Science.gov

Sample records for 3d computerized tomography

  1. 3D Imaging with Holographic Tomography

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Kou, Shan Shan

    2010-04-01

    There are two main types of tomography that enable the 3D internal structures of objects to be reconstructed from scattered data. The commonly known computerized tomography (CT) give good results in the x-ray wavelength range where the filtered back-projection theorem and Radon transform can be used. These techniques rely on the Fourier projection-slice theorem where rays are considered to propagate straight through the object. Another type of tomography called `diffraction tomography' applies in applications in optics and acoustics where diffraction and scattering effects must be taken into account. The latter proves to be a more difficult problem, as light no longer travels straight through the sample. Holographic tomography is a popular way of performing diffraction tomography and there has been active experimental research on reconstructing complex refractive index data using this approach recently. However, there are two distinct ways of doing tomography: either by rotation of the object or by rotation of the illumination while fixing the detector. The difference between these two setups is intuitive but needs to be quantified. From Fourier optics and information transformation point of view, we use 3D transfer function analysis to quantitatively describe how spatial frequencies of the object are mapped to the Fourier domain. We first employ a paraxial treatment by calculating the Fourier transform of the defocused OTF. The shape of the calculated 3D CTF for tomography, by scanning the illumination in one direction only, takes on a form that we might call a 'peanut,' compared to the case of object rotation, where a diablo is formed, the peanut exhibiting significant differences and non-isotropy. In particular, there is a line singularity along one transverse direction. Under high numerical aperture conditions, the paraxial treatment is not accurate, and so we make use of 3D analytical geometry to calculate the behaviour in the non-paraxial case. This time, we

  2. X-ray computerized tomography

    SciTech Connect

    Wellington, S.L.; Vinegar, H.J.

    1987-08-01

    Computerized tomography (CT) is a new radiological imaging technique that measures density and atomic composition inside opaque objects. A revolutionary advance in medical radiology since 1972, CT has only recently been applied in petrophysics and reservoir engineering. This paper discusses several petrophysical applications, including three-dimensional (3D) measurement of density and porosity; rock mechanics studies; correlation of core logs with well logs; characterization of mud invasion, fractures, and disturbed core; and quantification of complex mineralogies and sand/shale ratios. Reservoir engineering applications presented include fundamental studies of CO/sub 2/ displacement in cores, focussing on viscous fingering, gravity segregation, miscibility, and mobility control.

  3. Computerized analysis of pelvic incidence from 3D images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaž; Janssen, Michiel M. A.; Pernuš, Franjo; Castelein, René M.; Viergever, Max A.

    2012-02-01

    The sagittal alignment of the pelvis can be evaluated by the angle of pelvic incidence (PI), which is constant for an arbitrary subject position and orientation and can be therefore compared among subjects in standing, sitting or supine position. In this study, PI was measured from three-dimensional (3D) computed tomography (CT) images of normal subjects that were acquired in supine position. A novel computerized method, based on image processing techniques, was developed to automatically determine the anatomical references required to measure PI, i.e. the centers of the femoral heads in 3D, and the center and inclination of the sacral endplate in 3D. Multiplanar image reformation was applied to obtain perfect sagittal views with all anatomical structures completely in line with the hip axis, from which PI was calculated. The resulting PI (mean+/-standard deviation) was equal to 46.6°+/-9.2° for male subjects (N = 189), 47.6°+/-10.7° for female subjects (N = 181), and 47.1°+/-10.0° for all subjects (N = 370). The obtained measurements of PI from 3D images were not biased by acquisition projection or structure orientation, because all anatomical structures were completely in line with the hip axis. The performed measurements in 3D therefore represent PI according to the actual geometrical relationships among anatomical structures of the sacrum, pelvis and hips, as observed from the perfect sagittal views.

  4. Computerized tomography calibrator

    NASA Technical Reports Server (NTRS)

    Engel, Herbert P. (Inventor)

    1991-01-01

    A set of interchangeable pieces comprising a computerized tomography calibrator, and a method of use thereof, permits focusing of a computerized tomographic (CT) system. The interchangeable pieces include a plurality of nestable, generally planar mother rings, adapted for the receipt of planar inserts of predetermined sizes, and of predetermined material densities. The inserts further define openings therein for receipt of plural sub-inserts. All pieces are of known sizes and densities, permitting the assembling of different configurations of materials of known sizes and combinations of densities, for calibration (i.e., focusing) of a computerized tomographic system through variation of operating variables thereof. Rather than serving as a phanton, which is intended to be representative of a particular workpiece to be tested, the set of interchangeable pieces permits simple and easy standardized calibration of a CT system. The calibrator and its related method of use further includes use of air or of particular fluids for filling various openings, as part of a selected configuration of the set of pieces.

  5. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  6. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  7. Soft x-ray holographic computerized tomography imaging: experimental research

    NASA Astrophysics Data System (ADS)

    Zhang, Yuxuan; Jiang, Shiping; Zhang, Xinyi

    2003-03-01

    A high-resolution three-dimensional (3D) imaging technology has been developed, which is a combination of x-ray holography and computerized tomography (CT) technology called holographic computerized tomography (HCT). The theory and experimental techniques on biological specimens with the use of synchrotron radiation are discussed. Projections at different angles are reconstructed with the numerical method of in-line holography, and then the reconstructed data with a higher lateral resolution are used to restore the 3D image by the CT technique. With this method, the degradation caused by the diffraction of x rays is canceled, and 3D images with high resolution of micrometer magnitude in both the lateral and the longitudinal directions are obtained.

  8. Calibrator Blocks For Computerized Tomography (CT)

    NASA Technical Reports Server (NTRS)

    Engel, H. Peter

    1990-01-01

    Sets of calibrator blocks developed for use with industrial computerized tomography (CT) systems. Set of blocks (or number of stacked sets of blocks) placed on object table of CT system and scanned in usual way. Blocks include holes of known size, shape, and location. Appearance of holes in output image of CT system used to verify operation of system.

  9. Computerized 3D morphological analysis of glenoid orientation.

    PubMed

    Ghafurian, Soheil; Galdi, Balazs; Bastian, Sevag; Tan, Virak; Li, Kang

    2016-04-01

    An accurate preoperative measurement of glenoid orientation is crucial for evaluating pathologies and successful total shoulder arthroplasty. Existing methods may be labor-intensive, observer-dependent, and sensitive to the misalignment between the scapula plane and CT scanning direction. In this study, we proposed a computation framework and performed an automated analysis of the glenoid orientation based on 3D surface data. Three-dimensional models of 12 scapulae were analyzed. The glenoid cavity and external anatomical features were automatically extracted from these 3D models. Glenoid version was calculated using the scapula plane and the fulcrum axis alternatively. Glenoid inclination was measured both relative to transverse axis of the scapula and the medial pole-inferior tip axis. The mean (±SD) of the fulcrum-based glenoid version was -0.55° (±4.17°), while the scapular-plane-based glenoid version was -5.05° (±3.50°). The mean (±SD) of glenoid inclinations based on the medial pole and inferior tip was 12.75° (±5.03°) while the mean (±SD) of the glenoid inclination based on the medial pole and glenoid center was 4.63° (±4.86°). Our computational framework was able to extract the reproducible morphological measures free of inter- and intra- observer variability. For the first time in 3D, we showed that the fulcrum axis was practically perpendicular to the glenoid plane normal (radial line), and thus extended the fulcrum-based glenoid version for quantifying 3D glenoid orientation. © 2015 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res 34:692-698, 2016. PMID:26400654

  10. Computerized tomography in evaluation of hepatic neoplasms

    SciTech Connect

    Luna, R.F.; Resende, C.; Tishler, J.M.A.; Aldrete, J.S.; Shin, M.S.; Rubin, E.; Rahn, N.H.

    1984-08-01

    The authors reviewed their experience with computerized tomography (CT) of the abdomen in 212 patients with histologically documented liver neoplasms seen during a 30-month period. The CT findings in cavernous hemangioma and focal nodular hyperplasia were specific, and permitted accurate diagnosis of this lesion before biopsy. The CT appearance of all other lesions was variable. CT is useful in providing an accurate evaluation of the intrahepatic and extrahepatic extent of the neoplasm.

  11. Computerized 3-D reconstruction of two "double teeth".

    PubMed

    Lyroudia, K; Mikrogeorgis, G; Nikopoulos, N; Samakovitis, G; Molyvdas, I; Pitas, I

    1997-10-01

    "Double teeth" is a root malformation in the dentition and the purpose of this study was to reconstruct three-dimensionally the external and internal morphology of two "double teeth". The first set of "double teeth" was formed by the conjunction of a mandibular molar and a premolar, and the second by a conjunction of a maxillary molar and a supernumerary tooth. The process of 3-D reconstruction included serial cross-sectioning, photographs of the sections, digitization of the photographs, extraction of the boundaries of interest for each section, surface representation using triangulation and, finally, surface rendering using photorealistic effects. The resulting three-dimensional representations of the two teeth helped us visualize their external and internal anatomy. The results showed: a) in the first case, fusion of the radical and coronal dentin, as well as fusion of the pulp chambers; and b) in the second case, fusion only of the radical dentin and the pulp chambers. PMID:9550051

  12. Holography, tomography and 3D microscopy as linear filtering operations

    NASA Astrophysics Data System (ADS)

    Coupland, J. M.; Lobera, J.

    2008-07-01

    In this paper, we characterize 3D optical imaging techniques as 3D linear shift-invariant filtering operations. From the Helmholtz equation that is the basis of scalar diffraction theory, we show that the scattered field, or indeed a holographic reconstruction of this field, can be considered to be the result of a linear filtering operation applied to a source distribution. We note that if the scattering is weak, the source distribution is independent of the scattered field and a holographic reconstruction (or in fact any far-field optical imaging system) behaves as a 3D linear shift-invariant filter applied to the refractive index contrast (which effectively defines the object). We go on to consider tomographic techniques that synthesize images from recordings of the scattered field using different illumination conditions. In our analysis, we compare the 3D response of monochromatic optical tomography with the 3D imagery offered by confocal microscopy and scanning white light interferometry (using quasi-monochromatic illumination) and explain the circumstances under which these approaches are equivalent. Finally, we consider the 3D response of polychromatic optical tomography and in particular the response of spectral optical coherence tomography and scanning white light interferometry.

  13. 3D optical tomography in the presence of void regions

    NASA Astrophysics Data System (ADS)

    Riley, J.; Dehghani, Hamid; Schweiger, Martin; Arridge, Simon R.; Ripoll, Jorge; Nieto-Vesperinas, Manuel

    2000-12-01

    We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example.

  14. 3D optical tomography in the presence of void regions.

    PubMed

    Riley, J; Dehghani, H; Schweiger, M; Arridge, S; Ripoll, J; Nieto-Vesperinas, M

    2000-12-18

    We present an investigation of the effect of a 3D non-scattering gap region on image reconstruction in diffuse optical tomography. The void gap is modelled by the Radiosity-Diffusion method and the inverse problem is solved using the adjoint field method. The case of a sphere with concentric spherical gap is used as an example. PMID:19407898

  15. Computerized tomography in acute and chronic pancreatitis

    SciTech Connect

    Kalmar, J.A.; Matthews, C.C.; Bishop, L.A.

    1984-11-01

    Modern imaging techniques have revolutionized the diagnostic evaluation of pancreatitis, primarily demonstrating its complications. Computerized tomography (CT) is a more sensitive method than ultrasonography and pancreatic ductography. A chart review revealed 214 patients at our hospital with a discharge diagnosis of pancreatitis. Sixty patients had CT for evaluation of possible complications. Only five scans were normal. Of 37 cases of acute pancreatitis, 92% demonstrated localized or diffuse enlargement, and 65% showed loss of pancreatic outline. Other frequent findings included thickening of perirenal fascia (49%), ileus (43%), edema of mesentery (35%), and inflammatory exudate (32%). Abscess and pseudocyst were each detected in 8% of cases. In chronic pancreatitis 65% of patients showed localized or diffuse pancreatic enlargement. Atrophy of the gland (30%), calcification (30%), pseudocyst (26%), and dilated pancreatic ducts (17%) were also seen. CT is effective in evaluating pancreatitis and its complications. 14 references, 5 figures, 2 tables.

  16. Is 3D true non linear traveltime tomography reasonable ?

    NASA Astrophysics Data System (ADS)

    Herrero, A.; Virieux, J.

    2003-04-01

    The data sets requiring 3D analysis tools in the context of seismic exploration (both onshore and offshore experiments) or natural seismicity (micro seismicity surveys or post event measurements) are more and more numerous. Classical linearized tomographies and also earthquake localisation codes need an accurate 3D background velocity model. However, if the medium is complex and a priori information not available, a 1D analysis is not able to provide an adequate background velocity image. Moreover, the design of the acquisition layouts is often intrinsically 3D and renders difficult even 2D approaches, especially in natural seismicity cases. Thus, the solution relies on the use of a 3D true non linear approach, which allows to explore the model space and to identify an optimal velocity image. The problem becomes then practical and its feasibility depends on the available computing resources (memory and time). In this presentation, we show that facing a 3D traveltime tomography problem with an extensive non-linear approach combining fast travel time estimators based on level set methods and optimisation techniques such as multiscale strategy is feasible. Moreover, because management of inhomogeneous inversion parameters is more friendly in a non linear approach, we describe how to perform a jointly non-linear inversion for the seismic velocities and the sources locations.

  17. A 3D-Video-Based Computerized Analysis of Social and Sexual Interactions in Rats

    PubMed Central

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  18. A 3D-video-based computerized analysis of social and sexual interactions in rats.

    PubMed

    Matsumoto, Jumpei; Urakawa, Susumu; Takamura, Yusaku; Malcher-Lopes, Renato; Hori, Etsuro; Tomaz, Carlos; Ono, Taketoshi; Nishijo, Hisao

    2013-01-01

    A large number of studies have analyzed social and sexual interactions between rodents in relation to neural activity. Computerized video analysis has been successfully used to detect numerous behaviors quickly and objectively; however, to date only 2D video recording has been used, which cannot determine the 3D locations of animals and encounters difficulties in tracking animals when they are overlapping, e.g., when mounting. To overcome these limitations, we developed a novel 3D video analysis system for examining social and sexual interactions in rats. A 3D image was reconstructed by integrating images captured by multiple depth cameras at different viewpoints. The 3D positions of body parts of the rats were then estimated by fitting skeleton models of the rats to the 3D images using a physics-based fitting algorithm, and various behaviors were recognized based on the spatio-temporal patterns of the 3D movements of the body parts. Comparisons between the data collected by the 3D system and those by visual inspection indicated that this system could precisely estimate the 3D positions of body parts for 2 rats during social and sexual interactions with few manual interventions, and could compute the traces of the 2 animals even during mounting. We then analyzed the effects of AM-251 (a cannabinoid CB1 receptor antagonist) on male rat sexual behavior, and found that AM-251 decreased movements and trunk height before sexual behavior, but increased the duration of head-head contact during sexual behavior. These results demonstrate that the use of this 3D system in behavioral studies could open the door to new approaches for investigating the neuroscience of social and sexual behavior. PMID:24205238

  19. Gate Set Tomography of a 3D Transmon Qubit

    NASA Astrophysics Data System (ADS)

    Guo, Yudan; Novikov, Sergey; Greenbaum, Daniel; Skinner, Andrew; Palmer, B. S.

    2015-03-01

    Quantum gate set tomography is a recently developed tool for characterizing quantum gates that does not suffer from the inaccuracies inherent in standard quantum process tomography. We present the results of a gate set tomography (GST) experiment done on a superconducting 3D transmon qubit. π and π / 2 rotations over the x- and y-axes were used as the initial calibrated gates. We performed linear inversion on data from a 4-fiducial experiment to obtain an initial tomographic estimate, which was then used as the starting point for a maximum likelihood procedure. The calibrated gates all achieved fidelity above 98%, which was further verified by randomized benchmarking. The robustness of GST was also examined by introducing errors deliberately. We show that GST with maximum likelihood estimation is able to discern errors due to a mixed initial state, as well as due to a tilted rotation axis in our gate operation.

  20. Mid-America Computerized Ionospheric Tomography Experiment (MACE '93)

    NASA Astrophysics Data System (ADS)

    Kronschnabl, G. R.; Bust, G. S.; Cook, J. A.; Vasicek, C. J.

    1995-01-01

    A computerized ionospheric tomography (CIT) experiment utilizing an array of nine Navy Navigation Satellite System (NNSS) receivers deployed along a north-south line from South Dakota to south Texas (spanning over 2000 km) is currently underway. The Mid-America Computerized Ionospheric Tomography Experiment (MACE '93) began collecting data from three receivers deployed in Texas on June 1, 1993. This "short communiqué" presents preliminary results from the experiment.

  1. Dose fractionation theorem in 3-D reconstruction (tomography)

    SciTech Connect

    Glaeser, R.M.

    1997-02-01

    It is commonly assumed that the large number of projections for single-axis tomography precludes its application to most beam-labile specimens. However, Hegerl and Hoppe have pointed out that the total dose required to achieve statistical significance for each voxel of a computed 3-D reconstruction is the same as that required to obtain a single 2-D image of that isolated voxel, at the same level of statistical significance. Thus a statistically significant 3-D image can be computed from statistically insignificant projections, as along as the total dosage that is distributed among these projections is high enough that it would have resulted in a statistically significant projection, if applied to only one image. We have tested this critical theorem by simulating the tomographic reconstruction of a realistic 3-D model created from an electron micrograph. The simulations verify the basic conclusions of high absorption, signal-dependent noise, varying specimen contrast and missing angular range. Furthermore, the simulations demonstrate that individual projections in the series of fractionated-dose images can be aligned by cross-correlation because they contain significant information derived from the summation of features from different depths in the structure. This latter information is generally not useful for structural interpretation prior to 3-D reconstruction, owing to the complexity of most specimens investigated by single-axis tomography. These results, in combination with dose estimates for imaging single voxels and measurements of radiation damage in the electron microscope, demonstrate that it is feasible to use single-axis tomography with soft X-ray microscopy of frozen-hydrated specimens.

  2. Complete Tem-Tomography: 3D Structure of Gems Cluster

    NASA Technical Reports Server (NTRS)

    Matsuno, J.; Miyake, A.; Tsuchiyama, A.; Messenger, S.; Nakamura-Messenger, K.

    2015-01-01

    GEMS (glass with embedded metal and sulfide) grains in interplanetary dust particles (IDPs) are considered to be one of the ubiquitous and fundamental building blocks of solids in the Solar System. They have been considered to be interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk but the elemental and isotopic composition measurements suggest that most of them have been formed in the protoplanetary disk as condensates from high temperature gas. This formation model is also supported by the formation of GEMS-like grains with respect to the size, mineral assemblage, texture and infrared spectrum by condensation experiments from mean GEMS composition materials. Previous GEMS studies were performed only with 2D observation by transmission electron microscopy (TEM) or scanning TEM (STEM). However, the 3D shape and structure of GEMS grains and the spatial distribution of Fe/FeS's has critical information about their formation and origin. Recently, the 3D structure of GEMS grains in ultrathin sections of cluster IDPs was revealed by electron tomography using a TEM/STEM (JEM-2100F, JEOL). However, CT images of thin sections mounted on Cu grids acquired by conventional TEM-tomography are limited to low tilt angles (e. g., less than absolute value of 75 deg. In fact, previous 3D TEM observations of GEMS were affected by some artifacts related to the limited tilt range in the TEM used. Complete tomographic images should be acquired by rotating the sample tilt angle over a range of more than absolute value of 80 deg otherwise the CT images lose their correct structures. In order to constrain the origin and formation process of GEMS grains more clearly, we performed complete electron tomography for GEMS grains. Here we report the sample preparation method we have developed for this study, and the preliminary results.

  3. 3D Human cartilage surface characterization by optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman’s rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D

  4. 3D Human cartilage surface characterization by optical coherence tomography.

    PubMed

    Brill, Nicolai; Riedel, Jörn; Schmitt, Robert; Tingart, Markus; Truhn, Daniel; Pufe, Thomas; Jahr, Holger; Nebelung, Sven

    2015-10-01

    Early diagnosis and treatment of cartilage degeneration is of high clinical interest. Loss of surface integrity is considered one of the earliest and most reliable signs of degeneration, but cannot currently be evaluated objectively. Optical Coherence Tomography (OCT) is an arthroscopically available light-based non-destructive real-time imaging technology that allows imaging at micrometre resolutions to millimetre depths. As OCT-based surface evaluation standards remain to be defined, the present study investigated the diagnostic potential of 3D surface profile parameters in the comprehensive evaluation of cartilage degeneration. To this end, 45 cartilage samples of different degenerative grades were obtained from total knee replacements (2 males, 10 females; mean age 63.8 years), cut to standard size and imaged using a spectral-domain OCT device (Thorlabs, Germany). 3D OCT datasets of 8  ×  8, 4  ×  4 and 1  ×  1 mm (width  ×  length) were obtained and pre-processed (image adjustments, morphological filtering). Subsequent automated surface identification algorithms were used to obtain the 3D primary profiles, which were then filtered and processed using established algorithms employing ISO standards. The 3D surface profile thus obtained was used to calculate a set of 21 3D surface profile parameters, i.e. height (e.g. Sa), functional (e.g. Sk), hybrid (e.g. Sdq) and segmentation-related parameters (e.g. Spd). Samples underwent reference histological assessment according to the Degenerative Joint Disease classification. Statistical analyses included calculation of Spearman's rho and assessment of inter-group differences using the Kruskal Wallis test. Overall, the majority of 3D surface profile parameters revealed significant degeneration-dependent differences and correlations with the exception of severe end-stage degeneration and were of distinct diagnostic value in the assessment of surface integrity. None of the 3D surface

  5. 3D imaging of nanomaterials by discrete tomography.

    PubMed

    Batenburg, K J; Bals, S; Sijbers, J; Kübel, C; Midgley, P A; Hernandez, J C; Kaiser, U; Encina, E R; Coronado, E A; Van Tendeloo, G

    2009-05-01

    The field of discrete tomography focuses on the reconstruction of samples that consist of only a few different materials. Ideally, a three-dimensional (3D) reconstruction of such a sample should contain only one grey level for each of the compositions in the sample. By exploiting this property in the reconstruction algorithm, either the quality of the reconstruction can be improved significantly, or the number of required projection images can be reduced. The discrete reconstruction typically contains fewer artifacts and does not have to be segmented, as it already contains one grey level for each composition. Recently, a new algorithm, called discrete algebraic reconstruction technique (DART), has been proposed that can be used effectively on experimental electron tomography datasets. In this paper, we propose discrete tomography as a general reconstruction method for electron tomography in materials science. We describe the basic principles of DART and show that it can be applied successfully to three different types of samples, consisting of embedded ErSi(2) nanocrystals, a carbon nanotube grown from a catalyst particle and a single gold nanoparticle, respectively. PMID:19269094

  6. Computerized method for automated measurement of thickness of cerebral cortex for 3-D MR images

    NASA Astrophysics Data System (ADS)

    Arimura, Hidetaka; Yoshiura, Takashi; Kumazawa, Seiji; Koga, Hiroshi; Sakai, Shuji; Mihara, Futoshi; Honda, Hiroshi; Ohki, Masafumi; Toyofuku, Fukai; Higashida, Yoshiharu

    2006-03-01

    Alzheimer's disease (AD) is associated with the degeneration of cerebral cortex, which results in focal volume change or thinning in the cerebral cortex in magnetic resonance imaging (MRI). Therefore, the measurement of the cortical thickness is important for detection of the atrophy related to AD. Our purpose was to develop a computerized method for automated measurement of the cortical thickness for three-dimensional (3-D) MRI. The cortical thickness was measured with normal vectors from white matter surface to cortical gray matter surface on a voxel-by-voxel basis. First, a head region was segmented by use of an automatic thresholding technique, and then the head region was separated into the cranium region and brain region by means of a multiple gray level thresholding with monitoring the ratio of the first maximum volume to the second one. Next, a fine white matter region was determined based on a level set method as a seed region of the rough white matter region extracted from the brain region. Finally, the cortical thickness was measured by extending normal vectors from the white matter surface to gray matter surface (brain surface) on a voxel-by-voxel basis. We applied the computerized method to high-resolution 3-D T1-weighted images of the whole brains from 7 clinically diagnosed AD patients and 8 healthy subjects. The average cortical thicknesses in the upper slices for AD patients were thinner than those for non-AD subjects, whereas the average cortical thicknesses in the lower slices for most AD patients were slightly thinner. Our preliminary results suggest that the MRI-based computerized measurement of gray matter atrophy is promising for detecting AD.

  7. 3D diffraction tomography for visualization of contrast media

    NASA Astrophysics Data System (ADS)

    Pai, Vinay M.; Stein, Ashley; Kozlowski, Megan; George, Ashvin; Kopace, Rael; Bennett, Eric; Auxier, Julie A.; Wen, Han

    2011-03-01

    In x-ray CT, the ability to selectively isolate a contrast agent signal from the surrounding soft tissue and bone can greatly enhance contrast visibility and enable quantification of contrast concentration. We present here a 3D diffraction tomography implementation for selectively retaining volumetric diffraction signal from contrast agent particles that are within a banded size range while suppressing the background signal from soft tissue and bone. For this purpose, we developed a CT implementation of a single-shot x-ray diffraction imaging technique utilizing gratings. This technique yields both diffraction and absorption images from a single grating-modulated projection image through analysis in the spatial frequency domain. A solution of iron oxide nano-particles, having very different x-ray diffraction properties from tissue, was injected into ex vivo chicken wing and in vivo rat specimens respectively and imaged in a 3D diffraction CT setup. Following parallel beam reconstruction, it is noted that while the soft tissue, bone and contrast media are observed in the absorption volume reconstruction, only the contrast media is observed in the diffraction volume reconstruction. This 3D diffraction tomographic reconstruction permits the visualization and quantification of the contrast agent isolated from the soft tissue and bone background.

  8. Femoroacetabular impingement with chronic acetabular rim fracture - 3D computed tomography, 3D magnetic resonance imaging and arthroscopic correlation

    PubMed Central

    Chhabra, Avneesh; Nordeck, Shaun; Wadhwa, Vibhor; Madhavapeddi, Sai; Robertson, William J

    2015-01-01

    Femoroacetabular impingement is uncommonly associated with a large rim fragment of bone along the superolateral acetabulum. We report an unusual case of femoroacetabular impingement (FAI) with chronic acetabular rim fracture. Radiographic, 3D computed tomography, 3D magnetic resonance imaging and arthroscopy correlation is presented with discussion of relative advantages and disadvantages of various modalities in the context of FAI. PMID:26191497

  9. Computerized tomography using video recorded fluoroscopic images

    NASA Technical Reports Server (NTRS)

    Kak, A. C.; Jakowatz, C. V., Jr.; Baily, N. A.; Keller, R. A.

    1975-01-01

    A computerized tomographic imaging system is examined which employs video-recorded fluoroscopic images as input data. By hooking the video recorder to a digital computer through a suitable interface, such a system permits very rapid construction of tomograms.

  10. Glasses for 3D ultrasound computer tomography: phase compensation

    NASA Astrophysics Data System (ADS)

    Zapf, M.; Hopp, T.; Ruiter, N. V.

    2016-03-01

    Ultrasound Computer Tomography (USCT), developed at KIT, is a promising new imaging system for breast cancer diagnosis, and was successfully tested in a pilot study. The 3D USCT II prototype consists of several hundreds of ultrasound (US) transducers on a semi-ellipsoidal aperture. Spherical waves are sequentially emitted by individual transducers and received in parallel by many transducers. Reflectivity volumes are reconstructed by synthetic aperture focusing (SAFT). However, straight forward SAFT imaging leads to blurred images due to system imperfections. We present an extension of a previously proposed approach to enhance the images. This approach includes additional a priori information and system characteristics. Now spatial phase compensation was included. The approach was evaluated with a simulation and clinical data sets. An increase in the image quality was observed and quantitatively measured by SNR and other metrics.

  11. Volumetric (3D) compressive sensing spectral domain optical coherence tomography

    PubMed Central

    Xu, Daguang; Huang, Yong; Kang, Jin U.

    2014-01-01

    In this work, we proposed a novel three-dimensional compressive sensing (CS) approach for spectral domain optical coherence tomography (SD OCT) volumetric image acquisition and reconstruction. Instead of taking a spectral volume whose size is the same as that of the volumetric image, our method uses a sub set of the original spectral volume that is under-sampled in all three dimensions, which reduces the amount of spectral measurements to less than 20% of that required by the Shan-non/Nyquist theory. The 3D image is recovered from the under-sampled spectral data dimension-by-dimension using the proposed three-step CS reconstruction strategy. Experimental results show that our method can significantly reduce the sampling rate required for a volumetric SD OCT image while preserving the image quality. PMID:25426320

  12. 3D ultrasound computer tomography: update from a clinical study

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Zapf, M.; Kretzek, E.; Henrich, J.; Tukalo, A.; Gemmeke, H.; Kaiser, C.; Knaudt, J.; Ruiter, N. V.

    2016-04-01

    Ultrasound Computer Tomography (USCT) is a promising new imaging method for breast cancer diagnosis. We developed a 3D USCT system and tested it in a pilot study with encouraging results: 3D USCT was able to depict two carcinomas, which were present in contrast enhanced MRI volumes serving as ground truth. To overcome severe differences in the breast shape, an image registration was applied. We analyzed the correlation between average sound speed in the breast and the breast density estimated from segmented MRIs and found a positive correlation with R=0.70. Based on the results of the pilot study we now carry out a successive clinical study with 200 patients. For this we integrated our reconstruction methods and image post-processing into a comprehensive workflow. It includes a dedicated DICOM viewer for interactive assessment of fused USCT images. A new preview mode now allows intuitive and faster patient positioning. We updated the USCT system to decrease the data acquisition time by approximately factor two and to increase the penetration depth of the breast into the USCT aperture by 1 cm. Furthermore the compute-intensive reflectivity reconstruction was considerably accelerated, now allowing a sub-millimeter volume reconstruction in approximately 16 minutes. The updates made it possible to successfully image first patients in our ongoing clinical study.

  13. A Reconstruction Approach for Imaging in 3D Cone Beam Vector Field Tomography

    PubMed Central

    Schuster, T.; Theis, D.; Louis, A. K.

    2008-01-01

    3D cone beam vector field tomography (VFT) aims for reconstructing and visualizing the velocity field of a moving fluid by measuring line integrals of projections of the vector field. The data are obtained by ultrasound measurements along a scanning curve which surrounds the object. From a mathematical point of view, we have to deal with the inversion of the vectorial cone beam transform. Since the vectorial cone beam transform of any gradient vector field with compact support is identically equal to zero, we can only hope to reconstruct the solenoidal part of an arbitrary vector field. In this paper we will at first summarize important properties of the cone beam transform for three-dimensional solenoidal vector fields and then propose a solution approach based on the method of approximate inverse. In this context, we intensively make use of results from scalar 3D computerized tomography. The findings presented in the paper will continuously be illustrated by pictures from first numerical experiments done with exact, simulated data. PMID:19197391

  14. High resolution 3D fluorescence tomography using ballistic photons

    NASA Astrophysics Data System (ADS)

    Zheng, Jie; Nouizi, Farouk; Cho, Jaedu; Kwong, Jessica; Gulsen, Gultekin

    2015-03-01

    We are developing a ballistic-photon based approach for improving the spatial resolution of fluorescence tomography using time-domain measurements. This approach uses early photon information contained in measured time-of-fight distributions originating from fluorescence emission. The time point spread functions (TPSF) from both excitation light and emission light are acquired with gated single photon Avalanche detector (SPAD) and time-correlated single photon counting after a short laser pulse. To determine the ballistic photons for reconstruction, the lifetime of the fluorophore and the time gate from the excitation profiles will be used for calibration, and then the time gate of the fluorescence profile can be defined by a simple time convolution. By mimicking first generation CT data acquisition, the sourcedetector pair will translate across and also rotate around the subject. The measurement from each source-detector position will be reshaped into a histogram that can be used by a simple back-projection algorithm in order to reconstruct high resolution fluorescence images. Finally, from these 2D sectioning slides, a 3D inclusion can be reconstructed accurately. To validate the approach, simulation of light transport is performed for biological tissue-like media with embedded fluorescent inclusion by solving the diffusion equation with Finite Element Method using COMSOL Multiphysics simulation. The reconstruction results from simulation studies have confirmed that this approach drastically improves the spatial resolution of fluorescence tomography. Moreover, all the results have shown the feasibility of this technique for high resolution small animal imaging up to several centimeters.

  15. 3D cephalometric analysis obtained from computed tomography. Review of the literature

    PubMed Central

    Rossini, Giulia; Cavallini, Costanza; Cassetta, Michele; Barbato, Ersilia

    2012-01-01

    Summary Introduction The aim of this systematic review is to estimate accuracy and reproducibility of craniometric measurements and reliability of landmarks identified with computed tomography (CT) techniques in 3D cephalometric analysis. Methods Computerized and manual searches were conducted up to 2011 for studies that addressed these objectives. The selection criteria were: (1) the use of human specimen; (2) the comparison between 2D and 3D cephalometric analysis; (3) the assessment of accuracy, reproducibility of measurements and reliability of landmark identification with CT images compared with two-dimensional conventional radiographs. The Cochrane Handbook for Systematic Reviews of Interventions was used as the guideline for this article. Results Twenty-seven articles met the inclusion criteria. Most of them demonstrated high measurements accuracy and reproducibility, and landmarks reliability, but their cephalometric analysis methodology varied widely. Conclusion These differencies among the studies in making measurements don’t permit a direct comparison between them. The future developments in the knowledge of these techniques should provide a standardized method to conduct the 3D CT cephalometric analysis. PMID:22545187

  16. Digital breast tomosynthesis: computerized detection of microcalcifications in reconstructed breast volume using a 3D approach

    NASA Astrophysics Data System (ADS)

    Chan, Heang-Ping; Sahiner, Berkman; Wei, Jun; Hadjiiski, Lubomir M.; Zhou, Chuan; Helvie, Mark A.

    2010-03-01

    We are developing a computer-aided detection (CAD) system for clustered microcalcifications in digital breast tomosynthesis (DBT). In this preliminary study, we investigated the approach of detecting microcalcifications in the tomosynthesized volume. The DBT volume is first enhanced by 3D multi-scale filtering and analysis of the eigenvalues of Hessian matrices with a calcification response function and signal-to-noise ratio enhancement filtering. Potential signal sites are identified in the enhanced volume and local analysis is performed to further characterize each object. A 3D dynamic clustering procedure is designed to locate potential clusters using hierarchical criteria. We collected a pilot data set of two-view DBT mammograms of 39 breasts containing microcalcification clusters (17 malignant, 22 benign) with IRB approval. A total of 74 clusters were identified by an experienced radiologist in the 78 DBT views. Our prototype CAD system achieved view-based sensitivity of 90% and 80% at an average FP rate of 7.3 and 2.0 clusters per volume, respectively. At the same levels of case-based sensitivity, the FP rates were 3.6 and 1.3 clusters per volume, respectively. For the subset of malignant clusters, the view-based detection sensitivity was 94% and 82% at an average FP rate of 6.0 and 1.5 FP clusters per volume, respectively. At the same levels of case-based sensitivity, the FP rates were 1.2 and 0.9 clusters per volume, respectively. This study demonstrated that computerized microcalcification detection in 3D is a promising approach to the development of a CAD system for DBT. Study is underway to further improve the computer-vision methods and to optimize the processing parameters using a larger data set.

  17. The applications of optical computerized tomography (OCT) in cold and hot complex flow fields

    NASA Astrophysics Data System (ADS)

    Chen, Yun-Yun; Chen, Li-zhu; Gu, Fang

    2014-11-01

    Optical computerized tomography (OCT), as a branch of computerized tomography (CT) techniques, has been widely used to display and diagnose a variety of complex flow fields, due to its characteristics of real-time, stable, non-contact and can supply 3-D distributions. In practical applications, we found some different phenomenon when they are adopted in clod and hot complex flow fields. In this paper, the cold and hot flow field's OCT diagnosis is analyzed and compared. The results show that 1) OCT can directly reflect the spatial distribution of the measured flow field's refractive index, for both the cold and the hot complex flow fields; 2) OCT can reflect the boundary or structure of the cold flow fields, but could not well done for the hot flow fields. The involved results will help us to make better use of OCT methods to diagnose various cold or hot complex flow fields.

  18. Initial clinical experience with computerized tomography of the body.

    PubMed

    Stephens, D H; Sheedy, P F; Hattery, R R; Hartman, G W

    1976-04-01

    Computerized tomography of the body, now possible with an instrument that can complete a scan rapidly enough to permit patients to suspend respiration, adds an important new dimension to radiologic diagnosis. Cross-sectional antomy is uniquely reconstructed to provide accurate diagnostic information for various disorders throughout the body. PMID:772746

  19. Infiltration front monitoring using 3D Electrical Resistivity Tomography

    NASA Astrophysics Data System (ADS)

    Oxarango, Laurent; Audebert, Marine; Guyard, Helene; Clement, Remi

    2016-04-01

    The electrical resistivity tomography (ERT) geophysical method is commonly used to identify the spatial distribution of electrical resisitivity in the soil at the field scale. Recent progress in commercial acquisition systems allows repeating fast acquisitions (10 min) in order to monitor a 3D dynamic phenomenon. Since the ERT method is sensitive to moisture content variations, it can thus be used to delineate the infiltration shape during water infiltration. In heterogeneous conditions, the 3D infiltration shape is a crucial information because it could differ significantly from the homogeneous behavior. In a first step, the ERT method is validated at small scale (<1m) studying a suction infiltrometer test. The experiment is carried out in a pit filled with a homogenous silty-sandy soil. It is instrumented by 17 resistivity probes and 3 commercial capacitive moisture content probes to provide local measurements of the moisture content variation. The Multiple Inversion and Clustering Strategy (MICS) (Audebert et al 2014) is used to delineate the infiltration patern. A satisfying agreement between infiltration delineation and sensor measurements is obtained with a few centimeter accuracy on the moisture front location. In a second step, the same methodology is applied at a larger scale (> 10m). Two examples of leachate injection monitoring in municipal solid waste landfills are used to put forward benefits and limitations of the ERT-MICS method. Effective infiltration porosities in a range between 3% and 8% support the assumption of a flow in heterogeneous media. Audebert, M., R. Clément, N. Touze-Foltz, T. Günther, S. Moreau, and C. Duquennoi (2014), Time-lapse ERT interpretation methodology for leachate injection monitoring based on multiple inversions and a clustering strategy (MICS), Journal of Applied Geophysics, 111, 320-333. Keywords: ERT, infiltration front, field survey

  20. Advanced prior modeling for 3D bright field electron tomography

    NASA Astrophysics Data System (ADS)

    Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.

    2015-03-01

    Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.

  1. 3D Observation of GEMS by Electron Tomography

    NASA Technical Reports Server (NTRS)

    Matsuno, Junya; Miyake, Akira; Tsuchiyama, Akira; Nakamura-Messenger, Keiko; Messenger, Scott

    2014-01-01

    Amorphous silicates in chondritic porous interplanetary dust particles (CP-IDPs) coming from comets are dominated by glass with embedded metal and sulfides (GEMS). GEMS grains are submicron-sized rounded objects (typically 100-500) nm in diameter) with anaometer-sized (10-50 nm) Fe-Ni metal and sulfide grains embedded in an amorphous silicate matrix. Several formation processes for GEMS grains have been proposed so far, but these models are still being debated [2-5]. Bradley et al. proposed that GEMS grains are interstellar silicate dust that survived various metamorphism or alteration processes in the protoplanetary disk and that they are amorphiation products of crystalline silicates in the interstellar medium by sputter-deposition of cosmic ray irradiation, similar to space weathering [2,4]. This consideration is based on the observation of nano-sized crystals (approximately 10 nm) called relict grains in GEMS grains and their shapes are pseudomorphs to the host GEMS grains. On the other hand, Keller and Messenger proposed that most GEMS formed in the protoplanetary disk as condensates from high temperature gas [3,5]. This model is based on the fact that most GEMS grains have solar isotopic compositions and have extremely heterogeneous and non-solar elemental compositions. Keller and Messenger (2011) also reported that amorphous silicates in GEMS grains are surrounded by sulfide grains, which formed as sulfidization of metallic iron grains located on the GEMS surface. The previous studies were performed with 2D observation by using transmission electron microscopy (TEM) or scanning TEM (STEM). In order to understand the structure of GEMS grains described above more clearly, we observed 3D structure of GEMS grains by electron tomography using a TEM/STEM (JEM-2100F, JEOL) at Kyoto University. Electron tomography gives not only 3D structures but also gives higher spatial resolution (approximately a few nm) than that in conventional 2D image, which is restricted by

  2. Diffuse nesidioblastosis diagnosed on a Ga-68 DOTATATE positron emission tomography/computerized tomography.

    PubMed

    Arun, Sasikumar; Rai Mittal, Bhagwant; Shukla, Jaya; Bhattacharya, Anish; Kumar, Praveen

    2013-07-01

    The authors describe a 50 days old pre-term infant with persistent hyperinsulinemic hypoglycemia of infancy in whom Ga-68 DOTATATE positron emission tomography/computerized tomography scan showed diffusely increased tracer uptake in the entire pancreas with no abnormal tracer uptake anywhere else in the body, suggestive of a diffuse variant of nesidioblastosis. PMID:24250024

  3. Numerical calculation of the rock permittivity using micro computerized tomography image

    NASA Astrophysics Data System (ADS)

    Guo, Chen; Liu, Richard; Jin, Zhao; He, Zhili

    2014-05-01

    A numerical evaluation of the permittivity of sandstones through the micro computerized tomography (micro CT) images at 1.1 GHz is conducted by using an image porosity extracting algorithm and an improved Finite Difference Method (FDM). Within the acquired physical properties by 3D micro CT scanning, numerical method is used to compute the permittivity of the rock samples. A resonant cavity is used for experimental measurement. The simulated results of 2 clastic sandstone samples with dry state and saturated state are compared with experimental data for validating the accuracy of the proposed numerical method. The results show great agreement and the error of permittivity evaluation is less than 3%.

  4. Computerized Tomography: Its Role in Interstitial Brachytherapy of Pelvic Malignancies

    PubMed Central

    Kumar, P. Pradeep; Taylor, Judith; Jones, E.O.; McAnulty, Bruce

    1986-01-01

    The advantages of computerized tomography (CT) in the treatment planning of external beam radiation therapy have been shown in several studies. The authors extended the use of CT to the interstitial brachytherapy treatment planning of pelvic malignancies. CT was found to be invaluable in localizing pelvic tumors, selecting implant techniques, and checking the accuracy of the implant. ImagesFigure 1Figure 2Figure 3Figure 4Figure 5 PMID:3950985

  5. Vector spherical harmonics application to 3-D tomography problem

    NASA Astrophysics Data System (ADS)

    Balandin, A. L.

    2007-04-01

    A method of series expansion with the aid of vector spherical harmonics intended for inverting line integrated data is proposed to investigate 3-D vector fields in the spherical plasmas. A set of numerical computations demonstrating the 3-D reconstruction of the model vector fields has been performed to assess the inversion method proposed.

  6. 3D X-ray tomography to evaluate volumetric objects

    NASA Astrophysics Data System (ADS)

    de Oliveira, Luís. F.; Lopes, Ricardo T.; de Jesus, Edgar F. O.; Braz, Delson

    2003-06-01

    The 3D-CT and stereological techniques are used concomitantly. The quantitative stereology yields measurements that reflects areas, volumes, lengths, rates and frequencies of the test body. Two others quantification, connectivity and anisotropy, can be used as well to complete the analysis. In this paper, it is presented the application of 3D-CT and the stereological quantification to analyze a special kind of test body: ceramic filters which have an internal structure similar to cancellous bone. The stereology is adapted to work with the 3D nature of the tomographic data. It is presented too the results of connectivity and anisotropy.

  7. Lensfree diffractive tomography for the imaging of 3D cell cultures

    PubMed Central

    Momey, F.; Berdeu, A.; Bordy, T.; Dinten, J.-M.; Marcel, F. Kermarrec; Picollet-D’hahan, N.; Gidrol, X.; Allier, C.

    2016-01-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm3 of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  8. Lensfree diffractive tomography for the imaging of 3D cell cultures.

    PubMed

    Momey, F; Berdeu, A; Bordy, T; Dinten, J-M; Marcel, F Kermarrec; Picollet-D'hahan, N; Gidrol, X; Allier, C

    2016-03-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm (3) of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  9. Test target for characterizing 3D resolution of optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Hao, Bingtao; Liu, Wenli; Hong, Baoyu; Li, Jiao

    2014-12-01

    Optical coherence tomography (OCT) is a non-invasive 3D imaging technology which has been applied or investigated in many diagnostic fields including ophthalmology, dermatology, dentistry, cardiovasology, endoscopy, brain imaging and so on. Optical resolution is an important characteristic that can describe the quality and utility of an image acquiring system. We employ 3D printing technology to design and fabricate a test target for characterizing 3D resolution of optical coherence tomography. The test target which mimics USAF 1951 test chart was produced with photopolymer. By measuring the 3D test target, axial resolution as well as lateral resolution of a spectral domain OCT system was evaluated. For comparison, conventional microscope and surface profiler were employed to characterize the 3D test targets. The results demonstrate that the 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  10. XEDS STEM Tomography For 3D Chemical Characterization Of Nanoscale Particles

    SciTech Connect

    Genc, Arda; Kovarik, Libor; Gu, Meng; Cheng, Huikai; Plachinda, Pavel; Pullan, Lee; Freitag, Bert; Wang, Chong M.

    2013-08-01

    We present a tomography technique which couples scanning transmission electron microscopy (STEM) and X-ray energy dispersive spectrometry (XEDS) to resolve 3D distribution of elements in nanoscale materials. STEM imaging when combined with a symmetrically arranged XEDS detector design around the specimen overcomes many of the obstacles in 3D spectroscopic tomography of nanoscale materials and successfully elucidate the 3D chemical information in a large field of view of the TEM sample. We employed this technique to investigate 3D distribution of Nickel (Ni), Manganese (Mn) and Oxygen (O) in Li(NiMn)O2 battery cathode material. For this purpose, 2D elemental maps were acquired for a range of tilt angles and reconstructed to obtain 3D elemental distribution in an isolated Li(NiMnO2) nanoparticle. The results highlight the strength of this technique in 3D chemical analysis of nanoscale materials by successfully resolving Ni, Mn and O elemental distributions in 3D and discovering the new phenomenon of Ni surface segregation in this material. Furthermore, the comparison of simultaneously acquired HAADF STEM and XEDS STEM tomography results show that XEDS STEM tomography provides additional 3D chemical information of the material especially when there is low atomic number (Z) contrast in the material of interest.

  11. 3D parameter reconstruction in hyperspectral diffuse optical tomography

    NASA Astrophysics Data System (ADS)

    Saibaba, Arvind K.; Krishnamurthy, Nishanth; Anderson, Pamela G.; Kainerstorfer, Jana M.; Sassaroli, Angelo; Miller, Eric L.; Fantini, Sergio; Kilmer, Misha E.

    2015-03-01

    The imaging of shape perturbation and chromophore concentration using Diffuse Optical Tomography (DOT) data can be mathematically described as an ill-posed and non-linear inverse problem. The reconstruction algorithm for hyperspectral data using a linearized Born model is prohibitively expensive, both in terms of computation and memory. We model the shape of the perturbation using parametric level-set approach (PaLS). We discuss novel computational strategies for reducing the computational cost based on a Krylov subspace approach for parameteric linear systems and a compression strategy for the parameter-to-observation map. We will demonstrate the validity of our approach by comparison with experiments.

  12. Snapshot 3D optical coherence tomography system using image mappingspectrometry

    PubMed Central

    Nguyen, Thuc-Uyen; Pierce, Mark C; Higgins, Laura; Tkaczyk, Tomasz S

    2013-01-01

    A snapshot 3-Dimensional Optical Coherence Tomography system was developed using Image MappingSpectrometry. This system can give depth information (Z) at different spatial positions (XY) withinone camera integration time to potentially reduce motion artifact and enhance throughput. Thecurrent (x,y,λ) datacube of (85×356×117) provides a 3Dvisualization of sample with 400 μm depth and 13.4μm in transverse resolution. Axial resolution of 16.0μm can also be achieved in this proof-of-concept system. We present ananalysis of the theoretical constraints which will guide development of future systems withincreased imaging depth and improved axial and lateral resolutions. PMID:23736629

  13. 3-D Adaptive Sparsity Based Image Compression With Applications to Optical Coherence Tomography.

    PubMed

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A; Farsiu, Sina

    2015-06-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  14. 3-D Adaptive Sparsity Based Image Compression with Applications to Optical Coherence Tomography

    PubMed Central

    Fang, Leyuan; Li, Shutao; Kang, Xudong; Izatt, Joseph A.; Farsiu, Sina

    2015-01-01

    We present a novel general-purpose compression method for tomographic images, termed 3D adaptive sparse representation based compression (3D-ASRC). In this paper, we focus on applications of 3D-ASRC for the compression of ophthalmic 3D optical coherence tomography (OCT) images. The 3D-ASRC algorithm exploits correlations among adjacent OCT images to improve compression performance, yet is sensitive to preserving their differences. Due to the inherent denoising mechanism of the sparsity based 3D-ASRC, the quality of the compressed images are often better than the raw images they are based on. Experiments on clinical-grade retinal OCT images demonstrate the superiority of the proposed 3D-ASRC over other well-known compression methods. PMID:25561591

  15. Numerical Modeling of Jointed Rock Under Compressive Loading Using X-ray Computerized Tomography

    NASA Astrophysics Data System (ADS)

    Yu, Qinglei; Yang, Shengqi; Ranjith, P. G.; Zhu, Wancheng; Yang, Tianhong

    2016-03-01

    As jointed rocks consist of joints embedded within intact rock blocks, the presence and geometrical fabric of joints have a great influence on the mechanical behavior of rock. With consideration of the actual spatial shape of joints, a numerical model is proposed to investigate the fracture evolution mechanism of jointed rocks. In the proposed model, computerized tomography (CT) scanning is first used to capture the microstructure of a jointed sandstone specimen, which is artificially fabricated by loading the intact sample until the residual strength, and then digital image processing (DIP) techniques are applied to characterize the geometrical fabric of joints from the CT images. A simple vectorization method is used to convert the microstructure based on a cross-sectional image into a layer of 3-D vectorized microstructure and the overall 3-D model of the jointed sandstone including the real spatial shape of the joints is established by stacking the layers in a specific sequence. The 3-D model is then integrated into a well-established code [three-dimensional Rock Failure Process Analysis, (RFPA3D)]. Using the proposed model, a uniaxial compression test of the jointed sandstone is simulated. The results show that the presence of joints can produce tensile stress zones surrounding them, which result in the fracture of jointed rocks under a relatively small external load. In addition, the spatial shape of the joints has a great influence on the fracture process of jointed rocks.

  16. Recent advances in 3D computed tomography techniques for simulation and navigation in hepatobiliary pancreatic surgery.

    PubMed

    Uchida, Masafumi

    2014-04-01

    A few years ago it could take several hours to complete a 3D image using a 3D workstation. Thanks to advances in computer science, obtaining results of interest now requires only a few minutes. Many recent 3D workstations or multimedia computers are equipped with onboard 3D virtual patient modeling software, which enables patient-specific preoperative assessment and virtual planning, navigation, and tool positioning. Although medical 3D imaging can now be conducted using various modalities, including computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), and ultrasonography (US) among others, the highest quality images are obtained using CT data, and CT images are now the most commonly used source of data for 3D simulation and navigation image. If the 2D source image is bad, no amount of 3D image manipulation in software will provide a quality 3D image. In this exhibition, the recent advances in CT imaging technique and 3D visualization of the hepatobiliary and pancreatic abnormalities are featured, including scan and image reconstruction technique, contrast-enhanced techniques, new application of advanced CT scan techniques, and new virtual reality simulation and navigation imaging. PMID:24464989

  17. 3D and 4D magnetic susceptibility tomography based on complex MR images

    DOEpatents

    Chen, Zikuan; Calhoun, Vince D

    2014-11-11

    Magnetic susceptibility is the physical property for T2*-weighted magnetic resonance imaging (T2*MRI). The invention relates to methods for reconstructing an internal distribution (3D map) of magnetic susceptibility values, .chi. (x,y,z), of an object, from 3D T2*MRI phase images, by using Computed Inverse Magnetic Resonance Imaging (CIMRI) tomography. The CIMRI technique solves the inverse problem of the 3D convolution by executing a 3D Total Variation (TV) regularized iterative convolution scheme, using a split Bregman iteration algorithm. The reconstruction of .chi. (x,y,z) can be designed for low-pass, band-pass, and high-pass features by using a convolution kernel that is modified from the standard dipole kernel. Multiple reconstructions can be implemented in parallel, and averaging the reconstructions can suppress noise. 4D dynamic magnetic susceptibility tomography can be implemented by reconstructing a 3D susceptibility volume from a 3D phase volume by performing 3D CIMRI magnetic susceptibility tomography at each snapshot time.

  18. Computerized tomography and skeletal density of coral skeletons

    NASA Astrophysics Data System (ADS)

    Bosscher, Hemmo

    1993-07-01

    In this paper I describe and discuss the use of medical X-ray computerized tomography (CT) in the study of coral skeletons. CT generates X-ray images along freely chosen sections through the skeleton and offers, as well, the possibility of density measurements based on X-ray attenuation. This method has been applied to measure the skeletal density of the Caribbean reef-building coral Montastrea annularis, from Curaçao, Netherlands Antilles. The observed, non-linear increase of skeletal density with depth can be attributed to decreasing photo-synthetic rates with increasing water depth. A comparison with extension rate measurements shows the inverse relationship between extension rate and skeletal density. CT proves to be aquick and non-destructive method to reveal growth structures (density banding) since it measures skeletal density.

  19. Magnetic resonance imaging and computerized tomography in malignant external otitis

    SciTech Connect

    Gherini, S.G.; Brackmann, D.E.; Bradley, W.G.

    1986-05-01

    In malignant external otitis (MEO), determining the anatomic extent of disease and evaluating the physiologic response to therapy remain a problem. Magnetic resonance imaging (MRI) has recently become available in limited clinical settings. Four patients with MEO were evaluated using MRI, computerized tomography (CT), technetium-99 (Tc-99) bone scanning, and gallium-67 citrate (Ga-67 citrate) scanning. MRI is superior to CT, Tc-99 bone scanning, and Ga-67 citrate scanning in evaluating the anatomic extent of soft tissue changes in MEO. MRI alone cannot be relied upon to determine the physiologic response to therapy. MRI can, however, serve as a valuable guide to the interpretation of Tc-99 bone and Ga-67 citrate scans, and in this respect, MRI is extremely useful in the treatment of MEO.

  20. Null space and resolution in dynamic computerized tomography

    NASA Astrophysics Data System (ADS)

    Hahn, Bernadette N.

    2016-02-01

    One major challenge in computerized tomography is to image objects which change during the data acquisition and hence lead to inconsistent data sets. Motion artefacts in the reconstructions can be reduced by applying specially adapted algorithms which take the dynamic behaviour into account. Within this article, we analyse the achievable resolution in the dynamic setting in case of two-dimensional affine deformations. To this end, we characterize the null space of the operator describing the dynamic case, using its singular value decomposition and a necessary dynamic consistency condition. This shows that independent of any reconstruction method, the specimen’s dynamics results in a loss of resolution compared to the stationary setting. Our theoretical results are illustrated at a numerical example.

  1. The development of algorithms in electrical impedance computerized tomography.

    PubMed

    Shie, J R; Li, C J; Lin, J T

    2000-01-01

    Electrical Impedance Computerized Tomography (EICT) is an imaging method to reconstruct the impedance distribution inside of domain through the boundary injected current and display the impedance contrast ratio as an image. This paper concentrates on developing two algorithms to enhance the quality of the conductivity image. The two algorithms are "Fine-Mesh Conversion Method" and "Sub-Domain EICT Method". "Fine-Mesh Conversion Method" is a numerical calibration process to find a coarse mesh impedance network that behaves like a fine mesh network in terms of giving similar voltages under the same current excitations. "Sub-Domain EICT" solves a higher resolution EICT with the cost of a lower resolution EICT by combining "Fine-Mesh Conversion Method", and a Fuzzy Logic Inference Systems (FLIS) classifier. PMID:10834231

  2. Dental development of the Taung skull from computerized tomography.

    PubMed

    Conroy, G C; Vannier, M W

    Just over 60 years ago, Dart's description and analysis of the Taung child's skull triggered an intellectual revolution about human origins. Recently, several authors have suggested that one of the most significant hominid-like traits of australopithecines, delayed maturation, may not after all be valid. This is a radical departure from Mann's classic study of australopithecine maturation and palaeodemography based on dental eruption patterns. The resolution of this debate has important implications for the history of the biological and social evolution of the human species. In view of the controversies generated by recent studies, and particularly because the Taung skull is the type specimen of Australopithecus africanus, we have investigated the relevant anatomy of the Taung 'child' using computerized tomography. We conclude that the Taung 'child' shows some important dental maturational affinities with great apes, although as Dart noted, other hominid-like features are clearly present. PMID:3116435

  3. The Use Of Computerized Tomographic (CT) Scans For 3-D Display And Prosthesis Construction

    NASA Astrophysics Data System (ADS)

    Mankovich, Nicholas J.; Woodruff, Tracey J.; Beumer, John

    1985-06-01

    The construction of preformed cranial prostheses for large cranial bony defects is both error prone and time consuming. We discuss a method used for the creation of cranial prostheses from automatically extracted bone contours taken from Computerized Tomographic (CT) scans. Previous methods of prosthesis construction have relied on the making of a mold directly from the region of cranial defect. The use of image processing, bone contour extraction, and three-dimensional display allowed us to create a better fitting prosthesis while reducing patient surgery time. This procedure involves direct bone margin extraction from the digital CT images followed by head model construction from serial plots of the bone margin. Three-dimensional data display is used to verify the integrity of the skull data set prior to model construction. Once created, the model is used to fabricate a custom fitting prosthesis which is then surgically implanted. This procedure is being used with patients in the Maxillofacial Prosthetic Clinic at UCLA and this paper details the technique.

  4. Analysis of the 3D distribution of stacked self-assembled quantum dots by electron tomography

    PubMed Central

    2012-01-01

    The 3D distribution of self-assembled stacked quantum dots (QDs) is a key parameter to obtain the highest performance in a variety of optoelectronic devices. In this work, we have measured this distribution in 3D using a combined procedure of needle-shaped specimen preparation and electron tomography. We show that conventional 2D measurements of the distribution of QDs are not reliable, and only 3D analysis allows an accurate correlation between the growth design and the structural characteristics. PMID:23249477

  5. Analyzing 3D xylem networks in Vitis vinifera using High Resolution Computed Tomography (HRCT)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Recent developments in High Resolution Computed Tomography (HRCT) have made it possible to visualize three dimensional (3D) xylem networks without time consuming, labor intensive physical sectioning. Here we describe a new method to visualize complex vessel networks in plants and produce a quantitat...

  6. Capacitance Measurement with a Sigma Delta Converter for 3D Electrical Capacitance Tomography

    NASA Technical Reports Server (NTRS)

    Nurge, Mark

    2005-01-01

    This paper will explore suitability of a newly available capacitance to digital converter for use in a 3D Electrical Capacitance Tomography system. A switch design is presented along with circuitry needed to extend the range of the capacitance to digital converter. Results are then discussed for a 15+ hour drift and noise test.

  7. 3D structure of eukaryotic flagella/cilia by cryo-electron tomography

    PubMed Central

    Ishikawa, Takashi

    2013-01-01

    Flagella/cilia are motile organelles with more than 400 proteins. To understand the mechanism of such complex systems, we need methods to describe molecular arrange-ments and conformations three-dimensionally in vivo. Cryo-electron tomography enabled us such a 3D structural analysis. Our group has been working on 3D structure of flagella/cilia using this method and revealed highly ordered and beautifully organized molecular arrangement. 3D structure gave us insights into the mechanism to gener-ate bending motion with well defined waveforms. In this review, I summarize our recent structural studies on fla-gella/cilia by cryo-electron tomography, mainly focusing on dynein microtubule-based ATPase motor proteins and the radial spoke, a regulatory protein complex. PMID:27493552

  8. Element-specific X-ray phase tomography of 3D structures at the nanoscale.

    PubMed

    Donnelly, Claire; Guizar-Sicairos, Manuel; Scagnoli, Valerio; Holler, Mirko; Huthwelker, Thomas; Menzel, Andreas; Vartiainen, Ismo; Müller, Elisabeth; Kirk, Eugenie; Gliga, Sebastian; Raabe, Jörg; Heyderman, Laura J

    2015-03-20

    Recent advances in fabrication techniques to create mesoscopic 3D structures have led to significant developments in a variety of fields including biology, photonics, and magnetism. Further progress in these areas benefits from their full quantitative and structural characterization. We present resonant ptychographic tomography, combining quantitative hard x-ray phase imaging and resonant elastic scattering to achieve ab initio element-specific 3D characterization of a cobalt-coated artificial buckyball polymer scaffold at the nanoscale. By performing ptychographic x-ray tomography at and far from the Co K edge, we are able to locate and quantify the Co layer in our sample to a 3D spatial resolution of 25 nm. With a quantitative determination of the electron density we can determine that the Co layer is oxidized, which is confirmed with microfluorescence experiments. PMID:25839287

  9. The study of compressive sampling in ultrasonic computerized tomography

    NASA Astrophysics Data System (ADS)

    Wang, Wentao; Wang, Chonghe; Bao, Yuequan; Li, Hui

    2015-04-01

    This paper proposes a novel and effective method in the field of Non-Destructive Evaluation (NDE). Traditional ultrasonic computerized tomography (UCT) is a heavy task to detect the damages in the object for the numerous measuring times and the huge cost of manual labor. However, utilizing the method proposed in this paper can effectively overcome this great disadvantage, the essence of the application of Compressive Sampling(CS) in the detection of the object is to selectively choose a small quantity of measuring path in the huge number of total measurements. Due to the sparsity of damages in concrete structure, the usage of CS is available. Firstly, we divide the object entirely into numerous grids in order to image the internal situation of the object respectively. Secondly, a measurement matrix to massively decline the quantity of the measuring time should be computed. Thirdly, the travel time of each path we selected according to the matrix should be acquired, utilizing these travel time by adopting the l1-minimization program can we consequently obtained the slowness of the elements inside the object, thus reconstruct the internal situation of the object clearly and effectively. Furthermore, by applying this method we proposed in this paper into the simulation we can not only determine the damage location but also figure the size of it out. Because of the massive decline of the measuring times and accurate reconstruction, we substantiate CS method applied into the monitoring of concrete structure proves to be a shortcut in the field of NDE.

  10. Vertebral sarcoidosis: demonstration of bone involvement by computerized axial tomography

    SciTech Connect

    Dinerstein, S.L.; Kovarsky, J.

    1984-08-01

    A report is given of a rare case of vertebral sarcoidosis with negative conventional spinal x-ray films, yet with typical cystic lesions of the spine found incidentally during abdominal computerized axial tomography (CAT). The patient was a 28-year-old black man, who was admitted for evaluation of a 1 1/2-year history of diffuse myalgias, intermittent fever to 102 F orally, bilateral hilar adenopathy, and leukopenia. A technetium polyphosphate bone scan revealed diffuse areas of increased uptake over the sternum, entire vertebral column, and pelvis. Conventional x-ray films of the cervical, thoracic, and lumbar spine, and an AP view of the pelvis were all normal. Chest x-ray film revealed only bilateral hilar adenopathy. During the course of an extensive negative evaluation for infection, an abdominal CAT scan was done, showing multiple, small, sclerotic-rimmed cysts at multiple levels of the lower thoracic and lumbar spine. Bone marrow biopsy revealed only changes consistent with anemia of chronic disease. Mediastinal lymph node biopsy revealed noncaseating granulomas. A tentative diagnosis of sarcoidosis was made, and treatment with prednisone, isoniazid and rifampin was begun. Within two weeks of initiation of prednisone therapy, the patient was symptom-free. A repeat technetium polyphosphate bone scan revealed only a small residual area of mildly increased uptake over the upper thoracic vertebrae.

  11. Phase Tomography Reconstructed by 3D TIE in Hard X-ray Microscope

    SciTech Connect

    Yin, G.-C.; Chen, F.-R.; Pyun, Ahram; Je, Jung Ho; Hwu, Yeukuang; Liang, Keng S.

    2007-01-19

    X-ray phase tomography and phase imaging are promising ways of investigation on low Z material. A polymer blend of PE/PS sample was used to test the 3D phase retrieval method in the parallel beam illuminated microscope. Because the polymer sample is thick, the phase retardation is quite mixed and the image can not be distinguished when the 2D transport intensity equation (TIE) is applied. In this study, we have provided a different approach for solving the phase in three dimensions for thick sample. Our method involves integration of 3D TIE/Fourier slice theorem for solving thick phase sample. In our experiment, eight sets of de-focal series image data sets were recorded covering the angular range of 0 to 180 degree. Only three set of image cubes were used in 3D TIE equation for solving the phase tomography. The phase contrast of the polymer blend in 3D is obviously enhanced, and the two different groups of polymer blend can be distinguished in the phase tomography.

  12. Freehand photoacoustic tomography for 3D angiography using local gradient information

    NASA Astrophysics Data System (ADS)

    Kirchner, Thomas; Wild, Esther; Maier-Hein, Klaus H.; Maier-Hein, Lena

    2016-03-01

    Photo-acoustic tomography (PAT) is capable of imaging optical absorption in depths beyond the diffusion limit. As blood is one of the main absorbers in tissue, one important application is the visualization of vasculature, which can provide important clues for diagnosing diseases like cancer. While the state-of-the-art work in photo-acoustic 3D angiography has focused on computed tomography systems involving complex setups, we propose an approach based on optically tracking a freehand linear ultrasound probe that can be smoothly integrated into the clinical workflow. To this end, we present a method for calibration of a PAT system using an N-wire phantom specifically designed for PAT and show how to use local gradient information in the 3D reconstructed volume to significantly enhance the signal. According to experiments performed with a tissue mimicking intra-lipid phantom, the signal-to-noise ratio, contrast and contrast-to-noise ratio measured in the full field of view of the linear probe can be improved by factors of 1.7+/-0.7, 14.6+/-5.8 and 2.8+/-1.2 respectively, when comparing the post envelope detection reconstructed 3D volume with the processed one. Qualitative validation performed in tissue mimicking gelatin phantoms further showed good agreement of the reconstructed vasculature with corresponding structures extracted from X-ray computed tomographies. As our method provides high contrast 3D images of the vasculature despite a low hardware complexity its potential for clinical application is high.

  13. Contribution of 3D inversion of Electrical Resistivity Tomography data applied to volcanic structures

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2016-04-01

    The electrical resistivity tomography (ERT) method, initially developed for environmental and engineering exploration, is now commonly used for geological structures imaging. Such structures can present complex characteristics that conventional 2D inversion processes cannot perfectly integrate. Here we present a new 3D inversion algorithm named EResI, firstly developed for levee investigation, and presently applied to the study of a complex lava dome (the Puy de Dôme volcano, France). EResI algorithm is based on a conventional regularized Gauss-Newton inversion scheme and a 3D non-structured discretization of the model (double grid method based on tetrahedrons). This discretization allows to accurately model the topography of investigated structure (without a mesh deformation procedure) and also permits a precise location of the electrodes. Moreover, we demonstrate that a complete 3D unstructured discretization limits the number of inversion cells and is better adapted to the resolution capacity of tomography than a structured discretization. This study shows that a 3D inversion with a non-structured parametrization has some advantages compared to classical 2D inversions. The first advantage comes from the fact that a 2D inversion leads to artefacts due to 3D effects (3D topography, 3D internal resistivity). The second advantage comes from the fact that the capacity to experimentally align electrodes along an axis (for 2D surveys) depends on the constrains on the field (topography...). In this case, a 2D assumption induced by 2.5D inversion software prevents its capacity to model electrodes outside this axis leading to artefacts in the inversion result. The last limitation comes from the use of mesh deformation techniques used to accurately model the topography in 2D softwares. This technique used for structured discretization (Res2dinv) is prohibed for strong topography (>60 %) and leads to a small computational errors. A wide geophysical survey was carried out

  14. Reconstruction of 3D ion beam micro-tomography data for applications in Cell Biology

    NASA Astrophysics Data System (ADS)

    Habchi, C.; Nguyen, D. T.; Barberet, Ph.; Incerti, S.; Moretto, Ph.; Sakellariou, A.; Seznec, H.

    2009-06-01

    The DISRA (Discrete Image Space Reconstruction Algorithm) reconstruction code, created by A. Sakellariou, was conceived for the ideal case of complete three-dimensional (3D) PIXET (Particle Induced X-ray Emission Tomography) data. This implies two major difficulties for biological samples: first, the long duration of such experiments and second, the subsequent damage that occurs on such fragile specimens. For this reason, the DISRA code was extended at CENBG in order to probe isolated PIXET slices, taking into account the sample structure and mass density provided by 3D STIMT (Scanning Transmission Ion Microscopy Tomography) in the volume of interest. This modified version was tested on a phantom sample and first results on human cancer cells are also presented.

  15. Wearable 3-D Photoacoustic Tomography for Functional Brain Imaging in Behaving Rats.

    PubMed

    Tang, Jianbo; Coleman, Jason E; Dai, Xianjin; Jiang, Huabei

    2016-01-01

    Understanding the relationship between brain function and behavior remains a major challenge in neuroscience. Photoacoustic tomography (PAT) is an emerging technique that allows for noninvasive in vivo brain imaging at micrometer-millisecond spatiotemporal resolution. In this article, a novel, miniaturized 3D wearable PAT (3D-wPAT) technique is described for brain imaging in behaving rats. 3D-wPAT has three layers of fully functional acoustic transducer arrays. Phantom imaging experiments revealed that the in-plane X-Y spatial resolutions were ~200 μm for each acoustic detection layer. The functional imaging capacity of 3D-wPAT was demonstrated by mapping the cerebral oxygen saturation via multi-wavelength irradiation in behaving hyperoxic rats. In addition, we demonstrated that 3D-wPAT could be used for monitoring sensory stimulus-evoked responses in behaving rats by measuring hemodynamic responses in the primary visual cortex during visual stimulation. Together, these results show the potential of 3D-wPAT for brain study in behaving rodents. PMID:27146026

  16. Wearable 3-D Photoacoustic Tomography for Functional Brain Imaging in Behaving Rats

    PubMed Central

    Tang, Jianbo; Coleman, Jason E.; Dai, Xianjin; Jiang, Huabei

    2016-01-01

    Understanding the relationship between brain function and behavior remains a major challenge in neuroscience. Photoacoustic tomography (PAT) is an emerging technique that allows for noninvasive in vivo brain imaging at micrometer-millisecond spatiotemporal resolution. In this article, a novel, miniaturized 3D wearable PAT (3D-wPAT) technique is described for brain imaging in behaving rats. 3D-wPAT has three layers of fully functional acoustic transducer arrays. Phantom imaging experiments revealed that the in-plane X-Y spatial resolutions were ~200 μm for each acoustic detection layer. The functional imaging capacity of 3D-wPAT was demonstrated by mapping the cerebral oxygen saturation via multi-wavelength irradiation in behaving hyperoxic rats. In addition, we demonstrated that 3D-wPAT could be used for monitoring sensory stimulus-evoked responses in behaving rats by measuring hemodynamic responses in the primary visual cortex during visual stimulation. Together, these results show the potential of 3D-wPAT for brain study in behaving rodents. PMID:27146026

  17. Computed Tomography and its Application for the 3D Characterization of Coarse Grained Meteorites

    NASA Technical Reports Server (NTRS)

    Gillies, Donald C.; Engel, H. P.; Carpenter, P. K.

    2004-01-01

    With judicious selection of parameters, computed tomography can provide high precision density data. Such data can lead to a non-destructive determination of the phases and phase distribution within large solid objects. Of particular interest is the structure of the Mundrabilla meteorite, which has 25 volumes, percent of a sulfide within a metallic meteorite. 3D digital imaging has enabled a quantitative evaluation of the distribution and contiguity of the phases to be determined.

  18. Computerized tomography of the acute left upper quadrant pain.

    PubMed

    Tirkes, Temel; Ballenger, Zachary; Steenburg, Scott D; Altman, Daniel J; Sandrasegaran, Kumaresan

    2016-08-01

    The purpose of this study was to evaluate the clinical utility of computerized tomography (CT) of the abdomen in the emergent setting of left upper quadrant pain. One hundred patients (average age: 45, range: 19-93 years, female: 57 %, male: 43 %) who presented to the emergency department (ED) and underwent CT scanning of abdomen with the given indication of left upper quadrant pain were included in this study. The results from CT examinations were compared to final diagnoses determined by either ED physician or clinician on a follow-up visit. Sensitivity of CT was 69 % (95 %CI: 52-83 %) for 39 patients who eventually were diagnosed with an acute abdominal abnormality. Twenty-seven patients had an acute abnormal finding on abdominal CT that represented the cause of the patient's pain (positive predictive value of 100 %, 95 %CI: 87-100 %). Of the remaining 73 patients with negative CT report, 12 were diagnosed clinically (either in the ED or on follow-up visit to specialist) with a pathology that was undetectable on the CT imaging (negative predictive value of 83 %, 95 %CI: 73-91 %). None of the remaining 61 patients with negative CT were found to have pathology by clinical evaluation (specificity of 100 %, 95 %CI: 94-100 %). CT is a useful examination for patients with acute left upper quadrant pain in the emergency department setting with moderate sensitivity and excellent specificity. PMID:27230731

  19. Mesoscopic in vivo 3-D tracking of sparse cell populations using angular multiplexed optical projection tomography

    PubMed Central

    Chen, Lingling; Alexandrov, Yuriy; Kumar, Sunil; Andrews, Natalie; Dallman, Margaret J.; French, Paul M. W.; McGinty, James

    2015-01-01

    We describe an angular multiplexed imaging technique for 3-D in vivo cell tracking of sparse cell distributions and optical projection tomography (OPT) with superior time-lapse resolution and a significantly reduced light dose compared to volumetric time-lapse techniques. We demonstrate that using dual axis OPT, where two images are acquired simultaneously at different projection angles, can enable localization and tracking of features in 3-D with a time resolution equal to the camera frame rate. This is achieved with a 200x reduction in light dose compared to an equivalent volumetric time-lapse single camera OPT acquisition with 200 projection angles. We demonstrate the application of this technique to mapping the 3-D neutrophil migration pattern observed over ~25.5 minutes in a live 2 day post-fertilisation transgenic LysC:GFP zebrafish embryo following a tail wound. PMID:25909009

  20. Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements

    NASA Astrophysics Data System (ADS)

    Kujawinska, Malgorzata; Jozwicka, Agata; Kozacki, Tomasz

    2008-08-01

    In order to control performance of photonics microelements it is necessary to receive 3D information about their amplitude and phase distributions. To perform this task we propose to apply tomography based on projections gather by digital holography (DH). Specifically the DH capability to register several angular views of the object during a single hologram capture is employed, which may in future shorten significantly the measurement time or even allow for tomographic analysis of dynamic media. However such a new approach brings a lot of new issues to be considered. Therefore, in this paper the method limitations, with special emphasis on holographic reconstruction process, are investigated through extensive numerical experiments with special focus on 3D refractive index distribution determination.. The main errors and means of their elimination are presented. The possibility of 3D refractive index distribution determination by means of DHT is proved numerically and experimentally.

  1. 3-D Multiphase Segmentation of X-Ray Micro Computed Tomography Data of Geologic Materials

    NASA Astrophysics Data System (ADS)

    Tuller, M.; Kulkarni, R.; Fink, W.

    2011-12-01

    Advancements of noninvasive imaging methods such as X-Ray Computed Tomography (CT) led to a recent surge of applications in Geoscience. While substantial efforts and resources have been devoted to advance CT technology and micro-scale analysis, the development of a stable 3-D multiphase image segmentation method applicable to large datasets is lacking. To eliminate the need for wet/dry or dual energy scans, image alignment, and subtraction analysis, commonly applied in synchrotron X-Ray micro CT, a segmentation method based on a Bayesian Markov Random Field (MRF) framework amenable to true 3-D multiphase processing was developed and evaluated. Furthermore, several heuristic and deterministic combinatorial optimization schemes required to solve the labeling problem of the MRF image model were implemented and tested for computational efficiency and their impact on segmentation results. Test results for natural and artificial porous media datasets demonstrate great potential of the MRF image model for 3-D multiphase segmentation.

  2. Inclusion of high resolution MODIS maps on a 3D tropospheric water vapor GPS tomography model

    NASA Astrophysics Data System (ADS)

    Benevides, Pedro; Catalao, Joao; Nico, Giovanni; Miranda, Pedro M. A.

    2015-10-01

    Observing the water vapor distribution on the troposphere remains a challenge for the weather forecast. Radiosondes provide precise water vapor profiles of the troposphere, but lack geographical and temporal coverage, while satellite meteorological maps have good spatial resolution but even poorer temporal resolution. GPS has proved its capacity to measure the integrated water vapor in all weather conditions with high temporal sampling frequency. However these measurements lack a vertical water vapor discretization. Reconstruction of the slant path GPS observation to the satellite allows oblique water vapor measurements. Implementation of a 3D grid of voxels along the troposphere over an area where GPS stations are available enables the observation ray tracing. A relation between the water vapor density and the distanced traveled inside the voxels is established, defining GPS tomography. An inverse problem formulation is needed to obtain a water vapor solution. The combination of precipitable water vapor (PWV) maps obtained from MODIS satellite data with the GPS tomography is performed in this work. The MODIS PWV maps can have 1 or 5 km pixel resolution, being obtained 2 times per day in the same location at most. The inclusion of MODIS PWV maps provides an enhanced horizontal resolution for the tomographic solution and benefits the stability of the inversion problem. A 3D tomographic grid was adjusted over a regional area covering Lisbon, Portugal, where a GNSS network of 9 receivers is available. Radiosonde measurements in the area are used to evaluate the 3D water vapor tomography maps.

  3. 3D Structural Fluctuation of IgG1 Antibody Revealed by Individual Particle Electron Tomography

    PubMed Central

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-01-01

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions. PMID:25940394

  4. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    SciTech Connect

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, we derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.

  5. 3D structural fluctuation of IgG1 antibody revealed by individual particle electron tomography

    DOE PAGESBeta

    Zhang, Xing; Zhang, Lei; Tong, Huimin; Peng, Bo; Rames, Matthew J.; Zhang, Shengli; Ren, Gang

    2015-05-05

    Commonly used methods for determining protein structure, including X-ray crystallography and single-particle reconstruction, often provide a single and unique three-dimensional (3D) structure. However, in these methods, the protein dynamics and flexibility/fluctuation remain mostly unknown. Here, we utilized advances in electron tomography (ET) to study the antibody flexibility and fluctuation through structural determination of individual antibody particles rather than averaging multiple antibody particles together. Through individual-particle electron tomography (IPET) 3D reconstruction from negatively-stained ET images, we obtained 120 ab-initio 3D density maps at an intermediate resolution (~1–3 nm) from 120 individual IgG1 antibody particles. Using these maps as a constraint, wemore » derived 120 conformations of the antibody via structural flexible docking of the crystal structure to these maps by targeted molecular dynamics simulations. Statistical analysis of the various conformations disclosed the antibody 3D conformational flexibility through the distribution of its domain distances and orientations. This blueprint approach, if extended to other flexible proteins, may serve as a useful methodology towards understanding protein dynamics and functions.« less

  6. Characterizing analogue caldera collapse with computerized X-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Poppe, Sam; Holohan, Eoghan; Boone, Matthieu; Pauwels, Elin; Cnudde, Veerle; Kervyn, Matthieu

    2013-04-01

    Analogue models in the past mainly explored caldera collapse structures by documenting 2D model cross-sections. Kinematic aspects and 3D structures of caldera collapse are less well understood, although they are essential to interpret recent field and monitoring data. We applied high resolution radiography and computerized X-ray micro-tomography (µCT) to image the deformation during analogue fluid withdrawal in small-scale caldera collapse models. The models test and highlight the possibilities and limitations of µCT-scanning to qualitatively image and quantitatively analyse deformation of analogue volcano-tectonic experiments. High resolution interval radiography sequences document '2.5D' surface and internal model geometry, and subsidence kinematics of a collapsing caldera block into an emptying fluid body in an unprecedented way. During the whole drainage process, all subsidence was bound by caldera ring faults. Subsidence was associated with dilatation of the analogue granular material within the collapsing column. The temporal subsidence rate pattern within the subsiding volume comprised three phases: 1) Upward ring fault propagation, 2) Rapid subsidence with the highest subsidence rates within the uppermost subsiding volume, 3) Relatively slower subsidence rates over the whole column with intermittent subsidence rate acceleration. Such acceleration did almost never affect the whole column. By using radiography sequences it is possible in a non-destructive manner to obtain a continuous observation of fault propagation, down sag mechanisms and the subsequent development of collapse structures. Multi-angle µCT scans of the collapse result allow for a full virtual 3D reconstruction of the model. This leads to an unprecedented 3D view on fault geometries. The developed method is a step towards the quantitative documentation of volcano-tectonic models that would render data interpretations immediately comparable to monitoring data available from recent

  7. 3D Magnetic Induction Maps of Nanoscale Materials Revealed by Electron Holographic Tomography

    PubMed Central

    2015-01-01

    The investigation of three-dimensional (3D) ferromagnetic nanoscale materials constitutes one of the key research areas of the current magnetism roadmap and carries great potential to impact areas such as data storage, sensing, and biomagnetism. The properties of such nanostructures are closely connected with their 3D magnetic nanostructure, making their determination highly valuable. Up to now, quantitative 3D maps providing both the internal magnetic and electric configuration of the same specimen with high spatial resolution are missing. Here, we demonstrate the quantitative 3D reconstruction of the dominant axial component of the magnetic induction and electrostatic potential within a cobalt nanowire (NW) of 100 nm in diameter with spatial resolution below 10 nm by applying electron holographic tomography. The tomogram was obtained using a dedicated TEM sample holder for acquisition, in combination with advanced alignment and tomographic reconstruction routines. The powerful approach presented here is widely applicable to a broad range of 3D magnetic nanostructures and may trigger the progress of novel spintronic nonplanar nanodevices. PMID:27182110

  8. A physical model eye with 3D resolution test targets for optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Hu, Zhixiong; Liu, Wenli; Hong, Baoyu; Hao, Bingtao; Wang, Lele; Li, Jiao

    2014-09-01

    Optical coherence tomography (OCT) has been widely employed as non-invasive 3D imaging diagnostic instrument, particularly in the field of ophthalmology. Although OCT has been approved for use in clinic in USA, Europe and Asia, international standardization of this technology is still in progress. Validation of OCT imaging capabilities is considered extremely important to ensure its effective use in clinical diagnoses. Phantom with appropriate test targets can assist evaluate and calibrate imaging performance of OCT at both installation and throughout lifetime of the instrument. In this paper, we design and fabricate a physical model eye with 3D resolution test targets to characterize OCT imaging performance. The model eye was fabricated with transparent resin to simulate realistic ophthalmic testing environment, and most key optical elements including cornea, lens and vitreous body were realized. The test targets which mimic USAF 1951 test chart were fabricated on the fundus of the model eye by 3D printing technology. Differing from traditional two dimensional USAF 1951 test chart, a group of patterns which have different thickness in depth were fabricated. By measuring the 3D test targets, axial resolution as well as lateral resolution of an OCT system can be evaluated at the same time with this model eye. To investigate this specialized model eye, it was measured by a scientific spectral domain OCT instrument and a clinical OCT system respectively. The results demonstrate that the model eye with 3D resolution test targets have the potential of qualitatively and quantitatively validating the performance of OCT systems.

  9. New solutions and applications of 3D computer tomography image processing

    NASA Astrophysics Data System (ADS)

    Effenberger, Ira; Kroll, Julia; Verl, Alexander

    2008-02-01

    As nowadays the industry aims at fast and high quality product development and manufacturing processes a modern and efficient quality inspection is essential. Compared to conventional measurement technologies, industrial computer tomography (CT) is a non-destructive technology for 3D-image data acquisition which helps to overcome their disadvantages by offering the possibility to scan complex parts with all outer and inner geometric features. In this paper new and optimized methods for 3D image processing, including innovative ways of surface reconstruction and automatic geometric feature detection of complex components, are presented, especially our work of developing smart online data processing and data handling methods, with an integrated intelligent online mesh reduction. Hereby the processing of huge and high resolution data sets is guaranteed. Besides, new approaches for surface reconstruction and segmentation based on statistical methods are demonstrated. On the extracted 3D point cloud or surface triangulation automated and precise algorithms for geometric inspection are deployed. All algorithms are applied to different real data sets generated by computer tomography in order to demonstrate the capabilities of the new tools. Since CT is an emerging technology for non-destructive testing and inspection more and more industrial application fields will use and profit from this new technology.

  10. X-ray ptychographic computed tomography at 16 nm isotropic 3D resolution

    PubMed Central

    Holler, M.; Diaz, A.; Guizar-Sicairos, M.; Karvinen, P.; Färm, Elina; Härkönen, Emma; Ritala, Mikko; Menzel, A.; Raabe, J.; Bunk, O.

    2014-01-01

    X-ray ptychography is a scanning variant of coherent diffractive imaging with the ability to image large fields of view at high resolution. It further allows imaging of non-isolated specimens and can produce quantitative mapping of the electron density distribution in 3D when combined with computed tomography. The method does not require imaging lenses, which makes it dose efficient and suitable to multi-keV X-rays, where efficient photon counting, pixelated detectors are available. Here we present the first highly resolved quantitative X-ray ptychographic tomography of an extended object yielding 16 nm isotropic 3D resolution recorded at 2 Å wavelength. This first-of-its-kind demonstration paves the way for ptychographic X-ray tomography to become a promising method for X-ray imaging of representative sample volumes at unmatched resolution, opening tremendous potential for characterizing samples in materials science and biology by filling the resolution gap between electron microscopy and other X-ray imaging techniques. PMID:24457289

  11. Full 3D Microwave Tomography enhanced GPR surveys: a case study

    NASA Astrophysics Data System (ADS)

    Catapano, Ilaria; Soldovieri, Francesco; Affinito, Antonio; Hugenschmidt, Johannes

    2014-05-01

    Ground Penetrating Radar (GPR) systems are well assessed non-invasive diagnostic tools capable of providing high resolution images of the inner structure of the probed spatial region. Owing to this capability, GPR systems are nowadays more and more considered in the frame of civil engineering surveys since they may give information on constructive details as well as on the aging and risk factors affecting the healthiness of an infrastructure. In this frame, accurate, reliable and easily interpretable images of the probed scenarios are mandatory in order to support the management of maintenance works and assure the safety of structures. Such a requirement motivates the use of different and sophisticated data processing approaches in order to compare more than one image of the same scene, thus improving the reliability and objectiveness of the GPR survey results. Among GPR data processing procedures, Microwave Tomography approaches based on the Born approximation face the imaging as the solution of a linear inverse problem, which is solved by using the Truncated Singular Value Decomposition as a regularized inversion scheme [1]. So far, an approach exploiting a 2D scalar model of the scattering phenomenon have been adopted to process GPR data gathered along a single scan. In this case, 3D images are obtained by interpolating 2D reconstructions (this is referred commonly as pseudo 3D imaging). Such an imaging approach have provided valuable results in several real cases dealing with not only surveys for civil engineering but also archeological prospection, subservice monitoring, security surveys and so on [1-4]. These encouraging results have motivated the development of a full 3D Microwave Tomography approach capable of accounting for the vectorial nature of the wave propagation. The reconstruction capabilities of this novel approach have been assessed mainly against experimental data collected in laboratory controlled conditions. The obtained results corroborate

  12. Quantifying axis orientation in 3D using polarization-sensitive optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Liu, Chao; Black, Adam J.; Wang, Hui; Akkin, Taner

    2016-03-01

    The optic axis of birefringent tissues indicates the direction of structural anisotropy. Polarization-sensitive Optical Coherence Tomography (PS-OCT) can provide reflectivity contrast as well as retardance and optic axis orientation contrasts that originate from tissue birefringence. We introduce imaging 3D tissue anisotropy by using a single-camera and polarization-maintaining fiber (PMF) based PS-OCT, which utilizes normal and angled illuminations. Because environmental factors such as the movement of PMF and temperature fluctuations induce arbitrary phase changes, the optic axis orientation measurement has a time-varying offset. In order to measure the absolute axis orientation, we add a calibration path which dynamically provides the arbitrary offset to be subtracted from the relative axis orientation values. The axis orientation on the normal plane is the 2D projection of the fiber direction in 3D space. We propose to characterize the axis orientation in different planes (xy, xy' and x'y planes) by using normal and angled illuminations. This allows calculation of the polar angle that completes the orientation information in 3D. Polarization-based optical systems relying on one illumination angle measure the "apparent birefringence" that light encounters rather than the "true birefringence". Birefringence as a measure of anisotropy is quantified with the orientation information in 3D. The method and validation with a biological tissue are presented. The study can facilitate imaging and mapping the structural connections in anisotropic tissues including the brain.

  13. A new look at spotlight mode synthetic aperture radar as tomography: imaging 3-D targets.

    PubMed

    Jakowatz, C V; Thompson, P A

    1995-01-01

    A new 3D tomographic formulation of spotlight mode synthetic aperture radar (SAR) is developed. This extends the pioneering work of Munson et al. (1983), who first formally described SAR in terms of tomography but who made the simplifying assumption that the target scene was 2D. The present authors treat the more general and practical case in which the radar target reflectivities comprise a 3D function. The main goal is to demonstrate that the demodulated radar return data from a spotlight mode collection represent a certain set of samples of the 3D Fourier transform of the target reflectivity function and to do so using a tomographic paradigm instead of traditional range-Doppler analysis. They also show that the tomographic approach is useful in interpreting the reconstructed 2D SAR image corresponding to a 3D scene. Specifically, the well-known SAR phenomenon of layover is easily explained in terms of tomographic projections and is shown to be analogous to the projection effect in conventional optical imaging. PMID:18290021

  14. A fast rebinning algorithm for 3D positron emission tomography using John's equation

    NASA Astrophysics Data System (ADS)

    Defrise, Michel; Liu, Xuan

    1999-08-01

    Volume imaging in positron emission tomography (PET) requires the inversion of the three-dimensional (3D) x-ray transform. The usual solution to this problem is based on 3D filtered-backprojection (FBP), but is slow. Alternative methods have been proposed which factor the 3D data into independent 2D data sets corresponding to the 2D Radon transforms of a stack of parallel slices. Each slice is then reconstructed using 2D FBP. These so-called rebinning methods are numerically efficient but are approximate. In this paper a new exact rebinning method is derived by exploiting the fact that the 3D x-ray transform of a function is the solution to the second-order partial differential equation first studied by John. The method is proposed for two sampling schemes, one corresponding to a pair of infinite plane detectors and another one corresponding to a cylindrical multi-ring PET scanner. The new FORE-J algorithm has been implemented for this latter geometry and was compared with the approximate Fourier rebinning algorithm FORE and with another exact rebinning algorithm, FOREX. Results with simulated data demonstrate a significant improvement in accuracy compared to FORE, while the reconstruction time is doubled. Compared to FOREX, the FORE-J algorithm is slightly less accurate but more than three times faster.

  15. Parametric estimation of 3D tubular structures for diffuse optical tomography

    PubMed Central

    Larusson, Fridrik; Anderson, Pamela G.; Rosenberg, Elizabeth; Kilmer, Misha E.; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L.

    2013-01-01

    We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction. PMID:23411913

  16. Modeling the Coast Mountains Batholith, British Columbia, Canada with 3D Seismic Tomography

    NASA Astrophysics Data System (ADS)

    Quinonez, S. M.; Olaya, J. C.; Miller, K. C.; Romero, R.; Velasco, A. A.; Harder, S. H.; Cerda, I.

    2011-12-01

    The Coast Mountains Batholith on the west coast of British Columbia, Canada comprises a series of granitic to tonalitic plutons; where felsic continental crust is generated from the subduction of mafic oceanic crust by partial melting and fractionation, leaving ultra-mafic roots. In July of 2009, a large controlled-source experiment was conducted along a 400km east - west transect from Bella Bella into central British Columbia. Student volunteers from multiple universities deployed 1,800 one-component and 200 three-component geophones plus 2400 Texan data recorders with 200-m spacing intervals and shot spacing at 30-km. The 18-point sources ranged from 160 to 1,000 kg of high explosive. The geoscience component of the NSF-funded Cyber-ShARE project at UTEP focuses on fusing models developed from different data sets to develop 3-D Earth models. Created in 2007, the Cyber-ShARE Center brings together experts in computer science, computational mathematics, education, earth science, and environmental science. We leverage the Cyber-ShARE work to implement an enhanced 3-D finite difference tomography approach for P-wave delays times (Hole, 1992) with a graphical user interface and visualization framework. In particular, to account for model sensitivity to picked P-wave arrival times, we use a model fusion approach (Ochoa et al., 2010) to generate a model with the lowest RMS residual that a combination of a set of Monte Carlo sample models. In order to make the seismic tomography process more interactive at many points, visualizations of model perturbation at each iteration will help to troubleshoot when a model is not converging to highlight where the RMS residual values are the highest to pinpoint where changes need to be made to achieve model convergence. Finally, a model of the upper mantle using 3-D P-wave tomography will be made to determine the location of these ultra-mafic roots.

  17. In vivo bioluminescence tomography based on multi-view projection and 3D surface reconstruction

    NASA Astrophysics Data System (ADS)

    Zhang, Shuang; Wang, Kun; Leng, Chengcai; Deng, Kexin; Hu, Yifang; Tian, Jie

    2015-03-01

    Bioluminescence tomography (BLT) is a powerful optical molecular imaging modality, which enables non-invasive realtime in vivo imaging as well as 3D quantitative analysis in preclinical studies. In order to solve the inverse problem and reconstruct inner light sources accurately, the prior structural information is commonly necessary and obtained from computed tomography or magnetic resonance imaging. This strategy requires expensive hybrid imaging system, complicated operation protocol and possible involvement of ionizing radiation. The overall robustness highly depends on the fusion accuracy between the optical and structural information. In this study we present a pure optical bioluminescence tomographic system (POBTS) and a novel BLT method based on multi-view projection acquisition and 3D surface reconstruction. The POBTS acquired a sparse set of white light surface images and bioluminescent images of a mouse. Then the white light images were applied to an approximate surface model to generate a high quality textured 3D surface reconstruction of the mouse. After that we integrated multi-view luminescent images based on the previous reconstruction, and applied an algorithm to calibrate and quantify the surface luminescent flux in 3D.Finally, the internal bioluminescence source reconstruction was achieved with this prior information. A BALB/C mouse with breast tumor of 4T1-fLuc cells mouse model were used to evaluate the performance of the new system and technique. Compared with the conventional hybrid optical-CT approach using the same inverse reconstruction method, the reconstruction accuracy of this technique was improved. The distance error between the actual and reconstructed internal source was decreased by 0.184 mm.

  18. 3D structure of eukaryotic flagella in a quiescent state revealed by cryo-electron tomography

    PubMed Central

    Nicastro, Daniela; McIntosh, J. Richard; Baumeister, Wolfgang

    2005-01-01

    We have used cryo-electron tomography to investigate the 3D structure and macromolecular organization of intact, frozen-hydrated sea urchin sperm flagella in a quiescent state. The tomographic reconstructions provide information at a resolution better than 6 nm about the in situ arrangements of macromolecules that are key for flagellar motility. We have visualized the heptameric rings of the motor domains in the outer dynein arm complex and determined that they lie parallel to the plane that contains the axes of neighboring flagellar microtubules. Both the material associated with the central pair of microtubules and the radial spokes display a plane of symmetry that helps to explain the planar beat pattern of these flagella. Cryo-electron tomography has proven to be a powerful technique for helping us understand the relationships between flagellar structure and function and the design of macromolecular machines in situ. PMID:16246999

  19. A computerized tomography study of the morphological interrelationship between the temporal bones and the craniofacial complex

    PubMed Central

    Costa, Helder Nunes; Slavicek, Rudolf; Sato, Sadao

    2012-01-01

    The hypothesis that the temporal bones are at the center of the dynamics of the craniofacial complex, directly influencing facial morphology, has been put forward long ago. This study examines the role of the spatial positioning of temporal bones (frontal and sagittal inclination) in terms of influencing overall facial morphology. Several 3D linear, angular and orthogonal measurements obtained through computerized analysis of virtual models of 163 modern human skulls reconstructed from cone-beam computed tomography images were analyzed and correlated. Additionally, the sample was divided into two subgroups based on the median value of temporal bone sagittal inclination [anterior rotation group (n = 82); posterior rotation group (n = 81)], and differences between groups evaluated. Correlation coefficients showed that sagittal inclination of the temporal bone was significantly (P < 0.01) related to midline flexion, transversal width and anterior–posterior length of the basicranium, to the anterior–posterior positioning of the mandible and maxilla, and posterior midfacial height. Frontal inclination of the temporal bone was significantly related (P < 0.01) to basicranium anterior–posterior and transversal dimensions, and to posterior midfacial height. In comparison with the posterior rotation group, the anterior rotation group presented a less flexed and anterior–posteriorly longer cranial base, a narrower skull, porion and the articular eminence located more superiorly and posteriorly, a shorter posterior midfacial height, the palatal plane rotated clockwise, a more retrognathic maxilla and mandible, and the upper posterior occlusal plane more inclined and posteriorly located. The results suggest that differences in craniofacial morphology are highly integrated with differences in the positional relationship of the temporal bones. The sagittal inclination of the temporal bone seems to have a greater impact on the 3D morphology of the craniofacial complex than

  20. Electrical impedance tomography in 3D using two electrode planes: characterization and evaluation.

    PubMed

    Wagenaar, Justin; Adler, Andy

    2016-06-01

    Electrical impedance tomography (EIT) uses body surface electrical stimulation and measurements to create conductivity images; it shows promise as a non-invasive technology to monitor the distribution of lung ventilation. Most applications of EIT have placed electrodes in a 2D ring around the thorax, and thus produced 2D cross-sectional images. These images are unable to distinguish out-of-plane contributions, or to image volumetric effects. Volumetric EIT can be calculated using multiple electrode planes and a 3D reconstruction algorithm. However, while 3D reconstruction algorithms are available, little has been done to understand the performance of 3D EIT in terms of the measurement configurations available. The goal of this paper is to characterize the phantom and in vivo performance of 3D EIT with two electrode planes. First, phantom measurements are used to measure the reconstruction characteristics of seven stimulation and measurement configurations. Measurements were then performed on eight healthy volunteers as a function of body posture, postures, and with various electrode configurations. Phantom results indicate that 3D EIT using two rings of electrodes provides reasonable resolution in the electrode plane but low vertical resolution. For volunteers, functional EIT images are created from inhalation curve features to analyze the effect of posture (standing, sitting, supine and decline) on regional lung behaviour. An ability to detect vertical changes in lung volume distribution was shown for two electrode configurations. Based on tank and volunteer results, we recommend the use of the 'square' stimulation and measurement pattern for two electrode plane EIT. PMID:27203154

  1. A novel three-dimensional image reconstruction method for near-field coded aperture single photon emission computerized tomography

    PubMed Central

    Mu, Zhiping; Hong, Baoming; Li, Shimin; Liu, Yi-Hwa

    2009-01-01

    Coded aperture imaging for two-dimensional (2D) planar objects has been investigated extensively in the past, whereas little success has been achieved in imaging 3D objects using this technique. In this article, the authors present a novel method of 3D single photon emission computerized tomography (SPECT) reconstruction for near-field coded aperture imaging. Multiangular coded aperture projections are acquired and a stack of 2D images is reconstructed separately from each of the projections. Secondary projections are subsequently generated from the reconstructed image stacks based on the geometry of parallel-hole collimation and the variable magnification of near-field coded aperture imaging. Sinograms of cross-sectional slices of 3D objects are assembled from the secondary projections, and the ordered subset expectation and maximization algorithm is employed to reconstruct the cross-sectional image slices from the sinograms. Experiments were conducted using a customized capillary tube phantom and a micro hot rod phantom. Imaged at approximately 50 cm from the detector, hot rods in the phantom with diameters as small as 2.4 mm could be discerned in the reconstructed SPECT images. These results have demonstrated the feasibility of the authors’ 3D coded aperture image reconstruction algorithm for SPECT, representing an important step in their effort to develop a high sensitivity and high resolution SPECT imaging system. PMID:19544769

  2. 3D optical coherence tomography image registration for guiding cochlear implant insertion

    NASA Astrophysics Data System (ADS)

    Cheon, Gyeong-Woo; Jeong, Hyun-Woo; Chalasani, Preetham; Chien, Wade W.; Iordachita, Iulian; Taylor, Russell; Niparko, John; Kang, Jin U.

    2014-03-01

    In cochlear implant surgery, an electrode array is inserted into the cochlear canal to restore hearing to a person who is profoundly deaf or significantly hearing impaired. One critical part of the procedure is the insertion of the electrode array, which looks like a thin wire, into the cochlear canal. Although X-ray or computed tomography (CT) could be used as a reference to evaluate the pathway of the whole electrode array, there is no way to depict the intra-cochlear canal and basal turn intra-operatively to help guide insertion of the electrode array. Optical coherent tomography (OCT) is a highly effective way of visualizing internal structures of cochlea. Swept source OCT (SSOCT) having center wavelength of 1.3 micron and 2D Galvonometer mirrors was used to achieve 7-mm depth 3-D imaging. Graphics processing unit (GPU), OpenGL, C++ and C# were integrated for real-time volumetric rendering simultaneously. The 3D volume images taken by the OCT system were assembled and registered which could be used to guide a cochlear implant. We performed a feasibility study using both dry and wet temporal bones and the result is presented.

  3. Waveform tomography in 2.5-D to appropriately handle 3-D geometry

    NASA Astrophysics Data System (ADS)

    Smithyman, B.; Clowes, R. M.

    2011-12-01

    In order to improve the tractability of waveform tomography when applied to field data acquired along a crooked-line, we implement 2.5-D forward modeling and inversion. Waveform tomography combines conventional velocity-model building (i.e. tomography) with full-waveform inversion to reconstruct an image of subsurface acoustic velocity. For reasons of computational efficiency, it is desirable to use 2-D full-waveform inversion when processing data acquired with 2-D seismic survey geometry. However, crooked-line acquisition results in a cross-line component of the source-receiver offset that cannot be accounted for by 2-D forward modeling. If the cross-line geometry components are significant, full-waveform inversion may be intractable. To address the latter difficulty, we first apply 3-D traveltime tomography to generate a 2-D cross-sectional initial velocity model by taking a representative average slice through the 3-D model. Then this initial model from traveltime inversion is iteratively updated by 2.5-D full-waveform inversion using a frequency-domain viscoacoustic implementation. The 2.5-D method generates waveform data by combining the solutions of multiple 2-D wave equation components. Each wavefield represents the solution of a modified wave equation in which the cross-line wavenumber takes a value between zero and ~ω/c. The results are combined by inverse Fourier transform in the cross-line coordinate. This produces a synthetic wavefield that is a solution to the 3-D viscoacoustic wave equation in a 2-D velocity model. Consequently, the 2.5-D synthetic wavefield better approximates seismic field data (including crooked-line geometry), when compared to a 2-D synthetic result. Cross-line source-receiver offsets can be accounted for by reconstructing the wavefield out-of-plane with respect to the source. The amplitude and phase of the wavefield are consistent with a 3-D solution in a model that is homogeneous in one direction. The 2-D model is ideally

  4. Registration of 3D ultrasound computer tomography and MRI for evaluation of tissue correspondences

    NASA Astrophysics Data System (ADS)

    Hopp, T.; Dapp, R.; Zapf, M.; Kretzek, E.; Gemmeke, H.; Ruiter, N. V.

    2015-03-01

    3D Ultrasound Computer Tomography (USCT) is a new imaging method for breast cancer diagnosis. In the current state of development it is essential to correlate USCT with a known imaging modality like MRI to evaluate how different tissue types are depicted. Due to different imaging conditions, e.g. with the breast subject to buoyancy in USCT, a direct correlation is demanding. We present a 3D image registration method to reduce positioning differences and allow direct side-by-side comparison of USCT and MRI volumes. It is based on a two-step approach including a buoyancy simulation with a biomechanical model and free form deformations using cubic B-Splines for a surface refinement. Simulation parameters are optimized patient-specifically in a simulated annealing scheme. The method was evaluated with in-vivo datasets resulting in an average registration error below 5mm. Correlating tissue structures can thereby be located in the same or nearby slices in both modalities and three-dimensional non-linear deformations due to the buoyancy are reduced. Image fusion of MRI volumes and USCT sound speed volumes was performed for intuitive display. By applying the registration to data of our first in-vivo study with the KIT 3D USCT, we could correlate several tissue structures in MRI and USCT images and learn how connective tissue, carcinomas and breast implants observed in the MRI are depicted in the USCT imaging modes.

  5. Intraretinal Layer Segmentation of Macular Optical Coherence Tomography Images Using Optimal 3-D Graph Search

    PubMed Central

    Abràmoff, Michael D.; Kardon, Randy; Russell, Stephen R.; Wu, Xiaodong; Sonka, Milan

    2008-01-01

    Current techniques for segmenting macular optical coherence tomography (OCT) images have been 2-D in nature. Furthermore, commercially available OCT systems have only focused on segmenting a single layer of the retina, even though each intraretinal layer may be affected differently by disease. We report an automated approach for segmenting (anisotropic) 3-D macular OCT scans into five layers. Each macular OCT dataset consisted of six linear radial scans centered at the fovea. The six surfaces defining the five layers were identified on each 3-D composite image by transforming the segmentation task into that of finding a minimum-cost closed set in a geometric graph constructed from edge/regional information and a priori determined surface smoothness and interaction constraints. The method was applied to the macular OCT scans of 12 patients (24 3-D composite image datasets) with unilateral anterior ischemic optic neuropathy (AION). Using the average of three experts’ tracings as a reference standard resulted in an overall mean unsigned border positioning error of 6.1 ± 2.9 µm, a result comparable to the interobserver variability (6.9 ± 3.3 µm). Our quantitative analysis of the automated segmentation results from AION subject data revealed that the inner retinal layer thickness for the affected eye was 24.1 µm (21%) smaller on average than for the unaffected eye (P < 0.001), supporting the need for segmenting the layers separately. PMID:18815101

  6. Time-lapse 3D electrical resistivity tomography to monitor soil-plant interactions

    NASA Astrophysics Data System (ADS)

    Boaga, Jacopo; Rossi, Matteo; Cassiani, Giorgio; Putti, Mario

    2013-04-01

    In this work we present the application of time-lapse non-invasive 3D micro- electrical tomography (ERT) to monitor soil-plant interactions in the root zone in the framework of the FP7 Project CLIMB (Climate Induced Changes on the Hydrology of Mediterranean Basins). The goal of the study is to gain a better understanding of the soil-vegetation interactions by the use of non-invasive techniques. We designed, built and installed a 3D electrical tomography apparatus for the monitoring of the root zone of a single apple tree in an orchard located in the Trentino region, Northern Italy. The micro-ERT apparatus consists of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. We collected repeated ERT and TDR soil moisture measurements for one year and performed two different controlled irrigation tests: one during a very dry Summer and one during a very wet and highly dynamic plant growing Spring period. We also ran laboratory analyses on soil specimens, in order to evaluate the electrical response at different saturation steps. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In particular, we note that in very dry conditions, 3D micro ERT can image water plumes in the shallow subsoil produced by a drip irrigation system. In the very dynamic growing season, under abundant irrigation, micro 3D ERT can detect the main suction zones caused by the tree root activity. Even though the quantitative use of this technique for moisture content balance suffers from well-known inversion difficulties, even the pure imaging of the active root zone is a valuable contribution. However the integration of the measurements in a fully coupled hydrogeophysical inversion is the way forward for a better understanding of subsoil interactions between biomass, hydrosphere and atmosphere.

  7. Focusing optics of a parallel beam CCD optical tomography apparatus for 3D radiation gel dosimetry.

    PubMed

    Krstajić, Nikola; Doran, Simon J

    2006-04-21

    Optical tomography of gel dosimeters is a promising and cost-effective avenue for quality control of radiotherapy treatments such as intensity-modulated radiotherapy (IMRT). Systems based on a laser coupled to a photodiode have so far shown the best results within the context of optical scanning of radiosensitive gels, but are very slow ( approximately 9 min per slice) and poorly suited to measurements that require many slices. Here, we describe a fast, three-dimensional (3D) optical computed tomography (optical-CT) apparatus, based on a broad, collimated beam, obtained from a high power LED and detected by a charged coupled detector (CCD). The main advantages of such a system are (i) an acquisition speed approximately two orders of magnitude higher than a laser-based system when 3D data are required, and (ii) a greater simplicity of design. This paper advances our previous work by introducing a new design of focusing optics, which take information from a suitably positioned focal plane and project an image onto the CCD. An analysis of the ray optics is presented, which explains the roles of telecentricity, focusing, acceptance angle and depth-of-field (DOF) in the formation of projections. A discussion of the approximation involved in measuring the line integrals required for filtered backprojection reconstruction is given. Experimental results demonstrate (i) the effect on projections of changing the position of the focal plane of the apparatus, (ii) how to measure the acceptance angle of the optics, and (iii) the ability of the new scanner to image both absorbing and scattering gel phantoms. The quality of reconstructed images is very promising and suggests that the new apparatus may be useful in a clinical setting for fast and accurate 3D dosimetry. PMID:16585845

  8. The Geometry of the Subducting Slabs Beneath the PRVI Microplate Based on 3D Tomography

    NASA Astrophysics Data System (ADS)

    Xu, X.; Keller, G. R.; Holland, A. A.; Keranen, K. M.; Li, H.

    2011-12-01

    The Puerto Rico and the Virgin Islands (PRVI) microplate is located between two subduction zones, with the Puerto Rico trench to the north and the Muertos trough to the south. The Puerto Rico trench is caused by southward-directed subduction of the North American Plate, and the Muertos trough is the northern boundary of the Caribbean Plate. There is no active volcanism on Puerto Rico; however, earthquake depths and seismic tomography imply that the slab of Caribbean plate continues northward beneath Puerto Rico. Puerto Rico overlies these two slabs with extension to both the west (Mona Passage) and southeast (Anacapa Passage). The cause of the extension is unknown, but GPS measurements show that Puerto Rico is experiencing anti-clockwise rotation, and the extension associated with the Anacapa Passage may be produced by this rotation. To the west, it is debated whether the Mona Passage is a boundary between two micro-plates or simple a local rift basin. To address the sources of the extension and the cause of the rotation, we are investigating if the deep structures can be the dynamic source for the observed kinematic movements. We collected data on earthquakes occurring between 2009-2011 in the PRVI region and relocated them using the SEISAN code provided by the Institute of Solid Earth Physics, University of Bergen. The FMTOMO code from Australian National University was used for 3D tomography from P and S wave arrival times. By comparing the relocated epicenters and the 3D tomography results, the subducting slabs were identified. When integrated with the results of previous studies, the geometric model of the slabs is a critical key to understanding the evolution of the PRVI microplate in the past and the future.

  9. Infantile Autism and Computerized Tomography Brain-Scan Findings: Specific versus Nonspecific Abnormalities.

    ERIC Educational Resources Information Center

    Balottin, Umberto; And Others

    1989-01-01

    The study of computerized tomography brain-scan findings with 45 autistic and 19 control subjects concluded that autism is nonspecifically associated with brain-scan abnormalities, and that other nonorganic, as well as organic, factors should be taken into account. (Author/DB)

  10. Differentiation of Calcium Oxalate Monohydrate and Calcium Oxalate Dihydrate Stones Using Quantitative Morphological Information from Micro-Computerized and Clinical Computerized Tomography

    PubMed Central

    Duan, Xinhui; Qu, Mingliang; Wang, Jia; Trevathan, James; Vrtiska, Terri; Williams, James C.; Krambeck, Amy; Lieske, John; McCollough, Cynthia

    2014-01-01

    Purpose We differentiated calcium oxalate monohydrate and calcium oxalate dihydrate kidney stones using micro and clinical computerized tomography images. Materials and Methods A total of 22 calcium oxalate monohydrate and 15 calcium oxalate dihydrate human kidney stones were scanned using a commercial micro-computerized tomography scanner with a pixel size of 7 to 23 μm. Under an institutional review board approved protocol, image data on 10 calcium oxalate monohydrate and 9 calcium oxalate dihydrate stones greater than 5 mm were retrieved from a total of 80 patients who underwent clinical dual energy computerized tomography for clinical indications and had stones available for infrared spectroscopic compositional analysis. Micro and clinical computerized tomography images were processed using in-house software, which quantified stone surface morphology with curvature based calculations. A shape index was generated as a quantitative shape metric to differentiate calcium oxalate monohydrate from calcium oxalate dihydrate stones. Statistical tests were used to test the performance of the shape index. Results On micro-computerized tomography images the shape index of calcium oxalate monohydrate and calcium oxalate dihydrate stones significantly differed (ROC curve AUC 0.92, p <0.0001). At the optimal cutoff sensitivity was 0.93 and specificity was 0.91. On clinical computerized tomography images a significant morphological difference was also detected (p = 0.007). AUC, sensitivity and specificity were 0.90, 1 and 0.73, respectively. Conclusions On micro and clinical computerized tomography images a morphological difference was detectable in calcium oxalate monohydrate and calcium oxalate dihydrate stones larger than 5 mm. The shape index is a highly promising method that can distinguish calcium oxalate monohydrate and calcium oxalate dihydrate stones with reasonable accuracy. PMID:23142201

  11. 3D Full Seismic Waveform Tomography of NW Turkey and Surroundings

    NASA Astrophysics Data System (ADS)

    Cubuk, Yesim; Fichtner, Andreas; Taymaz, Tuncay

    2015-04-01

    Northward collision of the Arabian plate with the Eurasian plate, and interaction of the motion between dynamic processes originated from the subduction of the African plate beneath the Aegean generated very complex tectonic structures in the study region. Western Turkey is among one of the most active extensional regions in the world and the study area is mainly located where the extensional Aegean and the right-lateral strike-slip North Anatolian Fault Zone (NAFZ) intersects. Therefore, the tectonic framework of the NW Turkey and the Marmara region is mainly characterized by the transition between the strike-slip tectonics to the extensional tectonics. The Sea of Marmara region has been subjected to several active and passive seismic investigations, nevertheless the accurate knowledge on the heterogeneity in the crust and upper mantle beneath the study area still remains enigmatic. On small-scale tomography problems, seismograms strongly reflect the effects of heterogeneities and the scattering properties of the Earth. Thus, the knowledge of high-resolution seismic imaging with an improved 3D radially anisotropic crustal model of the NW Turkey will enable better localization of earthquakes, identification of faults as well as the improvement of the seismic hazard assessment. For this purpose, we aim to develop 3D radially anisotropic subsurface structure of the Sea of Marmara and NW Turkey crust based on full waveform adjoint tomography method. The earthquake data were principally obtained from the Kandilli Observatory and Earthquake Research Institute (KOERI) and Earthquake Research Center (AFAD-DAD) database. In addition to this, some of the seismic waveform data extracted from the Hellenic Unified Seismic Network (HUSN) stations that are located within our study region were also used in this study. We have selected and simulated waveforms of earthquakes with magnitudes 4.0 ≤ Mw ≤ 6.7 occurred in the period between 2007-2014 to determine the 3D velocity

  12. Direct ambient noise tomography for 3-D near surface shear velocity structure: methodology and applications

    NASA Astrophysics Data System (ADS)

    Yao, H.; Fang, H.; Li, C.; Liu, Y.; Zhang, H.; van der Hilst, R. D.; Huang, Y. C.

    2014-12-01

    Ambient noise tomography has provided essential constraints on crustal and uppermost mantle shear velocity structure in global seismology. Recent studies demonstrate that high frequency (e.g., ~ 1 Hz) surface waves between receivers at short distances can be successfully retrieved from ambient noise cross-correlation and then be used for imaging near surface or shallow crustal shear velocity structures. This approach provides important information for strong ground motion prediction in seismically active area and overburden structure characterization in oil and gas fields. Here we propose a new tomographic method to invert all surface wave dispersion data for 3-D variations of shear wavespeed without the intermediate step of phase or group velocity maps.The method uses frequency-dependent propagation paths and a wavelet-based sparsity-constrained tomographic inversion. A fast marching method is used to compute, at each period, surface wave traveltimes and ray paths between sources and receivers. This avoids the assumption of great-circle propagation that is used in most surface wave tomographic studies, but which is not appropriate in complex media. The wavelet coefficients of the velocity model are estimated with an iteratively reweighted least squares (IRLS) algorithm, and upon iterations the surface wave ray paths and the data sensitivity matrix are updated from the newly obtained velocity model. We apply this new method to determine the 3-D near surface wavespeed variations in the Taipei basin of Taiwan, Hefei urban area and a shale and gas production field in China using the high-frequency interstation Rayleigh wave dispersion data extracted from ambient noisecross-correlation. The results reveal strong effects of off-great-circle propagation of high-frequency surface waves in these regions with above 30% shear wavespeed variations. The proposed approach is more efficient and robust than the traditional two-step surface wave tomography for imaging complex

  13. The crustal and mantle velocity structure in central Asia from 3D traveltime tomography

    NASA Astrophysics Data System (ADS)

    Sun, Y.; Martin, R. V.; Toksoz, M. N.; Pei, S.

    2010-12-01

    The lithospheric structure in central Asia features large blocks such as the Indian plate, the Afghan block, the Turan plate, and the Tarim block. This geologically and tectonically complicated area is also one of the most seismically active regions in the world. We developed P- and S- wave velocity structures of the central Asia in the crust using the traveltime data from Kyrgyzstan, Tajikistan, Kazakhstan, and Uzbek. We chose the events and stations between 32N65E and 45N85E and focused on the areas of Pamir and western Tianshan. In this data set, there are more than 6000 P and S arrivals received at 80 stations from about 300 events. The double difference tomography is applied to relocate events and to invert for seismic structures simultaneously. Our results provide accurate locations of earthquakes and high resolution crustal structure in this region. To extend the model deeper into the mantle through the upper mantle transition zone, ISC/EHB data for P and PP phases are combined with the ABCE data. To counteract the “smearing effect,” the crust and upper mantle velocity structure, derived from regional travel-times, is used. An adaptive grid method based on ray density is used in the inversion. A P-wave velocity model extending down to a depth of 2000 km is obtained. regional-teleseismic tomography provides a high-resolution, 3-D P-wave velocity model for the crust, upper mantle, and the transition zone. The crustal models correlate well with geologic and tectonic features. The upper mantle tomograms show the images of Tian Shan. The slab geometry is quite complex, reflecting the history of the changes in the plate motions and collision processes. Vp/Vs tomography was also determined in the study region, and an attenuation tomography was obtained as well.

  14. 3D visualization of tissue microstructures using optical coherence tomography needle probes

    NASA Astrophysics Data System (ADS)

    Kirk, Rodney W.; McLaughlin, Robert A.; Quirk, Bryden C.; Curatolo, Andrea; Sampson, David D.

    2011-05-01

    Optical coherence tomography (OCT) needle probes use miniaturized focusing optics encased in a hypodermic needle. Needle probes can scan areas of the body that are too deep to be imaged by other OCT systems. This paper presents an OCT needle probe-based system that is capable of acquiring three-dimensional scans of tissue structures. The needle can be guided to a target area and scans acquired by rotating and pulling-back the probe. The system is demonstrated using ex vivo human lymph node and sheep lung samples. Multiplanar reconstructions are shown of both samples, as well as the first published 3D volume rendering of lung tissue acquired with an OCT needle probe.

  15. 3D mapping of nanoscale electric potentials in semiconductor structures using electron-holographic tomography

    NASA Astrophysics Data System (ADS)

    Wolf, Daniel; Lubk, Axel; Prete, Paola; Lovergine, Nico; Lichte, Hannes

    2016-09-01

    Off-axis electron holography (EH) is a powerful method for mapping projected electric potentials, such as built-in potentials in semiconductor devices, in two dimensions (2D) at nanometer resolution. However, not well-defined thickness profiles, surface effects, and composition changes of the sample under investigation complicate the interpretation of the projected potentials. Here, we demonstrate how these problems can be overcome by combining EH with tomographic techniques, that is, electron holographic tomography (EHT), reconstructing electric potentials in 3D. We present EHT reconstructions of an n-type MOSFET including its dopant-related built-in potentials inside the device, as well as of a GaAs/AlGaAs core-multishell nanowire containing a 5 nm thick quantum well tube.

  16. A review of automated image understanding within 3D baggage computed tomography security screening.

    PubMed

    Mouton, Andre; Breckon, Toby P

    2015-01-01

    Baggage inspection is the principal safeguard against the transportation of prohibited and potentially dangerous materials at airport security checkpoints. Although traditionally performed by 2D X-ray based scanning, increasingly stringent security regulations have led to a growing demand for more advanced imaging technologies. The role of X-ray Computed Tomography is thus rapidly expanding beyond the traditional materials-based detection of explosives. The development of computer vision and image processing techniques for the automated understanding of 3D baggage-CT imagery is however, complicated by poor image resolutions, image clutter and high levels of noise and artefacts. We discuss the recent and most pertinent advancements and identify topics for future research within the challenging domain of automated image understanding for baggage security screening CT. PMID:26409422

  17. 3D imaging using combined neutron-photon fan-beam tomography: A Monte Carlo study.

    PubMed

    Hartman, J; Yazdanpanah, A Pour; Barzilov, A; Regentova, E

    2016-05-01

    The application of combined neutron-photon tomography for 3D imaging is examined using MCNP5 simulations for objects of simple shapes and different materials. Two-dimensional transmission projections were simulated for fan-beam scans using 2.5MeV deuterium-deuterium and 14MeV deuterium-tritium neutron sources, and high-energy X-ray sources, such as 1MeV, 6MeV and 9MeV. Photons enable assessment of electron density and related mass density, neutrons aid in estimating the product of density and material-specific microscopic cross section- the ratio between the two provides the composition, while CT allows shape evaluation. Using a developed imaging technique, objects and their material compositions have been visualized. PMID:26953978

  18. Optoacoustic 3D whole-body tomography: experiments in nude mice

    NASA Astrophysics Data System (ADS)

    Brecht, Hans-Peter; Su, Richard; Fronheiser, Matt; Ermilov, Sergey A.; Conjusteau, André; Liopo, Anton; Motamedi, Massoud; Oraevsky, Alexander A.

    2009-02-01

    We developed a 3D whole-body optoacoustic tomography system for applications in preclinical research on mice. The system is capable of generating images with resolution better than 0.6 mm. Two pulsed lasers, an Alexandrite laser operating at 755 nm and a Nd:YAG laser operating at 532 nm and 1064nm were used for light delivery. The tomographic images were obtained while the objects of study (phantoms or mice) were rotated within a sphere outlined by a concave arc-shaped array of 64 piezo-composite transducers. During the scan, the mouse was illuminated orthogonally to the array with two wide beams of light from a bifurcated fiber bundle. Illumination at 532 nm showed superficial vasculature, but limited penetration depth at this wavelength prevented the detection of deeper structures. Illumination at 755 and 1064 nm showed organs and blood vessels, respectively. Filtering of the optoacoustic signals using high frequency enhancing wavelets further emphasized the smaller blood vessels.

  19. Optical projection tomography as a tool for 3D imaging of hydrogels

    PubMed Central

    Figueiras, Edite; Soto, Ana M.; Jesus, Danilo; Lehti, M.; Koivisto, J.; Parraga, J. E.; Silva-Correia, J.; Oliveira, J. M.; Reis, R. L.; Kellomäki, M.; Hyttinen, J.

    2014-01-01

    An Optical Projection Tomography (OPT) system was developed and optimized to image 3D tissue engineered products based in hydrogels. We develop pre-reconstruction algorithms to get the best result from the reconstruction procedure, which include correction of the illumination and determination of sample center of rotation (CoR). Existing methods for CoR determination based on the detection of the maximum variance of reconstructed slices failed, so we develop a new CoR search method based in the detection of the variance sharpest local maximum. We show the capabilities of the system to give quantitative information of different types of hydrogels that may be useful in its characterization. PMID:25360363

  20. Array tomography: characterizing FAC-sorted populations of zebrafish immune cells by their 3D ultrastructure

    PubMed Central

    Wacker, Irene; Chockley, Peter; Bartels, Carolin; Spomer, Waldemar; Hofmann, Andreas; Gengenbach, Ulrich; Singh, Sachin; Thaler, Marlene; Grabher, Clemens; SCHRÖDER, RASMUS R

    2015-01-01

    For 3D reconstructions of whole immune cells from zebrafish, isolated from adult animals by FAC-sorting we employed array tomography on hundreds of serial sections deposited on silicon wafers. Image stacks were either recorded manually or automatically with the newly released ZEISS Atlas 5 Array Tomography platform on a Zeiss FEGSEM. To characterize different populations of immune cells, organelle inventories were created by segmenting individual cells. In addition, arrays were used for quantification of cell populations with respect to the various cell types they contained. The detection of immunological synapses in cocultures of cell populations from thymus or WKM with cancer cells helped to identify the cytotoxic nature of these cells. Our results demonstrate the practicality and benefit of AT for high-throughput ultrastructural imaging of substantial volumes. Lay Description To look at immune cells from zebrafish we employed array tomography, a technique where arrays of serial sections deposited on solid substrates are used for imaging. Cell populations were isolated from the different organs of zebrafish involved in haematopoiesis, the production of blood cells. They were chemically fixed and centrifuged to concentrate them in a pellet that was then dehydrated and embedded in resin. Using a custom-built handling device it was possible to place hundreds of serial sections on silicon wafers as well ordered arrays. To image a whole cell at a resolution that would allow identifying all the organelles (i.e. compartments surrounded by membranes) inside the cell, stacks of usually 50–100 images were recorded in a scanning electron microscope (SEM). This recording was either done manually or automatically using the newly released Atlas Array Tomography platform on a ZEISS SEM. For the imaging of the sections a pixel size of about 5 nm was chosen, which defines membrane boundaries very well and allows segmentation of the membrane topology. After alignment of the

  1. 3D robust Chan-Vese model for industrial computed tomography volume data segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Linghui; Zeng, Li; Luan, Xiao

    2013-11-01

    Industrial computed tomography (CT) has been widely applied in many areas of non-destructive testing (NDT) and non-destructive evaluation (NDE). In practice, CT volume data to be dealt with may be corrupted by noise. This paper addresses the segmentation of noisy industrial CT volume data. Motivated by the research on the Chan-Vese (CV) model, we present a region-based active contour model that draws upon intensity information in local regions with a controllable scale. In the presence of noise, a local energy is firstly defined according to the intensity difference within a local neighborhood. Then a global energy is defined to integrate local energy with respect to all image points. In a level set formulation, this energy is represented by a variational level set function, where a surface evolution equation is derived for energy minimization. Comparative analysis with the CV model indicates the comparable performance of the 3D robust Chan-Vese (RCV) model. The quantitative evaluation also shows the segmentation accuracy of 3D RCV. In addition, the efficiency of our approach is validated under several types of noise, such as Poisson noise, Gaussian noise, salt-and-pepper noise and speckle noise.

  2. 3D modeling for solving forward model of no-contact fluorescence diffuse optical tomography method

    NASA Astrophysics Data System (ADS)

    Nouizi, F.; Chabrier, R.; Torregrossa, M.; Poulet, P.

    2009-07-01

    This paper presents detailed computational aspects of a new 3D modeling for solving the direct problem in a no-contact time-resolved Fluorescent Diffuse Optical Tomography (FDOT) method that rely on near-infrared scattered and fluorescent photons to image the optical properties and distribution of fluorescent probes in small laboratory animals. An optical scanner allowing performing in-vivo measurements in no-contact scheme was built in our laboratory and is presented. We use the three-dimensional Finite Element Method (FEM) to solve the coupled diffusion equations of excitation and fluorescence photons in highly scattering objects. The computed results allowed yielding photon density maps and the temporal profiles of photons on the surface of the small animal. Our 3D modeling of propagation of photons in the void space between the surface of the object and the detectors allows calculating the quantity of photons reaching the optodes. Simulations were carried-out on two test objects: a resin cylinder and a mouse phantom. The results demonstrate the potential applications of the method to pre-clinical imaging.

  3. A novel 3D absorption correction method for quantitative EDX-STEM tomography.

    PubMed

    Burdet, Pierre; Saghi, Z; Filippin, A N; Borrás, A; Midgley, P A

    2016-01-01

    This paper presents a novel 3D method to correct for absorption in energy dispersive X-ray (EDX) microanalysis of heterogeneous samples of unknown structure and composition. By using STEM-based tomography coupled with EDX, an initial 3D reconstruction is used to extract the location of generated X-rays as well as the X-ray path through the sample to the surface. The absorption correction needed to retrieve the generated X-ray intensity is then calculated voxel-by-voxel estimating the different compositions encountered by the X-ray. The method is applied to a core/shell nanowire containing carbon and oxygen, two elements generating highly absorbed low energy X-rays. Absorption is shown to cause major reconstruction artefacts, in the form of an incomplete recovery of the oxide and an erroneous presence of carbon in the shell. By applying the correction method, these artefacts are greatly reduced. The accuracy of the method is assessed using reference X-ray lines with low absorption. PMID:26484792

  4. Representing geometric structures in 3D tomography soil images: Application to pore-space modeling

    NASA Astrophysics Data System (ADS)

    Monga, Olivier; Ndeye Ngom, Fatou; François Delerue, Jean

    2007-09-01

    Only in the last decade have geoscientists started to use 3D computed tomography (CT) images of soil for better understanding and modeling of soil properties. In this paper, we propose one of the first approaches to allow the definition and computation of stable (intrinsic) geometric representations of structures in 3D CT soil images. This addresses the open problem set by the description of volume shapes from discrete traces without any a priori information. The basic concept involves representing the volume shape by a piecewise approximation using simple volume primitives (bowls, cylinders, cones, etc.). This typical representation is assumed to optimize a criterion ensuring its stability. This criterion includes the representation scale, which characterizes the trade-off between the fitting error and the number of patches. We also take into account the preservation of topological properties of the initial shape: the number of connected components, adjacency relationships, etc. We propose an efficient computation method for this piecewise approximation using cylinders or bowls. For cylinders, we use optimal region growing in a valuated adjacency graph that represents the primitives and their adjacency relationships. For bowls, we compute a minimal set of Delaunay spheres recovering the skeleton. Our method is applied to modeling of a coarse pore space extracted from 3D CT soil images. The piecewise bowls approximation gives a geometric formalism corresponding to the intuitive notion of pores and also an efficient way to compute it. This geometric and topological representation of coarse pore space can be used, for instance, to simulate biological activity in soil.

  5. Regional application of multi-layer artificial neural networks in 3-D ionosphere tomography

    NASA Astrophysics Data System (ADS)

    Ghaffari Razin, Mir Reza; Voosoghi, Behzad

    2016-08-01

    Tomography is a very cost-effective method to study physical properties of the ionosphere. In this paper, residual minimization training neural network (RMTNN) is used in voxel-based tomography to reconstruct of 3-D ionosphere electron density with high spatial resolution. For numerical experiments, observations collected at 37 GPS stations from Iranian permanent GPS network (IPGN) are used. A smoothed TEC approach was used for absolute STEC recovery. To improve the vertical resolution, empirical orthogonal functions (EOFs) obtained from international reference ionosphere 2012 (IRI-2012) used as object function in training neural network. Ionosonde observations is used for validate reliability of the proposed method. Minimum relative error for RMTNN is 1.64% and maximum relative error is 15.61%. Also root mean square error (RMSE) of 0.17 × 1011 (electrons/m3) is computed for RMTNN which is less than RMSE of IRI2012. The results show that RMTNN has higher accuracy and compiles speed than other ionosphere reconstruction methods.

  6. 3D imaging of dental hard tissues with Fourier domain optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Chen, Yueli L.; Yang, Yi; Ma, Jing; Yan, Jun; Shou, Yuanxin; Wang, Tianheng; Ramesh, Aruna; Zhao, Jing; Zhu, Quing

    2011-03-01

    A fiber optical coherence tomography (OCT) probe is used for three dimensional dental imaging. The probe has a lightweight miniaturized design with a size of a pen to facilitate clinic in vivo diagnostics. The probe is interfaced with a swept-source / Fourier domain optical coherence tomography at 20K axial scanning rate. The tooth samples were scanned from occlusal, buccal, lingual, mesial, and distal orientations. Three dimensional imaging covers tooth surface area up to 10 mm x 10 mm with a depth about 5 mm, where a majority of caries affection occurs. OCT image provides better resolution and contrast compared to gold standard dental radiography (X-ray). In particular, the technology is well suited for occlusal caries detection. This is complementary to X-ray as occlusal caries affection is difficult to be detected due to the X-ray projectile scan geometry. The 3D topology of occlusal surface as well as the dentin-enamel junction (DEJ) surface inside the tooth can be visualized. The lesion area appears with much stronger back scattering signal intensity.

  7. Analysis of bite marks in foodstuffs by computer tomography (cone beam CT)--3D reconstruction.

    PubMed

    Marques, Jeidson; Musse, Jamilly; Caetano, Catarina; Corte-Real, Francisco; Corte-Real, Ana Teresa

    2013-12-01

    The use of three-dimensional (3D) analysis of forensic evidence is highlighted in comparison with traditional methods. This three-dimensional analysis is based on the registration of the surface from a bitten object. The authors propose to use Cone Beam Computed Tomography (CBCT), which is used in dental practice, in order to study the surface and interior of bitten objects and dental casts of suspects. In this study, CBCT is applied to the analysis of bite marks in foodstuffs, which may be found in a forensic case scenario. 6 different types of foodstuffs were used: chocolate, cheese, apple, chewing gum, pizza and tart (flaky pastry and custard). The food was bitten into and dental casts of the possible suspects were made. The dental casts and bitten objects were registered using an x-ray source and the CBCT equipment iCAT® (Pennsylvania, EUA). The software InVivo5® (Anatomage Inc, EUA) was used to visualize and analyze the tomographic slices and 3D reconstructions of the objects. For each material an estimate of its density was assessed by two methods: HU values and specific gravity. All the used materials were successfully reconstructed as good quality 3D images. The relative densities of the materials in study were compared. Amongst the foodstuffs, the chocolate had the highest density (median value 100.5 HU and 1,36 g/cm(3)), while the pizza showed to have the lowest (median value -775 HU and 0,39 g/cm(3)), on both scales. Through tomographic slices and three-dimensional reconstructions it was possible to perform the metric analysis of the bite marks in all the foodstuffs, except for the pizza. These measurements could also be obtained from the dental casts. The depth of the bite mark was also successfully determined in all the foodstuffs except for the pizza. Cone Beam Computed Tomography has the potential to become an important tool for forensic sciences, namely for the registration and analysis of bite marks in foodstuffs that may be found in a crime

  8. 3D investigation of inclusions in diamonds using X-ray micro-tomography

    NASA Astrophysics Data System (ADS)

    Parisatto, M.; Nestola, F.; Artioli, G.; Nimis, P.; Harris, J. W.; Kopylova, M.; Pearson, G. D.

    2012-04-01

    The study of mineral inclusions in diamonds is providing invaluable insights into the geochemistry, geodynamics and geophysics of the Earth's mantle. Over the last two decades, the identification of different inclusion assemblages allowed to recognize diamonds deriving from the deep upper mantle, the transition zone and even the lower mantle. In such research field the in-situ investigation of inclusions using non-destructive techniques is often essential but still remains a challenging task. In particular, conventional 2D imaging techniques (e.g. SEM) are limited to the investigation of surfaces and the lack of access to the third dimension represents a major limitation when trying to extract quantitative information. Another critical aspect is related to sample preparation (cutting, polishing) which is typically very invasive. Nowadays, X-ray computed micro-tomography (X-μCT) allows to overcome such limitations, enabling the internal microstructure of totally undisturbed samples to be visualized in a three-dimensional (3D) manner at the sub-micrometric scale. The final output of a micro-tomography experiment is a greyvalue 3D map of the variations of the X-ray attenuation coefficient (µ) within the studied object. The high X-ray absorption contrast between diamond (almost transparent to X-rays) and the typical inclusion-forming minerals (olivines, garnets, pyroxenes, oxides and sulphides) makes X-μCT a straightforward method for the 3D visualization of inclusions and for the study of their spatial relationships with the diamond host. In this work we applied microfocus X-μCT to investigate silicate inclusions still trapped in diamonds, in order to obtain in-situ information on their exact position, crystal size, shape and X-ray absorption coefficient (which is related to their composition). We selected diamond samples from different deposits containing mainly olivine and garnet inclusions. The investigated samples derived from the Udachnaya pipe (Siberia

  9. Imaging results of multi-modal ultrasound computerized tomography system designed for breast diagnosis.

    PubMed

    Opieliński, Krzysztof J; Pruchnicki, Piotr; Gudra, Tadeusz; Podgórski, Przemysław; Kurcz, Jacek; Kraśnicki, Tomasz; Sąsiadek, Marek; Majewski, Jarosław

    2015-12-01

    Nowadays, in the era of common computerization, transmission and reflection methods are intensively developed in addition to improving classical ultrasound methods (US) for imaging of tissue structure, in particular ultrasound transmission tomography UTT (analogous to computed tomography CT which uses X-rays) and reflection tomography URT (based on the synthetic aperture method used in radar imaging techniques). This paper presents and analyses the results of ultrasound transmission tomography imaging of the internal structure of the female breast biopsy phantom CIRS Model 052A and the results of the ultrasound reflection tomography imaging of a wire sample. Imaging was performed using a multi-modal ultrasound computerized tomography system developed with the participation of a private investor. The results were compared with the results of imaging obtained using dual energy CT, MR mammography and conventional US method. The obtained results indicate that the developed UTT and URT methods, after the acceleration of the scanning process, thus enabling in vivo examination, may be successfully used for detection and detailed characterization of breast lesions in women. PMID:25759234

  10. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map

    PubMed Central

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D.; Sonka, Milan

    2013-01-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively. PMID:23837966

  11. Real-time 3D Fourier-domain optical coherence tomography guided microvascular anastomosis

    NASA Astrophysics Data System (ADS)

    Huang, Yong; Ibrahim, Zuhaib; Lee, W. P. A.; Brandacher, Gerald; Kang, Jin U.

    2013-03-01

    Vascular and microvascular anastomosis is considered to be the foundation of plastic and reconstructive surgery, hand surgery, transplant surgery, vascular surgery and cardiac surgery. In the last two decades innovative techniques, such as vascular coupling devices, thermo-reversible poloxamers and suture-less cuff have been introduced. Intra-operative surgical guidance using a surgical imaging modality that provides in-depth view and 3D imaging can improve outcome following both conventional and innovative anastomosis techniques. Optical coherence tomography (OCT) is a noninvasive high-resolution (micron level), high-speed, 3D imaging modality that has been adopted widely in biomedical and clinical applications. In this work we performed a proof-of-concept evaluation study of OCT as an assisted intraoperative and post-operative imaging modality for microvascular anastomosis of rodent femoral vessels. The OCT imaging modality provided lateral resolution of 12 μm and 3.0 μm axial resolution in air and 0.27 volume/s imaging speed, which could provide the surgeon with clearly visualized vessel lumen wall and suture needle position relative to the vessel during intraoperative imaging. Graphics processing unit (GPU) accelerated phase-resolved Doppler OCT (PRDOCT) imaging of the surgical site was performed as a post-operative evaluation of the anastomosed vessels and to visualize the blood flow and thrombus formation. This information could help surgeons improve surgical precision in this highly challenging anastomosis of rodent vessels with diameter less than 0.5 mm. Our imaging modality could not only detect accidental suture through the back wall of lumen but also promptly diagnose and predict thrombosis immediately after reperfusion. Hence, real-time OCT can assist in decision-making process intra-operatively and avoid post-operative complications.

  12. Towards the Next Generation Upper-Mantle 3D Anelastic Tomography

    NASA Astrophysics Data System (ADS)

    Karaoglu, H.; Romanowicz, B. A.

    2015-12-01

    In order to distinguish the thermal and compositional heterogeneities in the mantle, it is crucial to resolve the lateral variations not only in seismic velocities but also in intrinsic attenuation. Indeed, the high sensitivity of intrinsic attenuation to temperature and water content, governed by a form of Arrhenius equation, contrasts with the quasi-linear dependence of velocities on both temperature and major element composition. The major challenge in imaging attenuation lies in separating its effects on seismic waves from the elastic ones. The latter originate from the wave propagation in media with strong lateral elastic gradients causing (de)focusing and scattering. We have previously developed a 3D upper-mantle shear attenuation model based on time domain waveform inversion of long period (T > 60s) fundamental and overtone surface wave data (Gung & Romanowicz, 2004). However, at that time, resolution was limited to very long wavelength structure, because elastic models were still rather smooth, and the effects of focusing could only be estimated approximately, using asymptotic normal mode perturbation theory.With recent progress in constraining global mantle shear velocity from waveform tomography based on the Spectral Element Method (e.g. SEMUCB_WM1, French & Romanowicz, 2014), we are now in a position to develop an improved global 3D model of shear attenuation in the upper mantle. In doing so, we use a similar time domain waveform inversion approach, but (1) start with a higher resolution elastic model with better constraints on lateral elastic gradients and (2) jointly invert, in an iterative fashion, for shear attenuation and elastic parameters. Here, we present the results of synthetic tests that confirm our inversion strategy, as well as preliminary results towards the construction of the next generation upper-mantle anelastic model.

  13. Projection-based metal-artifact reduction for industrial 3D X-ray computed tomography.

    PubMed

    Amirkhanov, Artem; Heinzl, Christoph; Reiter, Michael; Kastner, Johann; Gröller, M Eduard

    2011-12-01

    Multi-material components, which contain metal parts surrounded by plastic materials, are highly interesting for inspection using industrial 3D X-ray computed tomography (3DXCT). Examples of this application scenario are connectors or housings with metal inlays in the electronic or automotive industry. A major problem of this type of components is the presence of metal, which causes streaking artifacts and distorts the surrounding media in the reconstructed volume. Streaking artifacts and dark-band artifacts around metal components significantly influence the material characterization (especially for the plastic components). In specific cases these artifacts even prevent a further analysis. Due to the nature and the different characteristics of artifacts, the development of an efficient artifact-reduction technique in reconstruction-space is rather complicated. In this paper we present a projection-space pipeline for metal-artifacts reduction. The proposed technique first segments the metal in the spatial domain of the reconstructed volume in order to separate it from the other materials. Then metal parts are forward-projected on the set of projections in a way that metal-projection regions are treated as voids. Subsequently the voids, which are left by the removed metal, are interpolated in the 2D projections. Finally, the metal is inserted back into the reconstructed 3D volume during the fusion stage. We present a visual analysis tool, allowing for interactive parameter estimation of the metal segmentation. The results of the proposed artifact-reduction technique are demonstrated on a test part as well as on real world components. For these specimens we achieve a significant reduction of metal artifacts, allowing an enhanced material characterization. PMID:22034338

  14. Cellular uptake mechanisms of functionalised multi-walled carbon nanotubes by 3D electron tomography imaging

    NASA Astrophysics Data System (ADS)

    Al-Jamal, Khuloud T.; Nerl, Hannah; Müller, Karin H.; Ali-Boucetta, Hanene; Li, Shouping; Haynes, Peter D.; Jinschek, Joerg R.; Prato, Maurizio; Bianco, Alberto; Kostarelos, Kostas; Porter, Alexandra E.

    2011-06-01

    Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed that MWNT-NH3+ were internalised in both phagocytic and non-phagocytic cells by any one of three mechanisms: (a) individually via membrane wrapping; (b) individually by direct membrane translocation; and (c) in clusters within vesicular compartments. At early time points following intracellular translocation, we noticed accumulation of nanotube material within various intracellular compartments, while a long-term (14-day) study using primary human macrophages revealed that MWNT-NH3+ were able to escape vesicular (phagosome) entrapment by translocating directly into the cytoplasm.Carbon nanotubes (CNTs) are being investigated for a variety of biomedical applications. Despite numerous studies, the pathways by which carbon nanotubes enter cells and their subsequent intracellular trafficking and distribution remain poorly determined. Here, we use 3-D electron tomography techniques that offer optimum enhancement of contrast between carbon nanotubes and the plasma membrane to investigate the mechanisms involved in the cellular uptake of shortened, functionalised multi-walled carbon nanotubes (MWNT-NH3+). Both human lung epithelial (A549) cells, that are almost incapable of phagocytosis and primary macrophages, capable of extremely efficient phagocytosis, were used. We observed

  15. Non-linear 3-D Born shear waveform tomography in Southeast Asia

    NASA Astrophysics Data System (ADS)

    Panning, Mark P.; Cao, Aimin; Kim, Ahyi; Romanowicz, Barbara A.

    2012-07-01

    Southeast (SE) Asia is a tectonically complex region surrounded by many active source regions, thus an ideal test bed for developments in seismic tomography. Much recent development in tomography has been based on 3-D sensitivity kernels based on the first-order Born approximation, but there are potential problems with this approach when applied to waveform data. In this study, we develop a radially anisotropic model of SE Asia using long-period multimode waveforms. We use a theoretical 'cascade' approach, starting with a large-scale Eurasian model developed using 2-D Non-linear Asymptotic Coupling Theory (NACT) sensitivity kernels, and then using a modified Born approximation (nBorn), shown to be more accurate at modelling waveforms, to invert a subset of the data for structure in a subregion (longitude 75°-150° and latitude 0°-45°). In this subregion, the model is parametrized at a spherical spline level 6 (˜200 km). The data set is also inverted using NACT and purely linear 3-D Born kernels. All three final models fit the data well, with just under 80 per cent variance reduction as calculated using the corresponding theory, but the nBorn model shows more detailed structure than the NACT model throughout and has much better resolution at depths greater than 250 km. Based on variance analysis, the purely linear Born kernels do not provide as good a fit to the data due to deviations from linearity for the waveform data set used in this modelling. The nBorn isotropic model shows a stronger fast velocity anomaly beneath the Tibetan Plateau in the depth range of 150-250 km, which disappears at greater depth, consistent with other studies. It also indicates moderate thinning of the high-velocity plate in the middle of Tibet, consistent with a model where Tibet is underplated by Indian lithosphere from the south and Eurasian lithosphere from the north, in contrast to a model with continuous underplating by Indian lithosphere across the entire plateau. The n

  16. Dental implants in bilateral bifid canal and compromised interocclusal space using cone beam computerized tomography

    PubMed Central

    Ahmed, Nizar; Arunachalam, Lalitha Tanjore; Jacob, Caroline Annette; Kumar, Suresh Anand

    2016-01-01

    Knowledge of various anatomic landmarks is pivotal for important success. Bifid canals pose a challenge and can lead to difficulties while performing implant surgery in the mandible. Bifid canals can be diagnosed with panoramic radiography and more accurately with cone beam computerized tomography (CBCT). This case report details the placement of the implant in a patient with bilateral bifid canal and compromised interocclusal space, which was successfully treated using CBCT. PMID:27433073

  17. Dental implants in bilateral bifid canal and compromised interocclusal space using cone beam computerized tomography.

    PubMed

    Ahmed, Nizar; Arunachalam, Lalitha Tanjore; Jacob, Caroline Annette; Kumar, Suresh Anand

    2016-01-01

    Knowledge of various anatomic landmarks is pivotal for important success. Bifid canals pose a challenge and can lead to difficulties while performing implant surgery in the mandible. Bifid canals can be diagnosed with panoramic radiography and more accurately with cone beam computerized tomography (CBCT). This case report details the placement of the implant in a patient with bilateral bifid canal and compromised interocclusal space, which was successfully treated using CBCT. PMID:27433073

  18. The `L' Array, a method to model 3D Electrical Resistivity Tomography (ERT) data

    NASA Astrophysics Data System (ADS)

    Chavez Segura, R. E.; Chavez-Hernandez, G.; Delgado, C.; Tejero-Andrade, A.

    2010-12-01

    The electrical resistivity tomography (ERT) is a method designed to calculate the distribution of apparent electrical resistivities in the subsoil by means of a great number of observations with the aim of determining an electrical image displaying the distribution of true resistivities in the subsoil. Such process can be carried out to define 2D or 3D models of the subsurface. For a 3D ERT, usually, the electrodes are placed in a squared grid keeping the distance between adjacent electrodes constant in the x and y directions. Another design employed, consists of a series of parallel lines whose space inter-lines must be smaller or equal to four times the electrode separation. The most common electrode arrays frequently employed for this type of studies are the pole-pole, pole-dipole and dipole-dipole. Unfortunately, ERT surface sampling schemes are limited by physical conditions or obstacles, like buildings, highly populated urban zones, and geologic/topographic features, where the lines of electrodes cannot be set. However, it is always necessary to characterize the subsoil beneath such anthropogenic or natural features. The ‘L’ shaped array has the main purpose to overcome such difficulties by surrounding the study area with a square of electrode lines. The measurements are obtained by switching automatically current and potential electrodes from one line to the other. Each observation adds a level of information, from one profile to the other. Once the total levels of data are completed, the opposite ‘L’ array can be measured following the same process. The complete square is computed after the parallel profiles are observed as well. At the end, the computed resistivities are combined to form a 3D matrix of observations. Such set of data can be inverted to obtain the true resistivity distribution at depth in the form of a working cube, which can be interpreted. The method was tested with theoretical models, which included a set of two resistive cubes

  19. Automatic 2D and 3D segmentation of liver from Computerised Tomography

    NASA Astrophysics Data System (ADS)

    Evans, Alun

    As part of the diagnosis of liver disease, a Computerised Tomography (CT) scan is taken of the patient, which the clinician then uses for assistance in determining the presence and extent of the disease. This thesis presents the background, methodology, results and future work of a project that employs automated methods to segment liver tissue. The clinical motivation behind this work is the desire to facilitate the diagnosis of liver disease such as cirrhosis or cancer, assist in volume determination for liver transplantation, and possibly assist in measuring the effect of any treatment given to the liver. Previous attempts at automatic segmentation of liver tissue have relied on 2D, low-level segmentation techniques, such as thresholding and mathematical morphology, to obtain the basic liver structure. The derived boundary can then be smoothed or refined using more advanced methods. The 2D results presented in this thesis improve greatly on this previous work by using a topology adaptive active contour model to accurately segment liver tissue from CT images. The use of conventional snakes for liver segmentation is difficult due to the presence of other organs closely surrounding the liver this new technique avoids this problem by adding an inflationary force to the basic snake equation, and initialising the snake inside the liver. The concepts underlying the 2D technique are extended to 3D, and results of full 3D segmentation of the liver are presented. The 3D technique makes use of an inflationary active surface model which is adaptively reparameterised, according to its size and local curvature, in order that it may more accurately segment the organ. Statistical analysis of the accuracy of the segmentation is presented for 18 healthy liver datasets, and results of the segmentation of unhealthy livers are also shown. The novel work developed during the course of this project has possibilities for use in other areas of medical imaging research, for example the

  20. Extension of the Gladstone-Dale equation for flame flow field diagnosis by optical computerized tomography

    SciTech Connect

    Chen Yunyun; Li Zhenhua; Song Yang; He Anzhi

    2009-05-01

    An extended model of the original Gladstone-Dale (G-D) equation is proposed for optical computerized tomography (OCT) diagnosis of flame flow fields. For the purpose of verifying the newly established model, propane combustion is used as a practical example for experiment, and moire deflection tomography is introduced with the probe wavelength 808 nm. The results indicate that the temperature based on the extended model is more accurate than that based on the original G-D equation. In a word, the extended model can be suitable for all kinds of flame flow fields whatever the components, temperature, and ionization are.

  1. Evaluation of Biomaterials Using Micro-Computerized Tomography

    NASA Astrophysics Data System (ADS)

    Torris, A. T. Arun; Columbus, K. C. Soumya; Saaj, U. S.; Nair, Manitha B.; Krishnan, Kalliyana V.

    2008-09-01

    Micro-computed tomography or Micro-CT is a high resolution, non-invasive, x-ray scanning technique that allows precise three-dimensional imaging and quantification of micro-architectural and structural parameters of objects. Tomographic reconstruction is based on a cone-beam convolution-back-projection algorithm. Micro-architectural and structural parameters such as porosity, surface area to volume ratio, interconnectivity, pore size, wall thickness, anisotropy and cross-section area of biomaterials and bio-specimens such as trabecular bone, polymer scaffold, bio-ceramics and dental restorative were evaluated through imaging and computer aided manipulation of the object scan data sets.

  2. Evaluation of Biomaterials Using Micro-Computerized Tomography

    SciTech Connect

    Torris, A. T. Arun; Columbus, K. C. Soumya; Saaj, U. S.; Krishnan, Kalliyana V.; Nair, Manitha B.

    2008-09-26

    Micro-computed tomography or Micro-CT is a high resolution, non-invasive, x-ray scanning technique that allows precise three-dimensional imaging and quantification of micro-architectural and structural parameters of objects. Tomographic reconstruction is based on a cone-beam convolution-back-projection algorithm. Micro-architectural and structural parameters such as porosity, surface area to volume ratio, interconnectivity, pore size, wall thickness, anisotropy and cross-section area of biomaterials and bio-specimens such as trabecular bone, polymer scaffold, bio-ceramics and dental restorative were evaluated through imaging and computer aided manipulation of the object scan data sets.

  3. [Diagnosis of para-laryngeal tumors using computerized tomography].

    PubMed

    Höing, R

    1990-04-01

    Computed tomography of the larynx is generally recommended for carcinoma, laryngoceles, and laryngeal trauma. On the basis of several case examples, in which dysphagia and hoarseness were caused by a submucosal thickening of the arytenoid and aryepiglottic fold, the authors propose that these unclear symptoms also be regarded as indication for larynx CT. It must be borne in mind that the underlying process may be one of the rare tumors in the space between the thyroid cartilage and elastic cone, often called the paraglottic space (or paralaryngeal space, by many American authors). PMID:2162176

  4. 3-D X-ray tomography of diamondiferous mantle eclogite xenoliths, Siberia: A review

    NASA Astrophysics Data System (ADS)

    Howarth, Geoffrey H.; Sobolev, Nikolay V.; Pernet-Fisher, John F.; Ketcham, Richard A.; Maisano, Jessica A.; Pokhilenko, Lyudmila N.; Taylor, Dawn; Taylor, Lawrence A.

    2015-04-01

    -systems'. Diamonds observed completely enclosed in garnets suggest an early diamond-forming event prior to major re-crystallization and eclogite formation during subduction. The occurrence of diamond in association with embayed garnets suggests that diamond grew at the expense of the hosting silicate protolith. In addition, the spatial relationships of diamonds with metasomatic pathways, which are generally interpreted to result from late-stage proto-kimberlitic fluid percolation, indicate a period of diamond growth occurring close to, but prior to, the time of kimberlite emplacement. Furthermore, the paragenesis of sulfides within eclogite xenoliths are described using 3-D models for entire xenoliths volumes, providing important constraints of the timing of sulfide mobilization within the mantle. Three-D animations created using X-ray tomography data for ten of the xenoliths can be viewed at the following link: http://eps.utk.edu/faculty/taylor/tomography.php

  5. Detectability of hepatic tumors during 3D post-processed ultrafast cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Paul, Jijo; Vogl, Thomas J.; Chacko, Annamma

    2015-10-01

    To evaluate hepatic tumor detection using ultrafast cone-beam computed tomography (UCBCT) cross-sectional and 3D post-processed image datasets. 657 patients were examined using UCBCT during hepatic transarterial chemoembolization (TACE), and data were collected retrospectively from January 2012 to September 2014. Tumor detectability, diagnostic ability, detection accuracy and sensitivity were examined for different hepatic tumors using UCBCT cross-sectional, perfusion blood volume (PBV) and UCBCT-MRI (magnetic resonance imaging) fused image datasets. Appropriate statistical tests were used to compare collected sample data. Fused image data showed the significantly higher (all P  <  0.05) diagnostic ability for hepatic tumors compared to UCBCT or PBV image data. The detectability of small hepatic tumors (<5 mm) was significantly reduced (all P  <  0.05) using UCBCT cross-sectional images compared to MRI or fused image data; however, PBV improved tumor detectability using a color display. Fused image data produced 100% tumor sensitivity due to the simultaneous availability of MRI and UCBCT information during tumor diagnosis. Fused image data produced excellent hepatic tumor sensitivity, detectability and diagnostic ability compared to other datasets assessed. Fused image data is extremely reliable and useful compared to UCBCT cross-sectional or PBV image datasets to depict hepatic tumors during TACE. Partial anatomical visualization on cross-sectional images was compensated by fused image data during tumor diagnosis.

  6. In situ visualization of magma deformation at high temperature using time-lapse 3D tomography

    NASA Astrophysics Data System (ADS)

    Godinho, jose; Lee, Peter; Lavallee, Yan; Kendrick, Jackie; Von-Aulock, Felix

    2016-04-01

    We use synchrotron based x-ray computed micro-tomography (sCT) to visualize, in situ, the microstructural evolution of magma samples 3 mm diameter with a resolution of 3 μm during heating and uniaxial compression at temperatures up to 1040 °C. The interaction between crystals, melt and gas bubbles is analysed in 4D (3D + time) during sample deformation. The ability to observe the changes of the microstructure as a function of time allow us to: a) study the effect of temperature in the ability of magma to fracture or deform; b) quantify bubble nucleation and growth rates during heating; c) study the relation between crystal displacement and volatile exsolution. We will show unique beautiful videos of how bubbles grow and coalescence, how samples and crystals within the sample fracture, heal and deform. Our study establishes in situ sCT as a powerful tool to quantify and visualize with micro-scale resolution fast processes taking place in magma that are essential to understand ascent in a volcanic conduit and validate existing models for determining the explosivity of volcanic eruptions. Tracking simultaneously the time and spatial changes of magma microstructures is shown to be primordial to study disequilibrium processes between crystals, melt and gas phases.

  7. Determination of 3D optic axis orientation in cartilage by polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Matcher, Stephen J.

    2007-02-01

    Polarization-sensitive optical coherence tomography has been used to solve fast-axis fibre orientation in three dimension space. Previously we have demonstrated that the apparent variations in polar angle orientation of collagen fibers along sagittal ridge of equine third metacarpophalangeal joint exist. A quantitative method based on multiple angles of illumination has been proposed to determine the polar angle of the collagen fibers. This method however ignored the full 3-D structure by assuming that the collagen fibers long-axis lay within the plane of incidence. A new quantitative method based on the theory of light propagation in uniaxial materials is described which avoids this assumption. To test this method we have performed control experiments on a sample of equine tendon (this tissue has well defined c-axis lying along the long-axis of the tendon). Several samples of tendon were cut to achieve a planar surface inclined at -20° to the long axis. Additional 30° rotation provided non-zero azimuthal angle. The surface was then imaged using incident beam angles -40°, -20°, 0, +20°, +40° in two orthogonal planes. Values for both the polar and azimuthal angles were then derived using a numerical optimisation procedure. Results agreed qualitatively with the nominal values but suggested that the accuracy was limited by our method of determining the apparent birefringence.

  8. Determination of 3D optic axis orientation in cartilage by polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Bonesi, Marco; Matcher, Stephen J.

    2008-02-01

    Polarization-sensitive optical coherence tomography has been used to solve fast-axis fibre orientation in three dimension space. Previously we have demonstrated that the apparent variations in polar angle orientation of collagen fibers along sagittal ridge of equine third metacarpophalangeal joint exist. A quantitative method based on multiple angles of illumination has been proposed to determine the polar angle of the collagen fibers. This method however ignored the full 3D structure by assuming that the collagen fibers long-axis lay within the plane of incidence. A new quantitative method based on the theory of light propagation in uniaxial materials is described which avoids this assumption. To test this method we have performed control experiments on a sample of equine tendon (this tissue has well defined c-axis lying along the long-axis of the tendon). Several samples of tendon were cut to achieve a planar surface inclined at -20° to the long axis. Additional 30° rotation provided non-zero azimuthal angle. The surface was then imaged using incident beam angles -40°, -20°, 0, +20°, +40° in two orthogonal planes. Values for both the polar and azimuthal angles were then derived using a numerical optimisation procedure. Results agreed qualitatively with the nominal values but suggested that the accuracy was limited by our method of determining the apparent birefringence.

  9. Computed Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2005-01-01

    In friction stir welding (FSW), a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and is carried with the macro-flow of the weld metal. By using CT images, a 3-dimensional (3D) image of the lead flow pattern can be reconstructed. CT imaging was found to be a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  10. FDFD: A 3D Finite-Difference Frequency-Domain Code for Electromagnetic Induction Tomography

    NASA Astrophysics Data System (ADS)

    Champagne, Nathan J.; Berryman, James G.; Buettner, H. Michael

    2001-07-01

    A new 3D code for electromagnetic induction tomography with intended applications to environmental imaging problems has been developed. The approach consists of calculating the fields within a volume using an implicit finite-difference frequency-domain formulation. The volume is terminated by an anisotropic perfectly matched layer region that simulates an infinite domain by absorbing outgoing waves. Extensive validation of this code has been done using analytical and semianalytical results from other codes, and some of those results are presented in this paper. The new code is written in Fortran 90 and is designed to be easily parallelized. Finally, an adjoint field method of data inversion, developed in parallel for solving the fully nonlinear inverse problem for electrical conductivity imaging (e.g., for mapping underground conducting plumes), uses this code to provide solvers for both forward and adjoint fields. Results obtained from this inversion method for high-contrast media are encouraging and provide a significant improvement over those obtained from linearized inversion methods.

  11. Passive 3D imaging of nuclear waste containers with Muon Scattering Tomography

    NASA Astrophysics Data System (ADS)

    Thomay, C.; Velthuis, J.; Poffley, T.; Baesso, P.; Cussans, D.; Frazão, L.

    2016-03-01

    The non-invasive imaging of dense objects is of particular interest in the context of nuclear waste management, where it is important to know the contents of waste containers without opening them. Using Muon Scattering Tomography (MST), it is possible to obtain a detailed 3D image of the contents of a waste container on reasonable timescales, showing both the high and low density materials inside. We show the performance of such a method on a Monte Carlo simulation of a dummy waste drum object containing objects of different shapes and materials. The simulation has been tuned with our MST prototype detector performance. In particular, we show that both a tungsten penny of 2 cm radius and 1 cm thickness, and a uranium sheet of 0.5 cm thickness can be clearly identified. We also show the performance of a novel edge finding technique, by which the edges of embedded objects can be identified more precisely than by solely using the imaging method.

  12. Large area 3-D optical coherence tomography imaging of lumpectomy specimens for radiation treatment planning

    NASA Astrophysics Data System (ADS)

    Wang, Cuihuan; Kim, Leonard; Barnard, Nicola; Khan, Atif; Pierce, Mark C.

    2016-02-01

    Our long term goal is to develop a high-resolution imaging method for comprehensive assessment of tissue removed during lumpectomy procedures. By identifying regions of high-grade disease within the excised specimen, we aim to develop patient-specific post-operative radiation treatment regimens. We have assembled a benchtop spectral-domain optical coherence tomography (SD-OCT) system with 1320 nm center wavelength. Automated beam scanning enables "sub-volumes" spanning 5 mm x 5 mm x 2 mm (500 A-lines x 500 B-scans x 2 mm in depth) to be collected in under 15 seconds. A motorized sample positioning stage enables multiple sub-volumes to be acquired across an entire tissue specimen. Sub-volumes are rendered from individual B-scans in 3D Slicer software and en face (XY) images are extracted at specific depths. These images are then tiled together using MosaicJ software to produce a large area en face view (up to 40 mm x 25 mm). After OCT imaging, specimens were sectioned and stained with HE, allowing comparison between OCT image features and disease markers on histopathology. This manuscript describes the technical aspects of image acquisition and reconstruction, and reports initial qualitative comparison between large area en face OCT images and HE stained tissue sections. Future goals include developing image reconstruction algorithms for mapping an entire sample, and registering OCT image volumes with clinical CT and MRI images for post-operative treatment planning.

  13. Automated multilayer segmentation and characterization in 3D spectral-domain optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Hu, Zhihong; Wu, Xiaodong; Hariri, Amirhossein; Sadda, SriniVas R.

    2013-03-01

    Spectral-domain optical coherence tomography (SD-OCT) is a 3-D imaging technique, allowing direct visualization of retinal morphology and architecture. The various layers of the retina may be affected differentially by various diseases. In this study, an automated graph-based multilayer approach was developed to sequentially segment eleven retinal surfaces including the inner retinal bands to the outer retinal bands in normal SD-OCT volume scans at three different stages. For stage 1, the four most detectable and/or distinct surfaces were identified in the four-times-downsampled images and were used as a priori positional information to limit the graph search for other surfaces at stage 2. Eleven surfaces were then detected in the two-times-downsampled images at stage 2, and refined in the original image space at stage 3 using the graph search integrating the estimated morphological shape models. Twenty macular SD-OCT (Heidelberg Spectralis) volume scans from 20 normal subjects (one eye per subject) were used in this study. The overall mean and absolute mean differences in border positions between the automated and manual segmentation for all 11 segmented surfaces were -0.20 +/- 0.53 voxels (-0.76 +/- 2.06 μm) and 0.82 +/- 0.64 voxels (3.19 +/- 2.46 μm). Intensity and thickness properties in the resultant retinal layers were investigated. This investigation in normal subjects may provide a comparative reference for subsequent investigations in eyes with disease.

  14. Automated Lung Segmentation and Image Quality Assessment for Clinical 3-D/4-D-Computed Tomography

    PubMed Central

    Li, Guang

    2014-01-01

    4-D-computed tomography (4DCT) provides not only a new dimension of patient-specific information for radiation therapy planning and treatment, but also a challenging scale of data volume to process and analyze. Manual analysis using existing 3-D tools is unable to keep up with vastly increased 4-D data volume, automated processing and analysis are thus needed to process 4DCT data effectively and efficiently. In this paper, we applied ideas and algorithms from image/signal processing, computer vision, and machine learning to 4DCT lung data so that lungs can be reliably segmented in a fully automated manner, lung features can be visualized and measured on the fly via user interactions, and data quality classifications can be computed in a robust manner. Comparisons of our results with an established treatment planning system and calculation by experts demonstrated negligible discrepancies (within ±2%) for volume assessment but one to two orders of magnitude performance enhancement. An empirical Fourier-analysis-based quality measure-delivered performances closely emulating human experts. Three machine learners are inspected to justify the viability of machine learning techniques used to robustly identify data quality of 4DCT images in the scalable manner. The resultant system provides a toolkit that speeds up 4-D tasks in the clinic and facilitates clinical research to improve current clinical practice. PMID:25621194

  15. [Densitometric follow-up of algodystrophy using computerized tomography].

    PubMed

    Lindecken, K D; Krawzak, H W; Strosche, H; Kukulies, R; Schmidt, W G

    1987-01-01

    Clinical and radiological findings obtained from diagnosis and follow-up examination of post-traumatic algodystrophy (Morbus Sudeck) are very much open to subjective interpretation. Decisive importance is attributed not only to alteration of soft tissue but also to typical distribution patterns and severity of bone demineralisation. No objectifiable and quantifiable have so far become available for proper assessment but are urgently desirable in view of the great number of therapeutic approaches. Densitometry integrated with computed tomography was applied to nine patients with algodystrophy of hand or foot in the region of spongy bones to determine absorption values which were then compared with those on the clinically intact side. Significant differences between sides proved to be objectifiable and were quantifiable measures by which demineralisation of the effected extremity could be assessed. Repeated examinations were undertaken for follow-up through a period up to nine months. PMID:3630448

  16. 3D phase micro-object studies by means of digital holographic tomography supported by algebraic reconstruction technique

    NASA Astrophysics Data System (ADS)

    Bilski, B. J.; Jozwicka, A.; Kujawinska, M.

    2007-09-01

    Constant development of microelements' technology requires a creation of new instruments to determine their basic physical parameters in 3D. The most efficient non-destructive method providing 3D information is tomography. In this paper we present Digital Holographic Tomography (DHT), in which input data is provided by means of Di-git- al Holography (DH). The main advantage of DH is the capability to capture several projections with a single hologram [1]. However, these projections have uneven angular distribution and their number is significantly limited. Therefore - Algebraic Reconstruction Technique (ART), where a few phase projections may be sufficient for proper 3D phase reconstruction, is implemented. The error analysis of the method and its additional limitations due to shape and dimensions of investigated object are presented. Finally, the results of ART application to DHT method are also presented on data reconstructed from numerically generated hologram of a multimode fibre.

  17. 3D parallel-detection microwave tomography for clinical breast imaging

    SciTech Connect

    Epstein, N. R.; Meaney, P. M.; Paulsen, K. D.

    2014-12-15

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to −130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate

  18. Computing elastic moduli on 3-D X-ray computed tomography image stacks

    NASA Astrophysics Data System (ADS)

    Garboczi, E. J.; Kushch, V. I.

    2015-03-01

    A numerical task of current interest is to compute the effective elastic properties of a random composite material by operating on a 3D digital image of its microstructure obtained via X-ray computed tomography (CT). The 3-D image is usually sub-sampled since an X-ray CT image is typically of order 10003 voxels or larger, which is considered to be a very large finite element problem. Two main questions for the validity of any such study are then: can the sub-sample size be made sufficiently large to capture enough of the important details of the random microstructure so that the computed moduli can be thought of as accurate, and what boundary conditions should be chosen for these sub-samples? This paper contributes to the answer of both questions by studying a simulated X-ray CT cylindrical microstructure with three phases, cut from a random model system with known elastic properties. A new hybrid numerical method is introduced, which makes use of finite element solutions coupled with exact solutions for elastic moduli of square arrays of parallel cylindrical fibers. The new method allows, in principle, all of the microstructural data to be used when the X-ray CT image is in the form of a cylinder, which is often the case. Appendix A describes a similar algorithm for spherical sub-samples, which may be of use when examining the mechanical properties of particles. Cubic sub-samples are also taken from this simulated X-ray CT structure to investigate the effect of two different kinds of boundary conditions: forced periodic and fixed displacements. It is found that using forced periodic displacements on the non-geometrically periodic cubic sub-samples always gave more accurate results than using fixed displacements, although with about the same precision. The larger the cubic sub-sample, the more accurate and precise was the elastic computation, and using the complete cylindrical sample with the new method gave still more accurate and precise results. Fortran 90

  19. 3D parallel-detection microwave tomography for clinical breast imaging

    NASA Astrophysics Data System (ADS)

    Epstein, N. R.; Meaney, P. M.; Paulsen, K. D.

    2014-12-01

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to -130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500-2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery

  20. 3D parallel-detection microwave tomography for clinical breast imaging.

    PubMed

    Epstein, N R; Meaney, P M; Paulsen, K D

    2014-12-01

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to -130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500-2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate recovery

  1. 3D parallel-detection microwave tomography for clinical breast imaging

    PubMed Central

    Meaney, P. M.; Paulsen, K. D.

    2014-01-01

    A biomedical microwave tomography system with 3D-imaging capabilities has been constructed and translated to the clinic. Updates to the hardware and reconfiguration of the electronic-network layouts in a more compartmentalized construct have streamlined system packaging. Upgrades to the data acquisition and microwave components have increased data-acquisition speeds and improved system performance. By incorporating analog-to-digital boards that accommodate the linear amplification and dynamic-range coverage our system requires, a complete set of data (for a fixed array position at a single frequency) is now acquired in 5.8 s. Replacement of key components (e.g., switches and power dividers) by devices with improved operational bandwidths has enhanced system response over a wider frequency range. High-integrity, low-power signals are routinely measured down to −130 dBm for frequencies ranging from 500 to 2300 MHz. Adequate inter-channel isolation has been maintained, and a dynamic range >110 dB has been achieved for the full operating frequency range (500–2900 MHz). For our primary band of interest, the associated measurement deviations are less than 0.33% and 0.5° for signal amplitude and phase values, respectively. A modified monopole antenna array (composed of two interwoven eight-element sub-arrays), in conjunction with an updated motion-control system capable of independently moving the sub-arrays to various in-plane and cross-plane positions within the illumination chamber, has been configured in the new design for full volumetric data acquisition. Signal-to-noise ratios (SNRs) are more than adequate for all transmit/receive antenna pairs over the full frequency range and for the variety of in-plane and cross-plane configurations. For proximal receivers, in-plane SNRs greater than 80 dB are observed up to 2900 MHz, while cross-plane SNRs greater than 80 dB are seen for 6 cm sub-array spacing (for frequencies up to 1500 MHz). We demonstrate accurate

  2. The Integration of 3-D Cell-Printing and Mesoscopic Fluorescence Molecular Tomography of Vascular Constructs within Thick Hydrogel Scaffolds

    PubMed Central

    Zhao, Lingling; Lee, Vivian K.; Yoo, Seung-Schik; Dai, Guohao; Intes, Xavier

    2012-01-01

    Developing methods that provide adequate vascular perfusion is an important step toward engineering large functional tissues. Meanwhile, an imaging modality to assess the three-dimensional (3-D) structures and functions of the vascular channels is lacking for thick matrices (>2~3mm). Herein, we report on an original approach to construct and image 3-D dynamically perfused vascular structures in thick hydrogel scaffolds. In this work, we integrated a robotic 3-D cell-printing technology with a mesoscopic fluorescence molecular tomography imaging system, and demonstrated the capability of the platform to construct perfused collagen scaffolds with endothelial lining and to image both the fluid flow and fluorescent-labeled living endothelial cells at high-frame rates, with high sensitivity and accuracy. These results establish the potential of integrating both 3-D cell-printing and fluorescence mesoscopic imaging for functional and molecular studies in complex tissue engineered tissues. PMID:22531221

  3. New X-Ray Tomography Method Based on the 3D Radon Transform Compatible with Anisotropic Sources

    NASA Astrophysics Data System (ADS)

    Vassholz, M.; Koberstein-Schwarz, B.; Ruhlandt, A.; Krenkel, M.; Salditt, T.

    2016-02-01

    In this work, we propose a novel computed tomography (CT) approach for three-dimensional (3D) object reconstruction, based on a generalized tomographic geometry with two-dimensional angular sampling (two angular degrees of freedom). The reconstruction is based on the 3D radon transform and is compatible with anisotropic beam conditions. This allows isotropic 3D imaging with a source, which can be extended along one direction for increased flux, while high resolution is achieved by a small source size only in the orthogonal direction. This novel scheme for analytical CT is demonstrated by numerical simulations and proof-of-concept experiments. In this way high resolution and coherence along a single direction determines the reconstruction quality of the entire 3D data set, opening up, for example, new opportunities to achieve nanoscale resolution and/or phase contrast with low brilliance sources such as laboratory x-ray or neutron sources.

  4. New X-Ray Tomography Method Based on the 3D Radon Transform Compatible with Anisotropic Sources.

    PubMed

    Vassholz, M; Koberstein-Schwarz, B; Ruhlandt, A; Krenkel, M; Salditt, T

    2016-02-26

    In this work, we propose a novel computed tomography (CT) approach for three-dimensional (3D) object reconstruction, based on a generalized tomographic geometry with two-dimensional angular sampling (two angular degrees of freedom). The reconstruction is based on the 3D Radon transform and is compatible with anisotropic beam conditions. This allows isotropic 3D imaging with a source, which can be extended along one direction for increased flux, while high resolution is achieved by a small source size only in the orthogonal direction. This novel scheme for analytical CT is demonstrated by numerical simulations and proof-of-concept experiments. In this way high resolution and coherence along a single direction determines the reconstruction quality of the entire 3D data set, opening up, for example, new opportunities to achieve nanoscale resolution and/or phase contrast with low brilliance sources such as laboratory x-ray or neutron sources. PMID:26967444

  5. 3D Electrical resistivity tomography monitoring of an artificial tracer injected within the hyporheic zone

    NASA Astrophysics Data System (ADS)

    Houzé, Clémence; Pessel, Marc; Durand, Veronique

    2016-04-01

    Due to the high complexity level of hyporheic flow paths, hydrological and biogeochemical processes which occur in this mixing place are not fully understood yet. Some previous studies made in flumes show that hyporheic flow is strongly connected to the streambed morphology and sediment heterogeneity . There is still a lack of practical field experiment considering a natural environment and representation of natural streambed heterogeneities will be always limited in laboratories. The purpose of this project is to propose an innovative method using 3D Electrical Resistivity Tomography (ERT) monitoring of an artificial tracer injection directly within the streambed sediments in order to visualize the water pathways within the hyporheic zone. Field experiment on a small stream was conducted using a plastic tube as an injection piezometer and home-made electrodes strips arranged in a rectangular form made of 180 electrodes (15 strips of 12 electrodes each). The injection of tracer (NaCl) lasted approximatively 90 minutes, and 24h monitoring with increasing step times was performed. The physical properties of the water are controlled by CTD probes installed upstream and downstream within the river. Inverse time-lapse tomographs show development and persistence of a conductive water plume around the injection point. Due to the low hydraulic conductivity of streambed sediments (clay and overlying loess), the tracer movement is barely visible, as it dilutes gradually in the pore water. Impact of boundary conditions on inversion results can lead to significant differences on images, especially in the shallow part of the profiles. Preferential paths of transport are not highlighted here, but this experiment allows to follow spatially and temporarily the evolution of the tracer in a complex natural environment .

  6. Comparative velocity structure of active Hawaiian volcanoes from 3-D onshore-offshore seismic tomography

    USGS Publications Warehouse

    Park, J.; Morgan, J.K.; Zelt, C.A.; Okubo, P.G.; Peters, L.; Benesh, N.

    2007-01-01

    We present a 3-D P-wave velocity model of the combined subaerial and submarine portions of the southeastern part of the Island of Hawaii, based on first-arrival seismic tomography of marine airgun shots recorded by the onland seismic network. Our model shows that high-velocity materials (6.5-7.0??km/s) lie beneath Kilauea's summit, Koae fault zone, and the upper Southwest Rift Zone (SWRZ) and upper and middle East Rift Zone (ERZ), indicative of magma cumulates within the volcanic edifice. A separate high-velocity body of 6.5-6.9??km/s within Kilauea's lower ERZ and upper Puna Ridge suggests a distinct body of magma cumulates, possibly connected to the summit magma cumulates at depth. The two cumulate bodies within Kilauea's ERZ may have undergone separate ductile flow seaward, influencing the submarine morphology of Kilauea's south flank. Low velocities (5.0-6.3??km/s) seaward of Kilauea's Hilina fault zone, and along Mauna Loa's seaward facing Kao'iki fault zone, are attributed to thick piles of volcaniclastic sediments deposited on the submarine flanks. Loihi seamount shows high-velocity anomalies beneath the summit and along the rift zones, similar to the interpreted magma cumulates below Mauna Loa and Kilauea volcanoes, and a low-velocity anomaly beneath the oceanic crust, probably indicative of melt within the upper mantle. Around Kilauea's submarine flank, a high-velocity anomaly beneath the outer bench suggests the presence of an ancient seamount that may obstruct outward spreading of the flank. Mauna Loa's southeast flank is also marked by a large, anomalously high-velocity feature (7.0-7.4??km/s), interpreted to define an inactive, buried volcanic rift zone, which might provide a new explanation for the westward migration of Mauna Loa's current SWRZ and the growth of Kilauea's SWRZ. ?? 2007 Elsevier B.V. All rights reserved.

  7. Exact surface registration of retinal surfaces from 3-D optical coherence tomography images.

    PubMed

    Lee, Sieun; Lebed, Evgeniy; Sarunic, Marinko V; Beg, Mirza Faisal

    2015-02-01

    Nonrigid registration of optical coherence tomography (OCT) images is an important problem in studying eye diseases, evaluating the effect of pharmaceuticals in treating vision loss, and performing group-wise cross-sectional analysis. High dimensional nonrigid registration algorithms required for cross-sectional and longitudinal analysis are still being developed for accurate registration of OCT image volumes, with the speckle noise in images presenting a challenge for registration. Development of algorithms for segmentation of OCT images to generate surface models of retinal layers has advanced considerably and several algorithms are now available that can segment retinal OCT images into constituent retinal surfaces. Important morphometric measurements can be extracted if accurate surface registration algorithm for registering retinal surfaces onto corresponding template surfaces were available. In this paper, we present a novel method to perform multiple and simultaneous retinal surface registration, targeted to registering surfaces extracted from ocular volumetric OCT images. This enables a point-to-point correspondence (homology) between template and subject surfaces, allowing for a direct, vertex-wise comparison of morphometric measurements across subject groups. We demonstrate that this approach can be used to localize and analyze regional changes in choroidal and nerve fiber layer thickness among healthy and glaucomatous subjects, allowing for cross-sectional population wise analysis. We also demonstrate the method's ability to track longitudinal changes in optic nerve head morphometry, allowing for within-individual tracking of morphometric changes. This method can also, in the future, be used as a precursor to 3-D OCT image registration to better initialize nonrigid image registration algorithms closer to the desired solution. PMID:25312906

  8. Experimental Investigation of Material Flows Within FSWs Using 3D Tomography

    SciTech Connect

    Charles R. Tolle; Timothy A. White; Karen S. Miller; Denis E. Clark; Herschel B. Smartt

    2008-06-01

    There exists significant prior work using tracers or pre-placed hardened markers within friction stir welding (FSWing) to experimentally explore material flow within the FSW process. Our experiments replaced markers with a thin sheet of copper foil placed between the 6061 aluminum lap and butt joints that were then welded. The absorption characteristics of x-rays for copper and aluminum are significantly different allowing for non-destructive evaluation (NDE) methods such as x-ray computed tomography (CT) to be used to demonstrate the material movement within the weldment on a much larger scale than previously shown. 3D CT reconstruction of the copper components of the weldment allows for a unique view into the final turbulent state of the welding process as process parameters are varied. The x-ray CT data of a section of the weld region was collected using a cone-beam x-ray imaging system developed at the INL. Six-hundred projections were collected over 360-degrees using a 160-kVp Bremsstrahlung x-ray generator (25-micrometer focal spot) and amorphoussilicon x-ray detector. The region of the object that was imaged was about 3cm tall and 1.5cm x 1cm in cross section, and was imaged at a magnification of about 3.6x. The data were reconstructed on a 0.5x0.5x0.5 mm3 voxel grid. After reconstruction, the aluminum and copper could be easily discriminated using a gray level threshold allowing visualization of the copper components. Fractal analysis of the tomographic reconstructed material topology is investigated as a means to quantify macro level material flow based on process parameters. The results of multi-pass FSWs show increased refinement of the copper trace material. Implications of these techniques for quantifying process flow are discussed.

  9. 3D Anisotropic structure of the south-central Mongolia from Rayleigh and Love wave tomography

    NASA Astrophysics Data System (ADS)

    Yu, D.; Wu, Q.; Montagner, J. P.

    2014-12-01

    A better understanding of the geodynamics of the crust and mantle below Baikal-Mongolia is required to identify the role of mantle processes versus that of far-field tectonic effects from India-Asia collision. Anisotropy tomography can provide new perspective to the continental growth mechanism. In order to study the 3D anisotropic structure of the upper mantle in the south-central Mongolia, we collected the vertical and transverse components of seismograms recorded at 69 broadband seismic stations. We have measured inter-station phase velocities of 7181 Rayleigh waves and 901 Love waves using the frequency-time analysis of wavelet transformation method for the fundamental mode at period range 10~80s. The lateral phase velocity variations are computed by using a regionalization method. These phase velocities have been inverted to obtain the first anisotropic model including Sv velocities, azimuthal and radial anisotropy. The Middle Gobi is associated with low velocity. Based on the distribution of the Cenozoic basalts in the Middle Gobi, it refers that the low velocity anomaly is related to the Cenozoic volcanism. In the northern domain, near to Baikal zone, the azimuthal anisotropy is normal to the Baikal rift and consistent with the fast direction of previous SKS splitting measurements. In the South Gobi, north to Main Mongolian Lineament, the azimuthal anisotropy is NEE-SWW in the crust and NW-SE in the mantle. It indicates that the crust and mantle are decoupled. We propose that the crustal deformation is related to the far-field effects of India-Asia collision and that the mantle flow is correlated with the Baikal rift activity. Further study in process will provide more evidence and insight to better understand the geodynamics in this region.

  10. Design and evaluation of a laboratory prototype system for 3D photoacoustic full breast tomography

    PubMed Central

    Xia, Wenfeng; Piras, Daniele; Singh, Mithun K. A.; van Hespen, Johan C. G.; van Leeuwen, Ton G.; Steenbergen, Wiendelt; Manohar, Srirang

    2013-01-01

    Photoacoustic imaging can visualize vascularization-driven optical absorption contrast with great potential for breast cancer detection and diagnosis. State-of-the-art photoacoustic breast imaging systems are promising but are limited either by only a 2D imaging capability or by an insufficient imaging field-of-view (FOV). We present a laboratory prototype system designed for 3D photoacoustic full breast tomography, and comprehensively characterize it and evaluate its performance in imaging phantoms. The heart of the system is an ultrasound detector array specifically developed for breast imaging and optimized for high sensitivity. Each detector element has an acoustic lens to enlarge the acceptance angle of the large surface area detector elements to ensure a wide system FOV. We characterized the ultrasound detector array performance in terms of frequency response, directional sensitivity, minimum detectable pressure and inter-element electrical and mechanical cross-talk. Further we evaluated the system performance of the laboratory prototype imager using well-defined breast mimicking phantoms. The system possesses a 2 mm XY plane resolution and a 6 mm vertical resolution. A vasculature mimicking object was successfully visualized down to a depth of 40 mm in the breast phantom. Further, tumor mimicking spherical objects with 5 and 10 mm diameter at 20 mm and 40 mm depths are recovered, indicating high system sensitivity. The system has a 170 × 170 × 170 mm3 FOV, which is well suited for full breast imaging. Various recommendations are provided for performance improvement and to guide this laboratory prototype to a clinical version in future. PMID:24298416

  11. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Vanella, Daniela; Busato, Laura; Boaga, Jacopo; Cassiani, Giorgio; Binley, Andrew; Putti, Mario; Consoli, Simona

    2016-04-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  12. Micro 3D ERT tomography for data assimilation modelling of active root zone

    NASA Astrophysics Data System (ADS)

    Cassiani, G.; Boaga, J.; Busato, L.; Vanella, D.; Consoli, S.; Binley, A. M.

    2015-12-01

    Within the soil-plant-atmosphere system, root activity plays a fundamental role, as it connects different domains and allows a large part of the water and nutrient exchanges necessary for plant sustenance. The understanding of these processes is not only useful from an environmental point of view, making a fundamental contribution to the understanding of the critical zone dynamics, but also plays a pivotal role in precision agriculture, where the optimisation of water resources exploitation is mandatory and often carried out through deficit irrigation techniques. In this work, we present the results of non-invasive monitoring of the active root zone of two orange trees (Citrus sinensis, cv Tarocco Ippolito) located in an orange orchard in eastern Sicily (Italy) and drip irrigated with two different techniques: partial root drying and 100% crop evapotranspiration. The main goal of the monitoring activity is to assess possible differences between the developed root systems and the root water uptake between the two irrigation strategies. The monitoring is conducted using 3D micro-electrical resistivity tomography (ERT) based on an apparatus composed of a number of micro-boreholes (about 1.2 m deep) housing 12 electrodes each, plus a number of surface electrodes. Time-lapse measurements conducted both with long-term periodicity and short-term repetition before and after irrigation clearly highlight the presence and distribution of root water uptake zone both at shallow and larger depth, likely to correspond to zones utilized during the irrigation period (shallow) and during the time when the crop is not irrigated (deep). Subsidiary information is available in terms of precipitation, sap flow measurements and micrometeorological evapotranspiration estimates. This data ensemble lends itself to the assimilation into a variably saturated flow model, where both soil hydraulic parameters and root distribution shall be identified. Preliminary results in this directions show

  13. Conceptual detector development and Monte Carlo simulation of a novel 3D breast computed tomography system

    NASA Astrophysics Data System (ADS)

    Ziegle, Jens; Müller, Bernhard H.; Neumann, Bernd; Hoeschen, Christoph

    2016-03-01

    A new 3D breast computed tomography (CT) system is under development enabling imaging of microcalcifications in a fully uncompressed breast including posterior chest wall tissue. The system setup uses a steered electron beam impinging on small tungsten targets surrounding the breast to emit X-rays. A realization of the corresponding detector concept is presented in this work and it is modeled through Monte Carlo simulations in order to quantify first characteristics of transmission and secondary photons. The modeled system comprises a vertical alignment of linear detectors hold by a case that also hosts the breast. Detectors are separated by gaps to allow the passage of X-rays towards the breast volume. The detectors located directly on the opposite side of the gaps detect incident X-rays. Mechanically moving parts in an imaging system increase the duration of image acquisition and thus can cause motion artifacts. So, a major advantage of the presented system design is the combination of the fixed detectors and the fast steering electron beam which enable a greatly reduced scan time. Thereby potential motion artifacts are reduced so that the visualization of small structures such as microcalcifications is improved. The result of the simulation of a single projection shows high attenuation by parts of the detector electronics causing low count levels at the opposing detectors which would require a flat field correction, but it also shows a secondary to transmission ratio of all counted X-rays of less than 1 percent. Additionally, a single slice with details of various sizes was reconstructed using filtered backprojection. The smallest detail which was still visible in the reconstructed image has a size of 0.2mm.

  14. Detection of bone erosions in early rheumatoid arthritis: 3D ultrasonography versus computed tomography.

    PubMed

    Peluso, G; Bosello, S L; Gremese, E; Mirone, L; Di Gregorio, F; Di Molfetta, V; Pirronti, T; Ferraccioli, G

    2015-07-01

    Three-dimensional (3D) volumetric ultrasonography (US) is an interesting tool that could improve the traditional approach to musculoskeletal US in rheumatology, due to its virtual operator independence and reduced examination time. The aim of this study was to investigate the performance of 3DUS in the detection of bone erosions in hand and wrist joints of early rheumatoid arthritis (ERA) patients, with computed tomography (CT) as the reference method. Twenty ERA patients without erosions on standard radiography of hands and wrists underwent 3DUS and CT evaluation of eleven joints: radiocarpal, intercarpal, ulnocarpal, second to fifth metacarpo-phalangeal (MCP), and second to fifth proximal interphalangeal (PIP) joints of dominant hand. Eleven (55.0%) patients were erosive with CT and ten of them were erosive also at 3DUS evaluation. In five patients, 3DUS identified cortical breaks that were not erosions at CT evaluation. Considering CT as the gold standard to identify erosive patients, the 3DUS sensitivity, specificity, PPV, and NPV were 0.9, 0.55, 0.71, and 0.83, respectively. A total of 32 erosions were detected with CT, 15 of them were also observed at the same sites with 3DUS, whereas 17 were not seen on 3DUS evaluation. The majority of these 3DUS false-negative erosions were in the wrist joints. Furthermore, 18 erosions recorded by 3DUS were false positive. The majority of these 3DUS false-positive erosions were located at PIP joints. This study underlines the limits of 3DUS in detecting individual bone erosion, mostly at the wrist, despite the good sensitivity in identifying erosive patients. PMID:26091903

  15. 3D surface-wave tomography in the central Baltic Shield

    NASA Astrophysics Data System (ADS)

    Bruneton, M.; Pedersen, H. A.; Farra, V.; Svekalapko Seismic Tomography Working Group

    2003-04-01

    The main objective of the SVEKALAPKO deep seismic experiment was to image in details the lithosphere-asthenosphere system of the central Baltic Shield, therefore enhancing our knowledge of the structure and evolution of cratonic lithosphere. During the experiment a regular 2D grid of 46 broad-band stations covered the southern part of Finland. This exceptional stations distribution made it possible to undertake a high precision surface-wave tomography. We developed a technique based on paraxial ray tracing to obtain 2D phase-velocity maps as a function of frequency which can subsequently be inverted for the 3D structure. The major improvement is that we jointly inverted for the velocity model under the array and the shape of incoming wave fronts, therefore reducing artifacts due to structure outside the study region. The data set included carefully selected fundamental mode Rayleigh wave arrival times of 69 teleseismic events, computed using Wiener filtering. An average dispersion curve was obtained imposing the phase-velocity to be quasi constant. It leads to shear-wave velocities for the lithospheric mantle 4% faster than standard Earth model ak135. The inversion of the same data set was also conducted using weaker constraints to obtain the lateral variations of the phase-velocity at each frequency and subsequently of the shear-wave velocity as a function of depth. Three Vs profiles were computed respectively in the Karelian Archean province, in the Proterozoic Svekofennia, and at the suture between the two domains. They showed significant variations, the higher lithospheric velocities were seen in the proterozoic domain, a low velocity zone was necessary only in the suture zone. Our results showed that chemical changes are maintained within the lithosphere over extended periods of time.

  16. Electrical resistivity tomography applied to a complex lava dome: 2D and 3D models comparison

    NASA Astrophysics Data System (ADS)

    Portal, Angélie; Fargier, Yannick; Lénat, Jean-François; Labazuy, Philippe

    2015-04-01

    interpretation. Geometry and location of ERT profiles on the Puy de Dôme volcano allow to compute 3D inversion models of the electrical resistivity distribution with a new inversion code. This code uses tetrahedrons to discretize the 3D model and uses also a conventional Gauss-Newton inversion scheme combined to an Occam regularisation to process the data. It allows to take into account all the data information and prevents the construction of 3D artefacts present in conventional 2D inversion results. Inversion results show a strong electrical resistivity heterogeneity of the entire dome. Underlying volcanic edifices are clearly identified below the lava dome. Generally speaking, the flanks of the volcano show high resistivity values, and the summit part is more conductive but also very heterogeneous.

  17. tomo3d: a new 3-D joint refraction and reflection travel-time tomography code for active-source seismic data

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallares, V.; Ranero, C. R.

    2012-12-01

    We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also

  18. Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography

    NASA Astrophysics Data System (ADS)

    Steininger, P.; Neuner, M.; Weichenberger, H.; Sharp, G. C.; Winey, B.; Kametriser, G.; Sedlmayer, F.; Deutschmann, H.

    2012-07-01

    Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription.

  19. Auto-masked 2D/3D image registration and its validation with clinical cone-beam computed tomography.

    PubMed

    Steininger, P; Neuner, M; Weichenberger, H; Sharp, G C; Winey, B; Kametriser, G; Sedlmayer, F; Deutschmann, H

    2012-07-01

    Image-guided alignment procedures in radiotherapy aim at minimizing discrepancies between the planned and the real patient setup. For that purpose, we developed a 2D/3D approach which rigidly registers a computed tomography (CT) with two x-rays by maximizing the agreement in pixel intensity between the x-rays and the corresponding reconstructed radiographs from the CT. Moreover, the algorithm selects regions of interest (masks) in the x-rays based on 3D segmentations from the pre-planning stage. For validation, orthogonal x-ray pairs from different viewing directions of 80 pelvic cone-beam CT (CBCT) raw data sets were used. The 2D/3D results were compared to corresponding standard 3D/3D CBCT-to-CT alignments. Outcome over 8400 2D/3D experiments showed that parametric errors in root mean square were <0.18° (rotations) and <0.73 mm (translations), respectively, using rank correlation as intensity metric. This corresponds to a mean target registration error, related to the voxels of the lesser pelvis, of <2 mm in 94.1% of the cases. From the results we conclude that 2D/3D registration based on sequentially acquired orthogonal x-rays of the pelvis is a viable alternative to CBCT-based approaches if rigid alignment on bony anatomy is sufficient, no volumetric intra-interventional data set is required and the expected error range fits the individual treatment prescription. PMID:22705709

  20. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  1. High Resolution 3-D Waveform Tomography of the Lithospheric Structure of the Hellenic Subduction Zone

    NASA Astrophysics Data System (ADS)

    Lamara, Samir; Friederich, Wolfgang; Schumacher, Florian; Meier, Thomas; Egelados Working Group

    2015-04-01

    We present a high-resolution lithospheric shear-wave velocity model of the Hellenic subduction zone obtained by full waveform tomography of the EGELADOS project data. This high quality data was collected with the broadband amphibian seismic network EGELADOS that was deployed all over the southern Aegean from October 2005 to April 2007 providing a sampling of the south Aegean lithosphere with a resolution never reached before. Because of the strong deformations in the Hellenic subduction zone and the linear approximation in solving the full waveform inverse problem, a special care was taken to guarantee the best possible accuracy of earthquakes parameters and initial reference models. The accurate locations of the selected earthquakes were hence re-estimated and the best moment tensors were selected by computing the misfits between the observed seismograms for one event and a set of synthetics calculated for every value of the fault angles (strike, dip and rake) and hypocenter depths. On the other hand, instead of using an average 1D reference model for the complete region, a 1D path-specific approach permitted to obtain the 1D initial model for each source-receiver pair by waveform fitting using a grid search varying the Moho depth and the average S-wave velocity in the crust. These models were then refined by a 1D inversion and used to calculate the sensitivity kernels for each source-receiver pair. For the inversion, we adopted a special formulation including a correction term which permits to use the path-specific sensitivity kernels in an inversion for 3D velocity perturbations relative to a single 1D reference model constructed from all these 1D initial models. The inversion was done in frequency domain with a frequency window ranging from 0.03 Hz to 0.1 Hz. For the selected 2695 paths the total number of data values reached 140140. The model was discretized in volume cells with a varying vertical width and a fixed lateral one of approximately 15 km, resulting

  2. Iterative alternating sequential (IAS) method for radio tomography of asteroids in 3D

    NASA Astrophysics Data System (ADS)

    Pursiainen, S.; Kaasalainen, M.

    2013-07-01

    We present a feasibility study of the radio tomography of asteroids. We consider the simplest and most robust type of a radio experiment and physical model, related to the CONSERT (Comet Nucleus Sounding Experiment by Radiowave Transmission) setup, where an orbiter measures the propagation time and amplitude of a radio frequency signal between the orbiter and a transponder placed on an asteroid's surface. Contrary to CONSERT, we consider the simultaneous use of multiple transponders. We study two main questions: (i) what is the basic information content (reconstruction potential) of the data and the minimum number of transponders for recovering most of it and (ii) how to formulate Bayesian methods for an efficient 3D reconstruction. Our approach was to reconstruct the perturbations of a non-constant refractive index inside the asteroid based on simulated signal travel time measurements. We formulate this ill-posed inverse problem by an approximative linear forward (data prediction) model through optical path length and Snell's law, resulting in a formula closely related to the cone-beam and Radon transforms. The linear forward model was applied to three-dimensional asteroid geometries involving an isotropic and piecewise constant refractive index distribution composed of the unknown perturbation and a background given a priori. The inverse approach was based on a hierarchical Bayesian model. The reconstructions were produced via the iterative alternating sequential (IAS) maximum a posteriori (MAP) estimation algorithm. We explored the various aspects of the problem by considering the recovery of empty cavities inside an asteroid. Two different transponder setups, a spherical and a realistic computation geometry, as well as various cavity distributions were tested. The results suggest that (i) the information content of the travel time data is robust and allows a unique reconstruction with suitable methods; (ii) finding a reasonable reconstruction requires the use

  3. Accuracy and reliability of measurements obtained from computed tomography 3D volume rendered images.

    PubMed

    Stull, Kyra E; Tise, Meredith L; Ali, Zabiullah; Fowler, David R

    2014-05-01

    Forensic pathologists commonly use computed tomography (CT) images to assist in determining the cause and manner of death as well as for mass disaster operations. Even though the design of the CT machine does not inherently produce distortion, most techniques within anthropology rely on metric variables, thus concern exists regarding the accuracy of CT images reflecting an object's true dimensions. Numerous researchers have attempted to validate the use of CT images, however the comparisons have only been conducted on limited elements and/or comparisons were between measurements taken from a dry element and measurements taken from the 3D-CT image of the same dry element. A full-body CT scan was performed prior to autopsy at the Office of the Chief Medical Examiner for the State of Maryland. Following autopsy, the remains were processed to remove all soft tissues and the skeletal elements were subject to an additional CT scan. Percent differences and Bland-Altman plots were used to assess the accuracy between osteometric variables obtained from the dry skeletal elements and from CT images with and without soft tissues. An additional seven crania were scanned, measured by three observers, and the reliability was evaluated by technical error of measurement (TEM) and relative technical error of measurement (%TEM). Average percent differences between the measurements obtained from the three data sources ranged from 1.4% to 2.9%. Bland-Altman plots illustrated the two sets of measurements were generally within 2mm for each comparison between data sources. Intra-observer TEM and %TEM for three observers and all craniometric variables ranged between 0.46mm and 0.77mm and 0.56% and 1.06%, respectively. The three-way inter-observer TEM and %TEM for craniometric variables was 2.6mm and 2.26%, respectively. Variables that yielded high error rates were orbital height, orbital breadth, inter-orbital breadth and parietal chord. Overall, minimal differences were found among the

  4. 3D Attenuation Tomography of the Volcanic Island of Tenerife (Canary Islands)

    NASA Astrophysics Data System (ADS)

    Prudencio, J.; Ibáñez, J. M.; Del Pezzo, E.; Martí, J.; García-Yeguas, A.; De Siena, L.

    2015-09-01

    This paper shows a new multidisciplinary interpretation approach to the internal structure of Tenerife Island. The central core of this work is the determination of the three-dimensional attenuation structure of the region using P-waves and the coda normalization method. This study has been performed using 45,303 seismograms recorded at 85 seismic stations from an active experiment (air gun shots) conducted in January 2007. The interpretation of these new results is done combining the new images with previous studies performed in the area such as seismic velocity tomography, magnetic structure, magnetotelluric surveys or gravimetric models. Our new 3D images indicate the presence of seismic attenuation contrasts, with areas of high and low seismic attenuation patterns. High seismic attenuation zones are observed both in shallow and in deeper areas. The shallowest area of Las Cañadas caldera complex (1-3 km thick) is dominated by high attenuation behavior, and it is interpreted as the combined effect of sedimentary and volcanoclastic deposits, multifracture systems and the presence of shallow aquifers. At the same time, the deeper analyzed area, more than 8 km below sea level, is dominated by a high attenuation pattern, and it is interpreted as the consequence of the effect of high-temperature rocks in the crustal-mantle boundary. This interpretation is compatible and confirmed by previous models that indicate the presence of underplating magma in this region. On the contrary, some low attenuation bodies and structures have been identified at different depths. A deep low attenuation central body is interpreted as the original central structure associated with the early stage of Tenerife Island. At shallower depths, some low attenuation bodies are compatible with old intermediate magmatic chambers postulated by petrological studies. Finally, in the north of the island (La Orotava valley) we can interpret the low attenuation structure as the headwall of this valley

  5. High-Resolution 3-D Imaging and Tissue Differentiation with Transmission Tomography

    NASA Astrophysics Data System (ADS)

    Marmarelis, V. Z.; Jeong, J.; Shin, D. C.; Do, S.

    A three-dimensional High-resolution Ultrasonic Transmission Tomography (HUTT) system has been developed recently under the sponsorship of the Alfred Mann Institute at the University of Southern California that holds the promise of early detection of breast cancer (mm-size lesions) with greater sensitivity (true positives) and specificity (true negatives) than current x-ray mammograghy. In addition to sub-mm resolution in 3-D, the HUTT system has the unique capability of reliable tissue classification by means of the frequency-dependent attenuation characteristics of individual voxels that are extracted from the tomographic data through novel signal processing methods. These methods yield "multi-band signatures" of the various tissue types that are utilized to achieve reliable tissue differentiation via novel segmentation and classification algorithms. The unparalleled high-resolution and tissue differentiation capabilities of the HUTT system have been demonstrated so far with man-made and animal-tissue phantoms. Illustrative results are presented that corroborate these claims, although several challenges remain to make HUTT a clinically acceptable technology. The next critical step is to collect and analyze data from human subjects (female breasts) in order to demonstrate the key capability of the HUTT system to detect breast lesions early (at the mm-size stage) and to differentiate between malignant and benign lesions in a manner that is far superior (in terms of sensitivity and specificity) to the current x-ray mammography. The key initial application of the HUTT imaging technology is envisioned to be the early (at the mm-size) detection of breast cancer, which represents a major threat to the well-being of women around the world. The potential impact is estimated in hundreds of thousands lives saved, millions of unnecessary biopsies avoided, and billions of dollars saved in national health-care costs every year - to say nothing of the tens of thousands of

  6. Karyotype, Pedigree and cone-beam computerized tomography analysis of a case of nonsyndromic pandental anomalies

    PubMed Central

    Dharmani, Umesh; Jadhav, Ganesh Ranganath; Kaur Dharmani, Charan Kamal; Rajput, Akhil; Mittal, Priya; Abraham, Sathish; Soni, Vinay

    2015-01-01

    This case report presented a karyotype and pedigree analysis of a case with unusual combination of dental anomalies: Generalized short roots, talon cusps, dens invagination, low alveolar bone heights, very prominent cusp of carabelli and protostylid on first permanent molars, taurodontism of second permanent molars, rotated, missing and impacted teeth. None of the anomalies alone are rare. However, until date, nonsyndromic pandental anomalies that are affecting entire dentition with detailed karyotype, pedigree and cone-beam computerized tomography analysis have not been reported. The occurrence of these anomalies is probably incidental as the conditions are etiologically unrelated. PMID:26283856

  7. Detection of drugs and explosives using neutron computerized tomography and artificial intelligence techniques.

    PubMed

    Ferreira, F J O; Crispim, V R; Silva, A X

    2010-06-01

    In this study the development of a methodology to detect illicit drugs and plastic explosives is described with the objective of being applied in the realm of public security. For this end, non-destructive assay with neutrons was used and the technique applied was the real time neutron radiography together with computerized tomography. The system is endowed with automatic responses based upon the application of an artificial intelligence technique. In previous tests using real samples, the system proved capable of identifying 97% of the inspected materials. PMID:20149671

  8. [Computerized tomography of the organs of the small pelvis in children with anorectal atresia].

    PubMed

    Sitkovskiĭ, N B; Babiĭ, Ia S; Kaplan, V M; Dan'shin, T I; Sil'chenko, M I; Bodnar', V V; Gbenu, A S

    1992-01-01

    In 12 children with the different forms of anorectal atresia, for studying the state of a sphincter apparatus of the rectum and assessment of quality of its bringing down into the perineum after proctoplasty, computerized tomography of the organs of a small pelvis was used. Underdeveloped and undifferentiated musculus levator ani in children with high anorectal atresia and fistula to the urinary bladder was revealed. The method permits to establish exact location of the intestine brought down relative to musculus levator ani and external anal sphincter. PMID:1518247

  9. TOMO3D: 3-D joint refraction and reflection traveltime tomography parallel code for active-source seismic data—synthetic test

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Miniussi, A.; Ranero, C. R.

    2015-10-01

    We present a new 3-D traveltime tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the velocity distribution and the geometry of reflecting boundaries in the subsurface. This code is based on its popular 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The traveltime calculations are done using a hybrid ray-tracing technique combining the graph and bending methods. The LSQR algorithm is used to perform the iterative regularized inversion to improve the initial velocity and depth models. In order to cope with an increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes most of the run time (˜90 per cent in the test presented here), has been parallelized with a combination of multi-processing and message passing interface standards. This parallelization distributes the ray-tracing and traveltime calculations among available computational resources. The code's performance is illustrated with a realistic synthetic example, including a checkerboard anomaly and two reflectors, which simulates the geometry of a subduction zone. The code is designed to invert for a single reflector at a time. A data-driven layer-stripping strategy is proposed for cases involving multiple reflectors, and it is tested for the successive inversion of the two reflectors. Layers are bound by consecutive reflectors, and an initial velocity model for each inversion step incorporates the results from previous steps. This strategy poses simpler inversion problems at each step, allowing the recovery of strong velocity discontinuities that would otherwise be smoothened.

  10. Data-driven layer-stripping strategy in 3-D joint refraction and reflection travel-time tomography with TOMO3D

    NASA Astrophysics Data System (ADS)

    Meléndez, Adrià; Korenaga, Jun; Sallarès, Valentí; Miniussi, Alain; Ranero, César

    2015-04-01

    We present a new 3-D travel-time tomography code (TOMO3D) for the modelling of active-source seismic data that uses the arrival times of both refracted and reflected seismic phases to derive the propagation velocity distribution and the geometry of reflecting boundaries in the subsurface. The combination of refracted and reflected data provides a denser coverage of the study area. Moreover, because refractions only depend on the velocity parameters, they contribute to the mitigation of the negative effect of the ambiguity between layer thickness and propagation velocity that is intrinsic to the reflections that define these boundaries. This code is based on its renowned 2-D version TOMO2D from which it inherited the methods to solve the forward and inverse problems. The forward travel-time calculations are conducted using a hybrid ray-tracing technique combining the graph or shortest path method and the bending method. The LSQR algorithm is used to perform the iterative inversion of travel-time residuals to update the initial velocity and depth models. In order to cope with the increased computational demand due to the incorporation of the third dimension, the forward problem solver, which takes by far most of the run time (~90%), has been parallelised with a combination of MP and MPI standards. This parallelisation distributes the ray-tracing and travel-time calculations among the available computational resources, allowing the user to set the number of nodes, processors and cores to be used. The code's performance was evaluated with a complex synthetic case simulating a subduction zone. The objective is to retrieve the velocity distribution of both upper and lower plates and the geometry of the interplate and Moho boundaries. Our tomography method is designed to deal with a single reflector per inversion, and we show that a data-driven layer-stripping strategy allows to successfully recover several reflectors in successive inversions. This strategy consists in

  11. tomo3d: a new 3-D joint refraction and reflection travel-time tomography code for active-source seismic data

    NASA Astrophysics Data System (ADS)

    Meléndez, A.; Korenaga, J.; Sallarès, V.; Ranero, C. R.

    2012-04-01

    We present the development state of tomo3d, a code for three-dimensional refraction and reflection travel-time tomography of wide-angle seismic data based on the previous two-dimensional version of the code, tomo2d. The core of both forward and inverse problems is inherited from the 2-D version. The ray tracing is performed by a hybrid method combining the graph and bending methods. The graph method finds an ordered array of discrete model nodes, which satisfies Fermat's principle, that is, whose corresponding travel time is a global minimum within the space of discrete nodal connections. The bending method is then applied to produce a more accurate ray path by using the nodes as support points for an interpolation with beta-splines. Travel time tomography is formulated as an iterative linearized inversion, and each step is solved using an LSQR algorithm. In order to avoid the singularity of the sensitivity kernel and to reduce the instability of inversion, regularization parameters are introduced in the inversion in the form of smoothing and damping constraints. Velocity models are built as 3-D meshes, and velocity values at intermediate locations are obtained by trilinear interpolation within the corresponding pseudo-cubic cell. Meshes are sheared to account for topographic relief. A floating reflector is represented by a 2-D grid, and depths at intermediate locations are calculated by bilinear interpolation within the corresponding square cell. The trade-off between the resolution of the final model and the associated computational cost is controlled by the relation between the selected forward star for the graph method (i.e. the number of nodes that each node considers as its neighbors) and the refinement of the velocity mesh. Including reflected phases is advantageous because it provides a better coverage and allows us to define the geometry of those geological interfaces with velocity contrasts sharp enough to be observed on record sections. The code also

  12. Nanoscale 3D cellular imaging by axial scanning transmission electron tomography

    PubMed Central

    Hohmann-Marriott, Martin F.; Sousa, Alioscka A.; Azari, Afrouz A.; Glushakova, Svetlana; Zhang, Guofeng; Zimmerberg, Joshua; Leapman, Richard D.

    2009-01-01

    Electron tomography provides three-dimensional structural information about supramolecular assemblies and organelles in a cellular context but image degradation, caused by scattering of transmitted electrons, limits applicability in specimens thicker than 300 nm. We show that scanning transmission electron tomography of 1000 nm thick samples using axial detection provides resolution comparable to conventional electron tomography. The method is demonstrated by reconstructing a human erythrocyte infected with the malaria parasite Plasmodium falciparum. PMID:19718033

  13. Applications of detailed 3D P-wave velocity crustal model in Poland for local, regional and global seismic tomography

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin; Grad, Marek

    2015-04-01

    The 3D P-wave seismic velocity model was obtained by combining data from multiple studies during past 50 years. Data sources included refraction seismology, reflection seismology, geological boreholes, vertical seismic profiling, magnetotellurics and gravimetry. Use of many data sources allowed creation of detailed 3D P-wave velocity model that reaches to depth of 60 km and includes 6-layers of sediments and 3-layers of the crust. Purpose of this study is to analyze how 3D model influences local (accuracy of location and source time estimation for local events), regional (identification of wide-angle seismic phases) and global (teleseismic tomography) seismic travel times. Additionally we compare results of forward seismic wave propagation with signals observed on short period and broadband stations. National Science Centre Poland provided financial support for this work by NCN grant DEC-2011/02/A/ST10/00284.

  14. Non-Conventional Applications of Computerized Tomography: Analysis of Solid Dosage Forms Produced by Pharmaceutical Industry

    SciTech Connect

    Martins de Oliveira, Jose Jr.; Germano Martins, Antonio Cesar

    2010-05-21

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 mum was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.

  15. An introduction to computerized x-ray tomography for petroleum research

    SciTech Connect

    Castanier, L.M.

    1989-06-01

    This report summarizes the state of the art in the application of medical tomography (CT) to petroleum recovery problems. A brief review of the basic principles of x-ray computerized tomography is followed by a discussion of the governing equations of the method. Calculation techniques and appropriate correlations for continued testing are described and discussed. A review of existing medical software is done. Consideration of the specific software needed for petroleum engineering as well as applications of new technologies such as image processing and computer networking are described. Criteria for the choice of a machine suitable for most petroleum-related applications are given. Emphasis is placed on flexibility, reliability, accuracy and price of the scanner. Two separate sections discuss positioning of the core and design of the core holders. Examples of possible applications of CT scanning to problems of geology, core analysis, EOR as well as operational process problems are discussed. 9 refs., 8 figs., 1 tab.

  16. Non-Conventional Applications of Computerized Tomography: Analysis of Solid Dosage Forms Produced by Pharmaceutical Industry

    NASA Astrophysics Data System (ADS)

    de Oliveira, José Martins; Germano Martins, Antonio César

    2010-05-01

    X-ray computed tomography (CT) refers to the cross-sectional imaging of an object measuring the transmitted radiation at different directions. In this work, we describe a non-conventional application of computerized tomography: visualization and improvements in the understanding of some internal structural features of solid dosage forms. A micro-CT X-ray scanner, with a minimum resolution of 30 μm was used to characterize some pharmaceutical tablets, granules, controlled-release osmotic tablet and liquid-filled soft-gelatin capsules. The analysis presented in this work are essentially qualitative, but quantitative parameters, such as porosity, density distribution, tablets dimensions, etc. could also be obtained using the related CT techniques.

  17. Understanding Plasticity and Fracture in Aluminum Alloys and their Composites by 3D X-ray Synchrotron Tomography and Microdiffraction

    NASA Astrophysics Data System (ADS)

    Hruby, Peter

    Aluminum alloys and their composites are attractive materials for applications requiring high strength-to-weight ratios and reasonable cost. Many of these applications, such as those in the aerospace industry, undergo fatigue loading. An understanding of the microstructural damage that occurs in these materials is critical in assessing their fatigue resistance. Two distinct experimental studies were performed to further the understanding of fatigue damage mechanisms in aluminum alloys and their composites, specifically fracture and plasticity. Fatigue resistance of metal matrix composites (MMCs) depends on many aspects of composite microstructure. Fatigue crack growth behavior is particularly dependent on the reinforcement characteristics and matrix microstructure. The goal of this work was to obtain a fundamental understanding of fatigue crack growth behavior in SiC particle-reinforced 2080 Al alloy composites. In situ X-ray synchrotron tomography was performed on two samples at low (R=0.1) and at high (R=0.6) R-ratios. The resulting reconstructed images were used to obtain three-dimensional (3D) rendering of the particles and fatigue crack. Behaviors of the particles and crack, as well as their interaction, were analyzed and quantified. Four-dimensional (4D) visual representations were constructed to aid in the overall understanding of damage evolution. During fatigue crack growth in ductile materials, a plastic zone is created in the region surrounding the crack tip. Knowledge of the plastic zone is important for the understanding of fatigue crack formation as well as subsequent growth behavior. The goal of this work was to quantify the 3D size and shape of the plastic zone in 7075 Al alloys. X-ray synchrotron tomography and Laue microdiffraction were used to non-destructively characterize the volume surrounding a fatigue crack tip. The precise 3D crack profile was segmented from the reconstructed tomography data. Depth-resolved Laue patterns were obtained using

  18. Multiscale microstructural characterization of Sn-rich alloys by three dimensional (3D) X-ray synchrotron tomography and focused ion beam (FIB) tomography

    SciTech Connect

    Yazzie, K.E.; Williams, J.J.; Phillips, N.C.; De Carlo, F.; Chawla, N.

    2012-08-15

    Sn-rich (Pb-free) alloys serve as electrical and mechanical interconnects in electronic packaging. It is critical to quantify the microstructures of Sn-rich alloys to obtain a fundamental understanding of their properties. In this work, the intermetallic precipitates in Sn-3.5Ag and Sn-0.7Cu, and globular lamellae in Sn-37Pb solder joints were visualized and quantified using 3D X-ray synchrotron tomography and focused ion beam (FIB) tomography. 3D reconstructions were analyzed to extract statistics on particle size and spatial distribution. In the Sn-Pb alloy the interconnectivity of Sn-rich and Pb-rich constituents was quantified. It will be shown that multiscale characterization using 3D X-ray and FIB tomography enabled the characterization of the complex morphology, distribution, and statistics of precipitates and contiguous phases over a range of length scales. - Highlights: Black-Right-Pointing-Pointer Multiscale characterization by X-ray synchrotron and focused ion beam tomography. Black-Right-Pointing-Pointer Characterized microstructural features in several Sn-based alloys. Black-Right-Pointing-Pointer Quantified size, fraction, and clustering of microstructural features.

  19. Accuracy of cone-beam computerized tomography in determining the thickness of palatal masticatory mucosa

    PubMed Central

    Gupta, Prabhati; Jan, Suhail Majid; Behal, Roobal; Mir, Reyaz Ahmad; Shafi, Munaza

    2015-01-01

    Background: The palatal masticatory mucosa is the main donor area of soft tissue and connective tissue grafts used for increasing the keratinized mucosa around teeth and implants, covering exposed roots and increasing localized alveolar ridge thickness. The aim of this study was to compare the thickness of the palatal masticatory mucosa as determined on a cone-beam computerized tomography scan versus thickness determined via bone-sounding. Materials and Methods: A total of 20 patients requiring palatal surgery participated. Thickness of the palatal tissue was measured at various points radiographically and clinically. The two techniques were compared to determine the agreement of the two measurement modalities. Results: Statistical analysis determined that there was no significant difference between the two methods. Moreover, the tissue thickness was shown to increase as the distance from the gingival margin increased, and the tissue over the premolars was thicker than the other teeth. Conclusion: Cone-beam computerized tomography can be used as a noninvasive method to accurately and consistently determine the soft tissue thickness of the palatal masticatory mucosa with minimal bias at different locations on the palate. PMID:26392687

  20. Use of micro computed-tomography and 3D printing for reverse engineering of mouse embryo nasal capsule

    NASA Astrophysics Data System (ADS)

    Tesařová, M.; Zikmund, T.; Kaucká, M.; Adameyko, I.; Jaroš, J.; Paloušek, D.; Škaroupka, D.; Kaiser, J.

    2016-03-01

    Imaging of increasingly complex cartilage in vertebrate embryos is one of the key tasks of developmental biology. This is especially important to study shape-organizing processes during initial skeletal formation and growth. Advanced imaging techniques that are reflecting biological needs give a powerful impulse to push the boundaries of biological visualization. Recently, techniques for contrasting tissues and organs have improved considerably, extending traditional 2D imaging approaches to 3D . X-ray micro computed tomography (μCT), which allows 3D imaging of biological objects including their internal structures with a resolution in the micrometer range, in combination with contrasting techniques seems to be the most suitable approach for non-destructive imaging of embryonic developing cartilage. Despite there are many software-based ways for visualization of 3D data sets, having a real solid model of the studied object might give novel opportunities to fully understand the shape-organizing processes in the developing body. In this feasibility study we demonstrated the full procedure of creating a real 3D object of mouse embryo nasal capsule, i.e. the staining, the μCT scanning combined by the advanced data processing and the 3D printing.

  1. Metal Artifact Reduction and Segmentation of Dental Computerized Tomography Images Using Least Square Support Vector Machine and Mean Shift Algorithm

    PubMed Central

    Mortaheb, Parinaz; Rezaeian, Mehdi

    2016-01-01

    Segmentation and three-dimensional (3D) visualization of teeth in dental computerized tomography (CT) images are of dentists’ requirements for both abnormalities diagnosis and the treatments such as dental implant and orthodontic planning. On the other hand, dental CT image segmentation is a difficult process because of the specific characteristics of the tooth's structure. This paper presents a method for automatic segmentation of dental CT images. We present a multi-step method, which starts with a preprocessing phase to reduce the metal artifact using the least square support vector machine. Integral intensity profile is then applied to detect each tooth's region candidates. Finally, the mean shift algorithm is used to partition the region of each tooth, and all these segmented slices are then applied for 3D visualization of teeth. Examining the performance of our proposed approach, a set of reliable assessment metrics is utilized. We applied the segmentation method on 14 cone-beam CT datasets. Functionality analysis of the proposed method demonstrated precise segmentation results on different sample slices. Accuracy analysis of the proposed method indicates that we can increase the sensitivity, specificity, precision, and accuracy of the segmentation results by 83.24%, 98.35%, 72.77%, and 97.62% and decrease the error rate by 2.34%. The experimental results show that the proposed approach performs well on different types of CT images and has better performance than all existing approaches. Moreover, segmentation results can be more accurate by using the proposed algorithm of metal artifact reduction in the preprocessing phase. PMID:27014607

  2. 3D imaging of the Corinth rift from a new passive seismic tomography and receiver function analysis

    NASA Astrophysics Data System (ADS)

    Godano, Maxime; Gesret, Alexandrine; Noble, Mark; Lyon-Caen, Hélène; Gautier, Stéphanie; Deschamps, Anne

    2016-04-01

    The Corinth Rift is the most seismically active zone in Europe. The area is characterized by very localized NS extension at a rate of ~ 1.5cm/year, the occurrence of frequent and intensive microseismic crises and occasional moderate to large earthquakes like in 1995 (Mw=6.1). Since the year 2000, the Corinth Rift Laboratory (CRL, http://crlab.eu) consisting in a multidisciplinary natural observatory, aims at understanding the mechanics of faulting and earthquake nucleation in the Rift. Recent studies have improved our view about fault geometry and mechanics within CRL, but there is still a critical need for a better knowledge of the structure at depth both for the accuracy of earthquake locations and for mechanical interpretation of the seismicity. In this project, we aim to analyze the complete seismological database (13 years of recordings) of CRL by using recently developed methodologies of structural imaging, in order to determine at the same time and with high resolution, the local 3D structure and the earthquake locations. We perform an iterative joint determination of 3D velocity model and earthquake coordinates. In a first step, P and S velocity models are determined using first arrival time tomography method proposed by Taillandier et al. (2009). It consists in the minimization of the cost function between observed and theoretical arrival times which is achieved by the steepest descent method (e.g. Tarantola 1987). This latter requires computing the gradient of the cost function by using the adjoint state method (Chavent 1974). In a second step, earthquakes are located in the new velocity model with a non-linear inversion method based on a Bayesian formulation (Gesret et al. 2015). Step 1 and 2 are repeated until the cost function no longer decreases. We present preliminary results consisting in: (1) the adjustement of a 1D velocity model that is used as initial model of the 3D tomography and (2) a first attempt of the joint determination of 3D velocity

  3. 3D Ultrastructural Organization of Whole Chlamydomonas reinhardtii Cells Studied by Nanoscale Soft X-Ray Tomography

    PubMed Central

    Hummel, Eric; Guttmann, Peter; Werner, Stephan; Tarek, Basel; Schneider, Gerd; Kunz, Michael; Frangakis, Achilleas S.; Westermann, Benedikt

    2012-01-01

    The complex architecture of their structural elements and compartments is a hallmark of eukaryotic cells. The creation of high resolution models of whole cells has been limited by the relatively low resolution of conventional light microscopes and the requirement for ultrathin sections in transmission electron microscopy. We used soft x-ray tomography to study the 3D ultrastructural organization of whole cells of the unicellular green alga Chlamydomonas reinhardtii at unprecedented spatial resolution. Intact frozen hydrated cells were imaged using the natural x-ray absorption contrast of the sample without any staining. We applied different fiducial-based and fiducial-less alignment procedures for the 3D reconstructions. The reconstructed 3D volumes of the cells show features down to 30 nm in size. The whole cell tomograms reveal ultrastructural details such as nuclear envelope membranes, thylakoids, basal apparatus, and flagellar microtubule doublets. In addition, the x-ray tomograms provide quantitative data from the cell architecture. Therefore, nanoscale soft x-ray tomography is a new valuable tool for numerous qualitative and quantitative applications in plant cell biology. PMID:23300909

  4. A computerized framework for monitoring four-dimensional dose distributions during stereotactic body radiation therapy using a portal dose image-based 2D/3D registration approach.

    PubMed

    Nakamoto, Takahiro; Arimura, Hidetaka; Nakamura, Katsumasa; Shioyama, Yoshiyuki; Mizoguchi, Asumi; Hirose, Taka-Aki; Honda, Hiroshi; Umezu, Yoshiyuki; Nakamura, Yasuhiko; Hirata, Hideki

    2015-03-01

    A computerized framework for monitoring four-dimensional (4D) dose distributions during stereotactic body radiation therapy based on a portal dose image (PDI)-based 2D/3D registration approach has been proposed in this study. Using the PDI-based registration approach, simulated 4D "treatment" CT images were derived from the deformation of 3D planning CT images so that a 2D planning PDI could be similar to a 2D dynamic clinical PDI at a breathing phase. The planning PDI was calculated by applying a dose calculation algorithm (a pencil beam convolution algorithm) to the geometry of the planning CT image and a virtual water equivalent phantom. The dynamic clinical PDIs were estimated from electronic portal imaging device (EPID) dynamic images including breathing phase data obtained during a treatment. The parameters of the affine transformation matrix were optimized based on an objective function and a gamma pass rate using a Levenberg-Marquardt (LM) algorithm. The proposed framework was applied to the EPID dynamic images of ten lung cancer patients, which included 183 frames (mean: 18.3 per patient). The 4D dose distributions during the treatment time were successfully obtained by applying the dose calculation algorithm to the simulated 4D "treatment" CT images. The mean±standard deviation (SD) of the percentage errors between the prescribed dose and the estimated dose at an isocenter for all cases was 3.25±4.43%. The maximum error for the ten cases was 14.67% (prescribed dose: 1.50Gy, estimated dose: 1.72Gy), and the minimum error was 0.00%. The proposed framework could be feasible for monitoring the 4D dose distribution and dose errors within a patient's body during treatment. PMID:25592290

  5. The New Approach to Sport Medicine: 3-D Reconstruction

    ERIC Educational Resources Information Center

    Ince, Alparslan

    2015-01-01

    The aim of this study is to present a new approach to sport medicine. Comparative analysis of the Vertebrae Lumbales was done in sedentary group and Muay Thai athletes. It was done by acquiring three dimensional (3-D) data and models through photogrammetric methods from the Multi-detector Computerized Tomography (MDCT) images of the Vertebrae…

  6. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    PubMed Central

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-01-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the “non-progressing” and “progressing” glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection. PMID:25606299

  7. Investigation of gas–solids flow in a circulating fluidized bed using 3D electrical capacitance tomography

    NASA Astrophysics Data System (ADS)

    Mao, Mingxu; Ye, Jiamin; Wang, Haigang; Yang, Wuqiang

    2016-09-01

    The hydrodynamics of gas–solids flow in the bottom of a circulating fluidized bed (CFB) are complicated. Three-dimensional (3D) electrical capacitance tomography (ECT) has been used to investigate the hydrodynamics in risers of different shapes. Four different ECT sensors with 12 electrodes each are designed according to the dimension of risers, including two circular ECT sensors, a square ECT sensor and a rectangular ECT sensor. The electrodes are evenly arranged in three planes to obtain capacitance in different heights and to reconstruct the 3D images by linear back projection (LBP) algorithm. Experiments were carried out on the four risers using sands as the solids material. The capacitance and differential pressure are measured under the gas superficial velocity from 0.6 m s‑1 to 3.0 m s‑1 with a step of 0.2 m s‑1. The flow regime is investigated according to the solids concentration and differential pressure. The dynamic property of bubbling flows is analyzed theoretically and the performance of the 3D ECT sensors is evaluated. The experimental results show that 3D ECT can be used in the CFB with different risers to predict the hydrodynamics of gas–solids bubbling flows.

  8. A joint estimation detection of Glaucoma progression in 3D spectral domain optical coherence tomography optic nerve head images

    NASA Astrophysics Data System (ADS)

    Belghith, Akram; Bowd, Christopher; Weinreb, Robert N.; Zangwill, Linda M.

    2014-03-01

    Glaucoma is an ocular disease characterized by distinctive changes in the optic nerve head (ONH) and visual field. Glaucoma can strike without symptoms and causes blindness if it remains without treatment. Therefore, early disease detection is important so that treatment can be initiated and blindness prevented. In this context, important advances in technology for non-invasive imaging of the eye have been made providing quantitative tools to measure structural changes in ONH topography, an essential element for glaucoma detection and monitoring. 3D spectral domain optical coherence tomography (SD-OCT), an optical imaging technique, has been commonly used to discriminate glaucomatous from healthy subjects. In this paper, we present a new framework for detection of glaucoma progression using 3D SD-OCT images. In contrast to previous works that the retinal nerve fiber layer (RNFL) thickness measurement provided by commercially available spectral-domain optical coherence tomograph, we consider the whole 3D volume for change detection. To integrate a priori knowledge and in particular the spatial voxel dependency in the change detection map, we propose the use of the Markov Random Field to handle a such dependency. To accommodate the presence of false positive detection, the estimated change detection map is then used to classify a 3D SDOCT image into the "non-progressing" and "progressing" glaucoma classes, based on a fuzzy logic classifier. We compared the diagnostic performance of the proposed framework to existing methods of progression detection.

  9. First steps toward 3D high resolution imaging using adaptive optics and full-field optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Blanco, Leonardo; Blavier, Marie; Glanc, Marie; Pouplard, Florence; Tick, Sarah; Maksimovic, Ivan; Chenegros, Guillaume; Mugnier, Laurent; Lacombe, Francois; Rousset, Gérard; Paques, Michel; Le Gargasson, Jean-François; Sahel, Jose-Alain

    2008-09-01

    We describe here two parts of our future 3D fundus camera coupling Adaptive Optics and full-field Optical Coherence Tomography. The first part is an Adaptive Optics flood imager installed at the Quinze-Vingts Hospital, regularly used on healthy and pathological eyes. A posteriori image reconstruction is performed, increasing the final image quality and field of view. The instrument lateral resolution is better than 2 microns. The second part is a full-field Optical Coherence Tomograph, which has demonstrated capability of performing a simple kind of "4 phases" image reconstruction of non biological samples and ex situ retinas. Final aim is to couple both parts in order to achieve 3D high resolution mapping of in vivo retinas.

  10. 3-D P Wave Velocity Structure of Marmara Region Using Local Earthquake Tomography

    NASA Astrophysics Data System (ADS)

    Işık, S. E.; Gurbuz, C.

    2014-12-01

    The 3D P wave velocity model of upper and lower crust of the Marmara Region between 40.200- 41.200N and 26.500- 30.500E is obtained by tomographic inversion (Simulps) of 47034 P wave arrivals of local earthquakes recorded at 90 land stations between October 2009 and December 2012 and 30 OBO stations and 14162 shot arrivals recorded at 35 OBO stations (Seismarmara Survey, 2001). We first obtained a 1D minimum model with Velest code in order to obtain an initial model for 3D inversion with 648 well located earthquakes located within the study area. After several 3D inversion trials we decided to create a more adequate initial model for 3D inversion. Choosing the initial model we estimated the 3D P wave velocity model representing the whole region both for land and sea. The results are tested by making Checkerboard , Restoring Resolution and Characteristic Tests, and the reliable areas of the resulting model is defined in terms of RDE, DWS, SF and Hit count distributions. By taking cross sections from the resulting model we observed the vertical velocity change along profiles crossing both land and sea. All the profiles crossing the basins showed that the high velocities of lower crust make extensions towards the basin area which looks like the force that gives a shape to the basins. These extensions of lower crust towards the basins appeared with an average velocity of 6.3 km/s which might be the result of the deformation due the shearing in the region. It is also interpreted that the development of these high velocities coincide with the development of the basins. Thus, both the basins and the high velocity zones around them might be resulted from the entrance of the NAF into the Marmara Sea and at the same time a shear regime was dominated due to the resistance of the northern Marmara Region (Yılmaz, 2010). The seismicity is observed between 5 km and 15 km after the 3D location of the earthquakes. The locations of the earthquakes improved and the seismogenic zone

  11. Overview of 3D-TRACE, a NASA Initiative in Three-Dimensional Tomography of the Aerosol-Cloud Environment

    NASA Astrophysics Data System (ADS)

    Davis, Anthony; Diner, David; Yanovsky, Igor; Garay, Michael; Xu, Feng; Bal, Guillaume; Schechner, Yoav; Aides, Amit; Qu, Zheng; Emde, Claudia

    2013-04-01

    microphysical properties, can be reconstructed from multi-angle/multi-spectral imaging radiometry and, more and more, polarimetry. Specific technologies of interest are computed tomography (reconstruction from projections), optical tomography (using cross-pixel radiation transport in the diffusion limit), stereoscopy (depth/height retrievals), blind source and scale separation (signal unmixing), and disocclusion (information recovery in the presence of obstructions). Later on, these potentially powerful inverse problem solutions will be fully integrated in a versatile satellite data analysis toolbox. At present, we can report substantial progress at the component level. Specifically, we will focus on the most elementary problems in atmospheric tomography with an emphasis on the vastly under-exploited class of multi-pixel techniques. One basic problem is to infer the outer shape and mean opacity of 3D clouds, along with a bulk measure of cloud particle size. Another is to separate high and low cloud layers based on their characteristically different spatial textures. Yet another is to reconstruct the 3D spatial distribution of aerosol density based on passive imaging. This suite of independent feasibility studies amounts to a compelling proofof- concept for the ambitious 3D-Tomographic Reconstruction of the Aerosol-Cloud Environment (3D-TRACE) project as a whole.

  12. P and S automatic picks for 3D earthquake tomography in NE Italy

    NASA Astrophysics Data System (ADS)

    Lovisa, L.; Bragato, P.; Gentili, S.

    2006-12-01

    Earthquake tomography is useful to study structural and geological features of the crust. In particular, it uses P and S arrival times for reconstructing weaves velocity fields and locating earthquakes hypocenters. However, tomography needs a large effort to provide a high number of manual picks. On the other side, many automatic picking methods have been proposed, but they are usually applied to preliminary elaboration of the data (fast alert and automatic bulletin generation); they are generally considered not reliable for tomography. In this work, we present and discuss the results of Vp, Vs and Vp/Vs tomographies obtained using automatic picks generated by the system TAPNEI (Gentili and Bragato 2006), applied in the NE Italy. Preliminarily, in order to estimate the error in comparison with the unknown true arrival times, an analysis on the picking quality is done. The tests have been performed using two dataset: the first is made up by 240 earthquakes automatically picked by TAPNEI; the second counts in the same earthquakes but manually picked (OGS database). The grid and the software used to perform tomography (Sim28, Michelini and Mc Evilly, 1991) are the same in the two cases. Vp, Vs and Vp/Vs fields of the two tomographies and their differences are shown on vertical sections. In addiction, the differences in earthquakes locations are studied; in particular, the quality of the accuracy of the localizations has been analyzed by estimating the distance of the hypocenter distributions with respect to the manual locations. The analysis include also a qualitative comparison with an independent tomography (Gentile et al., 2000) performed using Simulps (Evans et al, 1994) on a set of 224 earthquakes accurately selected and manually relocated. The quality of the pickings and the comparison with the tomography obtained by manual data suggest that earthquake tomography with automatic data can provide reliable results. We suggest the use of such data when a large

  13. The design of 3D optical system for multidirectional phase tomography

    NASA Astrophysics Data System (ADS)

    Antoš, Martin

    2008-12-01

    The design of 3D optical system for multidirectional phase tomograph is presented in detail. The suggested tomograph uses a multidirectional holographic interferometer with diffusive light. The method of dividing of the laser-beam to object and reference beams is described. The optimisation of geometrical dimensions of the testing area and optical parameters of projection beams was done in order to increase the number of obtainable angular projections. Finally, projecting properties of the scanning system of the tomograph are presented.

  14. Application of 3D electrical capacitance tomography in probing anomalous blocks in water

    NASA Astrophysics Data System (ADS)

    Liao, Aimin; Zhou, Qiyou; Zhang, Yun

    2015-06-01

    Water usually acts as a high-permittivity dielectric in many fields such as geophysics, hydrology, hydrogeology, aquaculture, etc. Thus, it may be of significance to adapt ECT to the fields with a high permittivity in which the conventional ECT is scarcely involved. To achieve this objective, a simplified 3D-ECT system was constructed with a high-precision inductance capacitance resistance meter and programmable logic controllers. In the aspect of sensing unit of the system, two geometries (i.e. cylinder and cube) of 3D sensors were constructed to probe anomalous blocks in water. Numerical simulations and physical experiments for both the sensors were performed to test the effectiveness of the constructed system to probe anomalous blocks in water. Furthermore, to justify the availability of this system in some possible fields, two experiments associated with applications of the 3D-ECT system were performed to measure the distribution of a plant root system in water, and to monitor the infiltration of water in soil in field. The experimental results demonstrate that the ECT system is capable of probing the location and rough size of anomalous blocks in water with both the sensors, determining the distribution of a plant root system in water, and monitoring the infiltration process of water in soil.

  15. Single photon emission computerized tomography in obsessive compulsive disorder: a preliminary study.

    PubMed Central

    Adams, B L; Warneke, L B; McEwan, A J; Fraser, B A

    1993-01-01

    Patterns of cerebral perfusion in patients with obsessive compulsive disorder were evaluated using single photon emission computerized tomography. Eleven patients, who satisfied the DSM-III-R criteria and Research Diagnostic Criteria for the disorder, were evaluated using the distribution of 99m-Tc-HMPAO as a radiotracer. The Yale-Brown Obsessive Compulsive Scale was administered to each patient to assess the severity of their symptoms. The images obtained were evaluated qualitatively and semi-quantitatively by a physician in nuclear medicine who was blind to the patients' diagnoses. Eight of the 11 patients demonstrated asymmetric perfusion of the basal ganglia; the left side showed impaired perfusion in six patients. PMID:8499426

  16. Comparison of ultrasonography, computerized tomography, and radionuclide imaging in the diagnosis of acute and chronic cholecystitis

    SciTech Connect

    Matolo, N.M.; Stadalnik, R.C.; McGahan, J.P.

    1982-12-01

    Seventy-five patients with abdominal pain in the right upper quadrant who were subsequently confirmed operatively and histologically to have acute or chronic cholecystitis underwent radionuclide imaging of the biliary tree, ultrasonography, and/or computerized tomography before operation. fifty-eight of the patients had acute cholecystitis and 17 had chronic cholecystitis and cholelithiasis. Analysis of our data indicates that ultrasonography is an accurate and better screening test than cholescintigraphy in the diagnosis of chronic cholecystitis and cholelithiasis, but it is less accurate in the detection of acute cholecystitis. On the other hand, radionuclide imaging is highly sensitive and specific in the early diagnosis of acute cholecystitis, but it is poor in the diagnosis of chronic cholecystitis and cholelithiasis unless the cystic duct is obstructed. CT scanning is more expensive than ultrasonography but may be extremely helpful in problematic cases such as the diagnosis of the cause in biliary obstruction or in imaging of the pancreas.

  17. An artificial neural net and error backpropagation to reconstruct single photon emission computerized tomography data.

    PubMed

    Knoll, P; Mirzaei, S; Müllner, A; Leitha, T; Koriska, K; Köhn, H; Neumann, M

    1999-02-01

    At present, algorithms used in nuclear medicine to reconstruct single photon emission computerized tomography (SPECT) data are usually based on one of two principles: filtered backprojection and iterative methods. In this paper a different algorithm, applying an artificial neural network (multilayer perception) and error backpropagation as training method are used to reconstruct transaxial slices from SPECT data. The algorithm was implemented on an Elscint XPERT workstation (i486, 50 MHz), used as a routine digital image processing tool in our departments. Reconstruction time for a 64 x 64 matrix is approximately 45 s/transaxial slice. The algorithm has been validated by a mathematical model and tested on heart and Jaszczak phantoms. Phantom studies and very first clinical results ((111)In octreotide SPECT, 99mTc MDP bone SPECT) show in comparison with filtered backprojection an enhancement in image quality. PMID:10076982

  18. Computerized axial tomography of the chest for visualization of ''absent'' pulmonary arteries

    SciTech Connect

    Sondheimer, H.M.; Oliphant, M.; Schneider, B.; Kavey, R.E.W.; Blackman, M.S.; Parker, F.B. Jr.

    1982-05-01

    To expand the search for central pulmonary arteries in six patients with absence of cardiac-pulmonary continuity, computerized axial tomography (CAT) of the chest was performed. The CAT scans were compared with previous arteriograms and pulmonary vein wedge angiograms. Three patients with type IV truncus arteriosus were studied, and none had a central, right or left pulmonary artery on CAT scan. However, two patients with tetralogy of Fallot with pulmonary atresia and a patent ductus arteriosus to the right lung demonstrated the presence of a left pulmonary artery. In addition, one child with truncus arteriosus with ''absent'' left pulmonary artery demonstrated a left pulmonary artery on the CAT scan. The CAT scan may therefore enhance our ability to search for disconnected pulmonary arteries in children with complex cyanotic congenital heart disease.

  19. Comparisons of ionospheric electron density distributions reconstructed by GPS computerized tomography, backscatter ionograms, and vertical ionograms

    NASA Astrophysics Data System (ADS)

    Zhou, Chen; Lei, Yong; Li, Bofeng; An, Jiachun; Zhu, Peng; Jiang, Chunhua; Zhao, Zhengyu; Zhang, Yuannong; Ni, Binbin; Wang, Zemin; Zhou, Xuhua

    2015-12-01

    Global Positioning System (GPS) computerized ionosphere tomography (CIT) and ionospheric sky wave ground backscatter radar are both capable of measuring the large-scale, two-dimensional (2-D) distributions of ionospheric electron density (IED). Here we report the spatial and temporal electron density results obtained by GPS CIT and backscatter ionogram (BSI) inversion for three individual experiments. Both the GPS CIT and BSI inversion techniques demonstrate the capability and the consistency of reconstructing large-scale IED distributions. To validate the results, electron density profiles obtained from GPS CIT and BSI inversion are quantitatively compared to the vertical ionosonde data, which clearly manifests that both methods output accurate information of ionopsheric electron density and thereby provide reliable approaches to ionospheric soundings. Our study can improve current understanding of the capability and insufficiency of these two methods on the large-scale IED reconstruction.

  20. Computerized tomography of pelvic osteomyelitis in patients with spinal cord injuries

    SciTech Connect

    Firooznia, H.; Rafii, M.; Golimbu, C.; Sokolow, J.

    1983-12-01

    Computerized tomography (CT) was performed in 19 patients with spinal cord injury (SCI) who had large pressure sores and in whom other complications were suspected. CT detected the depth, extent, and degree of undermining of the edges of the pressure sores in 19 of 27 lesions. Conventional radiography detected four cases of pelvic osteomyelitis. CT detected eight additional cases of pelvic osteomyelitis, as well as eight clinically unsuspected peripelvic and intrapelvic abscesses. Technetium-99m bone scanning was not very helpful because of localization in chronic proliferative changes of bone and widespread foci of myositis ossificans, as well as in osteomyelitis. Gallium-67 scanning detected only one of six abscesses. It was not very helpful because of confusion of abscess and osteomyelitis with intense soft tissue swelling and cellulitis, which are often associated with pressure sores in patients with chronic SCI. CT was found to be, by far, the modality of choice for detection of pelvic osteomyelitis and abscess in patients with SCI.

  1. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, Mayka; Halisch, Matthias; Müller, Cornelia; Peres Fernandes, Celso

    2016-02-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behavior of rock-fluid systems. With the availability of 3-D high-resolution imaging, such as x-ray micro-computed tomography (µ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors (length, width, and thickness) and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. Two main pore components were identified from the analyzed volumes: pore networks and residual pore ganglia. A watershed algorithm was applied to preserve the pore morphology after separating the main pore networks, which is essential for the pore shape characterization. The results were validated for three sandstones (S1, S2, and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like, ranging from 39.49 to 50.94 % and from 58.80 to 45.18 % when the Feret caliper descriptor was investigated in a 10003 voxel volume. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates, and cubes to characterize asymmetric particles of any material type with 3-D image analysis.

  2. Super-resolution 3D tomography of interactions and competition in the nuclear pore complex.

    PubMed

    Ma, Jiong; Goryaynov, Alexander; Yang, Weidong

    2016-03-01

    A selective barrier formed by intrinsically disordered Phe-Gly (FG) nucleoporins (Nups) allows transport receptor (TR)-facilitated translocation of signal-dependent cargos through the nuclear pore complexes (NPCs) of eukaryotic cells. However, the configuration of the FG-Nup barrier and its interactions with multiple TRs in native NPCs remain obscure. Here, we mapped the interaction sites of various TRs or FG segments within the FG-Nup barrier by using high-speed super-resolution microscopy and used these sites to reconstruct the three-dimensional tomography of the native barrier in the NPC. We found that each TR possesses a unique interaction zone within the FG-Nup barrier and that two major TRs, importin β1 and Crm1, outcompete other TRs in binding FG Nups. Moreover, TRs may alter the tomography of the FG-Nup barrier and affect one another's pathways under circumstances of heavy competition. PMID:26878241

  3. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography

    PubMed Central

    Egan, C. K.; Jacques, S. D. M.; Wilson, M. D.; Veale, M. C.; Seller, P.; Beale, A. M.; Pattrick, R. A. D.; Withers, P. J.; Cernik, R. J.

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  4. 3D chemical imaging in the laboratory by hyperspectral X-ray computed tomography.

    PubMed

    Egan, C K; Jacques, S D M; Wilson, M D; Veale, M C; Seller, P; Beale, A M; Pattrick, R A D; Withers, P J; Cernik, R J

    2015-01-01

    We report the development of laboratory based hyperspectral X-ray computed tomography which allows the internal elemental chemistry of an object to be reconstructed and visualised in three dimensions. The method employs a spectroscopic X-ray imaging detector with sufficient energy resolution to distinguish individual elemental absorption edges. Elemental distributions can then be made by K-edge subtraction, or alternatively by voxel-wise spectral fitting to give relative atomic concentrations. We demonstrate its application to two material systems: studying the distribution of catalyst material on porous substrates for industrial scale chemical processing; and mapping of minerals and inclusion phases inside a mineralised ore sample. The method makes use of a standard laboratory X-ray source with measurement times similar to that required for conventional computed tomography. PMID:26514938

  5. The Dark Side of EDX Tomography: Modeling Detector Shadowing to Aid 3D Elemental Signal Analysis.

    PubMed

    Yeoh, Catriona S M; Rossouw, David; Saghi, Zineb; Burdet, Pierre; Leary, Rowan K; Midgley, Paul A

    2015-06-01

    A simple model is proposed to account for the loss of collected X-ray signal by the shadowing of X-ray detectors in the scanning transmission electron microscope. The model is intended to aid the analysis of three-dimensional elemental data sets acquired using energy-dispersive X-ray tomography methods where shadow-free specimen holders are unsuitable or unavailable. The model also provides a useful measure of the detection system geometry. PMID:25790959

  6. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography

    PubMed Central

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  7. High-resolution, low-dose phase contrast X-ray tomography for 3D diagnosis of human breast cancers.

    PubMed

    Zhao, Yunzhe; Brun, Emmanuel; Coan, Paola; Huang, Zhifeng; Sztrókay, Aniko; Diemoz, Paul Claude; Liebhardt, Susanne; Mittone, Alberto; Gasilov, Sergei; Miao, Jianwei; Bravin, Alberto

    2012-11-01

    Mammography is the primary imaging tool for screening and diagnosis of human breast cancers, but ~10-20% of palpable tumors are not detectable on mammograms and only about 40% of biopsied lesions are malignant. Here we report a high-resolution, low-dose phase contrast X-ray tomographic method for 3D diagnosis of human breast cancers. By combining phase contrast X-ray imaging with an image reconstruction method known as equally sloped tomography, we imaged a human breast in three dimensions and identified a malignant cancer with a pixel size of 92 μm and a radiation dose less than that of dual-view mammography. According to a blind evaluation by five independent radiologists, our method can reduce the radiation dose and acquisition time by ~74% relative to conventional phase contrast X-ray tomography, while maintaining high image resolution and image contrast. These results demonstrate that high-resolution 3D diagnostic imaging of human breast cancers can, in principle, be performed at clinical compatible doses. PMID:23091003

  8. Seeing a Mycobacterium-Infected Cell in Nanoscale 3D: Correlative Imaging by Light Microscopy and FIB/SEM Tomography.

    PubMed

    Beckwith, Marianne Sandvold; Beckwith, Kai Sandvold; Sikorski, Pawel; Skogaker, Nan Tostrup; Flo, Trude Helen; Halaas, Øyvind

    2015-01-01

    Mycobacteria pose a threat to the world health today, with pathogenic and opportunistic bacteria causing tuberculosis and non-tuberculous disease in large parts of the population. Much is still unknown about the interplay between bacteria and host during infection and disease, and more research is needed to meet the challenge of drug resistance and inefficient vaccines. This work establishes a reliable and reproducible method for performing correlative imaging of human macrophages infected with mycobacteria at an ultra-high resolution and in 3D. Focused Ion Beam/Scanning Electron Microscopy (FIB/SEM) tomography is applied, together with confocal fluorescence microscopy for localization of appropriately infected cells. The method is based on an Aclar poly(chloro-tri-fluoro)ethylene substrate, micropatterned into an advantageous geometry by a simple thermomoulding process. The platform increases the throughput and quality of FIB/SEM tomography analyses, and was successfully applied to detail the intracellular environment of a whole mycobacterium-infected macrophage in 3D. PMID:26406896

  9. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  10. Generating virtual textile composite specimens using statistical data from micro-computed tomography: 3D tow representations

    NASA Astrophysics Data System (ADS)

    Rinaldi, Renaud G.; Blacklock, Matthew; Bale, Hrishikesh; Begley, Matthew R.; Cox, Brian N.

    2012-08-01

    Recent work presented a Monte Carlo algorithm based on Markov Chain operators for generating replicas of textile composite specimens that possess the same statistical characteristics as specimens imaged using high resolution x-ray computed tomography. That work represented the textile reinforcement by one-dimensional tow loci in three-dimensional space, suitable for use in the Binary Model of textile composites. Here analogous algorithms are used to generate solid, three-dimensional (3D) tow representations, to provide geometrical models for more detailed failure analyses. The algorithms for generating 3D models are divided into those that refer to the topology of the textile and those that deal with its geometry. The topological rules carry all the information that distinguishes textiles with different interlacing patterns (weaves, braids, etc.) and provide instructions for resolving interpenetrations or ordering errors among tows. They also simplify writing a single computer program that can accept input data for generic textile cases. The geometrical rules adjust the shape and smoothness of the generated virtual specimens to match data from imaged specimens. The virtual specimen generator is illustrated using data for an angle interlock weave, a common 3D textile architecture.

  11. Characterization of Pore Defects and Fatigue Cracks in Die Cast AM60 Using 3D X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Yang, Zhuofei; Kang, Jidong; Wilkinson, David S.

    2015-08-01

    AM60 high pressure die castings have been used in automobile applications to reduce the weight of vehicles. However, the pore defects that are inherent in die casting may negatively affect mechanical properties, especially the fatigue properties. Here we have studied damage ( e.g., pore defects, fatigue cracks) during strained-controlled fatigue using 3-dimensional X-ray computed tomography (XCT). The fatigue test was interrupted every 2000 cycles and the specimen was removed to be scanned using a desktop micro-CT system. XCT reveals pore defects, cracks, and fracture surfaces. The results show that pores can be accurately measured and modeled in 3D. Defect bands are found to be made of pores under 50 µm (based on volume-equivalent sphere diameter). Larger pores are randomly distributed in the region between the defect bands. Observation of fatigue cracks by XCT is performed in three ways such that the 3D model gives the best illustration of crack-porosity interaction while the other two methods, with the cracks being viewed on transverse or longitudinal cross sections, have better detectability on crack initiation and crack tip observation. XCT is also of value in failure analysis on fracture surfaces. By assessing XCT data during fatigue testing and observing fracture surfaces on a 3D model, a better understanding on the crack initiation, crack-porosity interaction, and the morphology of fracture surface is achieved.

  12. 3D Structure Determination of Native Mammalian Cells using Cryo-FIB and Cryo-electron Tomography

    PubMed Central

    Wang, Ke; Strunk, Korrinn; Zhao, Gongpu; Gray, Jennifer L.; Zhang, Peijun

    2012-01-01

    Cryo-electron tomography (cryo-ET) has enabled high resolution three-dimensional (3D) structural analysis of virus and host cell interactions and many cell signaling events; these studies, however, have largely been limited to very thin, peripheral regions of eukaryotic cells or to small prokaryotic cells. Recent efforts to make thin, vitreous sections using cryo-ultramicrotomy have been successful, however, this method is technically very challenging and with many artifacts. Here, we report a simple and robust method for creating in situ, frozen-hydrated cell lamellas using a focused ion beam at cryogenic temperature (cryo-FIB), allowing access to any interior cellular regions of interest. We demonstrate the utility of cryo-FIB with high resolution 3D cellular structures from both bacterial cells and large mammalian cells. The method will not only facilitate high-throughput 3D structural analysis of biological specimens, but is also broadly applicable to sample preparation of thin films and surface materials without the need for FIB “lift-out”. PMID:22796867

  13. 3D artificial bones for bone repair prepared by computed tomography-guided fused deposition modeling for bone repair.

    PubMed

    Xu, Ning; Ye, Xiaojian; Wei, Daixu; Zhong, Jian; Chen, Yuyun; Xu, Guohua; He, Dannong

    2014-09-10

    The medical community has expressed significant interest in the development of new types of artificial bones that mimic natural bones. In this study, computed tomography (CT)-guided fused deposition modeling (FDM) was employed to fabricate polycaprolactone (PCL)/hydroxyapatite (HA) and PCL 3D artificial bones to mimic natural goat femurs. The in vitro mechanical properties, in vitro cell biocompatibility, and in vivo performance of the artificial bones in a long load-bearing goat femur bone segmental defect model were studied. All of the results indicate that CT-guided FDM is a simple, convenient, relatively low-cost method that is suitable for fabricating natural bonelike artificial bones. Moreover, PCL/HA 3D artificial bones prepared by CT-guided FDM have more close mechanics to natural bone, good in vitro cell biocompatibility, biodegradation ability, and appropriate in vivo new bone formation ability. Therefore, PCL/HA 3D artificial bones could be potentially be of use in the treatment of patients with clinical bone defects. PMID:25133309

  14. 3D visualization of the lumbar facet joint after degeneration using propagation phase contrast micro-tomography

    PubMed Central

    Cao, Yong; Zhang, Yi; Yin, Xianzheng; Lu, Hongbin; Hu, Jianzhong; Duan, Chunyue

    2016-01-01

    Lumbar facet joint (LFJ) degeneration is believed to be an important cause of low back pain (LBP). Identifying the morphological changes of the LFJ in the degeneration process at a high-resolution level could be meaningful for our better understanding of the possible mechanisms underlying this process. In the present study, we determined the 3D morphology of the LFJ using propagation phase contrast micro-tomography (PPCT) in rats to assess the subtle changes that occur during the degeneration process. PPCT provides vivid 3D images of micromorphological changes in the LFJ during its degeneration process, and the changes in the subchondral bone occurred earlier than in the cartilage during the early stage of degeneration of the LFJ. The delineation of this alteration was similar to that with the histological method. Our findings demonstrated that PPCT could serve as a valuable tool for 3D visualization of the morphology of the LFJ by providing comprehensive information about the cartilage and the underlying subchondral bone and their changes during degeneration processes. It might also have great potential for providing effective diagnostic tools to track changes in the cartilage and to evaluate the effects of therapeutic interventions for LFJ degeneration in preclinical studies. PMID:26907889

  15. Use of 3-D magnetic resonance electrical impedance tomography in detecting human cerebral stroke: a simulation study*

    PubMed Central

    Gao, Nuo; Zhu, Shan-an; He, Bin

    2005-01-01

    We have developed a new three dimensional (3-D) conductivity imaging approach and have used it to detect human brain conductivity changes corresponding to acute cerebral stroke. The proposed Magnetic Resonance Electrical Impedance Tomography (MREIT) approach is based on the J-Substitution algorithm and is expanded to imaging 3-D subject conductivity distribution changes. Computer simulation studies have been conducted to evaluate the present MREIT imaging approach. Simulations of both types of cerebral stroke, hemorrhagic stroke and ischemic stroke, were performed on a four-sphere head model. Simulation results showed that the correlation coefficient (CC) and relative error (RE) between target and estimated conductivity distributions were 0.9245±0.0068 and 8.9997%±0.0084%, for hemorrhagic stroke, and 0.6748±0.0197 and 8.8986%±0.0089%, for ischemic stroke, when the SNR (signal-to-noise radio) of added GWN (Gaussian White Noise) was 40. The convergence characteristic was also evaluated according to the changes of CC and RE with different iteration numbers. The CC increases and RE decreases monotonously with the increasing number of iterations. The present simulation results show the feasibility of the proposed 3-D MREIT approach in hemorrhagic and ischemic stroke detection and suggest that the method may become a useful alternative in clinical diagnosis of acute cerebral stroke in humans. PMID:15822161

  16. Non-linear 3D Born Shear Wave Tomography in Southeastern Asia

    NASA Astrophysics Data System (ADS)

    Cao, A.; Panning, M.; Kim, A.; Romanowicz, B.

    2007-12-01

    We have developed a 3D radially anisotropic shear velocity model of the upper mantle in southeastern Asia from the inversion of long period seismic multimode waveforms. Our approach is based on normal mode perturbation theory, specifically, on a recent modification of the Born approximation, which we call "N-Born", and which includes a non-linear term that allows the accurate inclusion of accumulated phase shifts which arise when the wavepath traverses a spatially extended region with a smooth velocity anomaly of constant sign. We apply the N-Born approximation in the forward modeling part and calculate linear 3D Born kernels in the inverse part. Our starting model is a 3D radially anisotropic model which we derived from a large dataset of teleseismic multimode long period waveforms in the period range 60 to 400 s, using a finite-frequency 2D approximation (NACT, Li and Romanowicz, 1995). This model covered a larger region of East Asia (longitude 30 to 150 degrees and latitude -10 to 60 degrees), while our N-Born model is restricted to a smaller subregion (longitude 75 to 150 degrees and latitude 0 to 45 degrees) for computational efficiency. In this subregion, our N-Born isotropic and anisotropic models are both parameterized at relatively short wavelengths corresponding to a spherical spline level 6 (~200km). Our N-Born model can fit waveforms as well as the NACT model, with up to ~ 83% variance reduction. While the models agree in general, the N-Born isotropic model shows a stronger fast velocity anomaly beneath the Tibetan plateau in the depth range of 150 km to 250 km, which disappears at greater depth, consistent with other studies. More importantly, the N-Born anisotropic model can recover well the downwelling structure associated with subducted slabs. Beneath the Tibet plateau, radial anisotropy shows VSH>VSV, which is indicative of horizontal rather than vertical flow and may help distinguish between end member models of the tectonics of Tibet.

  17. Reducing disk storage of full-3D seismic waveform tomography (F3DT) through lossy online compression

    NASA Astrophysics Data System (ADS)

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-08-01

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithm into our F3DT-SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.

  18. Energy Dispersive X-ray Tomography for 3D Elemental Mapping of Individual Nanoparticles.

    PubMed

    Slater, Thomas J A; Lewis, Edward A; Haigh, Sarah J

    2016-01-01

    Energy dispersive X-ray spectroscopy within the scanning transmission electron microscope (STEM) provides accurate elemental analysis with high spatial resolution, and is even capable of providing atomically resolved elemental maps. In this technique, a highly focused electron beam is incident upon a thin sample and the energy of emitted X-rays is measured in order to determine the atomic species of material within the beam path. This elementally sensitive spectroscopy technique can be extended to three dimensional tomographic imaging by acquiring multiple spectrum images with the sample tilted along an axis perpendicular to the electron beam direction. Elemental distributions within single nanoparticles are often important for determining their optical, catalytic and magnetic properties. Techniques such as X-ray tomography and slice and view energy dispersive X-ray mapping in the scanning electron microscope provide elementally sensitive three dimensional imaging but are typically limited to spatial resolutions of > 20 nm. Atom probe tomography provides near atomic resolution but preparing nanoparticle samples for atom probe analysis is often challenging. Thus, elementally sensitive techniques applied within the scanning transmission electron microscope are uniquely placed to study elemental distributions within nanoparticles of dimensions 10-100 nm. Here, energy dispersive X-ray (EDX) spectroscopy within the STEM is applied to investigate the distribution of elements in single AgAu nanoparticles. The surface segregation of both Ag and Au, at different nanoparticle compositions, has been observed. PMID:27403838

  19. Sub-millimeter resolution 3D optical imaging of living tissue using laminar optical tomography

    PubMed Central

    Hillman, Elizabeth M. C.; Burgess, Sean A.

    2009-01-01

    In-vivo imaging of optical contrast in living tissues can allow measurement of functional parameters such as blood oxygenation and detection of targeted and active fluorescent contrast agents. However, optical imaging must overcome the effects of light scattering, which limit the penetration depth and can affect quantitation and sensitivity. This article focuses on a technique for high-resolution, high-speed depth-resolved optical imaging of superficial living tissues called laminar optical tomography (LOT), which is capable of imaging absorbing and fluorescent contrast in living tissues to depths of 2–3 mm with 100–200 micron resolution. An overview of the advantages and challenges of in-vivo optical imaging is followed by a review of currently available techniques for high-resolution optical imaging of tissues. LOT is then described, including a description of the imaging system design and discussion of data analysis and image reconstruction approaches. Examples of recent applications of LOT are then provided and compared to other existing technologies. By measuring multiply-scattered light, Laminar Optical Tomography can probe beneath the surface of living tissues such as the skin and brain. PMID:19844595

  20. Quantitative visualization of high-speed 3D turbulent flow structures using holographic interferometric tomography

    NASA Astrophysics Data System (ADS)

    Timmerman, B. H.; Watt, D. W.; Bryanston-Cross, P. J.

    1999-02-01

    Using holographic interferometry the three-dimensional structure of unsteady and large-scale motions within subsonic and transonic turbulent jet flows has been studied. The instantaneous 3D flow structure is obtained by tomographic reconstruction techniques from quantitative phase maps recorded using a rapid-switching, double reference beam, double pulse laser system. The reconstruction of the jets studied here reveal a three-dimensional nature of the flow. In particular an increasing complexity can be seen in the turbulence as the flow progresses from the jet nozzle. Furthermore, a coherent three-dimensional, possibly rotating, structure can be seen to exist within these jets. The type of flow features illustrated here are not just of fundamental importance for understanding the behavior of free jet flows, but are also common to a number of industrial applications, ranging from the combustion flow within an IC engine to the transonic flow through the stages of a gas turbine.

  1. 3d Velocity Tomography of The Kos - Nisyros Volcanic Area - East Aegean Sea

    NASA Astrophysics Data System (ADS)

    Nikolova, S.; Ilinski, D.; Makris, J.; Chonia, T.; Stavrakakis, J.

    Since June 2000, active and passive seismic observations have been carried out by IfG, GeoPro GmbH, Hamburg and Institute of Geodynamics, Athens within the frame of the project GEOWARN (Geo-Spacial Warning Systems Nisyros Volcano, Greece: An Emergency Case Study of the Volcanic Area of Nisyros) supported by the European Community. In the active experiment 48 recording seismic units were deployed and recorded more than 7000 shots in 3D array. The Nisyros volcano has been identified as an apophytic intrusion of much larger volcanic structure with a caldera of 35 km diameter, extending between the southern coasts of the islands of Kos and Nisyros. To obtain 3-D velocity structure of the area a tomographic inversion was made using 6800 rays which probed the area with a very high ray density. The method applied and the high accuracy of active tomographic data allowed to resolve the high velocity bodies in the caldera. The complex volcanic structure is identified by high velocity rocks in- truding through the upper crust and penetrating the volcanic cone to depth of approx. 1.0 km to 1.8 km below the surface. Particularly high velocity bodies were identified below the islands of Yali and the central caldera of Nisyros. The high velocity bodies at shallow depth were interpreted as high-density cumulates of solidified magma intru- sion in the caldera. These intrusions explain very high temperature of 300C observed in the lower aquifer in the caldera at 1.5 km depth as confirmed by drilling. The vol- canic edifices of Kos, Yali, Nisyros and Strongily are part of a major volcanic caldera nearly 35 km in diameter. This size of the volcanic caldera explains the large volume of ignimbrites erupted 160 000 years ago. By combining geodetic, geophysical, geo- chemical and geological observations it is intended to correlate magma movements and associated changes of physical and chemical parameters of the recent volcanism.

  2. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples.

    PubMed

    Hullar, Ted; Paige, David F; Rowland, Douglas J; Anastasio, Cort

    2014-04-01

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as -25 °C ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use. PMID:24784619

  3. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples

    SciTech Connect

    Hullar, Ted; Anastasio, Cort; Paige, David F.; Rowland, Douglas J.

    2014-04-15

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as −25 °C ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.

  4. Compact cold stage for micro-computerized tomography imaging of chilled or frozen samples

    NASA Astrophysics Data System (ADS)

    Hullar, Ted; Paige, David F.; Rowland, Douglas J.; Anastasio, Cort

    2014-04-01

    High resolution X-ray microCT (computerized tomography) can be used to image a variety of objects, including temperature-sensitive materials. In cases where the sample must be chilled or frozen to maintain sample integrity, either the microCT machine itself must be placed in a refrigerated chamber, or a relatively expensive commercial cold stage must be purchased. We describe here the design and construction of a low-cost custom cold stage suitable for use in a microCT imaging system. Our device uses a boron nitride sample holder, two-stage Peltier cooler, fan-cooled heat sink, and electronic controller to maintain sample temperatures as low as -25 °C ± 0.2 °C for the duration of a tomography acquisition. The design does not require modification to the microCT machine, and is easily installed and removed. Our custom cold stage represents a cost-effective solution for refrigerating CT samples for imaging, and is especially useful for shared equipment or machines unsuitable for cold room use.

  5. Cardiac C-arm computed tomography using a 3D + time ROI reconstruction method with spatial and temporal regularization

    SciTech Connect

    Mory, Cyril; Auvray, Vincent; Zhang, Bo; Grass, Michael; Schäfer, Dirk; Chen, S. James; Carroll, John D.; Rit, Simon; Peyrin, Françoise; Douek, Philippe; Boussel, Loïc

    2014-02-15

    Purpose: Reconstruction of the beating heart in 3D + time in the catheter laboratory using only the available C-arm system would improve diagnosis, guidance, device sizing, and outcome control for intracardiac interventions, e.g., electrophysiology, valvular disease treatment, structural or congenital heart disease. To obtain such a reconstruction, the patient's electrocardiogram (ECG) must be recorded during the acquisition and used in the reconstruction. In this paper, the authors present a 4D reconstruction method aiming to reconstruct the heart from a single sweep 10 s acquisition. Methods: The authors introduce the 4D RecOnstructiOn using Spatial and TEmporal Regularization (short 4D ROOSTER) method, which reconstructs all cardiac phases at once, as a 3D + time volume. The algorithm alternates between a reconstruction step based on conjugate gradient and four regularization steps: enforcing positivity, averaging along time outside a motion mask that contains the heart and vessels, 3D spatial total variation minimization, and 1D temporal total variation minimization. Results: 4D ROOSTER recovers the different temporal representations of a moving Shepp and Logan phantom, and outperforms both ECG-gated simultaneous algebraic reconstruction technique and prior image constrained compressed sensing on a clinical case. It generates 3D + time reconstructions with sharp edges which can be used, for example, to estimate the patient's left ventricular ejection fraction. Conclusions: 4D ROOSTER can be applied for human cardiac C-arm CT, and potentially in other dynamic tomography areas. It can easily be adapted to other problems as regularization is decoupled from projection and back projection.

  6. ICON: 3D reconstruction with 'missing-information' restoration in biological electron tomography.

    PubMed

    Deng, Yuchen; Chen, Yu; Zhang, Yan; Wang, Shengliu; Zhang, Fa; Sun, Fei

    2016-07-01

    Electron tomography (ET) plays an important role in revealing biological structures, ranging from macromolecular to subcellular scale. Due to limited tilt angles, ET reconstruction always suffers from the 'missing wedge' artifacts, thus severely weakens the further biological interpretation. In this work, we developed an algorithm called Iterative Compressed-sensing Optimized Non-uniform fast Fourier transform reconstruction (ICON) based on the theory of compressed-sensing and the assumption of sparsity of biological specimens. ICON can significantly restore the missing information in comparison with other reconstruction algorithms. More importantly, we used the leave-one-out method to verify the validity of restored information for both simulated and experimental data. The significant improvement in sub-tomogram averaging by ICON indicates its great potential in the future application of high-resolution structural determination of macromolecules in situ. PMID:27079261

  7. 3D Polymer Weld Seam Characterization Based on Optical Coherence Tomography for Laser Transmission Welding Applications

    NASA Astrophysics Data System (ADS)

    Schmitt, Robert; Mallmann, Guilherme; Devrient, Martin; Schmidt, Michael

    Laser transmission welding is an established single-stage plastic joining process, which enables hermetically sealed joints under the workpiece surface. The process requires joining partners with proper degrees of transmission and absorption to the processing wavelength. For reaching a stable process an in-process quality assurance is very valuable. Current monitoring systems have a limited usage, as no quantitative information of the weld itself is obtained without its destruction. In medical and pharmaceutical applications a weld with leakage is e.g. unacceptable. The main objective of this paper is the presentation of the optical coherence tomography as a tool for the quality assurance in laser transmission welding. This approach enables the measurement of any residual gap, weld geometry, internal pores and leaks. The presented results show that this technique allows even the characterization of welds using joining partners with thicknesses of 2 mm or with glass fiber reinforcement levels of 30% per weight.

  8. Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography

    PubMed Central

    Michaelsen, Kelly E.; Krishnaswamy, Venkataramanan; Shi, Linxi; Vedantham, Srinivasan; Poplack, Steven P.; Karellas, Andrew; Pogue, Brian W.; Paulsen, Keith D.

    2015-01-01

    Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient’s breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results. PMID:26713210

  9. Calibration and optimization of 3D digital breast tomosynthesis guided near infrared spectral tomography.

    PubMed

    Michaelsen, Kelly E; Krishnaswamy, Venkataramanan; Shi, Linxi; Vedantham, Srinivasan; Poplack, Steven P; Karellas, Andrew; Pogue, Brian W; Paulsen, Keith D

    2015-12-01

    Calibration of a three-dimensional multimodal digital breast tomosynthesis (DBT) x-ray and non-fiber based near infrared spectral tomography (NIRST) system is challenging but essential for clinical studies. Phantom imaging results yielded linear contrast recovery of total hemoglobin (HbT) concentration for cylindrical inclusions of 15 mm, 10 mm and 7 mm with a 3.5% decrease in the HbT estimate for each 1 cm increase in inclusion depth. A clinical exam of a patient's breast containing both benign and malignant lesions was successfully imaged, with greater HbT was found in the malignancy relative to the benign abnormality and fibroglandular regions (11 μM vs. 9.5 μM). Tools developed improved imaging system characterization and optimization of signal quality, which will ultimately improve patient selection and subsequent clinical trial results. PMID:26713210

  10. Advanced laser system for 3D optoacoustic tomography of the breast

    NASA Astrophysics Data System (ADS)

    Klosner, Marc; Chan, Gary; Wu, Chunbai; Heller, Donald F.; Su, Richard; Ermilov, Sergey; Brecht, Hans Peter; Ivanov, Vassili; Talole, Pratik; Lou, Yang; Anastasio, Mark; Oraevsky, Alexander

    2016-03-01

    We describe the ongoing development and performance of a high-pulse-energy wavelength-cycling laser system for three-dimensional optoacoustic tomography of the breast. Joule-level energies are desired for achieving the required penetration depths while maintaining safe fluence levels. Wavelength cycling provides a pulse sequence which repeatedly alternates between two wavelengths (approximately 756 and 797 nm) that provide differential imaging. This improves co-registration of captured differential images and quantification of blood oxygen saturation. New design features have been developed for and incorporated into a clinical prototype laser system, to improve efficacy and ease of use in the clinic. We describe the benefits of these features for operation with a clinical pilot optoacoustic / ultrasound dual-modality three-dimensional imaging system.

  11. Development of a State-Wide 3-D Seismic Tomography Velocity Model for California

    NASA Astrophysics Data System (ADS)

    Thurber, C. H.; Lin, G.; Zhang, H.; Hauksson, E.; Shearer, P.; Waldhauser, F.; Hardebeck, J.; Brocher, T.

    2007-12-01

    We report on progress towards the development of a state-wide tomographic model of the P-wave velocity for the crust and uppermost mantle of California. The dataset combines first arrival times from earthquakes and quarry blasts recorded on regional network stations and travel times of first arrivals from explosions and airguns recorded on profile receivers and network stations. The principal active-source datasets are Geysers-San Pablo Bay, Imperial Valley, Livermore, W. Mojave, Gilroy-Coyote Lake, Shasta region, Great Valley, Morro Bay, Mono Craters-Long Valley, PACE, S. Sierras, LARSE 1 and 2, Loma Prieta, BASIX, San Francisco Peninsula and Parkfield. Our beta-version model is coarse (uniform 30 km horizontal and variable vertical gridding) but is able to image the principal features in previous separate regional models for northern and southern California, such as the high-velocity subducting Gorda Plate, upper to middle crustal velocity highs beneath the Sierra Nevada and much of the Coast Ranges, the deep low-velocity basins of the Great Valley, Ventura, and Los Angeles, and a high- velocity body in the lower crust underlying the Great Valley. The new state-wide model has improved areal coverage compared to the previous models, and extends to greater depth due to the data at large epicentral distances. We plan a series of steps to improve the model. We are enlarging and calibrating the active-source dataset as we obtain additional picks from investigators and perform quality control analyses on the existing and new picks. We will also be adding data from more quarry blasts, mainly in northern California, following an identification and calibration procedure similar to Lin et al. (2006). Composite event construction (Lin et al., in press) will be carried out for northern California for use in conventional tomography. A major contribution of the state-wide model is the identification of earthquakes yielding arrival times at both the Northern California Seismic

  12. Phase-retrieved optical projection tomography for 3D imaging through scattering layers

    NASA Astrophysics Data System (ADS)

    Ancora, Daniele; Di Battista, Diego; Giasafaki, Georgia; Psycharakis, Stylianos; Liapis, Evangelos; Zacharopoulos, Athanasios; Zacharakis, Giannis

    2016-03-01

    Recently great progress has been made in biological and biomedical imaging by combining non-invasive optical methods, novel adaptive light manipulation and computational techniques for intensity-based phase recovery and three dimensional image reconstruction. In particular and in relation to the work presented here, Optical Projection Tomography (OPT) is a well-established technique for imaging mostly transparent absorbing biological models such as C. Elegans and Danio Rerio. On the contrary, scattering layers like the cocoon surrounding the Drosophila during the pupae stage constitutes a challenge for three dimensional imaging through such a complex structure. However, recent studies enabled image reconstruction through scattering curtains up to few transport mean free paths via phase retrieval iterative algorithms allowing to uncover objects hidden behind complex layers. By combining these two techniques we explore the possibility to perform a three dimensional image reconstruction of fluorescent objects embedded between scattering layers without compromising its structural integrity. Dynamical cross correlation registration was implemented for the registration process due to translational and flipping ambiguity of the phase retrieval problem, in order to provide the correct aligned set of data to perform the back-projection reconstruction. We have thus managed to reconstruct a hidden complex object between static scattering curtains and compared with the effective reconstruction to fully understand the process before the in-vivo biological implementation.

  13. Dimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography

    NASA Astrophysics Data System (ADS)

    Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn

    2016-03-01

    Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up.

  14. Dimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography

    PubMed Central

    Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn

    2016-01-01

    Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up. PMID:26940661

  15. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography

    PubMed Central

    Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  16. Large-scale fabrication, 3D tomography, and lithium-ion battery application of porous silicon.

    PubMed

    Ge, Mingyuan; Lu, Yunhao; Ercius, Peter; Rong, Jiepeng; Fang, Xin; Mecklenburg, Matthew; Zhou, Chongwu

    2014-01-01

    Recently, silicon-based lithium-ion battery anodes have shown encouraging results, as they can offer high capacities and long cyclic lifetimes. The applications of this technology are largely impeded by the complicated and expensive approaches in producing Si with desired nanostructures. We report a cost-efficient method to produce nanoporous Si particles from metallurgical Si through ball-milling and inexpensive stain-etching. The porosity of porous Si is derived from particle's three-dimensional reconstructions by scanning transmission electron microscopy (STEM) tomography, which shows the particles' highly porous structure when etched under proper conditions. Nanoporous Si anodes with a reversible capacity of 2900 mAh/g was attained at a charging rate of 400 mA/g, and a stable capacity above 1100 mAh/g was retained for extended 600 cycles tested at 2000 mA/g. The synthetic route is low-cost and scalable for mass production, promising Si as a potential anode material for the next-generation lithium-ion batteries with enhanced capacity and energy density. PMID:24279924

  17. Automated tracing of filaments in 3D electron tomography reconstructions using Sculptor and Situs.

    PubMed

    Rusu, Mirabela; Starosolski, Zbigniew; Wahle, Manuel; Rigort, Alexander; Wriggers, Willy

    2012-05-01

    The molecular graphics program Sculptor and the command-line suite Situs are software packages for the integration of biophysical data across spatial resolution scales. Herein, we provide an overview of recently developed tools relevant to cryo-electron tomography (cryo-ET), with an emphasis on functionality supported by Situs 2.7.1 and Sculptor 2.1.1. We describe a work flow for automatically segmenting filaments in cryo-ET maps including denoising, local normalization, feature detection, and tracing. Tomograms of cellular actin networks exhibit both cross-linked and bundled filament densities. Such filamentous regions in cryo-ET data sets can then be segmented using a stochastic template-based search, VolTrac. The approach combines a genetic algorithm and a bidirectional expansion with a tabu search strategy to localize and characterize filamentous regions. The automated filament segmentation by VolTrac compares well to a manual one performed by expert users, and it allows an efficient and reproducible analysis of large data sets. The software is free, open source, and can be used on Linux, Macintosh or Windows computers. PMID:22433493

  18. Computer Tomography 3-D Imaging of the Metal Deformation Flow Path in Friction Stir Welding

    NASA Technical Reports Server (NTRS)

    Schneider, Judy; Beshears, Ronald; Nunes, Arthur C., Jr.

    2004-01-01

    In friction stir welding, a rotating threaded pin tool is inserted into a weld seam and literally stirs the edges of the seam together. This solid-state technique has been successfully used in the joining of materials that are difficult to fusion weld such as aluminum alloys. To determine optimal processing parameters for producing a defect free weld, a better understanding of the resulting metal deformation flow path is required. Marker studies are the principal method of studying the metal deformation flow path around the FSW pin tool. In our study, we have used computed tomography (CT) scans to reveal the flow pattern of a lead wire embedded in a FSW weld seam. At the welding temperature of aluminum, the lead becomes molten and thus tracks the aluminum deformation flow paths in a unique 3-dimensional manner. CT scanning is a convenient and comprehensive way of collecting and displaying tracer data. It marks an advance over previous more tedious and ambiguous radiographic/metallographic data collection methods.

  19. Numerical solution of the general 3D eddy current problem for magnetic induction tomography (spectroscopy).

    PubMed

    Merwa, Robert; Hollaus, Karl; Brandstätter, Bernhard; Scharfetter, Hermann

    2003-05-01

    Magnetic induction tomography (MIT) is used for reconstructing the changes of the conductivity in a target object using alternating magnetic fields. Applications include, for example, the non-invasive monitoring of oedema in the human brain. A powerful software package has been developed which makes it possible to generate a finite element (FE) model of complex structures and to calculate the eddy currents in the object under investigation. To validate our software a model of a previously published experimental arrangement was generated. The model consists of a coaxial coil system and a conducting sphere which is moved perpendicular to the coil axis (a) in an empty space and (b) in a saline-filled cylindrical tank. The agreement of the measured and simulated data is very good when taking into consideration the systematic measurement errors in case (b). Thus the applicability of the simulation algorithm for two-compartment systems has been demonstrated even in the case of low conductivities and weak contrast. This can be considered an important step towards the solution of the inverse problem of MIT. PMID:12812437

  20. Dimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography.

    PubMed

    Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn

    2016-01-01

    Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up. PMID:26940661

  1. Endocranial features of Australopithecus africanus revealed by 2- and 3-D computed tomography.

    PubMed

    Conroy, G C; Vannier, M W; Tobias, P V

    1990-02-16

    The earliest hominid from South Africa, Australopithecus africanus, is known from only six specimens in which accurate assessment of endocranial capacity and cranial venous outflow pattern can be obtained. This places a severe limit on a number of hypotheses concerning early hominid evolution, particularly those involving brain-body size relationships and adaptations of the circulatory system to evolving upright posture. Advances in high-resolution two- and three-dimensional computed tomography (CT) now allow the inclusion of another important specimen to this list, MLD 37/38 from Makapansgat. A new computer imaging technique is described that "reconstructs" the missing portions of the endocranial cavity in order to determine endocranial capacity. In addition, CT evaluation allows assessment of cranial venous outflow pattern even in cases where the endocranial cavity is completely filled with stone matrix. Results show that endocranial capacity in this specimen is less than originally proposed and also support the view that gracile and robust australopithecines evolved different cranial venous outflow patterns in response to upright postures. PMID:2305255

  2. Algorithms for improved 3-D reconstruction of live mammalian embryo vasculature from optical coherence tomography data

    PubMed Central

    Kulkarni, Prathamesh M.; Rey-Villamizar, Nicolas; Merouane, Amine; Sudheendran, Narendran; Wang, Shang; Garcia, Monica; Larina, Irina V.; Roysam, Badrinath

    2015-01-01

    Background Robust reconstructions of the three-dimensional network of blood vessels in developing embryos imaged by optical coherence tomography (OCT) are needed for quantifying the longitudinal development of vascular networks in live mammalian embryos, in support of developmental cardiovascular research. Past computational methods [such as speckle variance (SV)] have demonstrated the feasibility of vascular reconstruction, but multiple challenges remain including: the presence of vessel structures at multiple spatial scales, thin blood vessels with weak flow, and artifacts resulting from bulk tissue motion (BTM). Methods In order to overcome these challenges, this paper introduces a robust and scalable reconstruction algorithm based on a combination of anomaly detection algorithms and a parametric dictionary based sparse representation of blood vessels from structural OCT data. Results Validation results using confocal data as the baseline demonstrate that the proposed method enables the detection of vessel segments that are either partially missed or weakly reconstructed using the SV method. Finally, quantitative measurements of vessel reconstruction quality indicate an overall higher quality of vessel reconstruction with the proposed method. Conclusions Results suggest that sparsity-integrated speckle anomaly detection (SSAD) is potentially a valuable tool for performing accurate quantification of the progression of vascular development in the mammalian embryonic yolk sac as imaged using OCT. PMID:25694962

  3. 3-D analysis of dictyosomes and multivesicular bodies in the green alga Micrasterias denticulata by FIB/SEM tomography.

    PubMed

    Wanner, Gerhard; Schäfer, Tillman; Lütz-Meindl, Ursula

    2013-11-01

    In the present study we employ FIB/SEM tomography for analyzing 3-D architecture of dictyosomes and formation of multivesicular bodies (MVB) in high pressure frozen and cryo-substituted interphase cells of the green algal model system Micrasterias denticulata. The ability of FIB/SEM of milling very thin 'slices' (5-10 nm), viewing the block face and of capturing cytoplasmic volumes of several hundred μm(3) provides new insight into the close spatial connection of the ER-Golgi machinery in an algal cell particularly in z-direction, complementary to informations obtained by TEM serial sectioning or electron tomography. Our FIB/SEM series and 3-D reconstructions show that interphase dictyosomes of Micrasterias are not only closely associated to an ER system at their cis-side which is common in various plant cells, but are surrounded by a huge "trans-ER" sheath leading to an almost complete enwrapping of dictyosomes by the ER. This is particularly interesting as the presence of a trans-dictyosomal ER system is well known from mammalian secretory cells but not from cells of higher plants to which the alga Micrasterias is closely related. In contrast to findings in plant storage tissue indicating that MVBs originate from the trans-Golgi network or its derivatives our investigations show that MVBs in Micrasterias are in direct spatial contact with both, trans-Golgi cisternae and the trans-ER sheath which provides evidence that both endomembrane compartments are involved in their formation. PMID:24135121

  4. Estimating porosity with ground-penetrating radar reflection tomography: A controlled 3-D experiment at the Boise Hydrogeophysical Research Site

    NASA Astrophysics Data System (ADS)

    Bradford, John H.; Clement, William P.; Barrash, Warren

    2009-04-01

    To evaluate the uncertainty of water-saturated sediment velocity and porosity estimates derived from surface-based, ground-penetrating radar reflection tomography, we conducted a controlled field experiment at the Boise Hydrogeophysical Research Site (BHRS). The BHRS is an experimental well field located near Boise, Idaho. The experimental data set consisted of 3-D multioffset radar acquired on an orthogonal 20 × 30 m surface grid that encompassed a set of 13 boreholes. Experimental control included (1) 1-D vertical velocity functions determined from traveltime inversion of vertical radar profiles (VRP) and (2) neutron porosity logs. We estimated the porosity distribution in the saturated zone using both the Topp and Complex Refractive Index Method (CRIM) equations and found the CRIM estimates in better agreement with the neutron logs. We found that when averaged over the length of the borehole, surface-derived velocity measurements were within 5% of the VRP velocities and that the porosity differed from the neutron log by less than 0.05. The uncertainty, however, is scale dependent. We found that the standard deviation of differences between ground-penetrating-radar-derived and neutron-log-derived porosity values was as high as 0.06 at an averaging length of 0.25 m but decreased to less than 0.02 at length scale of 11 m. Additionally, we used the 3-D porosity distribution to identify a relatively high-porosity anomaly (i.e., local sedimentary body) within a lower-porosity unit and verified the presence of the anomaly using the neutron porosity logs. Since the reflection tomography approach requires only surface data, it can provide rapid assessment of bulk hydrologic properties, identify meter-scale anomalies of hydrologic significance, and may provide input for other higher-resolution measurement methods.

  5. Quantitative 3D petrography using X-ray tomography 2: Combining information at various resolutions

    SciTech Connect

    Pamukcu, Ayla S.; Gualda, Guilherme A.R.

    2010-12-02

    X-ray tomography is a nondestructive technique that can be used to study rocks and other materials in three dimensions over a wide range of sizes. Samples that range from decimeters to micrometers in size can be analyzed, and micrometer- to centimeter-sized crystals, vesicles, and other particles can be identified and quantified. In many applications, quantification of a large spectrum of sizes is important, but this cannot be easily accomplished using a single tomogram due to a common trade-off between sample size and image resolution. This problem can be circumvented by combining tomograms acquired for a single sample at a variety of resolutions. We have successfully applied this method to obtain crystal size distributions (CSDs) for magnetite, pyroxene + biotite, and quartz + feldspar in Bishop Tuff pumice. Five cylinders of systematically varying size (1-10 mm diameter and height) were analyzed from each of five pumice clasts. Cylinder size is inversely proportional to image resolution, such that resolution ranges from 2.5 to 17 {micro}m/voxel with increasing sample size. This allows quantification of crystals 10-1000 {micro}m in size. We obtained CSDs for each phase in each sample by combining information from all resolutions, each size bin containing data from the resolution that best characterizes crystals of that size. CSDs for magnetite and pyroxene + biotite in late-erupted Bishop pumice obtained using this method are fractal, but do not seem to result from crystal fragmentation. CSDs for quartz + feldspar reveal a population of abundant crystals <35 {micro}m in size, and a population of crystals >50 {micro}m in size, which will be the focus of a separate publication.

  6. 3-D transient hydraulic tomography in unconfined aquifers with fast drainage response

    NASA Astrophysics Data System (ADS)

    Cardiff, M.; Barrash, W.

    2011-12-01

    We investigate, through numerical experiments, the viability of three-dimensional transient hydraulic tomography (3DTHT) for identifying the spatial distribution of groundwater flow parameters (primarily, hydraulic conductivity K) in permeable, unconfined aquifers. To invert the large amount of transient data collected from 3DTHT surveys, we utilize an iterative geostatistical inversion strategy in which outer iterations progressively increase the number of data points fitted and inner iterations solve the quasi-linear geostatistical formulas of Kitanidis. In order to base our numerical experiments around realistic scenarios, we utilize pumping rates, geometries, and test lengths similar to those attainable during 3DTHT field campaigns performed at the Boise Hydrogeophysical Research Site (BHRS). We also utilize hydrologic parameters that are similar to those observed at the BHRS and in other unconsolidated, unconfined fluvial aquifers. In addition to estimating K, we test the ability of 3DTHT to estimate both average storage values (specific storage Ss and specific yield Sy) as well as spatial variability in storage coefficients. The effects of model conceptualization errors during unconfined 3DTHT are investigated including: (1) assuming constant storage coefficients during inversion and (2) assuming stationary geostatistical parameter variability. Overall, our findings indicate that estimation of K is slightly degraded if storage parameters must be jointly estimated, but that this effect is quite small compared with the degradation of estimates due to violation of "structural" geostatistical assumptions. Practically, we find for our scenarios that assuming constant storage values during inversion does not appear to have a significant effect on K estimates or uncertainty bounds.

  7. Computerized tomography technique for reconstruction of obstructed temperature field in infrared thermography

    NASA Astrophysics Data System (ADS)

    Sham, F. C.; Huang, Y. H.; Liu, L.; Chen, Y. S.; Hung, Y. Y.; Lo, T. Y.

    2010-01-01

    Infrared thermography is a rapid, non-invasive and full-field technique for non-destructive testing and evaluation (NDT&E). With all the achievements on IR instrumentation and image processing techniques attained, it has been extended far beyond simple hot-spot detection and becomes one of the most promising NDT&E techniques in the last decades. It has achieved increasing acceptance in different sectors include medical imaging, manufacturing component fault detection and buildings diagnostic. However, one limitation of IR thermography is that the testing results are greatly affected by object surface emissivity. Surface with various emissivities may lead to difficult discrimination between area of defect and area with different emissivity. Therefore, many studies have been carried out on eliminating emissivity, for example, the time derivative approach, lock-in processing and differential contrast measurements. In these methods, sequence of themo-data/images are recorded and being processed in order to eliminate differences of emissivity. Another problem of IR thermography is that any obstruction may limit stimulations and imaging which leads to the observation of unclear defect image. To solve this problem, this paper proposes an algorithm based on the principle of computerized tomography which permits the reconstruction of unavailable/partially available temperature distribution of the affected area using the measured surrounding temperature field. In the process, a set of imaginary rays are projected from many different directions across the area. For each ray, integration of the temperature derivatives along the ray is equals to the temperature difference between the boundary points intercepted by the ray. Therefore, a set of linear equations can be established by considering the multiple rays. Each equation expresses the unknown temperature derivatives in the affected area in terms of the measured boundary temperature data. Solution of the set of simultaneous

  8. New insights on 3-D plates interaction near Taiwan from tomography and tectonic implications

    NASA Astrophysics Data System (ADS)

    Lallemand, Serge; Font, Yvonne; Bijwaard, Harmen; Kao, Honn

    2001-07-01

    Recent tomographic results are used to trace the South China Sea and Philippine Sea subducting slabs, south and northeast of Taiwan along the Manila and Ryukyu trenches, respectively. In particular, the 3-D plates interaction beneath Taiwan is discussed based on a close-up view of the tomographic sections together with earthquake hypocenters distribution. Our study indicates that: (1) the east-dipping South China Sea slab can be followed to the north, up to the latitude of Hualien, (2) the Eurasian plate subducts beneath most part of the Taiwan island down to the 670 km-depth discontinuity, (3) the north-dipping Philippine Sea slab can be followed slightly west of the longitude of Hualien. Both plates thus interact beneath northern Taiwan where the arc-continent collision is paroxysmal. (4) Slab detachment is envisaged at the northern edge of the subducted Eurasian plate beneath the Coastal Range of Taiwan, which may facilitate the northwestward motion of the Philippine Sea plate with respect to Eurasia. Slabs geometries obtained from tomographic sections allow us to reconstruct the Late Neogene plate kinematics and dynamics in this region. Our main conclusions are: (1) The size of the original South China Sea was about twice its present size. (2) The subducted part of the West Philippine Basin i.e. the largest oceanic basin of the Philippine Sea Plate, extends only 400 km north of the Ryukyu Trench. (3) Slab detachment might have occurred 3-5 my ago beneath the central and northern Ryukyu Arc along a weak zone that is aligned with the Gagua Ridge: an ancient plate boundary. (4) The Ryukyu Trench has propagated westward from 126°E of longitude (southeast of Miyako Island) to the locus of the present arc-continent collision, along a major lithospheric tear that cut through the continent-ocean boundary first, and then through the continental lithosphere. As a consequence, the southern Ryukyu margin developed progressively from east to west as a subduction zone

  9. The 3D crustal structure of Northeastern Tibetan area from seismic tomography

    NASA Astrophysics Data System (ADS)

    Sun, Anhui

    2015-04-01

    The Northeastern Tibetan region is located in the border area of three sub-plates in China, i.e. the Tibetan plateau, North China block and Xinjiang block. Effected simultaneously by the extrusion driven by the India-Eurasia plat collision and the blockage of the Ordos basin, this area has complex geology, strong tectonics activities and suffered from several large historic earthquakes, such as the Haiyuan earthquake (M8.6) in 1920, the Gulang earthquake (M8.0) in 1927. To enhance our understanding of the crustal structure and the interaction between different tectonic blocks of this region, we conduct a three-dimensional (3D) tomographic study by using the arrival time date recorded by regional seismic network. We used 101101 P and 103313 S wave arrival times from 11650 local earthquakes during 1970 to 2013 recorded by 154 permanent seismic stations of the local Seismic Network, installed over five provinces in China, i.e. Gansu, Ningxia, Qinghai, Shanxi, Neimenggu. We first established a 1D primary crustal model from LITHO1.0, an updated crust and lithospheric model of the Earth by weighted averaging. To better performer ray tracing, our inversion involved three discontinuities (including the Moho) with depth variation over the mantle derived from LITHO1.0. Detailed three-dimensional seismic velocity (Vp and Vs) structures of the crust of the Northeastern Tibetan are determined with a horizontal resolution of about 35 km and a depth resolution of 6-20 km. The Poisson's ratio (σ) structure was also estimated after obtained Vp and Vs structures. We detected low-velocity anomalies in the lower crust and relative high-velocity anomalies in the upper crust beneath the Longmenshan faults zone, which are in good agreement with the results of most previous geophysical studies. Our results revealed clear different velocity variation beneath both sides of different tectonic blocks. In addition, we found the correlation between our tomographic result and previous

  10. IP4DI: A software for time-lapse 2D/3D DC-resistivity and induced polarization tomography

    NASA Astrophysics Data System (ADS)

    Karaoulis, M.; Revil, A.; Tsourlos, P.; Werkema, D. D.; Minsley, B. J.

    2013-04-01

    We propose a 2D/3D forward modelling and inversion package to invert direct current (DC)-resistivity, time-domain induced polarization (TDIP), and frequency-domain induced polarization (FDIP) data. Each cell used for the discretization of the 2D/3D problems is characterized by a DC-resistivity value and a chargeability or complex conductivity for TDIP/FDIP problems, respectively. The governing elliptic partial differential equations are solved with the finite element method, which can be applied for both real and complex numbers. The inversion can be performed either for a single snapshot of data or for a sequence of snapshots in order to monitor a dynamic process such as a salt tracer test. For the time-lapse inversion, we have developed an active time constrained (ATC) approach that is very efficient in filtering out noise in the data that is not correlated over time. The forward algorithm is benchmarked with simple analytical solutions. The inversion package IP4DI is benchmarked with three tests, two including simple geometries. The last one corresponds to a time-lapse resistivity problem for cross-well tomography during enhanced oil recovery. The algorithms are based on MATLAB® code package and a graphical user interface (GUI).

  11. Simultaneous real-time 3D photoacoustic tomography and EEG for neurovascular coupling study in an animal model of epilepsy

    NASA Astrophysics Data System (ADS)

    Wang, Bo; Xiao, Jiaying; Jiang, Huabei

    2014-08-01

    Objective. Neurovascular coupling in epilepsy is poorly understood; its study requires simultaneous monitoring of hemodynamic changes and neural activity in the brain. Approach. Here for the first time we present a combined real-time 3D photoacoustic tomography (PAT) and electrophysiology/electroencephalography (EEG) system for the study of neurovascular coupling in epilepsy, whose ability was demonstrated with a pentylenetetrazol (PTZ) induced generalized seizure model in rats. Two groups of experiments were carried out with different wavelengths to detect the changes of oxy-hemoglobin (HbO2) and deoxy-hemoglobin (HbR) signals in the rat brain. We extracted the average PAT signals of the superior sagittal sinus (SSS), and compared them with the EEG signal. Main results. Results showed that the seizure process can be divided into three stages. A ‘dip’ lasting for 1-2 min in the first stage and the following hyperfusion in the second stage were observed. The HbO2 signal and the HbR signal were generally negatively correlated. The change of blood flow was also estimated. All the acquired results here were in accordance with other published results. Significance. Compared to other existing functional neuroimaging tools, the method proposed here enables reliable tracking of hemodynamic signal with both high spatial and high temporal resolution in 3D, so it is more suitable for neurovascular coupling study of epilepsy.

  12. Semi-automatic 3D segmentation of carotid lumen in contrast-enhanced computed tomography angiography images.

    PubMed

    Hemmati, Hamidreza; Kamli-Asl, Alireza; Talebpour, Alireza; Shirani, Shapour

    2015-12-01

    The atherosclerosis disease is one of the major causes of the death in the world. Atherosclerosis refers to the hardening and narrowing of the arteries by plaques. Carotid stenosis is a narrowing or constriction of carotid artery lumen usually caused by atherosclerosis. Carotid artery stenosis can increase risk of brain stroke. Contrast-enhanced Computed Tomography Angiography (CTA) is a minimally invasive method for imaging and quantification of the carotid plaques. Manual segmentation of carotid lumen in CTA images is a tedious and time consuming procedure which is subjected to observer variability. As a result, there is a strong and growing demand for developing computer-aided carotid segmentation procedures. In this study, a novel method is presented for carotid artery lumen segmentation in CTA data. First, the mean shift smoothing is used for uniformity enhancement of gray levels. Then with the help of three seed points, the centerlines of the arteries are extracted by a 3D Hessian based fast marching shortest path algorithm. Finally, a 3D Level set function is performed for segmentation. Results on 14 CTA volumes data show 85% of Dice similarity and 0.42 mm of mean absolute surface distance measures. Evaluation shows that the proposed method requires minimal user intervention, low dependence to gray levels changes in artery path, resistance to extreme changes in carotid diameter and carotid branch locations. The proposed method has high accuracy and can be used in qualitative and quantitative evaluation. PMID:26429385

  13. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    NASA Astrophysics Data System (ADS)

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-03-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryoimage volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pullback images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34+/-2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland- Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01+/-0.43 mm2. DICE coefficients were 0.91+/-0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (+/-200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities.

  14. 3D registration of intravascular optical coherence tomography and cryo-image volumes for microscopic-resolution validation

    PubMed Central

    Prabhu, David; Mehanna, Emile; Gargesha, Madhusudhana; Wen, Di; Brandt, Eric; van Ditzhuijzen, Nienke S.; Chamie, Daniel; Yamamoto, Hirosada; Fujino, Yusuke; Farmazilian, Ali; Patel, Jaymin; Costa, Marco; Bezerra, Hiram G.; Wilson, David L.

    2016-01-01

    High resolution, 100 frames/sec intravascular optical coherence tomography (IVOCT) can distinguish plaque types, but further validation is needed, especially for automated plaque characterization. We developed experimental and 3D registration methods, to provide validation of IVOCT pullback volumes using microscopic, brightfield and fluorescent cryo-image volumes, with optional, exactly registered cryo-histology. The innovation was a method to match an IVOCT pull-back images, acquired in the catheter reference frame, to a true 3D cryo-image volume. Briefly, an 11-parameter, polynomial virtual catheter was initialized within the cryo-image volume, and perpendicular images were extracted, mimicking IVOCT image acquisition. Virtual catheter parameters were optimized to maximize cryo and IVOCT lumen overlap. Local minima were possible, but when we started within reasonable ranges, every one of 24 digital phantom cases converged to a good solution with a registration error of only +1.34±2.65μm (signed distance). Registration was applied to 10 ex-vivo cadaver coronary arteries (LADs), resulting in 10 registered cryo and IVOCT volumes yielding a total of 421 registered 2D-image pairs. Image overlays demonstrated high continuity between vascular and plaque features. Bland-Altman analysis comparing cryo and IVOCT lumen area, showed mean and standard deviation of differences as 0.01±0.43 mm2. DICE coefficients were 0.91±0.04. Finally, visual assessment on 20 representative cases with easily identifiable features suggested registration accuracy within one frame of IVOCT (±200μm), eliminating significant misinterpretations introduced by 1mm errors in the literature. The method will provide 3D data for training of IVOCT plaque algorithms and can be used for validation of other intravascular imaging modalities. PMID:27162417

  15. 3D mouse shape reconstruction based on phase-shifting algorithm for fluorescence molecular tomography imaging system.

    PubMed

    Zhao, Yue; Zhu, Dianwen; Baikejiang, Reheman; Li, Changqing

    2015-11-10

    This work introduces a fast, low-cost, robust method based on fringe pattern and phase shifting to obtain three-dimensional (3D) mouse surface geometry for fluorescence molecular tomography (FMT) imaging. We used two pico projector/webcam pairs to project and capture fringe patterns from different views. We first calibrated the pico projectors and the webcams to obtain their system parameters. Each pico projector/webcam pair had its own coordinate system. We used a cylindrical calibration bar to calculate the transformation matrix between these two coordinate systems. After that, the pico projectors projected nine fringe patterns with a phase-shifting step of 2π/9 onto the surface of a mouse-shaped phantom. The deformed fringe patterns were captured by the corresponding webcam respectively, and then were used to construct two phase maps, which were further converted to two 3D surfaces composed of scattered points. The two 3D point clouds were further merged into one with the transformation matrix. The surface extraction process took less than 30 seconds. Finally, we applied the Digiwarp method to warp a standard Digimouse into the measured surface. The proposed method can reconstruct the surface of a mouse-sized object with an accuracy of 0.5 mm, which we believe is sufficient to obtain a finite element mesh for FMT imaging. We performed an FMT experiment using a mouse-shaped phantom with one embedded fluorescence capillary target. With the warped finite element mesh, we successfully reconstructed the target, which validated our surface extraction approach. PMID:26560789

  16. P-wave tomography for 3-D radial and azimuthal anisotropy of Tohoku and Kyushu subduction zones

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Zhao, Dapeng

    2013-06-01

    We determined high-resolution P-wave tomography for 3-D radial and azimuthal anisotropy of the Tohoku and Kyushu subduction zones using a large number of high-quality arrival-time data of local earthquakes recorded by the dense seismic network on the Japan Islands. Trench-normal P-wave fast-velocity directions (FVDs) are revealed in the backarc mantle wedge in both Tohoku and Kyushu, which are consistent with the model of slab-driven corner flow. Trench-parallel FVDs with amplitude <4 per cent appear in the forearc mantle wedge under Tohoku and Kyushu, suggesting the existence of B-type olivine fabric there. Trench-parallel FVDs are also visible in the mantle wedge under the volcanic front in Tohoku but not in Kyushu, suggesting that 3-D flow may exist in the mantle wedge under Tohoku and the 3-D flow is affected by the subduction rate of the oceanic plate. Negative radial anisotropy (i.e. vertical velocity being faster than horizontal velocity) is revealed in the low-velocity zones in the mantle wedge under the arc volcanoes in Tohoku and Kyushu as well as in the low-velocity zones below the Philippine Sea slab under Kyushu, which may reflect hot upwelling flows and transitions of olivine fabrics with the presence of water in the upper mantle. Trench-parallel FVDs and positive radial anisotropy (i.e. horizontal velocity being faster than vertical velocity) are revealed in the subducting Pacific slab under Tohoku and the Philippine Sea slab under Kyushu, suggesting that the slabs keep their frozen-in anisotropy formed at the mid-ocean ridge or that the slab anisotropy is induced by the lattice-preferred orientation of the B-type olivine.

  17. 3D Reconstruction of Intricate Archean Microbial Structures Using Neutron Computed Tomography and Serial Sectioning

    NASA Astrophysics Data System (ADS)

    Huerta, N. J.; Murphy, M. A.; Natarajan, V.; Weber, G.; Hamann, B.; Sumner, D. Y.

    2005-12-01

    Three-dimensional visualization of intricate microbial structures in rocks is essential to understand the growth of ancient microbial communities. We have imaged and reconstructed the three-dimensional morphology of 2.5-2.6 billion year old intricate microbialites preserved in carbonate using both serial sectioning and neutron computed tomography (NCT). Reconstruction techniques vary with data type and sample preservation. NCT is a non-destructive technique for imaging organic-containing samples with sufficiently high hydrogen concentrations. The resolution of reconstruction is finer than 500 microns. We reconstructed microbialites preserved as organic inclusions in calcite using NCT. Reconstructions are interpreted using volume rendering, segmentation, and an interactive Matlab/visualization environment. Visualizations demonstrate the intricacy of the structures. Noise currently limits automatic growth surface extraction, but growth of structures can be qualitatively evaluated. One of the largest obstacles to date is efficient manipulation of large data sets. Our current visualization approach always renders the supplied data set at full resolution, which requires down-sampling of datasets larger than 256 pixels3 (acquired volume data consists of up to 2048 pixels3) to isolate regions of interest and extract important features. We are exploring the use of multi-resolution techniques that store a dataset at different levels of detail and chose an appropriate resolution during user-interaction. Such an approach will allow us to visualize raw data at full resolution. Serial sectioning and scanning successive horizons provides reconstructions of samples lacking sufficient hydrogen for NCT. This technique destroys the sample and has a lower resolution than NCT. However, intricate networks of microbial laminae surrounded by cement-filled voids can be characterized using this technique. After microbial surfaces are manually interpreted on slices, the images lack noise

  18. A fully 3D approach for metal artifact reduction in computed tomography

    SciTech Connect

    Kratz, Baerbel; Weyers, Imke; Buzug, Thorsten M.

    2012-11-15

    Purpose: In computed tomography imaging metal objects in the region of interest introduce inconsistencies during data acquisition. Reconstructing these data leads to an image in spatial domain including star-shaped or stripe-like artifacts. In order to enhance the quality of the resulting image the influence of the metal objects can be reduced. Here, a metal artifact reduction (MAR) approach is proposed that is based on a recomputation of the inconsistent projection data using a fully three-dimensional Fourier-based interpolation. The success of the projection space restoration depends sensitively on a sensible continuation of neighboring structures into the recomputed area. Fortunately, structural information of the entire data is inherently included in the Fourier space of the data. This can be used for a reasonable recomputation of the inconsistent projection data. Methods: The key step of the proposed MAR strategy is the recomputation of the inconsistent projection data based on an interpolation using nonequispaced fast Fourier transforms (NFFT). The NFFT interpolation can be applied in arbitrary dimension. The approach overcomes the problem of adequate neighborhood definitions on irregular grids, since this is inherently given through the usage of higher dimensional Fourier transforms. Here, applications up to the third interpolation dimension are presented and validated. Furthermore, prior knowledge may be included by an appropriate damping of the transform during the interpolation step. This MAR method is applicable on each angular view of a detector row, on two-dimensional projection data as well as on three-dimensional projection data, e.g., a set of sequential acquisitions at different spatial positions, projection data of a spiral acquisition, or cone-beam projection data. Results: Results of the novel MAR scheme based on one-, two-, and three-dimensional NFFT interpolations are presented. All results are compared in projection data space and spatial

  19. 3D compositional characterization of Si/SiO2 vertical interface structure by atom probe tomography

    NASA Astrophysics Data System (ADS)

    Lee, J. H.; Kim, Y. T.; Kim, J. J.; Lee, S. Y.; Park, C. G.

    2013-11-01

    Precise interpretation of three-dimensional atom probe tomography (3D-APT) data is necessary to reconstruct semiconductor-device structures. In particular, it is difficult to reconstruct the hetero-structure of conductors and insulators using APT analysis, due to the preferential evaporation of low-evaporation field-material. In this paper, shallow-trench isolation (STI) structure, consisting of a Si column and a SiO2 region, is analyzed using APT. The dimensional artifact known as the local-magnification-effect occurring as a result of the geometric deviation from the ideal hemisphere was successfully calibrated by `high-angle annular dark-field (HAADF) scanning transmission electron microscopy (STEM) tomography' and Electron Energy Loss Spectroscopy (EELS). In the direction of the width, the Si layer was compressed by 50%, and the interface was expanded by 250% with respect to the reference data obtained for the same sample. A 5-nm-thick transition layer was observed at the interface between Si and SiO2. The composition of the transition layer follows the well-developed sequence Si-Si2O-SiO-SiO2 from the Si area to the SiO2 area. Atoms at the interface were likely to evaporate with a bit wider angle than atoms in the Si area due to the preferentially evaporated Si layer, which caused the interface area to appear locally magnified.

  20. A 3-D shear velocity model of the southern North American and Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2015-02-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of the NAM plate. A new imaged feature is the low crustal velocities along the USA-Mexico border. The model also shows a break of the east-west mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of the Tehuantepec and the Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  1. Soil-plant-atmosphere water balance via time-lapse 3D Electrical Resistivity Tomography and Eddy covariance measurements

    NASA Astrophysics Data System (ADS)

    Boaga, J.; Consoli, S.; Papa, R.; Cassiani, G.

    2013-12-01

    The understanding of mass and energy exchanges between soil, plants and atmosphere (SPA) is a key component for the characterization of the critical zone, housing a number of important mechanisms controlling hydrology, biota and climate. This understanding requires reliable methods for the quantification of these mass and energy exchanges encompassing possibly all three major components, i.e. soil, plants and atmosphere. In this work we present an attempt to characterize jointly the soil state changes and the energy and mass fluxes above a heterogeneous canopy, both mediated by the plant activity from roots to foliage. The experiments have been conducted within an orange orchard located in Eastern Sicily (Italy), characterized by the typical Mediterranean semi-arid climate. The subsoil dynamics, particularly influenced by irrigation and root uptake, has been characterized using a time-lapse non-invasive 3D micro-electrical tomography (ERT) setup. We designed, built and installed a 3D electrical tomography apparatus consisting of 48 buried electrodes on 4 instrumented micro boreholes plus 24 mini-electrodes on the surface spaced 0.1 m on a square grid. During the monitoring, we collected repeated ERT and TDR soil moisture measurements, as well as laboratory characterization of the soil electrical properties as a function of moisture content and pore water electrical conductivity. The results demonstrate that 3D micro-ERT is capable of characterizing subsoil conditions and monitoring root zone activities, especially in terms of root zone suction regions. In terms of energy and mass fluxes, we used the Eddy Covariance (EC) technique to directly measure both the sensible and latent heat fluxes exchanged between the plant-atmosphere continuum. The EC method was integrated with the surface energy balance of the SPA system. The joint availability of state changes and fluxes allows for a quantitative analysis of mass balance in the soil-plant-atmosphere system. The

  2. Reducing Disk Storage of Full-3D Seismic Waveform Tomography (F3DT) Through Lossy Online Compression

    DOE PAGESBeta

    Lindstrom, Peter; Chen, Po; Lee, En-Jui

    2016-05-05

    Full-3D seismic waveform tomography (F3DT) is the latest seismic tomography technique that can assimilate broadband, multi-component seismic waveform observations into high-resolution 3D subsurface seismic structure models. The main drawback in the current F3DT implementation, in particular the scattering-integral implementation (F3DT-SI), is the high disk storage cost and the associated I/O overhead of archiving the 4D space-time wavefields of the receiver- or source-side strain tensors. The strain tensor fields are needed for computing the data sensitivity kernels, which are used for constructing the Jacobian matrix in the Gauss-Newton optimization algorithm. In this study, we have successfully integrated a lossy compression algorithmmore » into our F3DT SI workflow to significantly reduce the disk space for storing the strain tensor fields. The compressor supports a user-specified tolerance for bounding the error, and can be integrated into our finite-difference wave-propagation simulation code used for computing the strain fields. The decompressor can be integrated into the kernel calculation code that reads the strain fields from the disk and compute the data sensitivity kernels. During the wave-propagation simulations, we compress the strain fields before writing them to the disk. To compute the data sensitivity kernels, we read the compressed strain fields from the disk and decompress them before using them in kernel calculations. Experiments using a realistic dataset in our California statewide F3DT project have shown that we can reduce the strain-field disk storage by at least an order of magnitude with acceptable loss, and also improve the overall I/O performance of the entire F3DT-SI workflow significantly. The integration of the lossy online compressor may potentially open up the possibilities of the wide adoption of F3DT-SI in routine seismic tomography practices in the near future.« less

  3. A methodological approach for 3-D Vs inversion from ambient noise tomography in a very heterogeneous crust

    NASA Astrophysics Data System (ADS)

    Macquet, M.; Paul, A.; Pedersen, H.

    2013-12-01

    A 3-D Vs model is the output of ambient noise tomography with the greatest add-on value. Computing this model is however difficult, especially in regions with very heterogeneous crustal structure. We propose here a new approach to invert group velocity data from ambient noise tomography for 3-D Vs structure, which gives good result even with strong lateral variations of the seismic structure. The study region is the Pyrenees mountain range s.l., at the border between France and Spain, as it includes 2 thick sedimentary basins surrounded by crystalline outcrops in the Pyrenees and the Massif Central. We use data of a dense temporary seismic broadband array of 49 stations installed in southwestern France at the end of 2010 in the framework of the PYROPE (PYRenean Observational Portable Experiment) project. The dataset also includes records of 70 broadband stations of the third leg of the IberArray project installed at the same time period in northern Spain. The two dense arrays with 60 km average inter-station distance make it possible to obtain high-resolution images of the lithosphere of the Pyrenees, the Ebro and Aquitaine basins and the Bay of Biscay. To complement the two temporary arrays and avoid smearing effects along their edges, we also used records of the French and Catalan permanent broadband networks. As a whole, the dataset includes records of 158 broadband stations. Using one year of data, we computed 12324 two-station correlations of ambient seismic noise records. We applied the processing in two overlapping period intervals: 5s-50s and 30s-75s, the latter to extend the subsequent measurement of group velocities to periods outside the first and secondary microseismic peak. We merged the common part of the 2 dispersion curves using a linear weighting to obtain, for each station pair, a single dispersion curve in the 5-75s period range. These group velocity curves are subsequently used to obtain 2-D group velocity maps using the tomographic method of

  4. [Multislice computerized tomography coronary angiography: general principles, technique and clinical applications].

    PubMed

    Karabulut, Nevzat

    2008-07-01

    Electrocardiogram-gated coronary multislice computerized tomography (CT) angiography is a rapidly improving technology allowing noninvasive imaging of coronary arteries. After the initial promising results obtained with four-section CT scanners, progressively higher temporal and spatial resolutions have been achieved by increasing gantry rotation speed and the number of detector rows and by reducing individual detector size. This review presents an overview of the general principles, technique and emerging applications and artifacts of coronary multislice CT angiography. The diagnostic performance of this new technology allows it to be used to evaluate the presence of coronary plaques and stenosis, coronary bypass graft patency, and the origin and course of congenital coronary anomalies. As it visualizes coronary artery wall in addition to lumen and provides volumetric data of heart and great vessels, it readily demonstrates plaque remodeling, ostial lesions and other cardiac and extracardiac abnormalities. The high negative predictive value of coronary CT angiography makes it a valuable tool in the evaluation of patients with low or intermediate pretest probability for coronary artery disease. However, improvements in spatial and temporal resolution are still needed in the imaging of small coronary stents, in the detection and characterization of noncalcified plaques, and to overcome image degradation by arrhythmias, higher heart rates, and calcium-related artifacts. PMID:18611837

  5. Noise reduction in ultrasonic computerized tomography by preprocessing for projection data

    NASA Astrophysics Data System (ADS)

    Norose, Yoko; Mizutani, Koichi; Wakatsuki, Naoto; Ebihara, Tadashi

    2015-07-01

    In this study, an ultrasonic computerized tomography (CT) using time-of-flights (TOFs) has been used for the nondestructive inspection of steel billets with high acoustic attenuation. One of the remaining problems of this method is noise in CT images, which makes it difficult to distinguish defects from noise. Conventionally, noise is suppressed by a low-pass filter (LPF) in the process of filtered back projection (FBP). However, it has been found that there is residual noise even after filtering. To cope with this problem, in this study, the noise observed in ultrasonic testing was examined. As a result, it was found that the TOF data used for CT processing contains impulse noise, which remains in the CT image even after filtering, owing to the existence of transducer directivity. To remove impulse noise selectively, we propose a noise reduction technique for ultrasonic CT for steel billet inspection, that is, preprocessing (outlier detection and removal) of TOF data. The performance of the proposed technique was evaluated experimentally. The obtained results suggest that the proposed technique can remove impulse noise selectively and markedly improve the quality of the CT image. Hence, the proposed technique can improve the performance of ultrasonic CT for steel billet inspection.

  6. Processing of projections containing phase contrast in laboratory micro-computerized tomography imaging

    PubMed Central

    Zápražný, Zdenko; Korytár, Dušan; Mikulík, Petr; Áč, Vladimír

    2013-01-01

    Free-space-propagation-based imaging belongs to several techniques for achieving phase contrast in the hard X-ray range. The basic precondition is to use an X-ray beam with a high degree of coherence. Although the best sources of coherent X-rays are synchrotrons, spatially coherent X-rays emitted from a sufficiently small spot of laboratory microfocus or sub-microfocus sources allow the transfer of some of the modern imaging techniques from synchrotrons to laboratories. Spatially coherent X-rays traverse a sample leading to a phase shift. Beam deflection induced by the local change of refractive index may be expressed as a dark–bright contrast on the edges of the object in an X-ray projection. This phenomenon of edge enhancement leads to an increase in spatial resolution of X-ray projections but may also lead to unpleasant artefacts in computerized tomography unless phase and absorption contributions are separated. The possibilities of processing X-ray images of lightweight objects containing phase contrast using phase-retrieval methods in laboratory conditions are tested and the results obtained are presented. For this purpose, simulated and recorded X-ray projections taken from a laboratory imaging system with a microfocus X-ray source and a high-resolution CCD camera were processed and a qualitative comparison of results was made. PMID:24046501

  7. Correlations between computerized tomography of the head and motor developmental disturbances of children with cerebral palsy.

    PubMed

    Chen, Y H

    1981-01-01

    Two hundred and eight-two children with cerebral palsy (C.P.) and thirty-seven normal children were studied by computerized tomography (C.T.) of the head for finding out the correlations between the organic damage of the brain and the motor developmental disturbance. The abnormal findings of C.T. were: enlargement of the ventricular system, high density area, low density area and porencephalus, enlargement of the sulcus and anomaly of the medial structure. Enlargement of the ventricular system seemed to have correlation with spasticity; the portion and the extent of the enlargement corresponded to the affected extremities and the severity of the spasticity. Children of other types also showed various abnormal C.T. findings but, in general, less than that of spastic types. The prognosis of the motor development of C.P. children cannot be predicted by serial C.T. examinations strictly, because early treatment could cause improvement to that of these children. However, it is of worthy notice that C.T. is an effective method of helping to diagnose the motor developmental disturbance in earlier childhood. PMID:6974207

  8. Survey radiography and computerized tomography imaging of the thorax in female dogs with mammary tumors

    PubMed Central

    2010-01-01

    Background Accurate early diagnosis of lung metastases is important for establishing therapeutic measures. Therefore, the present study aimed to compare survey thoracic radiographs and computerized tomography (CT) scans to specifically identify lung metastases in female dogs with mammary tumors. Methods Twenty-one female dogs, weighing 3 to 34 kg and aged from 5 years to 14 years and 10 months, with mammary tumors were studied. In all dogs before the imaging examinations, fine-needle aspiration cytology of the mammary tumors was performed to confirm the diagnosis. Three-view thoracic radiographs were accomplished: right lateral, left lateral and ventrodorsal views. Sequential transverse images of the thorax were acquired on a spiral Scanner, before and after intravenous bolus injection of nonionic iodine contrast. Soft-tissue and lung windows were applied. All the mammary tumors were surgically removed and examined histologically. Results The correlation between the cytological and histological results regarding presence of malignancy was observed in only 17 cases. In radiographic examinations, no dog displayed signs of lung metastases or thorax chest lesions. CT detected lung metastasis in two cases, while small areas of lung atelectasis located peripherally were found in 28.57% of the dogs. Conclusion In this study population, spiral CT showed higher sensitivity than chest radiographies to detect lung metastasis; this indicates that CT should be performed on all female dogs with malignant mammary tumors. PMID:20214816

  9. Computerized Tomography Scanning and Magnetic Resonance Imaging Will Terminate the Era of the Autopsy - A Hypothesis

    PubMed Central

    Benharroch, Daniel; Shvarts, Shifra; Jotkowitz, Alan; Shelef, Ilan

    2016-01-01

    Background: Reports on a marked reduction of the number of autopsies performed worldwide to less than 5% of hospital deaths remain without a satisfactory explanation. The premature disappearance of the autopsy might represent a medical tragedy of a major order. One of the causes for the decrease in autopsies is poorly documented: we suspect that the attending physician might show some reluctance when requesting a consent for an autopsy from the bereaved family. Moreover, this officer might consider that the post mortem will add little information to that already obtained from the computerized tomography scanner or the magnetic resonance imaging. Methods: In order to confirm our hypothesis, we carried out a review of 300 articles indexed as "radiologic-histologic correlation", 118 of which were selected for a significant correlation. From the abstracts, we retrieved the type of the article, the degree of correlation as assessed by the authors and the form of imaging employed, and we computed them. Results & conclusions: The most striking correlation was observed in the small prospective series. An additional search for the "radiologic-autopsy correlation" supported a marked reduction in the number of post-mortems, especially those related with prospective studies. Based on the present study, we cannot determine precisely the role of the house officer in this tragedy. We may have demonstrated, however, that the modern radiologic methods have not yet reached a high enough performance quality to achieve the status of a candidate substitute for the autopsy. PMID:26722367

  10. A modified conjugate gradient method based on the Tikhonov system for computerized tomography (CT).

    PubMed

    Wang, Qi; Wang, Huaxiang

    2011-04-01

    During the past few decades, computerized tomography (CT) was widely used for non-destructive testing (NDT) and non-destructive examination (NDE) in the industrial area because of its characteristics of non-invasiveness and visibility. Recently, CT technology has been applied to multi-phase flow measurement. Using the principle of radiation attenuation measurements along different directions through the investigated object with a special reconstruction algorithm, cross-sectional information of the scanned object can be worked out. It is a typical inverse problem and has always been a challenge for its nonlinearity and ill-conditions. The Tikhonov regulation method is widely used for similar ill-posed problems. However, the conventional Tikhonov method does not provide reconstructions with qualities good enough, the relative errors between the reconstructed images and the real distribution should be further reduced. In this paper, a modified conjugate gradient (CG) method is applied to a Tikhonov system (MCGT method) for reconstructing CT images. The computational load is dominated by the number of independent measurements m, and a preconditioner is imported to lower the condition number of the Tikhonov system. Both simulation and experiment results indicate that the proposed method can reduce the computational time and improve the quality of image reconstruction. PMID:21129739

  11. Regional model-based computerized ionospheric tomography using GPS measurements: IONOLAB-CIT

    NASA Astrophysics Data System (ADS)

    Tuna, Hakan; Arikan, Orhan; Arikan, Feza

    2015-10-01

    Three-dimensional imaging of the electron density distribution in the ionosphere is a crucial task for investigating the ionospheric effects. Dual-frequency Global Positioning System (GPS) satellite signals can be used to estimate the slant total electron content (STEC) along the propagation path between a GPS satellite and ground-based receiver station. However, the estimated GPS-STEC is very sparse and highly nonuniformly distributed for obtaining reliable 3-D electron density distributions derived from the measurements alone. Standard tomographic reconstruction techniques are not accurate or reliable enough to represent the full complexity of variable ionosphere. On the other hand, model-based electron density distributions are produced according to the general trends of ionosphere, and these distributions do not agree with measurements, especially for geomagnetically active hours. In this study, a regional 3-D electron density distribution reconstruction method, namely, IONOLAB-CIT, is proposed to assimilate GPS-STEC into physical ionospheric models. The proposed method is based on an iterative optimization framework that tracks the deviations from the ionospheric model in terms of F2 layer critical frequency and maximum ionization height resulting from the comparison of International Reference Ionosphere extended to Plasmasphere (IRI-Plas) model-generated STEC and GPS-STEC. The suggested tomography algorithm is applied successfully for the reconstruction of electron density profiles over Turkey, during quiet and disturbed hours of ionosphere using Turkish National Permanent GPS Network.

  12. An interesting case of polyostotic fibrous dysplasia: The "pirate sign" evaluated with Tc-99m methylene diphosphonate single-photon emission computed tomography/computerized tomography.

    PubMed

    Harisankar, Chidambaram Natarajan Balasubramanian; Bhattacharya, Anish; Bhadada, Sanjay Kumar; Kamaleshwaran, Koramadai Karuppusamy; Mittal, Bhagwant Rai

    2011-01-01

    Polyostotic fibrous dysplasia is a rare progressive benign disorder of the bone. Bone scintigraphy is extremely useful in the initial evaluation for identifying the extent of disease. We report a case presenting with pathological fracture of the shaft of the right femur. After treatment of the fracture, bone scintigraphy revealed involvement of multiple bones including the skull and facial bones. The utility of single-photon emission computed tomography/computerized tomography in the evaluation of the extent of skull base involvement is highlighted. PMID:21969780

  13. Multimodal photoacoustic and optical coherence tomography scanner using an all optical detection scheme for 3D morphological skin imaging

    PubMed Central

    Zhang, Edward Z.; Povazay, Boris; Laufer, Jan; Alex, Aneesh; Hofer, Bernd; Pedley, Barbara; Glittenberg, Carl; Treeby, Bradley; Cox, Ben; Beard, Paul; Drexler, Wolfgang

    2011-01-01

    A noninvasive, multimodal photoacoustic and optical coherence tomography (PAT/OCT) scanner for three-dimensional in vivo (3D) skin imaging is described. The system employs an integrated, all optical detection scheme for both modalities in backward mode utilizing a shared 2D optical scanner with a field-of-view of ~13 × 13 mm2. The photoacoustic waves were detected using a Fabry Perot polymer film ultrasound sensor placed on the surface of the skin. The sensor is transparent in the spectral range 590-1200 nm. This permits the photoacoustic excitation beam (670-680 nm) and the OCT probe beam (1050 nm) to be transmitted through the sensor head and into the underlying tissue thus providing a backward mode imaging configuration. The respective OCT and PAT axial resolutions were 8 and 20 µm and the lateral resolutions were 18 and 50-100 µm. The system provides greater penetration depth than previous combined PA/OCT devices due to the longer wavelength of the OCT beam (1050 nm rather than 829-870 nm) and by operating in the tomographic rather than the optical resolution mode of photoacoustic imaging. Three-dimensional in vivo images of the vasculature and the surrounding tissue micro-morphology in murine and human skin were acquired. These studies demonstrated the complementary contrast and tissue information provided by each modality for high-resolution 3D imaging of vascular structures to depths of up to 5 mm. Potential applications include characterizing skin conditions such as tumors, vascular lesions, soft tissue damage such as burns and wounds, inflammatory conditions such as dermatitis and other superficial tissue abnormalities. PMID:21833358

  14. Monitoring a pilot CO2 injection experiment in a shallow aquifer using 3D cross-well electrical resistance tomography

    NASA Astrophysics Data System (ADS)

    Yang, X.; Lassen, R. N.; Looms, M. C.; Jensen, K. H.

    2014-12-01

    Three dimensional electrical resistance tomography (ERT) was used to monitor a pilot CO2 injection experiment at Vrøgum, Denmark. The purpose was to evaluate the effectiveness of the ERT method for monitoring the two opposing effects from gas-phase and dissolved CO2 in a shallow unconfined siliciclastic aquifer. Dissolved CO2 increases water electrical conductivity (EC) while gas phase CO2 reduce EC. We injected 45kg of CO2 into a shallow aquifer for 48 hours. ERT data were collected for 50 hours following CO2 injection. Four ERT monitoring boreholes were installed on a 5m by 5m square grid and each borehole had 24 electrodes at 0.5 m electrode spacing at depths from 1.5 m to 13 m. ERT data were inverted using a difference inversion algorithm for bulk EC. 3D ERT successfully detected the CO2 plume distribution and growth in the shallow aquifer. We found that the changes of bulk EC were dominantly positive following CO2 injection, indicating that the effect of dissolved CO2 overwhelmed that of gas phase CO2. The pre-injection baseline resistivity model clearly showed a three-layer structure of the site. The electrically more conductive glacial sand layer in the northeast region are likely more permeable than the overburden and underburden and CO2 plumes were actually confined in this layer. Temporal bulk EC increase from ERT agreed well with water EC and cross-borehole ground penetrating radar data. ERT monitoring offers a competitive advantage over water sampling and GPR methods because it provides 3D high-resolution temporal tomographic images of CO2 distribution and it can also be automated for unattended operation. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under contract DE-AC52-07NA27344. Lawrence Livermore National Security, LLC. LLNL IM release#: LLNL-PROC-657944.

  15. Ground penetrating radar and microwave tomography 3D applications for the deck evaluation of the Musmeci bridge in Potenza, Italy

    NASA Astrophysics Data System (ADS)

    Bavusi, Massimo; Soldovieri, Francesco; Di Napoli, Rosario; Loperte, Antonio; Di Cesare, Antonio; Carlo Ponzo, Felice; Lapenna, Vincenzo

    2011-09-01

    An extensive experimental and numerical investigation has been carried out to assess the status of the 'Ponte sul Basento' (1967-1976), in the town of Potenza (Basilicata region, southern Italy), better known as the Musmeci bridge. Architecturally, the bridge is a considerable reinforced 20th century concrete structure that was designed and built by the Italian architect Sergio Musmeci (1926-1981). Moreover, the bridge represents an important element of the infrastructural network, linking the city centre to the Potenza-Sicignano highway, crossing the Basento river and the railway close to the main train station of the city. Recently, due to ageing and continuous and significant traffic, the bridge started to be affected by several problems such as water infiltration. Within the presented study, a widespread ground penetrating radar (GPR) survey has been designed to investigate the geometrical characteristics of the bridge deck (Gerber saddles, internal stiffening walls, pillar supports) and detect the presence of defects or damage due to water infiltration and traffic fatigue. Concerning this, a 900 MHz 3D GPR survey has been performed along a zone of one of the lanes on the road surface. Moreover, a second 1500 MHz 3D survey has been carried out at the bottom of the bridge deck in order to gain detailed information about an important structural element of the bridge, the Gerber saddle. Both results have been processed following two approaches: the first a classical time-domain processing session based on commercial software and the use of migration; the second in microwave tomography, an advanced frequency domain automatic PC-based inversion algorithm. In this paper, we present a comparative interpretation of both kinds of processed results, and provide considerations about the investigated structures.

  16. 3D Visualization of the Initial Yersinia ruckeri Infection Route in Rainbow Trout (Oncorhynchus mykiss) by Optical Projection Tomography

    PubMed Central

    Ohtani, Maki; Villumsen, Kasper Rømer; Strøm, Helene Kragelund; Raida, Martin Kristian

    2014-01-01

    Despite the fact that enteric redmouth disease (ERM) in farmed rainbow trout is one of the most devastating disease problems, little is known about the initial route of infection and pathogenicity of the aetiological agent, Yersinia ruckeri. In order to determine the initially infected organs, optical projection tomography (OPT), a novel three-dimensional (3D) bio-imaging technique, was applied. OPT not only enables the visualization of Y. ruckeri on mucosal surfaces but also the 3D spatial distribution in whole organs, without sectioning. Rainbow trout were infected by bath challenge exposure to 1×108 CFU/ml of Y. ruckeri O1 for 1 hour. Three fish were sampled for OPT and immunohistochemistry (IHC) 1, 10 and 30 minutes, 1, 3, 6, 12 and 24 hours, as well as 2, 3, 7 and 21 days after the start of the infection period. Y. ruckeri was re-isolated from the blood of infected fish as early as 1 minute post infection. Both OPT and IHC analysis confirmed that the secondary gill lamellae were the only tissues infected at this early time point, indicating that Y. ruckeri initially infects gill epithelial cells. The experimentally induced infection caused septicemia, and Y. ruckeri was found in all examined organs 7 days post infection including the brain, which correlated with the peak in mortality. To the best of our knowledge this is the first description of Y. ruckeri infection in the brain, which is likely to cause encephalitis. This in part could explain the lethality of ERM in rainbow trout. Using OPT scanning it was possible to visualize the initial route of entry, as well as secondary infection routes along with the proliferation and spread of Y. ruckeri, ultimately causing significant mortality in the exposed rainbow trout. These results demonstrate that OPT is a state-of-the-art technique capable of visualizing pathogenesis at high resolution. PMID:24586953

  17. 3D Cloud Tomography, Followed by Mean Optical and Microphysical Properties, with Multi-Angle/Multi-Pixel Data

    NASA Astrophysics Data System (ADS)

    Davis, A. B.; von Allmen, P. A.; Marshak, A.; Bal, G.

    2010-12-01

    -type model is used where the cloud surface "emits" either reflected (sunny-side) or transmitted (shady-side) light at different levels. As it turns out, the reflected/transmitted light ratio yields an approximate cloud optical thickness. Another approach is to invoke tomography techniques to define the volume occupied by the cloud using, as it were, cloud masks for each direction of observation. In the shape and opacity refinement phase, initial guesses along with solar and viewing geometry information are used to predict radiance in each pixel using a fast diffusion model for the 3D RT in MISR's non-absorbing red channel (275 m resolution). Refinement is constrained and stopped when optimal resolution is reached. Finally, multi-pixel/mono-angle MODIS data for the same cloud (at comparable 250 m resolution) reveals the desired droplet size information, hence the volume-averaged LWC. This is an ambitious remote sensing science project drawing on cross-disciplinary expertise gained in medical imaging using both X-ray and near-IR sources and detectors. It is high risk but with potentially high returns not only for the cloud modeling community but also aerosol and surface characterization in the presence of broken 3D clouds.

  18. A study of 3D structure of nighttime electron density enhancement in the mid-latitude ionosphere by GPS tomography

    NASA Astrophysics Data System (ADS)

    Chen, C.; Saito, A.

    2011-12-01

    The mid-latitude summer nighttime anomaly (MSNA) is a feature that the nighttime electron density larger than that in the daytime mid-latitude ionosphere. This anomaly was first detected in the southern hemisphere five decades ago and observed in the northern hemisphere recently by ionosondes and satellites. Previous studies presented the electron density structure of MSNA by using COSMIC occultation data and found that MSNA is clearly seen around 300 km altitude during local summer. However, due to lack of observation, the day-to-day variation of MSNA was not investigated. A GPS tomography method by SPEL of Kyoto University using the total electron content (TEC) data measured by the ground-based GPS receiver network is employed in this study. The wide coverage and continuous observation of GPS receivers are suitable for investigating the spatial and day-to-day variations of ionospheric electron densities. The algorithm of the GPS tomography developed by SPEL of Kyoto University use a constraint condition that the gradient of election density tends to be smooth in the horizontal direction and steep in the vicinity of the F2 peak, instead of inputting the initial conditions. Therefore, the algorithm is independent of any ionospheric and plasmaspheric electron density distribution models. The dense ground-based GPS receiver network around European region is used to study the three dimensional (3D) structure of MSNA with GPS tomography. Results show that the MSNA usually appear around the geomagnetic mid-latitude region during local summer nighttime. The feature of MSNA is most obvious at the ionospheric F2-peak altitudes. The result also shows a day-to-day variation in the formation of MSNA, in terms of the occurrence time, intensity, and spatial extent. The tomographic results are compared with the ionosondes, satellites, and radar measurements. A theoretical model simulation, SAMI2, is also used to further discuss the mechanism of MSNA. The comparison with other

  19. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    NASA Astrophysics Data System (ADS)

    Raguvarun, K.; Balasubramaniam, Krishnan; Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Hoye, Nicholas; Curiri, Dominic; Kapoor, Ajay

    2015-03-01

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  20. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    NASA Astrophysics Data System (ADS)

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali

    2015-01-01

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 5123 to 81923 voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and Ht (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume "Shepp and Logan" in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  1. Intraoperative handheld probe for 3D imaging of pediatric benign vocal fold lesions using optical coherence tomography (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Benboujja, Fouzi; Garcia, Jordan; Beaudette, Kathy; Strupler, Mathias; Hartnick, Christopher J.; Boudoux, Caroline

    2016-02-01

    Excessive and repetitive force applied on vocal fold tissue can induce benign vocal fold lesions. Children affected suffer from chronic hoarseness. In this instance, the vibratory ability of the folds, a complex layered microanatomy, becomes impaired. Histological findings have shown that lesions produce a remodeling of sup-epithelial vocal fold layers. However, our understanding of lesion features and development is still limited. Indeed, conventional imaging techniques do not allow a non-invasive assessment of sub-epithelial integrity of the vocal fold. Furthermore, it remains challenging to differentiate these sub-epithelial lesions (such as bilateral nodules, polyps and cysts) from a clinical perspective, as their outer surfaces are relatively similar. As treatment strategy differs for each lesion type, it is critical to efficiently differentiate sub-epithelial alterations involved in benign lesions. In this study, we developed an optical coherence tomography (OCT) based handheld probe suitable for pediatric laryngological imaging. The probe allows for rapid three-dimensional imaging of vocal fold lesions. The system is adapted to allow for high-resolution intra-operative imaging. We imaged 20 patients undergoing direct laryngoscopy during which we looked at different benign pediatric pathologies such as bilateral nodules, cysts and laryngeal papillomatosis and compared them to healthy tissue. We qualitatively and quantitatively characterized laryngeal pathologies and demonstrated the added advantage of using 3D OCT imaging for lesion discrimination and margin assessment. OCT evaluation of the integrity of the vocal cord could yield to a better pediatric management of laryngeal diseases.

  2. High-resolution 3-D imaging of surface damage sites in fused silica with Optical Coherence Tomography

    SciTech Connect

    Guss, G; Bass, I; Hackel, R; Mailhiot, C; Demos, S G

    2007-10-30

    In this work, we present the first successful demonstration of a non-contact technique to precisely measure the 3D spatial characteristics of laser induced surface damage sites in fused silica for large aperture laser systems by employing Optical Coherence Tomography (OCT). What makes OCT particularly interesting in the characterization of optical materials for large aperture laser systems is that its axial resolution can be maintained with working distances greater than 5 cm, whether viewing through air or through the bulk of thick optics. Specifically, when mitigating surface damage sites against further growth by CO{sub 2} laser evaporation of the damage, it is important to know the depth of subsurface cracks below the damage site. These cracks are typically obscured by the damage rubble when imaged from above the surface. The results to date clearly demonstrate that OCT is a unique and valuable tool for characterizing damage sites before and after the mitigation process. We also demonstrated its utility as an in-situ diagnostic to guide and optimize our process when mitigating surface damage sites on large, high-value optics.

  3. A study of internal structure in components made by additive manufacturing process using 3 D X-ray tomography

    SciTech Connect

    Raguvarun, K. Balasubramaniam, Krishnan Rajagopal, Prabhu; Palanisamy, Suresh; Nagarajah, Romesh; Kapoor, Ajay; Hoye, Nicholas; Curiri, Dominic

    2015-03-31

    Additive manufacturing methods are gaining increasing popularity for rapidly and efficiently manufacturing parts and components in the industrial context, as well as for domestic applications. However, except when used for prototyping or rapid visualization of components, industries are concerned with the load carrying capacity and strength achievable by additive manufactured parts. In this paper, the wire-arc additive manufacturing (AM) process based on gas tungsten arc welding (GTAW) has been examined for the internal structure and constitution of components generated by the process. High-resolution 3D X-ray tomography is used to gain cut-views through wedge-shaped parts created using this GTAW additive manufacturing process with titanium alloy materials. In this work, two different control conditions for the GTAW process are considered. The studies reveal clusters of porosities, located in periodic spatial intervals along the sample cross-section. Such internal defects can have a detrimental effect on the strength of the resulting AM components, as shown in destructive testing studies. Closer examination of this phenomenon shows that defect clusters are preferentially located at GTAW traversal path intervals. These results highlight the strong need for enhanced control of process parameters in ensuring components with minimal defects and higher strength.

  4. L- and Corner-arryas for 3D electric resistivity tomography: An alternative for geophysical surveys in urban zones

    NASA Astrophysics Data System (ADS)

    Chavez Segura, R. E.; Tejero-Andrade, A.; Delgado-Solorzano, C.; Cifuentes-Nava, G.; Hernández-Quintero, E.

    2011-12-01

    3D Electric Resitivity Tomography methods carried out on heavily urbanized areas become a difficult task, since buildings, houses or other type of obstacles do not allow parallel ERT arrays to be deployed. Therefore, insufficient information from the subsoil could be obtained. The present paper presents two new techniques, which allow acquiring information beneath a construction by simply surrounding the building or buildings to be studied by a series of ERT profiles. Apparent resistivities are obtained from L-shaped profiles, where alternations between current and potential electrodes along this array are carried out in an automatic way. Four L-arrays and four Corner-arrays are needed to cover the subsurface beneath the studied area. A field test was carried out on a small University of Mexico main Campus garden, where trees and other anthropogenic structures were the so called 'obstacles'. Geophysical work was performed employing parallel arrays (traditional methodology) and compared with this new method presented. Results show that the new method has a poor resolution towards the central portion of the area, mainly from anomalies produced by shallow structures as compared with the traditional grid method. However, the L- and Corner- arrays are more sensitive to anomalies produced by deeper objects, which cannot be observed in the traditional method. The final goal is to apply this method to study habitational complexes built on top of the ancient lake of Mexico City, where buildings are in constant risk due to fracturing and subsidence.

  5. Analyzing the Evolution of Membrane Fouling via a Novel Method Based on 3D Optical Coherence Tomography Imaging.

    PubMed

    Li, Weiyi; Liu, Xin; Wang, Yi-Ning; Chong, Tzyy Haur; Tang, Chuyang Y; Fane, Anthony G

    2016-07-01

    The development of novel tools for studying the fouling behavior during membrane processes is critical. This work explored optical coherence tomography (OCT) to quantitatively interpret the formation of a cake layer during a membrane process; the quantitative analysis was based on a novel image processing method that was able to precisely resolve the 3D structure of the cake layer on a micrometer scale. Fouling experiments were carried out with foulants having different physicochemical characteristics (silica nanoparticles and bentonite particles). The cake layers formed at a series of times were digitalized using the OCT-based characterization. The specific deposit (cake volume/membrane surface area) and surface coverage were evaluated as a function of time, which for the first time provided direct experimental evidence for the transition of various fouling mechanisms. Axial stripes were observed in the grayscale plots showing the deposit distribution in the scanned area; this interesting observation was in agreement with the instability analysis that correlated the polarized particle groups with the small disturbances in the boundary layer. This work confirms that the OCT-based characterization is able to provide deep insights into membrane fouling processes and offers a powerful tool for exploring membrane processes with enhanced performance. PMID:27269635

  6. 3D noninvasive, high-resolution imaging using a photoacoustic tomography (PAT) system and rapid wavelength-cycling lasers

    NASA Astrophysics Data System (ADS)

    Sampathkumar, Ashwin; Gross, Daniel; Klosner, Marc; Chan, Gary; Wu, Chunbai; Heller, Donald F.

    2015-05-01

    Globally, cancer is a major health issue as advances in modern medicine continue to extend the human life span. Breast cancer ranks second as a cause of cancer death in women in the United States. Photoacoustic (PA) imaging (PAI) provides high molecular contrast at greater depths in tissue without the use of ionizing radiation. In this work, we describe the development of a PA tomography (PAT) system and a rapid wavelength-cycling Alexandrite laser designed for clinical PAI applications. The laser produces 450 mJ/pulse at 25 Hz to illuminate the entire breast, which eliminates the need to scan the laser source. Wavelength cycling provides a pulse sequence in which the output wavelength repeatedly alternates between 755 nm and 797 nm rapidly within milliseconds. We present imaging results of breast phantoms with inclusions of different sizes at varying depths, obtained with this laser source, a 5-MHz 128-element transducer and a 128-channel Verasonics system. Results include PA images and 3D reconstruction of the breast phantom at 755 and 797 nm, delineating the inclusions that mimic tumors in the breast.

  7. Use of microfocus computerized tomography as a new technique for characterizing bone tissue around oral implants.

    PubMed

    Van Oossterwyck, H; Duyck, J; Vander Sloten, J; Van der Perre, G; Jansen, J; Wevers, M; Naert, I

    2000-01-01

    Qualitative and quantitative analysis of peri-implant tissues around retrieved oral implants is typically done by means of light microscopy on thin histological sections containing the metal surface and the undecalcified bone. It remains, however, a labor-intensive and thus time-consuming job. Moreover, it is a destructive technique that allows tissue quantification in only a limited number of two-dimensional sections. As an alternative, we evaluated the bone structure around screw-shaped titanium implants by means of microfocus computerized tomography (micro-CT) because it presents a number of advantages compared to conventional sectioning techniques: micro-CT is nondestructive, fast, and allows a fully three-dimensional characterization of the bone structure around the implant. Images can be reconstructed in an arbitrary plane, and three-dimensional reconstructions are also possible. Because of its high resolution, individual trabeculae can be visualized. The accuracy of micro-CT was qualitatively evaluated by comparing histological sections with the corresponding CT slices for the same specimen. The overall trabecular structure is very similar according to both techniques. Even very close to the interface, the titanium implant does not seem to produce significant artifacts. Furthermore, because the complete digital data on the trabecular bone structure around the implant is available, it is possible to create finite-element models of the bone-implant system that model the trabeculae in detail so that mechanical stress transfer at the interface can be studied at the level of individual trabeculae. Therefore, micro-CT seems to be very promising for the in vitro assessment of the three-dimensional bone structure around oral implants. Further research will be needed to evaluate its accuracy in a more quantitative way. PMID:11831302

  8. Assessment of the Anterior Loop of the Mental Nerve Using Cone Beam Computerized Tomography Scan.

    PubMed

    Lu, Chun-I; Won, John; Al-Ardah, Aladdin; Santana, Ruben; Rice, Dwight; Lozada, Jaime

    2015-12-01

    The purpose of this study is to use cone-beam computerized tomography (CBCT) scans with oblique-transverse reconstruction modality to measure and compare the anterior loop length (AnLL) of the mental nerve between gender and age groups and to compare the difference between the right and left sides. Sixty-one female and 61 male CBCT scans were randomly selected for each age group: 21-40, 41-60, and 61-80 years. Both right- and left-side AnLLs were measured in each subject using i-CATVision software to measure AnLLs on the oblique transverse plane using multiplanar reconstruction. The anterior loop was identified in 85.2% of cases, with the mean AnLL of the 366 subjects (732 hemimandibles) being 1.46 ± 1.25 mm with no statistically significant difference between right and left sides or between different gender groups. However, the mean AnLL in the 21-40 year group (1.89 ± 1.35 mm) was larger than the AnLL in the 41-60 year group (1.35 ± 1.19 mm) and the 61-80 year group (1.13 ± 1.08 mm). In conclusion, when placing implants in close proximity to mental foramina, caution is recommended to avoid injury to the inferior alveolar nerve. No fixed distance anteriorly from the mental foramen should be considered safe. Using CBCT scans with the oblique-transverse method to accurately identify and measure the AnLL is of utmost importance in avoiding and protecting its integrity. PMID:24552176

  9. 3D imaging of cone photoreceptors over extended time periods using optical coherence tomography with adaptive optics

    NASA Astrophysics Data System (ADS)

    Kocaoglu, Omer P.; Lee, Sangyeol; Jonnal, Ravi S.; Wang, Qiang; Herde, Ashley E.; Besecker, Jason; Gao, Weihua; Miller, Donald T.

    2011-03-01

    Optical coherence tomography with adaptive optics (AO-OCT) is a highly sensitive, noninvasive method for 3D imaging of the microscopic retina. The purpose of this study is to advance AO-OCT technology by enabling repeated imaging of cone photoreceptors over extended periods of time (days). This sort of longitudinal imaging permits monitoring of 3D cone dynamics in both normal and diseased eyes, in particular the physiological processes of disc renewal and phagocytosis, which are disrupted by retinal diseases such as age related macular degeneration and retinitis pigmentosa. For this study, the existing AO-OCT system at Indiana underwent several major hardware and software improvements to optimize system performance for 4D cone imaging. First, ultrahigh speed imaging was realized using a Basler Sprint camera. Second, a light source with adjustable spectrum was realized by integration of an Integral laser (Femto Lasers, λc=800nm, ▵λ=160nm) and spectral filters in the source arm. For cone imaging, we used a bandpass filter with λc=809nm and ▵λ=81nm (2.6 μm nominal axial resolution in tissue, and 167 KHz A-line rate using 1,408 px), which reduced the impact of eye motion compared to previous AO-OCT implementations. Third, eye motion artifacts were further reduced by custom ImageJ plugins that registered (axially and laterally) the volume videos. In two subjects, cone photoreceptors were imaged and tracked over a ten day period and their reflectance and outer segment (OS) lengths measured. High-speed imaging and image registration/dewarping were found to reduce eye motion to a fraction of a cone width (1 μm root mean square). The pattern of reflections in the cones was found to change dramatically and occurred on a spatial scale well below the resolution of clinical instruments. Normalized reflectance of connecting cilia (CC) and OS posterior tip (PT) of an exemplary cone was 54+/-4, 47+/-4, 48+/-6, 50+/-5, 56+/-1% and 46+/-4, 53+/-4, 52+/-6, 50+/-5, 44

  10. High resolution cone beam X-ray computed tomography of 3D-microstructures of cast Al-alloys

    SciTech Connect

    Kastner, Johann; Harrer, Bernhard; Degischer, H. Peter

    2011-01-15

    X-ray computed tomography (XCT) has become a very important method for non-destructive 3D-characterisation of materials. XCT systems with cone beam geometry, micro- or nano-focus tubes and matrix detectors are increasingly used in research and non-destructive testing. Spatial resolutions down to 1 {mu}m can be reached with such XCT-systems for heterogeneities in metals with high absorption contrast. High resolution cone beam XCT is applied to five different Al-alloys: AlMg5Si7, AlCu4Mg1, AlZn6Mg2Cu2, AlZn8Mg2Cu2 and AlSi12Ni1. Up to four different types of inhomogeneities are segmented in one alloy using voxel sizes between (0.4 {mu}m){sup 3} and (2.3 {mu}m){sup 3}. Target metallography and elemental analysis by energy dispersive X-ray analysis are used to identify the inhomogeneities. The possibilities and restrictions of XCT applied to Al-alloys are discussed. AlMg5Si7 XCT-data with a voxel size of (0.4 {mu}m){sup 3} show inhomogeneities with brighter grey-values than the Al-matrix identified as elongated Fe-aluminides, and those with lower grey-values identified as pores and Mg{sub 2}Si-particles with a 'Chinese script-like' structure. Higher-absorbing interdendritic Al-Al{sub 2}Cu-eutectic regions appear brighter than the Al-dendrites in the CT-data of AlCu4Mg1 with (1.1 {mu}m){sup 3}/voxel, whereas pores > 4 {mu}m appear darker than the Al-matrix. The size and the 3D-structure of the {alpha}-Al dendrite arms with a diameter of 50-100 {mu}m are determined in samples from chill cast billets of AlCu4Mg1 and AlZn6Mg2Cu2 alloys. The irregular interdendritic regions containing eutectic segregations with Cu- and Zn-rich phases are > 5 {mu}m wide. Equally absorbing primary equi-axed Al{sub 3}(Sc, Zr) particles > 5 {mu}m are distinguished in the centres of the dendrites by the level of sphericity values. The distribution of Ni- and Fe-aluminides in a squeeze cast AlSi12Ni1-alloy is imaged with (0.4 {mu}m){sup 3}/voxel, but the Si-phase cannot be segmented.

  11. Bayesian 3D X-ray computed tomography image reconstruction with a scaled Gaussian mixture prior model

    SciTech Connect

    Wang, Li; Gac, Nicolas; Mohammad-Djafari, Ali

    2015-01-13

    In order to improve quality of 3D X-ray tomography reconstruction for Non Destructive Testing (NDT), we investigate in this paper hierarchical Bayesian methods. In NDT, useful prior information on the volume like the limited number of materials or the presence of homogeneous area can be included in the iterative reconstruction algorithms. In hierarchical Bayesian methods, not only the volume is estimated thanks to the prior model of the volume but also the hyper parameters of this prior. This additional complexity in the reconstruction methods when applied to large volumes (from 512{sup 3} to 8192{sup 3} voxels) results in an increasing computational cost. To reduce it, the hierarchical Bayesian methods investigated in this paper lead to an algorithm acceleration by Variational Bayesian Approximation (VBA) [1] and hardware acceleration thanks to projection and back-projection operators paralleled on many core processors like GPU [2]. In this paper, we will consider a Student-t prior on the gradient of the image implemented in a hierarchical way [3, 4, 1]. Operators H (forward or projection) and H{sup t} (adjoint or back-projection) implanted in multi-GPU [2] have been used in this study. Different methods will be evalued on synthetic volume 'Shepp and Logan' in terms of quality and time of reconstruction. We used several simple regularizations of order 1 and order 2. Other prior models also exists [5]. Sometimes for a discrete image, we can do the segmentation and reconstruction at the same time, then the reconstruction can be done with less projections.

  12. 3D tissue-engineered construct analysis via conventional high-resolution microcomputed tomography without X-ray contrast.

    PubMed

    Voronov, Roman S; VanGordon, Samuel B; Shambaugh, Robert L; Papavassiliou, Dimitrios V; Sikavitsas, Vassilios I

    2013-05-01

    As the field of tissue engineering develops, researchers are faced with a large number of degrees of freedom regarding the choice of material, architecture, seeding, and culturing. To evaluate the effectiveness of a tissue-engineered strategy, histology is typically done by physically slicing and staining a construct (crude, time-consuming, and unreliable). However, due to recent advances in high-resolution biomedical imaging, microcomputed tomography (μCT) has arisen as a quick and effective way to evaluate samples, while preserving their structure in the original state. However, a major barrier for using μCT to do histology has been its inability to differentiate between materials with similar X-ray attenuation. Various contrasting strategies (hardware and chemical staining agents) have been proposed to address this problem, but at a cost of additional complexity and limited access. Instead, here we suggest a strategy for how virtual 3D histology in silico can be conducted using conventional μCT, and we provide an illustrative example from bone tissue engineering. The key to our methodology is an implementation of scaffold surface architecture that is ordered in relation to cells and tissue, in concert with straightforward image-processing techniques, to minimize the reliance on contrasting for material segmentation. In the case study reported, μCT was used to image and segment porous poly(lactic acid) nonwoven fiber mesh scaffolds that were seeded dynamically with mesenchymal stem cells and cultured to produce soft tissue and mineralized tissue in a flow perfusion bioreactor using an osteogenic medium. The methodology presented herein paves a new way for tissue engineers to identify and distinguish components of cell/tissue/scaffold constructs to easily and effectively evaluate the tissue-engineering strategies that generate them. PMID:23020551

  13. Analyzing bone remodeling patterns after total hip arthroplasty using quantitative computed tomography and patient-specific 3D computational models

    PubMed Central

    Arachchi, Shanika; Pitto, Rocco P.; Anderson, Iain A.

    2015-01-01

    Background Computational models in the form of finite element analysis technique that incorporates bone remodeling theories along with DEXA scans has been extensively used in predicting bone remodeling patterns around the implant. However, majority of such studies used generic models. Therefore, the aim of this study is to develop patient-specific finite element models of total hip replacement patients using their quantitative computed tomography (QCT) scans and accurately analyse bone remodelling patterns after total hip arthroplasty (THA). Methods Patient-specific finite element models have been generated using the patients’ QCT scans from a previous clinical follow-up study. The femur was divided into five regions in proximal-distal direction and then further divided into four quadrants for detailed analysis of bone remodeling patterns. Two types of analysis were performed—inter-patient and intra patient to compare them and then the resulting bone remodeling patterns were quantitatively analyzed. Results Our results show that cortical bone density decrease is higher in diaphyseal region over time and the cancellous bone density decreases significantly in metaphyseal region over time. In metaphyseal region, posterior-medial (P-M) quadrant showed high bone loss while diaphyseal regions show high bone loss in anterior-lateral (A-L) quadrant. Conclusions Our study demonstrated that combining QCT with 3D patient-specific models has the ability of monitoring bone density change patterns after THA in much finer details. Future studies include using these findings for the development of a bone remodelling algorithm capable of predicting surgical outcomes for THA patients. PMID:26435921

  14. Plant Tissues in 3D via X-Ray Tomography: Simple Contrasting Methods Allow High Resolution Imaging

    PubMed Central

    Staedler, Yannick M.; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  15. Simultaneous multiplicative column-normalized method (SMART) for 3-D ionosphere tomography in comparison to other algebraic methods

    NASA Astrophysics Data System (ADS)

    Gerzen, T.; Minkwitz, D.

    2016-01-01

    The accuracy and availability of satellite-based applications like GNSS positioning and remote sensing crucially depends on the knowledge of the ionospheric electron density distribution. The tomography of the ionosphere is one of the major tools to provide link specific ionospheric corrections as well as to study and monitor physical processes in the ionosphere. In this paper, we introduce a simultaneous multiplicative column-normalized method (SMART) for electron density reconstruction. Further, SMART+ is developed by combining SMART with a successive correction method. In this way, a balancing between the measurements of intersected and not intersected voxels is realised. The methods are compared with the well-known algebraic reconstruction techniques ART and SART. All the four methods are applied to reconstruct the 3-D electron density distribution by ingestion of ground-based GNSS TEC data into the NeQuick model. The comparative case study is implemented over Europe during two periods of the year 2011 covering quiet to disturbed ionospheric conditions. In particular, the performance of the methods is compared in terms of the convergence behaviour and the capability to reproduce sTEC and electron density profiles. For this purpose, independent sTEC data of four IGS stations and electron density profiles of four ionosonde stations are taken as reference. The results indicate that SMART significantly reduces the number of iterations necessary to achieve a predefined accuracy level. Further, SMART+ decreases the median of the absolute sTEC error up to 15, 22, 46 and 67 % compared to SMART, SART, ART and NeQuick respectively.

  16. Plant tissues in 3D via X-ray tomography: simple contrasting methods allow high resolution imaging.

    PubMed

    Staedler, Yannick M; Masson, David; Schönenberger, Jürg

    2013-01-01

    Computed tomography remains strongly underused in plant sciences despite its high potential in delivering detailed 3D phenotypical information because of the low X-ray absorption of most plant tissues. Existing protocols to study soft tissues display poor performance, especially when compared to those used on animals. More efficient protocols to study plant material are therefore needed. Flowers of Arabidopsis thaliana and Marcgravia caudata were immersed in a selection of contrasting agents used to treat samples for transmission electron microscopy. Grayscale values for floral tissues and background were measured as a function of time. Contrast was quantified via a contrast index. The thick buds of Marcgravia were scanned to determine which contrasting agents best penetrate thick tissues. The highest contrast increase with cytoplasm-rich tissues was obtained with phosphotungstate, whereas osmium tetroxide and bismuth tatrate displayed the highest contrast increase with vacuolated tissues. Phosphotungstate also displayed the best sample penetration. Furthermore, infiltration with phosphotungstate allowed imaging of all plants parts at a high resolution of 3 µm, which approaches the maximum resolution of our equipment: 1.5 µm. The high affinity of phosphotungstate for vasculature, cytoplasm-rich tissue, and pollen causes these tissues to absorb more X-rays than the surrounding tissues, which, in turn, makes these tissues appear brighter on the scan data. Tissues with different brightness can then be virtually dissected from each other by selecting the bracket of grayscale to be visualized. Promising directions for the future include in silico phenotyping and developmental studies of plant inner parts (e.g., ovules, vasculature, pollen, and cell nuclei) via virtual dissection as well as correlations of quantitative phenotypes with omics datasets. Therefore, this work represents a crucial improvement of previous methods, allowing new directions of research to be

  17. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    SciTech Connect

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  18. In situ investigation of high humidity stress corrosion cracking of 7075 aluminum alloy by three-dimensional (3D) X-ray synchrotron tomography

    DOE PAGESBeta

    Singh, S. S.; Williams, J. J.; Lin, M. F.; Xiao, X.; De Carlo, F.; Chawla, N.

    2014-05-14

    In situ X-ray synchrotron tomography was used to investigate the stress corrosion cracking behavior of under-aged Al–Zn–Mg–Cu alloy in moisture. The discontinuous surface cracks (crack jumps) mentioned in the literature are actually a single continuous and tortuous crack when observed in three dimension (3D). Contrary to 2D measurements made at the surface which suggest non-uniform crack growth rates, 3D measurements of the crack length led to a much more accurate measurement of crack growth rates.

  19. A new method for real-time co-registration of 3D coronary angiography and intravascular ultrasound or optical coherence tomography.

    PubMed

    Carlier, Stéphane; Didday, Rich; Slots, Tristan; Kayaert, Peter; Sonck, Jeroen; El-Mourad, Mike; Preumont, Nicolas; Schoors, Dany; Van Camp, Guy

    2014-06-01

    We present a new clinically practical method for online co-registration of 3D quantitative coronary angiography (QCA) and intravascular ultrasound (IVUS) or optical coherence tomography (OCT). The workflow is based on two modified commercially available software packages. Reconstruction steps are explained and compared to previously available methods. The feasibility for different clinical scenarios is illustrated. The co-registration appears accurate, robust and induced a minimal delay on the normal cath lab activities. This new method is based on the 3D angiographic reconstruction of the catheter path and does not require operator's identification of landmarks to establish the image synchronization. PMID:24746102

  20. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  1. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    flow fraction was observed to be independent of precipitation rate. This suggests the presence of a fingering process driven by textural heterogeneities. As a consequence, preferential transport of the conservative and the reactive tracer also occurred. We found that 3D ERT can serve to quantitatively characterize shape measures of both tracer breakthroughs and water content dynamics. In particular, shape measures influenced by the advective propagation of the tracer peak, like mean velocity and normalized first central moment, are highly correlated between ERT data and validation data (consisting of tracer measurements in seepage water samples). Using shape measures proved to be advantageous over interpretation of ERT data with spatially uncertain petrophysical functions for the characterization of heterogeneous flow and transport. Consequently, for future applications of ERT in soil hydrological modeling, the use of temporal moments is recommended.

  2. Tri-Dimensional Electric Resistivity Tomography (ERT-3D) Technique, an Efficient Tool to Unveil the Subsoil of Archaeological Structures

    NASA Astrophysics Data System (ADS)

    Chavez, R. E.; Vargas, D.; Cifuentes-Nava, G.; HernaNdez-Quintero, J. E.; Tejero, A.

    2014-12-01

    Three-Dimensional Electrical Resistivity Tomography techniques (ERT-3D) have demonstrated to be an efficient tool to study the subsurface of areas of archaeological interest by special arrays designed to 'illuminate' the subsoil beneath the structure under study. 'L'- and 'Corner'-arrays are applied to design alternative electrode geometries, which attempt to cover the subsurface with enough resistivity observations underneath the studied target. Two examples are presented where novel geometries can be applied to investigate the subsoil of two important pyramids in Mexico. First, the archaeological site of Cuicuilco is studied. The area is found towards the southern portion of the Mexican Basin. This pyramid presents a circular structure of 110 m in diameter and a total height of 25 m. The region is partially covered by the lava flows that came from an eruptive event form the Xitle Volcano 1500 years ago. The geophysical study was carried out at the base of the pyramid. 48 electrodes were deployed along a circular transect, with an electrode separation of 5.4 m. A total of 1716 apparent resistivity observations were measured. The inverted model computed is obtained with an investigation depth of 30 m, approximately (Figure 1, in color). A resistive anomaly can be observed towards the central portion of the model. This anomaly can be associated to a burial chamber, excavated by the archaeologists. The second example corresponds to the pyiramid El Castillo, located in the archaeological site of Chichen Itza, in the southern lowlands of Mexico, within the Yucatan Peninsula. Previous GPR studies carried out within the pyramid's Plaza provided evidences of a buried tunnel excavated within the limestone rocks. Such feature seemed to run beneath the eastern flank of the pyramide. The geophysical study was carried out by employing 96 flat-surface electrodes, which surrounded the edifice forming a square geometry. A total of 5,350 apparent resistivity observations were

  3. Precise 3D dimensional metrology using high-resolution x-ray computed tomography (μCT)

    NASA Astrophysics Data System (ADS)

    Brunke, Oliver; Santillan, Javier; Suppes, Alexander

    2010-09-01

    Over the past decade computed tomography (CT) with conventional x-ray sources has evolved from an imaging method in medicine to a well established technology for industrial applications in fields such as material science, light metals and plastics processing, microelectronics and geology. By using modern microfocus and nanofocus X-ray tubes, parts can be scanned with sub-micrometer resolutions. Currently, micro-CT is a technology increasingly used for metrology applications in the automotive industry. CT offers big advantages compared with conventional tactile or optical coordinate measuring machines (CMMs). This is of greater importance if complex parts with hidden or difficult accessible surfaces have to be measured. In these cases, CT offers the advantage of a high density of measurement points and a non-destructive and fast capturing of the sample's complete geometry. When using this growing technology the question arises how precise a μCT based CMM can measure as compared to conventional and established methods for coordinate measurements. For characterizing the metrological capabilities of a tactile or optical CMM, internationally standardized parameters like length measurement error and probing error are defined and used. To increase the acceptance of CT as a metrological method, our work seeks to clarify the definition and usage of parameters used in the field of metrology as these apply to CT. In this paper, an overview of the process chain in CT based metrology will be given and metrological characteristics will be described. For the potential user of CT as 3D metrology tool it is important to show the measurement accuracy and repeatability on realistic samples. Following a discussion of CT metrology techniques, two samples are discussed. The first compares a measured CT Data set to CAD data using CMM data as a standard for comparison of results. The second data second realistic data set will compare the results of applying both the CMM method of

  4. Hybrid 3-D rocket trajectory program. Part 1: Formulation and analysis. Part 2: Computer programming and user's instruction. [computerized simulation using three dimensional motion analysis

    NASA Technical Reports Server (NTRS)

    Huang, L. C. P.; Cook, R. A.

    1973-01-01

    Models utilizing various sub-sets of the six degrees of freedom are used in trajectory simulation. A 3-D model with only linear degrees of freedom is especially attractive, since the coefficients for the angular degrees of freedom are the most difficult to determine and the angular equations are the most time consuming for the computer to evaluate. A computer program is developed that uses three separate subsections to predict trajectories. A launch rail subsection is used until the rocket has left its launcher. The program then switches to a special 3-D section which computes motions in two linear and one angular degrees of freedom. When the rocket trims out, the program switches to the standard, three linear degrees of freedom model.

  5. 3D chemical mapping: application of scanning transmission (soft) X-ray microscopy (STXM) in combination with angle-scan tomography in bio-, geo-, and environmental sciences.

    PubMed

    Obst, Martin; Schmid, Gregor

    2014-01-01

    The identification of environmental processes and mechanisms often requires information on the organochemical and inorganic composition of specimens at high spatial resolution. X-ray spectroscopy (XAS) performed in the soft X-ray range (100-2,200 eV) provides chemical speciation information for elements that are of high biogeochemical relevance such as carbon, nitrogen, and oxygen but also includes transition metals such as iron, manganese, or nickel. Synchrotron-based scanning transmission X-ray microscopy (STXM) combines XAS with high resolution mapping on the 20-nm scale. This provides two-dimensional (2D) quantitative information about the distribution of chemical species such as organic macromolecules, metals, or mineral phases within environmental samples. Furthermore, the combination of STXM with angle-scan tomography allows for three-dimensional (3D) spectromicroscopic analysis of bio-, geo-, or environmental samples. For the acquisition of STXM tomography data, the sample is rotated around an axis perpendicular to the X-ray beam. Various sample preparation approaches such as stripes cut from TEM grids or the preparation of wet cells allow for preparing environmentally relevant specimens in a dry or in a fully hydrated state for 2D and 3D STXM measurements. In this chapter we give a short overview about the principles of STXM, its application to environmental sciences, different preparation techniques, and the analysis and 3D reconstruction of STXM tomography data. PMID:24357389

  6. 3D shallow structures in the Baogutu area, Karamay, determined by eikonal tomography of short-period ambient noise surface waves

    NASA Astrophysics Data System (ADS)

    Xu, Hongrui; Luo, Yinhe; Chen, Chao; Xu, Yixian

    2016-06-01

    Eikonal tomography based on ambient noise data is one of the most effective methods to reveal shallow earth structures. By tracking surface wave phase fronts, constructing travel time surfaces, and computing the gradients of travel time surfaces to generate phase velocity maps, eikonal tomography avoids the ray tracing and matrix construction and inversion in the traditional surface wave tomography methods. In this study, we collect continuous ambient noise data recorded by a dense seismic array in Karamay, Xinjiang to construct a 3D model of shallow structures using eikonal tomography. The seismic array consists of 35 stations with shortest interstation distance close to 1 km. 890 empirical surface wave Green's functions (EGFs) between each station pair are retrieved by cross-correlating one or two months of continuous ambient noise data. From these EGFs, surface wave travel times in the frequency range of 1.8 to 4.0 Hz are measured by a frequency-time analysis technique (FTAN). Then, eikonal tomography is adopted to construct Rayleigh wave phase velocity maps and estimate the phase velocity uncertainties. Finally, we invert the obtained phase velocity dispersion curves for 1D shear velocity profiles and then assemble these 1D profiles to construct a 3D shear velocity model. Major velocity features of our 3D model are correlated well with the known geological features. A shallow east-west velocity discontinuity is observed, which clearly reflects the lithological change between Baogutu formation (C1b) and Xibeikulasi formation (C1x) of lower Carboniferous system. Low shear velocities are observed beneath the location of porphyry copper deposit (V), possibly related to stockwork fracture and hydrothermal brecciation developed during the intrusion of deep magma in forming the deposit.

  7. Comparison of micro-computerized tomography and cone-beam computerized tomography in the detection of accessory canals in primary molars

    PubMed Central

    Kamburoğlu, Kıvanç; Tatar, İlkan; Arıkan, Volkan; Çelik, Hakan Hamdi; Yüksel, Selcen; Özen, Tuncer

    2015-01-01

    Purpose This study was performed to compare the accuracy of micro-computed tomography (CT) and cone-beam computed tomography (CBCT) in detecting accessory canals in primary molars. Materials and Methods Forty-one extracted human primary first and second molars were embedded in wax blocks and scanned using micro-CT and CBCT. After the images were taken, the samples were processed using a clearing technique and examined under a stereomicroscope in order to establish the gold standard for this study. The specimens were classified into three groups: maxillary molars, mandibular molars with three canals, and mandibular molars with four canals. Differences between the gold standard and the observations made using the imaging methods were calculated using Spearman's rho correlation coefficient test. Results The presence of accessory canals in micro-CT images of maxillary and mandibular root canals showed a statistically significant correlation with the stereomicroscopic images used as a gold standard. No statistically significant correlation was found between the CBCT findings and the stereomicroscopic images. Conclusion Although micro-CT is not suitable for clinical use, it provides more detailed information about minor anatomical structures. However, CBCT is convenient for clinical use but may not be capable of adequately analyzing the internal anatomy of primary teeth. PMID:26730367

  8. Performance of a Multispectral Optoacoustic Tomography (MSOT) System equipped with 2D vs. 3D Handheld Probes for Potential Clinical Translation

    PubMed Central

    Neuschmelting, Volker; Burton, Neal C.; Lockau, Hannah; Urich, Alexander; Harmsen, Stefan; Ntziachristos, Vasilis; Kircher, Moritz F.

    2015-01-01

    A handheld approach to optoacoustic imaging is essential for the clinical translation. The first 2- and 3-dimensional handheld multispectral optoacoustic tomography (MSOT) probes featuring real-time unmixing have recently been developed. Imaging performance of both probes was determined in vitro and in a brain melanoma metastasis mouse model in vivo. T1-weighted MR images were acquired for anatomical reference. The limit of detection of melanoma cells in vitro was significantly lower using the 2D than the 3D probe. The signal decrease was more profound in relation to depth with the 3D versus the 2D probe. Both approaches were capable of imaging the melanoma tumors qualitatively at all time points. Quantitatively, the 2D approach enabled closer anatomical resemblance of the tumor compared to the 3D probe, particularly at depths beyond 3 mm. The 3D probe was shown to be superior for rapid 3D imaging and, thus, holds promise for more superficial target structures. PMID:27069872

  9. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    SciTech Connect

    Glaser, Adam K. E-mail: Brian.W.Pogue@dartmouth.edu; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W. E-mail: Brian.W.Pogue@dartmouth.edu; Gladstone, David J.

    2015-07-15

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm{sup 3} volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water.

  10. Optical cone beam tomography of Cherenkov-mediated signals for fast 3D dosimetry of x-ray photon beams in water

    PubMed Central

    Glaser, Adam K.; Andreozzi, Jacqueline M.; Zhang, Rongxiao; Pogue, Brian W.; Gladstone, David J.

    2015-01-01

    Purpose: To test the use of a three-dimensional (3D) optical cone beam computed tomography reconstruction algorithm, for estimation of the imparted 3D dose distribution from megavoltage photon beams in a water tank for quality assurance, by imaging the induced Cherenkov-excited fluorescence (CEF). Methods: An intensified charge-coupled device coupled to a standard nontelecentric camera lens was used to tomographically acquire two-dimensional (2D) projection images of CEF from a complex multileaf collimator (MLC) shaped 6 MV linear accelerator x-ray photon beam operating at a dose rate of 600 MU/min. The resulting projections were used to reconstruct the 3D CEF light distribution, a potential surrogate of imparted dose, using a Feldkamp–Davis–Kress cone beam back reconstruction algorithm. Finally, the reconstructed light distributions were compared to the expected dose values from one-dimensional diode scans, 2D film measurements, and the 3D distribution generated from the clinical Varian ECLIPSE treatment planning system using a gamma index analysis. A Monte Carlo derived correction was applied to the Cherenkov reconstructions to account for beam hardening artifacts. Results: 3D light volumes were successfully reconstructed over a 400 × 400 × 350 mm3 volume at a resolution of 1 mm. The Cherenkov reconstructions showed agreement with all comparative methods and were also able to recover both inter- and intra-MLC leaf leakage. Based upon a 3%/3 mm criterion, the experimental Cherenkov light measurements showed an 83%–99% pass fraction depending on the chosen threshold dose. Conclusions: The results from this study demonstrate the use of optical cone beam computed tomography using CEF for the profiling of the imparted dose distribution from large area megavoltage photon beams in water. PMID:26133613

  11. Classification and quantification of pore shapes in sandstone reservoir rocks with 3-D X-ray micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Schmitt, M.; Halisch, M.; Müller, C.; Fernandes, C. P.

    2015-12-01

    Recent years have seen a growing interest in the characterization of the pore morphologies of reservoir rocks and how the spatial organization of pore traits affects the macro behaviour of rock-fluid systems. With the availability of 3-D high-resolution imaging (e.g. μ-CT), the detailed quantification of particle shapes has been facilitated by progress in computer science. Here, we show how the shapes of irregular rock particles (pores) can be classified and quantified based on binary 3-D images. The methodology requires the measurement of basic 3-D particle descriptors and a shape classification that involves the similarity of artificial objects, which is based on main pore network detachments and 3-D sample sizes. The results were validated for three sandstones (S1, S2 and S3) from distinct reservoirs, and most of the pore shapes were found to be plate- and cube-like. Furthermore, this study generalizes a practical way to correlate specific particle shapes, such as rods, blades, cuboids, plates and cubes, to characterize asymmetric particles of any material type with 3-D image analysis.

  12. Using computerized tomography to determine ionospheric structures. Part 1, Notivation and basic approaches

    SciTech Connect

    Vittitoe, C.N.

    1993-08-01

    Properties of the ionosphere are reviewed along with its correlations with other geophysical phenomena and with applications of ionospheric studies to communication, navigation, and surveillance systems. Computer tomography is identified as a method to determine the detailed, three-dimensional distribution of electron density within the ionosphere. Several tomography methods are described, with a basic approach illustrated by an example. Limitations are identified.

  13. Evaluation of the accuracy of Cone Beam Computerized Tomography (CBCT): medical imaging technology in head and neck reconstruction

    PubMed Central

    2013-01-01

    Background With the introduction, development and commercialization of Cone Beam Computerized Tomography (CBCT) technologies in the field of head and neck reconstruction, clinicians now have increased access to the technology. Given the growth of this new user group, there is an increasing concern regarding proper use, understanding, quality and patient safety. Methods The present study was carried out to evaluate data acquisition of CBCT medical imaging technology and the accuracy of the scanning at three different machine warming times. The study also compared the accuracy of CBCT at 0.2 mm slice thickness and Computerized Tomography (CT) at 1 mm slice thickness. A control model was CT scanned at five random intervals, at 1 mm slice thickness and CBCT scanned at specialized intervals, at 0.2 mm slice thickness. The data was then converted and imported into a software program where a digital registration procedure was used to compare the average deviations of the scanned models to the control. Results The study found that there was no statistically significant difference amongst the three CBCT machine warming times. There was a statistically significant difference between CT scanning with 1 mm slice thickness and CBCT scanning with 0.2 mm slice thickness. Conclusions The accuracy of the i-CAT CBCT scans used in the present study with a parameter at voxel size 0.2, will remain consistent and reliable at any warming stage. Also the difference between the CBCT i-CAT scans and the CT scans was not clinically significant based on suggested requirements of clinicians in head and neck reconstruction. PMID:23672880

  14. A new mapping technique for conversion of slant TEC to vertical TEC based on Computerized Ionospheric Tomography

    NASA Astrophysics Data System (ADS)

    Bhuyan, Pradip; Bhuyan, Pradip; Bhuyan, Kalyan

    The most frequently used mapping function for converting slant TEC to vertical TEC uses a single layer model with the assumption that all free electrons are concentrated in an infinitesimally thick spherical shell at the mean ionospheric height and containing the ionospheric pierce point. Spatial structures present in the ionosphere are not taken into account in such single layer models. A three dimensional mapping algorithm developed by Mannucci et al. (1999) uses three independent constant density slabs stacked vertically to model the electron density with the result of reduction in a level error of the TEC maps. We describe a new approach based on Computerized Ionospheric Tomography (CIT) to convert STEC to VTEC. The new method is independent of any assumption regarding the electron density distribution of the ionosphere. In this method, the ionosphere region of interest is divided in to pixels and TEC is represented as the sum of the integration of empirical functions within the pixels, which are intersected by the path along which TEC is measured. Using a suitable inversion algorithm, the empirical function within each pixel is retrieved from TEC data recorded simultaneously at a meridional chain of GPS receivers. The VTEC values are then easily obtained as the sum of the integration of the empirical functions within each pixel along a vertical path. The CIT method is applied for converting STEC to VTEC using GPS TEC data collected at 12 locations across India since 2003. The stations are aligned along three meridional chains. The vertical TEC values obtained from the CIT method are then compared to VTEC obtained from a single layer model. Results have shown that the CIT can be suitably adapted as a mapping technique, which takes into account the presence of spatial structures in the ionosphere. Keywords: Ionosphere (Indian equatorial and low latitude ionosphere, Vertical Total Electron Content, mapping functions, computerized ionospheric tomography)

  15. Three-dimensional (3D) microstructural characterization and quantification of reflow porosity in Sn-rich alloy/copper joints by X-ray tomography

    SciTech Connect

    Jiang Ling; Chawla, Nikhilesh; Pacheco, Mario; Noveski, Vladimir

    2011-10-15

    In this paper high resolution X-ray tomography was used to characterize reflow porosity in Sn-3.9Ag-0.7Cu/Cu solder joints. The combination of two segmentation techniques was applied for the three-dimensional (3D) visualization of pores in the joints and the quantification on the characteristics of reflow porosity, including pore size, volume fraction and morphology. The size, morphology and distribution of porosity were visualized in 3D for three different solder joints. Since the results are relatively similar for all three, only the results of one joint are presented. Solder reflow porosity was mostly spherical, segregated along the solder/Cu interface, and had an average pore size of 30 {mu}m in diameter. A few large pores (larger than 100 {mu}m in diameter) were present, some of which had lower sphericity, i.e., they were more irregular. The presence of these large pores may significantly influence the mechanical behavior of solder joints. - Highlights: {yields} Non-destructive 3D characterization and quantification of porosity in Pb-free solders by X-ray tomography {yields} Two new image analysis and reconstruction tools are presented that can be used by the community at large {yields} Pore size, volume fraction, and sphericity, is critical to understanding microstructure and modeling of these systems.

  16. Breaking the Crowther limit: combining depth-sectioning and tilt tomography for high-resolution, wide-field 3D reconstructions.

    PubMed

    Hovden, Robert; Ercius, Peter; Jiang, Yi; Wang, Deli; Yu, Yingchao; Abruña, Héctor D; Elser, Veit; Muller, David A

    2014-05-01

    To date, high-resolution (<1 nm) imaging of extended objects in three-dimensions (3D) has not been possible. A restriction known as the Crowther criterion forces a tradeoff between object size and resolution for 3D reconstructions by tomography. Further, the sub-Angstrom resolution of aberration-corrected electron microscopes is accompanied by a greatly diminished depth of field, causing regions of larger specimens (>6 nm) to appear blurred or missing. Here we demonstrate a three-dimensional imaging method that overcomes both these limits by combining through-focal depth sectioning and traditional tilt-series tomography to reconstruct extended objects, with high-resolution, in all three dimensions. The large convergence angle in aberration corrected instruments now becomes a benefit and not a hindrance to higher quality reconstructions. A through-focal reconstruction over a 390 nm 3D carbon support containing over 100 dealloyed and nanoporous PtCu catalyst particles revealed with sub-nanometer detail the extensive and connected interior pore structure that is created by the dealloying instability. PMID:24636875

  17. Objective Assessment and Design Improvement of a Staring, Sparse Transducer Array by the Spatial Crosstalk Matrix for 3D Photoacoustic Tomography

    PubMed Central

    Kosik, Ivan; Raess, Avery

    2015-01-01

    Accurate reconstruction of 3D photoacoustic (PA) images requires detection of photoacoustic signals from many angles. Several groups have adopted staring ultrasound arrays, but assessment of array performance has been limited. We previously reported on a method to calibrate a 3D PA tomography (PAT) staring array system and analyze system performance using singular value decomposition (SVD). The developed SVD metric, however, was impractical for large system matrices, which are typical of 3D PAT problems. The present study consisted of two main objectives. The first objective aimed to introduce the crosstalk matrix concept to the field of PAT for system design. Figures-of-merit utilized in this study were root mean square error, peak signal-to-noise ratio, mean absolute error, and a three dimensional structural similarity index, which were derived between the normalized spatial crosstalk matrix and the identity matrix. The applicability of this approach for 3D PAT was validated by observing the response of the figures-of-merit in relation to well-understood PAT sampling characteristics (i.e. spatial and temporal sampling rate). The second objective aimed to utilize the figures-of-merit to characterize and improve the performance of a near-spherical staring array design. Transducer arrangement, array radius, and array angular coverage were the design parameters examined. We observed that the performance of a 129-element staring transducer array for 3D PAT could be improved by selection of optimal values of the design parameters. The results suggested that this formulation could be used to objectively characterize 3D PAT system performance and would enable the development of efficient strategies for system design optimization. PMID:25875177

  18. APPLICATION OF 3D COMPUTER-AIDED TOMOGRAPHY TO THE QUANTIFICATION OF MARINE SEDIMENT COMMUNITIES IN POLLUTION GRADIENTS

    EPA Science Inventory

    Computer-Aided Tomography (CT) has been demonstrated to be a cost efficient tool for the qualitative and quantitative study of estuarine benthic communities along pollution gradients.
    Now we have advanced this technology to successfully visualize and discriminate three dimen...

  19. In-vivo Optical Tomography of Small Scattering Specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster

    PubMed Central

    Arranz, Alicia; Dong, Di; Zhu, Shouping; Savakis, Charalambos; Tian, Jie; Ripoll, Jorge

    2014-01-01

    Even though in vivo imaging approaches have witnessed several new and important developments, specimens that exhibit high light scattering properties such as Drosophila melanogaster pupae are still not easily accessible with current optical imaging techniques, obtaining images only from subsurface features. This means that in order to obtain 3D volumetric information these specimens need to be studied either after fixation and a chemical clearing process, through an imaging window - thus perturbing physiological development -, or during early stages of development when the scattering contribution is negligible. In this paper we showcase how Optical Projection Tomography may be used to obtain volumetric images of the head eversion process in vivo in Drosophila melanogaster pupae, both in control and headless mutant specimens. Additionally, we demonstrate the use of Helical Optical Projection Tomography (hOPT) as a tool for high throughput 4D-imaging of several specimens simultaneously. PMID:25471694

  20. In-vivo optical tomography of small scattering specimens: time-lapse 3D imaging of the head eversion process in Drosophila melanogaster.

    PubMed

    Arranz, Alicia; Dong, Di; Zhu, Shouping; Savakis, Charalambos; Tian, Jie; Ripoll, Jorge

    2014-01-01

    Even though in vivo imaging approaches have witnessed several new and important developments, specimens that exhibit high light scattering properties such as Drosophila melanogaster pupae are still not easily accessible with current optical imaging techniques, obtaining images only from subsurface features. This means that in order to obtain 3D volumetric information these specimens need to be studied either after fixation and a chemical clearing process, through an imaging window--thus perturbing physiological development -, or during early stages of development when the scattering contribution is negligible. In this paper we showcase how Optical Projection Tomography may be used to obtain volumetric images of the head eversion process in vivo in Drosophila melanogaster pupae, both in control and headless mutant specimens. Additionally, we demonstrate the use of Helical Optical Projection Tomography (hOPT) as a tool for high throughput 4D-imaging of several specimens simultaneously. PMID:25471694

  1. Three-Phase 3D Reconstruction of a LiCoO2 Cathode via FIB-SEM Tomography.

    PubMed

    Liu, Zhao; Chen-Wiegart, Yu-Chen K; Wang, Jun; Barnett, Scott A; Faber, Katherine T

    2016-02-01

    Three-phase three-dimensional (3D) microstructural reconstructions of lithium-ion battery electrodes are critical input for 3D simulations of electrode lithiation/delithiation, which provide a detailed understanding of battery operation. In this report, 3D images of a LiCoO2 electrode are achieved using focused ion beam-scanning electron microscopy (FIB-SEM), with clear contrast among the three phases: LiCoO2 particles, carbonaceous phases (carbon and binder) and the electrolyte space. The good contrast was achieved by utilizing an improved FIB-SEM sample preparation method that combined infiltration of the electrolyte space with a low-viscosity silicone resin and triple ion-beam polishing. Morphological parameters quantified include phase volume fraction, surface area, feature size distribution, connectivity, and tortuosity. Electrolyte tortuosity was determined using two different geometric calculations that were in good agreement. The electrolyte tortuosity distribution versus position within the electrode was found to be highly inhomogeneous; this will lead to inhomogeneous electrode lithiation/delithiation at high C-rates that could potentially cause battery degradation. PMID:26765538

  2. Optical Coherence Tomography Noise Reduction Using Anisotropic Local Bivariate Gaussian Mixture Prior in 3D Complex Wavelet Domain

    PubMed Central

    Sonka, Milan; Abramoff, Michael D.

    2013-01-01

    In this paper, MMSE estimator is employed for noise-free 3D OCT data recovery in 3D complex wavelet domain. Since the proposed distribution for noise-free data plays a key role in the performance of MMSE estimator, a priori distribution for the pdf of noise-free 3D complex wavelet coefficients is proposed which is able to model the main statistical properties of wavelets. We model the coefficients with a mixture of two bivariate Gaussian pdfs with local parameters which are able to capture the heavy-tailed property and inter- and intrascale dependencies of coefficients. In addition, based on the special structure of OCT images, we use an anisotropic windowing procedure for local parameters estimation that results in visual quality improvement. On this base, several OCT despeckling algorithms are obtained based on using Gaussian/two-sided Rayleigh noise distribution and homomorphic/nonhomomorphic model. In order to evaluate the performance of the proposed algorithm, we use 156 selected ROIs from 650 × 512 × 128 OCT dataset in the presence of wet AMD pathology. Our simulations show that the best MMSE estimator using local bivariate mixture prior is for the nonhomomorphic model in the presence of Gaussian noise which results in an improvement of 7.8 ± 1.7 in CNR. PMID:24222760

  3. Quantifying floral shape variation in 3D using microcomputed tomography: a case study of a hybrid line between actinomorphic and zygomorphic flowers

    PubMed Central

    Wang, Chun-Neng; Hsu, Hao-Chun; Wang, Cheng-Chun; Lee, Tzu-Kuei; Kuo, Yan-Fu

    2015-01-01

    The quantification of floral shape variations is difficult because flower structures are both diverse and complex. Traditionally, floral shape variations are quantified using the qualitative and linear measurements of two-dimensional (2D) images. The 2D images cannot adequately describe flower structures, and thus lead to unsatisfactory discrimination of the flower shape. This study aimed to acquire three-dimensional (3D) images by using microcomputed tomography (μCT) and to examine the floral shape variations by using geometric morphometrics (GM). To demonstrate the advantages of the 3D-μCT-GM approach, we applied the approach to a second-generation population of florist's gloxinia (Sinningia speciosa) crossed from parents of zygomorphic and actinomorphic flowers. The flowers in the population considerably vary in size and shape, thereby served as good materials to test the applicability of the proposed phenotyping approach. Procedures were developed to acquire 3D volumetric flower images using a μCT scanner, to segment the flower regions from the background, and to select homologous characteristic points (i.e., landmarks) from the flower images for the subsequent GM analysis. The procedures identified 95 landmarks for each flower and thus improved the capability of describing and illustrating the flower shapes, compared with typically lower number of landmarks in 2D analyses. The GM analysis demonstrated that flower opening and dorsoventral symmetry were the principal shape variations of the flowers. The degrees of flower opening and corolla asymmetry were then subsequently quantified directly from the 3D flower images. The 3D-μCT-GM approach revealed shape variations that could not be identified using typical 2D approaches and accurately quantified the flower traits that presented a challenge in 2D images. The approach opens new avenues to investigate floral shape variations. PMID:26442038

  4. 2D–3D radiograph to cone-beam computed tomography (CBCT) registration for C-arm image-guided robotic surgery

    PubMed Central

    Liu, Wen Pei; Otake, Yoshito; Azizian, Mahdi; Wagner, Oliver J.; Sorger, Jonathan M.; Armand, Mehran; Taylor, Russell H.

    2015-01-01

    Purpose C-arm radiographs are commonly used for intraoperative image guidance in surgical interventions. Fluoroscopy is a cost-effective real-time modality, although image quality can vary greatly depending on the target anatomy. Cone-beam computed tomography (CBCT) scans are sometimes available, so 2D–3D registration is needed for intra-procedural guidance. C-arm radiographs were registered to CBCT scans and used for 3D localization of peritumor fiducials during a minimally invasive thoracic intervention with a da Vinci Si robot. Methods Intensity-based 2D–3D registration of intraoperative radiographs to CBCT was performed. The feasible range of X-ray projections achievable by a C-arm positioned around a da Vinci Si surgical robot, configured for robotic wedge resection, was determined using phantom models. Experiments were conducted on synthetic phantoms and animals imaged with an OEC 9600 and a Siemens Artis zeego, representing the spectrum of different C-arm systems currently available for clinical use. Results The image guidance workflow was feasible using either an optically tracked OEC 9600 or a Siemens Artis zeego C-arm, resulting in an angular difference of Δθ : ~ 30°. The two C-arm systems provided TREmean ≤ 2.5 mm and TREmean ≤ 2.0 mm, respectively (i.e., comparable to standard clinical intraoperative navigation systems). Conclusions C-arm 3D localization from dual 2D–3D registered radiographs was feasible and applicable for intraoperative image guidance during da Vinci robotic thoracic interventions using the proposed workflow. Tissue deformation and in vivo experiments are required before clinical evaluation of this system. PMID:25503592

  5. 3 D characterization of gold nanoparticles supported on heavy metal oxide catalysts by HAADF-STEM electron tomography.

    PubMed

    González, J C; Hernández, J C; López-Haro, M; del Río, E; Delgado, J J; Hungría, A B; Trasobares, S; Bernal, S; Midgley, P A; Calvino, José Juan

    2009-01-01

    Living on the edge: Three-dimensional reconstructions from electron tomography data recorded from Au/Ce(0.50)Tb(0.12)Zr(0.38)O(2-x) catalysts show that gold nanoparticles (see picture; yellow) are preferentially located on stepped facets and nanocrystal boundaries. An epitaxial relationship between the metal and support plays a key role in the structural stabilization of the gold nanoparticles. PMID:19544338

  6. Hodgkin lymphoma patients in first remission: routine positron emission tomography/computerized tomography imaging is not superior to clinical follow-up for patients with no residual mass.

    PubMed

    Dann, Eldad J; Berkahn, Leanne; Mashiach, Tatiana; Frumer, Michael; Agur, Ariel; McDiarmid, Bridgett; Bar-Shalom, Rachel; Paltiel, Ora; Goldschmidt, Neta

    2014-03-01

    There is no consensus regarding optimal follow-up mode for Hodgkin lymphoma (HL) patients that achieve complete remission following chemotherapy or combined chemo- and radiation therapy. Several studies demonstrated high sensitivity of positron emission tomography/computerized tomography (PET/CT) in detecting disease progression; however, these techniques are currently not recommended for routine follow-up. This retrospective study conducted in two Israeli (N = 291) and one New Zealand academic centres (N = 77), compared a group of HL patients, followed-up with routine imaging every 6 months during the first 2 years after achieving remission, once in the third year, with additional dedicated studies performed due to symptoms or physical findings (Group I) to a group of patients without residual masses who underwent clinically-based surveillance with dedicated imaging upon relapse suspicion (Group II). Five-year overall survival (OS) was 94% and median time to relapse was 8·6 months for both modes. Relapse rates in Groups I and II were 13% and 9%, respectively. During the first 3 years of follow-up, 47·5 and 4·7 studies were performed per detected relapse in Groups I and II, respectively. The current study demonstrated no benefit in either progression-free survival (PFS) or OS in HL patients followed by routine imaging versus clinical follow-up. The cost was 10 times higher for routine imaging. PMID:24313286

  7. 4D computerized ionospheric tomography by using GPS measurements and IRI-Plas model

    NASA Astrophysics Data System (ADS)

    Tuna, Hakan; Arikan, Feza; Arikan, Orhan

    2016-07-01

    Ionospheric imaging is an important subject in ionospheric studies. GPS based TEC measurements provide very accurate information about the electron density values in the ionosphere. However, since the measurements are generally very sparse and non-uniformly distributed, computation of 3D electron density estimation from measurements alone is an ill-defined problem. Model based 3D electron density estimations provide physically feasible distributions. However, they are not generally compliant with the TEC measurements obtained from GPS receivers. In this study, GPS based TEC measurements and an ionosphere model known as International Reference Ionosphere Extended to Plasmasphere (IRI-Plas) are employed together in order to obtain a physically accurate 3D electron density distribution which is compliant with the real measurements obtained from a GPS satellite - receiver network. Ionospheric parameters input to the IRI-Plas model are perturbed in the region of interest by using parametric perturbation models such that the synthetic TEC measurements calculated from the resultant 3D electron density distribution fit to the real TEC measurements. The problem is considered as an optimization problem where the optimization parameters are the parameters of the parametric perturbation models. Proposed technique is applied over Turkey, on both calm and storm days of the ionosphere. Results show that the proposed technique produces 3D electron density distributions which are compliant with IRI-Plas model, GPS TEC measurements and ionosonde measurements. The effect of the GPS receiver station number on the performance of the proposed technique is investigated. Results showed that 7 GPS receiver stations in a region as large as Turkey is sufficient for both calm and storm days of the ionosphere. Since the ionization levels in the ionosphere are highly correlated in time, the proposed technique is extended to the time domain by applying Kalman based tracking and smoothing

  8. 3D/4D analyses of damage and fracture behaviours in structural materials via synchrotron X-ray tomography.

    PubMed

    Toda, Hiroyuki

    2014-11-01

    X-ray microtomography has been utilized for the in-situ observation of various structural metals under external loading. Recent advances in X-ray microtomography provide remarkable tools to image the interior of materials. In-situ X-ray microtomography provides a unique possibility to access the 3D character of internal microstructure and its time evolution behaviours non-destructively, thereby enabling advanced techniques for measuring local strain distribution. Local strain mapping is readily enabled by processing such high-resolution tomographic images either by the particle tracking technique or the digital image correlation technique [1]. Procedures for tracking microstructural features which have been developed by the authors [2], have been applied to analyse localised deformation and damage evolution in a material [3]. Typically several tens of thousands of microstructural features, such as particles and pores, are tracked in a tomographic specimen (0.2 - 0.3 mm(3) in volume). When a sufficient number of microstructural features is dispersed in 3D space, the Delaunay tessellation algorithm is used to obtain local strain distribution. With these techniques, 3D strain fields can be measured with reasonable accuracy. Even local crack driving forces, such as local variations in the stress intensity factor, crack tip opening displacement and J integral along a crack front line, can be measured from discrete crack tip displacement fields [4]. In the present presentation, complicated crack initiation and growth behaviour and the extensive formation of micro cracks ahead of a crack tip are introduced as examples.A novel experimental method has recently been developed by amalgamating a pencil beam X-Ray diffraction (XRD) technique with the microstructural tracking technique [5]. The technique provides information about individual grain orientations and 1-micron-level grain morphologies in 3D together with high-density local strain mapping. The application of this

  9. Computerized X-ray reconstruction tomography in stereometric analysis of cardiovascular dynamics

    NASA Technical Reports Server (NTRS)

    Robb, R. A.; Harris, L. D.; Ritman, E. L.

    1977-01-01

    A computerized technique is proposed for obtaining cross-sectional images of the dynamic spatial distribution of X-ray attenuation covering the entire anatomic extent of the thorax and its contents in living dogs with a resolution of 1 mm and at time intervals of 1/60 sec. Use is made of an X-ray imaging chain which is a new high-performance video-fluoroscopic system, unique in its design and construction and called SSDSR for single source dynamic spatial reconstructor. This dynamic spatial reconstruction system is shown to provide the temporally and spatially coherent multiple cross sections required to obtain the full three-dimensional anatomic and simultaneous hemodynamic information necessary for detailed quantitative analyses of regional cardiopulmonary and vascular functions in both basic investigations of animals and clinical diagnostic applications to patients. Numerous photographs supplement the text.

  10. Electron Tomography of Cryo-Immobilized Plant Tissue: A Novel Approach to Studying 3D Macromolecular Architecture of Mature Plant Cell Walls In Situ

    PubMed Central

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G.; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H.; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  11. Electron tomography of cryo-immobilized plant tissue: a novel approach to studying 3D macromolecular architecture of mature plant cell walls in situ.

    PubMed

    Sarkar, Purbasha; Bosneaga, Elena; Yap, Edgar G; Das, Jyotirmoy; Tsai, Wen-Ting; Cabal, Angelo; Neuhaus, Erica; Maji, Dolonchampa; Kumar, Shailabh; Joo, Michael; Yakovlev, Sergey; Csencsits, Roseann; Yu, Zeyun; Bajaj, Chandrajit; Downing, Kenneth H; Auer, Manfred

    2014-01-01

    Cost-effective production of lignocellulosic biofuel requires efficient breakdown of cell walls present in plant biomass to retrieve the wall polysaccharides for fermentation. In-depth knowledge of plant cell wall composition is therefore essential for improving the fuel production process. The precise spatial three-dimensional (3D) organization of cellulose, hemicellulose, pectin and lignin within plant cell walls remains unclear to date since the microscopy techniques used so far have been limited to two-dimensional, topographic or low-resolution imaging, or required isolation or chemical extraction of the cell walls. In this paper we demonstrate that by cryo-immobilizing fresh tissue, then either cryo-sectioning or freeze-substituting and resin embedding, followed by cryo- or room temperature (RT) electron tomography, respectively, we can visualize previously unseen details of plant cell wall architecture in 3D, at macromolecular resolution (∼ 2 nm), and in near-native state. Qualitative and quantitative analyses showed that wall organization of cryo-immobilized samples were preserved remarkably better than conventionally prepared samples that suffer substantial extraction. Lignin-less primary cell walls were well preserved in both self-pressurized rapidly frozen (SPRF), cryo-sectioned samples as well as high-pressure frozen, freeze-substituted and resin embedded (HPF-FS-resin) samples. Lignin-rich secondary cell walls appeared featureless in HPF-FS-resin sections presumably due to poor stain penetration, but their macromolecular features could be visualized in unprecedented details in our cryo-sections. While cryo-tomography of vitreous tissue sections is currently proving to be instrumental in developing 3D models of lignin-rich secondary cell walls, here we confirm that the technically easier method of RT-tomography of HPF-FS-resin sections could be used immediately for routine study of low-lignin cell walls. As a proof of principle, we characterized the

  12. Extracellular vesicles of calcifying turkey leg tendon characterized by immunocytochemistry and high voltage electron microscopic tomography and 3-D graphic image reconstruction

    NASA Technical Reports Server (NTRS)

    Landis, W. J.; Hodgens, K. J.; McKee, M. D.; Nanci, A.; Song, M. J.; Kiyonaga, S.; Arena, J.; McEwen, B.

    1992-01-01

    To gain insight into the structure and possible function of extracellular vesicles in certain calcifying vertebrate tissues, normally mineralizing leg tendons from the domestic turkey, Meleagris gallopavo, have been studied in two separate investigations, one concerning the electron microscopic immunolocalization of the 66 kDa phosphoprotein, osteopontin, and the other detailing the organization and distribution of mineral crystals associated with the vesicles as determined by high voltage microscopic tomography and 3-D graphic image reconstruction. Immunolabeling shows that osteopontin is related to extracellular vesicles of the tendon in the sense that its initial presence appears coincident with the development of mineral associated with the vesicle loci. By high voltage electron microscopy and 3-D imaging techniques, mineral crystals are found to consist of small irregularly shaped particles somewhat randomly oriented throughout individual vesicles sites. Their appearance is different from that found for the mineral observed within calcifying tendon collagen, and their 3-D disposition is not regularly ordered. Possible spatial and temporal relationships of vesicles, osteopontin, mineral, and collagen are being examined further by these approaches.

  13. Comparison of focused ion beam versus nano-scale X-ray computed tomography for resolving 3-D microstructures of porous fuel cell materials

    NASA Astrophysics Data System (ADS)

    Wargo, E. A.; Kotaka, T.; Tabuchi, Y.; Kumbur, E. C.

    2013-11-01

    Focused ion beam-scanning electron microscopy (FIB-SEM) and nano-scale X-ray computed tomography (nano-CT) have emerged as two popular nanotomography techniques for quantifying the 3-D microstructure of porous materials. The objective of this study is to assess the unique features and limitations of FIB-SEM and nano-CT in capturing the 3-D microstructure and structure-related transport properties of porous fuel cell materials. As a test case, a sample of a micro-porous layer used in polymer electrolyte fuel cells is analyzed to obtain 3-D microstructure datasets using these two nanotomography techniques. For quantitative comparison purposes, several key transport properties are determined for these two datasets, including the porosity, pore connectivity, tortuosity, structural diffusivity coefficient, and chord length (i.e., void size) distributions. The results obtained for both datasets are evaluated against each other and experimental data when available. Additionally, these two techniques are compared qualitatively in terms of the acquired images, image segmentation, and general systems operation. The particular advantages and disadvantages of both techniques are highlighted, along with suggestions for best practice.

  14. A Field Proof-of-Concept of Aquifer Imaging Using 3-D Transient Hydraulic Tomography with Modular, Temporarily-Emplaced Equipment

    SciTech Connect

    Cardiff, Michael A.; Barrash, Warren; Kitanidis, P. K.

    2012-05-19

    Hydraulic tomography is a field scale aquifer characterization method capable of estimating 3-D heterogeneous parameter distributions, and is directly sensitive to hydraulic conductivity (K), thus providing a useful data source for improving flow and transport models. We present results from a proof-of-concept field and modeling study in which we apply 3-D transient hydraulic tomography (3DTHT) to the relatively high-K and moderately heterogeneous unconfined aquifer at the Boise Hydrogeophysical Research Site. Short-duration (20 min) partially penetrating pumping tests, for which observed responses do not reach steady state, are used as the aquifer stimulation. To collect field data, we utilize a system of temporarily emplaced packer equipment to isolate multiple discrete intervals in boreholes. To analyze the data, we utilize MODFLOW combined with geostatistical inversion code based on the quasilinear approach of Kitanidis (1995). This combination of practical software allows inversion of large datasets (>250 drawdown curves, and almost 1000 individual data points) and estimation of K at >100,000 locations; reasonable runtimes are obtained using a single multicore computer with 12 GB of RAM. The K heterogeneity results from 3DTHT are cross-validated against K characterization from a large set of partially penetrating slug tests, and found to be quite consistent. The use of portable, modular equipment for field implementation means that 3DTHT data collection can be performed (including mobilization/demobilization) within a matter of days. Likewise, use of a practical, efficient and scalable numerical modeling and inversion strategy means that computational effort is drastically reduced, such that 3-D aquifer property distributions can be estimated quickly.

  15. Development of a lab-scale, high-resolution, tube-generated X-ray computed-tomography system for three-dimensional (3D) materials characterization

    SciTech Connect

    Mertens, J.C.E. Williams, J.J. Chawla, Nikhilesh

    2014-06-01

    The design and construction of a modular high resolution X-ray computed tomography (XCT) system is highlighted in this paper. The design approach is detailed for meeting a specified set of instrument performance goals tailored towards experimental versatility and high resolution imaging. The XCT tool is unique in the detector and X-ray source design configuration, enabling control in the balance between detection efficiency and spatial resolution. The system package is also unique: The sample manipulation approach implemented enables a wide gamut of in situ experimentation to analyze structure evolution under applied stimulus, by optimizing scan conditions through a high degree of controllability. The component selection and design process is detailed: Incorporated components are specified, custom designs are shared, and the approach for their integration into a fully functional XCT scanner is provided. Custom designs discussed include the dual-target X-ray source cradle which maintains position and trajectory of the beam between the two X-ray target configurations with respect to a scintillator mounting and positioning assembly and the imaging sensor, as well as a novel large-format X-ray detector with enhanced adaptability. The instrument is discussed from an operational point of view, including the details of data acquisition and processing implemented for 3D imaging via micro-CT. The performance of the instrument is demonstrated on a silica-glass particle/hydroxyl-terminated-polybutadiene (HTPB) matrix binder PBX simulant. Post-scan data processing, specifically segmentation of the sample's relevant microstructure from the 3D reconstruction, is provided to demonstrate the utility of the instrument. - Highlights: • Custom built X-ray tomography system for microstructural characterization • Detector design for maximizing polychromatic X-ray detection efficiency • X-ray design offered for maximizing X-ray flux with respect to imaging resolution • Novel lab

  16. A new 3D method for measuring cranio-facial relationships with cone beam computed tomography (CBCT)

    PubMed Central

    Cibrián, Rosa; Gandia, Jose L.; Paredes, Vanessa

    2013-01-01

    Objectives: CBCT systems, with their high precision 3D reconstructions, 1:1 images and accuracy in locating cephalometric landmarks, allows us to evaluate measurements from craniofacial structures, so enabling us to replace the anthropometric methods or bidimensional methods used until now. The aims are to analyse cranio-facial relationships in a sample of patients who had previously undergone a CBCT and create a new 3D cephalometric method for assessing and measuring patients. Study Design: 90 patients who had a CBCT (i-Cat®) as a diagnostic register were selected. 12 cephalometric landmarks on the three spatial planes (X,Y,Z) were defined and 21 linear measurements were established. Using these measurements, 7 triangles were described and analysed. With the sides of the triangles: (CdR-Me-CdL); (FzR-Me-FzL); (GoR-N-GoL); and the Gl-Me distance, the ratios between them were analysed. In addition, 4 triangles in the mandible were measured (body: GoR-DB-Me and GoL-DB-Me and ramus: KrR-CdR-GoR and KrL-CdL-GoL). Results: When analyzing the sides of the CdR-Me-CdL triangle, it was found that the 69.33% of the patients could be considered symmetric. Regarding the ratios between the sides of the following triangles: CdR-Me-CdL, FzR-Me-FzL, GoR-N-GoL and the Gl-Me distance, it was found that almost all ratios were close to 1:1 except between the CdR-CdL side with respect the rest of the sides. With regard to the ratios of the 4 triangles of the mandible, it was found that the most symmetrical relationships were those corresponding to the sides of the body of the mandible and the most asymmetrical ones were those corresponding to the base of such triangles. Conclusions: A new method for assessing cranio-facial relationshps using CBCT has been established. It could be used for diverse purposes including diagnosis and treatment planning. Key words:Craniofacial relationship, CBCT, 3D cephalometry. PMID:23524427

  17. X-ray 3D computed tomography of large objects: investigation of an ancient globe created by Vincenzo Coronelli

    NASA Astrophysics Data System (ADS)

    Morigi, Maria Pia; Casali, Franco; Berdondini, Andrea; Bettuzzi, Matteo; Bianconi, Davide; Brancaccio, Rosa; Castellani, Alice; D'Errico, Vincenzo; Pasini, Alessandro; Rossi, Alberto; Labanti, C.; Scianna, Nicolangelo

    2007-07-01

    X-ray cone-beam Computed Tomography is a powerful tool for the non-destructive investigation of the inner structure of works of art. With regard to Cultural Heritage conservation, different kinds of objects have to be inspected in order to acquire significant information such as the manufacturing technique or the presence of defects and damages. The knowledge of these features is very useful for determining adequate maintenance and restoration procedures. The use of medical CT scanners gives good results only when the investigated objects have size and density similar to those of the human body, however this requirement is not always fulfilled in Cultural Heritage diagnostics. For this reason a system for Digital Radiography and Computed Tomography of large objects, especially works of art, has been recently developed by researchers of the Physics Department of the University of Bologna. The design of the system is very different from any commercial available CT machine. The system consists of a 200 kVp X-ray source, a detector and a motorized mechanical structure for moving the detector and the object in order to collect the required number of radiographic projections. The detector is made up of a 450x450 mm2 structured CsI(Tl) scintillating screen, optically coupled to a CCD camera. In this paper we will present the results of the tomographic investigation recently performed on an ancient globe, created by the famous cosmographer, cartographer and encyclopedist Vincenzo Coronelli.

  18. High-resolution 3-D S-wave Tomography of upper crust structures in Yilan Plain from Ambient Seismic Noise

    NASA Astrophysics Data System (ADS)

    Chen, Kai-Xun; Chen, Po-Fei; Liang, Wen-Tzong; Chen, Li-Wei; Gung, YuanCheng

    2015-04-01

    The Yilan Plain (YP) in NE Taiwan locates on the western YP of the Okinawa Trough and displays high geothermal gradients with abundant hot springs, likely resulting from magmatism associated with the back-arc spreading as attested by the offshore volcanic island (Kueishantao). YP features NS distinctive characteristics that the South YP exhibits thin top sedimentary layer, high on-land seismicity and significant SE movements, relative those of the northern counterpart. A dense network (~2.5 km station interval) of 89 Texan instruments was deployed in Aug. 2014, covering most of the YP and its vicinity. The ray path coverage density of each 0.015 degree cells are greater than 150 km that could provide the robustness assessment of tomographic results. We analyze ambient noise signals to invert a high-resolution 3D S-wave model for shallow velocity structures in and around YP. The aim is to investigate the velocity anomalies corresponding to geothermal resources and the NS geological distinctions aforementioned. We apply the Welch's method to generate empirical Rayleigh wave Green's functions between two stations records of continuous vertical components. The group velocities of thus derived functions are then obtained by the multiple-filter analysis technique measured at the frequency range between 0.25 and 1 Hz. Finally, we implement a wavelet-based multi-scale parameterization technique to construct 3D model of S-wave velocity. Our first month results exhibit low velocity in the plain, corresponding existing sediments, those of whole YP show low velocity offshore YP and those of high-resolution south YP reveal stark velocity contrast across the Sanshin fault. Key words: ambient seismic noises, Welch's method, S-wave, Yilan Plain

  19. Imaging the Aqueous Humor Outflow Pathway in Human Eyes by Three-dimensional Micro-computed Tomography (3D micro-CT)

    SciTech Connect

    C Hann; M Bentley; A Vercnocke; E Ritman; M Fautsch

    2011-12-31

    The site of outflow resistance leading to elevated intraocular pressure in primary open-angle glaucoma is believed to be located in the region of Schlemm's canal inner wall endothelium, its basement membrane and the adjacent juxtacanalicular tissue. Evidence also suggests collector channels and intrascleral vessels may have a role in intraocular pressure in both normal and glaucoma eyes. Traditional imaging modalities limit the ability to view both proximal and distal portions of the trabecular outflow pathway as a single unit. In this study, we examined the effectiveness of three-dimensional micro-computed tomography (3D micro-CT) as a potential method to view the trabecular outflow pathway. Two normal human eyes were used: one immersion fixed in 4% paraformaldehyde and one with anterior chamber perfusion at 10 mmHg followed by perfusion fixation in 4% paraformaldehyde/2% glutaraldehyde. Both eyes were postfixed in 1% osmium tetroxide and scanned with 3D micro-CT at 2 {mu}m or 5 {mu}m voxel resolution. In the immersion fixed eye, 24 collector channels were identified with an average orifice size of 27.5 {+-} 5 {mu}m. In comparison, the perfusion fixed eye had 29 collector channels with a mean orifice size of 40.5 {+-} 13 {mu}m. Collector channels were not evenly dispersed around the circumference of the eye. There was no significant difference in the length of Schlemm's canal in the immersed versus the perfused eye (33.2 versus 35.1 mm). Structures, locations and size measurements identified by 3D micro-CT were confirmed by correlative light microscopy. These findings confirm 3D micro-CT can be used effectively for the non-invasive examination of the trabecular meshwork, Schlemm's canal, collector channels and intrascleral vasculature that comprise the distal outflow pathway. This imaging modality will be useful for non-invasive study of the role of the trabecular outflow pathway as a whole unit.

  20. The use of 3D computed tomography reconstruction in medico-legal testimony regarding injuries in living victims - Risks and benefits.

    PubMed

    Borowska-Solonynko, Aleksandra; Solonynko, Bohdan

    2015-02-01

    Forensic pathologists are often called upon to determine the mechanism and severity of injuries in living individuals. Such expert testimony is often based solely on hand-written clinical notes. The victims' injuries may also be visualized via three-dimensional (3D) reconstruction of computed tomography (CT) images. This method has certain benefits but is not free from limitations. This paper presents two case reports. The first case is that of a female who was brought to the hospital with a knife thrust into her body. The prosecutor's questions focused on the wound channel. The information obtained from the patient's medical records was very general with many contradictory statements. A re-evaluation of the available CT scan data and a subsequent 3D reconstruction helped determine the exact course of the wound channel. The other case was that of a young male, hospitalized based on CT evidence of bilateral rib fractions, who claimed to have been assaulted by police officers. Court expert witnesses were already in possession of a 3D reconstruction showing symmetrical fractures of the patient's lower ribs with bone fragment displacement. An expert witness in radiology definitively excluded the presence of any actual fractures, and explained their apparent visibility in the three-dimensionally reconstructed image as a motion artifact. These two cases suggest that a professionally conducted 3D CT reconstruction is a very useful tool in providing expert testimony on injuries in living victims. However, the deceptive simplicity of conducting such a reconstruction may encourage inexperienced individuals to undertake it, and thus lead to erroneous conclusions. PMID:25623187

  1. 3D Reconstruction of VZV Infected Cell Nuclei and PML Nuclear Cages by Serial Section Array Scanning Electron Microscopy and Electron Tomography

    PubMed Central

    Reichelt, Mike; Joubert, Lydia; Perrino, John; Koh, Ai Leen; Phanwar, Ibanri; Arvin, Ann M.

    2012-01-01

    Varicella-zoster virus (VZV) is a human alphaherpesvirus that causes varicella (chickenpox) and herpes zoster (shingles). Like all herpesviruses, the VZV DNA genome is replicated in the nucleus and packaged into nucleocapsids that must egress across the nuclear membrane for incorporation into virus particles in the cytoplasm. Our recent work showed that VZV nucleocapsids are sequestered in nuclear cages formed from promyelocytic leukemia protein (PML) in vitro and in human dorsal root ganglia and skin xenografts in vivo. We sought a method to determine the three-dimensional (3D) distribution of nucleocapsids in the nuclei of herpesvirus-infected cells as well as the 3D shape, volume and ultrastructure of these unique PML subnuclear domains. Here we report the development of a novel 3D imaging and reconstruction strategy that we term Serial Section Array-Scanning Electron Microscopy (SSA-SEM) and its application to the analysis of VZV-infected cells and these nuclear PML cages. We show that SSA-SEM permits large volume imaging and 3D reconstruction at a resolution sufficient to localize, count and distinguish different types of VZV nucleocapsids and to visualize complete PML cages. This method allowed a quantitative determination of how many nucleocapsids can be sequestered within individual PML cages (sequestration capacity), what proportion of nucleocapsids are entrapped in single nuclei (sequestration efficiency) and revealed the ultrastructural detail of the PML cages. More than 98% of all nucleocapsids in reconstructed nuclear volumes were contained in PML cages and single PML cages sequestered up to 2,780 nucleocapsids, which were shown by electron tomography to be embedded and cross-linked by an filamentous electron-dense meshwork within these unique subnuclear domains. This SSA-SEM analysis extends our recent characterization of PML cages and provides a proof of concept for this new strategy to investigate events during virion assembly at the single cell

  2. 3D High-Resolution Seismic Tomography in the Upper Mantle of Gulf of California Region by SEM Seismogram Simulation and Adjoint Inversion

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Forsyth, D. W.; Savage, B.

    2010-12-01

    In our previous surface wave study in Gulf of California area, we developed a moderate-resolution 3D shear velocity model by employing two-plane wave field representation array technique and 2D finite frequency kernels based on Born’s approximation. Using both amplitude and phase information of 22-111s teleseismic Rayleigh wave, we were able to constrain a lateral resolution on the order of 100 km in the upper 160 km depth. In order to enhance resolution beneath the highly heterogeneous Gulf region, we carry on further study using Spectral element method (SEM) for forward wave propagation simulation and adjoint method for tomographic inversion. The code we are using is SPECFEM3D_GLOBE by Komatitsch and Tromp et al. To enhance the resolution in the Gulf, we will minimize the waveform difference between the regional earthquake seismograms, recorded by NARS-Baja seismic array and stations in southern California, and synthetic seismograms simulated by SEM, to iteratively update the current model based on an adjoint inversion. Taking our current 3D moderate-resolution model as starting point and a recently developed crustal structure of Gulf region should help to reduce the number of iterations. There are two reasons that resolution should be enhanced compared to surface wave tomography: first, regional events contain more high frequency signals than teleseismic events; second, SEM is a full waveform synthesis method avoiding many of the usual approximations in tomographic studies. Improved tomographic images of 3D velocity heterogeneities in the upper mantle of Gulf of California will help to identify compositional and temperature variations, leading to a better understanding of mantle dynamics in the region.

  3. Solidification of Al Alloys Under Electromagnetic Pulses and Characterization of the 3D Microstructures Using Synchrotron X-ray Tomography

    NASA Astrophysics Data System (ADS)

    Manuwong, Theerapatt; Zhang, Wei; Kazinczi, Peter Lobo; Bodey, Andrew J.; Rau, Christoph; Mi, Jiawei

    2015-07-01

    A novel programmable electromagnetic pulse device was developed and used to study the solidification of Al-15 pct Cu and Al-35 pct Cu alloys. The pulsed magnetic fluxes and Lorentz forces generated inside the solidifying melts were simulated using finite element methods, and their effects on the solidification microstructures were characterized using electron microscopy and synchrotron X-ray tomography. Using a discharging voltage of 120 V, a pulsed magnetic field with the peak Lorentz force of ~1.6 N was generated inside the solidifying Al-Cu melts which were showed sufficiently enough to disrupt the growth of the primary Al dendrites and the Al2Cu intermetallic phases. The microstructures exhibit a strong correlation to the characteristics of the applied pulse, forming a periodical pattern that resonates the frequency of the applied electromagnetic field.

  4. Degradation of Li/S Battery Electrodes On 3D Current Collectors Studied Using X-ray Phase Contrast Tomography

    PubMed Central

    Zielke, L.; Barchasz, C.; Waluś, S.; Alloin, F.; Leprêtre, J.-C.; Spettl, A.; Schmidt, V.; Hilger, A.; Manke, I.; Banhart, J.; Zengerle, R.; Thiele, S.

    2015-01-01

    Lithium/sulphur batteries are promising candidates for future energy storage systems, mainly due to their high potential capacity. However low sulphur utilization and capacity fading hinder practical realizations. In order to improve understanding of the system, we investigate Li/S electrode morphology changes for different ageing steps, using X-ray phase contrast tomography. Thereby we find a strong decrease of sulphur loading after the first cycle, and a constant loading of about 15% of the initial loading afterwards. While cycling, the mean sulphur particle diameters decrease in a qualitatively similar fashion as the discharge capacity fades. The particles spread, migrate into the current collector and accumulate in the upper part again. Simultaneously sulphur particles lose contact area with the conducting network but regain it after ten cycles because their decreasing size results in higher surface areas. Since the capacity still decreases, this regain could be associated with effects such as surface area passivation and increasing charge transfer resistance. PMID:26043280

  5. 3D Anisotropic Velocity Tomography of a Water Saturated Rock under True-Triaxial Stress in the Laboratory

    NASA Astrophysics Data System (ADS)

    Ghofrani Tabari, M.; Goodfellow, S. D.; Nasseri, M. B.; Young, R.

    2013-12-01

    A cubic specimen of water saturated Fontainebleau Sandstone is tested in the laboratory under true-triaxial loading where three different principal stresses are applied under drained conditions. Due to the loading arrangement, closure and opening of the pre-existing cracks in the rock, as well as creation and growth of the aligned cracks cause elliptical anisotropy and distributed heterogeneities. A Geophysical Imaging Cell equipped with an Acoustic Emission monitoring system is employed to image velocity structure of the sample during the experiment through repeated transducer to transducer non-destructive ultrasonic surveys. Apparent P-wave velocities along the rock body are calculated in different directions and shown in stereonet plots which demonstrate an overall anisotropy of the sample. The apparent velocities in the main three orthogonal cubic directions are used as raw data for building a mean spatial distribution model of anisotropy ratios. This approach is based on the concept of semi-principal axes in an elliptical anisotropic model and appointing two ratios between the three orthogonal velocities in each of the cubic grid cells. The spatial distribution model of anisotropy ratios are used to calculate the anisotropic ray-path segment matrix elements (Gij). These contain segment lengths of the ith ray in the jth cell in three dimensions where, length of each ray in each cell is computed for one principal direction based on the dip and strike of the ray and these lengths differ from the ones in an isotropic G Matrix. 3D strain of the squeezed rock and the consequent geometrical deformation is also included in the ray-path segment matrix. A Singular Value Decomposition (SVD) method is used for inversion from the data space of apparent velocities to the model space of P-wave propagation velocities in the three principal directions. Finally, spatial variation and temporal evolution of induced damages in the rock, representing uniformly distributed or

  6. Revealing plot scale heterogeneity in soil moisture dynamics under contrasting vegetation assemblages using 3D electrical resistivity tomography (ERT) surveys

    NASA Astrophysics Data System (ADS)

    Dick, Jonathan; Tetzlaff, Doerthe; Bradford, John; Soulsby, Chris

    2016-04-01

    Soil moisture is a fundamental component of the water cycle that influences many hydrological processes, such as flooding, solute transport, biogeochemical processes, and land-atmosphere interactions. The relationship between vegetation and soil moisture is complex and reciprocal. Soil moisture may affect vegetation distribution due to its function as the primary source of water, in turn the structure of vegetation canopies regulate water partitioning into interception, throughfall and steam flow. Such spatial differences in inputs, together with complex patterns of water uptake from distributed root networks can create marked heterogeneity in soil moisture dynamics at small scales. Traditional methods of monitoring soil moisture have revolved around limited point measurements, but improved geophysical techniques have facilitated a trend towards more spatially distributed measurements to help understand this heterogeneity. Here, we present a study using 3D ERT surveys in a 3.2km upland catchment in the Scottish Highlands where increasing afforestation (for climate change adaptation, biofuels and conservation) has the potential to increase interception losses and reduce soil moisture storage. The study combined 3D surveys, traditional point measurements and laboratory analysis of soil cores to assess the plot scale soil moisture dynamics in podzolic soils under forest stands of 15m high Scots pine (Pinus sylvestris) and adjacent non-forest plots dominated by heather (Calluna vulgaris) shrubs (<0.5m high). These dominant species are typical of forest and non-forest vegetation communities the Scottish Highlands. Results showed differences in the soil moisture dynamics under the different vegetation types, with heterogeneous patterns in the forested site mainly correlated with canopy cover and mirroring interception losses. Temporal variability in the forested site was greater, probably due to the interception, and increased evapotranspiration losses relative to the

  7. 3-D Anisotropic Ambient Noise Tomography of Piton De La Fournaise Volcano (La Réunion Island)

    NASA Astrophysics Data System (ADS)

    Mordret, A.; Rivet, D. N.; Landes, M.; Shapiro, N.

    2014-12-01

    We cross-correlate four years of seismic noise continuously recorded by the seismic monitoring network of the Piton de la Fournaise volcano (La Réunion Island). The network is composed of 40 stations 27 of which have 3-component sensors. We use Vertical-to-Vertical (ZZ) cross-correlation components from all stations and Radial-to-Radial (RR) and Transverse-to-Transverse (TT) cross-correlations computed from 3-component records. The group velocity dispersion curves for Rayleigh and Love waves are measured using a Frequency-Time Analysis. We average measurements from ZZ and RR components to finally obtain 577 Rayleigh-wave dispersion curves. 395 Love-wave dispersion curves are obtained from the TT cross-correlations. We then regionalize the group velocities measurements to construct 2D dispersion maps at a set of periods between 0.4 and 8 s. Finally, we construct a 3D shear-velocity model down to 3 km below the sea level by jointly inverting the Rayleigh and Love wave group velocity maps with a Neighborhood Algorithm and with taking into account the radial anisotropy. The distribution of 3-D Voigt averaged S-wave velocities shows three distinct high-velocity anomalies surrounded by a low-velocity ring. The most western high-velocity anomaly is located below the actual "Plaine des Sables" and could be attributed to an old intrusive body at the location of the former volcanic center before it migrated toward its present location. The second high-velocity body is located below the summit of the volcano and likely corresponds to the actual preferential dyke intrusion zone as highlighted by the seismicity. The third high-velocity anomaly is located below the "Grandes Pentes" and the "Grand Brûlé" areas and is thought to be an imprint of the solidified magma chamber of the ancient dismantled "Les Alizé" volcano. The distribution of the radial anisotropy shows two main anomalies: a positive anisotropy (Vsh>Vsv) above sea level highlighting the recent edifice of Piton de

  8. 3-D Tomography Study of Seismic Refraction/Wide-Angle Reflection Data Across the Variscides, SW Ireland

    NASA Astrophysics Data System (ADS)

    O'Reilly, B. M.; Landes, M.; Readman, P. W.; Shannon, P. M.; Prodehl, C.

    2002-12-01

    The VARNET-96 seismic experiment acquired three seismic refraction/wide-angle reflection profiles in order to examine the crustal structure in the south-west of Ireland. 170 seismic stations were used on 300 recording sites. The shotpoint geometry was designed to allow for both in-line and off-line fan shot recordings on the three profiles. A total of 34 water shots was fired. Results from 3-D raytrace and inversion modelling illustrate the pervasive lateral heterogeneity of the study area south of the Shannon Estuary. Palaeozoic strata at the south coast are about 5-6 km thick associated with the sedimentary infill of the Munster and South Munster Basins. To the north, shallow upper crust in the vicinity of the Killarney-Mallow Fault Zone is followed by a 3-4 km thick sedimentary succession in the Dingle-Shannon Basin. A zone of high-velocity upper crust (6.4-6.6 km/s) beneath the South Munster Basin correlates with a gravity high between the Kenmare-Killarney and the Leinster Granite gravity lows. Other high-velocity zones were found beneath Dingle Bay and the Kenmare River region and may be associated with the deep traces of the Killarney-Mallow Fault Zone and the Cork-Kenmare Line. The 3-D velocity model was taken as a basis for the computation of PmP reflected arrivals from the crust-mantle boundary. The Moho depth varies from about 28-29 km at the south coast to about 32-33 km beneath the Dingle-Shannon Basin, the region where the 2-D inline model shows a south-dipping reflector in the upper mantle. Pervasive Variscan deformation appears to be confined to the sedimentary and upper crustal structure and has not deformed the entire crust supporting a thin-skinned tectonic model for Variscan deformation. Deep-crustal variations only occur where they can be correlated with major tectonic features such as the Caledonian Iapetus Suture near the Shannon Estuary. The shallowing of the Moho towards the coast may result from Mesozoic crustal extension in the adjacent

  9. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-Chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2014-12-01

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications.Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to

  10. 3D Algebraic Iterative Reconstruction for Cone-Beam X-Ray Differential Phase-Contrast Computed Tomography

    PubMed Central

    Fu, Jian; Hu, Xinhua; Velroyen, Astrid; Bech, Martin; Jiang, Ming; Pfeiffer, Franz

    2015-01-01

    Due to the potential of compact imaging systems with magnified spatial resolution and contrast, cone-beam x-ray differential phase-contrast computed tomography (DPC-CT) has attracted significant interest. The current proposed FDK reconstruction algorithm with the Hilbert imaginary filter will induce severe cone-beam artifacts when the cone-beam angle becomes large. In this paper, we propose an algebraic iterative reconstruction (AIR) method for cone-beam DPC-CT and report its experiment results. This approach considers the reconstruction process as the optimization of a discrete representation of the object function to satisfy a system of equations that describes the cone-beam DPC-CT imaging modality. Unlike the conventional iterative algorithms for absorption-based CT, it involves the derivative operation to the forward projections of the reconstructed intermediate image to take into account the differential nature of the DPC projections. This method is based on the algebraic reconstruction technique, reconstructs the image ray by ray, and is expected to provide better derivative estimates in iterations. This work comprises a numerical study of the algorithm and its experimental verification using a dataset measured with a three-grating interferometer and a mini-focus x-ray tube source. It is shown that the proposed method can reduce the cone-beam artifacts and performs better than FDK under large cone-beam angles. This algorithm is of interest for future cone-beam DPC-CT applications. PMID:25775480

  11. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

    SciTech Connect

    Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

    2012-09-17

    Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

  12. Three-Dimensional (3-D) Atom Probe Tomography of a Cu-Precipitation-Strengthened, Ultrahigh-Strength Carburized Steel

    NASA Astrophysics Data System (ADS)

    Tiemens, Benjamin L.; Sachdev, Anil K.; Mishra, Raja K.; Olson, Gregory B.

    2012-10-01

    In an effort to reduce material cost, experimental steel alloys were developed that incorporated Cu precipitation in lieu of costly Co alloying additions in secondary hardening carburizing gear steels. This work utilizes three-dimensional atom probe tomography to study one of these prototype alloys and quantify the nanoscale dispersions of body-centered cubic (bcc) Cu and M2C alloy carbides used to strengthen these steels. The temporal evolution of precipitate, size, morphology, and interprecipitate interactions were studied for various tempering times. Findings suggest that Cu precipitation does act as a catalyst for heterogeneous nucleation of M2C carbides at relatively high hardness levels; however, the resultant volume fraction of strengthening carbides was noticeably less than that predicted by thermodynamic equilibrium calculations, indicating a reduced potency compared with Co-assisted precipitation. Microstructural information such as precipitate size and volume fraction was measured at the peak hardness condition and successfully used to recalibrate alloy design models for subsequent alloy design iterations.

  13. 3D modeling and inversion of the electrical resistivity tomography using steel cased boreholes as long electrodes

    NASA Astrophysics Data System (ADS)

    Zhang, Ying-Ying; Liu, De-Jun; Ai, Qing-Hui; Qin, Min-Jun

    2014-10-01

    Electrical resistivity tomography using a steel cased borehole as a long electrode is an advanced technique for geoelectrical survey based on the conventional mise-à-la-masse measurement. In most previous works, the steel casing is simplified as a transmission line current source with an infinitely small radius and constant current density. However, in practical stratified formations with different resistivity values, the current density along the casing cannot be constant. In this study, the steel casing is modeled by a conductive physical volume that the casing occupies in the finite element mesh. The current supply point is set on the center of the top surface of the physical volume. Synthetic modeling, using both a homogenous and layered formation, demonstrates reasonability of the forward modeling method proposed herein. Based on this forward modeling method, the inversion procedure can be implemented by using a freeware R3t (Lancaster University, UK). Inversion results of synthetic modeling data match fairly well with the defined target location and validate that the method works on the inversion of the casing-surface electrical resistivity data. Finally, a field example of Changqing oil field in China is carried out using the inversion method to image water flooding results and to discover wells with great potential to enhance residual oil recovery.

  14. In vivo imaging of bone micro-architecture in mice with 3D synchrotron radiation micro-tomography

    NASA Astrophysics Data System (ADS)

    Bayat, S.; Apostol, L.; Boller, E.; Brochard, T.; Peyrin, F.

    2005-08-01

    Micro-tomographic imaging of bone micro-architecture is increasingly used on wild and transgenic mice to follow effects of diseases or therapeutics. Synchrotron radiation micro-tomography (SR micro-CT) provides quantitative images at very high spatial resolution but has mainly been used in vitro. The aim of this work was to show the feasibility of SR micro-CT for assessing bone mineral density and micro-architecture in vivo in mice. Imaging with a pixel size of 10 μm was performed on beam line ID19 at the ESRF using a special mouse holder. Two strains of mice (C3H/HeJ and C57BL/6J) were used for the experiment. First tests were performed in order to optimize the imaging conditions with respect to dose. Then, six mice of each group were imaged at doses of 7 and 13 Gy (total scan time <5 min). A similar volume of interest was selected in each image to perform quantitative analysis. The first results on bone volume and mineralization revealed significant differences between the strains as expected. Although there was no apparent damage, the imaged femurs will be further investigated by histology to evaluate the effect of irradiation on bone cells. In conclusion, SR micro-CT provides in vivo images with high signal-to-noise ratio (SNR), very short scan time and may be used in longitudinal studies.

  15. A collaborative framework for 3D alignment and classification of heterogeneous subvolumes in cryo-electron tomography.

    PubMed

    Kuybeda, Oleg; Frank, Gabriel A; Bartesaghi, Alberto; Borgnia, Mario; Subramaniam, Sriram; Sapiro, Guillermo

    2013-02-01

    The limitation of using low electron doses in non-destructive cryo-electron tomography of biological specimens can be partially offset via averaging of aligned and structurally homogeneous subsets present in tomograms. This type of sub-volume averaging is especially challenging when multiple species are present. Here, we tackle the problem of conformational separation and alignment with a "collaborative" approach designed to reduce the effect of the "curse of dimensionality" encountered in standard pair-wise comparisons. Our new approach is based on using the nuclear norm as a collaborative similarity measure for alignment of sub-volumes, and by exploiting the presence of symmetry early in the processing. We provide a strict validation of this method by analyzing mixtures of intact simian immunodeficiency viruses SIV mac239 and SIV CP-MAC. Electron microscopic images of these two virus preparations are indistinguishable except for subtle differences in conformation of the envelope glycoproteins displayed on the surface of each virus particle. By using the nuclear norm-based, collaborative alignment method presented here, we demonstrate that the genetic identity of each virus particle present in the mixture can be assigned based solely on the structural information derived from single envelope glycoproteins displayed on the virus surface. PMID:23110852

  16. A 3D Seismic Velocity Model Offshore Southern California from Ambient Noise Tomography of the ALBACORE OBS Array

    NASA Astrophysics Data System (ADS)

    Kohler, M. D.; Bowden, D. C.; Tsai, V. C.; Weeraratne, D. S.

    2015-12-01

    The Pacific-North America plate boundary in Southern California extends far west of the coastline, and a 12-month ocean bottom seismometer (OBS) array spanned the western side of the plate boundary to image lithospheric seismic velocities. Velocities are modeled through stacked cross correlations of ambient noise data. Twelve months of continuous data were used from 22 OBS stations and ~30 coastal and island Southern California Seismic Network stations. Particular attention has been paid to improving signal-to-noise ratios in the noise correlations with OBS stations by removing the effects of instrument tilt and infragravity waves. Different applications of preprocessing techniques allow us to distinguish the fundamental and first higher order Rayleigh modes, especially in deep water OBS pairs where the water layer dominates crustal sensitivity of the fundamental mode. Standard time domain and frequency domain methods are used to examine surface wave dispersion curves for group and phase velocities between 5 and 50 second periods, and these are inverted for 3D velocity structure. The results define the transition in three dimensions from continental lithospheric structure in the near-shore region to oceanic structure west of the continental borderland. While the most prominent features of the model relate to thinning of the crust west of the Patton Escarpment, other notable anomalies are present north-to-south throughout the continental borderland and along the coast from the Los Angeles Basin to the Peninsular Ranges. The velocity model will help describe the region's tectonic history, as well as provide new constraints for determination of earthquake relocations and rupture styles.

  17. The 3-D collagen structure of equine articular cartilage, characterized using variable-angle-of-incidence polarization-sensitive optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Ugryumova, Nadya; Gangnus, Sergei V.; Matcher, Stephen J.

    2005-08-01

    Polarization-sensitive optical coherence tomography has been used to spatially map the birefringence of equine articular cartilage. Images obtained in the vicinity of visible osteoarthritic lesions display a characteristic disruption of the regular birefringence bands shown by normal cartilage. We also note that significant (e.g. ×2) variations in the apparent birefringence of samples taken from young (18 month) animals that otherwise appear visually homogeneous are found over spatial scales of a few millimeters. We suggest that whilst some of this variation may be due to changes in the intrinsic birefringence of the tissue, the 3-D orientation of the collagen fibers relative to the plane of the joint surface should also be taken into account. We propose a method based on multiple angles of illumination to determine the polar angle of the collagen fibers.

  18. A patent ductus arteriosus complicating cardiopulmonary bypass for combined coronary artery bypass grafting and aortic valve replacement only discovered by computed tomography 3D reconstruction.

    PubMed

    van Middendorp, Lars B; Maessen, Jos G; Sardari Nia, Peyman

    2014-12-01

    We describe the case of a 59-year old male patient undergoing combined coronary artery bypass grafting and aortic valve replacement. Manipulation of the heart during cardiopulmonary bypass significantly decreased venous return. Several measures were necessary to improve venous return to a level at which continuation of the procedure was safe. Based on the initial troubles with venous return, we decided to selectively cross-clamp the aorta. This resulted in a large amount of backflow of oxygenated blood from the left ventricle, necessitating additional vents in the pulmonary artery and directly in the left ventricle. The procedure was continued uneventfully, and postoperative recovery was without significant complications. Postoperative 2D computed tomography did not show any signs of a shunt, but 3D reconstruction showed a small patent ductus arteriosus. PMID:25164136

  19. 3D Tomography of Accretionary Lapilli From The Island of Stromboli (Aeolian Archipelago, Italy): Spatial Arrangement, Internal Structure, Grain Size Distribution and Chemical Characterization

    NASA Astrophysics Data System (ADS)

    Morgavi, D.; Ielpo, M.; Valentini, L.; Laeger, K.; Paredes, J.; Petrelli, M.; Costa, A.; Perugini, D.

    2015-12-01

    The Secche di Lazzaro formation (7 Ka) is a phreatomagmatic deposit in the south-western part of the island of Stromboli (Aeolian Archipelago, Italy). The volcanic sequence is constituted by three main sub-units. In two of them abundant accretionary lapilli are present. We performed granulometric analysis to describe the spatial arrangement and the grain-size distribution of the lapilli inside the deposit. Lapilli were characterized by SEM investigations (BSE images). EMPA and LA-ICP-MS analyses of major and trace elements on glasses and minerals were performed. Although BSE images provide accurate morphological information, they do not allow the real 3D microstructure to be accessed. Therefore, non-invasive 3D imaging of the lapilli was performed by X-ray micro-tomography (X-mCT). The results of the X-mCT measurements provided a set of 2D cross-sectional slices stacked along the vertical axis, with a voxel size varying between 2.7 and 4.1 mm, depending on the size of the sample. The X-mCT images represent a mapping of X-ray attenuation, which in turn depends on the density of the phases distributed within the sample. This technique helped us to better constrain the particle and crystal distribution inside the accretionary lapilli. The recognized phases are: glass, clinopyroxene, plagioclase and Ti-Fe minerals. We discover also a high concentration of Na, Cl and SO3 in the ash matrix. This evidence is ubiquitous in all the accretionary lapilli. The work presented here could define a new route for future studies in the field of physical volcanology as X-ray micro-tomography could be a useful, non destructive technique to better characterize the internal structure of accretionary lapilli helping us to describe grain-size distribution of component particles and their spatial distribution within aggregates.

  20. An assessment of computerized tomography parameters in spinal bone mineralization determination

    SciTech Connect

    Davis, J.S.

    1988-01-01

    This research investigates the effects of changes in clinical parameters on measured bone density values using Quantitative Computed Tomography (QCT). These parameters include changes in patient size, geometry, internal anatomic conditions such as aortic calcifications and bowel gas, gantry slice position and angulation, spin-water bolus air gap distance, and field uniformity effects. It also assesses the reproducibility of the QCT technique on the G.E. 9800 CT scanner as well as the dose to radiosensitive tissues. The CIRS torso phantom was used in each of three size configurations to assess size effects. Mean bone mineral density (BMD) did not significantly vary with phantom size. Variations in patient cross-sectional geometry at constant volume were assessed using a custom manufactured body phantom.

  1. Multi-surface and multi-field co-segmentation of 3-D retinal optical coherence tomography.

    PubMed

    Bogunovic, Hrvoje; Sonka, Milan; Kwon, Young H; Kemp, Pavlina; Abramoff, Michael D; Wu, Xiaodong

    2014-12-01

    When segmenting intraretinal layers from multiple optical coherence tomography (OCT) images forming a mosaic or a set of repeated scans, it is attractive to exploit the additional information from the overlapping areas rather than discarding it as redundant, especially in low contrast and noisy images. However, it is currently not clear how to effectively combine the multiple information sources available in the areas of overlap. In this paper, we propose a novel graph-theoretic method for multi-surface multi-field co-segmentation of intraretinal layers, assuring consistent segmentation of the fields across the overlapped areas. After 2-D en-face alignment, all the fields are segmented simultaneously, imposing a priori soft interfield-intrasurface constraints for each pair of overlapping fields. The constraints penalize deviations from the expected surface height differences, taken to be the depth-axis shifts that produce the maximum cross-correlation of pairwise-overlapped areas. The method's accuracy and reproducibility are evaluated qualitatively and quantitatively on 212 OCT images (20 nine-field, 32 single-field acquisitions) from 26 patients with glaucoma. Qualitatively, the obtained thickness maps show no stitching artifacts, compared to pronounced stitches when the fields are segmented independently. Quantitatively, two ophthalmologists manually traced four intraretinal layers on 10 patients, and the average error ( 4.58 ±1.46 μm) was comparable to the average difference between the observers ( 5.86±1.72 μm). Furthermore, we show the benefit of the proposed approach in co-segmenting longitudinal scans. As opposed to segmenting layers in each of the fields independently, the proposed co-segmentation method obtains consistent segmentations across the overlapped areas, producing accurate, reproducible, and artifact-free results. PMID:25020067

  2. Multi-Surface and Multi-Field Co-Segmentation of 3-D Retinal Optical Coherence Tomography

    PubMed Central

    Sonka, Milan; Kwon, Young H.; Kemp, Pavlina; Abràmoff, Michael D.; Wu, Xiaodong

    2015-01-01

    When segmenting intraretinal layers from multiple optical coherence tomography (OCT) images forming a mosaic or a set of repeated scans, it is attractive to exploit the additional information from the overlapping areas rather than discarding it as redundant, especially in low contrast and noisy images. However, it is currently not clear how to effectively combine the multiple information sources available in the areas of overlap. In this paper, we propose a novel graph-theoretic method for multi-surface multi-field co-segmentation of intraretinal layers, assuring consistent segmentation of the fields across the overlapped areas. After 2-D en-face alignment, all the fields are segmented simultaneously, imposing a priori soft interfield-intrasurface constraints for each pair of overlapping fields. The constraints penalize deviations from the expected surface height differences, taken to be the depth-axis shifts that produce the maximum cross-correlation of pairwise-overlapped areas. The method’s accuracy and reproducibility are evaluated qualitatively and quantitatively on 212 OCT images (20 nine-field, 32 single-field acquisitions) from 26 patients with glaucoma. Qualitatively, the obtained thickness maps show no stitching artifacts, compared to pronounced stitches when the fields are segmented independently. Quantitatively, two ophthalmologists manually traced four intraretinal layers on 10 patients, and the average error (4.58±1.46 μm) was comparable to the average difference between the observers (5.86±1.72 μm). Furthermore, we show the benefit of the proposed approach in co-segmenting longitudinal scans. As opposed to segmenting layers in each of the fields independently, the proposed co-segmentation method obtains consistent segmentations across the overlapped areas, producing accurate, reproducible, and artifact-free results. PMID:25020067

  3. In vivo bioimpedance changes during haemorrhagic and ischaemic stroke in rats: towards 3D stroke imaging using electrical impedance tomography.

    PubMed

    Dowrick, T; Blochet, C; Holder, D

    2016-06-01

    Electrical impedance tomography (EIT) could be used as a portable non-invasive means to image the development of ischaemic stroke or haemorrhage. The purpose of this study was to examine if this was possible using time difference imaging, in the anesthetised rat using 40 spring-loaded scalp electrodes with applied constant currents of 50-150 μA at 2 kHz. Impedance changes in the largest 10% of electrode combinations were  -12.8%  ±  12.0% over the first 10 min for haemorrhage and  +46.1%  ±  37.2% over one hour for ischaemic stroke (mean  ±  SD, n  =  7 in each group). The volume of the pathologies, assessed by tissue section and histology post-mortem, was 12.6 μl  ±  17.6 μl and 12.6 μl  ±  17.6 μl for haemorrhage and ischaemia respectively. In time difference EIT images, there was a correspondence with the pathology in 3/7 cases of haemorrhage and none of the ischaemic strokes. Although the net impedance changes were physiologically reasonable and consistent with expectations from the literature, it was disappointing that it was not possible to obtain reliable EIT images. The reason for this are not clear, but probably include confounding effects of secondary ischaemia for haemorrhage and tissue and cerebrospinal fluid shifts for the stroke model. With this method, it does not appear that EIT with scalp electrodes is yet ready for clinical use. PMID:27200510

  4. Development of transrectal diffuse optical tomography combined with 3D-transrectal ultrasound imaging to monitor the photocoagulation front during interstitial photothermal therapy of primary focal prostate cancer

    NASA Astrophysics Data System (ADS)

    He, Jie; Weersink, Robert; Veilleux, Israel; Mayo, Kenwrick; Zhang, Anqi; Piao, Daqing; Alam, Adeel; Trachtenberg, John; Wilson, Brian C.

    2013-03-01

    Interstitial near-infrared laser thermal therapy (LITT) is currently undergoing clinical trials as an alternative to watchful waiting or radical surgery in patients with low-risk focal prostate cancer. Currently, we use magnetic resonance image (MRI)-based thermography to monitor treatment delivery and determine indirectly the completeness of the target tissue destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. However, incomplete tumor destruction has occurred in a significant fraction of patients due to premature termination of treatment, since the photocoagulation zone is not directly observed. Hence, we are developing transrectal diffuse optical tomography (TRDOT), in combination with transrectal 3D ultrasound (3D-TRUS), to address his limitation. This is based on the large changes in optical scattering expected upon tissue coagulation. Here, we present forward simulations of a growing coagulated lesion with optical scattering contrast, using an established finite element analysis software platform (NIRFAST). The simulations were validated in tissue-simulating phantoms, with measurements acquired by a state-of-the-art continuous wave (CW) TRDOT system and a recently assembled bench-top CW-DOT system, with specific source-detector configurations. Two image reconstruction schemes were investigated and evaluated, specifically for the accurate delineation of the posterior boundary of the coagulation zone as the critical parameter for treatment guidance in this clinical application.

  5. 3-D Resistivity Tomography for Cliff Stability Study at the D-Day Pointe du Hoc Historic Site in Normandy, France

    NASA Astrophysics Data System (ADS)

    Udphuay, S.; Everett, M. E.; Guenther, T.; Warden, R. R.

    2007-12-01

    The D-Day invasion site at Pointe du Hoc in Normandy, France is one of the most important World War II battlefields. The site remains today a valuable historic cultural resource. However the site is vulnerable to cliff collapses that could endanger the observation post building and U.S. Ranger memorial located just landward of the sea stack, and an anti-aircraft gun emplacement, Col. Rudder's command post, located on the cliff edge about 200 m east of the observation post. A 3-D resistivity tomography incorporating extreme topography is used in this study to provide a detailed site stability assessment with special attention to these two buildings. Multi-electrode resistivity measurements were made across the cliff face and along the top of the cliff around the two at-risk buildings to map major subsurface fracture zones and void spaces that could indicate possible accumulations and pathways of groundwater. The ingress of acidic groundwater through the underlying carbonate formations enlarges pre-existing tectonic fractures via limestone dissolution and weakens the overall structural integrity of the cliff. The achieved 3-D resistivity tomograms provide diagnostic subsurface resistivity distributions. Resistive zones associated with subsurface void spaces have been located. These void spaces constitute a stability geohazard as they become significant drainage routes during and after periods of heavy rainfalls.

  6. Assessment of the Efficiency of Consolidation Treatment through Injections of Expanding Resins by Geotechnical Tests and 3D Electrical Resistivity Tomography

    PubMed Central

    Apuani, T.; Giani, G. P.; d'Attoli, M.; Fischanger, F.; Morelli, G.; Ranieri, G.; Santarato, G.

    2015-01-01

    The design and execution of consolidation treatment of settled foundations by means of injection of polyurethane expanding resins require a proper investigation of the state of the foundation soil, in order to better identify anomalies responsible for the instability. To monitor the injection process, a procedure has been developed, which involves, in combination with traditional geotechnical tests, the application of a noninvasive, geophysical technique based on the electrical resistivity, which is strongly sensitive to presence of water or voids. Three-dimensional electrical resistivity tomography is a useful tool to produce effective 3D images of the foundation soils before, during, and after the injections. The achieved information allows designing the consolidation scheme and monitoring its effects on the treated volumes in real time. To better understand the complex processes induced by the treatment and to learn how variations of resistivity accompany increase of stiffness, an experiment was carried out in a full-scale test site. Injections of polyurethane expanding resin were performed as in real worksite conditions. Results confirm that the experimented approach by means of 3D resistivity imaging allows a reliable procedure of consolidation, and geotechnical tests demonstrate the increase of mechanical stiffness. PMID:26167521

  7. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography.

    PubMed

    Chen-Wiegart, Yu-chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2015-01-21

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A 'stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications. PMID:25474162

  8. Investigation and optimization of a finite element simulation of transducer array systems for 3D ultrasound computer tomography with respect to electrical impedance characteristics

    NASA Astrophysics Data System (ADS)

    Kohout, B.; Pirinen, J.; Ruiter, N. V.

    2012-03-01

    The established standard screening method to detect breast cancer is X-ray mammography. However X-ray mammography often has low contrast for tumors located within glandular tissue. A new approach is 3D Ultrasound Computer Tomography (USCT), which is expected to detect small tumors at an early stage. This paper describes the development, improvement and the results of Finite Element Method (FEM) simulations of the Transducer Array System (TAS) used in our 3D USCT. The focus of this work is on researching the influence of meshing and material parameters on the electrical impedance curves. Thereafter, these findings are used to optimize the simulation model. The quality of the simulation was evaluated by comparing simulated impedance characteristics with measured data of the real TAS. The resulting FEM simulation model is a powerful tool to analyze and optimize transducer array systems applied for USCT. With this simulation model, the behavior of TAS for different geometry modifications was researched. It provides a means to understand the acoustical performances inside of any ultrasound transducer represented by its electrical impedance characteristic.

  9. Localization of Metal Electrodes in the Intact Rat Brain Using Registration of 3D Microcomputed Tomography Images to a Magnetic Resonance Histology Atlas1,2,3

    PubMed Central

    Borg, Jana Schaich; Vu, Mai-Anh; Badea, Cristian; Badea, Alexandra; Johnson, G. Allan

    2015-01-01

    Abstract Simultaneous neural recordings taken from multiple areas of the rodent brain are garnering growing interest because of the insight they can provide about spatially distributed neural circuitry. The promise of such recordings has inspired great progress in methods for surgically implanting large numbers of metal electrodes into intact rodent brains. However, methods for localizing the precise location of these electrodes have remained severely lacking. Traditional histological techniques that require slicing and staining of physical brain tissue are cumbersome and become increasingly impractical as the number of implanted electrodes increases. Here we solve these problems by describing a method that registers 3D computed tomography (CT) images of intact rat brains implanted with metal electrode bundles to a magnetic resonance imaging histology (MRH) atlas. Our method allows accurate visualization of each electrode bundle’s trajectory and location without removing the electrodes from the brain or surgically implanting external markers. In addition, unlike physical brain slices, once the 3D images of the electrode bundles and the MRH atlas are registered, it is possible to verify electrode placements from many angles by “reslicing” the images along different planes of view. Furthermore, our method can be fully automated and easily scaled to applications with large numbers of specimens. Our digital imaging approach to efficiently localizing metal electrodes offers a substantial addition to currently available methods, which, in turn, may help accelerate the rate at which insights are gleaned from rodent network neuroscience. PMID:26322331

  10. New constraints on the 3D shear wave velocity structure of the upper mantle underneath Southern Scandinavia revealed from non-linear tomography

    NASA Astrophysics Data System (ADS)

    Wawerzinek, B.; Ritter, J. R. R.; Roy, C.

    2013-08-01

    We analyse travel times of shear waves, which were recorded at the MAGNUS network, to determine the 3D shear wave velocity (vS) structure underneath Southern Scandinavia. The travel time residuals are corrected for the known crustal structure of Southern Norway and weighted to account for data quality and pick uncertainties. The resulting residual pattern of subvertically incident waves is very uniform and simple. It shows delayed arrivals underneath Southern Norway compared to fast arrivals underneath the Oslo Graben and the Baltic Shield. The 3D upper mantle vS structure underneath the station network is determined by performing non-linear travel time tomography. As expected from the residual pattern the resulting tomographic model shows a simple and continuous vS perturbation pattern: a negative vS anomaly is visible underneath Southern Norway relative to the Baltic Shield in the east with a contrast of up to 4% vS and a sharp W-E dipping transition zone. Reconstruction tests reveal besides vertical smearing a good lateral reconstruction of the dipping vS transition zone and suggest that a deep-seated anomaly at 330-410 km depth is real and not an inversion artefact. The upper part of the reduced vS anomaly underneath Southern Norway (down to 250 km depth) might be due to an increase in lithospheric thickness from the Caledonian Southern Scandes in the west towards the Proterozoic Baltic Shield in Sweden in the east. The deeper-seated negative vS anomaly (330-410 km depth) could be caused by a temperature anomaly possibly combined with effects due to fluids or hydrous minerals. The determined simple 3D vS structure underneath Southern Scandinavia indicates that mantle processes might influence and contribute to a Neogene uplift of Southern Norway.

  11. Presumed orbital sarcoidosis: report of a case followed by computerized axial tomography and conjunctival biopsy.

    PubMed Central

    Nichols, C W; Mishkin, M; Yanoff, M

    1978-01-01

    A thirty-two-year old woman with known sarcoidosis was seen in the Ophthalmology Clinic because of discomfort in the left eye and orbit when looking up. A CT scan showed a small mass in the posterior left orbit. Conjunctival biopsy of the left eye showed a granuloma consistent with sarcoid. Rapid resolution of her condition occurred with prednisone therapy. One year later she had a recurrence with inability to elevate or depress the left eye. Similar, but more extensive, changes were seen on a CT scan. Conjunctival biopsy again was positive. With steroid therapy rapid and complete resolution occurred both clinically and as demonstrated by a CT scan. The relationship between her orbital mass and systemic sarcoidosis is discussed. Images FIGURE 1 A FIGURE 1 B FIGURE 1 C FIGURE 1 D FIGURE 2 A FIGURE 2 B FIGURE 2 C FIGURE 2 D FIGURE 3 A FIGURE 3 B FIGURE 3 C FIGURE 3 D FIGURE 4 A FIGURE 4 B FIGURE 4 C FIGURE 4 D FIGURE 5 A FIGURE 5 B FIGURE 5 C FIGURE 5 D PMID:754385

  12. A 3-D shear velocity model of the southern North America and the Caribbean plates from ambient noise and earthquake tomography

    NASA Astrophysics Data System (ADS)

    Gaite, B.; Villaseñor, A.; Iglesias, A.; Herraiz, M.; Jiménez-Munt, I.

    2014-10-01

    We use group velocities from earthquake tomography together with group and phase velocities from ambient noise tomography (ANT) of Rayleigh-waves to invert for the 3-D shear-wave velocity structure (5-70 km) of the Caribbean (CAR) and southern North American (NAM) plates. The lithospheric model proposed offers a complete image of the crust and uppermost-mantle with imprints of the tectonic evolution. One of the most striking features inferred is the main role of the Ouachita-Marathon-Sonora orogeny front on the crustal seismic structure of NAM plate. A new imaged feature is the low crustal velocities along USA-Mexico border. The model also shows a break of the E-W mantle velocity dichotomy of the NAM and CAR plates beneath the Isthmus of Tehuantepec and Yucatan Block. High upper-mantle velocities along the Mesoamerican Subduction Zone coincide with inactive volcanic areas while the lowest velocities correspond to active volcanic arcs and thin lithospheric mantle regions.

  13. Biologically optimized 3-dimensional in vivo predictive assay-based radiation therapy using positron emission tomography-computerized tomography imaging.

    PubMed

    Brahme, Anders

    2003-01-01

    and biological selectivity, instead produce PET emitters through direct nuclear interactions in tissue, but can also be used as radioactive beams consisting of intrinsic PET emitters such as 8B, 11C, 13N and 15O. These radioactive beams allow more accurate imaging of the Bragg peak distribution and thus indirectly the absorbed dose. The most universal feedback for adaptive radiation therapy would then be to use the measured image of mean dose delivery during the early part of the treatment while revising the treatment plan based on the initially planned dose distribution and the radiation responsiveness of the tumor as seen after the first week or two of therapy. By this so-called BIO-ART approach (Biologically Optimized 3D in vivo predictive Assay-based Radiation Therapy) radiation therapy optimization may become an almost exact science, where the patient's true individual radiation response, considering hypoxia and general radiation resistance as well as possible dose delivery and planning errors, is taken into account. PMID:12801131

  14. Imaging mesenchymal stem cells containing single wall nanotube nanoprobes in a 3D scaffold using photo-thermal optical coherence tomography

    NASA Astrophysics Data System (ADS)

    Connolly, Emma; Subhash, Hrebesh M.; Leahy, Martin; Rooney, Niall; Barry, Frank; Murphy, Mary; Barron, Valerie

    2014-02-01

    Despite the fact, that a range of clinically viable imaging modalities, such as magnetic resonance imaging (MRI), computed tomography (CT), photo emission tomography (PET), ultrasound and bioluminescence imaging are being optimised to track cells in vivo, many of these techniques are subject to limitations such as the levels of contrast agent required, toxic effects of radiotracers, photo attenuation of tissue and backscatter. With the advent of nanotechnology, nanoprobes are leading the charge to overcome these limitations. In particular, single wall nanotubes (SWNT) have been shown to be taken up by cells and as such are effective nanoprobes for cell imaging. Consequently, the main aim of this research is to employ mesenchymal stem cells (MSC) containing SWNT nanoprobes to image cell distribution in a 3D scaffold for cartilage repair. To this end, MSC were cultured in the presence of 32μg/ml SWNT in cell culture medium (αMEM, 10% FBS, 1% penicillin/streptomycin) for 24 hours. Upon confirmation of cell viability, the MSC containing SWNT were encapsulated in hyaluronic acid gels and loaded on polylactic acid polycaprolactone scaffolds. After 28 days in complete chondrogenic medium, with medium changes every 2 days, chondrogenesis was confirmed by the presence of glycosaminoglycan. Moreover, using photothermal optical coherence tomography (PT-OCT), the cells were seen to be distributed through the scaffold with high resolution. In summary, these data reveal that MSC containing SWNT nanoprobes in combination with PT-OCT offer an exciting opportunity for stem cell tracking in vitro for assessing seeding scaffolds and in vivo for determining biodistribution.

  15. Computerized tomography technique for reconstruction of obstructed phase data in shearography.

    PubMed

    Hung, Y Y; Huang, Y H; Liu, L; Ng, S P; Chen, Y S

    2008-06-10

    Shearography is an interferometric method that overcomes several limitations of holography by eliminating the reference beam. It greatly simplifies the optical setup and has much higher tolerance to environmental disturbances. Consequently, the technique has received considerable industrial acceptance, particularly for nondestructive testing. Shearography, however, is generally not applicable to the measurement of an obstructed area, as the area to be measured must be accessible to both illumination and imaging. We present an algorithm based on the principle of tomography that permits the reconstruction of the unavailable phase distribution in an obstructed area from the measured boundary phase distribution. In the process, a set of imaginary rays is projected from many different directions across the area. For each ray, integration of the phase directional derivative along the ray is equal to the phase difference between the boundary points intercepted by the ray. Therefore, a set of linear equations can be established by considering the multiple rays. Each equation expresses the unknown phase derivatives in the obstructed area in terms of the measured boundary phase. Solution of the set of simultaneous equations yields the unknown phase distribution in the blind area. While its applications to shearography are demonstrated, the technique is potentially applicable to all full-field optical measurement techniques such as holography, speckle interferometry, classical interferometry, thermography, moiré, photoelasticity, and speckle correlation techniques. PMID:18545289

  16. Constraints on Crustal Shear Wave Velocity Structure beneath Central Tibet from 3-D Multi-scale Finite-frequency Rayleigh Wave Travel-time Tomography

    NASA Astrophysics Data System (ADS)

    Jheng, Y.; Hung, S.; Zhou, Y.; Chang, Y.

    2012-12-01

    Surface wave travel-time tomography has been widely used as a powerful strategy to image shear wave velocity structure of the Earth's crust and upper mantle, providing comparable information other than body wave tomography. Traditionally, lateral variations of dispersive phase velocities are first obtained at multiple frequencies and then used to invert for shear wave velocity with 1-D depth-dependent sensitivity kernels. However, this approach runs short on considering the directional- and depth-dependence of scattering while surface wave propagating through laterally heterogeneous Earth. To refrain from these shortcomings, we here provide a fully 3-D finite-frequency method based on the Born scattering theory formulated with surface wave mode summation, and apply it to regional fundamental Rayleigh wave travel-time tomography in central Tibet. Our data were collected from Project Hi-CLIMB, which deployed an N-S trending linear array of over 100 broadband seismic stations with a large aperture of 800 km and very dense spacing of ~3-8 km across the Lhasa and Qiangtang terranes during 2004-2005. We follow a standard procedure of ambient noise cross correlation to extract empirical Green's functions of fundamental Rayleigh waves at 10-33 s between station pairs. A multi-taper method is employed to measure the phase differences as a function of period between observed and synthetic Rayleigh waves as well as the corresponding sensitivity kernels for the measured phase delays to 3-D shear wave velocity perturbations in a spherically-symmetric model suitable for central Tibet. A wavelet-based, multi-scale parameterization is invoked in the tomographic inversion to deal with the intrinsically multi-scale nature of unevenly distributed data and resolve the structure with data-adaptive spectral and spatial resolutions. The preliminary result shows that to the north of the Banggong-Nujiang suture (BNS), the crustal shear wave velocity beneath the Qiangtang terrane is

  17. Automated assessment of renal cortical surface roughness from computerized tomography images and its association with age

    PubMed Central

    Duan, Xinhui; Rule, Andrew D.; Elsherbiny, Hisham E.; Vrtiska, Terri J.; Avula, Ramesh T.; Alexander, Mariam P.; Lerman, Lilach O.; McCollough, Cynthia H.

    2014-01-01

    Rationale and Objectives Nephrosclerosis occurs with aging and is characterized by increased kidney sub-capsular surface irregularities at autopsy. Assessments of cortical roughness in-vivo could provide an important measure of nephrosclerosis. The purpose of this study was to develop and validate an image-processing algorithm for quantifying renal cortical surface roughness in-vivo and determine its association with age. Materials and methods Renal cortical surface roughness was measured on contrast-enhanced abdominal CT images of potential living kidney donors. A roughness index was calculated based on geometric curvature of each kidney from 3D images, and compared with visual observation scores. Cortical roughness was compared between the oldest and youngest donors, and its interaction with cortical volume and age assessed. Results The developed quantitative roughness index identified significant differences in kidneys with visual surface roughness scores of 0 (minimal), 1 (mild), and 2 (moderate) (p<0.001) in a random sample of 200 potential kidney donors. Cortical roughness was significantly higher in the 94 oldest (64–75y) versus 91 youngest (18–25y) potential kidney donors (p<0.001). Lower cortical volume was associated with older age but not with roughness (r=−0.03, p=0.75). The association of oldest age group with roughness (OR=1.8 per SD of roughness index) remained significant after adjustment for total cortex volume (OR=2.0 per SD of roughness index). Conclusion A new algorithm to measure renal cortical surface roughness from CT scans detected rougher surface in older compared to younger kidneys, independent of cortical volume loss. This novel index may allow quantitative evaluation of nephrosclerosis in vivo using contrast-enhanced CT. PMID:25086950

  18. Constructing a starting 3D shear velocity model with sharp interfaces for SEM-based upper mantle tomography in North America

    NASA Astrophysics Data System (ADS)

    Calo, M.; Bodin, T.; Yuan, H.; Romanowicz, B. A.; Larmat, C. S.; Maceira, M.

    2013-12-01

    Seismic tomography is currently evolving towards 3D earth models that satisfy full seismic waveforms at increasingly high frequencies. This evolution is possible thanks to the advent of powerful numerical methods such as the Spectral Element Method (SEM) that allow accurate computation of the seismic wavefield in complex media, and the drastic increase of computational resources. However, the production of such models requires handling complex misfit functions with more than one local minimum. Standard linearized inversion methods (such as gradient methods) have two main drawbacks: 1) they produce solution models highly dependent on the starting model; 2) they do not provide a means of estimating true model uncertainties. However, these issues can be addressed with stochastic methods that can sample the space of possible solutions efficiently. Such methods are prohibitively challenging computationally in 3D, but increasingly accessible in 1D. In previous work (Yuan and Romanowicz, 2010; Yuan et al., 2011) we developed a continental scale anisotropic upper mantle model of north America based on a combination of long period seismic waveforms and SKS splitting measurements, showing the pervasive presence of layering of anisotropy in the cratonic lithosphere with significant variations in depth of the mid-lithospheric boundary. The radial anisotropy part of the model has been recently updated using the spectral element method for forward wavefield computations and waveform data from the latest deployments of USarray (Yuan and Romanowicz, 2013). However, the long period waveforms (periods > 40s) themselves only provide a relatively smooth view of the mantle if the starting model is smooth, and the mantle discontinuities necessary for geodynamical interpretation are not imaged. Increasing the frequency of the computations to constrain smaller scale features is possible, but challenging computationally, and at the risk of falling in local minima of the misfit function. In

  19. The development and role of megavoltage cone beam computerized tomography in radiation oncology

    NASA Astrophysics Data System (ADS)

    Morin, Olivier

    External beam radiation therapy has now the ability to deliver doses that conform tightly to a tumor volume. The steep dose gradients planned in these treatments make it increasingly important to reproduce the patient position and anatomy at each treatment fraction. For this reason, considerable research now focuses on in-room three-dimensional imaging. This thesis describes the first clinical megavoltage cone beam computed tomography (MVCBCT) system, which utilizes a conventional linear accelerator equipped with an amorphous silicon flat panel detector. The document covers the system development and investigation of its clinical applications over the last 4-5 years. The physical performance of the system was evaluated and optimized for soft-tissue contrast resolution leading to recommendations of imaging protocols to use for specific clinical applications and body sites. MVCBCT images can resolve differences of 5% in electron density for a mean dose of 9 cGy. Hence, the image quality of this system is sufficient to differentiate some soft-tissue structures. The absolute positioning accuracy with MVCBCT is better than 1 mm. The accuracy of isodose lines calculated using MVCBCT images of head and neck patients is within 3% and 3 mm. The system shows excellent stability in image quality, CT# calibration, radiation exposure and absolute positioning over a period of 8 months. A procedure for MVCBCT quality assurance was developed. In our clinic, MVCBCT has been used to detect non rigid spinal cord distortions, to position a patient with a paraspinous tumor close to metallic hardware, to position prostate cancer patients using gold markers or soft-tissue landmarks, to monitor head and neck anatomical changes and their dosimetric consequences, and to complement the convention CT for treatment planning in presence of metallic implants. MVCBCT imaging is changing the clinical practice of our department by increasingly revealing patient-specific errors. New verification

  20. Interfraction Prostate Rotation Determined from In-Room Computerized Tomography Images

    SciTech Connect

    Owen, Rebecca; Kron, Tomas; Foroudi, Farshad; Milner, Alvin; Cox, Jennifer; Duchesne, Gillian

    2011-07-01

    Fiducial markers (FMs) are commonly used as a correction technique for interfraction translations of the prostate. The aim of this investigation was to determine the magnitude of prostate rotations using 2 methods: FM coordinates and the anatomical border of the prostate and rectum. Daily computed tomography (CT) scans (n = 346) of 10 prostate cancer patients with 3 implanted FMs were acquired using the CT on rails. FM coordinates were used to determine rotation in the sagittal, transverse, and coronal planes, and CT contours of the prostate and rectum were used to determine rotation along the sagittal plane. An adaptive technique based on a subset of images (n = 6; planning and first 5 treatment CTs) to reduce systematic rotation errors in the sagittal plane was tested. The standard deviation (SD) of systematic rotation from FM coordinates was 7.6{sup o}, 7.7{sup o}, and 5.0{sup o} in the sagittal, transverse and coronal planes. The corresponding SD of random error was 10.2{sup o}, 15.8{sup o}, and 6.5{sup o}. Errors in the sagittal plane, determined from prostate and rectal contours, were 10.1{sup o} (systematic) and 7.7{sup o} (random). These results did not correlate with rotation computed from FM coordinates (r = -0.017; p = 0.753, n = 337). The systematic error could be reduced by 43% to 5.6{sup o} when the mean prostate position was estimated from 6 CT scans. Prostate rotation is a significant source of error that appears to be more accurately determined using the anatomical border of the prostate and rectum rather than FMs, thus highlighting the utility of CT image guidance.

  1. Computerized tomography myelography with coronal and oblique coronal view for diagnosis of nerve root avulsion in brachial plexus injury

    PubMed Central

    2007-01-01

    Background The authors describe a new computerized tomography (CT) myelography technique with coronal and oblique coronal view to demonstrate the status of the cervical nerve rootlets involved in brachial plexus injury. They discuss the value of this technique for diagnosis of nerve root avulsion compared with CT myelography with axial view. Methods CT myelography was performed with penetration of the cervical subarachnoid space by the contrast medium. Then the coronal and oblique coronal reconstructions were created. The results of CT myelography were evaluated and classified with presence of pseudomeningocele, intradural ventral nerve rootlets, and intradural dorsal nerve rootlets. The diagnosis was by extraspinal surgical exploration with or without spinal evoked potential measurements and choline acetyl transferase activity measurement in 25 patients and recovery by a natural course in 3 patients. Its diagnostic accuracy was compared with that of CT myelography with axial view, correlated with surgical findings or a natural course in 57 cervical roots in 28 patients. Results Coronal and oblique coronal views were superior to axial views in visualization of the rootlets and orientation of the exact level of the root. Sensitivity and specificity for coronal and oblique coronal views of unrecognition of intradural ventral and dorsal nerve root shadow without pseudomeningocele in determining pre-ganglionic injury were 100% and 96%, respectively. There was no statistically significant difference between coronal and oblique coronal views and axial views. Conclusion The information by the coronal and oblique coronal slice CT myelography enabled the authors to assess the rootlets of the brachial plexus and provided valuable data for helping to decide whether to proceed with exploration, nerve repair, primary reconstruction. PMID:17651476

  2. LLNL-Earth3D

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  3. Full-3D waveform tomography of Southern California crustal structure by using earthquake recordings and ambient noise Green's functions based on adjoint and scattering-integral methods

    NASA Astrophysics Data System (ADS)

    Lee, E.; Chen, P.; Jordan, T. H.; Maechling, P. J.; Denolle, M.; Beroza, G. C.

    2013-12-01

    We apply a unified methodology for seismic waveform analysis and inversions to Southern California. To automate the waveform selection processes, we developed a semi-automatic seismic waveform analysis algorithm for full-wave earthquake source parameters and tomographic inversions. The algorithm is based on continuous wavelet transforms, a topological watershed method, and a set of user-adjustable criteria to select usable waveform windows for full-wave inversions. The algorithm takes advantages of time-frequency representations of seismograms and is able to separate seismic phases in both time and frequency domains. The selected wave packet pairs between observed and synthetic waveforms are then used for extracting frequency-dependent phase and amplitude misfit measurements, which are used in our seismic source and structural inversions. Our full-wave waveform tomography uses the 3D SCEC Community Velocity Model Version 4.0 as initial model, a staggered-grid finite-difference code to simulate seismic wave propagations. The sensitivity (Fréchet) kernels are calculated based on the scattering integral and adjoint methods to iteratively improve the model. We use both earthquake recordings and ambient noise Green's functions, stacking of station-to-station correlations of ambient seismic noise, in our full-3D waveform tomographic inversions. To reduce errors of earthquake sources, the epicenters and source parameters of earthquakes used in our tomographic inversion are inverted by our full-wave CMT inversion method. Our current model shows many features that relate to the geological structures at shallow depth and contrasting velocity values across faults. The velocity perturbations could up to 45% with respect to the initial model in some regions and relate to some structures that do not exist in the initial model, such as southern Great Valley. The earthquake waveform misfits reduce over 70% and the ambient noise Green's function group velocity delay time variance

  4. Cognitive MMN and P300 in mild cognitive impairment and Alzheimer's disease: A high density EEG-3D vector field tomography approach.

    PubMed

    Papadaniil, Chrysa D; Kosmidou, Vasiliki E; Tsolaki, Anthoula; Tsolaki, Magda; Kompatsiaris, Ioannis Yiannis; Hadjileontiadis, Leontios J

    2016-10-01

    Precise preclinical detection of dementia for effective treatment and stage monitoring is of great importance. Miscellaneous types of biomarkers, e.g., biochemical, genetic, neuroimaging, and physiological, have been proposed to diagnose Alzheimer's disease (AD), the usual suspect behind manifested cognitive decline, and mild cognitive impairment (MCI), a neuropathology prior to AD that does not affect cognitive functions. Event related potential (ERP) methods constitute a non-invasive, inexpensive means of analysis and have been proposed as sensitive biomarkers of cognitive impairment; besides, various ERP components are strongly linked with working memory, attention, sensory processing and motor responses. In this study, an auditory oddball task is employed, to acquire high density electroencephalograhy recordings from healthy elderly controls, MCI and AD patients. The mismatch negativity (MMN) and P300 ERP components are then extracted and their relationship with neurodegeneration is examined. Then, the neural activation at these components is reconstructed using the 3D vector field tomography (3D-VFT) inverse solution. The results reveal a decline of both ERPs amplitude, and a statistically significant prolongation of their latency as cognitive impairment advances. For the MMN, higher brain activation is usually localized in the inferior frontal and superior temporal gyri in the controls. However, in AD, parietal sites exhibit strong activity. Stronger P300 generators are mostly found in the frontal lobe for the controls, but in AD they often shift to the temporal lobe. Reduction in inferior frontal source strength and the switch of the maximum intensity area to parietal and superior temporal sites suggest that these areas, especially the former, are of particular significance when neurodegenerative disorders are investigated. The modulation of MMN and P300 can serve to produce biomarkers of dementia and its progression, and brain imaging can further contribute

  5. Use of short roll C-arm computed tomography and fully automated 3D analysis tools to guide transcatheter aortic valve replacement.

    PubMed

    Kim, Michael S; Bracken, John; Eshuis, Peter; Chen, S Y James; Fullerton, David; Cleveland, Joseph; Messenger, John C; Carroll, John D

    2016-07-01

    Determination of the coplanar view is a critical component of transcatheter aortic valve replacement (TAVR). The safety and accuracy of a novel reduced angular range C-arm computed tomography (CACT) approach coupled with a fully automated 3D analysis tool package to predict the coplanar view in TAVR was evaluated. Fifty-seven patients with severe symptomatic aortic stenosis deemed prohibitive-risk for surgery and who underwent TAVR were enrolled. Patients were randomized 2:1 to CACT vs. angiography (control) in estimating the coplanar view. These approaches to determine the coplanar view were compared quantitatively. Radiation doses needed to determine the coplanar view were recorded for both the CACT and control patients. Use of CACT offered good agreement with the actual angiographic view utilized during TAVR in 34 out of 41 cases in which a CACT scan was performed (83 %). For these 34 cases, the mean angular magnitude difference, taking into account both oblique and cranial/caudal angulation, was 1.3° ± 0.4°, while the maximum difference was 7.3°. There were no significant differences in the mean total radiation dose delivered to patients between the CACT and control groups as measured by either dose area product (207.8 ± 15.2 Gy cm(2) vs. 186.1 ± 25.3 Gy cm(2), P = 0.47) or air kerma (1287.6 ± 117.7 mGy vs. 1098.9 ± 143.8 mGy, P = 0.32). Use of reduced-angular range CACT coupled with fully automated 3D analysis tools is a safe, practical, and feasible method by which to determine the optimal angiographic deployment view for guiding TAVR procedures. PMID:27091735

  6. Significance of functional hepatic resection rate calculated using 3D CT/99mTc-galactosyl human serum albumin single-photon emission computed tomography fusion imaging

    PubMed Central

    Tsuruga, Yosuke; Kamiyama, Toshiya; Kamachi, Hirofumi; Shimada, Shingo; Wakayama, Kenji; Orimo, Tatsuya; Kakisaka, Tatsuhiko; Yokoo, Hideki; Taketomi, Akinobu

    2016-01-01

    AIM: To evaluate the usefulness of the functional hepatic resection rate (FHRR) calculated using 3D computed tomography (CT)/99mTc-galactosyl-human serum albumin (GSA) single-photon emission computed tomography (SPECT) fusion imaging for surgical decision making. METHODS: We enrolled 57 patients who underwent bi- or trisectionectomy at our institution between October 2013 and March 2015. Of these, 26 patients presented with hepatocellular carcinoma, 12 with hilar cholangiocarcinoma, six with intrahepatic cholangiocarcinoma, four with liver metastasis, and nine with other diseases. All patients preoperatively underwent three-phase dynamic multidetector CT and 99mTc-GSA scintigraphy. We compared the parenchymal hepatic resection rate (PHRR) with the FHRR, which was defined as the resection volume counts per total liver volume counts on 3D CT/99mTc-GSA SPECT fusion images. RESULTS: In total, 50 patients underwent bisectionectomy and seven underwent trisectionectomy. Biliary reconstruction was performed in 15 patients, including hepatopancreatoduodenectomy in two. FHRR and PHRR were 38.6 ± 19.9 and 44.5 ± 16.0, respectively; FHRR was strongly correlated with PHRR. The regression coefficient for FHRR on PHRR was 1.16 (P < 0.0001). The ratio of FHRR to PHRR for patients with preoperative therapies (transcatheter arterial chemoembolization, radiation, radiofrequency ablation, etc.), large tumors with a volume of > 1000 mL, and/or macroscopic vascular invasion was significantly smaller than that for patients without these factors (0.73 ± 0.19 vs 0.82 ± 0.18, P < 0.05). Postoperative hyperbilirubinemia was observed in six patients. Major morbidities (Clavien-Dindo grade ≥ 3) occurred in 17 patients (29.8%). There was no case of surgery-related death. CONCLUSION: Our results suggest that FHRR is an important deciding factor for major hepatectomy, because FHRR and PHRR may be discrepant owing to insufficient hepatic inflow and congestion in patients with preoperative

  7. New Insights into the Lithospheric Mantle Carbon Storage in an Intra-Continental Area: A Geochemical and 3D X-Ray Micro-Tomography Study

    NASA Astrophysics Data System (ADS)

    Creon, L.; Rouchon, V.; Rosenberg, E.; Delpech, G.; Youssef, S.; Guyot, F. J.; Szabo, C.

    2014-12-01

    The Pannonian Basins situated in a context of lithospheric fluxing by mantle CO2-rich fluids, as evidenced by Plio-Pleistocene alkaline basalts and Basin gas geochemical data [1]. Such type of intracontinental CO2-fluxes remain poorly constrained at the scale of the global C-cycle. We report here the first quantification of the CO2 volumes stored in the lithospheric mantle, by coupling geochemical and 3D micro-tomography studies of lherzolitic and harzburgitic mantle xenoliths. The Pannonian Basin xenolith peridotites present numerous signs of melt/fluid migration. The compositions of glasses found in the peridotites vary from sub-alkaline (Na2O + K2O = 3.8 wt. %) to alkaline (Na2O + K2O = 12.6 wt. %) and from mafic (SiO2 = 48.2 wt. %) to more felsic (SiO2 = 62.1 wt. %) compositions and differ markedly from the host basalts of the xenoliths. Microthermometric and Raman spectroscopic studies on fluid inclusions (n = 115) show pure CO2 compositions with densities range between 0.6 and 0.9 g.cm3 [290 to 735 MPa (PCO2)], corresponding to deep fluid trapping on both sides of the Moho. High-resolution synchrotron X-ray micro-tomography (Micro-CT), together with laboratory micro-CT were performed to obtain information about structure, volume and density of each phase (minerals, melts and fluids). Fluids and melts are mainly located at grain boundaries and secondary trails cut off the grain boundaries, which implies a contemporary introduction of such fluids [Figure 1]. The amount of fluid inclusions in xenoliths is heterogeneous and varied from 0.79 ± 0.15 to 4.58 ± 0.54 vol % of the peridotite. The carbon-dioxide content stored in the lithospheric mantle, due to the percolation of asthenospheric melts produced in the mantle beneath the Pannonian Basin, can be estimated by the combination of 3D reconstruction (Micro-CT) and CO2 pressures from inclusions. [1] B. Sherwood Lollar et al., 1997. Geochim. Cosmochim. Acta, vol. 61, no. 11, pp. 2295-2307

  8. Clinical Applications of 3-D Conformal Radiotherapy

    NASA Astrophysics Data System (ADS)

    Miralbell, Raymond

    Although a significant improvement in cancer cure (i.e. 20% increment) has been obtained in the last 2-3 decades, 30-40% of patients still fail locally after curative radiotherapy. In order to improve local tumor control rates with radiotherapy high doses to the tumor volume are frequently necessary. Three-dimensional conformal radiation therapy (3-D CRT) is used to denote a spectrum of radiation planning and delivery techniques that rely on three-dimensional imaging to define the target (tumor) and to distinguish it from normal tissues. Modern, high-precision radiotherapy (RT) techniques are needed in order to implement the goal of optimal tumor destruction delivering minimal dose to the non-target normal tissues. A better target definition is nowadays possible with contemporary imaging (computerized tomography, magnetic resonance imaging, and positron emission tomography) and image registration technology. A highly precise dose distributions can be obtained with optimal 3-D CRT treatment delivery techniques such as stereotactic RT, intensity modulated RT (IMRT), or protontherapy (the latter allowing for in-depth conformation). Patient daily set-up repositioning and internal organ immobilization systems are necessary before considering to undertake any of the above mentioned high-precision treatment approaches. Prostate cancer, brain tumors, and base of skull malignancies are among the sites most benefitting of dose escalation approaches. Nevertheless, a significant dose reduction to the normal tissues in the vicinity of the irradiated tumor also achievable with optimal 3-D CRT may also be a major issue in the treatment of pediatric tumors in order to preserve growth, normal development, and to reduce the risk of developing radiation induced diseases such as cancer or endocrinologic disorders.

  9. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.

    PubMed

    Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M

    2016-06-01

    Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward. PMID:26970556

  10. 3D False Color Computed Tomography for Diagnosis and Follow-Up of Permanent Denervated Human Muscles Submitted to Home-Based Functional Electrical Stimulation

    PubMed Central

    Carraro, Ugo; Edmunds, Kyle J.

    2015-01-01

    This report outlines the use of a customized false-color 3D computed tomography (CT) protocol for the imaging of the rectus femoris of spinal cord injury (SCI) patients suffering from complete and permanent denervation, as characterized by complete Conus and Cauda Equina syndrome. This muscle imaging method elicits the progression of the syndrome from initial atrophy to eventual degeneration, as well as the extent to which patients' quadriceps could be recovered during four years of home-based functional electrical stimulation (h-b FES). Patients were pre-selected from several European hospitals and functionally tested by, and enrolled in the EU Commission Shared Cost Project RISE (Contract n. QLG5-CT-2001-02191) at the Department of Physical Medicine, Wilhelminenspital, Vienna, Austria. Denervated muscles were electrically stimulated using a custom-designed stimulator, large surface electrodes, and customized progressive stimulation settings. Spiral CT images and specialized computational tools were used to isolate the rectus femoris muscle and produce 3D and 2D reconstructions of the denervated muscles. The cross sections of the muscles were determined by 2D Color CT, while muscle volumes were reconstructed by 3D Color CT. Shape, volume, and density changes were measured over the entirety of each rectus femoris muscle. Changes in tissue composition within the muscle were visualized by associating different colors to specified Hounsfield unit (HU) values for fat, (yellow: [-200; -10]), loose connective tissue or atrophic muscle, (cyan: [-9; 40]), and normal muscle, fascia and tendons included, (red: [41; 200]). The results from this analysis are presented as the average HU values within the rectus femoris muscle reconstruction, as well as the percentage of these tissues with respect to the total muscle volume. Results from this study demonstrate that h-b FES induces a compliance-dependent recovery of muscle volume and size of muscle fibers, as evidenced by the

  11. Crustal high-velocity anomaly at the East European Craton margin in SE Poland (TESZ) modelled by 3-D seismic tomography of refracted and reflected arrivals

    NASA Astrophysics Data System (ADS)

    Środa, Piotr; Dec, Monika

    2016-04-01

    The area of Trans-European Suture Zone in SE Poland represents a contact of major tectonic units of different consolidation age - from the Precambrian East European Craton, through Palaeozoic West European Platform to Cenozoic Carpathian orogen. The region was built by several phases of crustal accretion, which resulted in a complex collage of tectonic blocks. In 2000, this region was studied by several seismic wide-angle profiles of CELEBRATION 2000 experiment, providing a dense coverage of seismic data in SE Poland and allowing for detailed investigations of the crustal structure and properties in this area. Beneath the marginal part of the EEC, the 2-D modelling of in-line data form several CELEBRATION profiles revealed a prominent high P-wave velocity anomaly in the upper crust, with Vp of 6.7-7.1 km/s, starting at 10-16 km depth (e.g., Środa et al., 2006). Anomalously high velocities are observed in the area located approximately beneath Lublin trough, to the NE of Teisseyre-Tornquist Zone. Based on 3-D tomography of first arrivals of in- and off-line CELEBRATION 2000 recordings (Malinowski et al., 2008), elevated velocities are also reported in the same area and seem to continue to the SW, off the craton margin. Gravimetric modelling also revealed anomalously high density in the same region at similar depths. High seismic velocities and densities are interpreted as indicative for a pronounced mafic intrusion, possibly related to extensional processes at the EEC margin. Previous 3-D models of the high-velocity intrusion were based on first arrivals (crustal refractions) only. In this study, also off-line reflections (not modelled up to now) are used, in order to enlarge the data set and to better constrain the geometry and properties of the velocity anomaly. A code for 3-D joint tomographic inversion of refracted and reflected arrivals, with model parametrization allowing for velocity discontinuities was used (Rawlinson, 2007). With this approach, besides the

  12. An adaptive 3D region growing algorithm to automatically segment and identify thoracic aorta and its centerline using computed tomography angiography scans

    NASA Astrophysics Data System (ADS)

    Ferreira, F.; Dehmeshki, J.; Amin, H.; Dehkordi, M. E.; Belli, A.; Jouannic, A.; Qanadli, S.

    2010-03-01

    Thoracic Aortic Aneurysm (TAA) is a localized swelling of the thoracic aorta. The progressive growth of an aneurysm may eventually cause a rupture if not diagnosed or treated. This necessitates the need for an accurate measurement which in turn calls for the accurate segmentation of the aneurysm regions. Computer Aided Detection (CAD) is a tool to automatically detect and segment the TAA in the Computer tomography angiography (CTA) images. The fundamental major step of developing such a system is to develop a robust method for the detection of main vessel and measuring its diameters. In this paper we propose a novel adaptive method to simultaneously segment the thoracic aorta and to indentify its center line. For this purpose, an adaptive parametric 3D region growing is proposed in which its seed will be automatically selected through the detection of the celiac artery and the parameters of the method will be re-estimated while the region is growing thorough the aorta. At each phase of region growing the initial center line of aorta will also be identified and modified through the process. Thus the proposed method simultaneously detect aorta and identify its centerline. The method has been applied on CT images from 20 patients with good agreement with the visual assessment by two radiologists.

  13. Image fusion of Ultrasound Computer Tomography volumes with X-ray mammograms using a biomechanical model based 2D/3D registration.

    PubMed

    Hopp, T; Duric, N; Ruiter, N V

    2015-03-01

    Ultrasound Computer Tomography (USCT) is a promising breast imaging modality under development. Comparison to a standard method like mammography is essential for further development. Due to significant differences in image dimensionality and compression state of the breast, correlating USCT images and X-ray mammograms is challenging. In this paper we present a 2D/3D registration method to improve the spatial correspondence and allow direct comparison of the images. It is based on biomechanical modeling of the breast and simulation of the mammographic compression. We investigate the effect of including patient-specific material parameters estimated automatically from USCT images. The method was systematically evaluated using numerical phantoms and in-vivo data. The average registration accuracy using the automated registration was 11.9mm. Based on the registered images a method for analysis of the diagnostic value of the USCT images was developed and initially applied to analyze sound speed and attenuation images based on X-ray mammograms as ground truth. Combining sound speed and attenuation allows differentiating lesions from surrounding tissue. Overlaying this information on mammograms, combines quantitative and morphological information for multimodal diagnosis. PMID:25456144

  14. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    SciTech Connect

    Glick, Stephen J.; Didier, Clay

    2013-10-14

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5–3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion in

  15. Quantification of Soil Physical Properties by Using X-Ray Computerized Tomography (CT) and Standard Laboratory (STD) Methods

    SciTech Connect

    Maria Ambert Sanchez

    2003-12-12

    The implementation of x-ray computerized tomography (CT) on agricultural soils has been used in this research to quantify soil physical properties to be compared with standard laboratory (STD) methods. The overall research objective was to more accurately quantify soil physical properties for long-term management systems. Two field studies were conducted at Iowa State University's Northeast Research and Demonstration Farm near Nashua, IA using two different soil management strategies. The first field study was conducted in 1999 using continuous corn crop rotation for soil under chisel plow with no-till treatments. The second study was conducted in 2001 and on soybean crop rotation for the same soil but under chisel plow and no-till practices with wheel track and no-wheel track compaction treatments induced by a tractor-manure wagon. In addition, saturated hydraulic (K{sub s}) conductivity and the convection-dispersion (CDE) model were also applied using long-term soil management systems only during 2001. The results obtained for the 1999 field study revealed no significant differences between treatments and laboratory methods, but significant differences were found at deeper depths of the soil column for tillage treatments. The results for standard laboratory procedure versus CT method showed significant differences at deeper depths for the chisel plow treatment and at the second lower depth for no-till treatment for both laboratory methods. The macroporosity distribution experiment showed significant differences at the two lower depths between tillage practices. Bulk density and percent porosity had significant differences at the two lower depths of the soil column. The results obtained for the 2001 field study showed no significant differences between tillage practices and compaction practices for both laboratory methods, but significant differences between tillage practices with wheel track and no-wheel compaction treatments were found along the soil profile for

  16. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    NASA Astrophysics Data System (ADS)

    Glick, Stephen J.; Didier, Clay

    2013-10-01

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5-3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing distortion in the

  17. 3-D P-wave velocity structure and seismicity in Central Costa Rica from Local Earthquake Tomography using an amphibic network

    NASA Astrophysics Data System (ADS)

    Arroyo, I.; Husen, S.; Flueh, E.; Alvarado, G. E.

    2008-12-01

    The Central Pacific sector of the erosional margin in Costa Rica shows a high seismicity rate, coincident with the subduction of rough-relief ocean floor, and generates earthquakes up to Mw 7. Precise earthquake locations and detailed knowledge of the 3-D velocity structure provide key insights into the dynamics of subduction zones. To this end, we performed a 3-D Local Earthquake Tomography using P-wave traveltimes from 595 selected events recorded by a seismological network of off- and onshore stations, deployed for 6 months in the area. The results reflect the complexity associated to subduction of bathymetric highs and the transition from normal to thickened oceanic crust (Cocos Ridge). The slab is imaged as a high-velocity anomaly with a band of low velocities (LVB) on top enclosing the intraslab events deeper than ~30 km. Below the margin slope, the LVB is locally thickened by at least two seamounts. We observe an abrupt, eastward widening of the LVB, preceded by a low-velocity anomaly under the continental shelf, which we interpret as a big seamount. The thickening coincides with an inverted basin at the inner forearc and a low-velocity anomaly under it. The latter appears in a sector where blocks of inner forearc are uplifted, possibly by underplating of eroded material against the base of the crust. The anomaly promotes seismicity by high-friction with the upper plate, and could be linked to a Mw 6.4 earthquake in 2004. In the west part of the area, the interplate seismicity forms a cluster beneath the continental shelf. Its updip limit coincides with the 150° C isotherm and an increase in Vp along the plate boundary. This further supports a proposed model in which the seismicity onset along the plate interface is mainly due to a decrease in the abundance of the fluids released by subducted sediments. Higher seismicity rates locally concur with seamounts present at the seismogenic zone, while seamounts under the margin slope may shallow the onset of

  18. Assessment of Image Processing and Resolution on Permeability and Drainage Simulations Through 3D Pore-networks Obtained Using X-ray Computed Tomography

    NASA Astrophysics Data System (ADS)

    Mills, G.; Willson, C. S.; Thompson, K. E.; Rivers, M. L.

    2013-12-01

    Typically, continuum-scale flow parameters are obtained through laboratory experiments. Over the past several years, image-based modeling, which is a direct simulation of flow through the structural arrangements of the voids and solids obtained using X-ray computed tomography (XCT) in a sample porous medium, has become a reliable technique for predicting certain flow parameters. Even though XCT is capable of resolving micron-level details, the voxel resolution of the reconstructed image is still dependent upon a number of factors, including the sample size, X-ray energy and XCT beamline setup. Thus, each imaging experiment requires a tradeoff between the sample size that can be imaged, the voxel resolution, and the length scale of the pore space that can be extracted. In addition, the geometric and topological properties of the void space and 3D pore network structure are dictated by the image processing and the choice of pore network generation method. In this research, image-based pore network models are used to quantitatively assess the impact of image resolution, image processing and the choice of pore network generation methods on simulated parameters. A 5 mm diameter and ~15 mm in length Berea sandstone core was scanned two times. First, a ~12 mm long section of the entire cross-section was scanned at 4.1 micron voxel resolution; next, a ~1.4 mm diameter and ~4.12 mm length section within the 1st domain was scanned at 1 micron voxel resolution. The resulting 3D datasets were filtered and segmented into solid and void space. The low resolution image was filtered and segmented using two different approaches in order to evaluate the potential of each approach in identifying the different solid phases in the original 16 bit dataset. A set of networks were created by varying the pore density on both the high and low resolution datasets in order to assess the impact of these factors on flow simulations. Single-phase permeability and a two-phase drainage pore

  19. Investigation and visualization of scleral channels created with femtosecond laser in enucleated human eyes using 3D optical coherence tomography images

    NASA Astrophysics Data System (ADS)

    Chaudhary, Gautam; Rao, Bin; Chai, Dongyul; Chen, Zhongping; Juhasz, Tibor

    2007-02-01

    We used optical coherence tomography (OCT) for non-invasive imaging of the anterior segment of the eye for investigating partial-thickness scleral channels created with a femtosecond laser. Glaucoma is associated with elevated intraocular pressure (IOP) due to reduced outflow facility in the eye. A partial-thickness aqueous humor (AH) drainage channel in the sclera was created with 1.7-μm wavelength femtosecond laser pulses to reduce IOP by increasing the outflow facility, as a solution to retard the progression of glaucoma. It is hypothesized that the precise dimensions and predetermined location of the channel would provide a controlled increase of the outflow rate resulting in IOP reduction. Therefore, it is significant to create the channel at the exact location with predefined dimensions. The aim of this research has two aspects. First, as the drainage channel is subsurface, it is a challenging task to determine its precise location, shape and dimensions, and it becomes very important to investigate the channel attributes after the laser treatment without disturbing the internal anterior structures. Second, to provide a non-invasive, image-based verification that extremely accurate and non-scarring AH drainage channel can be created with femtosecond laser. Partial-thickness scleral channels created in five human cadaver eyes were investigated non-invasively with a 1310-nm time-domain OCT imaging system. Three-dimensional (3D) OCT image stacks of the triangular cornea-sclera junction, also known as anterior chamber angle, were acquired for image-based analysis and visualization. The volumetric cutting-plane approach allowed reconstruction of images at any cross-sectional position in the entire 3D volume of tissue, making it a valuable tool for exploring and evaluating the location, shape and dimension of the channel from all directions. As a two-dimensional image-based methodology, an image-processing pipeline was implemented to enhance the channel features to

  20. Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning.

    PubMed

    Mattei, Alexandra L; Riccio, Mark L; Avila, Frank W; Wolfner, Mariana F

    2015-07-01

    Physiological changes in females during and after mating are triggered by seminal fluid components in conjunction with female-derived molecules. In insects, these changes include increased egg production, storage of sperm, and changes in muscle contraction within the reproductive tract (RT). Such postmating changes have been studied in dissected RT tissues, but understanding their coordination in vivo requires a holistic view of the tissues and their interrelationships. Here, we used high-resolution, multiscale micro-computed tomography (CT) scans to visualize and measure postmating changes in situ in the Drosophila female RT before, during, and after mating. These studies reveal previously unidentified dynamic changes in the conformation of the female RT that occur after mating. Our results also reveal how the reproductive organs temporally shift in concert within the confines of the abdomen. For example, we observed chiral loops in the uterus and in the upper common oviduct that relax and constrict throughout sperm storage and egg movement. We found that specific seminal fluid proteins or female secretions mediate some of the postmating changes in morphology. The morphological movements, in turn, can cause further changes due to the connections among organs. In addition, we observed apparent copulatory damage to the female intima, suggesting a mechanism for entry of seminal proteins, or other exogenous components, into the female's circulatory system. The 3D reconstructions provided by high-resolution micro-CT scans reveal how male and female molecules and anatomy interface to carry out and coordinate mating-dependent changes in the female's reproductive physiology. PMID:26041806

  1. Integrated 3D view of postmating responses by the Drosophila melanogaster female reproductive tract, obtained by micro-computed tomography scanning

    PubMed Central

    Mattei, Alexandra L.; Riccio, Mark L.; Avila, Frank W.; Wolfner, Mariana F.

    2015-01-01

    Physiological changes in females during and after mating are triggered by seminal fluid components in conjunction with female-derived molecules. In insects, these changes include increased egg production, storage of sperm, and changes in muscle contraction within the reproductive tract (RT). Such postmating changes have been studied in dissected RT tissues, but understanding their coordination in vivo requires a holistic view of the tissues and their interrelationships. Here, we used high-resolution, multiscale micro-computed tomography (CT) scans to visualize and measure postmating changes in situ in the Drosophila female RT before, during, and after mating. These studies reveal previously unidentified dynamic changes in the conformation of the female RT that occur after mating. Our results also reveal how the reproductive organs temporally shift in concert within the confines of the abdomen. For example, we observed chiral loops in the uterus and in the upper common oviduct that relax and constrict throughout sperm storage and egg movement. We found that specific seminal fluid proteins or female secretions mediate some of the postmating changes in morphology. The morphological movements, in turn, can cause further changes due to the connections among organs. In addition, we observed apparent copulatory damage to the female intima, suggesting a mechanism for entry of seminal proteins, or other exogenous components, into the female’s circulatory system. The 3D reconstructions provided by high-resolution micro-CT scans reveal how male and female molecules and anatomy interface to carry out and coordinate mating-dependent changes in the female’s reproductive physiology. PMID:26041806

  2. Automated 3D-2D registration of X-ray microcomputed tomography with histological sections for dental implants in bone using chamfer matching and simulated annealing.

    PubMed

    Becker, Kathrin; Stauber, Martin; Schwarz, Frank; Beißbarth, Tim

    2015-09-01

    We propose a novel 3D-2D registration approach for micro-computed tomography (μCT) and histology (HI), constructed for dental implant biopsies, that finds the position and normal vector of the oblique slice from μCT that corresponds to HI. During image pre-processing, the implants and the bone tissue are segmented using a combination of thresholding, morphological filters and component labeling. After this, chamfer matching is employed to register the implant edges and fine registration of the bone tissues is achieved using simulated annealing. The method was tested on n=10 biopsies, obtained at 20 weeks after non-submerged healing in the canine mandible. The specimens were scanned with μCT 100 and processed for hard tissue sectioning. After registration, we assessed the agreement of bone to implant contact (BIC) using automated and manual measurements. Statistical analysis was conducted to test the agreement of the BIC measurements in the registered samples. Registration was successful for all specimens and agreement of the respective binary images was high (median: 0.90, 1.-3. Qu.: 0.89-0.91). Direct comparison of BIC yielded that automated (median 0.82, 1.-3. Qu.: 0.75-0.85) and manual (median 0.61, 1.-3. Qu.: 0.52-0.67) measures from μCT were significant positively correlated with HI (median 0.65, 1.-3. Qu.: 0.59-0.72) between μCT and HI groups (manual: R(2)=0.87, automated: R(2)=0.75, p<0.001). The results show that this method yields promising results and that μCT may become a valid alternative to assess osseointegration in three dimensions. PMID:26026659

  3. 3D Transient Hydraulic Tomography (3DTHT): An Efficient Field and Modeling Method for High-Resolution Estimation of Aquifer Heterogeneity

    NASA Astrophysics Data System (ADS)

    Barrash, W.; Cardiff, M. A.; Kitanidis, P. K.

    2012-12-01

    The distribution of hydraulic conductivity (K) is a major control on groundwater flow and contaminant transport. Our limited ability to determine 3D heterogeneous distributions of K is a major reason for increased costs and uncertainties associated with virtually all aspects of groundwater contamination management (e.g., site investigations, risk assessments, remediation method selection/design/operation, monitoring system design/operation). Hydraulic tomography (HT) is an emerging method for directly estimating the spatially variable distribution of K - in a similar fashion to medical or geophysical imaging. Here we present results from 3D transient field-scale experiments (3DTHT) which capture the heterogeneous K distribution in a permeable, moderately heterogeneous, coarse fluvial unconfined aquifer at the Boise Hydrogeophysical Research Site (BHRS). The results are verified against high-resolution K profiles from multi-level slug tests at BHRS wells. The 3DTHT field system for well instrumentation and data acquisition/feedback is fully modular and portable, and the in-well packer-and-port system is easily assembled and disassembled without expensive support equipment or need for gas pressurization. Tests are run for 15-20 min and the aquifer is allowed to recover while the pumping equipment is repositioned between tests. The tomographic modeling software developed uses as input observations of temporal drawdown behavior from each of numerous zones isolated in numerous observation wells during a series of pumping tests conducted from numerous isolated intervals in one or more pumping wells. The software solves for distributed K (as well as storage parameters Ss and Sy, if desired) and estimates parameter uncertainties using: a transient 3D unconfined forward model in MODFLOW, the adjoint state method for calculating sensitivities (Clemo 2007), and the quasi-linear geostatistical inverse method (Kitanidis 1995) for the inversion. We solve for K at >100,000 sub-m3

  4. A retrospective radiographic evaluation of the anterior loop of the mental nerve: Comparison between panoramic radiography and cone beam computerized tomography

    PubMed Central

    Vujanovic-Eskenazi, Aleksandar; Valero-James, Jesus-Manuel; Sánchez-Garcés, María-Angeles

    2015-01-01

    Objectives: To compare the prevalence and the length of mental loop, measured with panoramic radiography (PR) and cone beam computerized tomography (CBCT). Material and Methods: PG and CBCT images where analyzed by a single calibrated examiner to determine the presence and the position of the mental foramen (MF), its distance to the lower mandible border, the anterior length of the mental loop (ML) and the bone quality in 82 PR and 82 CBCT. Results: ML was identified in 36.6 % of PR and 48.8 % of CBCT. PR showed a magnification of 1.87 when compared to CBCT. The mean of anterior extension of the inferior alveolar nerve and the distance to the inferior border of the mandible was higher for PR (2.8 mm, sd 0.91 mm on the PR , range 1.5 to 4.7 mm and 1.59, sd 0.9 on the CBCT ,range 0.4 to 4.0 mm) Conclusions: There is a magnification in PR images with respect to those of CBCT. The differences between CBCT and PR with regards to the identification and length of the ML are not statistically significant. Identification and accuracy measurements of ML did not depend on the bone quality. Considering that two dimensional imaging provides less accurate and reliable information regarding the anterior loop, a CBCT scan could be recommended when planning implant placement in the anterior region. Key words:Mental loop, mental nerve, mental canal, preoperative implant planning, panoramic tomography, cone beam computerized tomography. PMID:25549693

  5. Implant-guided volumetric analysis of edentulous maxillary bone with cone-beam computerized tomography scan. Maxillary sinus pneumatization classification.

    PubMed

    Tolstunov, Len; Thai, David; Arellano, Leo

    2012-08-01

    The primary goal of this anatomic study was to measure the average bone volume of the edentulous maxilla with a cone-beam computerized tomography (CBCT) scan and to determine its suitability for implant treatment without additional bone grafting. The secondary goal of the study was to estimate the degree of sinus pneumatization (SP) in reviewed CBCT scans, assess the sinus-to-maxillary bone interrelationship in edentulism, and attempt to classify maxillary sinuses based on the degree of their pneumatization. This retrospective radiographic quantitative study consisted of the analysis of CBCT scans of 30 randomly selected maxillary edentulous patients who presented in 2008-2010 to the University of the Pacific, Arthur A. Dugoni School of Dentistry, for evaluation and treatment of their edentulism. A volume of edentulous maxillary bone mesial to the maxillary sinuses (intersinal region) that can be used for a full-arch implant treatment was evaluated based on specifically selected and clinically relevant measurement criteria. There were 30 CBCT scans of maxillary edentulous patients reviewed (9 men, 21 women) with a mean age of 67.3 years (range, 41 to 92 years). The total mean maxillary bone volume (MMBV) suitable for implantation was 4 408.1 mm(3) and ranged from 1489.7 to 7263.1 mm(3). The MMBV in the study was higher than an assumed or hypothetical bone volume minimally suitable for 4-implant treatment as proposed by the authors for comparative purposes (3500 mm(3)). The degree of SP as seen on a CBCT scan (60 sinuses analyzed on panoramic images of 30 CBCT scans) had the following results in the study: SP0 (clear: not interfering with implant treatment in cases of high/small sinus), 2 sinuses or 3.3%; SP1 (mild sinus enlargement), 29 sinuses or 48.3%; SP2 (moderate SP), 16 sinuses or 26.7%; SP3 (severe SP), 9 sinuses or 15.0%; and SP4 (extreme), 4 sinuses or 6.7%. Most analyzed maxillary sinuses (47 of 60, or 78.3%) were in the clear, mild, or moderate

  6. Investigating the effect of characteristic x-rays in cadmium zinc telluride detectors under breast computerized tomography operating conditions

    PubMed Central

    Glick, Stephen J.; Didier, Clay

    2013-01-01

    A number of research groups have been investigating the use of dedicated breast computerized tomography (CT). Preliminary results have been encouraging, suggesting an improved visualization of masses on breast CT as compared to conventional mammography. Nonetheless, there are many challenges to overcome before breast CT can become a routine clinical reality. One potential improvement over current breast CT prototypes would be the use of photon counting detectors with cadmium zinc telluride (CZT) (or CdTe) semiconductor material. These detectors can operate at room temperature and provide high detection efficiency and the capability of multi-energy imaging; however, one factor in particular that limits image quality is the emission of characteristic x-rays. In this study, the degradative effects of characteristic x-rays are examined when using a CZT detector under breast CT operating conditions. Monte Carlo simulation software was used to evaluate the effect of characteristic x-rays and the detector element size on spatial and spectral resolution for a CZT detector used under breast CT operating conditions. In particular, lower kVp spectra and thinner CZT thicknesses were studied than that typically used with CZT based conventional CT detectors. In addition, the effect of characteristic x-rays on the accuracy of material decomposition in spectral CT imaging was explored. It was observed that when imaging with 50-60 kVp spectra, the x-ray transmission through CZT was very low for all detector thicknesses studied (0.5–3.0 mm), thus retaining dose efficiency. As expected, characteristic x-ray escape from the detector element of x-ray interaction increased with decreasing detector element size, approaching a 50% escape fraction for a 100 μm size detector element. The detector point spread function was observed to have only minor degradation with detector element size greater than 200 μm and lower kV settings. Characteristic x-rays produced increasing

  7. Nano-Structural Elucidation in Carbon Black Loaded NR Vulcanizate by 3D-TEM and In Situ WAXD Measurements

    SciTech Connect

    Ikeda,Y.; Kato, A.; Shimanuki, J.; Kohjiya, S.; Tosaka, M.; Poompradub, S.; Toki, S.; Hsiao, B.

    2007-01-01

    Three dimensional (3D) visualization of nanometer structure of carbon black dispersion in rubbery matrix has successfully been studied and reported in this paper. Use of 3D-TEM, which is computerized tomography combined with transmission electron microscopy (TEM), enabled us to reconstruct 3D images of carbon black aggregates in natural rubber (NR) matrix. The TEM measurements were conducted by a bright-field method on thin samples without any electron staining. The sample was subject to uni-axial tilting (+65 degree to -65 degree with 2 degree increment) in the sample chamber, and 66 TEM images were taken on each sample. These TEM images were used for computerized tomography to reconstruct the 3D image. This technique is designated as 3D-TEM. The nano-structural features observed by 3D-TEM were in conformity with the electron-conductivity results, and the percolation behavior was recognized. These results were further supplemented by in situ wide-angle X-ray diffraction (WAXD), i.e., simultaneous WAXD and tensile measurements on the sample to observe the strain-induced crystallization in NR vulcanizate. Upon tensile elongation, the crystallization was clearly observed in WAXD in the presence of carbon black, and it contributed to the tensile properties. In order to understand the performances of filled NR vulcanizates, it surely is necessary to know the structural states of the mixed nano-filler and the crystallites produced upon elongation.

  8. Experimental validation of an extended Jones matrix calculus model to study the 3D structural orientation of the collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography

    PubMed Central

    Kasaragod, Deepa K.; Lu, Zenghai; Jacobs, James; Matcher, Stephen J.

    2012-01-01

    We report results to verify a theoretical framework to analyze the 3D depth-wise structural organization of collagen fibers in articular cartilage using polarization-sensitive optical coherence tomography. Apparent birefringence data obtained from multi-angle measurements using a time domain polarization-sensitive optical coherence tomography system has been compared with simulated data based on the extended Jones matrix calculus. Experimental data has been shown to agree with the lamellar model previously proposed for the cartilage microstructure based on scanning electron microscopy data. This tool could have potential application in mapping the collagen structural orientation information of cartilage non-invasively during arthroscopy. PMID:22435087

  9. A Detailed 3D Seismic Velocity Structure of the Subducting Pacific Slab Beneath Hokkaido, Tohoku and Kanto, Japan, by Double-Difference Tomography

    NASA Astrophysics Data System (ADS)

    Tsuji, Y.; Nakajima, J.; Kita, S.; Okada, T.; Matsuzawa, T.; Hasegawa, A.

    2007-12-01

    Three-dimensional heterogeneous structure beneath northeastern (NE) Japan has been investigated by previous studies and an inclined seismic low-velocity zone is imaged in the mantle wedge sub-parallel to the down-dip direction of the subducting slab (Zhao et al., 1992, Nakajima et al., 2001). However, the heterogeneous structure within the slab has not been well studied even though it is very important to understand the whole process of water transportation from the slab to the surface. Here we show a detailed 3D seismic velocity structure within the subducted Pacific slab around Japan and propose a water-transportation path from the slab to the mantle wedge. In this study, we estimated 3D velocity structure within the Pacific slab by the double-difference tomography (Zhang and Thurber, 2003). We divided the study area, from Hokkaido to Kanto, into 6 areas due to the limitation of memory and computation time. In each area, arrival-time data of 7,500-17,000 events recorded at 70-170 stations were used in the analysis. The total number of absolute travel-time data was about 140,000-312,000 for P wave and 123,000-268,000 for S wave, and differential data were about 736,000-1,920,000 for P wave and 644,000-1,488,000 for S wave. Horizontal and vertical grid separations are 10-25 km and 6.5 km, respectively. RMS residuals of travel times for P wave decreased from 0.23s to 0.09s and for S wave from 0.35s to 0.13s. The obtained results are as follows: (1) a remarkable low-Vs zone exists in the uppermost part of the subducting slab, (2) it extends down to a depth of about 80 km, (3) the termination of this low-Vs zone almost corresponds to the "seismic belt" recently detected in the upper plane of the double seismic zone (Kita et al.,2006; Hasegawa et al., 2007), (4) at depths deeper than 80 km, a low-Vs and high-Vp/Vs zone is apparently distributed in the mantle wedge, immediately above the slab crust. We consider that these features reflect water-transportation processes

  10. Development and Implementation of 3-D, High Speed Capacitance Tomography for Imaging Large-Scale, Cold-Flow Circulating Fluidized Bed

    SciTech Connect

    Marashdeh, Qussai

    2013-02-01

    A detailed understanding of multiphase flow behavior inside a Circulating Fluidized Bed (CFB) requires a 3-D technique capable of visualizing the flow field in real-time. Electrical Capacitance Volume Tomography (ECVT) is a newly developed technique that can provide such measurements. The attractiveness of the technique is in its low profile sensors, fast imaging speed and scalability to different section sizes, low operating cost, and safety. Moreover, the flexibility of ECVT sensors enable them to be designed around virtually any geometry, rendering them suitable to be used for measurement of solid flows in exit regions of the CFB. Tech4Imaging LLC has worked under contract with the U.S. Department of Energy's National Energy Technology Laboratory (DOE NETL) to develop an ECVT system for cold flow visualization and install it on a 12 inch ID circulating fluidized bed. The objective of this project was to help advance multi-phase flow science through implementation of an ECVT system on a cold flow model at DOE NETL. This project has responded to multi-phase community and industry needs of developing a tool that can be used to develop flow models, validate computational fluid dynamics simulations, provide detailed real-time feedback of process variables, and provide a comprehensive understating of multi-phase flow behavior. In this project, a complete ECVT system was successfully developed after considering different potential electronics and sensor designs. The system was tested at various flow conditions and with different materials, yielding real-time images of flow interaction in a gas-solid flow system. The system was installed on a 12 inch ID CFB of the US Department of Energy, Morgantown Labs. Technical and economic assessment of Scale-up and Commercialization of ECVT was also conducted. Experiments conducted with larger sensors in conditions similar to industrial settings are very promising. ECVT has also the potential to be developed for imaging multi

  11. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  12. X-ray computerized tomography analysis and density estimation using a sediment core from the Challenger Mound area in the Porcupine Seabight, off Western Ireland

    NASA Astrophysics Data System (ADS)

    Tanaka, Akiko; Nakano, Tsukasa; Ikehara, Ken

    2011-02-01

    X-ray computerized tomography (CT) analysis was used to image a half-round core sample of 50 cm long recovered from near Challenger Mound in the Porcupine Seabight, off western Ireland during the Integrated Ocean Drilling Program Expedition 307. This allowed three-dimensional examination of complex shapes of pebbles and ice-rafted debris in sedimentary sequences. X-ray CT analysis was also used for the determination of physical properties; a comparison between bulk density by the mass-volume method and estimated density based on linear attenuation coefficients of X-ray CT images provides insight into a spatially detailed and precise map of density variation in samples through the distribution of CT numbers.

  13. 3D Non-destructive morphological analysis of a solid oxide fuel cell anode using full-field X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Karen Chen-Wiegart, Yu-chen; Cronin, J. Scott; Yuan, Qingxi; Yakal-Kremski, Kyle J.; Barnett, Scott A.; Wang, Jun

    2012-11-01

    An accurate 3D morphological analysis is critically needed to study the process-structure-property relationship in many application fields such as battery electrodes, fuel cells and porous materials for sensing and actuating. Here we present the application of a newly developed full field X-ray nano-scale transmission microscopy (TXM) imaging for a non-destructive, comprehensive 3D morphology analysis of a porous Ni-YSZ solid oxide fuel cell anode. A unique combination of improved 3D resolution and large analyzed volume (˜3600 μm3) yields structural data with excellent statistical accuracy. 3D morphological parameters quantified include phase volume fractions, surface and interfacial area densities, phase size distribution, directional connectivity, tortuosity, and electrochemically active triple phase boundary density. A prediction of electrochemical anode polarization resistance based on this microstructural data yielded good agreement with a measured anode resistance via electrochemical impedance spectroscopy. The Mclachlan model is used to estimate the anode electrical conductivity.

  14. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible. PMID:7919882

  15. Diagnosis of Vertical Root Fracture with Cone-Beam Computerized Tomography in Endodontically Treated Teeth: Three Case Reports

    PubMed Central

    Miyagaki, Daniela Cristina; Marion, Jefferson; Randi Ferraz, Caio Cézar

    2013-01-01

    A definitive diagnosis of vertical root fracture (VRF) is often a challenging task for clinicians. This is because two dimensional periapical radiographs are usually unable to detect the fracture line due to the direction of the X-ray beam. This report presents a set of 3 cases of endodontically treated teeth that were diagnosed with VRFs based on findings from clinical, radiographic, and cone-beam computerized tomographic (CBCT) examinations. After extraction, VRFs were confirmed in all cases. The presence of periodontal pockets or other signs which would compromise the correct diagnosis could not be detected in all three cases. Fracture lines were only visible with the aid of CBCT which provided useful information for the diagnosis and management of VRF. However, the clinical and radiographic data should not be discarded, but used in conjunction with CBCT. PMID:23717335

  16. Diagnosis of vertical root fracture with cone-beam computerized tomography in endodontically treated teeth: three case reports.

    PubMed

    Miyagaki, Daniela Cristina; Marion, Jefferson; Randi Ferraz, Caio Cézar

    2013-01-01

    A definitive diagnosis of vertical root fracture (VRF) is often a challenging task for clinicians. This is because two dimensional periapical radiographs are usually unable to detect the fracture line due to the direction of the X-ray beam. This report presents a set of 3 cases of endodontically treated teeth that were diagnosed with VRFs based on findings from clinical, radiographic, and cone-beam computerized tomographic (CBCT) examinations. After extraction, VRFs were confirmed in all cases. The presence of periodontal pockets or other signs which would compromise the correct diagnosis could not be detected in all three cases. Fracture lines were only visible with the aid of CBCT which provided useful information for the diagnosis and management of VRF. However, the clinical and radiographic data should not be discarded, but used in conjunction with CBCT. PMID:23717335

  17. High-resolution 3D analyses of the shape and internal constituents of small volcanic ash particles: The contribution of SEM micro-computed tomography (SEM micro-CT)

    NASA Astrophysics Data System (ADS)

    Vonlanthen, Pierre; Rausch, Juanita; Ketcham, Richard A.; Putlitz, Benita; Baumgartner, Lukas P.; Grobéty, Bernard

    2015-02-01

    The morphology of small volcanic ash particles is fundamental to our understanding of magma fragmentation, and in transport modeling of volcanic plumes and clouds. Until recently, the analysis of 3D features in small objects (< 250 μm) was either restricted to extrapolations from 2D approaches, partial stereo-imaging, or CT methods having limited spatial resolution and/or accessibility. In this study, an X-ray computed-tomography technique known as SEM micro-CT, also called 3D X-ray ultramicroscopy (3D XuM), was used to investigate the 3D morphology of small volcanic ash particles (125-250 μm sieve fraction), as well as their vesicle and microcrystal distribution. The samples were selected from four stratigraphically well-established tephra layers of the Meerfelder Maar (West Eifel Volcanic Field, Germany). Resolution tests performed on a Beametr v1 pattern sample along with Monte Carlo simulations of X-ray emission volumes indicated that a spatial resolution of 0.65 μm was obtained for X-ray shadow projections using a standard thermionic SEM and a bulk brass target as X-ray source. Analysis of a smaller volcanic ash particle (64-125 μm sieve fraction) showed that features with volumes > 20 μm3 (~ 3.5 μm in diameter) can be successfully reconstructed and quantified. In addition, new functionalities of the Blob3D software were developed to allow the particle shape factors frequently used as input parameters in ash transport and dispersion models to be calculated. This study indicates that SEM micro-CT is very well suited to quantify the various aspects of shape in fine volcanic ash, and potentially also to investigate the 3D morphology and internal structure of any object < 0.1 mm3.

  18. Non-destructive 3D Imaging of Extraterrestrial Materials by Synchrotron X-ray Micro- tomography (XR-CMT) and Laser Confocal Scanning Microscopy (LCSM): Beyond Pretty Pictures

    NASA Astrophysics Data System (ADS)

    Ebel, D. S.; Greenberg, M.

    2009-05-01

    We report scientific results made possible only by the use these two non-destructive 3D imaging techniques. XR-CMT provides 3D image reconstructions at spatial resolutions of 1 to 17 micron/voxel edge. We use XR- CMT to locate potential melt-inclusion-bearing phenocrysts in batches of 100-200 micron lunar fire-fountain spherules; to locate and visualize the morphology of 1-2mm size, irregular, unmelted Ca-, Al-rich inclusions (CAIs) and to quantify chondrule/matrix ratios and chondrule size distributions in 6x6x20mm chunks of carbonaceous chondrites; to quantify the modal abundance of opaque phases in similar sized Martian meteorite fragments, and in individual 1-2mm diameter chondrules from chondrites. LCSM provides 3D image stacks at resolutions < 100 nm/pixel. We are the only group creating deconvolved image stacks of 100 to over 1000 micron long comet particle tracks in aerogel keystones from the Stardust mission. We present measurements of track morphology in 3D, and locate high-value particles using complementary synchrotron x- ray fluorescence (XRF) examination. We show that bench-top LCSM extracts maximum information about tracks and particles rapidly and cheaply prior to destructive disassembly. Using XR-CMT we quantify, for the first time, the volumetric abundances of metal grains in 1-2 mm diameter CR chondrite chondrules. Metal abundances vary from 1 to 37 vol.% between 8 chondrules (and more by inspection), in a meteorite with solar (chondritic) Fe/Si ratio, indicating that chondrules formed and accreted locally from bulk solar composition material. They are 'complementary' to each other in Fe/Si ratios. Void spaces in chondritic CAIs and chondrules are shown to be a primary feature, not due to plucking during sectioning. CAI morphology in 3D reveals pre-accretionary impact features, and various types of mineralogical layering, seen in 3D, reveal the formation history of these building blocks of planets and asteroids. We also quantify the x

  19. Low dose four-dimensional computerized tomography with volume rendering reconstruction for primary hyperparathyroidism: How I do it?

    PubMed

    Platz, Timothy A; Kukar, Moshim; Elmarzouky, Rania; Cance, William; Abdelhalim, Ahmed

    2014-09-28

    Modification of 4-dimensional computed tomography (4D-CT) technique with volume rendering reconstructions and significant dose reduction is a safe and accurate method of pre-operative localization for primary hyperparathyroidism. Modified low dose 4D-CT with volume rendering reconstructions provides precise preoperative localization and is associated with a significant reduction in radiation exposure compared to classic preoperative localizing techniques. It should be considered the preoperative localization study of choice for primary hyperparathyroidism. PMID:25276315

  20. 3-D sediment-basement tomography of the Northern Marmara trough by a dense OBS network at the nodes of a grid of controlled source profiles along the North Anatolian fault

    NASA Astrophysics Data System (ADS)

    Bayrakci, G.; Laigle, M.; Bécel, A.; Hirn, A.; Taymaz, T.; Yolsal-Çevikbilen, S.; Seismarmara Team

    2013-09-01

    A 3-D tomographic inversion of first arrival times of shot profiles recorded by a dense 2-D OBS network provides an unprecedented constraint on the P-wave velocities heterogeneity of the upper-crustal part of the North Marmara Trough (NMT), over a region of 180 km long by 50 km wide. One of the specific aims of this controlled source tomography is to provide a 3-D initial model for the local earthquake tomography (LET). Hence, in an original way, the controlled source inversion has been performed by using a code dedicated to LET. After several tests to check the results trade-off with the inversion parameters, we build up a 3-D a priori velocity model, in which the sea-bottom topography, the acoustic and the crystalline basements and the Moho interfaces have been considered. The reliability of the obtained features has been checked by checkerboard tests and also by their comparison with the deep-penetration multichannel seismic profiles, and with the wide-angle reflection and refraction modelled profiles. This study provides the first 3-D view of the basement topography along the active North Anatolian fault beneath the Marmara Sea, even beneath the deepest part of three sedimentary basins of NMT. Clear basement depressions reaching down 6 km depth below the sea level (bsl) have been found beneath these basins. The North Imrali Basin located on the southern continental shelf is observed with a similar sedimentary thickness as its northern neighbours. Between Central and Çinarcik basins, the Central High rises up to 3 km depth below (bsl). Its crest position is offset by 10 km northwestward relatively to the bathymetric crest. On the contrary, Tekirdağ and Central basins appear linked, forming a 60-km-long basement depression. Beneath the bathymetric relief of Western High low velocities are observed down to 6 km depth (bsl) and no basement high have been found. The obtained 3-D Vp heterogeneity model allows the consideration of the 3-D supracrustal heterogeneity

  1. The Devil is in the Details: Using X-Ray Computed Tomography to Develop Accurate 3D Grain Characteristics and Bed Structure Metrics for Gravel Bed Rivers

    NASA Astrophysics Data System (ADS)

    Voepel, H.; Hodge, R. A.; Leyland, J.; Sear, D. A.; Ahmed, S. I.

    2014-12-01

    Uncertainty for bedload estimates in gravel bed rivers is largely driven by our inability to characterize the arrangement and orientation of the sediment grains within the bed. The characteristics of the surface structure are produced by the water working of grains, which leads to structural differences in bedforms through differential patterns of grain sorting, packing, imbrication, mortaring and degree of bed armoring. Until recently the technical and logistical difficulties of characterizing the arrangement of sediment in 3D have prohibited a full understanding of how grains interact with stream flow and the feedback mechanisms that exist. Micro-focus X-ray CT has been used for non-destructive 3D imaging of grains within a series of intact sections of river bed taken from key morphological units (see Figure 1). Volume, center of mass, points of contact, protrusion and spatial orientation of individual surface grains are derived from these 3D images, which in turn, facilitates estimates of 3D static force properties at the grain-scale such as pivoting angles, buoyancy and gravity forces, and grain exposure. By aggregating representative samples of grain-scale properties of localized interacting sediment into overall metrics, we can compare and contrast bed stability at a macro-scale with respect to stream bed morphology. Understanding differences in bed stability through representative metrics derived at the grain-scale will ultimately lead to improved bedload estimates with reduced uncertainty and increased understanding of interactions between grain-scale properties on channel morphology. Figure 1. CT-Scans of a water worked gravel-filled pot. a. 3D rendered scan showing the outer mesh, and b. the same pot with the mesh removed. c. vertical change in porosity of the gravels sampled in 5mm volumes. Values are typical of those measured in the field and lab. d. 2-D slices through the gravels at 20% depth from surface (porosity = 0.35), and e. 75% depth from

  2. Regional cerebral blood flow during rest and skilled hand movements by xenon-133 inhalation and emission computerized tomography

    SciTech Connect

    Lauritzen, M.; Henriksen, L.; Lassen, N.A.

    1981-01-01

    Regional cerebral blood flow (CBF) was studied in 16 normal adult volunteers during rest and in 10 the study was repeated during skilled hand movements. A fast-rotating (''dynamic''), single-photon emission computerized tomograph (ECT) with four detector heads was used. Xenon-133 was inhaled over a 1-min period at a concentration of 10 mCi/L. The arrival and washout of the radioisotope was recorded during four 1-min periods. Two slices, 2 cm thick, 7 and 12 cm above the orbitomeatal line were obtained in every study. CBF averaged 60 ml/100 g/min (SD +/- 11) in the lower slice and 51 ml/100 g/min (SD +/- 13) in the upper slice. A symmetric pattern comparing right to left sides was found in both slices. Finger tapping and writing with the right hand increased CBF in specific areas of the upper slice: in the contralateral hand area by 35 +/- 15% (p less than 0.025), and in the supplementary motor area on both sides by 34 +/- 15% (p less than 0.025).

  3. Improved algorithm for computerized detection and quantification of pulmonary emphysema at high-resolution computed tomography (HRCT)

    NASA Astrophysics Data System (ADS)

    Tylen, Ulf; Friman, Ola; Borga, Magnus; Angelhed, Jan-Erik

    2001-05-01

    Emphysema is characterized by destruction of lung tissue with development of small or large holes within the lung. These areas will have Hounsfield values (HU) approaching -1000. It is possible to detect and quantificate such areas using simple density mask technique. The edge enhancement reconstruction algorithm, gravity and motion of the heart and vessels during scanning causes artefacts, however. The purpose of our work was to construct an algorithm that detects such image artefacts and corrects them. The first step is to apply inverse filtering to the image removing much of the effect of the edge enhancement reconstruction algorithm. The next step implies computation of the antero-posterior density gradient caused by gravity and correction for that. Motion artefacts are in a third step corrected for by use of normalized averaging, thresholding and region growing. Twenty healthy volunteers were investigated, 10 with slight emphysema and 10 without. Using simple density mask technique it was not possible to separate persons with disease from those without. Our algorithm improved separation of the two groups considerably. Our algorithm needs further refinement, but may form a basis for further development of methods for computerized diagnosis and quantification of emphysema by HRCT.

  4. 3D characterization by tomography of beta Al9Fe2Si2 phase precipitation in a Al6.5Si1Fe alloy

    NASA Astrophysics Data System (ADS)

    Ferdian, D.; Salvo, L.; Lacaze, J.; Tenailleau, C.; Duployer, B.; Malard, B.

    2016-03-01

    The microstructure evolution of beta phase during solidification of a synthetic Al6.5Si1Fe (wt.%) alloy has been investigated by in-situ synchrotron micro-tomography and post-mortem tomography. In-situ solidification was observed at a constant cooling rate of 10°C min-1, from above the alloy's liquidus with the melt at 618°C down to 575°C which is just above the (Al)-Si-beta invariant eutectic reaction. Primary (Al) dendrites nucleated at 608°C, followed by the formation of beta-Al9Fe2Si2 phase starting at 593°C. After a rapid growth stage until 587°C as thin plates, beta phase continued to grow at a paced rate. Thickening of the plates was also evaluated and it was observed that the decrease in the lateral growth rate of the plates did not lead to an increase of their thickening rate. It was noted that the interconnectivity between beta precipitates increased as the solidification progressed. While nucleation of beta phase has previously been reported to occur on the alumina scale formed at the outer surface of the material, it is shown from post mortem tomography that bulk nucleation can occur as well.

  5. Increased perfusion in motor areas after constraint-induced movement therapy in chronic stroke: a single-photon emission computerized tomography study.

    PubMed

    Könönen, Mervi; Kuikka, Jyrki T; Husso-Saastamoinen, Minna; Vanninen, Esko; Vanninen, Ritva; Soimakallio, Seppo; Mervaala, Esa; Sivenius, Juhani; Pitkänen, Kauko; Tarkka, Ina M

    2005-12-01

    Hemiparesis is the most common deficit after cerebral stroke. Constraint-induced movement therapy (CIMT) is a new neurorehabilitation method that emphasizes task-relevant repetitive training for the stroke hand. Twelve chronic stroke patients were studied with single-photon emission computerized tomography at rest before and after the two-week CIMT period. Increased perfusion was found in motor control related areas. The specific areas with an increase in perfusion in the affected hemisphere were in the precentral gyrus, premotor cortex (Brodmann's area 6 (BA6)), frontal cortex, and superior frontal gyrus (BA10). In the nonaffected hemisphere, perfusion was increased in the superior frontal gyrus (BA6) and cingulate gyrus (BA31). In the cerebellum increased perfusion was seen bilaterally. The brain areas with increased perfusion receive and integrate the information from different sensory systems and plan the movement execution. Regional cerebral perfusion decreased in the lingual gyrus (BA18) in the affected hemisphere. In the nonaffected frontal cortex, two areas with decreased perfusion were found in the middle frontal gyrus (BA8/10). Also, the fusiform gyrus (BA20) and inferior temporal gyrus (BA37) in the nonaffected hemisphere showed decreased perfusion. Intensive movement therapy appears to change local cerebral perfusion in areas known to participate in movement planning and execution. These changes might be a sign of active reorganization processes after CIMT in the chronic state of stroke. PMID:15931162

  6. Horizontal Bone Augmentation Using Autogenous Block Grafts and Particulate Xenograft in the Severe Atrophic Maxillary Anterior Ridges: A Cone-Beam Computerized Tomography Case Series.

    PubMed

    Monje, Alberto; Monje, Florencio; Hernández-Alfaro, Federico; Gonzalez-García, Raúl; Suárez-López del Amo, Fernando; Galindo-Moreno, Pablo; Montanero-Fernández, Jesús; Wang, Hom-Lay

    2015-07-01

    The aim of the present study was to use cone-beam computerized tomography (CBCT) to assess horizontal bone augmentation using block grafts, harvested from either the iliac crest (IC) or mandibular ramus (MR) combined with particulate xenograft and a collagen membrane for in the severe maxillary anterior ridge defects (cases Class III-IV according to Cadwood and Howell's classification). Fourteen healthy partially edentulous patients requiring extensive horizontal bone reconstruction in the anterior maxilla were selected for the study. Nineteen onlay block grafts (from IC or MR) were placed. The amount of horizontal bone gain was recorded by CBCT at 3 levels (5, 7, and 11 mm from the residual ridge) and at the time of bone grafting as well as the time of implant placement (≈5 months). Both block donor sites provided enough ridge width for proper implant placement. Nonetheless, IC had significantly greater ridge width gain than MR (Student t test) (4.93 mm vs 3.23 mm). This was further confirmed by nonparametric Mann-Whitney test (P = .007). Moreover, mean pristine ridge and grafted ridge values showed a direct association (Spearman coefficient of correlation = .336). A combination of block graft, obtained from the IC or MR, combined with particulate xenograft then covered with an absorbable collagen membrane is a predictable technique for augmenting anterior maxillary horizontal ridge deficiency. PMID:24702157

  7. Strong correlation between lung ultrasound and chest computerized tomography imaging for the detection of acute lung injury/acute respiratory distress syndrome in rats

    PubMed Central

    Ma, Huan; Huang, Daozheng; Guo, Liheng; Chen, Quanfu; Zhong, Wenzhao

    2016-01-01

    Background Lung ultrasound (LUS) is a clinical imaging technique for diagnosing acute lung injury (ALI) and acute respiratory distress syndrome (ARDS). In humans and several large animals, LUS demonstrates similar specificity and sensitivity to computerized tomography (CT) scanning. Current study evaluated the degree of agreement between LUS and CT imaging in characterizing ALI/ARDS in rats. Methods Thirty male Sprague-Dawley rats were imaged by LUS before randomization into three groups to receive intratracheal saline, 3 or 6 mg/kg LPS respectively (n=10). LUS and CT imaging was conducted 2 hours after instillation. Cross table analyses and kappa statistics were used to determine agreement levels between LUS and CT assessments of lung condition. Results Before instillation, rats presented with a largely A-pattern in LUS images, however, a significantly increase B-lines were observed in all groups after instillation and showed dose response to LPS or to saline. One rat treated with 6 mg/kg lipopolysaccharide (LPS) presented with lung consolidation. The agreement between the LUS and the CT in detecting the main characteristics of ALI/ARDS in rat was strong (r=0.758, P<0.01, k=0.737). Conclusions In conclusion, LUS detects ALI/ARDS with high agreement with micro PET/CT scanning in a rat model, suggesting that LUS represents a positive refinement in rat ALI/ARDS disease models. PMID:27499930

  8. The sinonasal communication in the horse: examinations using computerized three-dimensional reformatted renderings of computed-tomography datasets

    PubMed Central

    2014-01-01

    Background Sinusitis is a common disease in the horse. In human medicine it is described, that obstruction of the sinonasal communication plays a major role in the development of sinusitis. To get spatial sense of the equine specific communication ways between the nasal cavity and the paranasal sinuses, heads of 19 horses, aged 2 to 26 years, were analyzed using three-dimensional (3D) reformatted renderings of CT-datasets. Three-dimensional models were generated following manual and semi-automated segmentation. Before segmentation, the two-dimensional (2D) CT-images were verified against corresponding frozen sections of cadaveric heads. Results Three-dimensional analysis of the paranasal sinuses showed the bilateral existence of seven sinus compartments: rostral maxillary sinus, ventral conchal sinus, caudal maxillary sinus, dorsal conchal sinus, frontal sinus, sphenopalatine sinus and middle conchal sinus. The maxillary septum divides these seven compartments into two sinus systems: a rostral paranasal sinus system composed of the rostral maxillary sinus and the ventral conchal sinus and a caudal paranasal sinus system which comprises all other sinuses. The generated 3D models revealed a typically configuration of the sinonasal communication ways. The sinonasal communication started within the middle nasal meatus at the nasomaxillary aperture (Apertura nasomaxillaris), which opens in a common sinonasal channel (Canalis sinunasalis communis). This common sinonasal channel ramifies into a rostral sinonasal channel (Canalis sinunasalis rostralis) and a caudo-lateral sinonasal channel (Canalis sinunasalis caudalis). The rostral sinonasal channel ventilated the rostral paranasal sinus system, the caudo-lateral sinonasal channel opened into the caudal paranasal sinus system. The rostral sinonasal channel was connected to the rostral paranasal sinuses in various ways. Whereas, the caudal channel showed less anatomical variations and was in all cases connected to the

  9. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    SciTech Connect

    Laloum, D.; Printemps, T.; Bleuet, P.; Lorut, F.

    2015-01-15

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  10. 3D Visualization of the Iron Oxidation State in FeO/Fe3O4 Core-Shell Nanocubes from Electron Energy Loss Tomography.

    PubMed

    Torruella, Pau; Arenal, Raúl; de la Peña, Francisco; Saghi, Zineb; Yedra, Lluís; Eljarrat, Alberto; López-Conesa, Lluís; Estrader, Marta; López-Ortega, Alberto; Salazar-Alvarez, Germán; Nogués, Josep; Ducati, Caterina; Midgley, Paul A; Peiró, Francesca; Estradé, Sonia

    2016-08-10

    The physicochemical properties used in numerous advanced nanostructured devices are directly controlled by the oxidation states of their constituents. In this work we combine electron energy-loss spectroscopy, blind source separation, and computed tomography to reconstruct in three dimensions the distribution of Fe(2+) and Fe(3+) ions in a FeO/Fe3O4 core/shell cube-shaped nanoparticle with nanometric resolution. The results highlight the sharpness of the interface between both oxides and provide an average shell thickness, core volume, and average cube edge length measurements in agreement with the magnetic characterization of the sample. PMID:27383904

  11. Correction of absorption-edge artifacts in polychromatic X-ray tomography in a scanning electron microscope for 3D microelectronics

    NASA Astrophysics Data System (ADS)

    Laloum, D.; Printemps, T.; Lorut, F.; Bleuet, P.

    2015-01-01

    X-ray tomography is widely used in materials science. However, X-ray scanners are often based on polychromatic radiation that creates artifacts such as dark streaks. We show this artifact is not always due to beam hardening. It may appear when scanning samples with high-Z elements inside a low-Z matrix because of the high-Z element absorption edge: X-rays whose energy is above this edge are strongly absorbed, violating the exponential decay assumption for reconstruction algorithms and generating dark streaks. A method is proposed to limit the absorption edge effect and is applied on a microelectronic case to suppress dark streaks between interconnections.

  12. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless