation Using Interactive Computer Graphics

    NASA Technical Reports Server (NTRS)

    Kayrak, C.; Ozsoy, T.

    1985-01-01

    An isoparametric 3-D finite element mesh generator was developed with direct interface to an interactive geometric modeler program called POLYGON. POLYGON defines the model geometry in terms of boundaries and mesh regions for the mesh generator. The mesh generator controls the mesh flow through the 2-dimensional spans of regions by using the topological data and defines the connectivity between regions. The program is menu driven and the user has a control of element density and biasing through the spans and can also apply boundary conditions, loads interactively.

  16. Micro3D: computer program for three-dimensional reconstruction visualization, and analysis of neuronal populations and barin regions.

    PubMed

    Bjaalie, Jan G; Leergaard, Trygve B; Pettersen, Christian

    2006-04-01

    This article presents a computer program, Micro3D, designed for 3-D reconstruction, visualization, and analysis of coordinate-data (points and lines) recorded from serial sections. The software has primarily been used for studying shapes and dimension of brain regions (contour line data) and distributions of cellular elements such as neuronal cell bodies or axonal terminal fields labeled with tract-tracing techniques (point data). The tissue elements recorded could equally well be labeled with use of other techniques, the only requirement being that the data collected are saved as x,y,z coordinates. Data are typically imported from image-combining computerized microscopy systems or image analysis systems, such as Neurolucida (MicroBrightField, Colchester, VT) or analySIS (Soft Imaging System, Gmbh, Münster, Germany). System requirements are a PC running LINUX. Reconstructions in Micro3D may be rotated and zoomed in real-time, and submitted to perspective viewing and stereo-imaging. Surfaces are re-synthesized on the basis of stacks of contour lines. Clipping is used for defining section-independent subdivisions of the reconstruction. Flattening of curved sheets of points layers (e.g., neurons in a layer) facilitates inspection of complicated distribution patterns. Micro3D computes color-coded density maps. Opportunities for translation of data from different reconstructions into common coordinate systems are also provided. This article demonstrates the use of Micro3D for visualization of complex neuronal distribution patterns in somatosensory and auditory systems. The software is available for download on conditions posted at the NeSys home pages (http://www.nesys.uio.no/) and at The Rodent Brain Workbench (http://www.rbwb.org/).

  17. Novel experimental technique for 3D investigation of high-speed cavitating diesel fuel flows by X-ray micro computed tomography

    NASA Astrophysics Data System (ADS)

    Lorenzi, M.; Mitroglou, N.; Santini, M.; Gavaises, M.

    2017-03-01

    An experimental technique for the estimation of the temporal-averaged vapour volume fraction within high-speed cavitating flow orifices is presented. The scientific instrument is designed to employ X-ray micro computed tomography (microCT) as a quantitative 3D measuring technique applied to custom designed, large-scale, orifice-type flow channels made from Polyether-ether-ketone (PEEK). The attenuation of the ionising electromagnetic radiation by the fluid under examination depends on its local density; the transmitted radiation through the cavitation volume is compared to the incident radiation, and combination of radiographies from sufficient number of angles leads to the reconstruction of attenuation coefficients versus the spatial position. This results to a 3D volume fraction distribution measurement of the developing multiphase flow. The experimental results obtained are compared against the high speed shadowgraph visualisation images obtained in an optically transparent nozzle with identical injection geometry; comparison between the temporal mean image and the microCT reconstruction shows excellent agreement. At the same time, the real 3D internal channel geometry (possibly eroded) has been measured and compared to the nominal manufacturing CAD drawing of the test nozzle.

  18. Computation of elastic properties of 3D digital cores from the Longmaxi shale

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hui; Fu, Li-Yun; Zhang, Yan; Jin, Wei-Jun

    2016-06-01

    The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.

  19. Computational models of hair cell bundle mechanics: III. 3-D utricular bundles.

    PubMed

    Silber, Joe; Cotton, John; Nam, Jong-Hoon; Peterson, Ellengene H; Grant, Wally

    2004-11-01

    Six utricular hair bundles from a red-eared turtle are modeled using 3-D finite element analysis. The mechanical model includes shear deformable stereocilia, realignment of all forces during force load increments, and tip and lateral link inter-stereocilia connections. Results show that there are two distinct bundle types that can be separated by mechanical bundle stiffness. The more compliant group has fewer total stereocilia and short stereocilia relative to kinocilium height; these cells are located in the medial and lateral extrastriola. The stiff group are located in the striola. They have more stereocilia and long stereocilia relative to kinocilia heights. Tip link tensions show parallel behavior in peripheral columns of the bundle and serial behavior in central columns when the tip link modulus is near or above that of collagen (1x10(9) N/m(2)). This analysis shows that lumped parameter models of single stereocilia columns can show some aspects of bundle mechanics; however, a distributed, 3-D model is needed to explore overall bundle behavior.

  20. Modeling and Analysis of a Lunar Space Reactor with the Computer Code RELAP5-3D/ATHENA

    SciTech Connect

    Carbajo, Juan J; Qualls, A L

    2008-01-01

    The transient analysis 3-dimensional (3-D) computer code RELAP5-3D/ATHENA has been employed to model and analyze a space reactor of 180 kW(thermal), 40 kW (net, electrical) with eight Stirling engines (SEs). Each SE will generate over 6 kWe; the excess power will be needed for the pumps and other power management devices. The reactor will be cooled by NaK (a eutectic mixture of sodium and potassium which is liquid at ambient temperature). This space reactor is intended to be deployed over the surface of the Moon or Mars. The reactor operating life will be 8 to 10 years. The RELAP5-3D/ATHENA code is being developed and maintained by Idaho National Laboratory. The code can employ a variety of coolants in addition to water, the original coolant employed with early versions of the code. The code can also use 3-D volumes and 3-D junctions, thus allowing for more realistic representation of complex geometries. A combination of 3-D and 1-D volumes is employed in this study. The space reactor model consists of a primary loop and two secondary loops connected by two heat exchangers (HXs). Each secondary loop provides heat to four SEs. The primary loop includes the nuclear reactor with the lower and upper plena, the core with 85 fuel pins, and two vertical heat exchangers (HX). The maximum coolant temperature of the primary loop is 900 K. The secondary loops also employ NaK as a coolant at a maximum temperature of 877 K. The SEs heads are at a temperature of 800 K and the cold sinks are at a temperature of ~400 K. Two radiators will be employed to remove heat from the SEs. The SE HXs surrounding the SE heads are of annular design and have been modeled using 3-D volumes. These 3-D models have been used to improve the HX design by optimizing the flows of coolant and maximizing the heat transferred to the SE heads. The transients analyzed include failure of one or more Stirling engines, trip of the reactor pump, and trips of the secondary loop pumps feeding the HXs of the

  1. Non-Newtonian Fluids Spreading with Surface Tension Effect: 3D Numerical Analysis Using FEM and Experimental Study

    NASA Astrophysics Data System (ADS)

    Hu, Bin; Kieweg, Sarah

    2010-11-01

    Gravity-driven thin film flow down an incline is studied for optimal design of polymeric drug delivery vehicles, such as anti-HIV topical microbicides. We develop a 3D FEM model using non-Newtonian mechanics to model the flow of gels in response to gravity, surface tension and shear-thinning. Constant volume setup is applied within the lubrication approximation scope. The lengthwise profiles of the 3D model agree with our previous 2D finite difference model, while the transverse contact line patterns of the 3D model are compared to the experiments. With incorporation of surface tension, capillary ridges are observed at the leading front in both 2D and 3D models. Previously published studies show that capillary ridge can amplify the fingering instabilities in transverse direction. Sensitivity studies (2D & 3D) and experiments are carried out to describe the influence of surface tension and shear-thinning on capillary ridge and fingering instabilities.

  2. Parallel computation of the SAR distribution in a 3D human head model

    NASA Astrophysics Data System (ADS)

    Walendziuk, Wojciech

    2008-01-01

    This work presents a way of parallel computation of the Specific Absorption Rate distribution. The parallel program used in the computation was based on the FDTD (Finite-Difference Time-Domain) method [1,2,3]. In order to establish communication among the computational nodes, the MPI (Message Passing Interface) standard was used [4,5,6]. The presented example of a human head numerical model was built with the use of MRI (Magnetic Resonance Image) pictures.

  3. Benchmarking computational fluid dynamics models for lava flow simulation

    NASA Astrophysics Data System (ADS)

    Dietterich, Hannah; Lev, Einat; Chen, Jiangzhi

    2016-04-01

    Numerical simulations of lava flow emplacement are valuable for assessing lava flow hazards, forecasting active flows, interpreting past eruptions, and understanding the controls on lava flow behavior. Existing lava flow models vary in simplifying assumptions, physics, dimensionality, and the degree to which they have been validated against analytical solutions, experiments, and natural observations. In order to assess existing models and guide the development of new codes, we conduct a benchmarking study of computational fluid dynamics models for lava flow emplacement, including VolcFlow, OpenFOAM, FLOW-3D, and COMSOL. Using the new benchmark scenarios defined in Cordonnier et al. (Geol Soc SP, 2015) as a guide, we model viscous, cooling, and solidifying flows over horizontal and sloping surfaces, topographic obstacles, and digital elevation models of natural topography. We compare model results to analytical theory, analogue and molten basalt experiments, and measurements from natural lava flows. Overall, the models accurately simulate viscous flow with some variability in flow thickness where flows intersect obstacles. OpenFOAM, COMSOL, and FLOW-3D can each reproduce experimental measurements of cooling viscous flows, and FLOW-3D simulations with temperature-dependent rheology match results from molten basalt experiments. We can apply these models to reconstruct past lava flows in Hawai'i and Saudi Arabia using parameters assembled from morphology, textural analysis, and eruption observations as natural test cases. Our study highlights the strengths and weaknesses of each code, including accuracy and computational costs, and provides insights regarding code selection.

  4. Introduction to Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Date, Anil W.

    2005-08-01

    This is a textbook for advanced undergraduate and first-year graduate students in mechanical, aerospace, and chemical engineering. The book emphasizes understanding CFD through physical principles and examples. The author follows a consistent philosophy of control volume formulation of the fundamental laws of fluid motion and energy transfer, and introduces a novel notion of 'smoothing pressure correction' for solution of flow equations on collocated grids within the framework of the well-known SIMPLE algorithm. The subject matter is developed by considering pure conduction/diffusion, convective transport in 2-dimensional boundary layers and in fully elliptic flow situations and phase-change problems in succession. The book includes chapters on discretization of equations for transport of mass, momentum and energy on Cartesian, structured curvilinear and unstructured meshes, solution of discretised equations, numerical grid generation and convergence enhancement. Practicing engineers will find this particularly useful for reference and for continuing education.

  5. CasimirSim - A Tool to Compute Casimir Polder Forces for Nontrivial 3D Geometries

    SciTech Connect

    Sedmik, Rene; Tajmar, Martin

    2007-01-30

    The so-called Casimir effect is one of the most interesting macro-quantum effects. Being negligible on the macro-scale it becomes a governing factor below structure sizes of 1 {mu}m where it accounts for typically 100 kN m-2. The force does not depend on gravity, or electric charge but solely on the materials properties, and geometrical shape. This makes the effect a strong candidate for micro(nano)-mechanical devices M(N)EMS. Despite a long history of research the theory lacks a uniform description valid for arbitrary geometries which retards technical application. We present an advanced state-of-the-art numerical tool overcoming all the usual geometrical restrictions, capable of calculating arbitrary 3D geometries by utilizing the Casimir Polder approximation for the Casimir force.

  6. A novel structured dictionary for fast processing of 3D medical images, with application to computed tomography restoration and denoising

    NASA Astrophysics Data System (ADS)

    Karimi, Davood; Ward, Rabab K.

    2016-03-01

    Sparse representation of signals in learned overcomplete dictionaries has proven to be a powerful tool with applications in denoising, restoration, compression, reconstruction, and more. Recent research has shown that learned overcomplete dictionaries can lead to better results than analytical dictionaries such as wavelets in almost all image processing applications. However, a major disadvantage of these dictionaries is that their learning and usage is very computationally intensive. In particular, finding the sparse representation of a signal in these dictionaries requires solving an optimization problem that leads to very long computational times, especially in 3D image processing. Moreover, the sparse representation found by greedy algorithms is usually sub-optimal. In this paper, we propose a novel two-level dictionary structure that improves the performance and the speed of standard greedy sparse coding methods. The first (i.e., the top) level in our dictionary is a fixed orthonormal basis, whereas the second level includes the atoms that are learned from the training data. We explain how such a dictionary can be learned from the training data and how the sparse representation of a new signal in this dictionary can be computed. As an application, we use the proposed dictionary structure for removing the noise and artifacts in 3D computed tomography (CT) images. Our experiments with real CT images show that the proposed method achieves results that are comparable with standard dictionary-based methods while substantially reducing the computational time.

  7. A cubic interpolation pipeline for fast computation of 3D deformation fields modeled using B-splines

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Shekhar, Raj

    2006-02-01

    Fast computation of 3D deformation fields is critical to bringing the application of automated elastic image registration algorithms to routine clinical practice. However, it lies beyond the computational power of current microprocessors; therefore requiring implementations using either massively parallel computers or application-specific hardware accelerators. The use of massively parallel computers in a clinical setting is not practical or cost-effective, therefore making the use of hardware accelerators necessary. We present a hardware pipeline that allows accelerating the computation of 3D deformation fields to speeds up to two orders of magnitude faster than software implementations on current workstations and about 64 times faster than other previously reported architectures. The pipeline implements a version of the free-form deformation calculation algorithm, which is optimized to minimize the number of arithmetic operations required to calculate the transformation of a given set of neighboring voxels, thereby achieving an efficient and compact implementation in hardware which allows its use as part of a larger system.

  8. Determining the Effectiveness of the 3D Alice Programming Environment at the Computer Science I Level

    ERIC Educational Resources Information Center

    Sykes, Edward R.

    2007-01-01

    Student retention in Computer Science is becoming a serious concern among Educators in many colleges and universities. Most institutions currently face a significant drop in enrollment in Computer Science. A number of different tools and strategies have emerged to address this problem (e.g., BlueJ, Karel Robot, etc.). Although these tools help to…

  9. CFL3D: Its History and Some Recent Applications

    NASA Technical Reports Server (NTRS)

    Rumsey, C. L.; Biedron, R. T.; Thomas, J. L.

    1997-01-01

    The history of the Computational Fluids Laboratory -3D (CFL3D) Navier-Stokes computer code is discussed and a comprehensive reference list is given. Three recent advanced applications are presented (1) Wing with partial-spanflap, (2) F/A-18 with forebody control strake, and (3) Noise predictions for an advanced ducted propeller turbomachinery flow.

  10. A Computational Fluid Dynamics Algorithm on a Massively Parallel Computer

    NASA Technical Reports Server (NTRS)

    Jespersen, Dennis C.; Levit, Creon

    1989-01-01

    The discipline of computational fluid dynamics is demanding ever-increasing computational power to deal with complex fluid flow problems. We investigate the performance of a finite-difference computational fluid dynamics algorithm on a massively parallel computer, the Connection Machine. Of special interest is an implicit time-stepping algorithm; to obtain maximum performance from the Connection Machine, it is necessary to use a nonstandard algorithm to solve the linear systems that arise in the implicit algorithm. We find that the Connection Machine ran achieve very high computation rates on both explicit and implicit algorithms. The performance of the Connection Machine puts it in the same class as today's most powerful conventional supercomputers.

  11. 3D Chirp Sonar Images on Fluid Migration Pathways and Their Implications on Seafloor Stability East of the Fangliao Submarine Canyon Offshore SW Taiwan

    NASA Astrophysics Data System (ADS)

    Lu, Y. W.; Liu, C. S.; Su, C. C.; Hsu, H. H.; Chen, Y. H.

    2015-12-01

    This study utilizes both chirp sonar images and coring results to investigate the unstable seafloor strata east of the Fangliao Submarine Canyon offshore southwestern Taiwan. We have constructed 3D chirp sonar images from a densely surveyed block to trace the attitude of an acoustic transparent layer and features caused by fluid activities. Based on the distribution of this transparent layer and fluid-related features, we suggest that this transparent layer forms a pathway for fluid migration which induces fluid-related characters such as acoustic blanking and fluid chimneys in the 3D chirp sonar images. Cored seafloor samples are used in this study to investigate the sediment compositions. The 210Pb activity profiles of the cores show oscillating and unsteady values at about 20~25 cm from core top. The bulk densities of the core samples in the same section (about 20~25 cm from core top) give values lower than those at deeper parts of the cores. These results indicate that the water content is much higher in the shallow sediments than in the deeper strata. From core sample analyses, we deduce that the local sediments are disturbed by liquefaction. From the analyses of 3D chirp sonar images and core data, we suggest that the seafloor east of the Fangliao Submarine Canyon is in an unstable condition, if disturbed by earthquakes, submarine landslides and gravity flows could be easily triggered and cause some geohazards, like breaking submarine cables during the 2006 Pingtung earthquake event.

  12. Combinative in vitro studies and computational model to predict 3D cell migration response to drug insult.

    PubMed

    Maffei, Joseph S; Srivastava, Jaya; Fallica, Brian; Zaman, Muhammad H

    2014-10-01

    The development of drugs to counter diseases related to cell migration has resulted in a multi-billion dollar endeavor. Unfortunately, few drugs have emerged from this effort highlighting the need for new methods to enhance assays to study, analyze and control cell migration. In response to this complex process, computational models have emerged as potent tools to describe migration providing a high throughput and low cost method. However, most models are unable to predict migration response to drug with direct application to in vitro experiments. In addition to this, no model to date has attempted to describe migration in response to drugs while incorporating simultaneously protein signaling, proteolytic activity, and 3D culture. In this paper, we describe an integrated computational approach, in conjunction with in vitro observations, to serve as a platform to accurately predict migration in 3D matrices incorporating the function of matrix metalloproteinases (MMPs) and their interaction with the Extracellular signal-related kinase (ERK) signaling pathway. Our results provide biological insight into how matrix density, MMP activity, integrin adhesions, and p-ERK expression all affect speed and persistence in 3D. Predictions from the model provide insight toward improving drug combinations to more effectively reduce both speed and persistence during migration and the role of integrin adhesions in motility. In this way our integrated platform provides future potential to streamline and improve throughput toward the testing and development of migration targeting drugs with tangible application to current in vitro assays.

  13. Computer power fathoms the depths: billion-bit data processors illuminate the subsurface. [3-D Seismic techniques

    SciTech Connect

    Ross, J.J.

    1985-01-01

    Some of the same space-age signal technology being used to track events 200 miles above the earth is helping petroleum explorationists track down oil and natural gas two miles and more down into the earth. The breakthroughs, which have come in a technique called three-dimensional seismic work, could change the complexion of exploration for oil and natural gas. Thanks to this 3-D seismic approach, explorationists can make dynamic maps of sites miles beneath the surface. Then explorationists can throw these maps on space-age computer systems and manipulate them every which way - homing in sharply on salt domes, faults, sands and traps associated with oil and natural gas. ''The 3-D seismic scene has exploded within the last two years,'' says, Peiter Tackenberg, Marathon technical consultant who deals with both domestic and international exploration. The 3-D technique has been around for more than a decade, he notes, but recent achievements in space-age computer hardware and software have unlocked its full potential.

  14. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  15. Computational fluid dynamics - The coming revolution

    NASA Technical Reports Server (NTRS)

    Graves, R. A., Jr.

    1982-01-01

    The development of aerodynamic theory is traced from the days of Aristotle to the present, with the next stage in computational fluid dynamics dependent on superspeed computers for flow calculations. Additional attention is given to the history of numerical methods inherent in writing computer codes applicable to viscous and inviscid analyses for complex configurations. The advent of the superconducting Josephson junction is noted to place configurational demands on computer design to avoid limitations imposed by the speed of light, and a Japanese projection of a computer capable of several hundred billion operations/sec is mentioned. The NASA Numerical Aerodynamic Simulator is described, showing capabilities of a billion operations/sec with a memory of 240 million words using existing technology. Near-term advances in fluid dynamics are discussed.

  16. Fusion Render Cloud System for 3D Contents Using a Super Computer

    NASA Astrophysics Data System (ADS)

    Choi, E.-Jung; Kim, Seoksoo

    This study develops a SOHO RenderFarm system suitable for a lab environment through data collection and professional education, implements a user environment which is the same as a super computer, analyzes rendering problems that may arise from use of a super computer and then designs a FRC(Fusion Render Cloud) system. Also, clients can access the SOHO RenderFarm system through networks, and the FRC system completed in a test environment can be interlinked with external networks of a super computer.

  17. Anthropological facial approximation in three dimensions (AFA3D): computer-assisted estimation of the facial morphology using geometric morphometrics.

    PubMed

    Guyomarc'h, Pierre; Dutailly, Bruno; Charton, Jérôme; Santos, Frédéric; Desbarats, Pascal; Coqueugniot, Hélène

    2014-11-01

    This study presents Anthropological Facial Approximation in Three Dimensions (AFA3D), a new computerized method for estimating face shape based on computed tomography (CT) scans of 500 French individuals. Facial soft tissue depths are estimated based on age, sex, corpulence, and craniometrics, and projected using reference planes to obtain the global facial appearance. Position and shape of the eyes, nose, mouth, and ears are inferred from cranial landmarks through geometric morphometrics. The 100 estimated cutaneous landmarks are then used to warp a generic face to the target facial approximation. A validation by re-sampling on a subsample demonstrated an average accuracy of c. 4 mm for the overall face. The resulting approximation is an objective probable facial shape, but is also synthetic (i.e., without texture), and therefore needs to be enhanced artistically prior to its use in forensic cases. AFA3D, integrated in the TIVMI software, is available freely for further testing.

  18. Association of achondroplasia with Down syndrome: difficulty in prenatal diagnosis by sonographic and 3-D helical computed tomographic analyses.

    PubMed

    Kaga, Akimune; Murotsuki, Jun; Kamimura, Miki; Kimura, Masato; Saito-Hakoda, Akiko; Kanno, Junko; Hoshi, Kazuhiko; Kure, Shigeo; Fujiwara, Ikuma

    2015-05-01

    Achondroplasia and Down syndrome are relatively common conditions individually. But co-occurrence of both conditions in the same patient is rare and there have been no reports of fetal analysis of this condition by prenatal sonographic and three-dimensional (3-D) helical computed tomography (CT). Prenatal sonographic findings seen in persons with Down syndrome, such as a thickened nuchal fold, cardiac defects, and echogenic bowel were not found in the patient. A prenatal 3-D helical CT revealed a large head with frontal bossing, metaphyseal flaring of the long bones, and small iliac wings, which suggested achondroplasia. In a case with combination of achondroplasia and Down syndrome, it may be difficult to diagnose the co-occurrence prenatally without typical markers of Down syndrome.

  19. Optimization of computations for adjoint field and Jacobian needed in 3D CSEM inversion

    NASA Astrophysics Data System (ADS)

    Dehiya, Rahul; Singh, Arun; Gupta, Pravin K.; Israil, M.

    2017-01-01

    We present the features and results of a newly developed code, based on Gauss-Newton optimization technique, for solving three-dimensional Controlled-Source Electromagnetic inverse problem. In this code a special emphasis has been put on representing the operations by block matrices for conjugate gradient iteration. We show how in the computation of Jacobian, the matrix formed by differentiation of system matrix can be made independent of frequency to optimize the operations at conjugate gradient step. The coarse level parallel computing, using OpenMP framework, is used primarily due to its simplicity in implementation and accessibility of shared memory multi-core computing machine to almost anyone. We demonstrate how the coarseness of modeling grid in comparison to source (comp`utational receivers) spacing can be exploited for efficient computing, without compromising the quality of the inverted model, by reducing the number of adjoint calls. It is also demonstrated that the adjoint field can even be computed on a grid coarser than the modeling grid without affecting the inversion outcome. These observations were reconfirmed using an experiment design where the deviation of source from straight tow line is considered. Finally, a real field data inversion experiment is presented to demonstrate robustness of the code.

  20. Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis.

    PubMed

    Wang, Teh-Chen; Huang, Yan-Hao; Huang, Chiun-Sheng; Chen, Jeon-Hor; Huang, Guei-Yu; Chang, Yeun-Chung; Chang, Ruey-Feng

    2014-04-01

    Three-dimensional (3-D) dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) consists of a large number of images in different enhancement phases which are used to identify and characterize breast lesions. The purpose of this study was to develop a computer-assisted algorithm for tumor segmentation and characterization using both kinetic information and morphological features of 3-D breast DCE-MRI. An integrated color map created by intersecting kinetic and area under the curve (AUC) color maps was used to detect potential breast lesions, followed by the application of a region growing algorithm to segment the tumor. Modified fuzzy c-means clustering was used to identify the most representative kinetic curve of the whole segmented tumor, which was then characterized by using conventional curve analysis or pharmacokinetic model. The 3-D morphological features including shape features (compactness, margin, and ellipsoid fitting) and texture features (based on the grey level co-occurrence matrix) of the segmented tumor were obtained to characterize the lesion. One hundred and thirty-two biopsy-proven lesions (63 benign and 69 malignant) were used to evaluate the performance of the proposed computer-aided system for breast MRI. Five combined features including rate constant (kep), volume of plasma (vp), energy (G1), entropy (G2), and compactness (C1), had the best performance with an accuracy of 91.67% (121/132), sensitivity of 91.30% (63/69), specificity of 92.06% (58/63), and Az value of 0.9427. Combining the kinetic and morphological features of 3-D breast MRI is a potentially useful and robust algorithm when attempting to differentiate benign and malignant lesions.

  1. Patient-specific reconstruction utilizing computer assisted 3D modelling for partial bone flap defect in hybrid cranioplasty

    NASA Astrophysics Data System (ADS)

    Hueh, Low Peh; Abdullah, Johari Yap; Abdullah, Abdul Manaf; Yahya, Suzana; Idris, Zamzuri; Mohamad, Dasmawati

    2016-12-01

    Autologous cranioplasty using a patient's original bone flap remain the commonest practice nowadays. However, partial bone flap defect is commonly encountered. Replacing the bone flap with pre-moulded synthetic bone flap is costly and not affordable to many patients. Hence most of the small to medium size defect was topped up with alloplastic material on a free hand basis intra-operatively which often resulted in inaccurate implant approximation with unsatisfactory cosmetic result. This study aims to evaluate implant accuracy and cosmetic outcome of cranioplasty candidates who underwent partial bone flap reconstruction utilising computer assisted 3D modelling. 3D images of the skull were obtained from post-craniectomy axial 1-mm spiral computed tomography (CT) scans and a virtual 3D model was generated using the Materialise Mimics software. The Materialise 3-Matic was then utilised to design a patient-specific implant. Prefabrication of the implant was performed by the 3D Objet printer, and a negative gypsum mold was created with the prefabricated cranial implant. Intraoperatively, a hybrid polymethyl methacrylate (PMMA)-autologous cranial implant was produced using the gypsum mold, and fit into the cranial defect. This study is still ongoing at the moment. To date, two men has underwent partial bone flap reconstruction utilising this technique and both revealed satisfactory implant alignment with favourable cosmesis. Mean implant size was 12cm2, and the mean duration of intraoperative reconstruction for the partial bone flap defect was 40 minutes. No significant complication was reported. As a conclusion, this new technique and approach resulted in satisfactory implant alignment and favourable cosmetic outcome. However, more study samples are needed to increase the validity of the study results.

  2. Noninvasive CT to Iso-C3D registration for improved intraoperative visualization in computer assisted orthopedic surgery

    NASA Astrophysics Data System (ADS)

    Rudolph, Tobias; Ebert, Lars; Kowal, Jens

    2006-03-01

    Supporting surgeons in performing minimally invasive surgeries can be considered as one of the major goals of computer assisted surgery. Excellent intraoperative visualization is a prerequisite to achieve this aim. The Siremobil Iso-C 3D has become a widely used imaging device, which, in combination with a navigation system, enables the surgeon to directly navigate within the acquired 3D image volume without any extra registration steps. However, the image quality is rather low compared to a CT scan and the volume size (approx. 12 cm 3) limits its application. A regularly used alternative in computer assisted orthopedic surgery is to use of a preoperatively acquired CT scan to visualize the operating field. But, the additional registration step, necessary in order to use CT stacks for navigation is quite invasive. Therefore the objective of this work is to develop a noninvasive registration technique. In this article a solution is being proposed that registers a preoperatively acquired CT scan to the intraoperatively acquired Iso-C 3D image volume, thereby registering the CT to the tracked anatomy. The procedure aligns both image volumes by maximizing the mutual information, an algorithm that has already been applied to similar registration problems and demonstrated good results. Furthermore the accuracy of such a registration method was investigated in a clinical setup, integrating a navigated Iso-C 3D in combination with an tracking system. Initial tests based on cadaveric animal bone resulted in an accuracy ranging from 0.63mm to 1.55mm mean error.

  3. Computational fluid dynamics uses in fluid dynamics/aerodynamics education

    NASA Technical Reports Server (NTRS)

    Holst, Terry L.

    1994-01-01

    The field of computational fluid dynamics (CFD) has advanced to the point where it can now be used for the purpose of fluid dynamics physics education. Because of the tremendous wealth of information available from numerical simulation, certain fundamental concepts can be efficiently communicated using an interactive graphical interrogation of the appropriate numerical simulation data base. In other situations, a large amount of aerodynamic information can be communicated to the student by interactive use of simple CFD tools on a workstation or even in a personal computer environment. The emphasis in this presentation is to discuss ideas for how this process might be implemented. Specific examples, taken from previous publications, will be used to highlight the presentation.

  4. A 3-D Admittance-Level Computational Model of a Rat Hippocampus for Improving Prosthetic Design

    PubMed Central

    Gilbert, Andrew; Loizos, Kyle; RamRakhyani, Anil Kumar; Hendrickson, Phillip; Lazzi, Gianluca; Berger, Theodore W.

    2016-01-01

    Hippocampal prosthetic devices have been developed to bridge the gap between functioning portions of the hippocampus, in order to restore lost memory functionality in those suffering from brain injury or diseases. One approach taken in recent neuroprosthetic design is to use a multi-input, multi-output device that reads data from the CA3 in the hippocampus and electrically stimulates the CA1 in an attempt to mimic the appropriate firing pattern that would occur naturally between the two areas. However, further study needs to be conducted in order to optimize electrode placement, pulse magnitude, and shape for creating the appropriate firing pattern. This paper describes the creation and implementation of an anatomically correct 3D model of the hippocampus to simulate the electric field patterns and axonal activation from electrical stimulation due to an implanted electrode array. The activating function was applied to the voltage results to determine the firing patterns in possible axon locations within the CA1. PMID:26736751

  5. A computational framework for 3D mechanical modeling of plant morphogenesis with cellular resolution.

    PubMed

    Boudon, Frédéric; Chopard, Jérôme; Ali, Olivier; Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth.

  6. A Computational Framework for 3D Mechanical Modeling of Plant Morphogenesis with Cellular Resolution

    PubMed Central

    Gilles, Benjamin; Hamant, Olivier; Boudaoud, Arezki; Traas, Jan; Godin, Christophe

    2015-01-01

    The link between genetic regulation and the definition of form and size during morphogenesis remains largely an open question in both plant and animal biology. This is partially due to the complexity of the process, involving extensive molecular networks, multiple feedbacks between different scales of organization and physical forces operating at multiple levels. Here we present a conceptual and modeling framework aimed at generating an integrated understanding of morphogenesis in plants. This framework is based on the biophysical properties of plant cells, which are under high internal turgor pressure, and are prevented from bursting because of the presence of a rigid cell wall. To control cell growth, the underlying molecular networks must interfere locally with the elastic and/or plastic extensibility of this cell wall. We present a model in the form of a three dimensional (3D) virtual tissue, where growth depends on the local modulation of wall mechanical properties and turgor pressure. The model shows how forces generated by turgor-pressure can act both cell autonomously and non-cell autonomously to drive growth in different directions. We use simulations to explore lateral organ formation at the shoot apical meristem. Although different scenarios lead to similar shape changes, they are not equivalent and lead to different, testable predictions regarding the mechanical and geometrical properties of the growing lateral organs. Using flower development as an example, we further show how a limited number of gene activities can explain the complex shape changes that accompany organ outgrowth. PMID:25569615

  7. Three-Dimensional Computational Fluid Dynamics

    SciTech Connect

    Haworth, D.C.; O'Rourke, P.J.; Ranganathan, R.

    1998-09-01

    Computational fluid dynamics (CFD) is one discipline falling under the broad heading of computer-aided engineering (CAE). CAE, together with computer-aided design (CAD) and computer-aided manufacturing (CAM), comprise a mathematical-based approach to engineering product and process design, analysis and fabrication. In this overview of CFD for the design engineer, our purposes are three-fold: (1) to define the scope of CFD and motivate its utility for engineering, (2) to provide a basic technical foundation for CFD, and (3) to convey how CFD is incorporated into engineering product and process design.

  8. Computer-Assisted 3D Structure Elucidation of Natural Products using Residual Dipolar Couplings.

    PubMed

    Troche-Pesqueira, Eduardo; Anklin, Clemens; Gil, Roberto R; Navarro-Vázquez, Armando

    2017-03-20

    An enhanced computer-assisted procedure for the determination of the relative configuration of natural products, which starts from the molecular formula and uses a combination of conventional 1D and 2D NMR spectra, and residual dipolar couplings (RDCs), is reported. Having already the data acquired (1D/2D NMR and RDCs), the procedure begins with the determination of the molecular constitution using standard computer-assisted structure elucidation (CASE) and is followed by fully automated determination of relative configuration through RDC analysis. In the case of moderately flexible molecules the simplest data-explaining conformational model is selected by the use of the Akaike information criterion.

  9. Cardiac tissue structure. Electric field interactions in polarizing the heart: 3D computer models and applications

    NASA Astrophysics Data System (ADS)

    Entcheva, Emilia

    1998-11-01

    The goal of this research is to investigate the interactions between the cardiac tissue structure and applied electric fields in producing complex polarization patterns. It is hypothesized that the response of the heart in the conditions of strong electric shocks, as those applied in defibrillation, is dominated by mechanisms involving the cardiac muscle structure perceived as a continuum. Analysis is carried out in three-dimensional models of the heart with detailed fiber architecture. Shock-induced transmembrane potentials are calculated using the bidomain model in its finite element implementation. The major new findings of this study can be summarized as follows: (1) The mechanisms of polarization due to cardiac fiber curvature and fiber rotation are elucidated in three-dimensional ellipsoidal hearts of variable geometry; (2) Results are presented showing that the axis of stimulation and the polarization axis on a whole heart level might differ significantly due to geometric and anisotropic factors; (3) Virtual electrode patterns are demonstrated numerically inside the ventricular wall in internal defibrillation conditions. The role of the tissue-bath interface in shaping the shock-induced polarization is revealed; (4) The generation of 3D phase singularity scrolls by shock-induced intramural virtual electrode patterns is proposed as evidence for a possible new mechanism for the failure to defibrillate. The results of this study emphasize the role of unequal anisotropy in the intra- and extracellular domains, as well as the salient fiber architecture characteristics, such as curvature and transmural rotation, in polarizing the myocardium. Experimental support of the above findings was actively sought and found in recent optical mapping studies using voltage-sensitive dyes. If validated in vivo, these findings would significantly enrich the prevailing concepts about the mechanisms of stimulation and defibrillation of the heart.

  10. 3-D Computer Animation vs. Live-Action Video: Differences in Viewers' Response to Instructional Vignettes

    ERIC Educational Resources Information Center

    Smith, Dennie; McLaughlin, Tim; Brown, Irving

    2012-01-01

    This study explored computer animation vignettes as a replacement for live-action video scenarios of classroom behavior situations previously used as an instructional resource in teacher education courses in classroom management strategies. The focus of the research was to determine if the embedded behavioral information perceived in a live-action…

  11. A computational model for estimating tumor margins in complementary tactile and 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Shamsil, Arefin; Escoto, Abelardo; Naish, Michael D.; Patel, Rajni V.

    2016-03-01

    Conventional surgical methods are effective for treating lung tumors; however, they impose high trauma and pain to patients. Minimally invasive surgery is a safer alternative as smaller incisions are required to reach the lung; however, it is challenging due to inadequate intraoperative tumor localization. To address this issue, a mechatronic palpation device was developed that incorporates tactile and ultrasound sensors capable of acquiring surface and cross-sectional images of palpated tissue. Initial work focused on tactile image segmentation and fusion of position-tracked tactile images, resulting in a reconstruction of the palpated surface to compute the spatial locations of underlying tumors. This paper presents a computational model capable of analyzing orthogonally-paired tactile and ultrasound images to compute the surface circumference and depth margins of a tumor. The framework also integrates an error compensation technique and an algebraic model to align all of the image pairs and to estimate the tumor depths within the tracked thickness of a palpated tissue. For validation, an ex vivo experimental study was conducted involving the complete palpation of 11 porcine liver tissues injected with iodine-agar tumors of varying sizes and shapes. The resulting tactile and ultrasound images were then processed using the proposed model to compute the tumor margins and compare them to fluoroscopy based physical measurements. The results show a good negative correlation (r = -0.783, p = 0.004) between the tumor surface margins and a good positive correlation (r = 0.743, p = 0.009) between the tumor depth margins.

  12. Computational 3D structures of drug-targeting proteins in the 2009-H1N1 influenza A virus

    NASA Astrophysics Data System (ADS)

    Du, Qi-Shi; Wang, Shu-Qing; Huang, Ri-Bo; Chou, Kuo-Chen

    2010-01-01

    The neuraminidase (NA) and M2 proton channel of influenza virus are the drug-targeting proteins, based on which several drugs were developed. However these once powerful drugs encountered drug-resistant problem to the H5N1 and H1N1 flu. To address this problem, the computational 3D structures of NA and M2 proteins of 2009-H1N1 influenza virus were built using the molecular modeling technique and computational chemistry method. Based on the models the structure features of NA and M2 proteins were analyzed, the docking structures of drug-protein complexes were computed, and the residue mutations were annotated. The results may help to solve the drug-resistant problem and stimulate designing more effective drugs against 2009-H1N1 influenza pandemic.

  13. Engineering Fracking Fluids with Computer Simulation

    NASA Astrophysics Data System (ADS)

    Shaqfeh, Eric

    2015-11-01

    There are no comprehensive simulation-based tools for engineering the flows of viscoelastic fluid-particle suspensions in fully three-dimensional geometries. On the other hand, the need for such a tool in engineering applications is immense. Suspensions of rigid particles in viscoelastic fluids play key roles in many energy applications. For example, in oil drilling the ``drilling mud'' is a very viscous, viscoelastic fluid designed to shear-thin during drilling, but thicken at stoppage so that the ``cuttings'' can remain suspended. In a related application known as hydraulic fracturing suspensions of solids called ``proppant'' are used to prop open the fracture by pumping them into the well. It is well-known that particle flow and settling in a viscoelastic fluid can be quite different from that which is observed in Newtonian fluids. First, it is now well known that the ``fluid particle split'' at bifurcation cracks is controlled by fluid rheology in a manner that is not understood. Second, in Newtonian fluids, the presence of an imposed shear flow in the direction perpendicular to gravity (which we term a cross or orthogonal shear flow) has no effect on the settling of a spherical particle in Stokes flow (i.e. at vanishingly small Reynolds number). By contrast, in a non-Newtonian liquid, the complex rheological properties induce a nonlinear coupling between the sedimentation and shear flow. Recent experimental data have shown both the shear thinning and the elasticity of the suspending polymeric solutions significantly affects the fluid-particle split at bifurcations, as well as the settling rate of the solids. In the present work, we use the Immersed Boundary Method to develop computer simulations of viscoelastic flow in suspensions of spheres to study these problems. These simulations allow us to understand the detailed physical mechanisms for the remarkable physical behavior seen in practice, and actually suggest design rules for creating new fluid recipes.

  14. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    PubMed

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects.

  15. 3D Computer graphics simulation to obtain optimal surgical exposure during microvascular decompression of the glossopharyngeal nerve.

    PubMed

    Hiraishi, Tetsuya; Matsushima, Toshio; Kawashima, Masatou; Nakahara, Yukiko; Takahashi, Yuichi; Ito, Hiroshi; Oishi, Makoto; Fujii, Yukihiko

    2013-10-01

    The affected artery in glossopharyngeal neuralgia (GPN) is most often the posterior inferior cerebellar artery (PICA) from the caudal side or the anterior inferior cerebellar artery (AICA) from the rostral side. This technical report describes two representative cases of GPN, one with PICA as the affected artery and the other with AICA, and demonstrates the optimal approach for each affected artery. We used 3D computer graphics (3D CG) simulation to consider the ideal transposition of the affected artery in any position and approach. Subsequently, we performed microvascular decompression (MVD) surgery based on this simulation. For PICA, we used the transcondylar fossa approach in the lateral recumbent position, very close to the prone position, with the patient's head tilted anteriorly for caudal transposition of PICA. In contrast, for AICA, we adopted a lateral suboccipital approach with opening of the lateral cerebellomedullary fissure, to visualize better the root entry zone of the glossopharyngeal nerve and to obtain a wide working space in the cerebellomedullary cistern, for rostral transposition of AICA. Both procedures were performed successfully. The best surgical approach for MVD in patients with GPN is contingent on the affected artery--PICA or AICA. 3D CG simulation provides tailored approach for MVD of the glossopharyngeal nerve, thereby ensuring optimal surgical exposure.

  16. A C-Shaped Canal in a Maxillary Second Molar: Prexion 3D Cone-Beam Computed Tomography Analysis

    PubMed Central

    Lopes, Daniela Siqueira; Câmara, Andréa Cruz; do Nascimento, Monikelly do Carmo Chagas; Farias de Araújo, Luciane

    2016-01-01

    Objective: The aim of this study was to present an atypical case of a C-shaped root canal that was present in the vestibular root of a permanent maxillary second molar using PreXion 3-D cone-beam computed tomography (CBCT) as a diagnostic device. Materials and Methods: A 50-year-old female patient was referred for routine examination to a private diagnostic imaging clinic in Recife-Pernambuco. During the physical examination, the presence of an unusual C-shaped anatomy in the vestibular canal with a mesiodistal interconnection that extended from the apical to the cervical third was detected in axial slices acquired with a PreXion 3-D scanner. Results: Although C-shaped root canals are most frequently observed in the mandibular second molar, this case presented a rare finding in the permanent maxillary second molar. Conclusions: PreXion 3-D CBCT has emerged as a new high-resolution imaging test technology, thus assisting with the diagnosis of anatomical variations such as C-shaped root canals. However, such imaging technology is not recommended for routine use. PMID:28275283

  17. Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2015-08-01

    AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.

  18. REMOVAL OF TANK AND SEWER SEDIMENT BY GATE FLUSHING: COMPUTATIONAL FLUID DYNAMICS MODEL STUDIES

    EPA Science Inventory

    This presentation will discuss the application of a computational fluid dynamics 3D flow model to simulate gate flushing for removing tank/sewer sediments. The physical model of the flushing device was a tank fabricated and installed at the head-end of a hydraulic flume. The fl...

  19. Computational results for flows over 2-D ramp and 3-D obstacle with an upwind Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1990-01-01

    An implicit, finite-difference, upwind, full Navier-Stokes solver was applied to supersonic/hypersonic flows over two-dimensional ramps and three-dimensional obstacle. Some of the computed results are presented. The numerical scheme used in the study is an implicit, spacially second order accurate, upwind, LU-ADI scheme based on Roe's approximate Reimann solver with MUSCL differencing of Van Leer. An algebraic grid generation scheme based on generalized interpolation scheme was used in generating the grids for the various 2-D and 3-D problems.

  20. Computational results for 2-D and 3-D ramp flows with an upwind Navier-Stokes solver

    NASA Technical Reports Server (NTRS)

    Venkatapathy, Ethiraj

    1991-01-01

    An implicit, finite-difference, upwind, full Navier-Stokes solver was applied to supersonic/hypersonic flows over two-dimensional ramps and three-dimensional obstacle. Some of the computed results are presented. The numerical scheme used in the study is an implicit, spatially second order accurate, upwind, LU-ADI scheme based on Roe's approximate Reimann solver with MUSCL differencing of Van Leer. An algebraic grid generation scheme based on generalized interpolation scheme was used in generating the grids for the various 2-D and 3-D problems.

  1. A 3D Model to Compute Lightning and HIRF Coupling Effects on Avionic Equipment of an Aircraft

    NASA Astrophysics Data System (ADS)

    Perrin, E.; Tristant, F.; Guiffaut, C.; Terrade, F.; Reineix, A.

    2012-05-01

    This paper describes the 3D FDTD model of an aircraft developed to compute the lightning and HIRF (High Intentity Radiated Fields) coupling effects on avionic equipment and all the wire harness associated. This virtual prototype aims at assisting the aircraft manufacturer during the lightning and HIRF certification processes. The model presented here permits to cover a frequency range from lightning spectrum to the low frequency HIRF domain, i.e. 0 to 100 MHz. Moreover, the entire aircraft, including the frame, the skin, the wire harness and the equipment are taken into account in only one model. Results obtained are compared to measurements on a real aircraft.

  2. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    PubMed Central

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  3. High-Performance Computation of Distributed-Memory Parallel 3D Voronoi and Delaunay Tessellation

    SciTech Connect

    Peterka, Tom; Morozov, Dmitriy; Phillips, Carolyn

    2014-11-14

    Computing a Voronoi or Delaunay tessellation from a set of points is a core part of the analysis of many simulated and measured datasets: N-body simulations, molecular dynamics codes, and LIDAR point clouds are just a few examples. Such computational geometry methods are common in data analysis and visualization; but as the scale of simulations and observations surpasses billions of particles, the existing serial and shared-memory algorithms no longer suffice. A distributed-memory scalable parallel algorithm is the only feasible approach. The primary contribution of this paper is a new parallel Delaunay and Voronoi tessellation algorithm that automatically determines which neighbor points need to be exchanged among the subdomains of a spatial decomposition. Other contributions include periodic and wall boundary conditions, comparison of our method using two popular serial libraries, and application to numerous science datasets.

  4. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-10-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography.

  5. How computer science can help in understanding the 3D genome architecture.

    PubMed

    Shavit, Yoli; Merelli, Ivan; Milanesi, Luciano; Lio', Pietro

    2016-09-01

    Chromosome conformation capture techniques are producing a huge amount of data about the architecture of our genome. These data can provide us with a better understanding of the events that induce critical regulations of the cellular function from small changes in the three-dimensional genome architecture. Generating a unified view of spatial, temporal, genetic and epigenetic properties poses various challenges of data analysis, visualization, integration and mining, as well as of high performance computing and big data management. Here, we describe the critical issues of this new branch of bioinformatics, oriented at the comprehension of the three-dimensional genome architecture, which we call 'Nucleome Bioinformatics', looking beyond the currently available tools and methods, and highlight yet unaddressed challenges and the potential approaches that could be applied for tackling them. Our review provides a map for researchers interested in using computer science for studying 'Nucleome Bioinformatics', to achieve a better understanding of the biological processes that occur inside the nucleus.

  6. Computational fluid dynamics in oil burner design

    SciTech Connect

    Butcher, T.A.

    1997-09-01

    In Computational Fluid Dynamics, the differential equations which describe flow, heat transfer, and mass transfer are approximately solved using a very laborious numerical procedure. Flows of practical interest to burner designs are always turbulent, adding to the complexity of requiring a turbulence model. This paper presents a model for burner design.

  7. Computation of stationary 3D halo currents in fusion devices with accuracy control

    SciTech Connect

    Bettini, Paolo; Specogna, Ruben

    2014-09-15

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  8. Personalized mitral valve closure computation and uncertainty analysis from 3D echocardiography.

    PubMed

    Grbic, Sasa; Easley, Thomas F; Mansi, Tommaso; Bloodworth, Charles H; Pierce, Eric L; Voigt, Ingmar; Neumann, Dominik; Krebs, Julian; Yuh, David D; Jensen, Morten O; Comaniciu, Dorin; Yoganathan, Ajit P

    2017-01-01

    Intervention planning is essential for successful Mitral Valve (MV) repair procedures. Finite-element models (FEM) of the MV could be used to achieve this goal, but the translation to the clinical domain is challenging. Many input parameters for the FEM models, such as tissue properties, are not known. In addition, only simplified MV geometry models can be extracted from non-invasive modalities such as echocardiography imaging, lacking major anatomical details such as the complex chordae topology. A traditional approach for FEM computation is to use a simplified model (also known as parachute model) of the chordae topology, which connects the papillary muscle tips to the free-edges and select basal points. Building on the existing parachute model a new and comprehensive MV model was developed that utilizes a novel chordae representation capable of approximating regional connectivity. In addition, a fully automated personalization approach was developed for the chordae rest length, removing the need for tedious manual parameter selection. Based on the MV model extracted during mid-diastole (open MV) the MV geometric configuration at peak systole (closed MV) was computed according to the FEM model. In this work the focus was placed on validating MV closure computation. The method is evaluated on ten in vitro ovine cases, where in addition to echocardiography imaging, high-resolution μCT imaging is available for accurate validation.

  9. Spatial light modulator phase mask implementation of wavefront encoded 3D computational-optical microscopy.

    PubMed

    King, Sharon V; Doblas, Ana; Patwary, Nurmohammed; Saavedra, Genaro; Martínez-Corral, Manuel; Preza, Chrysanthe

    2015-10-10

    Spatial light modulator (SLM) implementation of wavefront encoding enables various types of engineered point-spread functions (PSFs), including the generalized-cubic and squared-cubic phase mask wavefront encoded (WFE) PSFs, shown to reduce the impact of sample-induced spherical aberration in fluorescence microscopy. This investigation validates dynamic experimental parameter variation of these WFE-PSFs. We find that particular design parameter bounds exist, within which the divergence of computed and experimental WFE-PSFs is of the same order of magnitude as that of computed and experimental conventional PSFs, such that model-based approaches for solving the inverse imaging problem can be applied to a wide range of SLM-WFE systems. Interferometric measurements were obtained to evaluate the SLM implementation of the numeric mask. Agreement between experiment and theory in terms of a wrapped phase, 0-2π, validates the phase mask implementation and allows characterization of the SLM response. These measurements substantiate experimental practice of computational-optical microscope imaging with an SLM-engineered PSF.

  10. Nonlinear, nonlaminar-3D computation of electron motion through the output cavity of a klystron

    NASA Technical Reports Server (NTRS)

    Albers, L. U.; Kosmahl, H. G.

    1971-01-01

    The equations of motion used in the computation are discussed along with the space charge fields and the integration process. The following assumptions were used as a basis for the computation: (1) The beam is divided into N axisymmetric discs of equal charge and each disc into R rings of equal charge. (2) The velocity of each disc, its phase with respect to the gap voltage, and its radius at a specified position in the drift tunnel prior to the interaction gap is known from available large signal one dimensional programs. (3) The fringing rf fields are computed from exact analytical expressions derived from the wave equation assuming a known field shape between the tunnel tips at a radius a. (4) The beam is focused by an axisymmetric magnetic field. Both components of B, that is B sub z and B sub r, are taken into account. (5) Since this integration does not start at the cathode but rather further down the stream prior to entering the output cavity it is assumed that each electron moved along a laminar path from the cathode to the start of integration.

  11. Efficient 3D texture feature extraction from CT images for computer-aided diagnosis of pulmonary nodules

    NASA Astrophysics Data System (ADS)

    Han, Fangfang; Wang, Huafeng; Song, Bowen; Zhang, Guopeng; Lu, Hongbing; Moore, William; Liang, Zhengrong; Zhao, Hong

    2014-03-01

    Texture feature from chest CT images for malignancy assessment of pulmonary nodules has become an un-ignored and efficient factor in Computer-Aided Diagnosis (CADx). In this paper, we focus on extracting as fewer as needed efficient texture features, which can be combined with other classical features (e.g. size, shape, growing rate, etc.) for assisting lung nodule diagnosis. Based on a typical calculation algorithm of texture features, namely Haralick features achieved from the gray-tone spatial-dependence matrices, we calculated two dimensional (2D) and three dimensional (3D) Haralick features from the CT images of 905 nodules. All of the CT images were downloaded from the Lung Image Database Consortium and Image Database Resource Initiative (LIDC-IDRI), which is the largest public chest database. 3D Haralick feature model of thirteen directions contains more information from the relationships on the neighbor voxels of different slices than 2D features from only four directions. After comparing the efficiencies of 2D and 3D Haralick features applied on the diagnosis of nodules, principal component analysis (PCA) algorithm was used to extract as fewer as needed efficient texture features. To achieve an objective assessment of the texture features, the support vector machine classifier was trained and tested repeatedly for one hundred times. And the statistical results of the classification experiments were described by an average receiver operating characteristic (ROC) curve. The mean value (0.8776) of the area under the ROC curves in our experiments can show that the two extracted 3D Haralick projected features have the potential to assist the classification of benign and malignant nodules.

  12. The development of an intelligent interface to a computational fluid dynamics flow-solver code

    NASA Technical Reports Server (NTRS)

    Williams, Anthony D.

    1988-01-01

    Researchers at NASA Lewis are currently developing an 'intelligent' interface to aid in the development and use of large, computational fluid dynamics flow-solver codes for studying the internal fluid behavior of aerospace propulsion systems. This paper discusses the requirements, design, and implementation of an intelligent interface to Proteus, a general purpose, 3-D, Navier-Stokes flow solver. The interface is called PROTAIS to denote its introduction of artificial intelligence (AI) concepts to the Proteus code.

  13. Computer-generated 3D ultrasound images of the carotid artery

    NASA Astrophysics Data System (ADS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  14. Computer-generated 3D ultrasound images of the carotid artery

    NASA Technical Reports Server (NTRS)

    Selzer, Robert H.; Lee, Paul L.; Lai, June Y.; Frieden, Howard J.; Blankenhorn, David H.

    1989-01-01

    A method is under development to measure carotid artery lesions from a computer-generated three-dimensional ultrasound image. For each image, the position of the transducer in six coordinates (x, y, z, azimuth, elevation, and roll) is recorded and used to position each B-mode picture element in its proper spatial position in a three-dimensional memory array. After all B-mode images have been assembled in the memory, the three-dimensional image is filtered and resampled to produce a new series of parallel-plane two-dimensional images from which arterial boundaries are determined using edge tracking methods.

  15. Some rotorcraft applications of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Mccroskey, W. J.

    1988-01-01

    The growing application of computational aerodynamics to nonlinear rotorcraft problems is outlined, with particular emphasis on the development of new methods based on the Euler and thin-layer Navier-Stokes equations. Rotor airfoil characteristics can now be calculated accurately over a wide range of transonic flow conditions. However, unsteady 3-D viscous codes remain in the research stage, and a numerical simulation of the complete flow field about a helicopter in forward flight is not now feasible. Nevertheless, impressive progress is being made in preparation for future supercomputers that will enable meaningful calculations to be made for arbitrary rotorcraft configurations.

  16. Laser cone beam computed tomography scanner geometry for large volume 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Jordan, K. J.; Turnbull, D.; Batista, J. J.

    2013-06-01

    A new scanner geometry for fast optical cone-beam computed tomography is reported. The system consists of a low power laser beam, raster scanned, under computer control, through a transparent object in a refractive index matching aquarium. The transmitted beam is scattered from a diffuser screen and detected by a photomultiplier tube. Modest stray light is present in the projection images since only a single ray is present in the object during measurement and there is no imaging optics to introduce further stray light in the form of glare. A scan time of 30 minutes was required for 512 projections with a field of view of 12 × 18 cm. Initial performance from scanning a 15 cm diameter jar with black solutions is presented. Averaged reconstruction coefficients are within 2% along the height of the jar and within the central 85% of diameter, due to the index mismatch of the jar. Agreement with spectrometer measurements was better than 0.5% for a minimum transmission of 4% and within 4% for a dark, 0.1% transmission sample. This geometry's advantages include high dynamic range and low cost of scaling to larger (>15 cm) fields of view.

  17. HL-20 computational fluid dynamics analysis

    NASA Astrophysics Data System (ADS)

    Weilmuenster, K. James; Greene, Francis A.

    1993-09-01

    The essential elements of a computational fluid dynamics analysis of the HL-20/personnel launch system aerothermal environment at hypersonic speeds including surface definition, grid generation, solution techniques, and visual representation of results are presented. Examples of solution technique validation through comparison with data from ground-based facilities are presented, along with results from computations at flight conditions. Computations at flight points indicate that real-gas effects have little or no effect on vehicle aerodynamics and, at these conditions, results from approximate techniques for determining surface heating are comparable with those obtained from Navier-Stokes solutions.

  18. HL-20 computational fluid dynamics analysis

    NASA Technical Reports Server (NTRS)

    Weilmuenster, K. J.; Greene, Francis A.

    1993-01-01

    The essential elements of a computational fluid dynamics analysis of the HL-20/personnel launch system aerothermal environment at hypersonic speeds including surface definition, grid generation, solution techniques, and visual representation of results are presented. Examples of solution technique validation through comparison with data from ground-based facilities are presented, along with results from computations at flight conditions. Computations at flight points indicate that real-gas effects have little or no effect on vehicle aerodynamics and, at these conditions, results from approximate techniques for determining surface heating are comparable with those obtained from Navier-Stokes solutions.

  19. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    PubMed Central

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering. PMID:12242339

  20. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  1. Microvision system (MVS): a 3D computer graphic-based microrobot telemanipulation and position feedback by vision

    NASA Astrophysics Data System (ADS)

    Sulzmann, Armin; Breguet, Jean-Marc; Jacot, Jacques

    1995-12-01

    The aim of our project is to control the position in 3D-space of a micro robot with sub micron accuracy and manipulate Microsystems aided by a real time 3D computer graphics (virtual reality). As Microsystems and micro structures become smaller, it is necessary to build a micro robot ((mu) -robot) capable of manipulating these systems and structures with a precision of 1 micrometers or even higher. These movements have to be controlled and guided. The first part of our project was to develop a real time 3D computer graphics (virtual reality) environment man-machine interface to guide the newly developed robot similar to the environment we built in a macroscopic robotics. Secondly we want to evaluate measurement techniques to verify its position in the region of interest (workspace). A new type of microrobot has been developed for our purposed. Its simple and compact design is believed to be of promise in the microrobotics field. Stepping motion allows speed up to 4 mm/s. Resolution smaller than 10 nm is achievable. We also focus on the vision system and on the virtual reality interface of the complex system. Basically the user interacts with the virtual 3D microscope and sees the (mu) -robot as if he is looking through a real microscope. He is able to simulate the assembly of the missing parts, e.g. parts of the micrometer, beforehand in order to verify the assembly manipulation steps such assembly of the missing parts, e.g. parts of a micromotor, beforehand in order to verify the assembly manipulation steps such as measuring, moving the table to the right position or performing the manipulation. Micro manipulation is form of a teleoperation is then performed by the robot-unit and the position is controlled by vision. First results have shown, that a guided manipulations with submicronics absolute accuracy can be achieved. Key idea of this approach is to use the intuitiveness of immersed vision to perform robotics tasks in an environment where human has only access

  2. Identification of artery wall stiffness: in vitro validation and in vivo results of a data assimilation procedure applied to a 3D fluid-structure interaction model.

    PubMed

    Bertoglio, Cristóbal; Barber, David; Gaddum, Nicholas; Valverde, Israel; Rutten, Marcel; Beerbaum, Philipp; Moireau, Philippe; Hose, Rodney; Gerbeau, Jean-Frédéric

    2014-03-21

    We consider the problem of estimating the stiffness of an artery wall using a data assimilation method applied to a 3D fluid-structure interaction (FSI) model. Recalling previous works, we briefly present the FSI model, the data assimilation procedure and the segmentation algorithm. We present then two examples of the procedure using real data. First, we estimate the stiffness distribution of a silicon rubber tube from image data. Second, we present the estimation of aortic wall stiffness from real clinical data.

  3. Performance Modeling for 3D Visualization in a Heterogeneous Computing Environment

    SciTech Connect

    Bowman, Ian; Shalf, John; Ma, Kwan-Liu; Bethel, Wes

    2004-06-30

    The visualization of large, remotely located data sets necessitates the development of a distributed computing pipeline in order to reduce the data, in stages, to a manageable size. The required baseline infrastructure for launching such a distributed pipeline is becoming available, but few services support even marginally optimal resource selection and partitioning of the data analysis workflow. We explore a methodology for building a model of overall application performance using a composition of the analytic models of individual components that comprise the pipeline. The analytic models are shown to be accurate on a testbed of distributed heterogeneous systems. The prediction methodology will form the foundation of a more robust resource management service for future Grid-based visualization applications.

  4. Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1991-01-01

    A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds Stress Model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equations in the latter may be responsible. Computed results with both turbulence models are compared with experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement with mean flow velocity but RSM yields better prediction of the Reynolds stresses.

  5. Multigrid acceleration and turbulence models for computations of 3D turbulent jets in crossflow

    NASA Technical Reports Server (NTRS)

    Demuren, A. O.

    1992-01-01

    A multigrid method is presented for the calculation of three-dimensional turbulent jets in crossflow. Turbulence closure is achieved with either the standard k-epsilon model or a Reynolds stress model (RSM). Multigrid acceleration enables convergence rates which are far superior to that for a single grid method to be obtained with both turbulence models. With the k-epsilon model the rate approaches that for laminar flow, but with RSM it is somewhat slower. The increased stiffness of the system of equation in the latter may be responsible. Computed results with both turbulence models are compared to experimental data for a pair of opposed jets in crossflow. Both models yield reasonable agreement for the mean flow velocity, but RSM yields better predictions of the Reynolds stresses.

  6. Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift con gurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  7. Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, Dimitri J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  8. Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis

    NASA Technical Reports Server (NTRS)

    Mavriplis, D. J.; Pirzadeh, S.

    1999-01-01

    A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

  9. Development of 3D multimedia with advanced computer animation tools for outreach activities related to Meteor Science and Meteoritics

    NASA Astrophysics Data System (ADS)

    Madiedo, J. M.

    2012-09-01

    Documentaries related to Astronomy and Planetary Sciences are a common and very attractive way to promote the interest of the public in these areas. These educational tools can get benefit from new advanced computer animation software and 3D technologies, as these allow making these documentaries even more attractive. However, special care must be taken in order to guarantee that the information contained in them is serious and objective. In this sense, an additional value is given when the footage is produced by the own researchers. With this aim, a new documentary produced and directed by Prof. Madiedo has been developed. The documentary, which has been entirely developed by means of advanced computer animation tools, is dedicated to several aspects of Meteor Science and Meteoritics. The main features of this outreach and education initiative are exposed here.

  10. Computational Fluid Dynamics Symposium on Aeropropulsion

    NASA Technical Reports Server (NTRS)

    1991-01-01

    Recognizing the considerable advances that have been made in computational fluid dynamics, the Internal Fluid Mechanics Division of NASA Lewis Research Center sponsored this symposium with the objective of providing a forum for exchanging information regarding recent developments in numerical methods, physical and chemical modeling, and applications. This conference publication is a compilation of 4 invited and 34 contributed papers presented in six sessions: algorithms one and two, turbomachinery, turbulence, components application, and combustors. Topics include numerical methods, grid generation, chemically reacting flows, turbulence modeling, inlets, nozzles, and unsteady flows.

  11. Interfacing 3D micro/nanochannels with a branch-shaped reservoir enhances fluid and mass transport

    NASA Astrophysics Data System (ADS)

    Kumar, Prasoon; Gandhi, Prasanna S.; Majumder, Mainak

    2017-01-01

    Three-dimensional (3D) micro/nanofluidic devices can accelerate progress in numerous fields such as tissue engineering, drug delivery, self-healing and cooling devices. However, efficient connections between networks of micro/nanochannels and external fluidic ports are key to successful applications of 3D micro/nanofluidic devices. Therefore, in this work, the extent of the role of reservoir geometry in interfacing with vascular (micro/nanochannel) networks, and in the enabling of connections with external fluidic ports while maintaining the compactness of devices, has been experimentally and theoretically investigated. A statistical modelling suggested that a branch-shaped reservoir demonstrates enhanced interfacing with vascular networks when compared to other regular geometries of reservoirs. Time-lapse dye flow experiments by capillary action through fabricated 3D micro/nanofluidic devices confirmed the connectivity of branch-shaped reservoirs with micro/nanochannel networks in fluidic devices. This demonstrated a ~2.2-fold enhancement of the volumetric flow rate in micro/nanofluidic networks when interfaced to branch-shaped reservoirs over rectangular reservoirs. The enhancement is due to a ~2.8-fold increase in the perimeter of the reservoirs. In addition, the mass transfer experiments exhibited a ~1.7-fold enhancement in solute flux across 3D micro/nanofluidic devices that interfaced with branch-shaped reservoirs when compared to rectangular reservoirs. The fabrication of 3D micro/nanofluidic devices and their efficient interfacing through branch-shaped reservoirs to an external fluidic port can potentially enable their use in complex applications, in which enhanced surface-to-volume interactions are desirable.

  12. Graphics supercomputer for computational fluid dynamics research

    NASA Astrophysics Data System (ADS)

    Liaw, Goang S.

    1994-11-01

    The objective of this project is to purchase a state-of-the-art graphics supercomputer to improve the Computational Fluid Dynamics (CFD) research capability at Alabama A & M University (AAMU) and to support the Air Force research projects. A cutting-edge graphics supercomputer system, Onyx VTX, from Silicon Graphics Computer Systems (SGI), was purchased and installed. Other equipment including a desktop personal computer, PC-486 DX2 with a built-in 10-BaseT Ethernet card, a 10-BaseT hub, an Apple Laser Printer Select 360, and a notebook computer from Zenith were also purchased. A reading room has been converted to a research computer lab by adding some furniture and an air conditioning unit in order to provide an appropriate working environments for researchers and the purchase equipment. All the purchased equipment were successfully installed and are fully functional. Several research projects, including two existing Air Force projects, are being performed using these facilities.

  13. FUN3D Manual: 12.4

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  14. FUN3D Manual: 12.6

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  15. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  16. FUN3D Manual: 13.1

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  17. FUN3D Manual: 12.7

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 13.0

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 12.8

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. Scanning laser optical computed tomography system for large volume 3D dosimetry

    NASA Astrophysics Data System (ADS)

    Dekker, Kurtis H.; Battista, Jerry J.; Jordan, Kevin J.

    2017-04-01

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  1. Supermodeled sabercat, predatory behavior in Smilodon fatalis revealed by high-resolution 3D computer simulation.

    PubMed

    McHenry, Colin R; Wroe, Stephen; Clausen, Philip D; Moreno, Karen; Cunningham, Eleanor

    2007-10-09

    The American sabercat Smilodon fatalis is among the most charismatic of fossil carnivores. Despite broad agreement that its extraordinary anatomy reflects unique hunting techniques, after >150 years of study, many questions remain concerning its predatory behavior. Were the "sabers" used to take down large prey? Were prey killed with an eviscerating bite to the abdomen? Was its bite powerful or weak compared with that of modern big cats? Here we quantitatively assess the sabercat's biomechanical performance using the most detailed computer reconstructions yet developed for the vertebrate skull. Our results demonstrate that bite force driven by jaw muscles was relatively weak in S. fatalis, one-third that of a lion (Panthera leo) of comparable size, and its skull was poorly optimized to resist the extrinsic loadings generated by struggling prey. Its skull is better optimized for bites on restrained prey where the bite is augmented by force from the cervical musculature. We conclude that prey were brought to ground and restrained before a killing bite, driven in large part by powerful cervical musculature. Because large prey is easier to restrain if its head is secured, the killing bite was most likely directed to the neck. We suggest that the more powerful jaw muscles of P. leo may be required for extended, asphyxiating bites and that the relatively low bite forces in S. fatalis might reflect its ability to kill large prey more quickly, avoiding the need for prolonged bites.

  2. Scanning laser optical computed tomography system for large volume 3D dosimetry.

    PubMed

    Dekker, Kurtis H; Battista, Jerry J; Jordan, Kevin J

    2017-04-07

    Stray light causes artifacts in optical computed tomography (CT) that negatively affect the accuracy of radiation dosimetry in gels or solids. Scatter effects are exacerbated by a large dosimeter volume, which is desirable for direct verification of modern radiotherapy treatment plans such as multiple-isocenter radiosurgery. The goal in this study was to design and characterize an optical CT system that achieves high accuracy primary transmission measurements through effective stray light rejection, while maintaining sufficient scan speed for practical application. We present an optical imaging platform that uses a galvanometer mirror for horizontal scanning, and a translation stage for vertical movement of a laser beam and small area detector for minimal stray light production and acceptance. This is coupled with a custom lens-shaped optical CT aquarium for parallel ray sampling of projections. The scanner images 15 cm diameter, 12 cm height cylindrical volumes at 0.33 mm resolution in approximately 30 min. Attenuation coefficients reconstructed from CT scans agreed with independent cuvette measurements within 2% for both absorbing and scattering solutions as well as small 1.25 cm diameter absorbing phantoms placed within a large, scattering medium that mimics gel. Excellent linearity between the optical CT scanner and the independent measurement was observed for solutions with between 90% and 2% transmission. These results indicate that the scanner should achieve highly accurate dosimetry of large volume dosimeters in a reasonable timeframe for clinical application to radiotherapy dose verification procedures.

  3. Post-mortem computed tomography and 3D imaging: anthropological applications for juvenile remains.

    PubMed

    Brough, Alison L; Rutty, Guy N; Black, Sue; Morgan, Bruno

    2012-09-01

    Anthropological examination of defleshed bones is routinely used in medico-legal investigations to establish an individual's biological profile. However, when dealing with the recently deceased, the removal of soft tissue from bone can be an extremely time consuming procedure that requires the presence of a trained anthropologist. In addition, due to its invasive nature, in some disaster victim identification scenarios the maceration of bones is discouraged by religious practices and beliefs, or even prohibited by national laws and regulations. Currently, three different radiological techniques may be used in the investigative process; plain X-ray, dental X-ray and fluoroscopy. However, recent advances in multi-detector computed tomography (MDCT) mean that it is now possible to acquire morphological skeletal information from high resolution images, reducing the necessity for invasive procedures. This review paper considers the possible applications of a virtual anthropological examination by reviewing the main juvenile age determination methods used by anthropologists at present and their possible adaption to MDCT.

  4. Measurement error of 3D cranial landmarks of an ontogenetic sample using Computed Tomography

    PubMed Central

    Barbeito-Andrés, Jimena; Anzelmo, Marisol; Ventrice, Fernando; Sardi, Marina L.

    2012-01-01

    Background/Aim Computed Tomography (CT) is a powerful tool in craniofacial research that focuses on morphological variation. In this field, an ontogenetic approach has been taken to study the developmental sources of variation and to understand the basis of morphological evolution. This work aimed to determine measurement error (ME) in cranial CT in diverse developmental stages and to characterize how this error relates to different types of landmarks. Material and methods We used a sample of fifteen skulls ranging from 0 to 31 years. Two observers placed landmarks in each image three times. Measurement error was assessed before and after Generalized Procrustes Analysis. Results The results indicated that ME is larger in neurocranial structures, which are described mainly by type III landmarks and semilandmarks. In addition, adult and infant specimens showed the same level of ME. These results are specially relevant in the context of craniofacial growth research. Conclusion CT images have become a frequent evidence to study cranial variation. Evaluation of ME gives insight into the potential source of error in interpreting results. Neural structures present higher ME which is mainly associated to landmark localization. However, this error is irrespective of age. If landmarks are correctly selected, they can be analyzed with the same level of reliability in adults and subadults. PMID:25737840

  5. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  6. Quantification of arthritic bone degradation by analysis of 3D micro-computed tomography data

    PubMed Central

    Svensson, Carl-Magnus; Hoffmann, Bianca; Irmler, Ingo M.; Straßburger, Maria; Figge, Marc Thilo; Saluz, Hans Peter

    2017-01-01

    The use of animal models of arthritis is a key component in the evaluation of therapeutic strategies against the human disease rheumatoid arthritis (RA). Here we present quantitative measurements of bone degradation characterised by the cortical bone profile using glucose-6-phosphate isomerase (G6PI) induced arthritis. We applied micro-computed tomography (μCT) during three arthritis experiments and one control experiment to image the metatarsals of the hind paws and to investigate the effect of experimental arthritis on their cortical bone profile. For measurements of the cortical profile we automatically identified slices that are orthogonal to individual metatarsals, thereby making the measurements independent of animal placement in the scanner. We measured the average cortical thickness index (CTI) of the metatarsals, as well as the thickness changes along the metatarsal. In this study we introduced the cortical thickness gradient (CTG) as a new measure and we investigated how arthritis affects this measure. We found that in general both CTI and CTG are able to quantify arthritic progression, whilst CTG was found to be the more sensitive measure. PMID:28290525

  7. A preliminary 3D computed tomography study of the human maxillary sinus and nasal cavity.

    PubMed

    Butaric, Lauren N; McCarthy, Robert C; Broadfield, Douglas C

    2010-11-01

    Despite centuries of investigation, the function of the maxillary sinus (MS) and underlying patterns governing its form remain elusive. In this study, we articulate a methodology for collecting volumetric data for the MS and nasal cavity (NC) from computed tomography (CT) scans and report details for a small sample of 39 dried human crania of known ecogeographic provenience useful for assessing variation in MS size and shape. We use scaling analyses to preliminarily test the hypothesis that volumes of the nasal cavity (NCV) and maxillary sinus (MSV) are inversely correlated such that the NC covaries with size of the face, whereas the MS "fills in" the leftover space [proposed by Shea: Am J Phys Anthropol 47 (1977):289-300]. Against expectation, MSV is not significantly correlated with NCV or any cranial size variable. NCV, on the other hand, scales isometrically with facial size. The results of this pilot study suggest that NCV covaries with facial size, but that the MS does not simply fill in the leftover space in the face. The role, if any, of the MSs in midfacial function and architecture remains unclear. Larger sample sizes, additional environmental variables, and assessment of MS and NC shape are necessary to resolve this issue.

  8. Complex anatomy surrounding the left atrial posterior wall: analysis with 3D computed tomography.

    PubMed

    Maeda, Shingo; Iesaka, Yoshito; Uno, Kikuya; Otomo, Kiyoshi; Nagata, Yasutoshi; Suzuki, Kenji; Hachiya, Hitoshi; Goya, Masahiko; Takahashi, Atsushi; Fujiwara, Hideomi; Hiraoka, Masayasu; Isobe, Mitsuaki

    2012-01-01

    Few studies have explored the topographic anatomy of the esophagus, posterior wall of the left atrium (LA), or fat pads using multidetector computed tomography (MDCT) to prevent the risk of esophageal injury during atrial fibrillation (AF) ablation. MDCT was performed in 110 consecutive patients with paroxysmal or persistent AF before the ablation procedure to understand the anatomic relationship of the esophagus. Two major types of esophagus routes were demonstrated. Leftward (type A) and rightward (type B) routes were found in 90 and 10% of the patients, respectively. A type A route had a larger mean size of the LA than type B. The fat pad was identifiable at the level of the inferior pulmonary vein in 91% of the patients without any predominance of either type. The thickness of the fat pad was thinner in the patients with a dilated LA (>42 mm) than in those with a normal LA size (≤42 mm) (p = 0.01). The results demonstrated that the majority of cases had a leftward route of the esophagus. There was a close association between the LA dilatation and fat pad thinning. With a dilated LA, the esophagus may become easily susceptible to direct thermal injury during AF ablation. Visualization of the anatomic relationship may contribute to the prevention of the potential risk of an esophageal injury.

  9. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography

    PubMed Central

    Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  10. Micro-computed tomography image-based evaluation of 3D anisotropy degree of polymer scaffolds.

    PubMed

    Pérez-Ramírez, Ursula; López-Orive, Jesús Javier; Arana, Estanislao; Salmerón-Sánchez, Manuel; Moratal, David

    2015-01-01

    Anisotropy is one of the most meaningful determinants of biomechanical behaviour. This study employs micro-computed tomography (μCT) and image techniques for analysing the anisotropy of regenerative medicine polymer scaffolds. For this purpose, three three-dimensional anisotropy evaluation image methods were used: ellipsoid of inertia (EI), mean intercept length (MIL) and tensor scale (t-scale). These were applied to three patterns (a sphere, a cube and a right prism) and to two polymer scaffold topologies (cylindrical orthogonal pore mesh and spherical pores). For the patterns, the three methods provided good results. Regarding the scaffolds, EI mistook both topologies (0.0158, [-0.5683; 0.6001]; mean difference and 95% confidence interval), and MIL showed no significant differences (0.3509, [0.0656; 0.6362]). T-scale is the preferable method because it gave the best capability (0.3441, [0.1779; 0.5102]) to differentiate both topologies. This methodology results in the development of non-destructive tools to engineer biomimetic scaffolds, incorporating anisotropy as a fundamental property to be mimicked from the original tissue and permitting its assessment by means of μCT image analysis.

  11. A Generalized Fluid Formulation for Turbomachinery Computations

    NASA Technical Reports Server (NTRS)

    Merkle, Charles L.; Sankaran, Venkateswaran; Dorney, Daniel J.; Sondak, Douglas L.

    2003-01-01

    A generalized formulation of the equations of motion of an arbitrary fluid are developed for the purpose of defining a common iterative algorithm for computational procedures. The method makes use of the equations of motion in conservation form with separate pseudo-time derivatives used for defining the numerical flux for a Riemann solver and the convergence algorithm. The partial differential equations are complemented by an thermodynamic and caloric equations of state of a complexity necessary for describing the fluid. Representative solutions with a new code based on this general equation formulation are provided for three turbomachinery problems. The first uses air as a working fluid while the second uses gaseous oxygen in a regime in which real gas effects are of little importance. These nearly perfect gas computations provide a basis for comparing with existing perfect gas code computations. The third case is for the flow of liquid oxygen through a turbine where real gas effects are significant. Vortex shedding predictions with the LOX formulations reduce the discrepancy between perfect gas computations and experiment by approximately an order of magnitude, thereby verifying the real gas formulation as well as providing an effective case where its capabilities are necessary.

  12. Spectral Methods for Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Zang, T. A.; Streett, C. L.; Hussaini, M. Y.

    1994-01-01

    As a tool for large-scale computations in fluid dynamics, spectral methods were prophesized in 1944, born in 1954, virtually buried in the mid-1960's, resurrected in 1969, evangalized in the 1970's, and catholicized in the 1980's. The use of spectral methods for meteorological problems was proposed by Blinova in 1944 and the first numerical computations were conducted by Silberman (1954). By the early 1960's computers had achieved sufficient power to permit calculations with hundreds of degrees of freedom. For problems of this size the traditional way of computing the nonlinear terms in spectral methods was expensive compared with finite-difference methods. Consequently, spectral methods fell out of favor. The expense of computing nonlinear terms remained a severe drawback until Orszag (1969) and Eliasen, Machenauer, and Rasmussen (1970) developed the transform methods that still form the backbone of many large-scale spectral computations. The original proselytes of spectral methods were meteorologists involved in global weather modeling and fluid dynamicists investigating isotropic turbulence. The converts who were inspired by the successes of these pioneers remained, for the most part, confined to these and closely related fields throughout the 1970's. During that decade spectral methods appeared to be well-suited only for problems governed by ordinary diSerential eqllations or by partial differential equations with periodic boundary conditions. And, of course, the solution itself needed to be smooth. Some of the obstacles to wider application of spectral methods were: (1) poor resolution of discontinuous solutions; (2) inefficient implementation of implicit methods; and (3) drastic geometric constraints. All of these barriers have undergone some erosion during the 1980's, particularly the latter two. As a result, the applicability and appeal of spectral methods for computational fluid dynamics has broadened considerably. The motivation for the use of spectral

  13. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  14. Efficient computational methods for electromagnetic imaging with applications to 3D magnetotellurics

    NASA Astrophysics Data System (ADS)

    Kordy, Michal Adam

    The motivation for this work is the forward and inverse problem for magnetotellurics, a frequency domain electromagnetic remote-sensing geophysical method used in mineral, geothermal, and groundwater exploration. The dissertation consists of four papers. In the first paper, we prove the existence and uniqueness of a representation of any vector field in H(curl) by a vector lying in H(curl) and H(div). It allows us to represent electric or magnetic fields by another vector field, for which nodal finite element approximation may be used in the case of non-constant electromagnetic properties. With this approach, the system matrix does not become ill-posed for low-frequency. In the second paper, we consider hexahedral finite element approximation of an electric field for the magnetotelluric forward problem. The near-null space of the system matrix for low frequencies makes the numerical solution unstable in the air. We show that the proper solution may obtained by applying a correction on the null space of the curl. It is done by solving a Poisson equation using discrete Helmholtz decomposition. We parallelize the forward code on multicore workstation with large RAM. In the next paper, we use the forward code in the inversion. Regularization of the inversion is done by using the second norm of the logarithm of conductivity. The data space Gauss-Newton approach allows for significant savings in memory and computational time. We show the efficiency of the method by considering a number of synthetic inversions and we apply it to real data collected in Cascade Mountains. The last paper considers a cross-frequency interpolation of the forward response as well as the Jacobian. We consider Pade approximation through model order reduction and rational Krylov subspace. The interpolating frequencies are chosen adaptively in order to minimize the maximum error of interpolation. Two error indicator functions are compared. We prove a theorem of almost always lucky failure in the

  15. A fully 3D approach for metal artifact reduction in computed tomography

    SciTech Connect

    Kratz, Baerbel; Weyers, Imke; Buzug, Thorsten M.

    2012-11-15

    Purpose: In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. Methods: The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results: Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial

  16. Effects of computing parameters and measurement locations on the estimation of 3D NPS in non-stationary MDCT images.

    PubMed

    Miéville, Frédéric A; Bolard, Gregory; Bulling, Shelley; Gudinchet, François; Bochud, François O; Verdun, François R

    2013-11-01

    The goal of this study was to investigate the impact of computing parameters and the location of volumes of interest (VOI) on the calculation of 3D noise power spectrum (NPS) in order to determine an optimal set of computing parameters and propose a robust method for evaluating the noise properties of imaging systems. Noise stationarity in noise volumes acquired with a water phantom on a 128-MDCT and a 320-MDCT scanner were analyzed in the spatial domain in order to define locally stationary VOIs. The influence of the computing parameters in the 3D NPS measurement: the sampling distances bx,y,z and the VOI lengths Lx,y,z, the number of VOIs NVOI and the structured noise were investigated to minimize measurement errors. The effect of the VOI locations on the NPS was also investigated. Results showed that the noise (standard deviation) varies more in the r-direction (phantom radius) than z-direction plane. A 25 × 25 × 40 mm(3) VOI associated with DFOV = 200 mm (Lx,y,z = 64, bx,y = 0.391 mm with 512 × 512 matrix) and a first-order detrending method to reduce structured noise led to an accurate NPS estimation. NPS estimated from off centered small VOIs had a directional dependency contrary to NPS obtained from large VOIs located in the center of the volume or from small VOIs located on a concentric circle. This showed that the VOI size and location play a major role in the determination of NPS when images are not stationary. This study emphasizes the need for consistent measurement methods to assess and compare image quality in CT.

  17. Realistic 3D computer model of the gerbil middle ear, featuring accurate morphology of bone and soft tissue structures.

    PubMed

    Buytaert, Jan A N; Salih, Wasil H M; Dierick, Manual; Jacobs, Patric; Dirckx, Joris J J

    2011-12-01

    In order to improve realism in middle ear (ME) finite-element modeling (FEM), comprehensive and precise morphological data are needed. To date, micro-scale X-ray computed tomography (μCT) recordings have been used as geometric input data for FEM models of the ME ossicles. Previously, attempts were made to obtain these data on ME soft tissue structures as well. However, due to low X-ray absorption of soft tissue, quality of these images is limited. Another popular approach is using histological sections as data for 3D models, delivering high in-plane resolution for the sections, but the technique is destructive in nature and registration of the sections is difficult. We combine data from high-resolution μCT recordings with data from high-resolution orthogonal-plane fluorescence optical-sectioning microscopy (OPFOS), both obtained on the same gerbil specimen. State-of-the-art μCT delivers high-resolution data on the 3D shape of ossicles and other ME bony structures, while the OPFOS setup generates data of unprecedented quality both on bone and soft tissue ME structures. Each of these techniques is tomographic and non-destructive and delivers sets of automatically aligned virtual sections. The datasets coming from different techniques need to be registered with respect to each other. By combining both datasets, we obtain a complete high-resolution morphological model of all functional components in the gerbil ME. The resulting 3D model can be readily imported in FEM software and is made freely available to the research community. In this paper, we discuss the methods used, present the resulting merged model, and discuss the morphological properties of the soft tissue structures, such as muscles and ligaments.

  18. Computer-aided detection of masses in digital tomosynthesis mammography: combination of 3D and 2D detection information

    NASA Astrophysics Data System (ADS)

    Chan, Heang-Ping; Wei, Jun; Zhang, Yiheng; Moore, Richard H.; Kopans, Daniel B.; Hadjiiski, Lubomir; Sahiner, Berkman; Roubidoux, Marilyn A.; Helvie, Mark A.

    2007-03-01

    We are developing a computer-aided detection (CAD) system for masses on digital breast tomosynthesis mammograms (DBTs). The CAD system includes two parallel processes. In the first process, mass detection and feature analysis are performed in the reconstructed 3D DBT volume. A mass likelihood score is estimated for each mass candidate using a linear discriminant (LDA) classifier. In the second process, mass detection and feature analysis are applied to the individual projection view (PV) images. A mass likelihood score is estimated for each mass candidate using another LDA classifier. The mass likelihood images derived from the PVs are back-projected to the breast volume to estimate the 3D spatial distribution of the mass likelihood scores. The mass likelihood scores estimated by the two processes at the corresponding 3D location are then merged and evaluated using FROC analysis. In this preliminary study, a data set of 52 DBT cases acquired with a GE prototype system at the Massachusetts General Hospital was used. The LDA classifiers with stepwise feature selection were designed with leave-one-case-out resampling. In an FROC analysis, the CAD system for detection in the DBT volume alone achieved test sensitivities of 80% and 90% at an average FP rate of 1.6 and 3.0 per breast, respectively. In comparison, the average FP rates of the combined system were 1.2 and 2.3 per breast, respectively, at the same sensitivities. The combined system is a promising approach to improving mass detection on DBTs.

  19. Computational Fluid Dynamics - Applications in Manufacturing Processes

    NASA Astrophysics Data System (ADS)

    Beninati, Maria Laura; Kathol, Austin; Ziemian, Constance

    2012-11-01

    A new Computational Fluid Dynamics (CFD) exercise has been developed for the undergraduate introductory fluid mechanics course at Bucknell University. The goal is to develop a computational exercise that students complete which links the manufacturing processes course and the concurrent fluid mechanics course in a way that reinforces the concepts in both. In general, CFD is used as a tool to increase student understanding of the fundamentals in a virtual world. A ``learning factory,'' which is currently in development at Bucknell seeks to use the laboratory as a means to link courses that previously seemed to have little correlation at first glance. A large part of the manufacturing processes course is a project using an injection molding machine. The flow of pressurized molten polyurethane into the mold cavity can also be an example of fluid motion (a jet of liquid hitting a plate) that is applied in manufacturing. The students will run a CFD process that captures this flow using their virtual mold created with a graphics package, such as SolidWorks. The laboratory structure is currently being implemented and analyzed as a part of the ``learning factory''. Lastly, a survey taken before and after the CFD exercise demonstrate a better understanding of both the CFD and manufacturing process.

  20. Computational fluid dynamics in cardiovascular disease.

    PubMed

    Lee, Byoung-Kwon

    2011-08-01

    Computational fluid dynamics (CFD) is a mechanical engineering field for analyzing fluid flow, heat transfer, and associated phenomena, using computer-based simulation. CFD is a widely adopted methodology for solving complex problems in many modern engineering fields. The merit of CFD is developing new and improved devices and system designs, and optimization is conducted on existing equipment through computational simulations, resulting in enhanced efficiency and lower operating costs. However, in the biomedical field, CFD is still emerging. The main reason why CFD in the biomedical field has lagged behind is the tremendous complexity of human body fluid behavior. Recently, CFD biomedical research is more accessible, because high performance hardware and software are easily available with advances in computer science. All CFD processes contain three main components to provide useful information, such as pre-processing, solving mathematical equations, and post-processing. Initial accurate geometric modeling and boundary conditions are essential to achieve adequate results. Medical imaging, such as ultrasound imaging, computed tomography, and magnetic resonance imaging can be used for modeling, and Doppler ultrasound, pressure wire, and non-invasive pressure measurements are used for flow velocity and pressure as a boundary condition. Many simulations and clinical results have been used to study congenital heart disease, heart failure, ventricle function, aortic disease, and carotid and intra-cranial cerebrovascular diseases. With decreasing hardware costs and rapid computing times, researchers and medical scientists may increasingly use this reliable CFD tool to deliver accurate results. A realistic, multidisciplinary approach is essential to accomplish these tasks. Indefinite collaborations between mechanical engineers and clinical and medical scientists are essential. CFD may be an important methodology to understand the pathophysiology of the development and

  1. In Vivo/Ex Vivo MRI-Based 3D Non-Newtonian FSI Models for Human Atherosclerotic Plaques Compared with Fluid/Wall-Only Models.

    PubMed

    Yang, Chun; Tang, Dalin; Yuan, Chun; Hatsukami, Thomas S; Zheng, Jie; Woodard, Pamela K

    2007-01-01

    It has been recognized that fluid-structure interactions (FSI) play an important role in cardiovascular disease initiation and development. However, in vivo MRI multi-component FSI models for human carotid atherosclerotic plaques with bifurcation and quantitative comparisons of FSI models with fluid-only or structure-only models are currently lacking in the literature. A 3D non-Newtonian multi-component FSI model based on in vivo/ex vivo MRI images for human atherosclerotic plaques was introduced to investigate flow and plaque stress/strain behaviors which may be related to plaque progression and rupture. Both artery wall and plaque components were assumed to be hyperelastic, isotropic, incompressible and homogeneous. Blood flow was assumed to be laminar, non-Newtonian, viscous and incompressible. In vivo/ex vivo MRI images were acquired using histologically-validated multi-spectral MRI protocols. The 3D FSI models were solved and results were compared with those from a Newtonian FSI model and wall-only/fluid-only models. A 145% difference in maximum principal stresses (Stress-P(1)) between the FSI and wall-only models and 40% difference in flow maximum shear stress (MSS) between the FSI and fluid-only models were found at the throat of the plaque using a severe plaque sample (70% severity by diameter). Flow maximum shear stress (MSS) from the rigid wall model is much higher (20-40% in maximum MSS values, 100-150% in stagnation region) than those from FSI models.

  2. Computation of Flow Over a Drag Prediction Workshop Wing/Body Transport Configuration Using CFL3D

    NASA Technical Reports Server (NTRS)

    Rumsey, Christopher L.; Biedron, Robert T.

    2001-01-01

    A Drag Prediction Workshop was held in conjunction with the 19th AIAA Applied Aerodynamics Conference in June 2001. The purpose of the workshop was to assess the prediction of drag by computational methods for a wing/body configuration (DLR-F4) representative of subsonic transport aircraft. This report details computed results submitted to this workshop using the Reynolds-averaged Navier-Stokes code CFL3D. Two supplied grids were used: a point-matched 1-to-1 multi-block grid, and an overset multi-block grid. The 1-to-1 grid, generally of much poorer quality and with less streamwise resolution than the overset grid, is found to be too coarse to adequately resolve the surface pressures. However, the global forces and moments are nonetheless similar to those computed using the overset grid. The effect of three different turbulence models is assessed using the 1-to-1 grid. Surface pressures are very similar overall, and the drag variation due to turbulence model is 18 drag counts. Most of this drag variation is in the friction component, and is attributed in part to insufficient grid resolution of the 1-to-1 grid. The misnomer of 'fully turbulent' computations is discussed; comparisons are made using different transition locations and their effects on the global forces and moments are quantified. Finally, the effect of two different versions of a widely used one-equation turbulence model is explored.

  3. Method for Fast CT/SPECT-Based 3D Monte Carlo Absorbed Dose Computations in Internal Emitter Therapy

    PubMed Central

    Wilderman, S. J.; Dewaraja, Y. K.

    2010-01-01

    The DPM (Dose Planning Method) Monte Carlo electron and photon transport program, designed for fast computation of radiation absorbed dose in external beam radiotherapy, has been adapted to the calculation of absorbed dose in patient-specific internal emitter therapy. Because both its photon and electron transport mechanics algorithms have been optimized for fast computation in 3D voxelized geometries (in particular, those derived from CT scans), DPM is perfectly suited for performing patient-specific absorbed dose calculations in internal emitter therapy. In the updated version of DPM developed for the current work, the necessary inputs are a patient CT image, a registered SPECT image, and any number of registered masks defining regions of interest. DPM has been benchmarked for internal emitter therapy applications by comparing computed absorption fractions for a variety of organs using a Zubal phantom with reference results from the Medical Internal Radionuclide Dose (MIRD) Committee standards. In addition, the β decay source algorithm and the photon tracking algorithm of DPM have been further benchmarked by comparison to experimental data. This paper presents a description of the program, the results of the benchmark studies, and some sample computations using patient data from radioimmunotherapy studies using 131I. PMID:20305792

  4. Computational fluid dynamics using CATIA created geometry

    NASA Astrophysics Data System (ADS)

    Gengler, Jeanne E.

    1989-07-01

    A method has been developed to link the geometry definition residing on a CAD/CAM system with a computational fluid dynamics (CFD) tool needed to evaluate aerodynamic designs and requiring the memory capacity of a supercomputer. Requirements for surfaces suitable for CFD analysis are discussed. Techniques for developing surfaces and verifying their smoothness are compared, showing the capability of the CAD/CAM system. The utilization of a CAD/CAM system to create a computational mesh is explained, and the mesh interaction with the geometry and input file preparation for the CFD analysis is discussed.

  5. Microcomputer-based technique for 3-D reconstruction and volume measurement of computer tomographic images. Part 1: Phantom studies.

    PubMed

    Albright, R E; Fram, E K

    1988-12-01

    This paper presents a microcomputer-based technique that accurately quantifies volumes from computed tomographic (CT) scans of irregularly shaped objects as well as displaying 3-D reconstructions. The method uses standard CT film, allowing analysis of previous or outside CT studies. The planimetry method showed less than 5% error in measuring irregular 2-D areas larger than 6 mm2. The method is demonstrated to be significantly more accurate than spherical, ellipsoid, or rectangular geometric models in quantifying object volume by CT (P less than .001). With a single gantry angle, planimetry showed a two standard deviation error under 10% in measuring the volume of irregular objects compared with an error over 30% for ellipsoid models. The inaccuracy of the spherical model (80% error) and the rectangular prism model (192% error) renders them impractical to provide quantitative object volume. Microcomputer planimetry provides an accurate and versatile means to measure the volume and produce 3-D reconstructions of objects scanned with CT, and it has potential application in quantifying tumor response with CT and magnetic resonance imaging.

  6. Hemifacial microsomia with spinal and rib anomalies: prenatal diagnosis and postmortem confirmation using 3-D computed tomography reconstruction.

    PubMed

    Haratz, Karina; Vinkler, Chana; Lev, Dorit; Schreiber, Letizia; Malinger, Gustavo

    2011-01-01

    Hemifacial microsomia (OMIM164210) is a condition featuring unilateral ear anomalies and ocular epibulbar dermoids associated with unilateral underdevelopment of the craniofacial bony structures. Other associated anomalies have also been described, especially spinal malformations, and the term oculoauriculovertebral dysplasia spectrum (OVAS) was suggested to include the three predominant systems involved. Both genetic and environmental causes are implied in the pathogenesis of the syndrome, with a 3% recurrence rate according to reports of both vertical transmission and affected siblings. No specific gene was identified, albeit mutations in chromosome 10 and deficiencies of genes in the endothelin pathway in mice exhibited the same clinical features. We hereby describe the first case of prenatal diagnosis of spinal and rib malformations associated to hemifacial microsomia by means of 2-D and 3-D ultrasound in a 23-week fetus. The sonographic study depicted fetal scoliosis due to the presence of hemivertebrae, Sprengel's deformity of the left shoulder, ribs fusion, asymmetric ears with unilateral microtia, mandible unilateral hypoplasia as well as single umbilical artery and a 'golf ball' sign in the left ventricle of the heart. The diagnosis of OVAS was suggested and the family received proper genetic consultation. After termination of the pregnancy, the syndrome was confirmed by postmortem 3-D computed tomography study. In view of the grim outcome, prenatal death rate and high mortality and morbidity when three or more systems are involved, prenatal diagnosis and appropriate counseling are warranted.

  7. Computing the 3-D structure of viruses from unoriented cryo electron microscope images: a fast algorithm for a statistical approach.

    PubMed

    Lee, Junghoon; Zheng, Yili; Doerschuk, Peter C

    2006-01-01

    In a cryo electron microscopy experiment, the data is noisy 2-D projection images of the 3-D electron scattering intensity where the orientation of the projections is not known. In previous work we have developed a solution for this problem based on a maximum likelihood estimator that is computed by an expectation maximization algorithm. In the expectation maximization algorithm the expensive step is the expectation which requires numerical evaluation of 3- or 5-dimensional integrations of a square matrix of dimension equal to the number of Fourier series coefficients used to describe the 3-D reconstruction. By taking advantage of the rotational properties of spherical harmonics, we can reduce the integrations of a matrix to integrations of a scalar. The key property is that a rotated spherical harmonic can be expressed as a linear combination of the other harmonics of the same order and the weights in the linear combination factor so that each of the three factors is a function of only one of the Euler angles describing the orientation of the projection. Numerical example of the reconstructions is provided based on Nudaurelia Omega Capensis virus.

  8. NASA Computational Fluid Dynamics Conference. Volume 1: Sessions 1-6

    NASA Technical Reports Server (NTRS)

    1989-01-01

    Presentations given at the NASA Computational Fluid Dynamics (CFD) Conference held at the NASA Ames Research Center, Moffett Field, California, March 7-9, 1989 are given. Topics covered include research facility overviews of CFD research and applications, validation programs, direct simulation of compressible turbulence, turbulence modeling, advances in Runge-Kutta schemes for solving 3-D Navier-Stokes equations, grid generation and invicid flow computation around aircraft geometries, numerical simulation of rotorcraft, and viscous drag prediction for rotor blades.

  9. Numerical study for the calculation of computer-generated hologram in color holographic 3D projection enabled by modified wavefront recording plane method

    NASA Astrophysics Data System (ADS)

    Chang, Chenliang; Qi, Yijun; Wu, Jun; Yuan, Caojin; Nie, Shouping; Xia, Jun

    2017-03-01

    A method of calculating computer-generated hologram (CGH) for color holographic 3D projection is proposed. A color 3D object is decomposed into red, green and blue components. For each color component, a virtual wavefront recording plane (WRP) is established which is nonuniformly sampled according to the depth map of the 3D object. The hologram of each color component is calculated from the nonuniform sampled WRP using the shifted Fresnel diffraction algorithm. Finally three holograms of RGB components are encoded into one single CGH based on the multiplexing encoding method. The computational cost of CGH generation is reduced by converting diffraction calculation from huge 3D voxels to three 2D planar images. Numerical experimental results show that the CGH generated by our method is capable to project zoomable color 3D object with clear quality.

  10. Steady-State VEP-Based Brain-Computer Interface Control in an Immersive 3D Gaming Environment

    NASA Astrophysics Data System (ADS)

    Lalor, E. C.; Kelly, S. P.; Finucane, C.; Burke, R.; Smith, R.; Reilly, R. B.; McDarby, G.

    2005-12-01

    This paper presents the application of an effective EEG-based brain-computer interface design for binary control in a visually elaborate immersive 3D game. The BCI uses the steady-state visual evoked potential (SSVEP) generated in response to phase-reversing checkerboard patterns. Two power-spectrum estimation methods were employed for feature extraction in a series of offline classification tests. Both methods were also implemented during real-time game play. The performance of the BCI was found to be robust to distracting visual stimulation in the game and relatively consistent across six subjects, with 41 of 48 games successfully completed. For the best performing feature extraction method, the average real-time control accuracy across subjects was 89%. The feasibility of obtaining reliable control in such a visually rich environment using SSVEPs is thus demonstrated and the impact of this result is discussed.

  11. The use of computers for instruction in fluid dynamics

    NASA Technical Reports Server (NTRS)

    Watson, Val

    1987-01-01

    Applications for computers which improve instruction in fluid dynamics are examined. Computers can be used to illustrate three-dimensional flow fields and simple fluid dynamics mechanisms, to solve fluid dynamics problems, and for electronic sketching. The usefulness of computer applications is limited by computer speed, memory, and software and the clarity and field of view of the projected display. Proposed advances in personal computers which will address these limitations are discussed. Long range applications for computers in education are considered.

  12. 3D computation of an incipient motion of a sessile drop on a rigid surface with contact angle hysteresis

    NASA Astrophysics Data System (ADS)

    Linder, Nicklas; Criscione, Antonio; Roisman, Ilia V.; Marschall, Holger; Tropea, Cameron

    2015-12-01

    Contact line phenomena govern a large number of multiphase flows. A reliable description of the contact line dynamics is therefore essential for prediction of such flows. Well-known difficulties of computation of the wetting phenomena include the mesh dependence of the results caused by flow singularity near the contact line and accurate estimation of its propagating velocity. The present study deals with the computational problem arising from the discontinuity in the dependence of the dynamic contact angle on the propagation velocity, associated with the contact angle hysteresis. The numerical simulations are performed using the volume of fluid method. The boundary conditions in the neighborhood of the contact line are switched depending on the value of the computed current local contact angle between a propagating contact line and a pinning condition. The method is applied to the simulation of the deformation and incipient motion of a shedding drop. The model is validated by comparison of the numerical predictions with experimental data.

  13. Thoracic Temporal Subtraction Three Dimensional Computed Tomography (3D-CT): Screening for Vertebral Metastases of Primary Lung Cancers

    PubMed Central

    Iwano, Shingo; Ito, Rintaro; Umakoshi, Hiroyasu; Karino, Takatoshi; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji

    2017-01-01

    Purpose We developed an original, computer-aided diagnosis (CAD) software that subtracts the initial thoracic vertebral three-dimensional computed tomography (3D-CT) image from the follow-up 3D-CT image. The aim of this study was to investigate the efficacy of this CAD software during screening for vertebral metastases on follow-up CT images of primary lung cancer patients. Materials and Methods The interpretation experiment included 30 sets of follow-up CT scans in primary lung cancer patients and was performed by two readers (readers A and B), who each had 2.5 years’ experience reading CT images. In 395 vertebrae from C6 to L3, 46 vertebral metastases were identified as follows: osteolytic metastases (n = 17), osteoblastic metastases (n = 14), combined osteolytic and osteoblastic metastases (n = 6), and pathological fractures (n = 9). Thirty-six lesions were in the anterior component (vertebral body), and 10 lesions were in the posterior component (vertebral arch, transverse process, and spinous process). The area under the curve (AUC) by receiver operating characteristic (ROC) curve analysis and the sensitivity and specificity for detecting vertebral metastases were compared with and without CAD for each observer. Results Reader A detected 47 abnormalities on CT images without CAD, and 33 of them were true-positive metastatic lesions. Using CAD, reader A detected 57 abnormalities, and 38 were true positives. The sensitivity increased from 0.717 to 0.826, and on ROC curve analysis, AUC with CAD was significantly higher than that without CAD (0.849 vs. 0.902, p = 0.021). Reader B detected 40 abnormalities on CT images without CAD, and 36 of them were true-positive metastatic lesions. Using CAD, reader B detected 44 abnormalities, and 39 were true positives. The sensitivity increased from 0.783 to 0.848, and AUC with CAD was nonsignificantly higher than that without CAD (0.889 vs. 0.910, p = 0.341). Both readers detected more osteolytic and osteoblastic

  14. A 3D Computational fluid dynamics model validation for candidate molybdenum-99 target geometry

    NASA Astrophysics Data System (ADS)

    Zheng, Lin; Dale, Greg; Vorobieff, Peter

    2014-11-01

    Molybdenum-99 (99Mo) is the parent product of technetium-99m (99mTc), a radioisotope used in approximately 50,000 medical diagnostic tests per day in the U.S. The primary uses of this product include detection of heart disease, cancer, study of organ structure and function, and other applications. The US Department of Energy seeks new methods for generating 99Mo without the use of highly enriched uranium, to eliminate proliferation issues and provide a domestic supply of 99mTc for medical imaging. For this project, electron accelerating technology is used by sending an electron beam through a series of 100Mo targets. During this process a large amount of heat is created, which directly affects the operating temperature dictated by the tensile stress limit of the wall material. To maintain the required temperature range, helium gas is used as a cooling agent that flows through narrow channels between the target disks. In our numerical study, we investigate the cooling performance on a series of new geometry designs of the cooling channel. This research is supported by Los Alamos National Laboratory.

  15. "Let's Get Physical": Advantages of a Physical Model over 3D Computer Models and Textbooks in Learning Imaging Anatomy

    ERIC Educational Resources Information Center

    Preece, Daniel; Williams, Sarah B.; Lam, Richard; Weller, Renate

    2013-01-01

    Three-dimensional (3D) information plays an important part in medical and veterinary education. Appreciating complex 3D spatial relationships requires a strong foundational understanding of anatomy and mental 3D visualization skills. Novel learning resources have been introduced to anatomy training to achieve this. Objective evaluation of their…

  16. Parallel Three-Dimensional Computation of Fluid Dynamics and Fluid-Structure Interactions of Ram-Air Parachutes

    NASA Technical Reports Server (NTRS)

    Tezduyar, Tayfun E.

    1998-01-01

    This is a final report as far as our work at University of Minnesota is concerned. The report describes our research progress and accomplishments in development of high performance computing methods and tools for 3D finite element computation of aerodynamic characteristics and fluid-structure interactions (FSI) arising in airdrop systems, namely ram-air parachutes and round parachutes. This class of simulations involves complex geometries, flexible structural components, deforming fluid domains, and unsteady flow patterns. The key components of our simulation toolkit are a stabilized finite element flow solver, a nonlinear structural dynamics solver, an automatic mesh moving scheme, and an interface between the fluid and structural solvers; all of these have been developed within a parallel message-passing paradigm.

  17. Bioreactor studies and computational fluid dynamics.

    PubMed

    Singh, H; Hutmacher, D W

    2009-01-01

    The hydrodynamic environment "created" by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.

  18. Bioreactor Studies and Computational Fluid Dynamics

    NASA Astrophysics Data System (ADS)

    Singh, H.; Hutmacher, D. W.

    The hydrodynamic environment “created” by bioreactors for the culture of a tissue engineered construct (TEC) is known to influence cell migration, proliferation and extra cellular matrix production. However, tissue engineers have looked at bioreactors as black boxes within which TECs are cultured mainly by trial and error, as the complex relationship between the hydrodynamic environment and tissue properties remains elusive, yet is critical to the production of clinically useful tissues. It is well known in the chemical and biotechnology field that a more detailed description of fluid mechanics and nutrient transport within process equipment can be achieved via the use of computational fluid dynamics (CFD) technology. Hence, the coupling of experimental methods and computational simulations forms a synergistic relationship that can potentially yield greater and yet, more cohesive data sets for bioreactor studies. This review aims at discussing the rationale of using CFD in bioreactor studies related to tissue engineering, as fluid flow processes and phenomena have direct implications on cellular response such as migration and/or proliferation. We conclude that CFD should be seen by tissue engineers as an invaluable tool allowing us to analyze and visualize the impact of fluidic forces and stresses on cells and TECs.

  19. Chondrocyte calcium signaling in response to fluid flow is regulated by matrix adhesion in 3-D alginate scaffolds.

    PubMed

    Degala, Satish; Zipfel, Warren R; Bonassar, Lawrence J

    2011-01-01

    The interaction between chondrocytes and their surrounding extracellular matrix plays an important role in regulating cartilage metabolism in response to environmental cues. This study characterized the role of cell adhesion on the calcium signaling response of chondrocytes to fluid flow. Bovine chondrocytes were suspended in alginate hydrogels functionalized with RGD at concentrations of 0-400μM. The hydrogels were perfused and the calcium signaling response of the cells was measured over a range of fluid velocities from 0 to 68μm/s. Attachment to RGD-alginate doubled the sensitivity of chondrocytes to flows in the range of 8-13μm/s, but at higher fluid velocities, the contribution of cell adhesion to the observed calcium signaling response was no longer apparent. The enhanced sensitivity to flow was dependent on the density of RGD-ligand present in the scaffolds. The RGD-enhanced sensitivity to flow was completely inhibited by the addition of soluble RGD which acted as a competitive inhibitor. The results of this study indicate a role for matrix adhesion in regulating chondrocyte response to fluid flow through a calcium dependent mechanism.

  20. The impact of fault zones on the 3D coupled fluid and heat transport for the area of Brandenburg (NE German Basin)

    NASA Astrophysics Data System (ADS)

    Yvonne, Cherubini; Mauro, Cacace; Scheck-Wenderoth, Magdalena

    2013-04-01

    Faults can provide permeable pathways for fluids at a variety of scales, from great depth in the crust to flow through fractured aquifers, geothermal fields, and hydrocarbon reservoirs (Barton et al. 1995). In terms of geothermal energy exploration, it is essential to understand the role of faults and their impact on the thermal field and fluid system. 3D numerical simulations provide a useful tool for investigating the active physical processes in the subsurface. To assess the influence of major fault zones on the thermal field and fluid system, 3D coupled fluid and heat transport simulations are carried out. The study is based on a recently published structural model of the Brandenburg area, which is located in the south-eastern part of the Northeast German Basin (NEGB) (Noack et al. 2010). Two major fault zones of the Elbe Fault System (Gardelegen and Lausitz Escarpments) vertically offset the pre-Permian basement against the Permian to Cenozoic basin fill at the southern margin by several km (Scheck et al. 2002). Within the numerical models, these two major fault zones are represented as equivalent porous media and vertical discrete elements. The coupled system of equations describing fluid flow and heat transport in saturated porous media are numerically solved by the Finite Element software FEFLOW® (Diersch, 2002). Different possible geological scenarios are modelled and compared to a simulation in which no faults are considered. In one scenario the fault zones are set as impermeable. In this case, the thermal field is similar to the no fault model. Fluid flow is redirected because the fault zones act as hydraulic barriers that prevent a lateral fluid advection into the fault zones. By contrast, modelled permeable fault zones induce a pronounced thermal signature with distinctly cooler temperatures than in the no fault model. Fluid motion within the fault is initially triggered by advection due to hydraulic head gradients, but may be even enhanced by

  1. Sawfishes stealth revealed using computational fluid dynamics.

    PubMed

    Bradney, D R; Davidson, A; Evans, S P; Wueringer, B E; Morgan, D L; Clausen, P D

    2017-02-27

    Detailed computational fluid dynamics simulations for the rostrum of three species of sawfish (Pristidae) revealed that negligible turbulent flow is generated from all rostra during lateral swipe prey manipulation and swimming. These results suggest that sawfishes are effective stealth hunters that may not be detected by their teleost prey's lateral line sensory system during pursuits. Moreover, during lateral swipes, the rostra were found to induce little velocity into the surrounding fluid. Consistent with previous data of sawfish feeding behaviour, these data indicate that the rostrum is therefore unlikely to be used to stir up the bottom to uncover benthic prey. Whilst swimming with the rostrum inclined at a small angle to the horizontal, the coefficient of drag of the rostrum is relatively low and the coefficient of lift is zero.

  2. A perspective of computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Kutler, P.

    1986-01-01

    Computational fluid dynamics (CFD) is maturing, and is at a stage in its technological life cycle in which it is now routinely applied to some rather complicated problems; it is starting to create an impact on the design cycle of aerospace flight vehicles and their components. CFD is also being used to better understand the fluid physics of flows heretofore not understood, such as three-dimensional separation. CFD is also being used to complement and is being complemented by experiments. In this paper, the primary and secondary pacing items that govern CFD in the past are reviewed and updated. The future prospects of CFD are explored which will offer people working in the discipline challenges that should extend the technological life cycle to further increase the capabilities of a proven demonstrated technology.

  3. Product development: using a 3D computer model to optimize the stability of the Rocket powered wheelchair.

    PubMed

    Pinkney, S; Fernie, G

    2001-01-01

    A three-dimensional (3D) lumped-parameter model of a powered wheelchair was created to aid the development of the Rocket prototype wheelchair and to help explore the effect of innovative design features on its stability. The model was developed using simulation software, specifically Working Model 3D. The accuracy of the model was determined by comparing both its static stability angles and dynamic behavior as it passed down a 4.8-cm (1.9") road curb at a heading of 45 degrees with the performance of the actual wheelchair. The model's predictions of the static stability angles in the forward, rearward, and lateral directions were within 9.3, 7.1, and 3.8% of the measured values, respectively. The average absolute error in the predicted position of the wheelchair as it moved down the curb was 2.2 cm/m (0.9" per 3'3") traveled. The accuracy was limited by the inability to model soft bodies, the inherent difficulties in modeling a statically indeterminate system, and the computing time. Nevertheless, it was found to be useful in investigating the effect of eight design alterations on the lateral stability of the wheelchair. Stability was quantified by determining the static lateral stability angles and the maximum height of a road curb over which the wheelchair could successfully drive on a diagonal heading. The model predicted that the stability was more dependent on the configuration of the suspension system than on the dimensions and weight distribution of the wheelchair. Furthermore, for the situations and design alterations studied, predicted improvements in static stability were not correlated with improvements in dynamic stability.

  4. 3D surface reconstruction for laparoscopic computer-assisted interventions: comparison of state-of-the-art methods

    NASA Astrophysics Data System (ADS)

    Groch, A.; Seitel, A.; Hempel, S.; Speidel, S.; Engelbrecht, R.; Penne, J.; Höller, K.; Röhl, S.; Yung, K.; Bodenstedt, S.; Pflaum, F.; dos Santos, T. R.; Mersmann, S.; Meinzer, H.-P.; Hornegger, J.; Maier-Hein, L.

    2011-03-01

    One of the main challenges related to computer-assisted laparoscopic surgery is the accurate registration of pre-operative planning images with patient's anatomy. One popular approach for achieving this involves intraoperative 3D reconstruction of the target organ's surface with methods based on multiple view geometry. The latter, however, require robust and fast algorithms for establishing correspondences between multiple images of the same scene. Recently, the first endoscope based on Time-of-Flight (ToF) camera technique was introduced. It generates dense range images with high update rates by continuously measuring the run-time of intensity modulated light. While this approach yielded promising results in initial experiments, the endoscopic ToF camera has not yet been evaluated in the context of related work. The aim of this paper was therefore to compare its performance with different state-of-the-art surface reconstruction methods on identical objects. For this purpose, surface data from a set of porcine organs as well as organ phantoms was acquired with four different cameras: a novel Time-of-Flight (ToF) endoscope, a standard ToF camera, a stereoscope, and a High Definition Television (HDTV) endoscope. The resulting reconstructed partial organ surfaces were then compared to corresponding ground truth shapes extracted from computed tomography (CT) data using a set of local and global distance metrics. The evaluation suggests that the ToF technique has high potential as means for intraoperative endoscopic surface registration.

  5. Computer-aided detection of lung nodules: false positive reduction using a 3D gradient field method

    NASA Astrophysics Data System (ADS)

    Ge, Zhanyu; Sahiner, Berkman; Chan, Heang-Ping; Hadjiiski, Lubomir M.; Wei, Jun; Bogot, Naama; Cascade, Philip N.; Kazerooni, Ella A.; Zhou, Chuan

    2004-05-01

    We are developing a computer-aided detection system to aid radiologists in diagnosing lung cancer in thoracic computed tomographic (CT) images. The purpose of this study was to improve the false-positive (FP) reduction stage of our algorithm by developing and incorporating a gradient field technique. This technique extracts 3D shape information from the gray-scale values within a volume of interest. The gradient field feature values are higher for spherical objects, and lower for elongated and irregularly-shaped objects. A data set of 55 thin CT scans from 40 patients was used to evaluate the usefulness of the gradient field technique. After initial nodule candidate detection and rule-based first stage FP reduction, there were 3487 FP and 65 true positive (TP) objects in our data set. Linear discriminant classifiers with and without the gradient field feature were designed for the second stage FP reduction. The accuracy of these classifiers was evaluated using the area Az under the receiver operating characteristic (ROC) curve. The Az values were 0.93 and 0.91 with and without the gradient field feature, respectively. The improvement with the gradient field feature was statistically significant (p=0.01).

  6. Passive movement of human soft palate during respiration: A simulation of 3D fluid/structure interaction.

    PubMed

    Zhu, Jian Hua; Lee, Heow Pueh; Lim, Kian Meng; Lee, Shu Jin; Teo, Li San Lynette; Wang, De Yun

    2012-07-26

    This study reconstructed a three dimensional fluid/structure interaction (FSI) model to investigate the compliance of human soft palate during calm respiration. Magnetic resonance imaging scans of a healthy male subject were obtained for model reconstruction of the upper airway and the soft palate. The fluid domain consists of nasal cavity, nasopharynx and oropharynx. The airflow in upper airway was assumed as laminar and incompressible. The soft palate was assumed as linear elastic. The interface between airway and soft palate was the FSI interface. Sinusoidal variation of velocity magnitude was applied at the oropharynx corresponding to ventilation rate of 7.5L/min. Simulations of fluid model in upper airway, FSI models with palatal Young's modulus of 7539Pa and 3000Pa were carried out for two cycles of respiration. The results showed that the integrated shear forces over the FSI interface were much smaller than integrated pressure forces in all the three directions (axial, coronal and sagittal). The total integrated force in sagittal direction was much smaller than that of coronal and axial directions. The soft palate was almost static during inspiration but moved towards the posterior pharyngeal wall during expiration. In conclusion, the displacement of human soft palate during respiration was mainly driven by air pressure around the surface of the soft palate with minimal contribution of shear stress of the upper airway flow. Despite inspirational negative pressure, expiratory posterior movement of soft palate could be another factor for the induction of airway collapse.

  7. Domain decomposition algorithms and computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.

    1988-01-01

    Some of the new domain decomposition algorithms are applied to two model problems in computational fluid dynamics: the two-dimensional convection-diffusion problem and the incompressible driven cavity flow problem. First, a brief introduction to the various approaches of domain decomposition is given, and a survey of domain decomposition preconditioners for the operator on the interface separating the subdomains is then presented. For the convection-diffusion problem, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is examined.

  8. Shuttle rocket booster computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chung, T. J.; Park, O. Y.

    1988-01-01

    Additional results and a revised and improved computer program listing from the shuttle rocket booster computational fluid dynamics formulations are presented. Numerical calculations for the flame zone of solid propellants are carried out using the Galerkin finite elements, with perturbations expanded to the zeroth, first, and second orders. The results indicate that amplification of oscillatory motions does indeed prevail in high frequency regions. For the second order system, the trend is similar to the first order system for low frequencies, but instabilities may appear at frequencies lower than those of the first order system. The most significant effect of the second order system is that the admittance is extremely oscillatory between moderately high frequency ranges.

  9. Modeling Warm Dense Matter Experiments using the 3D ALE-AMR Code and the Move Toward Exascale Computing

    SciTech Connect

    Koniges, A; Eder, E; Liu, W; Barnard, J; Friedman, A; Logan, G; Fisher, A; Masers, N; Bertozzi, A

    2011-11-04

    The Neutralized Drift Compression Experiment II (NDCX II) is an induction accelerator planned for initial commissioning in 2012. The final design calls for a 3 MeV, Li+ ion beam, delivered in a bunch with characteristic pulse duration of 1 ns, and transverse dimension of order 1 mm. The NDCX II will be used in studies of material in the warm dense matter (WDM) regime, and ion beam/hydrodynamic coupling experiments relevant to heavy ion based inertial fusion energy. We discuss recent efforts to adapt the 3D ALE-AMR code to model WDM experiments on NDCX II. The code, which combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR), has physics models that include ion deposition, radiation hydrodynamics, thermal diffusion, anisotropic material strength with material time history, and advanced models for fragmentation. Experiments at NDCX-II will explore the process of bubble and droplet formation (two-phase expansion) of superheated metal solids using ion beams. Experiments at higher temperatures will explore equation of state and heavy ion fusion beam-to-target energy coupling efficiency. Ion beams allow precise control of local beam energy deposition providing uniform volumetric heating on a timescale shorter than that of hydrodynamic expansion. The ALE-AMR code does not have any export control restrictions and is currently running at the National Energy Research Scientific Computing Center (NERSC) at LBNL and has been shown to scale well to thousands of CPUs. New surface tension models that are being implemented and applied to WDM experiments. Some of the approaches use a diffuse interface surface tension model that is based on the advective Cahn-Hilliard equations, which allows for droplet breakup in divergent velocity fields without the need for imposed perturbations. Other methods require seeding or other methods for droplet breakup. We also briefly discuss the effects of the move to exascale computing and related

  10. Symmetry-plane models of 3D Euler fluid equations: Analytical solutions and finite-time blowup using infinitesimal Lie-symmetry methods

    NASA Astrophysics Data System (ADS)

    Bustamante, Miguel D.

    2014-11-01

    We consider 3D Euler fluids endowed with a discrete symmetry whereby the velocity field is invariant under mirror reflections about a 2D surface known as the ``symmetry plane.'' This type of flow is widely used in numerical simulations of classical/magnetic/quantum turbulence and vortex reconnection. On the 2D symmetry plane, the governing equations are best written in terms of two scalars: vorticity and stretching rate of vorticity. These determine the velocity field on the symmetry plane. However, the governing equations are not closed, because of the contribution of a single pressure term that depends on the full 3D velocity profile. By modelling this pressure term we propose a one-parameter family of sensible models for the flow along the 2D symmetry plane. We apply the method of infinitesimal Lie symmetries and solve the governing equations analytically for the two scalars as functions of time. We show how the value of the model's parameter determines if the analytical solution has a finite-time blowup and obtain explicit formulae for the blowup time. We validate the models by showing that a particular choice of the model's parameter corresponds to a well-known exact solution of 3D Euler equations [Gibbon et al., Physica D 132, 497 (1999)]. We discuss practical applications. Supported by Science Foundation Ireland (SFI) under Grant Number 12/IP/1491.

  11. Turbulence computations with 3-D small-scale additive turbulent decomposition and data-fitting using chaotic map combinations

    SciTech Connect

    Mukerji, Sudip

    1997-01-01

    Although the equations governing turbulent fluid flow, the Navier-Stokes (N.S.) equations, have been known for well over a century and there is a clear technological necessity in obtaining solutions to these equations, turbulence remains one of the principal unsolved problems in physics today. It is still not possible to make accurate quantitative predictions about turbulent flows without relying heavily on empirical data. In principle, it is possible to obtain turbulent solutions from a direct numerical simulation (DNS) of the N.-S. equations. The author first provides a brief introduction to the dynamics of turbulent flows. The N.-S. equations which govern fluid flow, are described thereafter. Then he gives a brief overview of DNS calculations and where they stand at present. He next introduces the two most popular approaches for doing turbulent computations currently in use, namely, the Reynolds averaging of the N.-S. equations (RANS) and large-eddy simulation (LES). Approximations, often ad hoc ones, are present in these methods because use is made of heuristic models for turbulence quantities (the Reynolds stresses) which are otherwise unknown. They then introduce a new computational method called additive turbulent decomposition (ATD), the small-scale version of which is the topic of this research. The rest of the thesis is organized as follows. In Chapter 2 he describes the ATD procedure in greater detail; how dependent variables are split and the decomposition into large- and small-scale sets of equations. In Chapter 3 the spectral projection of the small-scale momentum equations are derived in detail. In Chapter 4 results of the computations with the small-scale ATD equations are presented. In Chapter 5 he describes the data-fitting procedure which can be used to directly specify the parameters of a chaotic-map turbulence model.

  12. Computation of load performance and other parameters of extra high speed modified Lundell alternators from 3D-FE magnetic field solutions

    NASA Technical Reports Server (NTRS)

    Wang, R.; Demerdash, N. A.

    1992-01-01

    The combined magnetic vector potential - magnetic scalar potential method of computation of 3D magnetic fields by finite elements, introduced in a companion paper, in combination with state modeling in the abc-frame of reference, are used for global 3D magnetic field analysis and machine performance computation under rated load and overload condition in an example 14.3 kVA modified Lundell alternator. The results vividly demonstrate the 3D nature of the magnetic field in such machines, and show how this model can be used as an excellent tool for computation of flux density distributions, armature current and voltage waveform profiles and harmonic contents, as well as computation of torque profiles and ripples. Use of the model in gaining insight into locations of regions in the magnetic circuit with heavy degrees of saturation is demonstrated. Experimental results which correlate well with the simulations of the load case are given.

  13. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem.

    PubMed

    McClay, Wilbert A; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T; Nagarajan, Srikantan S

    2015-09-30

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user's intent for specific keyboard strikes or mouse button presses. The BCI's data analytics OPEN ACCESS Brain. Sci. 2015, 5 420 of a subject's MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse.

  14. A Real-Time Magnetoencephalography Brain-Computer Interface Using Interactive 3D Visualization and the Hadoop Ecosystem

    PubMed Central

    McClay, Wilbert A.; Yadav, Nancy; Ozbek, Yusuf; Haas, Andy; Attias, Hagaii T.; Nagarajan, Srikantan S.

    2015-01-01

    Ecumenically, the fastest growing segment of Big Data is human biology-related data and the annual data creation is on the order of zetabytes. The implications are global across industries, of which the treatment of brain related illnesses and trauma could see the most significant and immediate effects. The next generation of health care IT and sensory devices are acquiring and storing massive amounts of patient related data. An innovative Brain-Computer Interface (BCI) for interactive 3D visualization is presented utilizing the Hadoop Ecosystem for data analysis and storage. The BCI is an implementation of Bayesian factor analysis algorithms that can distinguish distinct thought actions using magneto encephalographic (MEG) brain signals. We have collected data on five subjects yielding 90% positive performance in MEG mid- and post-movement activity. We describe a driver that substitutes the actions of the BCI as mouse button presses for real-time use in visual simulations. This process has been added into a flight visualization demonstration. By thinking left or right, the user experiences the aircraft turning in the chosen direction. The driver components of the BCI can be compiled into any software and substitute a user’s intent for specific keyboard strikes or mouse button presses. The BCI’s data analytics of a subject’s MEG brainwaves and flight visualization performance are stored and analyzed using the Hadoop Ecosystem as a quick retrieval data warehouse. PMID:26437432

  15. Computed Tomography Image Origin Identification based on Original Sensor Pattern Noise and 3D Image Reconstruction Algorithm Footprints.

    PubMed

    Duan, Yuping; Bouslimi, Dalel; Yang, Guanyu; Shu, Huazhong; Coatrieux, Gouenou

    2016-06-08

    In this paper, we focus on the "blind" identification of the Computed Tomography (CT) scanner that has produced a CT image. To do so, we propose a set of noise features derived from the image chain acquisition and which can be used as CT-Scanner footprint. Basically, we propose two approaches. The first one aims at identifying a CT-Scanner based on an Original Sensor Pattern Noise (OSPN) that is intrinsic to the X-ray detectors. The second one identifies an acquisition system based on the way this noise is modified by its 3D image reconstruction algorithm. As these reconstruction algorithms are manufacturer dependent and kept secret, our features are used as input to train an SVM based classifier so as to discriminate acquisition systems. Experiments conducted on images issued from 15 different CT-Scanner models of 4 distinct manufacturers demonstrate that our system identifies the origin of one CT image with a detection rate of at least 94% and that it achieves better performance than Sensor Pattern Noise (SPN) based strategy proposed for general public camera devices.

  16. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    NASA Astrophysics Data System (ADS)

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali

    2015-01-01

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 5123 to 81923 voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and Ht (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume "Shepp and Logan" in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  17. Computational fluid dynamics of developing avian outflow tract heart valves.

    PubMed

    Bharadwaj, Koonal N; Spitz, Cassie; Shekhar, Akshay; Yalcin, Huseyin C; Butcher, Jonathan T

    2012-10-01

    Hemodynamic forces play an important role in sculpting the embryonic heart and its valves. Alteration of blood flow patterns through the hearts of embryonic animal models lead to malformations that resemble some clinical congenital heart defects, but the precise mechanisms are poorly understood. Quantitative understanding of the local fluid forces acting in the heart has been elusive because of the extremely small and rapidly changing anatomy. In this study, we combine multiple imaging modalities with computational simulation to rigorously quantify the hemodynamic environment within the developing outflow tract (OFT) and its eventual aortic and pulmonary valves. In vivo Doppler ultrasound generated velocity profiles were applied to Micro-Computed Tomography generated 3D OFT lumen geometries from Hamburger-Hamilton (HH) stage 16-30 chick embryos. Computational fluid dynamics simulation initial conditions were iterated until local flow profiles converged with in vivo Doppler flow measurements. Results suggested that flow in the early tubular OFT (HH16 and HH23) was best approximated by Poiseuille flow, while later embryonic OFT septation (HH27, HH30) was mimicked by plug flow conditions. Peak wall shear stress (WSS) values increased from 18.16 dynes/cm(2) at HH16 to 671.24 dynes/cm(2) at HH30. Spatiotemporally averaged WSS values also showed a monotonic increase from 3.03 dynes/cm(2) at HH16 to 136.50 dynes/cm(2) at HH30. Simulated velocity streamlines in the early heart suggest a lack of mixing, which differed from classical ink injections. Changes in local flow patterns preceded and correlated with key morphogenetic events such as OFT septation and valve formation. This novel method to quantify local dynamic hemodynamics parameters affords insight into sculpting role of blood flow in the embryonic heart and provides a quantitative baseline dataset for future research.

  18. The 3D MHD code GOEMHD3 for astrophysical plasmas with large Reynolds numbers. Code description, verification, and computational performance

    NASA Astrophysics Data System (ADS)

    Skála, J.; Baruffa, F.; Büchner, J.; Rampp, M.

    2015-08-01

    Context. The numerical simulation of turbulence and flows in almost ideal astrophysical plasmas with large Reynolds numbers motivates the implementation of magnetohydrodynamical (MHD) computer codes with low resistivity. They need to be computationally efficient and scale well with large numbers of CPU cores, allow obtaining a high grid resolution over large simulation domains, and be easily and modularly extensible, for instance, to new initial and boundary conditions. Aims: Our aims are the implementation, optimization, and verification of a computationally efficient, highly scalable, and easily extensible low-dissipative MHD simulation code for the numerical investigation of the dynamics of astrophysical plasmas with large Reynolds numbers in three dimensions (3D). Methods: The new GOEMHD3 code discretizes the ideal part of the MHD equations using a fast and efficient leap-frog scheme that is second-order accurate in space and time and whose initial and boundary conditions can easily be modified. For the investigation of diffusive and dissipative processes the corresponding terms are discretized by a DuFort-Frankel scheme. To always fulfill the Courant-Friedrichs-Lewy stability criterion, the time step of the code is adapted dynamically. Numerically induced local oscillations are suppressed by explicit, externally controlled diffusion terms. Non-equidistant grids are implemented, which enhance the spatial resolution, where needed. GOEMHD3 is parallelized based on the hybrid MPI-OpenMP programing paradigm, adopting a standard two-dimensional domain-decomposition approach. Results: The ideal part of the equation solver is verified by performing numerical tests of the evolution of the well-understood Kelvin-Helmholtz instability and of Orszag-Tang vortices. The accuracy of solving the (resistive) induction equation is tested by simulating the decay of a cylindrical current column. Furthermore, we show that the computational performance of the code scales very

  19. 3D computed tomographic evaluation of the upper airway space of patients undergoing mandibular distraction osteogenesis for micrognathia.

    PubMed

    Bianchi, A; Betti, E; Badiali, G; Ricotta, F; Marchetti, C; Tarsitano, A

    2015-10-01

    Mandibular distraction osteogenesis (MDO) is currently an accepted method of treatment for patients requiring reconstruction of hypoplastic mandibles. To date one of the unsolved problems is how to assess the quantitative increase of mandible length needed to achieve a significant change in the volume of the posterior airway space (PAS) in children with mandibular micrognathia following distraction osteogenesis. The purpose of this study is to present quantitative volumetric evaluation of PAS in young patients having distraction osteogenesis for micrognathia using 3D-CT data sets and compare it with pre-operative situation. In this observational retrospective study, we report our experience in five consecutive patients who underwent MDO in an attempt to relieve severe upper airway obstruction. Each patient was evaluated before treatment (T0) and at the end of distraction procedure (T1) with computer tomography (CT) in axial, coronal, and sagittal planes and three-dimensional CT of the facial bones and upper airway. Using parameters to extract only data within anatomic constraints, a digital set of the edited upper airway volume was obtained. The volume determination was used for volumetric qualification of upper airway. The computed tomographic digital data were used to evaluate the upper airway volumes both pre-distraction and post-distraction. The mean length of distraction was 23 mm. Quantitative assessment of upper airway volume before and after distraction demonstrated increased volumes ranging from 84% to 3,087% with a mean of 536%. In conclusion, our study seems to show that DO can significantly increase the volume of the PAS in patients with upper airway obstruction following micrognathia, by an average of 5 times. Furthermore, the worse is the starting volume, the greater the increase in PAS to equal distraction.

  20. GRID2D/3D: A computer program for generating grid systems in complex-shaped two- and three-dimensional spatial domains. Part 1: Theory and method

    NASA Technical Reports Server (NTRS)

    Shih, T. I.-P.; Bailey, R. T.; Nguyen, H. L.; Roelke, R. J.

    1990-01-01

    An efficient computer program, called GRID2D/3D was developed to generate single and composite grid systems within geometrically complex two- and three-dimensional (2- and 3-D) spatial domains that can deform with time. GRID2D/3D generates single grid systems by using algebraic grid generation methods based on transfinite interpolation in which the distribution of grid points within the spatial domain is controlled by stretching functions. All single grid systems generated by GRID2D/3D can have grid lines that are continuous and differentiable everywhere up to the second-order. Also, grid lines can intersect boundaries of the spatial domain orthogonally. GRID2D/3D generates composite grid systems by patching together two or more single grid systems. The patching can be discontinuous or continuous. For continuous composite grid systems, the grid lines are continuous and differentiable everywhere up to the second-order except at interfaces where different single grid systems meet. At interfaces where different single grid systems meet, the grid lines are only differentiable up to the first-order. For 2-D spatial domains, the boundary curves are described by using either cubic or tension spline interpolation. For 3-D spatial domains, the boundary surfaces are described by using either linear Coon's interpolation, bi-hyperbolic spline interpolation, or a new technique referred to as 3-D bi-directional Hermite interpolation. Since grid systems generated by algebraic methods can have grid lines that overlap one another, GRID2D/3D contains a graphics package for evaluating the grid systems generated. With the graphics package, the user can generate grid systems in an interactive manner with the grid generation part of GRID2D/3D. GRID2D/3D is written in FORTRAN 77 and can be run on any IBM PC, XT, or AT compatible computer. In order to use GRID2D/3D on workstations or mainframe computers, some minor modifications must be made in the graphics part of the program; no

  1. 3D-Microarchitectural patterns of Hyperostosis frontalis interna: a micro-computed tomography study in aged women.

    PubMed

    Bracanovic, Djurdja; Djonic, Danijela; Nikolic, Slobodan; Milovanovic, Petar; Rakocevic, Zoran; Zivkovic, Vladimir; Djuric, Marija

    2016-11-01

    Although seen frequently during dissections and autopsies, Hyperostosis frontalis interna (HFI) - a morphological pattern of the frontal bone thickening - is often ignored and its nature and development are not yet understood sufficiently. Current macroscopic classification defines four grades/stages of HFI based on the morphological appearance and size of the affected area; however, it is unclear if these stages also depict the successive phases in the HFI development. Here we assessed 3D-microarchitecture of the frontal bone in women with various degrees of HFI expression and in an age- and sex-matched control group, hypothesizing that the bone microarchitecture bears imprints of the pathogenesis of HFI and may clarify the phases of its development. Frontal bone samples were collected during routine autopsies from 20 women with HFI (age: 69.9 ± 11.1 years) and 14 women without HFI (age: 74.1 ± 9.7 years). We classified the HFI samples into four groups, each group demonstrating different macroscopic type or stage of HFI. All samples were scanned by micro-computed tomography to evaluate 3D bone microarchitecture in the following regions of interest: total sample, outer table, diploe and inner table. Our results revealed that, compared to the control group, the women with HFI showed a significantly increased bone volume fraction in the region of diploe, along with significantly thicker and more plate-like shaped trabeculae and reduced trabecular separation and connectivity density. Moreover, the inner table of the frontal bone in women with HFI displayed significantly increased total porosity and mean pore diameter compared to controls. Microstructural reorganization of the frontal bone in women with HFI was also reflected in significantly higher porosity and lower bone volume fraction in the inner vs. outer table due to an increased number of pores larger than 100 μm. The individual comparisons between the control group and different macroscopic stages of

  2. Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning.

    PubMed

    Mattei, Alexandra L; Riccio, Mark L; Avila, Frank W; Wolfner, Mariana F

    2015-07-07

    Physiological changes in females during and after mating are triggered by seminal fluid components in conjunction with female-derived molecules. In insects, these changes include increased egg production, storage of sperm, and changes in muscle contraction within the reproductive tract (RT). Such postmating changes have been studied in dissected RT tissues, but understanding their coordination in vivo requires a holistic view of the tissues and their interrelationships. Here, we used high-resolution, multiscale micro-computed tomography (CT) scans to visualize and measure postmating changes in situ in the Drosophila female RT before, during, and after mating. These studies reveal previously unidentified dynamic changes in the conformation of the female RT that occur after mating. Our results also reveal how the reproductive organs temporally shift in concert within the confines of the abdomen. For example, we observed chiral loops in the uterus and in the upper common oviduct that relax and constrict throughout sperm storage and egg movement. We found that specific seminal fluid proteins or female secretions mediate some of the postmating changes in morphology. The morphological movements, in turn, can cause further changes due to the connections among organs. In addition, we observed apparent copulatory damage to the female intima, suggesting a mechanism for entry of seminal proteins, or other exogenous components, into the female's circulatory system. The 3D reconstructions provided by high-resolution micro-CT scans reveal how male and female molecules and anatomy interface to carry out and coordinate mating-dependent changes in the female's reproductive physiology.

  3. HST3D; a computer code for simulation of heat and solute transport in three-dimensional ground-water flow systems

    USGS Publications Warehouse

    Kipp, K.L.

    1987-01-01

    The Heat- and Soil-Transport Program (HST3D) simulates groundwater flow and associated heat and solute transport in three dimensions. The three governing equations are coupled through the interstitial pore velocity, the dependence of the fluid density on pressure, temperature, the solute-mass fraction , and the dependence of the fluid viscosity on temperature and solute-mass fraction. The solute transport equation is for only a single, solute species with possible linear equilibrium sorption and linear decay. Finite difference techniques are used to discretize the governing equations using a point-distributed grid. The flow-, heat- and solute-transport equations are solved , in turn, after a particle Gauss-reduction scheme is used to modify them. The modified equations are more tightly coupled and have better stability for the numerical solutions. The basic source-sink term represents wells. A complex well flow model may be used to simulate specified flow rate and pressure conditions at the land surface or within the aquifer, with or without pressure and flow rate constraints. Boundary condition types offered include specified value, specified flux, leakage, heat conduction, and approximate free surface, and two types of aquifer influence functions. All boundary conditions can be functions of time. Two techniques are available for solution of the finite difference matrix equations. One technique is a direct-elimination solver, using equations reordered by alternating diagonal planes. The other technique is an iterative solver, using two-line successive over-relaxation. A restart option is available for storing intermediate results and restarting the simulation at an intermediate time with modified boundary conditions. This feature also can be used as protection against computer system failure. Data input and output may be in metric (SI) units or inch-pound units. Output may include tables of dependent variables and parameters, zoned-contour maps, and plots of the

  4. Numerical simulation of perfect fluid flows around complex 3D configurations by a multidomain solver using the MUSCL approach

    NASA Astrophysics Data System (ADS)

    Guillen, Ph.; Borrel, M.; Dormieux, M.

    1990-10-01

    A numerical scheme of the MUSCL type used for the numerical simulation of gas flow of different types around complex configurations is described. Approximate Riemann solvers of the Van Leer, Roc, and Osher types, developed for perfect gas flows are used. These solvers have been extended to non-reactive mixtures of two species and real gas flows by Abgrall, Montagne and Vinokur. The architecture of the code, dictated by constraints in geometrical considerations, computational aspects, the specific nature of the flow, and ergonomy, is described.

  5. A 3D front-tracking approach for simulation of a two-phase fluid with insoluble surfactant

    NASA Astrophysics Data System (ADS)

    de Jesus, Wellington C.; Roma, Alexandre M.; Pivello, Márcio R.; Villar, Millena M.; da Silveira-Neto, Aristeu

    2015-01-01

    Surface active agents play a significant role in interfacial dynamics of multiphase systems.While the understanding of their behavior is crucial to many important practical applications, realistic mathematical modeling and computer simulation represent an extraordinary task. By employing a front-tracking method with Eulerian adaptive mesh refinement capabilities in concert with a finite volume scheme for solving an advection-diffusion equation constrained to a moving and deforming interface, the numerical challenges posed by the full three-dimensional computer simulation of transient, incompressible two-phase flows with an insoluble surfactant are efficiently and accurately tackled in the present work. The individual numerical components forming the resulting methodology are here combined and applied for the first time. Verification tests to check the accuracy and the simulation of the deformation of a droplet in simple shear flow in the presence of an insoluble surfactant are performed, the results being compared to laboratory experiments as well as to other numerical data. In all the cases considered, the methodology presents excellent conservation properties for the total surfactant mass (even to machine precision under certain circumstances).

  6. Nonlinear ship waves and computational fluid dynamics

    PubMed Central

    MIYATA, Hideaki; ORIHARA, Hideo; SATO, Yohei

    2014-01-01

    Research works undertaken in the first author’s laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship’s motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process. PMID:25311139

  7. Nonlinear ship waves and computational fluid dynamics.

    PubMed

    Miyata, Hideaki; Orihara, Hideo; Sato, Yohei

    2014-01-01

    Research works undertaken in the first author's laboratory at the University of Tokyo over the past 30 years are highlighted. Finding of the occurrence of nonlinear waves (named Free-Surface Shock Waves) in the vicinity of a ship advancing at constant speed provided the start-line for the progress of innovative technologies in the ship hull-form design. Based on these findings, a multitude of the Computational Fluid Dynamic (CFD) techniques have been developed over this period, and are highlighted in this paper. The TUMMAC code has been developed for wave problems, based on a rectangular grid system, while the WISDAM code treats both wave and viscous flow problems in the framework of a boundary-fitted grid system. These two techniques are able to cope with almost all fluid dynamical problems relating to ships, including the resistance, ship's motion and ride-comfort issues. Consequently, the two codes have contributed significantly to the progress in the technology of ship design, and now form an integral part of the ship-designing process.

  8. Computational fluid dynamic modelling of cavitation

    NASA Technical Reports Server (NTRS)

    Deshpande, Manish; Feng, Jinzhang; Merkle, Charles L.

    1993-01-01

    Models in sheet cavitation in cryogenic fluids are developed for use in Euler and Navier-Stokes codes. The models are based upon earlier potential-flow models but enable the cavity inception point, length, and shape to be determined as part of the computation. In the present paper, numerical solutions are compared with experimental measurements for both pressure distribution and cavity length. Comparisons between models are also presented. The CFD model provides a relatively simple modification to an existing code to enable cavitation performance predictions to be included. The analysis also has the added ability of incorporating thermodynamic effects of cryogenic fluids into the analysis. Extensions of the current two-dimensional steady state analysis to three-dimensions and/or time-dependent flows are, in principle, straightforward although geometrical issues become more complicated. Linearized models, however offer promise of providing effective cavitation modeling in three-dimensions. This analysis presents good potential for improved understanding of many phenomena associated with cavity flows.

  9. Domain decomposition methods in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Gropp, William D.; Keyes, David E.

    1991-01-01

    The divide-and-conquer paradigm of iterative domain decomposition, or substructuring, has become a practical tool in computational fluid dynamic applications because of its flexibility in accommodating adaptive refinement through locally uniform (or quasi-uniform) grids, its ability to exploit multiple discretizations of the operator equations, and the modular pathway it provides towards parallelism. These features are illustrated on the classic model problem of flow over a backstep using Newton's method as the nonlinear iteration. Multiple discretizations (second-order in the operator and first-order in the preconditioner) and locally uniform mesh refinement pay dividends separately, and they can be combined synergistically. Sample performance results are included from an Intel iPSC/860 hypercube implementation.

  10. Lectures series in computational fluid dynamics

    NASA Technical Reports Server (NTRS)

    Thompson, Kevin W.

    1987-01-01

    The lecture notes cover the basic principles of computational fluid dynamics (CFD). They are oriented more toward practical applications than theory, and are intended to serve as a unified source for basic material in the CFD field as well as an introduction to more specialized topics in artificial viscosity and boundary conditions. Each chapter in the test is associated with a videotaped lecture. The basic properties of conservation laws, wave equations, and shock waves are described. The duality of the conservation law and wave representations is investigated, and shock waves are examined in some detail. Finite difference techniques are introduced for the solution of wave equations and conservation laws. Stability analysis for finite difference approximations are presented. A consistent description of artificial viscosity methods are provided. Finally, the problem of nonreflecting boundary conditions are treated.

  11. Domain decomposition algorithms and computation fluid dynamics

    NASA Technical Reports Server (NTRS)

    Chan, Tony F.

    1988-01-01

    In the past several years, domain decomposition was a very popular topic, partly motivated by the potential of parallelization. While a large body of theory and algorithms were developed for model elliptic problems, they are only recently starting to be tested on realistic applications. The application of some of these methods to two model problems in computational fluid dynamics are investigated. Some examples are two dimensional convection-diffusion problems and the incompressible driven cavity flow problem. The construction and analysis of efficient preconditioners for the interface operator to be used in the iterative solution of the interface solution is described. For the convection-diffusion problems, the effect of the convection term and its discretization on the performance of some of the preconditioners is discussed. For the driven cavity problem, the effectiveness of a class of boundary probe preconditioners is discussed.

  12. Computational fluid dynamics: Transition to design applications

    NASA Technical Reports Server (NTRS)

    Bradley, R. G.; Bhateley, I. C.; Howell, G. A.

    1987-01-01

    The development of aerospace vehicles, over the years, was an evolutionary process in which engineering progress in the aerospace community was based, generally, on prior experience and data bases obtained through wind tunnel and flight testing. Advances in the fundamental understanding of flow physics, wind tunnel and flight test capability, and mathematical insights into the governing flow equations were translated into improved air vehicle design. The modern day field of Computational Fluid Dynamics (CFD) is a continuation of the growth in analytical capability and the digital mathematics needed to solve the more rigorous form of the flow equations. Some of the technical and managerial challenges that result from rapidly developing CFD capabilites, some of the steps being taken by the Fort Worth Division of General Dynamics to meet these challenges, and some of the specific areas of application for high performance air vehicles are presented.

  13. Nonlinear Fluid Computations in a Distributed Environment

    NASA Technical Reports Server (NTRS)

    Atwood, Christopher A.; Smith, Merritt H.

    1995-01-01

    The performance of a loosely and tightly-coupled workstation cluster is compared against a conventional vector supercomputer for the solution the Reynolds- averaged Navier-Stokes equations. The application geometries include a transonic airfoil, a tiltrotor wing/fuselage, and a wing/body/empennage/nacelle transport. Decomposition is of the manager-worker type, with solution of one grid zone per worker process coupled using the PVM message passing library. Task allocation is determined by grid size and processor speed, subject to available memory penalties. Each fluid zone is computed using an implicit diagonal scheme in an overset mesh framework, while relative body motion is accomplished using an additional worker process to re-establish grid communication.

  14. Artificial Intelligence In Computational Fluid Dynamics

    NASA Technical Reports Server (NTRS)

    Vogel, Alison Andrews

    1991-01-01

    Paper compares four first-generation artificial-intelligence (Al) software systems for computational fluid dynamics. Includes: Expert Cooling Fan Design System (EXFAN), PAN AIR Knowledge System (PAKS), grid-adaptation program MITOSIS, and Expert Zonal Grid Generation (EZGrid). Focuses on knowledge-based ("expert") software systems. Analyzes intended tasks, kinds of knowledge possessed, magnitude of effort required to codify knowledge, how quickly constructed, performances, and return on investment. On basis of comparison, concludes Al most successful when applied to well-formulated problems solved by classifying or selecting preenumerated solutions. In contrast, application of Al to poorly understood or poorly formulated problems generally results in long development time and large investment of effort, with no guarantee of success.

  15. Computational fluid dynamics modelling in cardiovascular medicine

    PubMed Central

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards ‘digital patient’ or ‘virtual physiological human’ representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges. PMID:26512019

  16. Computational fluid dynamics modelling in cardiovascular medicine.

    PubMed

    Morris, Paul D; Narracott, Andrew; von Tengg-Kobligk, Hendrik; Silva Soto, Daniel Alejandro; Hsiao, Sarah; Lungu, Angela; Evans, Paul; Bressloff, Neil W; Lawford, Patricia V; Hose, D Rodney; Gunn, Julian P

    2016-01-01

    This paper reviews the methods, benefits and challenges associated with the adoption and translation of computational fluid dynamics (CFD) modelling within cardiovascular medicine. CFD, a specialist area of mathematics and a branch of fluid mechanics, is used routinely in a diverse range of safety-critical engineering systems, which increasingly is being applied to the cardiovascular system. By facilitating rapid, economical, low-risk prototyping, CFD modelling has already revolutionised research and development of devices such as stents, valve prostheses, and ventricular assist devices. Combined with cardiovascular imaging, CFD simulation enables detailed characterisation of complex physiological pressure and flow fields and the computation of metrics which cannot be directly measured, for example, wall shear stress. CFD models are now being translated into clinical tools for physicians to use across the spectrum of coronary, valvular, congenital, myocardial and peripheral vascular diseases. CFD modelling is apposite for minimally-invasive patient assessment. Patient-specific (incorporating data unique to the individual) and multi-scale (combining models of different length- and time-scales) modelling enables individualised risk prediction and virtual treatment planning. This represents a significant departure from traditional dependence upon registry-based, population-averaged data. Model integration is progressively moving towards 'digital patient' or 'virtual physiological human' representations. When combined with population-scale numerical models, these models have the potential to reduce the cost, time and risk associated with clinical trials. The adoption of CFD modelling signals a new era in cardiovascular medicine. While potentially highly beneficial, a number of academic and commercial groups are addressing the associated methodological, regulatory, education- and service-related challenges.

  17. Computational Fluid Dynamics of rising droplets

    SciTech Connect

    Wagner, Matthew; Francois, Marianne M.

    2012-09-05

    The main goal of this study is to perform simulations of droplet dynamics using Truchas, a LANL-developed computational fluid dynamics (CFD) software, and compare them to a computational study of Hysing et al.[IJNMF, 2009, 60:1259]. Understanding droplet dynamics is of fundamental importance in liquid-liquid extraction, a process used in the nuclear fuel cycle to separate various components. Simulations of a single droplet rising by buoyancy are conducted in two-dimensions. Multiple parametric studies are carried out to ensure the problem set-up is optimized. An Interface Smoothing Length (ISL) study and mesh resolution study are performed to verify convergence of the calculations. ISL is a parameter for the interface curvature calculation. Further, wall effects are investigated and checked against existing correlations. The ISL study found that the optimal ISL value is 2.5{Delta}x, with {Delta}x being the mesh cell spacing. The mesh resolution study found that the optimal mesh resolution is d/h=40, for d=drop diameter and h={Delta}x. In order for wall effects on terminal velocity to be insignificant, a conservative wall width of 9d or a nonconservative wall width of 7d can be used. The percentage difference between Hysing et al.[IJNMF, 2009, 60:1259] and Truchas for the velocity profiles vary from 7.9% to 9.9%. The computed droplet velocity and interface profiles are found in agreement with the study. The CFD calculations are performed on multiple cores, using LANL's Institutional High Performance Computing.

  18. Direct modeling for computational fluid dynamics

    NASA Astrophysics Data System (ADS)

    Xu, Kun

    2015-06-01

    All fluid dynamic equations are valid under their modeling scales, such as the particle mean free path and mean collision time scale of the Boltzmann equation and the hydrodynamic scale of the Navier-Stokes (NS) equations. The current computational fluid dynamics (CFD) focuses on the numerical solution of partial differential equations (PDEs), and its aim is to get the accurate solution of these governing equations. Under such a CFD practice, it is hard to develop a unified scheme that covers flow physics from kinetic to hydrodynamic scales continuously because there is no such governing equation which could make a smooth transition from the Boltzmann to the NS modeling. The study of fluid dynamics needs to go beyond the traditional numerical partial differential equations. The emerging engineering applications, such as air-vehicle design for near-space flight and flow and heat transfer in micro-devices, do require further expansion of the concept of gas dynamics to a larger domain of physical reality, rather than the traditional distinguishable governing equations. At the current stage, the non-equilibrium flow physics has not yet been well explored or clearly understood due to the lack of appropriate tools. Unfortunately, under the current numerical PDE approach, it is hard to develop such a meaningful tool due to the absence of valid PDEs. In order to construct multiscale and multiphysics simulation methods similar to the modeling process of constructing the Boltzmann or the NS governing equations, the development of a numerical algorithm should be based on the first principle of physical modeling. In this paper, instead of following the traditional numerical PDE path, we introduce direct modeling as a principle for CFD algorithm development. Since all computations are conducted in a discretized space with limited cell resolution, the flow physics to be modeled has to be done in the mesh size and time step scales. Here, the CFD is more or less a direct

  19. Efficient 3D nonlinear warping of computed tomography: two high-performance implementations using OpenGL

    NASA Astrophysics Data System (ADS)

    Levin, David; Dey, Damini; Slomka, Piotr

    2005-04-01

    We have implemented two hardware accelerated Thin Plate Spline (TPS) warping algorithms. The first algorithm is a hardware-software approach (HW-TPS) that uses OpenGL Vertex Shaders to perform a grid warp. The second is a Graphics Processor based approach (GPU-TPS) that uses the OpenGL Shading Language to perform all warping calculations on the GPU. Comparison with a software TPS algorithm was used to gauge the speed and quality of both hardware algorithms. Quality was analyzed visually and using the Sum of Absolute Difference (SAD) similarity metric. Warping was performed using 92 user-defined displacement vectors for 512x512x173 serial lung CT studies, matching normal-breathing and deep-inspiration scans. On a Xeon 2.2 Ghz machine with an ATI Radeon 9800XT GPU the GPU-TPS required 26.1 seconds to perform a per-voxel warp compared to 148.2 seconds for the software algorithm. The HW-TPS needed 1.63 seconds to warp the same study while the GPU-TPS required 1.94 seconds and the software grid transform required 22.8 seconds. The SAD values calculated between the outputs of each algorithm and the target CT volume were 15.2%, 15.4% and 15.5% for the HW-TPS, GPU-TPS and both software algorithms respectively. The computing power of ubiquitous 3D graphics cards can be exploited in medical image processing to provide order of magnitude acceleration of nonlinear warping algorithms without sacrificing output quality.

  20. Linking microscopic spatial patterns of tissue destruction in emphysema to macroscopic decline in stiffness using a 3D computational model.

    PubMed

    Parameswaran, Harikrishnan; Majumdar, Arnab; Suki, Béla

    2011-04-01

    Pulmonary emphysema is a connective tissue disease characterized by the progressive destruction of alveolar walls leading to airspace enlargement and decreased elastic recoil of the lung. However, the relationship between microscopic tissue structure and decline in stiffness of the lung is not well understood. In this study, we developed a 3D computational model of lung tissue in which a pre-strained cuboidal block of tissue was represented by a tessellation of space filling polyhedra, with each polyhedral unit-cell representing an alveolus. Destruction of alveolar walls was mimicked by eliminating faces that separate two polyhedral either randomly or in a spatially correlated manner, in which the highest force bearing walls were removed at each step. Simulations were carried out to establish a link between the geometries that emerged and the rate of decline in bulk modulus of the tissue block. The spatially correlated process set up by the force-based destruction lead to a significantly faster rate of decline in bulk modulus accompanied by highly heterogeneous structures than the random destruction pattern. Using the Karhunen-Loève transformation, an estimator of the change in bulk modulus from the first four moments of airspace cell volumes was setup. Simulations were then obtained for tissue destruction with different idealized alveolar geometry, levels of pre-strain, linear and nonlinear elasticity assumptions for alveolar walls and also mixed destruction patterns where both random and force-based destruction occurs simultaneously. In all these cases, the change in bulk modulus from cell volumes was accurately estimated. We conclude that microscopic structural changes in emphysema and the associated decline in tissue stiffness are linked by the spatial pattern of the destruction process.

  1. Advanced 3D textile composites reinforcements meso F.E analyses based on X-ray computed tomography

    NASA Astrophysics Data System (ADS)

    Naouar, Naim; Vidal-Salle, Emmanuelle; Boisse, Philippe

    2016-10-01

    Meso-FE modelling of 3D textile composites is a powerful tool, which can help determine mechanical properties and permeability of the reinforcements or composites. The quality of the meso FE analyses depends on the quality of the initial model. A direct method based on X-ray tomography imaging is introduced to determine finite element models based on the real geometry of 3D composite reinforcements. The method is particularly suitable regarding 3D textile reinforcements for which internal geometries are numerous and complex. The approach used for the separation of the yarns in different directions is specialized because the fibres flow in three-dimensional space. An analysis of the image's texture is performed. A hyperelastic model developed for fibre bundles is used for the simulation of the deformation of the 3D reinforcement.

  2. Computational Fluid Dynamics Modeling of Bacillus anthracis ...

    EPA Pesticide Factsheets

    Journal Article Three-dimensional computational fluid dynamics and Lagrangian particle deposition models were developed to compare the deposition of aerosolized Bacillus anthracis spores in the respiratory airways of a human with that of the rabbit, a species commonly used in the study of anthrax disease. The respiratory airway geometries for each species were derived from computed tomography (CT) or µCT images. Both models encompassed airways that extended from the external nose to the lung with a total of 272 outlets in the human model and 2878 outlets in the rabbit model. All simulations of spore deposition were conducted under transient, inhalation-exhalation breathing conditions using average species-specific minute volumes. Four different exposure scenarios were modeled in the rabbit based upon experimental inhalation studies. For comparison, human simulations were conducted at the highest exposure concentration used during the rabbit experimental exposures. Results demonstrated that regional spore deposition patterns were sensitive to airway geometry and ventilation profiles. Despite the complex airway geometries in the rabbit nose, higher spore deposition efficiency was predicted in the upper conducting airways of the human at the same air concentration of anthrax spores. This greater deposition of spores in the upper airways in the human resulted in lower penetration and deposition in the tracheobronchial airways and the deep lung than that predict

  3. Functional assessment of cerebral artery stenosis: A pilot study based on computational fluid dynamics.

    PubMed

    Liu, Jia; Yan, Zhengzheng; Pu, Yuehua; Shiu, Wen-Shin; Wu, Jianhuang; Chen, Rongliang; Leng, Xinyi; Qin, Haiqiang; Liu, Xin; Jia, Baixue; Song, Ligang; Wang, Yilong; Miao, Zhongrong; Wang, Yongjun; Liu, Liping; Cai, Xiao-Chuan

    2016-10-04

    The fractional pressure ratio is introduced to quantitatively assess the hemodynamic significance of severe intracranial stenosis. A computational fluid dynamics-based method is proposed to non-invasively compute the FPRCFD and compared against fractional pressure ratio measured by an invasive technique. Eleven patients with severe intracranial stenosis considered for endovascular intervention were recruited and an invasive procedure was performed to measure the distal and the aortic pressure (Pd and Pa). The fractional pressure ratio was calculated as [Formula: see text] The computed tomography angiography was used to reconstruct three-dimensional (3D) arteries for each patient. Cerebral hemodynamics was then computed for the arteries using a mathematical model governed by Navier-Stokes equations and with the outflow conditions imposed by a model of distal resistance and compliance. The non-invasive [Formula: see text], [Formula: see text], and FPRCFD were then obtained from the computational fluid dynamics calculation using a 16-core parallel computer. The invasive and non-invasive parameters were tested by statistical analysis. For this group of patients, the computational fluid dynamics method achieved comparable results with the invasive measurements. The fractional pressure ratio and FPRCFD are very close and highly correlated, but not linearly proportional, with the percentage of stenosis. The proposed computational fluid dynamics method can potentially be useful in assessing the functional alteration of cerebral stenosis.

  4. Volumetric visualization of 3D data

    NASA Technical Reports Server (NTRS)

    Russell, Gregory; Miles, Richard

    1989-01-01

    In recent years, there has been a rapid growth in the ability to obtain detailed data on large complex structures in three dimensions. This development occurred first in the medical field, with CAT (computer aided tomography) scans and now magnetic resonance imaging, and in seismological exploration. With the advances in supercomputing and computational fluid dynamics, and in experimental techniques in fluid dynamics, there is now the ability to produce similar large data fields representing 3D structures and phenomena in these disciplines. These developments have produced a situation in which currently there is access to data which is too complex to be understood using the tools available for data reduction and presentation. Researchers in these areas are becoming limited by their ability to visualize and comprehend the 3D systems they are measuring and simulating.

  5. 3D quantification of dynamic fluid-fluid interfaces in porous media with fast x-ray microtomography: A comparison with quasi-equilibrium methods

    NASA Astrophysics Data System (ADS)

    Meisenheimer, D.; Brueck, C. L.; Wildenschild, D.

    2015-12-01

    X-ray microtomography imaging of fluid-fluid interfaces in three-dimensional porous media allows for the testing of thermodynamically derived predictions that seek a unique relationship between capillary pressure, fluid saturation, and specific interfacial area (Pc-Sw-Anw). Previous experimental studies sought to test this functional dependence under quasi-equilibrium conditions (assumed static on the imaging time-scale); however, applying predictive models developed under static conditions for dynamic scenarios can lead to substantial flaws in predicted outcomes. Theory and models developed using dynamic data can be verified using fast x-ray microtomography which allows for the unprecedented measurement of developing interfacial areas, curvatures, and trapping behaviors of fluid phases in three-dimensional systems. We will present results of drainage and imbibition experiments of air and water within a mixture of glass beads. The experiments were performed under both quasi-equilibrium and dynamic conditions at the Advanced Photon Source (APS) at Argonne National Laboratory. Fast x-ray microtomography was achieved by utilizing the high brilliance of the x-ray beam at the APS under pink-beam conditions where the white beam is modified with a 4 mm Al absorber and a 0.8 mrad Pt-coated mirror to eliminate low and high-energy photons, respectively. We present a comparison of the results from the quasi-equilibrium and dynamic experiments in an effort to determine if the Pc-Sw-Anw relationship is comparable under either experimental condition and to add to the discussion on whether the Pc-Sw-Anw relationship is unique as hypothesized by existing theory.

  6. Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses.

    PubMed

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli.

  7. The Effect of 3D Computer Modeling and Observation-Based Instruction on the Conceptual Change regarding Basic Concepts of Astronomy in Elementary School Students

    ERIC Educational Resources Information Center

    Kucukozer, Huseyin; Korkusuz, M. Emin; Kucukozer, H. Asuman; Yurumezoglu, Kemal

    2009-01-01

    This study has examined the impact of teaching certain basic concepts of astronomy through a predict-observe-explain strategy, which includes three-dimensional (3D) computer modeling and observations on conceptual changes seen in sixth-grade elementary school children (aged 11-13; number of students: 131). A pre- and postastronomy instruction…

  8. [Research activities in applied mathematics, fluid mechanics, and computer science

    NASA Technical Reports Server (NTRS)

    1995-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period April 1, 1995 through September 30, 1995.

  9. Research in Applied Mathematics, Fluid Mechanics and Computer Science

    NASA Technical Reports Server (NTRS)

    1999-01-01

    This report summarizes research conducted at the Institute for Computer Applications in Science and Engineering in applied mathematics, fluid mechanics, and computer science during the period October 1, 1998 through March 31, 1999.

  10. A new 3D multi-fluid model: a study of kinetic effects and variations of physical conditions in the cometary coma

    NASA Astrophysics Data System (ADS)

    Shou, Yinsi; Combi, Michael R.; Toth, Gabor; Huang, Zhenguang; Jia, Xianzhe; Fougere, Nicolas; Tenishev, Valeriy; Gombosi, T. I.; Hansen, Kenneth C.; Bieler, Andre

    2016-10-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which is capable of computing both the inner and the outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko (CG) at various heliocentric distances and demonstrated that it is able to yield comparable results as the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we can characterize the cometary H2O expansion speeds and demonstrate the nonlinear effect of production rates or photochemical heating. Our results are also compared to previous modeling work (e.g., Bockelee-Morvan & Crovisier 1987) and remote observations (e.g., Tseng et al. 2007), which serve as further validation of our model. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts

  11. A New 3D Multi-fluid Model: A Study of Kinetic Effects and Variations of Physical Conditions in the Cometary Coma

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M.; Toth, G.; Tenishev, V.; Fougere, N.; Jia, X.; Rubin, M.; Huang, Z.; Hansen, K.; Gombosi, T.; Bieler, A.

    2016-12-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. In this work, we develop a multi-neutral-fluid model based on the BATS-R-US code of the University of Michigan, which is capable of computing both the inner and outer coma and simulating time-variable phenomena. It treats H2O, OH, H2, O, and H as separate fluids and each fluid has its own velocity and temperature, with collisions coupling all fluids together. The self-consistent collisional interactions decrease the velocity differences, re-distribute the excess energy deposited by chemical reactions among all species, and account for the varying heating efficiency under various physical conditions. Recognizing that the fluid approach has limitations in capturing all of the correct physics for certain applications, especially for very low density environment, we applied our multi-fluid coma model to comet 67P/Churyumov-Gerasimenko at various heliocentric distances and demonstrated that it yields comparable results to the Direct Simulation Monte Carlo (DSMC) model, which is based on a kinetic approach that is valid under these conditions. Therefore, our model may be a powerful alternative to the particle-based model, especially for some computationally intensive simulations. In addition, by running the model with several combinations of production rates and heliocentric distances, we characterize the cometary H2O expansion speeds and demonstrate the nonlinear dependencies of production rate and heliocentric distance. Our results are also compared to previous modeling work and remote observations, which serve as further validation of our model.

  12. Computational fluid dynamics applications to improve crop production systems

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Computational fluid dynamics (CFD), numerical analysis and simulation tools of fluid flow processes have emerged from the development stage and become nowadays a robust design tool. It is widely used to study various transport phenomena which involve fluid flow, heat and mass transfer, providing det...

  13. Contributions of the musculus uvulae to velopharyngeal closure quantified with a 3D multi-muscle computational model

    PubMed Central

    Inouye, Joshua M.; Lin, Kant Y.; Perry, Jamie L.; Blemker, Silvia S.

    2016-01-01

    The convexity of the dorsal surface of the velum is critical for normal velopharyngeal (VP) function and is largely attributed to the levator veli palatini (LVP) and musculus uvulae (MU). Studies have correlated a concave or flat nasal velar surface to symptoms of VP dysfunction including hypernasality and nasal air emission. In the context of surgical repair of cleft palates, the MU has been given relatively little attention in the literature compared with the larger LVP. A greater understanding of the mechanics of the MU will provide insight into understanding the influence of a dysmorphic MU, as seen in cleft palate, as it relates to VP function. The purpose of this study was to quantify the contributions of the MU to VP closure in a computational model. We created a novel 3D finite element model of the VP mechanism from MRI data collected from an individual with healthy non-cleft VP anatomy. The model components included the velum, posterior pharyngeal wall (PPW), LVP, and MU. Simulations were based on the muscle and soft tissue mechanical properties from the literature. We found that, similar to previous hypotheses, the MU acts as i) a space-occupying structure and ii) a velar extensor. As a space-occupying structure, the MU helps to nearly triple the midline VP contact length. As a velar extensor, the MU acting alone without the LVP decreases the VP distance 62%. Furthermore, activation of the MU decreases the LVP activation required for closure almost three-fold, from 20% (without MU) to 8% (with MU). Our study suggests that any possible salvaging and anatomical reconstruction of viable MU tissue in a cleft patient may improve VP closure due to its mechanical function. In the absence or dysfunction of MU tissue, implantation of autologous or engineered tissues at the velar midline, as a possible substitute for the MU, may produce a geometric convexity more favorable to VP closure. In the future, more complex models will provide further insight into optimal

  14. Analysis of cardiac development in the turtle Emys orbicularis (Testudines: Emidydae) using 3-D computer modeling from histological sections.

    PubMed

    Bertens, Laura M F; Richardson, M K; Verbeek, F J

    2010-07-01

    In this article we present a 3-D modeling study of cardiac development in the European pond turtle, Emys orbicularis (of the reptilian order Testudines). The study is aimed at elucidating the embryonic development of the horizontal septum in the ventricle and underscoring the importance of 3-D reconstructions in studying morphogenesis. Turtles possess one common ventricle, partly divided into three cava by a vertical and a horizontal septum, of which the embryonic origins have so far not been described. We used serial sectioning and computerized high-resolution 3-D reconstructions of different developmental stages to create a chronological overview of cardiogenesis, in order to study this process. This has yielded a new understanding of the development of the horizontal septum and (directly related) the looping of the heart tube. This looping is found to be markedly different from that in the human heart, with the turtle having two clear bends in the part of the heart tube leaving the primitive ventricle, as opposed to one in humans. It is this particular looping that is responsible for the formation of the horizontal septum. In addition to our findings on the ventricular septation this study has also yielded new insights into the developmental origins of the pulmonary vein. The 3-D reconstructions were built using our platform TDR-3-D base and enabled us to study the developmental processes in specific parts of the turtle heart separately and in three dimensions, over time. The complete 3-D reconstructions have been made available to the reader via internet using our 3-D model browser application, which allows interactive viewing of the models. The browser application can be found on bio-imaging.liacs.nl/galleries/emysorbicularis/TurtleGallery.html, along with additional images of both models and histological sections and animation sequences of the models. By allowing the reader to view the material in such an interactive way, we hope to make optimal use of the

  15. Audio-Visual Perception of 3D Cinematography: An fMRI Study Using Condition-Based and Computation-Based Analyses

    PubMed Central

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard “condition-based” designs, as well as “computational” methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli

  16. The occlusion-adjusted prefabricated 3D mirror image templates by computer simulation: the image-guided navigation system application in difficult cases of head and neck reconstruction.

    PubMed

    Cheng, Hsu-Tang; Wu, Chao-I; Tseng, Ching-Shiow; Chen, Hung-Chi; Lee, Wu-Song; Chen, Philip Kuo-Ting; Chang,