Science.gov

Sample records for 3d conduction effects

  1. Methodology for the Assessment of 3D Conduction Effects in an Aerothermal Wind Tunnel Test

    NASA Technical Reports Server (NTRS)

    Oliver, Anthony Brandon

    2010-01-01

    This slide presentation reviews a method for the assessment of three-dimensional conduction effects during test in a Aerothermal Wind Tunnel. The test objectives were to duplicate and extend tests that were performed during the 1960's on thermal conduction on proturberance on a flat plate. Slides review the 1D versus 3D conduction data reduction error, the analysis process, CFD-based analysis, loose coupling method that simulates a wind tunnel test run, verification of the CFD solution, Grid convergence, Mach number trend, size trends, and a Sumary of the CFD conduction analysis. Other slides show comparisons to pretest CFD at Mach 1.5 and 2.16 and the geometries of the models and grids.

  2. Measurement of 3-D hydraulic conductivity in aquifer cores at in situ effective stresses.

    PubMed

    Wright, Martin; Dillon, Peter; Pavelic, Paul; Peter, Paul; Nefiodovas, Andrew

    2002-01-01

    An innovative and nondestructive method to measure the hydraulic conductivity of drill core samples in horizontal and vertical directions within a triaxial cell has been developed. This has been applied to characterizing anisotropy and heterogeneity of a confined consolidated limestone aquifer. Most of the cores tested were isotropic, but hydraulic conductivity varied considerably and the core samples with lowest values were also the most anisotropic. Hydraulic conductivity decreased with increasing effective stress due to closure of microfractures caused by sampling for all core samples. This demonstrates the importance of replicating in situ effective stresses when measuring hydraulic conductivity of cores of deep aquifers in the laboratory.

  3. Effect of Weaving Direction of Conductive Yarns on Electromagnetic Performance of 3D Integrated Microstrip Antenna

    NASA Astrophysics Data System (ADS)

    Xu, Fujun; Yao, Lan; Zhao, Da; Jiang, Muwen; Qiu, Yipping

    2013-10-01

    A three-dimensionally integrated microstrip antenna (3DIMA) is a microstrip antenna woven into the three-dimensional woven composite for load bearing while functioning as an antenna. In this study, the effect of weaving direction of conductive yarns on electromagnetic performance of 3DIMAs are investigated by designing, simulating and experimental testing of two microstrip antennas with different weaving directions of conductive yarns: one has the conductive yarns along the antenna feeding direction (3DIMA-Exp1) and the other has the conductive yarns perpendicular the antenna feeding direction (3DIMA-Exp2). The measured voltage standing wave ratio (VSWR) of 3DIMA-Exp1 was 1.4 at the resonant frequencies of 1.39 GHz; while that of 3DIMA-Exp2 was 1.2 at the resonant frequencies of 1.35 GHz. In addition, the measured radiation pattern of the 3DIMA-Exp1 has smaller back lobe and higher gain value than those of the 3DIMA-Exp2. This result indicates that the waving direction of conductive yarns may have a significant impact on electromagnetic performance of textile structural antennas.

  4. Full 3-D TLM simulations of the Earth-ionosphere cavity: Effect of conductivity on the Schumann resonances

    NASA Astrophysics Data System (ADS)

    Toledo-Redondo, S.; Salinas, A.; Fornieles, J.; Portí, J.; Lichtenegger, H. I. M.

    2016-06-01

    Schumann resonances can be found in planetary atmospheres, inside the cavity formed by the conducting surface of the planet and the lower ionosphere. They are a powerful tool to investigate both the electric processes that occur in the atmosphere and the characteristics of the surface and the lower ionosphere. Results from a full 3-D model of the Earth-ionosphere electromagnetic cavity based on the Transmission-Line Modeling (TLM) method are presented. A Cartesian scheme with homogeneous cell size of 10 km is used to minimize numerical dispersion present in spherical schemes. Time and frequency domain results have been obtained to study the resonance phenomenon. The effect of conductivity on the Schumann resonances in the cavity is investigated by means of numerical simulations, studying the transition from resonant to nonresonant response and setting the conductivity limit for the resonances to develop inside the cavity. It is found that the transition from resonant to nonresonant behavior occurs for conductivity values above roughly 10-9 S/m. For large losses in the cavity, the resonances are damped, but, in addition, the peak frequencies change according to the local distance to the source and with the particular electromagnetic field component. These spatial variations present steep variations around each mode's nodal position, covering distances around 1/4 of the mode wavelength, the higher modes being more sensitive to this effect than the lower ones. The dependence of the measured frequency on the distance to the source and particular component of the electric field offers information on the source generating these resonances.

  5. ab initio study of 3d transition metal-doping effects in rutile-TiO2: Role of bandgap tunability in conductivity behaviour

    NASA Astrophysics Data System (ADS)

    Saini, Mahesh; Kumar, Mohit; Som, Tapobrata

    2017-10-01

    3d transition metal (TM)-doping into 2 × 2 × 2 supercell of rutile-TiO2 has been studied by ab initio band structure calculations based on self-consistent plane-wave method within the first-principle formalism. As a result of doping, 3d states of dopants hybridize with the O 2p and Ti 3d states to provide impurity energy levels, which either modify the valence (conduction) band and/or appear separately in the bandgap of TiO2. We have found that the intermediate impurity energy level shifts towards the valence band (VB) as the atomic number of dopants increases from V to Zn. Band structure calculations reveal that undoped, Sc, Mn, Fe, Co, Ni, Cu, and Zn-doping show the p-type conductivity, whereas doping of V, and Cr in TiO2 lead to the n-type conductivity. On the other hand, for Sc, Cu, and Zn-doping, the Fermi level penetrates into the VB, causing some of the states to appear below the Fermi level which are completely filled with electrons and in turn show inverse Burstein-Moss (BM) effect. As a matter of fact, we have not found BM effect in any of the 3d TM doping case.

  6. Investigation into the effect of heat treatment on the thermal conductivity of 3-D carbon/carbon fiber composites

    SciTech Connect

    Dinwiddie, R.B.; Burchell, T.D. ); Baker, C.F. )

    1991-01-01

    The material used in this study was a carbon-carbon fiber composite manufactured from precursor yarn and petroleum based pitch through a process of repetitive densification of a woven preform. The resultant high temperature-high strength material exhibits relatively high thermal conductivity and is thus of interest to the fusion energy, plasma materials interactions (PMI) and plasma facing components (PFC) communities. Carbon-carbon fiber composite manufacture involves two distinct processes, preform weaving and component densification. In this study three samples were subjected to an additional heat treatment of 2550, 2750 or 3000{degree}C at Oak Ridge National Laboratory (ORNL) subsequent to their fourth graphitization at 2400{degree}C. It should be noted that no effort was made to optimize the composite for thermal conductivity, but rather only to provide a material with which to evaluate the effect of the final heat treatment temperature on the thermal conductivity. The fiber is the primary source of heat conduction in the composite. Consequently, increasing the fiber volume fraction, and/or the fiber thermal conductivity is expected to increase the composite thermal conductivity. 3 refs., 1 fig.

  7. Reduction of Thermal Conductivity by Nanoscale 3D Phononic Crystal

    PubMed Central

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal. PMID:23378898

  8. Reduction of thermal conductivity by nanoscale 3D phononic crystal.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2013-01-01

    We studied how the period length and the mass ratio affect the thermal conductivity of isotopic nanoscale three-dimensional (3D) phononic crystal of Si. Simulation results by equilibrium molecular dynamics show isotopic nanoscale 3D phononic crystals can significantly reduce the thermal conductivity of bulk Si at high temperature (1000 K), which leads to a larger ZT than unity. The thermal conductivity decreases as the period length and mass ratio increases. The phonon dispersion curves show an obvious decrease of group velocities in 3D phononic crystals. The phonon's localization and band gap is also clearly observed in spectra of normalized inverse participation ratio in nanoscale 3D phononic crystal.

  9. Optical conductivity renormalization of graphene on SrTiO 3 due to resonant excitonic effects mediated by Ti 3 d orbitals

    NASA Astrophysics Data System (ADS)

    Gogoi, Pranjal Kumar; Trevisanutto, Paolo E.; Yang, Ming; Santoso, Iman; Asmara, Teguh Citra; Terentjevs, Aleksandrs; Della Sala, Fabio; Breese, Mark B. H.; Venkatesan, T.; Feng, Yuan Ping; Loh, Kian Ping; Neto, Antonio H. Castro; Rusydi, Andrivo

    2015-01-01

    We present evidence of a drastic renormalization of the optical conductivity of graphene on SrTiO 3 resulting in almost full transparency in the ultraviolet region. These findings are attributed to resonant excitonic effects further supported by ab initio Bethe-Salpeter equation and density functional theory calculations. The (π ,π *) orbitals of graphene and Ti-3 d t2 g orbitals of SrTiO 3 are strongly hybridized and the interactions of electron-hole states residing in those orbitals play dominant role in the graphene optical conductivity. These interactions are present much below the optical band gap of bulk SrTiO 3. These results open a possibility of manipulating interaction strengths in graphene via d orbitals, which could be crucial for optical applications.

  10. 3D conductive nanocomposite scaffold for bone tissue engineering.

    PubMed

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli.

  11. 3D conductive nanocomposite scaffold for bone tissue engineering

    PubMed Central

    Shahini, Aref; Yazdimamaghani, Mostafa; Walker, Kenneth J; Eastman, Margaret A; Hatami-Marbini, Hamed; Smith, Brenda J; Ricci, John L; Madihally, Sundar V; Vashaee, Daryoosh; Tayebi, Lobat

    2014-01-01

    Bone healing can be significantly expedited by applying electrical stimuli in the injured region. Therefore, a three-dimensional (3D) ceramic conductive tissue engineering scaffold for large bone defects that can locally deliver the electrical stimuli is highly desired. In the present study, 3D conductive scaffolds were prepared by employing a biocompatible conductive polymer, ie, poly(3,4-ethylenedioxythiophene) poly(4-styrene sulfonate) (PEDOT:PSS), in the optimized nanocomposite of gelatin and bioactive glass. For in vitro analysis, adult human mesenchymal stem cells were seeded in the scaffolds. Material characterizations using hydrogen-1 nuclear magnetic resonance, in vitro degradation, as well as thermal and mechanical analysis showed that incorporation of PEDOT:PSS increased the physiochemical stability of the composite, resulting in improved mechanical properties and biodegradation resistance. The outcomes indicate that PEDOT:PSS and polypeptide chains have close interaction, most likely by forming salt bridges between arginine side chains and sulfonate groups. The morphology of the scaffolds and cultured human mesenchymal stem cells were observed and analyzed via scanning electron microscope, micro-computed tomography, and confocal fluorescent microscope. Increasing the concentration of the conductive polymer in the scaffold enhanced the cell viability, indicating the improved microstructure of the scaffolds or boosted electrical signaling among cells. These results show that these conductive scaffolds are not only structurally more favorable for bone tissue engineering, but also can be a step forward in combining the tissue engineering techniques with the method of enhancing the bone healing by electrical stimuli. PMID:24399874

  12. 3-D Modelling the effect of river excavation on surface water and groundwater relation in a bank filtration system - comparing electrical conductivity and heat as tracer

    NASA Astrophysics Data System (ADS)

    Wang, Weishi; Oswald, Sascha; Munz, Matthias; Strasser, Daniel

    2017-04-01

    As a pretreatment for conventional drinking water supply, bank filtration (BF) is widely used in Europe, while in Germany it contributes 16% of potable water supply. There are usually two crucial issues for BF influencing its treatment effect, which are separately the spatial and temporal distribution of travelling times and distinguishing between the flow contribution of BF versus inflow from the ambient groundwater. Modelling is a strong tool for analyzing the behavior and development of the flow field, especially for quantification of the river recharge rate of BF and estimation of travel time distribution. Though 3-D modelling of the flow field as a comprehensive tool has been used in several studies, many simulations are limited to pure water flow. Since heads are only partially able to constrain the flow field, model non-uniqueness might lead to misinterpretation of the real flow field, especially in complex geological conditions. Some studies have shown that by including tracers, the model non-uniqueness could be reasonably constrained and the accuracy of flux estimation could be improved. Natural tracers thus are used in groundwater modelling, while differences in their properties or input may cause dissimilar behavior during the transport process. In this study, we have set up a numerical 3-D groundwater flow model of a bank filtration site with strong geological heterogeneity and used the data of several years monitoring activities as the data basis. We were particularly interested in the seasonal dynamics but also structural changes induced by a reconstruction of the surface water including excavation and rebuilding the bank construction. By combining separately electrical conductivity and heat as tracers in the model we were able to i) understand flow field mechanisms and its changes caused by the excavation ii) conclude from the deviations of the tracer concentrations and dynamics simulated compared to the measurements on deficiencies of the flow field

  13. Acoustic patterning for 3D embedded electrically conductive wire in stereolithography

    NASA Astrophysics Data System (ADS)

    Erdem Yunus, Doruk; Sohrabi, Salman; He, Ran; Shi, Wentao; Liu, Yaling

    2017-04-01

    In this paper, we reported a new approach for particle assembly with acoustic tweezers during three-dimensional (3D) printing, for the fabrication of embedded conductive wires with 3D structures. A hexagon shaped acoustic tweezer was incorporated with a digital light processing based stereolithography printer to pattern conductive lines via aligning and condensing conductive nanoparticles. The effect of filler content on electrical resistivity and pattern thickness were studied for copper, magnetite nanoparticles, and carbon nanofiber reinforced nanocomposite samples. The obtained data was later used to produce examples of conductive 3D microstructures and embedded electronic components by using the suggested method.

  14. Calculation of effective conductivity of 2D and 3D composite materials with anisotropic constituents and different inclusion shapes in Mathematica

    NASA Astrophysics Data System (ADS)

    Gómez-Muñoz, José Luis; Bravo-Castillero, Julián

    2008-08-01

    The study of the effective properties of composite materials with anisotropic constituents and different inclusion shapes has motivated the development of the Mathematica 6.0 package "CompositeMaterials". This package can be used to calculate the effective anisotropic conductivity tensor of two-phase composites. Any fiber cross section, even percolating ones, can be studied in the 2D composites. "Rectangular Prism" and "Ellipsoidal" inclusion shapes with arbitrary orientations can be investigated in the 3D composites. This package combines the Asymptotic Homogenization Method and the Finite Element Method in order to obtain the effective conductivity tensor. The commands and options of the package are illustrated with two sample applications for two- and three-dimensional composites. Program summaryProgram title:CompositeMaterials Catalogue identifier:AEAU_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEAU_v1_0.html Program obtainable from:CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions:Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.:132 183 No. of bytes in distributed program, including test data, etc.:1 334 908 Distribution format:tar.gz Programming language:Mathematica 6.0 Computer:Any that can run Mathematica 6.0 and where the open-source free C-programs Triangle ( http://www.cs.cmu.edu/ quake/triangle.html) and TetGen ( http://tetgen.berlios.de/) can be compiled and executed. Tested in Intel Pentium computers. Operating system:Any that can run Mathematica 6.0 and where the open-source free C-programs Triangle ( http://www.cs.cmu.edu/ quake/triangle.html) and TetGen ( http://tetgen.berlios.de/) can be compiled and executed. Tested in Windows XP. RAM:Small two-dimensional calculations require less than 100 MB. Large three-dimensional calculations require 500 MB or more. Classification:7.9 External routines:One Mathematica Add-on and

  15. Physical modeling of small shallow conductive 3-D targets with high-frequency electromagnetics

    SciTech Connect

    Birken, R.A.; Poulton, M.; Sterngerg, B.K.

    1996-09-01

    The goal of this study is to show that physical modeling can provide important support for three-dimensional (3D) interpretation of electromagnetic geophysical data for environmental problems. This is specially true when high-frequency electromagnetic methods are used, which are difficult to model with existing 3D forward modeling programs. Existing electromagnetic geophysical systems usually operate in the frequency range of a few hertz to several hundred hertz. For environmental problems, such as characterization of waste sites, systems with higher frequencies are desirable. This is because at lower frequencies, the depth of investigation is too deep for environmental characterizations. This leads to subsurface images, which don`t have enough resolution to map small shallow objects. Electromagnetic 3D modeling programs which solve the full wave equation are still not widely available, even though 3D modeling has improved remarkably during the last few years (Oristaglio and Spies, 1995). Since such a program was not available for this study, we used a specialized 3D program EM1DSH (Zhou, 1989). With this program, we can model layered-earth cases, taking dielectric effects into account over the whole frequency range of interest. Stewart et al. (1994) published ellipticity curves for similar system configurations and frequency ranges that indicate that dielectric effects can not be neglected for model calculations using frequencies above several 100 kHz. EM1DSH can also model thin conductive sheets in a two-layer earth but neglecting dielectric effects. Therefore we are only able to model and compare our field data with 3D forward modeling results for the lower frequencies. One way of bridging the gap between the interpretation needs and limitations of existing 3D forward modeling programs is to conduct physical modeling experiments. 6 refs., 2 figs.

  16. Effect of viewing distance on 3D fatigue caused by viewing mobile 3D content

    NASA Astrophysics Data System (ADS)

    Mun, Sungchul; Lee, Dong-Su; Park, Min-Chul; Yano, Sumio

    2013-05-01

    With an advent of autostereoscopic display technique and increased needs for smart phones, there has been a significant growth in mobile TV markets. The rapid growth in technical, economical, and social aspects has encouraged 3D TV manufacturers to apply 3D rendering technology to mobile devices so that people have more opportunities to come into contact with many 3D content anytime and anywhere. Even if the mobile 3D technology leads to the current market growth, there is an important thing to consider for consistent development and growth in the display market. To put it briefly, human factors linked to mobile 3D viewing should be taken into consideration before developing mobile 3D technology. Many studies have investigated whether mobile 3D viewing causes undesirable biomedical effects such as motion sickness and visual fatigue, but few have examined main factors adversely affecting human health. Viewing distance is considered one of the main factors to establish optimized viewing environments from a viewer's point of view. Thus, in an effort to determine human-friendly viewing environments, this study aims to investigate the effect of viewing distance on human visual system when exposing to mobile 3D environments. Recording and analyzing brainwaves before and after watching mobile 3D content, we explore how viewing distance affects viewing experience from physiological and psychological perspectives. Results obtained in this study are expected to provide viewing guidelines for viewers, help ensure viewers against undesirable 3D effects, and lead to make gradual progress towards a human-friendly mobile 3D viewing.

  17. 3D Anisotropic Thermal Conductivity of Exfoliated Rhenium Disulfide.

    PubMed

    Jang, Hyejin; Ryder, Christopher R; Wood, Joshua D; Hersam, Mark C; Cahill, David G

    2017-07-19

    ReS2 represents a different class of 2D materials, which is characterized by low symmetry having 1D metallic chains within the planes and extremely weak interlayer bonding. Here, the thermal conductivity of single-crystalline ReS2 in a distorted 1T phase is determined at room temperature for the in-plane directions parallel and perpendicular to the Re-chains, and the through-plane direction using time-domain thermoreflectance. ReS2 is prepared in the form of flakes having thicknesses of 60-450 nm by micromechanical exfoliation, and their crystalline orientations are identified by polarized Raman spectroscopy. The in-plane thermal conductivity is higher along the Re-chains, (70 ± 18) W m(-1) K(-1) , as compared to transverse to the chains, (50 ± 13) W m(-1) K(-1) . As expected from the weak interlayer bonding, the through-plane thermal conductivity is the lowest observed to date for 2D materials, (0.55 ± 0.07) W m(-1) K(-1) , resulting in a remarkably high anisotropy of (130 ± 40) and (90 ± 30) for the two in-plane directions. The thermal conductivity and interface thermal conductance of ReS2 are discussed relative to the other 2D materials. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  18. Estimation of the thermal conductivity of hemp based insulation material from 3D tomographic images

    NASA Astrophysics Data System (ADS)

    El-Sawalhi, R.; Lux, J.; Salagnac, P.

    2016-08-01

    In this work, we are interested in the structural and thermal characterization of natural fiber insulation materials. The thermal performance of these materials depends on the arrangement of fibers, which is the consequence of the manufacturing process. In order to optimize these materials, thermal conductivity models can be used to correlate some relevant structural parameters with the effective thermal conductivity. However, only a few models are able to take into account the anisotropy of such material related to the fibers orientation, and these models still need realistic input data (fiber orientation distribution, porosity, etc.). The structural characteristics are here directly measured on a 3D tomographic image using advanced image analysis techniques. Critical structural parameters like porosity, pore and fiber size distribution as well as local fiber orientation distribution are measured. The results of the tested conductivity models are then compared with the conductivity tensor obtained by numerical simulation on the discretized 3D microstructure, as well as available experimental measurements. We show that 1D analytical models are generally not suitable for assessing the thermal conductivity of such anisotropic media. Yet, a few anisotropic models can still be of interest to relate some structural parameters, like the fiber orientation distribution, to the thermal properties. Finally, our results emphasize that numerical simulations on 3D realistic microstructure is a very interesting alternative to experimental measurements.

  19. 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles.

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    Coupling the photoreduction of a metal precursor with 3D-printing technology is shown to allow the fabrication of conductive 3D hybrid structures consisting of metal nanoparticles and organic polymers shaped in complex multilayered architectures. 3D conductive structures are fabricated incorporating silver nitrate into a photocurable oligomer in the presence of suitable photoinitiators and exposing them to a digital light system. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Reproducible 3D printed head tanks for electrical impedance tomography with realistic shape and conductivity distribution.

    PubMed

    Avery, James; Aristovich, Kirill; Low, Barney; Holder, David

    2017-05-22

    Electrical impedance tomography (EIT) has many promising applications in brain injury monitoring. To evaluate both instrumentation and reconstruction algorithms, experiments are first performed in head tanks. Existing methods, whilst accurate, produce a discontinuous conductivity, and are often made by hand, making it hard for other researchers to replicate. We have developed a method for constructing head tanks directly in a 3D printer. Conductivity was controlled through perforations in the skull surface, which allow for saline to pass through. Varying the diameter of the holes allowed for the conductivity to be controlled with 3% error for the target conductivity range. Taking CT and MRI segmentations as a basis, this method was employed to create an adult tank with a continuous conductivity distribution, and a neonatal tank with fontanelles. Using 3D scanning a geometric accuracy of 0.21 mm was recorded, equal to that of the precision of the 3D printer used. Differences of 6.1%  ±  6.4% (n  =  11 in 4 tanks) compared to simulations were recorded in c. 800 boundary voltages. This may be attributed to the morphology of the skulls increasing tortuosity effects and hole misalignment. Despite significant differences in errors between three repetitions of the neonatal tank, images of a realistic perturbation could still be reconstructed with different tanks used for the baseline and perturbation datasets. These phantoms can be reproduced by any researcher with access to a 'hobbyist' 3D printer in a matter of days. All design files have been released using an open source license to encourage reproduction and modification.

  1. Fabrication of Conductive 3D Gold-Containing Microstructures via Direct Laser Writing.

    PubMed

    Blasco, Eva; Müller, Jonathan; Müller, Patrick; Trouillet, Vanessa; Schön, Markus; Scherer, Torsten; Barner-Kowollik, Christopher; Wegener, Martin

    2016-05-01

    3D conductive microstructures containing gold are fabricated by simultaneous photopolymerization and photoreduction via direct laser writing. The photoresist employed consists of water-soluble polymers and a gold precursor. The fabricated microstructures show good conductivity and are successfully employed for 3D connections between gold pads.

  2. 3D structure and conductive thermal field of the Upper Rhine Graben

    NASA Astrophysics Data System (ADS)

    Freymark, Jessica; Sippel, Judith; Scheck-Wenderoth, Magdalena; Bär, Kristian; Stiller, Manfred; Fritsche, Johann-Gerhard; Kracht, Matthias

    2016-04-01

    The Upper Rhine Graben (URG) was formed as part of the European Cenozoic Rift System in a complex extensional setting. At present-day, it has a large socioeconomic relevance as it provides a great potential for geothermal energy production in Germany and France. For the utilisation of this energy resource it is crucial to understand the structure and the observed temperature anomalies in the rift basin. In the framework of the EU-funded "IMAGE" project (Integrated Methods for Advanced Geothermal Exploration), we apply a data-driven numerical modelling approach to quantify the processes and properties controlling the spatial distribution of subsurface temperatures. Typically, reservoir-scale numerical models are developed for predictions on the subsurface hydrothermal conditions and for reducing the risk of drilling non-productive geothermal wells. One major problem related to such models is setting appropriate boundary conditions that define, for instance, how much heat enters the reservoir from greater depths. Therefore, we first build a regional lithospheric-scale 3D structural model, which covers not only the entire URG but also adjacent geological features like the Black Forest and the Vosges Mountains. In particular, we use a multidisciplinary dataset (e.g. well data, seismic reflection data, existing structural models, gravity) to construct the geometries of the sediments, the crust and the lithospheric mantle that control the spatial distribution of thermal conductivity and radiogenic heat production and hence temperatures. By applying a data-based and lithology-dependent parameterisation of this lithospheric-scale 3D structural model and a 3D finite element method, we calculate the steady-state conductive thermal field for the entire region. Available measured temperatures (down to depths of up to 5 km) are considered to validate the 3D thermal model. We present major characteristics of the lithospheric-scale 3D structural model and results of the 3D

  3. An Effective 3D Ear Acquisition System

    PubMed Central

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  4. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  5. Exceptional electrical conductivity and fracture resistance of 3D interconnected graphene foam/epoxy composites.

    PubMed

    Jia, Jingjing; Sun, Xinying; Lin, Xiuyi; Shen, Xi; Mai, Yiu-Wing; Kim, Jang-Kyo

    2014-06-24

    Cellular-structured graphene foam (GF)/epoxy composites are prepared based on a three-step fabrication process involving infiltration of epoxy into the porous GF. The three-dimensional (3D) GF is grown on a Ni foam template via chemical vapor deposition. The 3D interconnected graphene network serves as fast channels for charge carriers, giving rise to a remarkable electrical conductivity of the composite, 3 S/cm, with only 0.2 wt % GF. The corresponding flexural modulus and strength increase by 53 and 38%, respectively, whereas the glass transition temperature increases by a notable 31 °C, compared to the solid neat epoxy. The GF/epoxy composites with 0.1 wt % GF also deliver an excellent fracture toughness of 1.78 MPa·m(1/2), 34 and 70% enhancements against their "porous" epoxy and solid epoxy counterparts, respectively. These observations signify the unrivalled effectiveness of 3D GF relative to 1D carbon nanotubes or 2D functionalized graphene sheets as reinforcement for polymer composites without issues of nanofiller dispersion and functionalization prior to incorporation into the polymer.

  6. 3D Printing: 3D Printing of Conductive Complex Structures with In Situ Generation of Silver Nanoparticles (Adv. Mater. 19/2016).

    PubMed

    Fantino, Erika; Chiappone, Annalisa; Roppolo, Ignazio; Manfredi, Diego; Bongiovanni, Roberta; Pirri, Candido Fabrizio; Calignano, Flaviana

    2016-05-01

    On page 3712, E. Fantino, A. Chiappone, and co-workers fabricate conductive 3D hybrid structures by coupling the photo-reduction of metal precursors with 3D printing technology. The generated structures consist of metal nanoparticles embedded in a polymer matrix shaped into complex multilayered architectures. 3D conductive structures are fabricated with a digital light-processing printer incorporating silver salt into photocurable formulations. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Restoring Fort Frontenac in 3D: Effective Usage of 3D Technology for Heritage Visualization

    NASA Astrophysics Data System (ADS)

    Yabe, M.; Goins, E.; Jackson, C.; Halbstein, D.; Foster, S.; Bazely, S.

    2015-02-01

    This paper is composed of three elements: 3D modeling, web design, and heritage visualization. The aim is to use computer graphics design to inform and create an interest in historical visualization by rebuilding Fort Frontenac using 3D modeling and interactive design. The final model will be integr ated into an interactive website to learn more about the fort's historic imp ortance. It is apparent that using computer graphics can save time and money when it comes to historical visualization. Visitors do not have to travel to the actual archaeological buildings. They can simply use the Web in their own home to learn about this information virtually. Meticulously following historical records to create a sophisticated restoration of archaeological buildings will draw viewers into visualizations, such as the historical world of Fort Frontenac. As a result, it allows the viewers to effectively understand the fort's social sy stem, habits, and historical events.

  8. Kondo behavior and conductance through 3d impurities in gold chains doped with oxygen

    NASA Astrophysics Data System (ADS)

    Barral, M. A.; Di Napoli, S.; Blesio, G.; Roura-Bas, P.; Camjayi, A.; Manuel, L. O.; Aligia, A. A.

    2017-03-01

    Combining ab initio calculations and effective models derived from them, we discuss the electronic structure of oxygen doped gold chains when one Au atom is replaced by any transition-metal atom of the 3d series. The effect of O doping is to bring extended Au 5dxz and 5dyz states to the Fermi level, which together with the Au states of zero angular momentum projection leads to three possible channels for the screening of the magnetism of the impurity. For most 3d impurities the expected physics is similar to that of the underscreened Kondo model, with singular Fermi liquid behavior. For Fe and Co under a tetragonal crystal field introduced by leads, the system might display a non-Fermi liquid behavior. Ni and Cu impurities are described by a S = 1 two channel Kondo model and an SU(4) impurity Anderson model in the intermediate valence regime, respectively. In both cases, the system is a Fermi liquid, but the conductance shows some observable differences with the ordinary SU(2) Anderson model.

  9. 3D structure and conductive thermal field of the sea of Marmara

    NASA Astrophysics Data System (ADS)

    Gholamrezaie, Ershad; Scheck-Wenderoth, Magdalena; Heidbach, Oliver

    2017-04-01

    The Sea of Marmara and its basins mainly evolved due to the activities of the Thrace-Eskisehir Fault Zone (TEFZ) in Neogene and the North Anatolian Fault Zone (NAFZ) in Quaternary. At present-day, the Sea of Marmara is still evolving due to the NAFZ and the Marmara region is an earthquake danger zone while hosting around 20 million of inhabitants. For a better understanding of the tectonic processes and geodynamic evolution, it is important to model the geological structure and the thermal field of this region. The aim of this study is to build a 3D lithospheric-scale structural model and a 3D conductive thermal model for the Sea of Marmara and including its adjacent onshore areas. Therefore, we integrate different geological and geophysical data such as existing structural models, well data, seismic observations and gravity to build a new 3D lithospheric-scale structural model which is additionally constrained by 3D gravity modeling. The final 3D structural model differentiates various sedimentary, crustal and mantle units and is the base for the 3D thermal field calculation. The 3D conductive thermal model is a numerical solution to the Fourier's law equation in steady-state condition and considering the thermal properties of the corresponding structural model. Our 3D lithospheric-scale models of the geological structure and the conductive thermal field are the key points for further general research and useful particularly for mechanical modeling, considering variations in rheology and strength of the lithosphere in the Marmara region. In addition, our results have application in geo-resources exploration and would be helpful in risk management and hazard mitigation.

  10. Compilation of 3D global conductivity model of the Earth for space weather applications

    NASA Astrophysics Data System (ADS)

    Alekseev, Dmitry; Kuvshinov, Alexey; Palshin, Nikolay

    2015-07-01

    We have compiled a global three-dimensional (3D) conductivity model of the Earth with an ultimate goal to be used for realistic simulation of geomagnetically induced currents (GIC), posing a potential threat to man-made electric systems. Bearing in mind the intrinsic frequency range of the most intense disturbances (magnetospheric substorms) with typical periods ranging from a few minutes to a few hours, the compiled 3D model represents the structure in depth range of 0-100 km, including seawater, sediments, earth crust, and partly the lithosphere/asthenosphere. More explicitly, the model consists of a series of spherical layers, whose vertical and lateral boundaries are established based on available data. To compile a model, global maps of bathymetry, sediment thickness, and upper and lower crust thicknesses as well as lithosphere thickness are utilized. All maps are re-interpolated on a common grid of 0.25×0.25 degree lateral spacing. Once the geometry of different structures is specified, each element of the structure is assigned either a certain conductivity value or conductivity versus depth distribution, according to available laboratory data and conversion laws. A numerical formalism developed for compilation of the model, allows for its further refinement by incorporation of regional 3D conductivity distributions inferred from the real electromagnetic data. So far we included into our model four regional conductivity models, available from recent publications, namely, surface conductance model of Russia, and 3D conductivity models of Fennoscandia, Australia, and northwest of the United States.

  11. 3D conductive coupling for efficient generation of prominent Fano resonances in metamaterials

    NASA Astrophysics Data System (ADS)

    Liu, Zhiguang; Liu, Zhe; Li, Jiafang; Li, Wuxia; Li, Junjie; Gu, Changzhi; Li, Zhi-Yuan

    2016-06-01

    We demonstrate a 3D conductive coupling mechanism for the efficient generation of prominent and robust Fano resonances in 3D metamaterials (MMs) formed by integrating vertical U-shape split-ring resonators (SRRs) or vertical rectangular plates along a planar metallic hole array with extraordinary optical transmission (EOT). In such a configuration, intensified vertical E-field is induced along the metallic holes and naturally excites the electric resonances of the vertical structures, which form non-radiative “dark” modes. These 3D conductive “dark” modes strongly interfere with the “bright” resonance mode of the EOT structure, generating significant Fano resonances with both prominent destructive and constructive interferences. The demonstrated 3D conductive coupling mechanism is highly universal in that both 3D MMs with vertical SRRs and vertical plates exhibit the same prominent Fano resonances despite their dramatic structural difference, which is conceptually different from conventional capacitive and inductive coupling mechanisms that degraded drastically upon small structural deviations.

  12. Stereoscopic 3D video games and their effects on engagement

    NASA Astrophysics Data System (ADS)

    Hogue, Andrew; Kapralos, Bill; Zerebecki, Chris; Tawadrous, Mina; Stanfield, Brodie; Hogue, Urszula

    2012-03-01

    With television manufacturers developing low-cost stereoscopic 3D displays, a large number of consumers will undoubtedly have access to 3D-capable televisions at home. The availability of 3D technology places the onus on content creators to develop interesting and engaging content. While the technology of stereoscopic displays and content generation are well understood, there are many questions yet to be answered surrounding its effects on the viewer. Effects of stereoscopic display on passive viewers for film are known, however video games are fundamentally different since the viewer/player is actively (rather than passively) engaged in the content. Questions of how stereoscopic viewing affects interaction mechanics have previously been studied in the context of player performance but very few have attempted to quantify the player experience to determine whether stereoscopic 3D has a positive or negative influence on their overall engagement. In this paper we present a preliminary study of the effects stereoscopic 3D have on player engagement in video games. Participants played a video game in two conditions, traditional 2D and stereoscopic 3D and their engagement was quantified using a previously validated self-reporting tool. The results suggest that S3D has a positive effect on immersion, presence, flow, and absorption.

  13. Conductive Cellulose Composites with Low Percolation Threshold for 3D Printed Electronics.

    PubMed

    Park, Jae Sung; Kim, Taeil; Kim, Woo Soo

    2017-06-12

    We are reporting a 3D printable composite paste having strong thixotropic rheology. The composite has been designed and investigated with highly conductive silver nanowires. The optimized electrical percolation threshold from both simulation and experiment is shown from 0.7 vol. % of silver nanowires which is significantly lower than other composites using conductive nano-materials. Reliable conductivity of 1.19 × 10(2) S/cm has been achieved from the demonstrated 3D printable composite with 1.9 vol. % loading of silver nanowires. Utilizing the high conductivity of the printable composites, 3D printing of designed battery electrode pastes is demonstrated. Rheology study shows superior printability of the electrode pastes aided by the cellulose's strong thixotropic rheology. The designed anode, electrolyte, and cathode pastes are sequentially printed to form a three-layered lithium battery for the demonstration of a charging profile. This study opens opportunities of 3D printable conductive materials to create printed electronics with the next generation additive manufacturing process.

  14. A simple, low-cost conductive composite material for 3D printing of electronic sensors.

    PubMed

    Leigh, Simon J; Bradley, Robert J; Purssell, Christopher P; Billson, Duncan R; Hutchins, David A

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes ('rapid prototyping') before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term 'carbomorph' and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes.

  15. Electrochemical fields within 3D reconstructed microstructures of mixed ionic and electronic conducting devices

    NASA Astrophysics Data System (ADS)

    Zhang, Yanxiang; Chen, Yu; Lin, Ye; Yan, Mufu; Harris, William M.; Chiu, Wilson K. S.; Ni, Meng; Chen, Fanglin

    2016-11-01

    The performance and stability of the mixed ionic and electronic conducting (MIEC) membrane devices, such as solid oxide cells (SOCs) and oxygen separation membranes (OSMs) interplay tightly with the transport properties and the three-dimensional (3D) microstructure of the membrane. However, development of the MIEC devices is hindered by the limited knowledge about the distribution of electrochemical fields within the 3D local microstructures, especially at surface and interface. In this work, a generic model conforming to local thermodynamic equilibrium is developed to calculate the electrochemical fields, such as electric potential and oxygen chemical potential, within the 3D microstructure of the MIEC membrane. Stability of the MIEC membrane is evaluated by the distribution of oxygen partial pressure. The cell-level performance such as polarization resistance and voltage vs. current curve can be further calculated. Case studies are performed to demonstrate the capability of the framework by using X-ray computed tomography reconstructed 3D microstructures of a SOC and an OSM. The calculation method demonstrates high computational efficiency for large size 3D tomographic microstructures, and permits parallel calculation. The framework can serve as a powerful tool for correlating the transport properties and the 3D microstructure to the performance and the stability of MIEC devices.

  16. A Simple, Low-Cost Conductive Composite Material for 3D Printing of Electronic Sensors

    PubMed Central

    Leigh, Simon J.; Bradley, Robert J.; Purssell, Christopher P.; Billson, Duncan R.; Hutchins, David A.

    2012-01-01

    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes. PMID:23185319

  17. A Tunable 3D Nanostructured Conductive Gel Framework Electrode for High-Performance Lithium Ion Batteries.

    PubMed

    Shi, Ye; Zhang, Jun; Bruck, Andrea M; Zhang, Yiman; Li, Jing; Stach, Eric A; Takeuchi, Kenneth J; Marschilok, Amy C; Takeuchi, Esther S; Yu, Guihua

    2017-03-22

    This study develops a tunable 3D nanostructured conductive gel framework as both binder and conductive framework for lithium ion batteries. A 3D nanostructured gel framework with continuous electron pathways can provide hierarchical pores for ion transport and form uniform coatings on each active particle against aggregation. The hybrid gel electrodes based on a polypyrrole gel framework and Fe3 O4 nanoparticles as a model system in this study demonstrate the best rate performance, the highest achieved mass ratio of active materials, and the highest achieved specific capacities when considering total electrode mass, compared to current literature. This 3D nanostructured gel-based framework represents a powerful platform for various electrochemically active materials to enable the next-generation high-energy batteries.

  18. Precise 3D printing of micro/nanostructures using highly conductive carbon nanotube-thiol-acrylate composites

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Xiong, W.; Jiang, L. J.; Zhou, Y. S.; Lu, Y. F.

    2016-04-01

    Two-photon polymerization (TPP) is of increasing interest due to its unique combination of truly three-dimensional (3D) fabrication capability and ultrahigh spatial resolution of ~40 nm. However, the stringent requirements of non-linear resins seriously limit the material functionality of 3D printing via TPP. Precise fabrication of 3D micro/nanostructures with multi-functionalities such as high electrical conductivity and mechanical strength is still a long-standing challenge. In this work, TPP fabrication of arbitrary 3D micro/nanostructures using multi-walled carbon nanotube (MWNT)-thiolacrylate (MTA) composite resins has been developed. Up to 0.2 wt% MWNTs have been incorporated into thiol-acrylate resins to form highly stable and uniform composite photoresists without obvious degradation for one week at room temperature. Various functional 3D micro/nanostructures including woodpiles, micro-coils, spiral-like photonic crystals, suspended micro-bridges, micro-gears and complex micro-cars have been successfully fabricated. The MTA composite resin offers significant enhancements in electrical conductivity and mechanical strength, and on the same time, preserving high optical transmittance and flexibility. Tightly controlled alignment of MWNTs and the strong anisotropy effect were confirmed. Microelectronic devices including capacitors and resistors made of the MTA composite polymer were demonstrated. The 3D micro/nanofabrication using the MTA composite resins enables the precise 3D printing of micro/nanostructures of high electrical conductivity and mechanical strength, which is expected to lead a wide range of device applications, including micro/nano-electromechanical systems (MEMS/NEMS), integrated photonics and 3D electronics.

  19. Highly conductive, capacitive, flexible and soft electrodes based on a 3D graphene-nanotube-palladium hybrid and conducting polymer.

    PubMed

    Kim, Hyun-Jun; Randriamahazaka, Hyacinthe; Oh, Il-Kwon

    2014-12-29

    Highly conductive, capacitive and flexible electrodes are fabricated by employing 3D graphene-nanotube-palladium nanostructures and a PEDOT:PSS conducting polymer. The fabricated flexible electrodes, without any additional metallic current collectors, exhibit increased charge mobility and good mechanical properties; they also allow greater access to the electrolyte ions and hence are suitable for flexible energy storage applications. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. 3D fabrication of all-polymer conductive microstructures by two photon polymerization.

    PubMed

    Kurselis, Kestutis; Kiyan, Roman; Bagratashvili, Victor N; Popov, Vladimir K; Chichkov, Boris N

    2013-12-16

    A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.

  1. 3D effects on energetic particle confinement and stability

    NASA Astrophysics Data System (ADS)

    Spong, Don

    2010-11-01

    Understanding the confinement and stability of energetic particle (EP) populations in 3D magnetic configurations is crucial to the future of all toroidal devices. Tokamaks will have weak symmetry-breaking effects from discrete coils, heterogeneous distributions of ferritic materials and non-symmetric (ELM/RWM) control coils, while stellarators and helical RFP states have dominant 3D features by design. Significant EP issues for 3D systems include: modifications of the plasma equilibrium and potential amplification of field errors, asymmetry enhanced EP losses and their impact both on wall heat loads and the confined EP distribution, 3D modifications to the Alfvén gap and mode structure, and the stability properties of EP-destabilized Alfvén modes. 3D equilibria that resolve localized TBM (test blanket module) asymmetries have now been developed for DIII-D and ITER. Such symmetry breaking leads to enhanced EP losses and focused wall deposition. 3D effects also modify the Alfvén spectrum by increasing the number of possibilities for mode coupling and introducing new gap structures, including the helical and mirror gaps, fine scale ripple-induced gaps and continuum crossing gaps. Improved methods have recently been developed for evaluating these modes and their stability, taking into account the large number of coupled modes and finite orbit width effects. Successful Alfvén mode identifications have been made for a range of stellarators, including W7-AS, LHD, HSX and TJ-II. A comprehensive understanding of energetic particle physics with 3D effects is a necessary prerequisite for wall protection, plasma control and flexibility and for new diagnostic development possibilities in future ignited systems.

  2. Analysis on 3d Topography Effects on Magnetotelluric Responses

    NASA Astrophysics Data System (ADS)

    Nam, M.; Han, N.; Kim, H.; Song, Y.

    2010-12-01

    Magnetotelluric (MT) surveys based on a natural electromagnetic induction in the Earth have been conducted to investigate geothermal resources in Pohang, Jeju Island, and Seokmo Island, Korea. Although some of the MT surveys indicated fracture systems through which relatively high-temperature fluid flows, the temperature is still not enough for a traditional geothermal power plant. However, even when natural convective hydrothermal resources are unavailable, an enhanced geothermal system (EGS), a new type of geothermal power technologies, can produce heat and electricity by harnessing the energy from hot rock at depths ranging from about 3 km to 10 km. This fact makes EGS a hot issue in Korea for geothermal power plant, even though EGS not only has lower capacity of power generation than the traditional one but also more expensive. As a starting stage of site characterization for EGS, which will be followed by temperature and stress estimation, precise interpretation of MT data distorted by irregular surface terrain is critical in Korea, since almost 70% of the land of Korea is mountainous terrain. This study investigates topography effects on MT responses, i.e., apparent resistivities, phases, tippers and induction vectors for a three-dimensional (3D) hill model. To calculate MT responses for a model with surface topography, we use a 3D MT modeling algorithm based on an edge finite-element method. Numerical experiments indicate that current distortion by surface topography affects MT responses such as apparent resistivites, phases, and tippers. Apparent resistivities in the xy mode are slightly higher than the background resistivity near hill slopes in the x-direction while the resistivities are smaller over the hill. Distortions on amplitudes of tippers over a hill are quite similar to those over a valley. The directions of tippers over a hill are toward the summit of the hill, while those over a valley are toward the base.

  3. Electromagnetic Response Inversion for a 3D Distribution of Conductivity/Dielect

    SciTech Connect

    Newman, Gregory

    2001-10-24

    NLCGCS inverts electromagnetic responses for a 3D distribution of electrical conductivity and dielectric permittivity within the earth for geophysical applications using single processor computers. The software comes bundled with a graphical user interface to aid in model construction and analysis and viewing of earth images. The solution employs both dipole and finite size source configurations for harmonic oscillatory sources. A new nonlinear preconditioner is included in the solution to speed up solution convergence.

  4. Extreme low thermal conductivity in nanoscale 3D Si phononic crystal with spherical pores.

    PubMed

    Yang, Lina; Yang, Nuo; Li, Baowen

    2014-01-01

    In this work, we propose a nanoscale three-dimensional (3D) Si phononic crystal (PnC) with spherical pores, which can reduce the thermal conductivity of bulk Si by a factor up to 10,000 times at room temperature. Thermal conductivity of Si PnCs depends on the porosity, for example, the thermal conductivity of Si PnCs with porosity 50% is 300 times smaller than that of bulk Si. The phonon participation ratio spectra demonstrate that more phonons are localized as the porosity increases. The thermal conductivity is insensitive to the temperature changes from room temperature to 1100 K. The extreme-low thermal conductivity could lead to a larger value of ZT than unity as the periodic structure affects very little the electric conductivity.

  5. Human Sinoatrial Node Structure: 3D Microanatomy of Sinoatrial Conduction Pathways

    PubMed Central

    Csepe, Thomas A.; Zhao, Jichao; Hansen, Brian J.; Li, Ning; Sul, Lidiya V.; Lim, Praise; Wang, Yufeng; Simonetti, Orlando P.; Kilic, Ahmet; Mohler, Peter J.; Janssen, Paul ML.; Fedorov, Vadim V.

    2016-01-01

    Introduction Despite a century of extensive study on the human sinoatrial node (SAN), the structure-to-function features of specialized SAN conduction pathways (SACP) are still unknown and debated. We report a new method for direct analysis of the SAN microstructure in optically-mapped human hearts with and without clinical history of SAN dysfunction. Methods Two explanted donor human hearts were coronary-perfused and optically-mapped. Structural analyses of histological sections parallel to epicardium (~13-21μm intervals) were integrated with optical maps to create 3D computational reconstructions of the SAN complex. High-resolution fiber fields were obtained using 3D Eigen-analysis of the structure tensor, and used to analyze SACP microstructure with a fiber-tracking approach. Results Optical mapping revealed normal SAN activation of the atria through a lateral SACP proximal to the crista terminalis in Heart #1 but persistent SAN exit block in diseased Heart #2. 3D structural analysis displayed a functionally-observed SAN border composed of fibrosis, fat, and/or discontinuous fibers between SAN and atria, which was only crossed by several branching myofiber tracts in SACP regions. Computational 3D fiber-tracking revealed that myofiber tracts of SACPs created continuous connections between SAN #1 and atria, but in SAN #2, SACP region myofiber tracts were discontinuous due to fibrosis and fat. Conclusions We developed a new integrative functional, structural and computational approach that allowed for the resolution of the specialized 3D microstructure of human SACPs for the first time. Application of this integrated approach will shed new light on the role of the specialized SAN microanatomy in maintaining sinus rhythm. PMID:26743207

  6. Programming standards for effective S-3D game development

    NASA Astrophysics Data System (ADS)

    Schneider, Neil; Matveev, Alexander

    2008-02-01

    When a video game is in development, more often than not it is being rendered in three dimensions - complete with volumetric depth. It's the PC monitor that is taking this three-dimensional information, and artificially displaying it in a flat, two-dimensional format. Stereoscopic drivers take the three-dimensional information captured from DirectX and OpenGL calls and properly display it with a unique left and right sided view for each eye so a proper stereoscopic 3D image can be seen by the gamer. The two-dimensional limitation of how information is displayed on screen has encouraged programming short-cuts and work-arounds that stifle this stereoscopic 3D effect, and the purpose of this guide is to outline techniques to get the best of both worlds. While the programming requirements do not significantly add to the game development time, following these guidelines will greatly enhance your customer's stereoscopic 3D experience, increase your likelihood of earning Meant to be Seen certification, and give you instant cost-free access to the industry's most valued consumer base. While this outline is mostly based on NVIDIA's programming guide and iZ3D resources, it is designed to work with all stereoscopic 3D hardware solutions and is not proprietary in any way.

  7. Effects of 3D Virtual Reality of Plate Tectonics on Fifth Grade Students' Achievement and Attitude toward Science

    ERIC Educational Resources Information Center

    Kim, Paul

    2006-01-01

    This study examines the effects of a teaching method using 3D virtual reality simulations on achievement and attitude toward science. An experiment was conducted with fifth-grade students (N = 41) to examine the effects of 3D simulations, designed to support inquiry-based science curriculum. An ANOVA analysis revealed that the 3D group scored…

  8. Effects of 3D Virtual Reality of Plate Tectonics on Fifth Grade Students' Achievement and Attitude toward Science

    ERIC Educational Resources Information Center

    Kim, Paul

    2006-01-01

    This study examines the effects of a teaching method using 3D virtual reality simulations on achievement and attitude toward science. An experiment was conducted with fifth-grade students (N = 41) to examine the effects of 3D simulations, designed to support inquiry-based science curriculum. An ANOVA analysis revealed that the 3D group scored…

  9. 3D quantum gravity and effective noncommutative quantum field theory.

    PubMed

    Freidel, Laurent; Livine, Etera R

    2006-06-09

    We show that the effective dynamics of matter fields coupled to 3D quantum gravity is described after integration over the gravitational degrees of freedom by a braided noncommutative quantum field theory symmetric under a kappa deformation of the Poincaré group.

  10. Photopolymerization of 3D conductive polypyrrole structures via digital light processing

    NASA Astrophysics Data System (ADS)

    Price, Aaron D.

    2016-04-01

    The intrinsically conductive polymer polypyrrole is conventionally synthesized as monolithic films that exhibit significant actuation strains when subjected to an applied electric potential. Though numerous linear and bending actuators based on polypyrrole films have been investigated, the limitations inherent to planar film geometries inhibit the realization of more complex behaviours. Hence, three-dimensional polypyrrole structures are sought to greatly expand the potential applications for conductive polymer actuators. This research aims to develop a novel additive manufacturing method for the fabrication of three-dimensional structures of conductive polypyrrole. In this investigation, radiation-curing techniques are employed by means of digital light processing (DLP) technology. DLP is an additive manufacturing technique where programmed light patterns emitted from a dedicated source are used to selectively cure a specially formulated polymer resin. Successive curing operations lead to a layered 3D structure into which fine features may be incorporated. Energy dispersive spectroscopy (EDS) is subsequently employed to examine the unique microstructural features of the resultant 3D printed polymer morphology in order to elucidate the nature of the conductivity. These polymer microstructures are highly desirable since actuation response times are highly dependent on ion transport distances, and hence the ability to fabricate fine features offers a potential mechanism to improve actuator performance.

  11. THERM3D -- A boundary element computer program for transient heat conduction problems

    SciTech Connect

    Ingber, M.S.

    1994-02-01

    The computer code THERM3D implements the direct boundary element method (BEM) to solve transient heat conduction problems in arbitrary three-dimensional domains. This particular implementation of the BEM avoids performing time-consuming domain integrations by approximating a ``generalized forcing function`` in the interior of the domain with the use of radial basis functions. An approximate particular solution is then constructed, and the original problem is transformed into a sequence of Laplace problems. The code is capable of handling a large variety of boundary conditions including isothermal, specified flux, convection, radiation, and combined convection and radiation conditions. The computer code is benchmarked by comparisons with analytic and finite element results.

  12. A miniature microbial fuel cell with conducting nanofibers-based 3D porous biofilm

    NASA Astrophysics Data System (ADS)

    Jiang, Huawei; Halverson, Larry J.; Dong, Liang

    2015-12-01

    Miniature microbial fuel cell (MFC) technology has received growing interest due to its potential applications in high-throughput screening of bacteria and mutants to elucidate mechanisms of electricity generation. This paper reports a novel miniature MFC with an improved output power density and short startup time, utilizing electrospun conducting poly(3,4-ethylenedioxythiophene) (PEDOT) nanofibers as a 3D porous anode within a 12 μl anolyte chamber. This device results in 423 μW cm-3 power density based on the volume of the anolyte chamber, using Shewanella oneidensis MR-1 as a model biocatalyst without any optimization of bacterial culture. The device also excels in a startup time of only 1hr. The high conductivity of the electrospun nanofibers makes them suitable for efficient electron transfer. The mean pore size of the conducting nanofibers is several micrometers, which is favorable for bacterial penetration and colonization of surfaces of the nanofibers. We demonstrate that S. oneidensis can fully colonize the interior region of this nanofibers-based porous anode. This work represents a new attempt to explore the use of electrospun PEDOT nanofibers as a 3D anode material for MFCs. The presented miniature MFC potentially will provide a high-sensitivity, high-throughput tool to screen suitable bacterial species and mutant strains for use in large-size MFCs.

  13. Direct synthesis of graphene 3D-coated Cu nanosilks network for antioxidant transparent conducting electrode.

    PubMed

    Xu, Hongmei; Wang, Huachun; Wu, Chenping; Lin, Na; Soomro, Abdul Majid; Guo, Huizhang; Liu, Chuan; Yang, Xiaodong; Wu, Yaping; Cai, Duanjun; Kang, JunYong

    2015-06-28

    Transparent conducting film occupies an important position in various optoelectronic devices. To replace the costly tin-doped indium oxide (ITO), promising materials, such as metal nanowires and graphene, have been widely studied. Moreover, a long-pursued goal is to consolidate these two materials together and express their outstanding properties simultaneously. We successfully achieved a direct 3D coating of a graphene layer on an interlacing Cu nanosilks network by the low pressure chemical vapor deposition method. High aspect ratio Cu nanosilks (13 nm diameter with 40 μm length) were synthesized through the nickel ion catalytic process. Large-size, transparent conducting film was successfully fabricated with Cu nanosilks ink by the imprint method. A magnetic manipulator equipped with a copper capsule was used to produce high Cu vapor pressure on Cu nanosilks and realize the graphene 3D-coating. The coated Cu@graphene nanosilks network achieved high transparency, low sheet resistance (41 Ohm sq(-1) at 95% transmittance) and robust antioxidant ability. With this technique, the transfer process of graphene is no longer needed, and a flexible, uniform and high-performance transparent conducting film could be fabricated in unlimited size.

  14. Magnetoneurographic 3D localization of conduction blocks in patients with unilateral S1 root compression.

    PubMed

    Mackert, B M; Curio, G; Burghoff, M; Trahms, L; Marx, P

    1998-08-01

    Tibial nerve somatosensory evoked magnetic fields (tSEFs) over the lower back reflect the propagation of compound action currents along fibers of plexus, nerve roots and cauda equina. One clinical perspective for this 'magnetoneurography' is the non-invasive 3D localization of focal slowing or blocks of conduction. Here, first tSEF mappings in 3 consecutive patients with acute unilateral S1 nerve root compression are reported. Right and left tibial nerves were electrostimulated in alternation; tSEF responses were recorded using a multichannel SQUID-detector; additionally, spinal and cortical SEP, F-wave and H-reflex studies were performed. In all patients an intraindividual side-to-side comparison of spinal tSEF mappings was obtained: using a dipolar source model compound action currents could be visualized propagating along plexus, nerve roots and cauda equina on the non-affected side whereas on the affected side normally-propagating dipolar field patterns could be recorded only distal to the spinal transforaminal root entrance; this reflects focal slowing or block of conduction in nerve root fibers as indicated by the SEP, F-wave and H-reflex study results. With a registration time of 15 min a 3D localization of proximal slowing or block of conduction was successfully performed in patients suffering from acute nerve root lesions.

  15. Robotic extrusion processes for direct ink writing of 3D conductive polyaniline structures

    NASA Astrophysics Data System (ADS)

    Holness, F. Benjamin; Price, Aaron D.

    2016-04-01

    The intractable nature of intrinsically conductive polymers (ICP) leads to practical limitations in the fabrication of ICP-based transducers having complex three-dimensional geometries. Conventional ICP device fabrication processes have focused primarily on thin-film deposition techniques; therefore this study explores novel additive manufacturing processes specifically developed for ICP with the ultimate goal of increasing the functionality of ICP sensors and actuators. Herein we employ automated polymer paste extrusion processes for the direct ink writing of 3D conductive polyaniline (PANI) structures. Realization of these structures is enabled through a modified fused filament fabrication delta robot equipped with an integrated polymer paste extruder. This unique robot-controlled additive manufacturing platform is capable of fabricating high-resolution 3D conductive PANI and has been utilized to produce structures with a minimum feature size of 1.5 mm. The required processability of PANI is achieved by means of a counter-ion induced thermal doping method. Using this method, a viscous paste is formulated as the extrudate and a thermo-chemical treatment is applied post extrusion to finalize the complexation.

  16. Modeling geomagnetic induction hazards using a 3-D electrical conductivity model of Australia

    NASA Astrophysics Data System (ADS)

    Wang, Liejun; Lewis, Andrew M.; Ogawa, Yasuo; Jones, William V.; Costelloe, Marina T.

    2016-12-01

    The surface electric field induced by external geomagnetic source fields is modeled for a continental-scale 3-D electrical conductivity model of Australia at periods of a few minutes to a few hours. The amplitude and orientation of the induced electric field at periods of 360 s and 1800 s are presented and compared to those derived from a simplified ocean-continent (OC) electrical conductivity model. It is found that the induced electric field in the Australian region is distorted by the heterogeneous continental electrical conductivity structures and surrounding oceans. On the northern coastlines, the induced electric field is decreased relative to the simple OC model due to a reduced conductivity contrast between the seas and the enhanced conductivity structures inland. In central Australia, the induced electric field is less distorted with respect to the OC model as the location is remote from the oceans, but inland crustal high-conductivity anomalies are the major source of distortion of the induced electric field. In the west of the continent, the lower conductivity of the Western Australia Craton increases the conductivity contrast between the deeper oceans and land and significantly enhances the induced electric field. Generally, the induced electric field in southern Australia, south of latitude -20°, is higher compared to northern Australia. This paper provides a regional indicator of geomagnetic induction hazards across Australia.

  17. Radiation Effects in 3D Integrated SOl SRAM Circuits

    DTIC Science & Technology

    2011-08-23

    Comparing Neutrons and Protons Data Monoenergetic neutrons and protons are used to characterize single event effects in electronics circuits, and are...for proton irradiation with energies between 4.8 and 500 MeV. Results are compared with 14-MeV neutron irradiation. Single event upset cross-section...fabricating circuits for space applications. singIe event effects, SOl, fully depleted, 3D integration, neutron , protons, upset cross-section U U U U SAR

  18. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  19. 3D effects on RWM physics in RFX-mod

    NASA Astrophysics Data System (ADS)

    Baruzzo, M.; Bolzonella, T.; Guo, S. C.; Liu, Y. Q.; Marchiori, G.; Paccagnella, R.; Soppelsa, A.; Villone, F.; Wang, Z. R.

    2011-08-01

    In this paper insights into the behaviour of resistive wall modes (RWMs) in the RFX-mod reversed field pinch device are given, with a focus on 3D issues in the characterization of the m spectrum of the mode and on the study of multi-harmonic coupling. In the first part of the paper the interaction between multiple unstable RWMs is studied and the presence of a coupling between different poloidal components of the most unstable RWM is demonstrated, taking advantage of the flexibility of the RFX-mod control system. In the second part of the work, the dependence of the growth rates of RWMs on a complete set of plasma parameters is studied in order to create a complete and homogeneous database, which permits a careful validation of stability codes. Finally, the experimental data are compared with the code predictions which take into account the 3D structure of conductors around the plasma. The different effects that modify the simple description, where unstable modes can be identified with single Fourier harmonics, appear to be explained by a mixture of toroidicity-induced and 3D eddy current effects.

  20. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2013-11-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform (DTP) with spatial data and query processing capabilities of Geographic Information Systems (GIS), multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized Directional Replacement Policy (DRP) based buffer management scheme. Polyhedron structures are used in Digital Surface Modeling (DSM) and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g. X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  1. Toward A 3-D Picture of Hydraulic Conductivity With Multilevel Slug Tests

    NASA Astrophysics Data System (ADS)

    McElwee, C. D.; McElwee, C. D.; Ross, H. C.

    2001-12-01

    The GEMS (Geohydrologic Experiment and Monitoring Site) field area has been established (in the Kansas River valley near Lawrence, Kansas) for a variety of reasons relating to research and teaching in hydrogeology at the University of Kansas. Over 70 wells have been installed for various purposes. The site overlies an alluvial aquifer with a total thickness of about 70 feet. The water table is typically about 20 feet below the surface, giving a total saturated thickness of about 50 feet. The upper part of the aquifer is finer material consisting of silt and clay. Typically, the lower 35 feet of the aquifer is sand and gravel. A number of wells through out the site are fully screened through the sand and gravel aquifer. Some of these fully screened wells are larger diameters; however, most wells are constructed of 2 inch PVC casing. Slug tests are widely used in hydrogeology to measure hydraulic conductivity. Over the last several years we have been conducting research to improve the slug test method. We have previously reported the detailed structure of hydraulic conductivity that can be seen in a 5 inch well (McElwee and Zemansky, EOS, v. 80, no. 46, p. F397, 1999) at this site, using multilevel slug tests. The existing 2 inch, fully screened wells are spread out over the site and offer the opportunity for developing a 3-D picture of the hydraulic conductivity distribution. However, it is difficult to develop a system that allows multilevel slug tests to be done accurately and efficiently in a 2 inch well. This is especially true in regions of very high hydraulic conductivity, where the water velocity in the casing will be relatively high. The resistance caused by frictional forces in the equipment must be minimized and a model taking account of these forces must be used. We have developed a system (equipment, software, and technique) for performing multilevel slug tests in 2 inch wells. Some equipment configurations work better than others. The data that we have

  2. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  3. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates. © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  4. 3D FEM Simulations of Drop Test Reliability on 3D-WLP: Effects of Solder Reflow Residual Stress and Molding Resin Parameters

    NASA Astrophysics Data System (ADS)

    Belhenini, Soufyane; Tougui, Abdellah; Bouchou, Abdelhake; Mohan, Ranganathan; Dosseul, Franck

    2014-01-01

    Numerous three-dimensional (3D) packaging technologies are currently used for 3D integration. 3D-wafer level package (3D-WLP) appears to be a way to keep increasing the density of the microelectronic components. The reliability of 3D components has to be evaluated on mechanical demonstrators with daisy chains before real production. Numerical modeling is acknowledged as a very efficient tool for design optimization. In this paper, 3D finite-elements calculations are carried out to analyze the effects of molding resin's mechanical properties and thickness on the 3D component's dynamic response under drop loading conditions. Residual stress generated by solder reflow is also discussed. The influences of residual stresses on the numerical estimation of the component behavior during drop loading are studied. Solder reflow residual stresses have an impact on solder plastic strain and die equivalent stress calculations. We have compared the result of two numerical drop test models. Stress-free initial conduction is introduced for the first model. Solder reflow residual stresses are considered as the initial condition for the second drop test model. Quantitative and qualitative comparisons are carried out to show the effect of residual stress in drop test calculations. For the effect of molding resin thickness on the component behavior under drop loading, the stress-free initial condition is considered. The effect of the molding resin's thickness on critical area location is discussed. The solder bump maximum plastic shear strain and the silicon die maximum equivalent stress are used as reliability criteria. Numerical submodeling techniques are used to increase calculation accuracy. Numerical results have contributed to the design optimization of the 3D-WLP component.

  5. Finite-Difference Algorithm for Simulating 3D Electromagnetic Wavefields in Conductive Media

    NASA Astrophysics Data System (ADS)

    Aldridge, D. F.; Bartel, L. C.; Knox, H. A.

    2013-12-01

    Electromagnetic (EM) wavefields are routinely used in geophysical exploration for detection and characterization of subsurface geological formations of economic interest. Recorded EM signals depend strongly on the current conductivity of geologic media. Hence, they are particularly useful for inferring fluid content of saturated porous bodies. In order to enhance understanding of field-recorded data, we are developing a numerical algorithm for simulating three-dimensional (3D) EM wave propagation and diffusion in heterogeneous conductive materials. Maxwell's equations are combined with isotropic constitutive relations to obtain a set of six, coupled, first-order partial differential equations governing the electric and magnetic vectors. An advantage of this system is that it does not contain spatial derivatives of the three medium parameters electric permittivity, magnetic permeability, and current conductivity. Numerical solution methodology consists of explicit, time-domain finite-differencing on a 3D staggered rectangular grid. Temporal and spatial FD operators have order 2 and N, where N is user-selectable. We use an artificially-large electric permittivity to maximize the FD timestep, and thus reduce execution time. For the low frequencies typically used in geophysical exploration, accuracy is not unduly compromised. Grid boundary reflections are mitigated via convolutional perfectly matched layers (C-PMLs) imposed at the six grid flanks. A shared-memory-parallel code implementation via OpenMP directives enables rapid algorithm execution on a multi-thread computational platform. Good agreement is obtained in comparisons of numerically-generated data with reference solutions. EM wavefields are sourced via point current density and magnetic dipole vectors. Spatially-extended inductive sources (current carrying wire loops) are under development. We are particularly interested in accurate representation of high-conductivity sub-grid-scale features that are common

  6. 3-D effects of polarization switching on interdigitated electroded ferroelectrics

    NASA Astrophysics Data System (ADS)

    Pisani, David M.; Lynch, C. S.

    2011-04-01

    Interdigitated electrodes are used to obtain an in-plane d33 coupling from patch actuators. Existing design tools do not take into consideration the three dimensional effects of polarization reorientation. This work presents a 3-D finite element code that utilizes a micromechancial constitutive law with full ferroelectric switching. The code is used to explore the design of interdigitated electrode devices. The results point to several parameters that are important to the design of these devices. These include electrode spacing, electrode width, specimen thickness, and specimen depth.

  7. 3D controlled electrorotation of conducting tri-axial ellipsoidal nanoparticles

    NASA Astrophysics Data System (ADS)

    Weis Goldstein, Ben; Miloh, Touvia

    2017-05-01

    We present a theoretical study of 3D electrorotation of ideally polarizable (metallic) nano∖micro-orthotropic particles that are freely suspended in an unbounded monovalent symmetric electrolyte. The metallic tri-axial ellipsoidal particle is subjected to three independent uniform AC electric fields acting along the three principal axes of the particle. The analysis of the electrokinetic problem is carried under the Poisson-Nernst-Planck approximation and the standard "weak" field assumption. For simplicity, we consider the electric double layer as thin and the Dukhin number to be small. Both nonlinear phenomena of dielectrophoresis induced by the dipole-moment within the particle and the induced-charge electrophoresis caused by the Coulombic force density within the Debye layer in the solute surrounding the conducting particle are analytically analyzed by linearization, constructing approximate expressions for the total dipolophoresis angular particle motion for various geometries. The analytical expressions thus obtained are valid for an arbitrary tri-axial orthotropic (exhibiting three planes of symmetry) particle, excited by an arbitrary ambient three-dimensional AC electric field of constant amplitude. The present study is general in the sense that by choosing different geometric parameters of the ellipsoidal particle, the corresponding nonlinear electrostatic problem governed by the Robin (mixed-type) boundary condition can be reduced to common nano-shapes including spheres, slender rods (needles), prolate and oblate spheroids, as well as flat disks. Furthermore, by controlling the parameters (amplitudes and phases) of the forcing electric field, one can reduce the present general 3D electrokinetic model to the familiar planar electro-rotation (ROT) and electro-orientation (EOR) cases.

  8. Parallel computing simulation of electrical excitation and conduction in the 3D human heart.

    PubMed

    Di Yu; Dongping Du; Hui Yang; Yicheng Tu

    2014-01-01

    A correctly beating heart is important to ensure adequate circulation of blood throughout the body. Normal heart rhythm is produced by the orchestrated conduction of electrical signals throughout the heart. Cardiac electrical activity is the resulted function of a series of complex biochemical-mechanical reactions, which involves transportation and bio-distribution of ionic flows through a variety of biological ion channels. Cardiac arrhythmias are caused by the direct alteration of ion channel activity that results in changes in the AP waveform. In this work, we developed a whole-heart simulation model with the use of massive parallel computing with GPGPU and OpenGL. The simulation algorithm was implemented under several different versions for the purpose of comparisons, including one conventional CPU version and two GPU versions based on Nvidia CUDA platform. OpenGL was utilized for the visualization / interaction platform because it is open source, light weight and universally supported by various operating systems. The experimental results show that the GPU-based simulation outperforms the conventional CPU-based approach and significantly improves the speed of simulation. By adopting modern computer architecture, this present investigation enables real-time simulation and visualization of electrical excitation and conduction in the large and complicated 3D geometry of a real-world human heart.

  9. 3D current source density imaging based on acoustoelectric effect: a simulation study using unipolar pulses

    PubMed Central

    Yang, Renhuan; Li, Xu; Liu, Jun; He, Bin

    2011-01-01

    It is of importance to image electrical activity and properties of biological tissues. Recently hybrid imaging modality combing ultrasound scanning and source imaging through the acousto-electric (AE) effect has generated considerable interest. Such modality has the potential to provide high spatial resolution current density imaging by utilizing the pressure induced AE resistivity change confined at the ultrasound focus. In this study, we investigate a novel 3-dimensional (3D) ultrasound current source density imaging (UCSDI) approach using unipolar ultrasound pulses. Utilizing specially designed unipolar ultrasound pulses and by combining AE signals associated to the local resistivity changes at the focusing point, we are able to reconstruct the 3D current density distribution with the boundary voltage measurements obtained while performing a 3D ultrasound scan. We have shown in computer simulation that using the present method, it is feasible to image with high spatial resolution an arbitrary 3D current density distribution in an inhomogeneous conductive media. PMID:21628774

  10. Regional conductivity structure of Cascadia from 3D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Egbert, G. D.; Patro, P. K.

    2008-12-01

    Magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental US through EMScope, a part of the USArray component of EarthScope. Initial deployments in 2006 and 2007 acquired data at 110 sites covering the US Pacific Northwest. The MT sites, distributed with the same nominal spacing as the USArray seismic transportable array (~75 km), produced data in the period range 10- 20,000s of very good to excellent quality. The most striking and robust feature revealed by 3D inversion of this dataset is an extensive lower crustal conductor covering most of the study area southeast of a line running from the California border at the coast to the Blue Mountains of Northeastern Oregon. The conductance of this layer, which is about 15 km thick with a top at roughly 20 km depth, exceeds 3000 S beneath the he Northwest Basin and Range (BR) province of southeastern Oregon. The high conductivity in this region is inferred to result from fluids - including possibly partial melt at depth - associated with magmatic underplating and BR extension. The lower crust is much more resistive beneath the Coast Range, Willamette Valley and Puget Lowlands of Western Washington and Oregon, and beneath the Columbia Plateau. This area of resistive crust, which was derived from a large fragment of thickened oceanic lithosphere that was accreted to North America at approximately 48 Ma ("Siletzia"), is revealed by geological and geodetic studies to be strong, accommodating tectonic stresses through rigid block rotations. In contrast, the area to the southeast characterized by high conductivity in the lower crust is actively deforming, consistent with an important role for fluids in weakening of continental crust. The resistive Siletzia crust is broken by an elongated N-S zone of high conductivity beneath the Cascade volcanoes. High conductivities beneath the volcanoes also most likely reflect the presence of interconnected fluids, in this case released

  11. A study of tensile and thermal properties of 3D printed conductive ABS - ZnO composite

    NASA Astrophysics Data System (ADS)

    Aw, Y. Y.; Yeoh, C. K.; Idris, M. A.; Amali, H. K.; Aqzna, S. S.; Teh, P. L.

    2017-04-01

    Research into 3D printed composites are interesting because the properties of 3D printed components are usually insufficient for robust engineering applications. In this paper, conductive ABS - ZnO composites were successfully fabricated using a 3D printer. Tensile strength increases when filler loading increases up to 11wt%. Dynamic storage modulus of the conductive ABS-ZnO composite increases with the addition of ZnO filler, indicating stiffness enhancement of the composites. Higher loss modulus is also observed on samples with ZnO filler. Thermal conductivity increases from 0.2204 W/mK to 0.3508 W/mK when the filler concentration increases to 14wt% due to the formation of conductive network among fillers within the polymer matrix. With these promising tensile and thermal properties, the 3D printed composites are suitable to be used as automobile parts.

  12. The Effect Of 3D Audio And Other Audio Techniques On Virtual Reality Experience.

    PubMed

    Brinkman, Willem-Paul; Hoekstra, Allart R D; van Egmond, René

    2015-01-01

    Three studies were conducted to examine the effect of audio on people's experience in a virtual world. The first study showed that people could distinguish between mono, stereo, Dolby surround and 3D audio of a wasp. The second study found significant effects for audio techniques on people's self-reported anxiety, presence, and spatial perception. The third study found that adding sound to a visual virtual world had a significant effect on people's experience (including heart rate), while it found no difference in experience between stereo and 3D audio.

  13. Electromagnetic mini arrays (EMMA project). 3D modeling/inversion for mantle conductivity in the Archaean of the Fennoscandian Shield

    NASA Astrophysics Data System (ADS)

    Smirnov, M. Yu.; Korja, T.; Pedersen, L. B.

    2009-04-01

    Two electromagnetic arrays are used in the EMMA project to study conductivity structure of the Archaean lithosphere in the Fennoscandian Shield. The first array was operated during almost one year, while the second one was running only during the summer time. Twelve 5-components magnetotelluric instruments with fluxgate magnetometers recorded simultaneously time variations of Earth's natural electromagnetic field at the sites separated by c. 30 km. To better control the source field and to obtain galvanic distortion free responses we have applied horizontal spatial gradient (HSG) technique to the data. The study area is highly inhomogeneous, thus classical HSG might give erroneous results. The method was extended to include anomalous field effects by implementing multivariate analysis. The HSG transfer functions were then used to control static shift distortions of apparent resistivities. During the BEAR experiment 1997-2002, the conductance map of entire Fennoscandia was assembled and finally converted into 3D volume resistivity model. We have used the model, refined it to get denser grid around measurement area and calculated MT transfer functions after 3D modeling. We have used trial-and-error method in order to further improve the model. The data set was also inverted using 3D code of Siripunvaraporn (2005). In the first stage we have used homogeneous halfspace as starting model for the inversion. In the next step we have used final 3D forward model as apriori model. The usage of apriori information significantly stabilizes the inverse solution, especially in case of a limited amount of data available. The results show that in the Archaean Domain a conductive layer is found in the upper/middle crust on contrary to previous results from other regions of the Archaean crust in the Fennoscandian Shield. Data also suggest enhanced conductivity at the depth of c. 100 km. Conductivity below the depth of 200-250 km is lower than that of the laboratory based estimates

  14. Properties of the magmatic system that feeds Yellowstone inferred from 3-D electrical conductivity model

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Egbert, G. D.; Degroot-Hedlin, C. D.; Meqbel, N.

    2010-12-01

    We have performed a set of three dimensional inversions of magnetotelluric data in the Snake River Plain and Yellowstone areas. We used a total of 73 sites from Earthscope MT Transportable Array (Idaho, Montana and Wyoming areas) and a subset of 19 sites from an earlier long-period MT survey in the Snake River Plain (SRP). Data for 14 periods from 7.3 secs to 5.2 hours were inverted for 3D inverse conductivity models on 7 and 14 km grids, fitting both the impedances (with 5% error floors) and the vertical magnetic transfer functions to an RMS of 2.3 (14 km grid) and 2.7 (7 km grid). The images reveal the presence of a large, interconnected conductive body beneath the Eastern and central SRP. The lithospheric (40-100 km depths) anomaly extends to at least 200 km southwest of Yellowstone, roughly parallel to the direction of North America absolute motion. The anomaly connects to the near-surface in several locations along and to the North of the SRP, as well as directly beneath the Yellowstone caldera. There, highly conductive (~ 1 S/m) shallow anomalies are to be found. This leads us to believe that the complex lithospheric feature beneath the SRP represents a magma reservoir, rich in volatile constituents, that feeds the Yellowstone hotspot. Additionally, in several locations beneath the Eastern SRP very high conductivities (a few S/m) are imaged at or near the base of the lower crust. These can probably be explained by a combination of partial melt, and highly saline fluids exsolved during magmatic underplating. We also see a weaker (~ 0.02 S/m) deep mantle conductor centered around Yellowstone that broadens with depth, extending all the way to the transition zone or deeper. Plausibly this reflects the seismically imaged thermal anomaly (Yuan and Duecker, 2005; Smith et al,, 2009), poorly resolved by the MT data, which are much more strongly impacted by partial melt and fluids present at shallower depths. The lateral spatial extent of the mantle conductive

  15. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  16. The Effects of 3D Computer Simulation on Biology Students' Achievement and Memory Retention

    ERIC Educational Resources Information Center

    Elangovan, Tavasuria; Ismail, Zurida

    2014-01-01

    A quasi experimental study was conducted for six weeks to determine the effectiveness of two different 3D computer simulation based teaching methods, that is, realistic simulation and non-realistic simulation on Form Four Biology students' achievement and memory retention in Perak, Malaysia. A sample of 136 Form Four Biology students in Perak,…

  17. 3D soil water nowcasting using electromagnetic conductivity imaging and the ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi; McBratney, Alex; Minasny, Budiman; Triantafilis, John

    2017-04-01

    Mapping and immediate forecasting of soil water content (θ) and its movement can be challenging. Although apparent electrical conductivity (ECa) measured by electromagnetic induction has been used, it is difficult to apply it along a transect or across a field. Across a 3.95-ha field with varying soil texture, an ensemble Kalman filter (EnFK) was used to monitor and nowcast θ dynamics in 2-d and 3-d over 16 days. The EnKF combined a physical model fitted with θ measured by soil moisture sensors and an Artificial Neural Network model comprising estimate of true electrical conductivity (σ) generated by inversions of DUALEM-421S ECa data. Results showed that the spatio-temporal variation in θ can be successfully modelled using the EnKF (Lin's concordance = 0.89). Soil water dried fast at the beginning of the irrigation and decreased with time and soil depth, which were consistent with the classical soil drying theory and experiments. It was also found that the soil dried fast in the loamy and duplex soils across the field, which was attributable to deep drainage and preferential flows. It was concluded that the EnKF approach can be used to better the irrigation practice so that variation in irrigation is minimised and irrigation efficiency is improved by applying variable rates of irrigation across the field. In addition, soil water status can be nowcasted using this method with weather forecast information, which will provide guidance to farmers for real-time irrigation management.

  18. 3D soil water nowcasting using electromagnetic conductivity imaging and the ensemble Kalman filter

    NASA Astrophysics Data System (ADS)

    Huang, Jingyi; McBratney, Alex B.; Minasny, Budiman; Triantafilis, John

    2017-06-01

    Mapping and immediate forecasting of soil water content (θ) and its movement can be challenging. Although inversion of apparent electrical conductivity (ECa) measured by electromagnetic induction to calculate depth-specific electrical conductivity (σ) has been used, it is difficult to apply it across a field. In this paper we use a calibration established along a transect, across a 3.94-ha field with varying soil texture, using an ensemble Kalman filter (EnKF) to monitor and nowcast the 3-dimensional θ dynamics on 16 separate days over a period of 38 days. The EnKF combined a physical model fitted with θ measured by soil moisture sensors and an Artificial Neural Network model comprising σ generated by quasi-3d inversions of DUALEM-421S ECa data. Results showed that the distribution of θ was controlled by soil texture, topography, and vegetation. Soil water dried fastest at the beginning after the initial irrigation event and decreased with time and soil depth, which was consistent with classical soil drying theory and experiments. It was also found that the soil dried fastest in the loamy and duplex soils present in the field, which was attributable to deep drainage and preferential flow. It was concluded that the EnKF approach can be used to improve the irrigation efficiency by applying variable irrigation rates across the field. In addition, soil water status can be nowcasted across large spatial extents using this method with weather forecast information, which will provide guidance to farmers for real-time irrigation management.

  19. New Global 3D Upper to Mid-mantle Electrical Conductivity Model Based on Observatory Data with Realistic Auroral Sources

    NASA Astrophysics Data System (ADS)

    Kelbert, A.; Egbert, G. D.; Sun, J.

    2011-12-01

    Poleward of 45-50 degrees (geomagnetic) observatory data are influenced significantly by auroral ionospheric current systems, invalidating the simplifying zonal dipole source assumption traditionally used for long period (T > 2 days) geomagnetic induction studies. Previous efforts to use these data to obtain the global electrical conductivity distribution in Earth's mantle have omitted high-latitude sites (further thinning an already sparse dataset) and/or corrected the affected transfer functions using a highly simplified model of auroral source currents. Although these strategies are partly effective, there remain clear suggestions of source contamination in most recent 3D inverse solutions - specifically, bands of conductive features are found near auroral latitudes. We report on a new approach to this problem, based on adjusting both external field structure and 3D Earth conductivity to fit observatory data. As an initial step towards full joint inversion we are using a two step procedure. In the first stage, we adopt a simplified conductivity model, with a thin-sheet of variable conductance (to represent the oceans) overlying a 1D Earth, to invert observed magnetic fields for external source spatial structure. Input data for this inversion are obtained from frequency domain principal components (PC) analysis of geomagnetic observatory hourly mean values. To make this (essentially linear) inverse problem well-posed we regularize using covariances for source field structure that are consistent with well-established properties of auroral ionospheric (and magnetospheric) current systems, and basic physics of the EM fields. In the second stage, we use a 3D finite difference inversion code, with source fields estimated from the first stage, to further fit the observatory PC modes. We incorporate higher latitude data into the inversion, and maximize the amount of available information by directly inverting the magnetic field components of the PC modes, instead of

  20. Estimating Hydraulic Conductivities in a Fractured Shale Formation from Pressure Pulse Testing and 3d Modeling

    NASA Astrophysics Data System (ADS)

    Courbet, C.; DICK, P.; Lefevre, M.; Wittebroodt, C.; Matray, J.; Barnichon, J.

    2013-12-01

    logging, porosity varies by a factor of 2.5 whilst hydraulic conductivity varies by 2 to 3 orders of magnitude. In addition, a 3D numerical reconstruction of the internal structure of the fault zone inferred from borehole imagery has been built to estimate the permeability tensor variations. First results indicate that hydraulic conductivity values calculated for this structure are 2 to 3 orders of magnitude above those measured in situ. Such high values are due to the imaging method that only takes in to account open fractures of simple geometry (sine waves). Even though improvements are needed to handle more complex geometry, outcomes are promising as the fault damaged zone clearly appears as the highest permeability zone, where stress analysis show that the actual stress state may favor tensile reopening of fractures. Using shale samples cored from the different internal structures of the fault zone, we aim now to characterize the advection and diffusion using laboratory petrophysical tests combined with radial and through-diffusion experiments.

  1. Spin-dependent Peltier effect in 3D topological insulators

    NASA Astrophysics Data System (ADS)

    Sengupta, Parijat; Kubis, Tillmann; Povolotskyi, Michael; Klimeck, Gerhard

    2013-03-01

    The Peltier effect represents the heat carrying capacity of a certain material when current passes through it. When two materials with different Peltier coefficients are placed together, the Peltier effect causes heat to flow either towards or away from the interface between them. This work utilizes the spin-polarized property of 3D topological insulator (TI) surface states to describe the transport of heat through the spin-up and spin-down channels. It has been observed that the spin channels are able to carry heat independently of each other. Spin currents can therefore be employed to supply or extract heat from an interface between materials with spin-dependent Peltier coefficients. The device is composed of a thin film of Bi2Se3 sandwiched between two layers of Bi2Te3. The thin film of Bi2Se3serves both as a normal and topological insulator. It is a normal insulator when its surfaces overlap to produce a finite band-gap. Using an external gate, Bi2Se3 film can be again tuned in to a TI. Sufficiently thick Bi2Te3 always retain TI behavior. Spin-dependent Peltier coefficients are obtained and the spin Nernst effect in TIs is shown by controlling the temperature gradient to convert charge current to spin current.

  2. Predicting ground geoelectric field using magnetospheric model and 3d conductivity model of Earth

    NASA Astrophysics Data System (ADS)

    Honkonen, I. J.; Kuvshinov, A. V.; Rastaetter, L.; Pulkkinen, A. A.

    2016-12-01

    We present a numerical scheme for modeling the effect of space weather on ground geoelectric field which takes into account the 3-dimensional distribution of Earth's conductivity. The scheme involves two steps: 1) Using a magnetohydrodynamic model of the magnetosphere coupled to an electrostatic model of the ionosphere, we compute the external magnetic field source (in the form of equivalent currents) that is responsible for a specific geomagnetic disturbance. 2) Solving the induction equations for a given source from step 1 and given 3-dimensional conductivity model of the Earth. We implement a scheme to compute geoelectric and magnetic fields during Halloween storm (2003-10-29) and discuss the results.

  3. A novel 3D sandwich structure of hybrid graphite nanosheets and silver nanowires as fillers for improved thermal conductivity

    NASA Astrophysics Data System (ADS)

    Zhuang, Xiao; Zhou, Yongcun; Liu, Feng

    2017-01-01

    We explored a novel 3D sandwich structure of fillers in the polymer matrix to enhance thermal conductivity. A variety of fillers in the polymer matrix play a significant role in the physical properties of the composite. Fillers containing particle and line structures are popular, and enhance the thermal and electrical conductivities. Therefore, filler-based matrix network improves conductivity. We propose a sandwich structure consisting of hybrid graphite nanosheets (two dimensions), and silver nanowires (AgNWs) (one dimension), to create a 3D sandwich structure of polyimide matrix with improved thermal conductivity. Surface treatment of graphite and silver nanowires were conducted to reduce the dielectric constant of the composite. We designed the filler of 20 wt% resulting in a high thermal conductivity of 3.21 W m-1 K-1 with 15% C@SiO2 and 5% AgNWs@SiO2 filler loading. The novel combination and structure markedly enhanced the thermal conductivity of the composite.

  4. Microwave metamaterials made by fused deposition 3D printing of a highly conductive copper-based filament

    NASA Astrophysics Data System (ADS)

    Xie, Yangbo; Ye, Shengrong; Reyes, Christopher; Sithikong, Pariya; Popa, Bogdan-Ioan; Wiley, Benjamin J.; Cummer, Steven A.

    2017-05-01

    This work reports a method for fabricating three-dimensional microwave metamaterials by fused deposition modeling 3D printing of a highly conductive polymer composite filament. The conductivity of such a filament is shown to be nearly equivalent to that of a perfect conductor for microwave metamaterial applications. The expanded degrees-of-freedom made available by 3D metamaterial designs are demonstrated by designing, fabricating, and testing a 3D-printed unit cell with a broadband permittivity as high as 14.4. The measured and simulated S-parameters agree well with a mean squared error smaller than 0.1. The presented method not only allows reliable and convenient fabrication of microwave metamaterials with high conductivity but also opens the door to exploiting the third dimension of the unit cell design space to achieve enhanced electromagnetic properties.

  5. Spherical 3D photonic crystal with conducting nanoshell and particle core

    NASA Astrophysics Data System (ADS)

    Zamudio-Lara, A.; Sánchez-Mondragón, J.; Escobedo-Alatorre, J.; Pérez-Careta, E.; Torres-Cisneros, M.; Tecpoyotl-Torres, Margarita; Vázquez-Buenos Aires, O.

    2009-06-01

    We discuss a structured 3D Dielectric Photonic Crystal with both a metallic core and a metallic shell. We discuss the role of each one, the stack, the core as well as the cavity formed between the core and the shell. The low frequency metallic core features becomes much more significant as it gets smaller and get diluted by the cavity.

  6. The effects of 3-D shaping on ITG stability

    NASA Astrophysics Data System (ADS)

    Rorvig, Mordechai; Hegna, Chris

    2012-03-01

    In this work we seek to understand how 3-D shaping can be used to improve ion temperature gradient stability. Part of the difficulty in deducing the role of 3-D shaping is the generation of 3-D MHD equilibria necessary for the calculations. In this work, MHD equilibrium surfaces are generated using local 3-D magnetostatic equilibrium theory [1]. We distinguish three different types of toroidal magnetic surface shaping: axisymmetric shaping, toroidal rotation of the cross section, and toroidal translation of the magnetic axis. We study these types of shaping independently and in combination to look for improvements. Linear growth rates for ITG modes are calculated using the gyrokinetics code GENE [2]. The geometric interface package GIST [3] accepts the equilibrium input data from the local equilibrium calculation. Growth rates for both axisymmetric and 3-D equilibrium calculations are presented. [4pt] [1] C. C. Hegna, Physics of Plasmas 7, 3921 (2000).[0pt] [2] F. Jenko, W. Dorland, M. Kotschenreuther, and B. N. Rogers, Physical Review Letters 7, 1904 (2000).[0pt] [3] P. Xanthopoulos, W. A. Cooper, F. Jenko, Yu. Turkin, A. Runov, and J. Geiger, Physics of Plasmas 16, 082303 (2009).

  7. 3D numerical modelling of negative apparent conductivity anomalies in loop-loop electromagnetic measurements: a case study at a dacite intrusion in Sugisawa, Akita Prefecture, Japan

    NASA Astrophysics Data System (ADS)

    Selepeng, Ame Thato; Sakanaka, Shin'ya; Nishitani, Tadashi

    2017-04-01

    Under certain geological conditions, low induction number electromagnetic (LIN-EM) instruments are known to produce negative apparent conductivity (σa) responses. This is particularly the case when the shallow subsurface is characterised by highly conductive bodies, however little attention has been given to this issue in the research literature. To analyse negative σa anomalies and their causative structures, we make use of a 3D integral equation forward modelling technique based on a 3D weighting function. We present 3D numerical modelling results over a volcanic tuff body intruded by several dacite dikes, in Sugisawa, Akita Prefecture, Japan. Apparent conductivity data were acquired using a Geonics EM-34-3 system in the horizontal magnetic dipole (HMD) and vertical magnetic dipole (VMD) operating modes. Our 3D model resolved the horizontal and vertical extent of the dacite dikes and also delineated a high conductive zone between the volcanic tuff and the intrusive dacite dikes. This zone is the causative structure for negative σa responses in the VMD data, and is interpreted to be an alteration zone. Interestingly, the negative σa response was absent when the instrument alignment azimuth was changed, implying an anisotropic effect on the EM signature in the study area. The true conductivity model achieved by 3D forward modelling is shown to compare favourably with the DC resistivity data acquired in the same area.

  8. Visual storytelling in 2D and stereoscopic 3D video: effect of blur on visual attention

    NASA Astrophysics Data System (ADS)

    Huynh-Thu, Quan; Vienne, Cyril; Blondé, Laurent

    2013-03-01

    Visual attention is an inherent mechanism that plays an important role in the human visual perception. As our visual system has limited capacity and cannot efficiently process the information from the entire visual field, we focus our attention on specific areas of interest in the image for detailed analysis of these areas. In the context of media entertainment, the viewers' visual attention deployment is also influenced by the art of visual storytelling. To this date, visual editing and composition of scenes in stereoscopic 3D content creation still mostly follows those used in 2D. In particular, out-of-focus blur is often used in 2D motion pictures and photography to drive the viewer's attention towards a sharp area of the image. In this paper, we study specifically the impact of defocused foreground objects on visual attention deployment in stereoscopic 3D content. For that purpose, we conducted a subjective experiment using an eyetracker. Our results bring more insights on the deployment of visual attention in stereoscopic 3D content viewing, and provide further understanding on visual attention behavior differences between 2D and 3D. Our results show that a traditional 2D scene compositing approach such as the use of foreground blur does not necessarily produce the same effect on visual attention deployment in 2D and 3D. Implications for stereoscopic content creation and visual fatigue are discussed.

  9. Electrical conductivity of nanocomposites based on carbon nanotubes: a 3D multiscale modeling approach

    NASA Astrophysics Data System (ADS)

    Grabowski, Krzysztof; Zbyrad, Paulina; Staszewski, Wieslaw J.; Uhl, Tadeusz; Wiatr, Kazimierz; Packo, Pawel

    2016-04-01

    Remarkable electrical properties of carbon nanotubes (CNT) have lead to increased interest in studying CNT- based devices. Many of current researches are devoted to using all kinds of carbon nanomaterials in the con- struction of sensory elements. One of the most common applications is the development of high performance, large scale sensors. Due to the remarkable conductivity of CNT's such devices represent very high sensitivity. However, there are no sufficient tools for studying and designing such sensors. The main objective of this paper is to develop and validate a multiscale numerical model for a carbon nanotubes based sensor. The device utilises the change of electrical conductivity of a nanocomposite material under applied deformation. The nanocomposite consists of a number of CNTs dispersed in polymer matrix. The paper is devoted to the analysis of the impact of spatial distribution of carbon nanotubes in polymer matrix on electrical conductivity of the sensor. One of key elements is also to examine the impact of strain on electric charge ow in such anisotropic composite structures. In the following work a multiscale electro-mechanical model for CNT - based nanocomposites is proposed. The model comprises of two length scales, namely the meso- and the macro-scale for mechanical and electrical domains. The approach allows for evaluation of macro-scale mechanical response of a strain sensor. Electrical properties of polymeric material with certain CNT fractions were derived considering electrical properties of CNTs, their contact and the tunnelling effect.

  10. Effectiveness of Generalized Aurora Computed Tomography for the EISCAT_3D project

    NASA Astrophysics Data System (ADS)

    Tanaka, Y.; Ogawa, Y.; Kadokura, A.; Aso, T.; Ueno, G.; Saita, S.; Gustavsson, B.; Brandstrom, U.

    2013-12-01

    Aurora Computed Tomography (ACT) is a technique to reconstruct three-dimensional (3-D) distribution of auroral luminosity from a number of monochromatic images taken simultaneously by multi observation points. We have developed a more generalized ACT (hereinafter referred to as G-ACT), which is capable of retrieving energy and spatial distributions of auroral precipitating electrons from multi-instrument data, such as ionospheric electron density from the EISCAT radar, cosmic noise absorption (CNA) from imaging riometer, as well as the auroral images. On the other hand, next-generation incoherent scatter radar, EISCAT_3D, which will be a new multiple site phased-array radar, is planned to replace the existing EISCAT radars in the near future. The EISCAT_3D radar will be able to measure the 3-D ionospheric plasma parameters such as electron density and vector ion drift velocity at ten-times higher temporal and spatial resolution than the present radars and thus is expected to provide new insights into auroral physics. Detailed information of the EISCAT_3D project is described in the web page http://www.eiscat3d.se. The 3-D data measured with the EISCAT_3D radar will be a most interesting target for the application of the G-ACT method. In order to examine how effective G-ACT will be for the EISCAT_3D project, we have conducted numerical simulations. It was assumed for this simulation that (1) monochromatic imagers at ALIS (Aurora Large Imaging System) stations were directed to the ionospheric region over Skibotn (69.35N, 20.37E), Norway, (2) the EISCAT_3D radar was installed at Skibotn and observed the volume from 68.6 to 69.4N latitude and 18.8 to 21.8E longitude with multiple beams, and (3) two neighboring discrete arcs appeared over Skibotn. We first obtained data observed with the ALIS imagers and the EISCAT_3D radar by solving the forward problem and then applied the G-ACT method to these data. It was demonstrated that even if the spatial distribution of the

  11. Conducting a 3D Converted Shear Wave Project to Reduce Exploration Risk at Wister, CA

    SciTech Connect

    Matlick, Skip; Walsh, Patrick; Rhodes, Greg; Fercho, Steven

    2015-06-30

    Ormat sited 2 full-size exploration wells based on 3D seismic interpretation of fractures, prior drilling results, and temperature anomaly. The wells indicated commercial temperatures (>300 F), but almost no permeability, despite one of the wells being drilled within 820 ft of an older exploration well with reported indications of permeability. Following completion of the second well in 2012, Ormat undertook a lengthy program to 1) evaluate the lack of observed permeability, 2) estimate the likelihood of finding permeability with additional drilling, and 3) estimate resource size based on an anticipated extent of permeability.

  12. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries.

    PubMed

    Fu, Kun Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D; Hu, Liangbing

    2016-06-28

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li(+) transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10(-4) S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm(2) for around 500 h and a current density of 0.5 mA/cm(2) for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  13. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    NASA Astrophysics Data System (ADS)

    Kun, Kelvin; Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-06-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium's highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (˜3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion-conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10-4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium-sulfur batteries.

  14. Flexible, solid-state, ion-conducting membrane with 3D garnet nanofiber networks for lithium batteries

    PubMed Central

    Fu, Kun (Kelvin); Gong, Yunhui; Dai, Jiaqi; Gong, Amy; Han, Xiaogang; Yao, Yonggang; Wang, Chengwei; Wang, Yibo; Chen, Yanan; Yan, Chaoyi; Li, Yiju; Wachsman, Eric D.; Hu, Liangbing

    2016-01-01

    Beyond state-of-the-art lithium-ion battery (LIB) technology with metallic lithium anodes to replace conventional ion intercalation anode materials is highly desirable because of lithium’s highest specific capacity (3,860 mA/g) and lowest negative electrochemical potential (∼3.040 V vs. the standard hydrogen electrode). In this work, we report for the first time, to our knowledge, a 3D lithium-ion–conducting ceramic network based on garnet-type Li6.4La3Zr2Al0.2O12 (LLZO) lithium-ion conductor to provide continuous Li+ transfer channels in a polyethylene oxide (PEO)-based composite. This composite structure further provides structural reinforcement to enhance the mechanical properties of the polymer matrix. The flexible solid-state electrolyte composite membrane exhibited an ionic conductivity of 2.5 × 10−4 S/cm at room temperature. The membrane can effectively block dendrites in a symmetric Li | electrolyte | Li cell during repeated lithium stripping/plating at room temperature, with a current density of 0.2 mA/cm2 for around 500 h and a current density of 0.5 mA/cm2 for over 300 h. These results provide an all solid ion-conducting membrane that can be applied to flexible LIBs and other electrochemical energy storage systems, such as lithium–sulfur batteries. PMID:27307440

  15. Solar carbon monoxide: poster child for 3D effects .

    NASA Astrophysics Data System (ADS)

    Ayres, T. R.; Lyons, J. R.; Ludwig, H.-G.; Caffau, E.; Wedemeyer-Böhm, S.

    Photospheric infrared (2-6 mu m) rovibrational bands of carbon monoxide (CO) provide a tough test for 3D convection models such as those calculated using CO5BOLD. The molecular formation is highly temperature-sensitive, and thus responds in an exaggerated way to thermal fluctuations in the dynamic atmosphere. CO, itself, is an important tracer of the oxygen abundance, a still controversial issue in solar physics; as well as the heavy isotopes of carbon (13C) and oxygen (18O, 17O), which, relative to terrestrial values, are fingerprints of fractionation processes that operated in the primitive solar nebula. We show how 3D models impact the CO line formation, and add in a second constraint involving the near-UV Ca RIPTSIZE II line wings, which also are highly temperature sensitive, but in the opposite sense to the molecules. We find that our reference CO5BOLD snapshots appear to be slightly too cool on average in the outer layers of the photosphere where the CO absorptions and Ca RIPTSIZE II wing emissions arise. We show, further, that previous 1D modeling was systematically biased toward higher oxygen abundances and lower isotopic ratios (e.g., R23equiv 12C/13C), suggesting an isotopically ``heavy'' Sun contrary to direct capture measurements of solar wind light ions by the Genesis Discovery Mission. New 3D ratios for the oxygen isotopes are much closer to those reported by Genesis, and the associated oxygen abundance from CO now is consistent with the recent Caffau et al. study of atomic oxygen. Some lingering discrepancies perhaps can be explained by magnetic bright points. Solar CO demonstrates graphically the wide gulf that can occur between a 3D analysis and 1D.

  16. Analysis of 3-D Propagation Effects Due to Environmental Variability

    DTIC Science & Technology

    2014-09-30

    presence of 3-D environmental variations, especially shelf break canyons . Work was also performed in support of 2-D propagation in shallow water to...propagation in the Monterey Bay Canyon . This was motivated by observations of highly variable directional features in measured acoustic vector data...Rev. 8-98) Prescribed by ANSI Std Z39-18 2 the Monterey Bay Canyon were used as inputs to the model, and broadband calculations were performed

  17. Effective classification of 3D image data using partitioning methods

    NASA Astrophysics Data System (ADS)

    Megalooikonomou, Vasileios; Pokrajac, Dragoljub; Lazarevic, Aleksandar; Obradovic, Zoran

    2002-03-01

    We propose partitioning-based methods to facilitate the classification of 3-D binary image data sets of regions of interest (ROIs) with highly non-uniform distributions. The first method is based on recursive dynamic partitioning of a 3-D volume into a number of 3-D hyper-rectangles. For each hyper-rectangle, we consider, as a potential attribute, the number of voxels (volume elements) that belong to ROIs. A hyper-rectangle is partitioned only if the corresponding attribute does not have high discriminative power, determined by statistical tests, but it is still sufficiently large for further splitting. The final discriminative hyper-rectangles form new attributes that are further employed in neural network classification models. The second method is based on maximum likelihood employing non-spatial (k-means) and spatial DBSCAN clustering algorithms to estimate the parameters of the underlying distributions. The proposed methods were experimentally evaluated on mixtures of Gaussian distributions, on realistic lesion-deficit data generated by a simulator conforming to a clinical study, and on synthetic fractal data. Both proposed methods have provided good classification on Gaussian mixtures and on realistic data. However, the experimental results on fractal data indicated that the clustering-based methods were only slightly better than random guess, while the recursive partitioning provided significantly better classification accuracy.

  18. Effects of Presence, Copresence, and Flow on Learning Outcomes in 3D Learning Spaces

    ERIC Educational Resources Information Center

    Hassell, Martin D.; Goyal, Sandeep; Limayem, Moez; Boughzala, Imed

    2012-01-01

    The level of satisfaction and effectiveness of 3D virtual learning environments were examined. Additionally, 3D virtual learning environments were compared with face-to-face learning environments. Students that experienced higher levels of flow and presence also experienced more satisfaction but not necessarily more effectiveness with 3D virtual…

  19. 3D modelling of near-surface, environmental effects on AEM data

    NASA Astrophysics Data System (ADS)

    Beamish, David

    2004-11-01

    application of such derivatives to both regional- and local-scale survey data is presented.. The special case of a near-surface, metallic pipeline has been modelled. The problem constitutes an inductive limit (current gathering) response in which the perturbation is largely confined to the in-phase coupling ratios. The main perturbations, in data and conductivity models, are within about 40 m of each side of the pipeline. The maximum perturbation to the conductivity model is only a factor of 1.5 above background. Detailed survey data across a former compact landfill (about 100×100 m) are used to compare the model behaviour predicted by the 3D modelling with survey results. The survey, conducted at two separate altitudes, provides a demonstration of 3D effects on 1D survey models as a function of frequency and elevation. Although the nature of the landfill materials and their location are not known precisely, the mapping information appears realistic.

  20. Giant Faraday effect due to Pauli exclusion principle in 3D topological insulators.

    PubMed

    Paudel, Hari P; Leuenberger, Michael N

    2014-02-26

    Experiments using ARPES, which is based on the photoelectric effect, show that the surface states in 3D topological insulators (TI) are helical. Here we consider Weyl interface fermions due to band inversion in narrow-bandgap semiconductors, such as Pb1-xSnxTe. The positive and negative energy solutions can be identified by means of opposite helicity in terms of the spin helicity operator in 3D TI as ĥ(TI) = (1/ |p|_ |) β (σ|_ x p|_ ) · z^, where β is a Dirac matrix and z^ points perpendicular to the interface. Using the 3D Dirac equation and bandstructure calculations we show that the transitions between positive and negative energy solutions, giving rise to electron-hole pairs, obey strict optical selection rules. In order to demonstrate the consequences of these selection rules, we consider the Faraday effect due to the Pauli exclusion principle in a pump-probe setup using a 3D TI double interface of a PbTe/Pb₀.₃₁Sn₀.₆₉Te/PbTe heterostructure. For that we calculate the optical conductivity tensor of this heterostructure, which we use to solve Maxwell's equations. The Faraday rotation angle exhibits oscillations as a function of probe wavelength and thickness of the heterostructure. The maxima in the Faraday rotation angle are of the order of mrds.

  1. The relationship between post-traumatic ossicular injuries and conductive hearing loss: A 3D-CT study.

    PubMed

    Maillot, Olivier; Attyé, Arnaud; Boutet, Claire; Boubagra, Kamel; Perolat, Romain; Zanolla, Marion; Grand, Sylvie; Schmerber, Sébastien; Krainik, Alexandre

    2017-09-01

    After a trauma, the conductive ossicular chain may be disrupted by ossicular luxation or fracture. Recent developments in 3D-CT allow a better understanding of ossicular injuries. In this retrospective study, we compared patients with post-traumatic conductive hearing loss (CHL) with those referred without CHL to evaluate the relationship between ossicular injuries and CHL. We also assessed the added value of 3D reconstructions on 2D-CT scan to detect ossicular lesions in patients surgically managed. The CT scans were performed using a 40-section spiral CT scanner in 49 patients with post-traumatic CHL (n=29) and without CHL (n=20). Three radiologists performed independent blind evaluations of 2D-CT and 3D reconstructions to detect ossicular chain injury. We used the t-test to explore differences regarding the number of subjects with ossicular injury in the two groups. We also estimated the diagnostic accuracy and the inter-rater agreement of the 3D-CT reconstructions associated to 2D-CT scan. We identified ossicular abnormality in 14 patients out of 29 and in one patient out of 20 in the CHL and non-CHL groups respectively. There was a significant difference regarding the number of subjects with ossicular lesions between the two groups (P≤0.01). The diagnostic sensitivity of 3D-CT reconstructions associated with 2D-CT ranged from 66% to 100% and the inter-reader agreement ranged from 0.85 to 1, depending of the type of lesion. The relationship between ossicular lesion and the presence of CHL tightly correlated. 3D-CT reconstructions of the temporal bone are useful to assess patients in a post-traumatic context. Copyright © 2017 Elsevier Masson SAS. All rights reserved.

  2. Method to pattern <10 micrometer conducting and passivating features on 3D substrates for implantable devices

    DOEpatents

    Tolosa, Vanessa; Pannu, Satinderpall S.; Sheth, Heeral; Tooker, Angela C.; Shah, Kedar G.

    2017-07-04

    An implantable device has a cylindrical base, at least one electrode on the cylindrical base, at least one electrically conducting lead on the cylindrical base connected to the electrode wherein the electrically conducting lead has a feature size of <10 micrometers. A protective coating on the cylindrical base covers the at least one electrically conducting lead.

  3. 3D simulation of coaxial carbon nanotube field effect transistor

    NASA Astrophysics Data System (ADS)

    Hien, Dinh Sy; Thi Luong, Nguyen; Tuan, Thi Tran Anh; Viet Nga, Dinh

    2009-09-01

    We provide a model of coaxial CNTFET geometry. Coaxial devices are of special interest because their geometry allows for better electrostatics. We explore the possibilities of using non-equilibrium Green's function method to get I-V characteristics for CNTFETs. This simulator also includes a graphic user interface (GUI) of Matlab. We review the capabilities of the simulator, and give examples of typical CNTFET's 3D simulations (current-voltage characteristics are a function of parameters such as the length of CNTFET, gate thickness and temperature). The obtained I-V characteristics of the CNTFET are also presented by analytical equations.

  4. Investigation of non-thermal plasma effects on lung cancer cells within 3D collagen matrices

    NASA Astrophysics Data System (ADS)

    Karki, Surya B.; Thapa Gupta, Tripti; Yildirim-Ayan, Eda; Eisenmann, Kathryn M.; Ayan, Halim

    2017-08-01

    Recent breakthroughs in plasma medicine have identified a potential application for the non-thermal plasma in cancer therapy. Most studies on the effects of non-thermal plasma on cancer cells have used traditional two-dimensional (2D) monolayer cell culture. However, very few studies are conducted employing non-thermal plasma in animal models. Two dimensional models do not fully mimic the three-dimensional (3D) tumor microenvironment and animal models are expensive and time-consuming. Therefore, we used 3D collagen matrices that closely resemble the native geometry of cancer tissues and provide more physiologically relevant results than 2D models, while providing a more cost effective and efficient precursor to animal studies. We previously demonstrated a role for non-thermal plasma application in promoting apoptotic cell death and reducing the viability of A549 lung adenocarcinoma epithelial cells cultured upon 2D matrices. In this study, we wished to determine the efficacy of non-thermal plasma application in driving apoptotic cell death of A549 lung cancer cells encapsulated within a 3D collagen matrix. The percentage of apoptosis increased as treatment time increased and was time dependent. In addition, the anti-viability effect of plasma was demonstrated. Twenty-four hours post-plasma treatment, 38% and 99% of cell death occurred with shortest (15 s) and longest treatment time (120 s) respectively at the plasma-treated region. We found that plasma has a greater effect on the viability of A549 lung cancer cells on the superficial surface of 3D matrices and has diminishing effects as it penetrates the 3D matrix. We also identified the nitrogen and oxygen species generated by plasma and characterized their penetration in vertical and lateral directions within the 3D matrix from the center of the plasma-treated region. Therefore, the utility of non-thermal dielectric barrier discharge plasma in driving apoptosis and reducing the viability of lung cancer cells

  5. Ptychography: early history and 3D scattering effects

    NASA Astrophysics Data System (ADS)

    Rodenburg, J. M.

    2012-01-01

    The coherent diffractive imaging method of ptychography is first reviewed from a general historical perspective. Much more recent progress in extending the method to the 3D scattering geometry and the super-resolution configuration is also described. Ptychography was originally conceived by Walter Hoppe as a solution to the X-ray or electron crystallography phase problem. Although the existence of this type of phase information was clearly evident in the early 1970s, the technique was not implemented at atomic-scale wavelengths until the 1990s, and then only in a way that was computationally inefficient, especially in view of the limited size of computers at that time. Fast and efficient ptychographic algorithms were developed much later, in the mid-2000s. The extremes of crystallography ptychography, which only requires two diffraction patterns, and the Wigner Distribution Deconvolution (WDDC) method, which needs a diffraction pattern for every pixel of the final reconstruction, are described. Very recent work relating to the application of serial iterative to 3D inversion are also described.

  6. Special effects used in creating 3D animated scenes-part 1

    NASA Astrophysics Data System (ADS)

    Avramescu, A. M.

    2015-11-01

    In present, with the help of computer, we can create special effects that look so real that we almost don't perceive them as being different. These special effects are somehow hard to differentiate from the real elements like those on the screen. With the increasingly accesible 3D field that has more and more areas of application, the 3D technology goes easily from architecture to product designing. Real like 3D animations are used as means of learning, for multimedia presentations of big global corporations, for special effects and even for virtual actors in movies. Technology, as part of the movie art, is considered a prerequisite but the cinematography is the first art that had to wait for the correct intersection of technological development, innovation and human vision in order to attain full achievement. Increasingly more often, the majority of industries is using 3D sequences (three dimensional). 3D represented graphics, commercials and special effects from movies are all designed in 3D. The key for attaining real visual effects is to successfully combine various distinct elements: characters, objects, images and video scenes; like all these elements represent a whole that works in perfect harmony. This article aims to exhibit a game design from these days. Considering the advanced technology and futuristic vision of designers, nowadays we have different and multifarious game models. Special effects are decisively contributing in the creation of a realistic three-dimensional scene. These effects are essential for transmitting the emotional state of the scene. Creating the special effects is a work of finesse in order to achieve high quality scenes. Special effects can be used to get the attention of the onlooker on an object from a scene. Out of the conducted study, the best-selling game of the year 2010 was Call of Duty: Modern Warfare 2. This way, the article aims for the presented scene to be similar with many locations from this type of games, more

  7. Flyweight, Superelastic, Electrically Conductive, and Flame-Retardant 3D Multi-Nanolayer Graphene/Ceramic Metamaterial.

    PubMed

    Zhang, Qiangqiang; Lin, Dong; Deng, Biwei; Xu, Xiang; Nian, Qiong; Jin, Shengyu; Leedy, Kevin D; Li, Hui; Cheng, Gary J

    2017-07-01

    A ceramic/graphene metamaterial (GCM) with microstructure-derived superelasticity and structural robustness is achieved by designing hierarchical honeycomb microstructures, which are composited with two brittle constituents (graphene and ceramic) assembled in multi-nanolayer cellular walls. Attributed to the designed microstructure, well-interconnected scaffolds, chemically bonded interface, and coupled strengthening effect between the graphene framework and the nanolayers of the Al2 O3 ceramic (NAC), the GCM demonstrates a sequence of multifunctional properties simultaneously that have not been reported for ceramics and ceramics-matrix-composite structures, such as flyweight density, 80% reversible compressibility, high fatigue resistance, high electrical conductivity, and excellent thermal-insulation/flame-retardant performance simultaneously. The 3D well-ordered graphene aerogel templates are strongly coupled with the NAC by the chemically bonded interface, exhibiting mutual strengthening, compatible deformability, and a linearly dependent relationship between the density and Young's modulus. Considerable size effects of the ceramic nanolayers on the mechanical properties are revealed in these ceramic-based metamaterials. The designed hierarchical honeycomb graphene with a fourth dimensional control of the ceramic nanolayers on new ways to scalable fabrication of advanced multifunctional ceramic composites with controllable design suggest a great potential in applications of flexible conductors, shock/vibration absorbers, thermal shock barriers, thermal insulation/flame-retardant skins, and porous microwave-absorbing coatings. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  8. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate.

    PubMed

    Trache, Tudor; Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-12-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values.

  9. The agreement between 3D, standard 2D and triplane 2D speckle tracking: effects of image quality and 3D volume rate

    PubMed Central

    Stöbe, Stephan; Tarr, Adrienn; Pfeiffer, Dietrich; Hagendorff, Andreas

    2014-01-01

    Comparison of 3D and 2D speckle tracking performed on standard 2D and triplane 2D datasets of normal and pathological left ventricular (LV) wall-motion patterns with a focus on the effect that 3D volume rate (3DVR), image quality and tracking artifacts have on the agreement between 2D and 3D speckle tracking. 37 patients with normal LV function and 18 patients with ischaemic wall-motion abnormalities underwent 2D and 3D echocardiography, followed by offline speckle tracking measurements. The values of 3D global, regional and segmental strain were compared with the standard 2D and triplane 2D strain values. Correlation analysis with the LV ejection fraction (LVEF) was also performed. The 3D and 2D global strain values correlated good in both normally and abnormally contracting hearts, though systematic differences between the two methods were observed. Of the 3D strain parameters, the area strain showed the best correlation with the LVEF. The numerical agreement of 3D and 2D analyses varied significantly with the volume rate and image quality of the 3D datasets. The highest correlation between 2D and 3D peak systolic strain values was found between 3D area and standard 2D longitudinal strain. Regional wall-motion abnormalities were similarly detected by 2D and 3D speckle tracking. 2DST of triplane datasets showed similar results to those of conventional 2D datasets. 2D and 3D speckle tracking similarly detect normal and pathological wall-motion patterns. Limited image quality has a significant impact on the agreement between 3D and 2D numerical strain values. PMID:26693303

  10. Versatile Method for Producing 2D and 3D Conductive Biomaterial Composites Using Sequential Chemical and Electrochemical Polymerization.

    PubMed

    Severt, Sean Y; Ostrovsky-Snider, Nicholas A; Leger, Janelle M; Murphy, Amanda R

    2015-11-18

    Flexible and conductive biocompatible materials are attractive candidates for a wide range of biomedical applications including implantable electrodes, tissue engineering, and controlled drug delivery. Here, we demonstrate that chemical and electrochemical polymerization techniques can be combined to create highly versatile silk-conducting polymer (silk-CP) composites with enhanced conductivity and electrochemical stability. Interpenetrating silk-CP composites were first generated via in situ deposition of polypyrrole during chemical polymerization of pyrrole. These composites were sufficiently conductive to serve as working electrodes for electropolymerization, which allowed an additional layer of CP to be deposited on the surface. This sequential method was applied to both 2D films and 3D sponge-like silk scaffolds, producing conductive materials with biomimetic architectures. Overall, this two-step technique expanded the range of available polymers and dopants suitable for the synthesis of mechanically robust, biocompatible, and highly conductive silk-based materials.

  11. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity

    USGS Publications Warehouse

    Brosten, T.R.; Day-Lewis, F. D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W.

    2011-01-01

    Electromagnetic induction (EMI) instruments provide rapid, noninvasive, and spatially dense data for characterization of soil and groundwater properties. Data from multi-frequency EMI tools can be inverted to provide quantitative electrical conductivity estimates as a function of depth. In this study, multi-frequency EMI data collected across an abandoned uranium mill site near Naturita, Colorado, USA, are inverted to produce vertical distribution of electrical conductivity (EC) across the site. The relation between measured apparent electrical conductivity (ECa) and hydraulic conductivity (K) is weak (correlation coefficient of 0.20), whereas the correlation between the depth dependent EC obtained from the inversions, and K is sufficiently strong to be used for hydrologic estimation (correlation coefficient of -0.62). Depth-specific EC values were correlated with co-located K measurements to develop a site-specific ln(EC)-ln(K) relation. This petrophysical relation was applied to produce a spatially detailed map of K across the study area. A synthetic example based on ECa values at the site was used to assess model resolution and correlation loss given variations in depth and/or measurement error. Results from synthetic modeling indicate that optimum correlation with K occurs at ~0.5m followed by a gradual correlation loss of 90% at 2.3m. These results are consistent with an analysis of depth of investigation (DOI) given the range of frequencies, transmitter-receiver separation, and measurement errors for the field data. DOIs were estimated at 2.0??0.5m depending on the soil conductivities. A 4-layer model, with varying thicknesses, was used to invert the ECa to maximize available information within the aquifer region for improved correlations with K. Results show improved correlation between K and the corresponding inverted EC at similar depths, underscoring the importance of inversion in using multi-frequency EMI data for hydrologic estimation. ?? 2011.

  12. Viewing 3D TV over two months produces no discernible effects on balance, coordination or eyesight

    PubMed Central

    Read, Jenny C.A.; Godfrey, Alan; Bohr, Iwo; Simonotto, Jennifer; Galna, Brook; Smulders, Tom V.

    2016-01-01

    Abstract With the rise in stereoscopic 3D media, there has been concern that viewing stereoscopic 3D (S3D) content could have long-term adverse effects, but little data are available. In the first study to address this, 28 households who did not currently own a 3D TV were given a new TV set, either S3D or 2D. The 116 members of these households all underwent tests of balance, coordination and eyesight, both before they received their new TV set, and after they had owned it for 2 months. We did not detect any changes which appeared to be associated with viewing 3D TV. We conclude that viewing 3D TV does not produce detectable effects on balance, coordination or eyesight over the timescale studied. Practitioner Summary: Concern has been expressed over possible long-term effects of stereoscopic 3D (S3D). We looked for any changes in vision, balance and coordination associated with normal home S3D TV viewing in the 2 months after first acquiring a 3D TV. We find no evidence of any changes over this timescale. PMID:26758965

  13. Viewing 3D TV over two months produces no discernible effects on balance, coordination or eyesight.

    PubMed

    Read, Jenny C A; Godfrey, Alan; Bohr, Iwo; Simonotto, Jennifer; Galna, Brook; Smulders, Tom V

    2016-08-01

    With the rise in stereoscopic 3D media, there has been concern that viewing stereoscopic 3D (S3D) content could have long-term adverse effects, but little data are available. In the first study to address this, 28 households who did not currently own a 3D TV were given a new TV set, either S3D or 2D. The 116 members of these households all underwent tests of balance, coordination and eyesight, both before they received their new TV set, and after they had owned it for 2 months. We did not detect any changes which appeared to be associated with viewing 3D TV. We conclude that viewing 3D TV does not produce detectable effects on balance, coordination or eyesight over the timescale studied. Practitioner Summary: Concern has been expressed over possible long-term effects of stereoscopic 3D (S3D). We looked for any changes in vision, balance and coordination associated with normal home S3D TV viewing in the 2 months after first acquiring a 3D TV. We find no evidence of any changes over this timescale.

  14. Effect of rapid grounding line migration investigated with 3D ice sheet-ice shelf models (MISMIP3d)

    NASA Astrophysics Data System (ADS)

    Pattyn, F.; Docquier, D.; Durand, G.; Favier, L.; Gagliardini, O.; Hindmarsh, R.; Zwinger, T.; Mismip3d Participants

    2012-04-01

    Understanding and attributing future sea-level changes demands serious efforts on the development of efficient ice sheet-ice shelf models that capture the essential physics and mechanics of grounding line behavior. While semi-analytical solutions for grounding line behavior are available for the flowline case, such solution fails to exist for more complex three-dimensional geometries. A way of evaluating the quality of ice sheet models is to verify them against more complex model solutions under controlled conditions (Marine Ice Sheet Model Intercomparison - MISMIP). Given the computational demands of such models, it is extremely attractive from a computational point of view to use flux/thickness parameterizations in 3d models. Here we investigated the transition between ice sheet and ice shelf with series of different numerical models, ranging from full Stokes (Elmer/Ice) models, pseudo-spectral methods to a 2d vertically integrated finite-difference 'shelfy-stream' model, taking into account grounding line dynamics, and using parameterizations by Schoof (2007) and Pollard and DeConto (2009). Rapid grounding line migration was provoked by changing sliding at the grounding line, resulting in curved grounding lines influenced by lateral effects. We tested whether flux parameterizations are still valid under such conditions, especially when buttressing effects are taken into account. Results of other participants in the intercomparison exercise are presented alongside the initial benchmark results.

  15. Slat Cove Unsteadiness Effect of 3D Flow Structures

    NASA Technical Reports Server (NTRS)

    Choudhari, Meelan M.; Khorrami, Mehdi R.

    2006-01-01

    Previous studies have indicated that 2D, time accurate computations based on a pseudo-laminar zonal model of the slat cove region (within the framework of the Reynolds-Averaged Navier-Stokes equations) are inadequate for predicting the full unsteady dynamics of the slat cove flow field. Even though such computations could capture the large-scale, unsteady vorticity structures in the slat cove region without requiring any external forcing, the simulated vortices were excessively strong and the recirculation zone was unduly energetic in comparison with the PIV measurements for a generic high-lift configuration. To resolve this discrepancy and to help enable physics based predictions of slat aeroacoustics, the present paper is focused on 3D simulations of the slat cove flow over a computational domain of limited spanwise extent. Maintaining the pseudo-laminar approach, current results indicate that accounting for the three-dimensionality of flow fluctuations leads to considerable improvement in the accuracy of the unsteady, nearfield solution. Analysis of simulation data points to the likely significance of turbulent fluctuations near the reattachment region toward the generation of broadband slat noise. The computed acoustic characteristics (in terms of the frequency spectrum and spatial distribution) within short distances from the slat resemble the previously reported, subscale measurements of slat noise.

  16. Asymmetric effects at 3D Ising-like critical points

    NASA Astrophysics Data System (ADS)

    Tsypin, M.

    2003-05-01

    The Standard Model of electroweak interactions has a line of first order phase transition in the plane (higgs mass, temperature) that ends in a critical point belonging to the 3D Ising model universality class [K. Rummukainen et al, hep-lat/9805013. Similar critical points are found in finite-temperature QCD [M. Stephanov et al, hep-ph/9806219; F. Karsch et al, hep-lat/0107020. When these critical points are studied by Monte Carlo simulations on the lattice, one observes certain residual deviations from Z2 symmetry (which is exact for the Ising model). Here we study whether such deviations can be attributed to asymmetric corrections to scaling, which are relatively poorly studied. We compute the critical exponents in the local potential approximation (LPA), that is, in the framework of the Wegner-Houghton equation. We find that the exponent for the leading antisymmetric correction to scaling is approximately 1.691 in the LPA. This high value implies that such corrections cannot explain observed asymmetries.

  17. Effects of electromagnetic field frequencies on chondrocytes in 3D cell-printed composite constructs.

    PubMed

    Yi, Hee-Gyeong; Kang, Kyung Shin; Hong, Jung Min; Jang, Jinah; Park, Moon Nyeo; Jeong, Young Hun; Cho, Dong-Woo

    2016-07-01

    In cartilage tissue engineering, electromagnetic field (EMF) therapy has been reported to have a modest effect on promoting cartilage regeneration. However, these studies were conducted using different frequencies of EMF to stimulate chondrocytes. Thus, it is necessary to investigate the effect of EMF frequency on cartilage formation. In addition to the stimulation, a scaffold is required to satisfy the characteristics of cartilage such as its hydrated and dense extracellular matrix, and a mechanical resilience to applied loads. Therefore, we 3D-printed a composite construct composed of a polymeric framework and a chondrocyte-laden hydrogel. Here, we observed frequency-dependent positive and negative effects on chondrogenesis using a 3D cell-printed cartilage tissue. We found that a frequency of 45 Hz promoted gene expression and secretion of extracellular matrix molecules of chondrocytes. In contrast, a frequency of 7.5 Hz suppressed chondrogenic differentiation in vitro. Additionally, the EMF-treated composite constructs prior to implantation showed consistent results with those of in vitro, suggesting that in vitro pre-treatment with different EMF frequencies provides different capabilities for the enhancement of cartilage formation in vivo. This correlation between EMF frequency and 3D-printed chondrocytes suggests the necessity for optimization of EMF parameters when this physical stimulus is applied to engineered cartilage. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1797-1804, 2016.

  18. A fast technique applied to the analysis of Resistive Wall Modes with 3D conducting structures

    SciTech Connect

    Rubinacci, Guglielmo Liu, Yueqiang

    2009-03-20

    This paper illustrates the development of a 'fast' technique for the analysis of Resistive Wall Modes (RWMs) in fusion devices with three-dimensional conducting structures, by means of the recently developed CarMa code. Thanks to its peculiar features, the computational cost scales almost linearly with the number of discrete unknowns. Some large scale problems are solved in configurations of interest for the International Thermonuclear Experimental Reactor (ITER)

  19. Electromagnetic Scattering From a Rectangular Cavity Recessed in a 3-D Conducting Surface

    NASA Technical Reports Server (NTRS)

    Deshpande, M. D.; Reddy, C. J.

    1995-01-01

    The problem of electromagnetic (EM) scattering from an aperture backed by a rectangular cavity recessed in a three-dimensional conducting body is analyzed using the coupled field integral equation approach. Using the free-space Green's function, EM fields scattered outside the cavity are determined in terms of (1) an equivalent electric surface current density flowing on the three-dimensional conducting surface of the object including the cavity aperture and (2) an equivalent magnetic surface current density flowing over the aperture only. The EM fields inside the cavity are determined using the waveguide modal expansion functions. Making the total tangential electric and magnetic fields across the aperture continuous and subjecting the total tangential electric field on the outer conducting three-dimensional surface of the object to zero, a set of coupled integral equations is obtained. The equivalent electric and magnetic surface currents are then obtained by solving the coupled integral equation using the Method of Moments. The numerical results on scattering from rectangular cavities embedded in various three-dimensional objects are compared with the results obtained by other numerical techniques.

  20. 3D-hybrid material design with electron/lithium-ion dual-conductivity for high-performance Li-sulfur batteries

    NASA Astrophysics Data System (ADS)

    Zhao, Yan; Tan, Rui; Yang, Jie; Wang, Kai; Gao, Rongtan; Liu, Dong; Liu, Yidong; Yang, Jinlong; Pan, Feng

    2017-02-01

    We report a novel 3D-hybrid cathode material with three-dimensional (3D) N-GO/CNT framework to load sulfur (77.6 wt %), and sulfonated polyaniline (SPANI) of coating layer. Used as a cathode material, it possesses a high capacity (1196 mAh g-1@0.3 A g-1@1.6 mg cm-2), excellent charging-discharging rate (680 mAh g-1@7.5 A g-1) and long-life performance (maintaining 71.1% capacity over 450 cycles), which is mainly attributed to the benefits of excellent electronic/Li-ionic dual-conductivity and confinement effect of the 3D-hybrid N-GO/CNT framework coated by self-doping conducting polymer SPANI. Thus, a 3D sulfur cathode modified with electronic/Li-ionic dual-conduction network can significantly enhance the electrochemical performance and stability, and this novel type of material is very promising for commercial applications that require high energy and power density, long life, and excellent abuse tolerance.

  1. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating

    PubMed Central

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-01-01

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium–scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with “lithiophilic” coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm2 over 80 cycles. PMID:26929378

  2. Composite lithium metal anode by melt infusion of lithium into a 3D conducting scaffold with lithiophilic coating.

    PubMed

    Liang, Zheng; Lin, Dingchang; Zhao, Jie; Lu, Zhenda; Liu, Yayuan; Liu, Chong; Lu, Yingying; Wang, Haotian; Yan, Kai; Tao, Xinyong; Cui, Yi

    2016-03-15

    Lithium metal-based battery is considered one of the best energy storage systems due to its high theoretical capacity and lowest anode potential of all. However, dendritic growth and virtually relative infinity volume change during long-term cycling often lead to severe safety hazards and catastrophic failure. Here, a stable lithium-scaffold composite electrode is developed by lithium melt infusion into a 3D porous carbon matrix with "lithiophilic" coating. Lithium is uniformly entrapped on the matrix surface and in the 3D structure. The resulting composite electrode possesses a high conductive surface area and excellent structural stability upon galvanostatic cycling. We showed stable cycling of this composite electrode with small Li plating/stripping overpotential (<90 mV) at a high current density of 3 mA/cm(2) over 80 cycles.

  3. Measuring three-dimensional flow structures in the conductive airways using 3D-PTV

    NASA Astrophysics Data System (ADS)

    Janke, Thomas; Schwarze, Rüdiger; Bauer, Katrin

    2017-10-01

    Detailed information about flow patterns and mass transport in the conductive airways is of crucial interest to improve ventilation strategies as well as targeted drug delivery. Despite a vast number of flow studies in this field, there is still a dearth in experimental data of three-dimensional flow patterns, in particular for the validation of numerical results. Therefore, oscillating flow within a realistic model of the upper human conductive airways is studied here experimentally. The investigated range of Reynolds numbers is Re = 250-2000 and the Womersley number is varied between α = 1.9-5.1, whereby physiological flow at rest conditions is included. In employing the three-dimensional particle tracking velocimetry measurement technique, we can directly visualize airway specific flow structures as well as examine Lagrangian trajectory statistics, which has not been covered to date. The systematic variation of characteristic flow parameters in combination with the advanced visualization technique sheds new light on the mechanisms of evolving flow patterns. By determining Lagrangian properties such as pathline curvature and torsion, we find that both strongly depend on the Reynolds number. Moreover, the probability density function of the curvature reveals a unique shape for certain flow regions and resembles a turbulent like behavior at the small scales.

  4. Femtosecond pulsed light polarization induced effects in direct laser writing 3D nanolithography

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; RekštytÄ--, Sima; Jonavičius, Tomas; Gailevičius, Darius; Mizeikis, Vygantas; Gamaly, Eugene; Juodkazis, Saulius

    2016-03-01

    We demonstrate how the coupling between (i) polarization of the writing laser beam, (ii) tight focusing and (iii) heat conduction affects the size, shape and absorption in the laser-affected area and therefore the polymerization process. It is possible to control the sizes of 3D laser-produced structure at the scale of several nanometers. Specifically we were able to tune the aspect ratio of 3D suspended line up to 20% in hybrid SZ2080 resist. The focal spot of tightly focused linearly polarized beam has an elliptical form with the long axis in the field direction. It is shown here that this effect is enhanced by increase in the electronic heat conduction when polarization coincide with temperature gradient along with the absorption. Overlapping of three effects (i- iii) results in the difference of several tens of nanometers between two axes of the focal ellipse. Narrow line appears when polarization and scan direction coincide, while the wide line is produced when these directions are perpendicular to each other. The effect scales with the laser intensity giving a possibility to control the width of the structure on nanometer scale as demonstrated experimentally in this work. These effects are of general nature and can be observed in any laser-matter interaction experiments where plasma produced by using tight focusing of linear-polarized light.

  5. 3-D parallel program for numerical calculation of gas dynamics problems with heat conductivity on distributed memory computational systems (CS)

    SciTech Connect

    Sofronov, I.D.; Voronin, B.L.; Butnev, O.I.

    1997-12-31

    The aim of the work performed is to develop a 3D parallel program for numerical calculation of gas dynamics problem with heat conductivity on distributed memory computational systems (CS), satisfying the condition of numerical result independence from the number of processors involved. Two basically different approaches to the structure of massive parallel computations have been developed. The first approach uses the 3D data matrix decomposition reconstructed at temporal cycle and is a development of parallelization algorithms for multiprocessor CS with shareable memory. The second approach is based on using a 3D data matrix decomposition not reconstructed during a temporal cycle. The program was developed on 8-processor CS MP-3 made in VNIIEF and was adapted to a massive parallel CS Meiko-2 in LLNL by joint efforts of VNIIEF and LLNL staffs. A large number of numerical experiments has been carried out with different number of processors up to 256 and the efficiency of parallelization has been evaluated in dependence on processor number and their parameters.

  6. A Numerical Study on the Thermal Conductivity of 3D Woven C/C Composites at High Temperature

    NASA Astrophysics Data System (ADS)

    Shigang, Ai; Rujie, He; Yongmao, Pei

    2015-12-01

    Experimental data for Carbon/Carbon (C/C) constituent materials are combined with a three dimensional steady state heat transfer finite element analysis to demonstrate the average in-plane and out-of-plane thermal conductivities (TCs) of C/C composites. The finite element analysis is carried out at two distinct length scales: (a) a micro scale comparable with the diameter of carbon fibres and (b) a meso scale comparable with the carbon fibre yarns. Micro-scale model calculate the TCs at the fibre yarn scale in the three orthogonal directions ( x, y and z). The output results from the micro-scale model are then incorporated in the meso-scale model to obtain the global TCs of the 3D C/C composite. The simulation results are quite consistent with the theoretical and experimental counterparts reported in references. Based on the numerical approach, TCs of the 3D C/C composite are calculated from 300 to 2500 K. Particular attention is given in elucidating the variations of the TCs with temperature. The multi-scale models provide an efficient approach to predict the TCs of 3D textile materials, which is helpful for the thermodynamic property analysis and structure design of the C/C composites.

  7. Boosting Proton Conductivity in Highly Robust 3D Inorganic Cationic Extended Frameworks through Ion Exchange with Dihydrogen Phosphate Anions.

    PubMed

    Xiao, Chengliang; Wang, Yaxing; Chen, Lanhua; Yin, Xuemiao; Shu, Jie; Sheng, Daopeng; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-12-01

    The limited long-term hydrolytic stability of rapidly emerging 3D-extended framework materials (MOFs, COFs, MOPs, etc.) is still one of major barriers for their practical applications as new solid-state electrolytes in fuel cells. To obtain hydrolytically stable materials, two H2 PO4 (-) -exchanged 3D inorganic cationic extended frameworks (CEFs) were successfully prepared by a facile anion-exchange method. Both anion-exchanged CEFs (YbO(OH)P and NDTBP) show significantly enhanced proton conductivity when compared with the original materials (YbO(OH)Cl and NDTB) with an increase of up to four orders-of-magnitude, reaching 2.36×10(-3) and 1.96×10(-2)  S cm(-1) at 98 % RH and 85 °C for YbO(OH)P and NDTBP, respectively. These values are comparable to the most efficient proton-conducting MOFs. In addition, these two anion-exchanged materials are stable in boiling water, which originates from the strong electrostatic interaction between the H2 PO4 (-) anion and the cationic host framework, showing a clear advance over all the acid-impregnated materials (H2 SO4 @MIL-101, H3 PO4 @MIL-101, and H3 PO4 @Tp-Azo) as practical solid-state fuel-cell electrolytes. This work offers a new general and efficient approach to functionalize 3D-extended frameworks through an anion-exchange process and achieves water-stability with ultra-high proton conductivity above 10(-2)  S cm(-1) .

  8. 3D imaging of soil apparent electrical conductivity from VERIS data using a 1D spatially constrained inversion algorithm

    NASA Astrophysics Data System (ADS)

    Jesús Moral García, Francisco; Rebollo Castillo, Francisco Javier; Monteiro Santos, Fernando

    2016-04-01

    Maps of apparent electrical conductivity of the soil are commonly used in precision agriculture to indirectly characterize some important properties like salinity, water, and clay content. Traditionally, these studies are made through an empirical relationship between apparent electrical conductivity and properties measured in soil samples collected at a few locations in the experimental area and at a few selected depths. Recently, some authors have used not the apparent conductivity values but the soil bulk conductivity (in 2D or 3D) calculated from measured apparent electrical conductivity through the application of an inversion method. All the published works used data collected with electromagnetic (EM) instruments. We present a new software to invert the apparent electrical conductivity data collected with VERIS 3100 and 3150 (or the more recent version with three pairs of electrodes) using the 1D spatially constrained inversion method (1D SCI). The software allows the calculation of the distribution of the bulk electrical conductivity in the survey area till a depth of 1 m. The algorithm is applied to experimental data and correlations with clay and water content have been established using soil samples collected at some boreholes. Keywords: Digital soil mapping; inversion modelling; VERIS; soil apparent electrical conductivity.

  9. Effectiveness of Collaborative Learning with 3D Virtual Worlds

    ERIC Educational Resources Information Center

    Cho, Young Hoan; Lim, Kenneth Y. T.

    2017-01-01

    Virtual worlds have affordances to enhance collaborative learning in authentic contexts. Despite the potential of collaborative learning with a virtual world, few studies investigated whether it is more effective in student achievements than teacher-directed instruction. This study investigated the effectiveness of collaborative problem solving…

  10. Effectiveness of Collaborative Learning with 3D Virtual Worlds

    ERIC Educational Resources Information Center

    Cho, Young Hoan; Lim, Kenneth Y. T.

    2017-01-01

    Virtual worlds have affordances to enhance collaborative learning in authentic contexts. Despite the potential of collaborative learning with a virtual world, few studies investigated whether it is more effective in student achievements than teacher-directed instruction. This study investigated the effectiveness of collaborative problem solving…

  11. Understanding the effects of dielectric medium, substrate, and depth on electric fields and SERS of quasi-3D plasmonic nanostructures.

    PubMed

    Xu, Jiajie; Kvasnička, Pavel; Idso, Matthew; Jordan, Roger W; Gong, Heng; Homola, Jiří; Yu, Qiuming

    2011-10-10

    The local electric field distribution and the effect of surface-enhanced Raman spectroscopy (SERS) were investigated on the quasi-3D (Q3D) plasmonic nanostructures formed by gold nanohole and nanodisc array layers physically separated by a dielectric medium. The local electric fields at the top gold nanoholes and bottom gold nanodiscs as a function of the dielectric medium, substrate, and depth of Q3D plasmonic nanostructures upon the irradiation of a 785 nm laser were calculated using the three-dimensional finite-difference time-domain (3D-FDTD) method. The intensity of the maximum local electric fields was shown to oscillate with the depth and the stronger local electric fields occurring at the top or bottom gold layer strongly depend on the dielectric medium, substrate, and depth of the nanostructure. This phenomenon was determined to be related to the Fabry-Pérot interference effect and the interaction of localized surface plasmons (LSPs). The enhancement factors (EFs) of SERS obtained from the 3D-FDTD simulations were compared to those calculated from the SERS experiments conducted on the Q3D plasmonic nanostructures fabricated on silicon and ITO coated glass substrates with different depths. The same trend was obtained from both methods. The capabilities of tuning not only the intensity but also the location of the maximum local electric fields by varying the depth, dielectric medium, and substrate make Q3D plasmonic nanostructures well suited for highly sensitive and reproducible SERS detection and analysis.

  12. Materials Effects in 3D-Cavity Transmon Qubits

    NASA Astrophysics Data System (ADS)

    Bogorin, Daniela F.; Ware, Matthew; Sorokanich, Stephen; Plourde, B. L. T.

    2013-03-01

    Recent experiments have demonstrated significant increases in the coherence of superconducting transmon qubits coupled to three-dimensional microwave cavities. We are investigating the effects of different materials for forming such cavities, as well as various surface treatments of the cavity walls, including electropolishing and electroplating. In addition, we are exploring the influence of the superconducting material that forms the qubit capacitor along with the material that forms the substrate on which the qubit is fabricated.

  13. Shape-memory polymer nanocomposites with a 3D conductive network for bidirectional actuation and locomotion application.

    PubMed

    Peng, Qingyu; Wei, Hongqiu; Qin, Yuyang; Lin, Zaishan; Zhao, Xu; Xu, Fan; Leng, Jinsong; He, Xiaodong; Cao, Anyuan; Li, Yibin

    2016-10-27

    Electrical stimulation of shape-memory polymers (SMPs) has many advantages over thermal methods; creating an efficient conductive path through the bulk polymers is essential for developing high performance electroactive systems. Here, we show that a three-dimensional (3D) porous carbon nanotube sponge can serve as a built-in integral conductive network to provide internal, homogeneous, in situ Joule heating for shape-memory polymers, thus significantly improving the mechanical and thermal behavior of SMPs. As a result, the 3D nanocomposites show a fast response and produce large exerting forces (with a maximum flexural stress of 14.6 MPa) during shape recovery. We further studied the construction of a double-layer composite structure for bidirectional actuation, in which the shape change is dominated by the temperature-dependent exerting force from the top and bottom layer, alternately. An inchworm-type robot is demonstrated whose locomotion is realized by such bidirectional shape memory. Our large stroke shape-memory nanocomposites have promising applications in many areas including artificial muscles and bionic robots.

  14. Numerical simulation and inversion of MT fields in the 3D electric conductivity model of the Vesuvius volcano

    NASA Astrophysics Data System (ADS)

    Spichak, V. V.

    2011-01-01

    Possibilities for three-dimensional (3D) magnetotelluric (MT) sounding of local objects contained in the Earth's crust are estimated in a case study of the magma chamber of the Vesuvius volcano. Stochastic inversion of the model MT data by the Markov Chain Monte Carlo (MCMC) method has shown that the most efficient approach is not simultaneous but successive estimation of the geometry and the depth of the anomaly and the assessment of the conductivity distribution within the anomalous region. A zone of equivalence is revealed between the a priori estimate of the depth of the anomalous zone and the a posteriori distribution of electric conductivity within it. Based on the present estimation and previous results, an algorithm for determination of the parameters of local crustal anomaly is proposed.

  15. 3D polyaniline porous layer anchored pillared graphene sheets: enhanced interface joined with high conductivity for better charge storage applications.

    PubMed

    Sekar, Pandiaraj; Anothumakkool, Bihag; Kurungot, Sreekumar

    2015-04-15

    Here, we report synthesis of a 3-dimensional (3D) porous polyaniline (PANI) anchored on pillared graphene (G-PANI-PA) as an efficient charge storage material for supercapacitor applications. Benzoic acid (BA) anchored graphene, having spatially separated graphene layers (G-Bz-COOH), was used as a structure controlling support whereas 3D PANI growth has been achieved by a simple chemical oxidation of aniline in the presence of phytic acid (PA). The BA groups on G-Bz-COOH play a critical role in preventing the restacking of graphene to achieve a high surface area of 472 m(2)/g compared to reduced graphene oxide (RGO, 290 m(2)/g). The carboxylic acid (-COOH) group controls the rate of polymerization to achieve a compact polymer structure with micropores whereas the chelating nature of PA plays a crucial role to achieve the 3D growth pattern of PANI. This type of controlled interplay helps G-PANI-PA to achieve a high conductivity of 3.74 S/cm all the while maintaining a high surface area of 330 m(2)/g compared to PANI-PA (0.4 S/cm and 60 m(2)/g). G-PANI-PA thus conceives the characteristics required for facile charge mobility during fast charge-discharge cycles, which results in a high specific capacitance of 652 F/g for the composite. Owing to the high surface area along with high conductivity, G-PANI-PA displays a stable specific capacitance of 547 F/g even with a high mass loading of 3 mg/cm(2), an enhanced areal capacitance of 1.52 F/cm(2), and a volumetric capacitance of 122 F/cm(3). The reduced charge-transfer resistance (RCT) of 0.67 Ω displayed by G-PANI-PA compared to pure PANI (0.79 Ω) stands out as valid evidence of the improved charge mobility achieved by the system by growing the 3D PANI layer along the spatially separated layers of the graphene sheets. The low RCT helps the system to display capacitance retention as high as 65% even under a high current dragging condition of 10 A/g. High charge/discharge rates and good cycling stability are the other

  16. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  17. A Measure of the Effectiveness of Incorporating 3D Human Anatomy into an Online Undergraduate Laboratory

    ERIC Educational Resources Information Center

    Hilbelink, Amy J.

    2009-01-01

    Results of a study designed to determine the effectiveness of implementing three-dimensional (3D) stereo images of a human skull in an undergraduate human anatomy online laboratory were gathered and analysed. Mental model theory and its applications to 3D relationships are discussed along with the research results. Quantitative results on 62 pairs…

  18. Genre Matters: A Comparative Study on the Entertainment Effects of 3D in Cinematic Contexts

    NASA Astrophysics Data System (ADS)

    Ji, Qihao; Lee, Young Sun

    2014-09-01

    Built upon prior comparative studies of 3D and 2D films, the current project investigates the effects of 2D and 3D on viewers' perception of enjoyment, narrative engagement, presence, involvement, and flow across three movie genres (Action/fantasy vs. Drama vs. Documentary). Through a 2 by 3 mixed factorial design, participants (n = 102) were separated into two viewing conditions (2D and 3D) and watched three 15-min film segments. Result suggested both visual production methods are equally efficient in terms of eliciting people's enjoyment, narrative engagement, involvement, flow and presence, no effects of visual production method was found. In addition, through examining the genre effects in both 3D and 2D conditions, we found that 3D works better for action movies than documentaries in terms of eliciting viewers' perception of enjoyment and presence, similarly, it improves views' narrative engagement for documentaries than dramas substantially. Implications and limitations are discussed in detail.

  19. Hierarchical self-assembly of hexagonal single-crystal nanosheets into 3D layered superlattices with high conductivity

    NASA Astrophysics Data System (ADS)

    Tao, Yulun; Shen, Yuhua; Yang, Liangbao; Han, Bin; Huang, Fangzhi; Li, Shikuo; Chu, Zhuwang; Xie, Anjian

    2012-05-01

    While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and self-assemble, in a suitable single solution environment. In cyclohexane, 1D amorphous nanofibers transformed to 1D nanorods as building blocks, and then to 2D single-crystal nanosheets with a hexagonal phase, and lastly to 3D ordered layered superlattices with the narrowest polydispersity value (Mw/Mn = 1.47). Remarkably, all the instructions for the hierarchical self-assembly are encoded in the layered shape in other non-polar solvents (hexane, octane) and their conductivity in the π-π stacking direction is improved to about 50 S cm-1, which is even higher than that of the highest previously reported value (16 S cm-1). The method used in this study is greatly expected to be readily scalable to produce superlattices of conductive polymers with high quality and low cost.While the number of man-made nano superstructures realized by self-assembly is growing in recent years, assemblies of conductive polymer nanocrystals, especially for superlattices, are still a significant challenge, not only because of the simplicity of the shape of the nanocrystal building blocks and their interactions, but also because of the poor control over these parameters in the fabrication of more elaborate nanocrystals. Here, we firstly report a facile and general route to a new generation of 3D layered superlattices of polyaniline doped with CSA (PANI-CSA) and show how PANI crystallize and

  20. Loading mode dependent effective properties of octet-truss lattice structures using 3D-printing

    NASA Astrophysics Data System (ADS)

    Challapalli, Adithya

    Cellular materials, often called lattice materials, are increasingly receiving attention for their ultralight structures with high specific strength, excellent impact absorption, acoustic insulation, heat dissipation media and compact heat exchangers. In alignment with emerging additive manufacturing (AM) technology, realization of the structural applications of the lattice materials appears to be becoming faster. Considering the direction dependent material properties of the products with AM, by directionally dependent printing resolution, effective moduli of lattice structures appear to be directionally dependent. In this paper, a constitutive model of a lattice structure, which is an octet-truss with a base material having an orthotropic material property considering AM is developed. In a case study, polyjet based 3D printing material having an orthotropic property with a 9% difference in the principal direction provides difference in the axial and shear moduli in the octet-truss by 2.3 and 4.6%. Experimental validation for the effective properties of a 3D printed octet-truss is done for uniaxial tension and compression test. The theoretical value based on the micro-buckling of truss member are used to estimate the failure strength. Modulus value appears a little overestimate compared with the experiment. Finite element (FE) simulations for uniaxial compression and tension of octettruss lattice materials are conducted. New effective properties for the octet-truss lattice structure are developed considering the observed behavior of the octet-truss structure under macroscopic compression and tension trough simulations.

  1. 2D divertor heat flux distribution using a 3D heat conduction solver in National Spherical Torus Experiment.

    PubMed

    Gan, K F; Ahn, J-W; Park, J-W; Maingi, R; McLean, A G; Gray, T K; Gong, X; Zhang, X D

    2013-02-01

    The divertor heat flux footprint in tokamaks is often observed to be non-axisymmetric due to intrinsic error fields, applied 3D magnetic fields or during transients such as edge localized modes. Typically, only 1D radial heat flux profiles are analyzed; however, analysis of the full 2D divertor measurements provides opportunities to study the asymmetric nature of the deposited heat flux. To accomplish this an improved 3D Fourier analysis method has been successfully applied in a heat conduction solver (TACO) to determine the 2D heat flux distribution at the lower divertor surface in the National Spherical Torus Experiment (NSTX) tokamak. This advance enables study of helical heat deposition onto the divertor. In order to account for heat transmission through poorly adhered surface layers on the divertor plate, a heat transmission coefficient, defined as the surface layer thermal conductivity divided by the thickness of the layer, was introduced to the solution of heat conduction equation. This coefficient is denoted as α and a range of values were tested in the model to ensure a reliable heat flux calculation until a specific value of α led to the constant total deposited energy in the numerical solution after the end of discharge. A comparison between 1D heat flux profiles from TACO and from a 2D heat flux calculation code, THEODOR, shows good agreement. Advantages of 2D heat flux distribution over the conventional 1D heat flux profile are also discussed, and examples of 2D data analysis in the study of striated heat deposition pattern as well as the toroidal degree of asymmetry of peak heat flux and heat flux width are demonstrated.

  2. A 3-D reconstruction solution to current density imaging based on acoustoelectric effect by deconvolution: a simulation study.

    PubMed

    Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang

    2013-05-01

    Hybrid imaging modality combining ultrasound scanning and electrical current density imaging through the acoustoelectric (AE) effect may potentially provide solutions to imaging electrical activities and properties of biological tissues with high spatial resolution. In this study, a 3-D reconstruction solution to ultrasound current source density imaging (UCSDI) by means of Wiener deconvolution is proposed and evaluated through computer simulations. As compared to previous 2-D UCSDI problem, in a 3-D volume conductor with broadly distributed current density field, the AE signal becomes a 3-D convolution between the electric field and the acoustic field, and effective 3-D reconstruction algorithm has not been developed so far. In the proposed method, a 3-D ultrasound scanning is performed while the corresponding AE signals are collected from multiple electrode pairs attached on the surface of the imaging object. From the collected AE signals, the acoustic field and electric field were first decoupled by Wiener deconvolution. Then, the current density distribution was reconstructed by inverse projection. Our simulations using artificial current fields in homogeneous phantoms suggest that the proposed method is feasible and robust against noise. It is also shown that using the proposed method, it is feasible to reconstruct 3-D current density distribution in an inhomogeneous conductive medium.

  3. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography

    NASA Astrophysics Data System (ADS)

    Chen-Wiegart, Yu-Chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2014-12-01

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications.Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A `stack-and-screen' mechanism was proposed to

  4. A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect: a simulation study

    NASA Astrophysics Data System (ADS)

    Yang, R.; Song, A.; Li, X. D.; Lu, Y.; Yan, R.; Xu, B.; Li, X.

    2014-10-01

    A 3D reconstruction solution to ultrasound Joule heat density tomography based on acousto-electric effect by deconvolution is proposed for noninvasive imaging of biological tissue. Compared with ultrasound current source density imaging, ultrasound Joule heat density tomography doesn't require any priori knowledge of conductivity distribution and lead fields, so it can gain better imaging result, more adaptive to environment and with wider application scope. For a general 3D volume conductor with broadly distributed current density field, in the AE equation the ultrasound pressure can't simply be separated from the 3D integration, so it is not a common modulation and basebanding (heterodyning) method is no longer suitable to separate Joule heat density from the AE signals. In the proposed method the measurement signal is viewed as the output of Joule heat density convolving with ultrasound wave. As a result, the internal 3D Joule heat density can be reconstructed by means of Wiener deconvolution. A series of computer simulations set for breast cancer imaging applications, with consideration of ultrasound beam diameter, noise level, conductivity contrast, position dependency and size of simulated tumors, have been conducted to evaluate the feasibility and performance of the proposed reconstruction method. The computer simulation results demonstrate that high spatial resolution 3D ultrasound Joule heat density imaging is feasible using the proposed method, and it has potential applications to breast cancer detection and imaging of other organs.

  5. Effect of Illumination on Ocular Status Modifications Induced by Short-Term 3D TV Viewing.

    PubMed

    Chen, Yuanyuan; Wang, Yuwen; Yu, Xinping; Xu, Aiqin; Jiang, Jian; Chen, Hao

    2017-01-01

    Objectives. This study aimed to compare changes in ocular status after 3D TV viewing under three modes of illumination and thereby identify optimal illumination for 3D TV viewing. Methods. The following measures of ocular status were assessed: the accommodative response, accommodative microfluctuation, accommodative facility, relative accommodation, gradient accommodative convergence/accommodation (AC/A) ratio, phoria, and fusional vergence. The observers watched 3D television for 90 minutes through 3D shutter glasses under three illumination modes: A, complete darkness; B, back illumination (50 lx); and C, front illumination (130 lx). The ocular status of the observers was assessed both before and after the viewing. Results. After 3D TV viewing, the accommodative response and accommodative microfluctuation were significantly changed under illumination Modes A and B. The near positive fusional vergence decreased significantly after the 90-minute 3D viewing session under each illumination mode, and this effect was not significantly different among the three modes. Conclusions. Short-term 3D viewing modified the ocular status of adults. The least amount of such change occurred with front illumination, suggesting that this type of illumination is an appropriate mode for 3D shutter TV viewing.

  6. Effect of Illumination on Ocular Status Modifications Induced by Short-Term 3D TV Viewing

    PubMed Central

    Chen, Yuanyuan; Xu, Aiqin; Jiang, Jian

    2017-01-01

    Objectives. This study aimed to compare changes in ocular status after 3D TV viewing under three modes of illumination and thereby identify optimal illumination for 3D TV viewing. Methods. The following measures of ocular status were assessed: the accommodative response, accommodative microfluctuation, accommodative facility, relative accommodation, gradient accommodative convergence/accommodation (AC/A) ratio, phoria, and fusional vergence. The observers watched 3D television for 90 minutes through 3D shutter glasses under three illumination modes: A, complete darkness; B, back illumination (50 lx); and C, front illumination (130 lx). The ocular status of the observers was assessed both before and after the viewing. Results. After 3D TV viewing, the accommodative response and accommodative microfluctuation were significantly changed under illumination Modes A and B. The near positive fusional vergence decreased significantly after the 90-minute 3D viewing session under each illumination mode, and this effect was not significantly different among the three modes. Conclusions. Short-term 3D viewing modified the ocular status of adults. The least amount of such change occurred with front illumination, suggesting that this type of illumination is an appropriate mode for 3D shutter TV viewing. PMID:28348893

  7. Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas.

    PubMed

    Nakagawa, Yoshitaka; Kageyama, Hiroyuki; Matsumoto, Riho; Oaki, Yuya; Imai, Hiroaki

    2015-11-28

    Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery.

  8. Effects of multiple conformers per compound upon 3-D similarity search and bioassay data analysis

    PubMed Central

    2012-01-01

    Background To improve the utility of PubChem, a public repository containing biological activities of small molecules, the PubChem3D project adds computationally-derived three-dimensional (3-D) descriptions to the small-molecule records contained in the PubChem Compound database and provides various search and analysis tools that exploit 3-D molecular similarity. Therefore, the efficient use of PubChem3D resources requires an understanding of the statistical and biological meaning of computed 3-D molecular similarity scores between molecules. Results The present study investigated effects of employing multiple conformers per compound upon the 3-D similarity scores between ten thousand randomly selected biologically-tested compounds (10-K set) and between non-inactive compounds in a given biological assay (156-K set). When the “best-conformer-pair” approach, in which a 3-D similarity score between two compounds is represented by the greatest similarity score among all possible conformer pairs arising from a compound pair, was employed with ten diverse conformers per compound, the average 3-D similarity scores for the 10-K set increased by 0.11, 0.09, 0.15, 0.16, 0.07, and 0.18 for STST-opt, CTST-opt, ComboTST-opt, STCT-opt, CTCT-opt, and ComboTCT-opt, respectively, relative to the corresponding averages computed using a single conformer per compound. Interestingly, the best-conformer-pair approach also increased the average 3-D similarity scores for the non-inactive–non-inactive (NN) pairs for a given assay, by comparable amounts to those for the random compound pairs, although some assays showed a pronounced increase in the per-assay NN-pair 3-D similarity scores, compared to the average increase for the random compound pairs. Conclusion These results suggest that the use of ten diverse conformers per compound in PubChem bioassay data analysis using 3-D molecular similarity is not expected to increase the separation of non-inactive from random and inactive

  9. Three dimensional electrical conductivity model of the Northwestern US derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Egbert, G. D.; Kelbert, A.

    2011-12-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental United States through the EMScope component of EarthScope. MT deployments in 2006-2011 have acquired data at 325 sites on an approximately regular grid, with the same nominal spacing as the USArray broadband seismic transportable array (~70 km). The MT sites span a rectangular area from NW Washington to NW Colorado. Here we present results of a 3-D inversion of the full data set. A number of conductive and resistive features appear consistently in the crust and upper mantle in essentially all of a large suite of 3-D inverse solutions. Extensive areas of high conductivity are found in the lower crust (up to a depth of ~ 40 km) beneath the Basin & Range in southeastern Oregon, as imaged by Patro and Egbert (2008). In our new model, this feature extends further to the south and to the east, where it merges with somewhat deeper (uppermost mantle) conductivities beneath the Yellowstone-Snake River Plain. This deeper feature, which extends from Yellowstone to the SW into northeastern Nevada, coincides with the track of the Yellowstone hotspot discussed e.g., in Smith et. al. (2008). The lower crust and the uppermost mantle in the northeastern part of the domain, covering the area from eastern Washington to Montana and continuing south to Wyoming, is generally resistive, with a few localized exceptions. This resistive zone coincides with high velocities discussed and interpreted, e.g., by Yang et. al. (2008) as thick, stable Proterozoic lithosphere. A number of large-scale anomalous features also appear consistently in the upper mantle, at depths of ~ 50 km to 300 km. Most striking is a zone of high resistivity on the western edge of the domain, beneath western Oregon, Washington and northern California in the area occupied by oceanic lithosphere of the Juan de Fuca Plate, which has subducted beneath the relatively more conductive

  10. Do Fractal Models of Clouds Produces the Right 3D Radiative Effects?

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    Stochastic fractal models of clouds are often used to study 3D radiative effects and their influence on the remote sensing of cloud properties. Since it is important that the cloud models produce a correct radiative response, some researchers require the model parameters to match observed cloud properties such as scale-independent optical thickness variability. Unfortunately, matching these properties does not necessarily imply that the cloud models will cause the right 3D radiative effects. First, the matched properties alone only influence the 3D effects but do not completely determine them. Second, in many cases the retrieved cloud properties have been already biased by 3D radiative effects, and so the models may not match the true real clouds. Finally, the matched cloud properties cannot be considered independent from the scales at which they have been retrieved. This paper proposes an approach that helps ensure that fractal cloud models are realistic and produce the right 3D effects. The technique compares the results of radiative transfer simulations for the model clouds to new direct observations of 3D radiative effects in satellite images.

  11. A study on radiative transfer effects in 3-D cloudy atmosphere using satellite data

    NASA Astrophysics Data System (ADS)

    Okata, M.; Nakajima, T.; Suzuki, K.; Inoue, T.; Nakajima, T. Y.; Okamoto, H.

    2017-01-01

    This study evaluates 3-D cloud effects on the radiation budget with a combined use of active sensor cloud profiling radar/CloudSat and imager Moderate Resolution Imaging Spectroradiometer/Aqua data on the A-train. An algorithm is devised for constructing 3-D cloud fields based on satellite-observed cloud information. The 3-D cloud fields thus constructed are used to calculate the broadband solar and thermal radiative fluxes with a 3-D radiative transfer code developed by the authors. The aim of this study is to investigate the effects of cloud morphology on solar radiative transfer in cloudy atmosphere. For this purpose, 3-D cloud fields are constructed with the new satellite-based method, to which full 3D-RT (radiative transfer) simulations are applied. The simulated 3-D radiation fields are then used to examine and quantify errors of existing typical plane-parallel approximations, i.e., Plane-Parallel Approximation, Independent Pixel Approximation and Tilted Independent Pixel Approximation. Such 3D-RT simulations also serve to address another objective of this study, i.e., to devise an accurate approximation and to characterize the observed specific 3D-RT effects by the cloud morphology based on knowledge of idealized 3D-RT effects. We introduce a modified approach based on an optimum value of diffusivity factor to better approximate the radiative fluxes for arbitrary solar zenith angle determined from the results of 3-D radiative transfer simulations to redeem the overcorrections of these approximations for large solar zenith angles (SZAs). This new approach, called Slant path Independent Pixel Approximation, is found to be better than other approximations when SZA is large for some cloud cases. Based on the SZA dependence of the errors of these approximations relative to 3-D computations, satellite-observed real cloud cases are found to fall into either of three types of different morphologies, i.e., isolated cloud type, upper cloud-roughened type and lower

  12. Biotemplate synthesis of polyaniline@cellulose nanowhiskers/natural rubber nanocomposites with 3D hierarchical multiscale structure and improved electrical conductivity.

    PubMed

    Wu, Xiaodong; Lu, Canhui; Xu, Haoyu; Zhang, Xinxing; Zhou, Zehang

    2014-12-10

    Development of novel and versatile strategies to construct conductive polymer composites with low percolation thresholds and high mechanical properties is of great importance. In this work, we report a facile and effective strategy to prepare polyaniline@cellulose nanowhiskers (PANI@CNs)/natural rubber (NR) nanocomposites with 3D hierarchical multiscale structure. Specifically, PANI was synthesized in situ on the surface of CNs biotemplate to form PANI@CNs nanohybrids with high aspect ratio and good dispersity. Then NR latex was introduced into PANI@CNs nanohybrids suspension to enable the self-assembly of PANI@CNs nanohybrids onto NR latex microspheres. During cocoagulation process, PANI@CNs nanohybrids selectively located in the interstitial space between NR microspheres and organized into a 3D hierarchical multiscale conductive network structure in NR matrix. The combination of the biotemplate synthesis of PANI and latex cocoagulation method significantly enhanced the electrical conductivity and mechanical properties of the NR-based nanocomposites simultaneously. The electrical conductivity of PANI@CNs/NR nanocomposites containing 5 phr PANI showed 11 orders of magnitude higher than that of the PANI/NR composites at the same loading fraction,; meanwhile, the percolation threshold was drastically decreased from 8.0 to 3.6 vol %.

  13. Critical factors affecting the 3D microstructural formation in hybrid conductive adhesive materials studied by X-ray nano-tomography.

    PubMed

    Chen-Wiegart, Yu-chen Karen; Figueroa-Santos, Miriam Aileen; Petrash, Stanislas; Garcia-Miralles, Jose; Wang, Jun

    2015-01-21

    Conductive adhesives are found favorable in a wide range of applications including a lead-free solder in micro-chips, flexible and printable electronics and enhancing the performance of energy storage devices. Composite materials comprised of metallic fillers and a polymer matrix are of great interest to be implemented as hybrid conductive adhesives. Here we investigated a cost-effective conductive adhesive material consisting of silver-coated copper as micro-fillers using synchrotron-based three-dimensional (3D) X-ray nano-tomography. The key factors affecting the quality and performance of the material were quantitatively studied in 3D on the nanometer scale for the first time. A critical characteristic parameter, defined as a shape-factor, was determined to yield a high-quality silver coating, leading to satisfactory performance. A 'stack-and-screen' mechanism was proposed to elaborate such a phenomenon. The findings and the technique developed in this work will facilitate the future advancement of conductive adhesives to have a great impact in micro-electronics and other applications.

  14. Numerical investigation of 3D effects on a 2D-dominated shocked mixing layer

    NASA Astrophysics Data System (ADS)

    Reese, Daniel; Weber, Christopher

    2016-11-01

    A nominally two-dimensional interface, unstable to the Rayleigh-Taylor or Richtmyer-Meshkov instability, will become three-dimensional at high Reynolds numbers due to the growth of background noise and 3D effects like vortex stretching. This three-dimensionality changes macroscopic features, such as the perturbation growth rate and mixing, as it enhances turbulent dissipation. In this study, a 2D perturbation with small-scale, 3D fluctuations is modeled using the hydrodynamics code Miranda. A Mach 1.95 shockwave accelerates a helium-over-SF6 interface, similar to the experiments of Motl et al. ["Experimental validation of a Richtmyer-Meshkov scaling law over large density ratio and shock strength ranges," Phys. Fluids 21(12), 126102 (2009)], to explore the regime where a 2D dominated flow will experience 3D effects. We report on the structure, growth, and mixing of the post-shocked interface in 2D and 3D.

  15. Strategies for Effectively Visualizing a 3D Flow Using Volume Line Integral Convolution

    NASA Technical Reports Server (NTRS)

    Interrante, Victoria; Grosch, Chester

    1997-01-01

    This paper discusses strategies for effectively portraying 3D flow using volume line integral convolution. Issues include defining an appropriate input texture, clarifying the distinct identities and relative depths of the advected texture elements, and selectively highlighting regions of interest in both the input and output volumes. Apart from offering insights into the greater potential of 3D LIC as a method for effectively representing flow in a volume, a principal contribution of this work is the suggestion of a technique for generating and rendering 3D visibility-impeding 'halos' that can help to intuitively indicate the presence of depth discontinuities between contiguous elements in a projection and thereby clarify the 3D spatial organization of elements in the flow. The proposed techniques are applied to the visualization of a hot, supersonic, laminar jet exiting into a colder, subsonic coflow.

  16. Characteristics of visual fatigue under the effect of 3D animation.

    PubMed

    Chang, Yu-Shuo; Hsueh, Ya-Hsin; Tung, Kwong-Chung; Jhou, Fong-Yi; Lin, David Pei-Cheng

    2015-01-01

    Visual fatigue is commonly encountered in modern life. Clinical visual fatigue characteristics caused by 2-D and 3-D animations may be different, but have not been characterized in detail. This study tried to distinguish the differential effects on visual fatigue caused by 2-D and 3-D animations. A total of 23 volunteers were subjected to accommodation and vergence assessments, followed by a 40-min video game program designed to aggravate their asthenopic symptoms. The volunteers were then assessed for accommodation and vergence parameters again and directed to watch a 5-min 3-D video program, and then assessed again for the parameters. The results support that the 3-D animations caused similar characteristics in vision fatigue parameters in some specific aspects as compared to that caused by 2-D animations. Furthermore, 3-D animations may lead to more exhaustion in both ciliary and extra-ocular muscles, and such differential effects were more evident in the high demand of near vision work. The current results indicated that an arbitrary set of indexes may be promoted in the design of 3-D display or equipments.

  17. The effectiveness of 3-D marine systems as an exploration tool in the offshore Niger Delta

    SciTech Connect

    Idowu, A.O. )

    1993-09-01

    From inception in 1984, three-dimensional (3-D) marine surveys have been used widely for field development where commercial hydrocarbons were known to exist in Nigeria. The high-trace density and full 3-D migration provide a data set that allows detailed interpretation of complex geologic structures and, in many cases, provides good stratigraphic information as well. The result has been better placement of development wells, making field development more efficient and cost effective. Previous application of the 3-d method (i.e., reconaissance 3-D) as an exploration tool in 1987 has demonstrated its effectiveness for predrilling detailing of prospects in offshore Niger Delta in a situation where a large volume of seismic data were acquired at relatively reduced unit costs. The technique involves acquiring data along a line every 200 m spacing, while interpretation in 3-D data processing is applied for subsequent 3-D migration. Based on pattern recognition of events on the input traces, the links are established to allow traces to be formed between input locations by comparing several attributes of events on neighboring traces. A case history example from the offshore Niger delta shows that the collection costs for the reconnaissance 3-D method are comparable to two-dimensional detailing based on similar line kilometer and time duration for the survey. A trade-off between cost and technical specifications can be programmed by focusing on the geologic objective. The technique brings the advantage of 3-D methods, but not their costs, to the exploration phase of the search for petroleum, and it is highly recommended for exploration in frontier areas, particularly the deep offshore of the Niger Delta.

  18. Effect of 3D magnetic perturbations on divertor conditions and detachment in tokamak and stellarator

    NASA Astrophysics Data System (ADS)

    Ahn, J.-W.; Briesemester, A. R.; Kobayashi, M.; Lore, J. D.; Schmitz, O.; Diallo, A.; Gray, T. K.; Lasnier, C. J.; LeBlanc, B. P.; Maingi, R.; McLean, A. G.; Sabbagh, S. A.; Soukhanovskii, V. A.

    2017-08-01

    Enhanced perpendicular heat and momentum transport induces parallel pressure loss leading to divertor detachment, which can be produced by the increase of density in 2D tokamaks. However, in the 3D configurations such as tokamaks with 3D fields and stellarators, the fraction of perpendicular transport can be higher even in a lower density regime, which could lead to the early transition to detachment without passing through the high-recycling regime. 3D fields applied to the limiter tokamak plasmas produce edge stochastic layers close to the last closed flux surface (LCFS), which can allow for enhanced perpendicular transport and indeed the absence of high recycling regime and early detachment have been observed in TEXTOR and Tore Supra. However, in the X-point divertor tokamaks with the applied 3D fields, the parallel transport is still dominant and the detachment facilitation has not been observed yet. Rather, 3D fields affected detachment adversely under certain conditions, either by preventing detachment onset as seen in DIII-D or by re-attaching the existing detached plasma as shown in NSTX. The possible way for strong 3D effects to induce access to the early detachment in divertor tokamaks appears to be via significant perpendicular loss of parallel momentum by frictional force for the counter-streaming flows between neighboring flow channels in the divertor. In principle, the adjacent lobes in the 3D divertor tokamak may generate the counter-streaming flow channels. However, an EMC3-EIRENE simulation for ITER H-mode plasmas demonstrated that screened RMP leads to significantly reduced counter-flows near the divertor target, therefore the momentum loss effect leading to detachment facilitation is expected to be small. This is consistent with the observation in LHD, which showed screening (amplification) of RMP fields in the attachment (stable detachment) case. Work for optimal parameter window for best divertor operation scenario is needed particularly for

  19. Screening for Stromal and Matrix Effects in 3D Microenvironments of Breast Cancer Cells

    NASA Astrophysics Data System (ADS)

    Montanez-Sauri, Sara I.

    Breast cancer progression ensures through the acquisition of genetic mutations, the uncontrollable growth of cells, and their progression to invasion. Studies have shown that the surrounding three-dimensional (3D) microenvironment can also influence breast cancer cell progression by controlling the morphology, differentiation, proliferation, and migration of cells. However, most of the currently available in vitro screening platforms are based on the two-dimensional (2D) culture of cells, and do not provide cells with the complex 3D microenvironment that exists in vivo. Therefore, there is a need for more biologically relevant in vitro platforms to help decipher the complexity of the microenvironment and its influence in breast cancer. In this dissertation we present an automated microfluidic platform that allows to efficiently screen for the effect of multiple matrix and stromal microenvironment in 3D cultures of breast cancer cells. Several extracellular matrix (ECM) compositions and stromal cells are included in the 3D microenvironments to examine their influence on breast cancer cell behavior. The screening results suggest that collagen gels with fibronectin might be influencing paracrine signals between breast cancer cells and stromal cells. The ability of the platform to culture and treat cells in 3D microenvironments offers a powerful screening tool for the identification of compounds and interactions using more in vivo-like 3D microenvironments. The identification of these mechanisms will increase our current understanding of breast cancer, and will aid in the identification of potential therapeutics.

  20. The effects of mycoplasma contamination upon the ability to form bioengineered 3D kidney cysts.

    PubMed

    DesRochers, Teresa M; Kuo, Ivana Y; Kimmerling, Erica P; Ehrlich, Barbara E; Kaplan, David L

    2015-01-01

    Mycoplasma contamination of cell cultures is a pervasive, often undiagnosed and ignored problem in many laboratories that can result in reduced cell proliferation and changes in gene expression. Unless contamination is specifically suspected, it is often undetected in two dimensional (2D) cultures and the resulting effects of mycoplasma contamination are rarely appreciated and can lead to incorrect conclusions. Three dimensional (3D) tissue cultures are increasingly utilized to explore tissue development and phenotype. However, 3D cultures are more complex than 2D cell cultures and require a more controlled cellular environment in order to generate structures necessary to mimic in vivo responses and are often maintained for longer time periods. Changes to the microenvironment are assumed to have a more extreme effect upon the success of 3D tissue cultures than 2D cell cultures, but the effects of mycoplasma have not been studied. To test this hypothesis, we grew 2D cell cultures and 3D tissues from pig kidney epithelial cells (LLC-PK1) that were contaminated with mycoplasma and the same stock of cells after mycoplasma removal. We did not observe an effect of mycoplasma contamination on proliferation in 2D monolayer cell culture. However, cyst formation in 3D tissues was altered, with effects upon the number, size and structure of cysts formed. These data serve to reinforce the necessity of testing cell stocks for mycoplasma contamination.

  1. Effects of point configuration on the accuracy in 3D reconstruction from biplane images

    SciTech Connect

    Dmochowski, Jacek; Hoffmann, Kenneth R.; Singh, Vikas; Xu Jinhui; Nazareth, Daryl P.

    2005-09-15

    Two or more angiograms are being used frequently in medical imaging to reconstruct locations in three-dimensional (3D) space, e.g., for reconstruction of 3D vascular trees, implanted electrodes, or patient positioning. A number of techniques have been proposed for this task. In this simulation study, we investigate the effect of the shape of the configuration of the points in 3D (the 'cloud' of points) on reconstruction errors for one of these techniques developed in our laboratory. Five types of configurations (a ball, an elongated ellipsoid (cigar), flattened ball (pancake), flattened cigar, and a flattened ball with a single distant point) are used in the evaluations. For each shape, 100 random configurations were generated, with point coordinates chosen from Gaussian distributions having a covariance matrix corresponding to the desired shape. The 3D data were projected into the image planes using a known imaging geometry. Gaussian distributed errors were introduced in the x and y coordinates of these projected points. Gaussian distributed errors were also introduced into the gantry information used to calculate the initial imaging geometry. The imaging geometries and 3D positions were iteratively refined using the enhanced-Metz-Fencil technique. The image data were also used to evaluate the feasible R-t solution volume. The 3D errors between the calculated and true positions were determined. The effects of the shape of the configuration, the number of points, the initial geometry error, and the input image error were evaluated. The results for the number of points, initial geometry error, and image error are in agreement with previously reported results, i.e., increasing the number of points and reducing initial geometry and/or image error, improves the accuracy of the reconstructed data. The shape of the 3D configuration of points also affects the error of reconstructed 3D configuration; specifically, errors decrease as the 'volume' of the 3D configuration

  2. 3D effects on transport and plasma control in the TJ-II stellarator

    NASA Astrophysics Data System (ADS)

    Castejón, F.; Alegre, D.; Alonso, A.; Alonso, J.; Ascasíbar, E.; Baciero, A.; de Bustos, A.; Baiao, D.; Barcala, J. M.; Blanco, E.; Borchardt, M.; Botija, J.; Cabrera, S.; de la Cal, E.; Calvo, I.; Cappa, A.; Carrasco, R.; Castro, R.; De Castro, A.; Catalán, G.; Chmyga, A. A.; Chamorro, M.; Dinklage, A.; Eliseev, L.; Estrada, T.; Fernández-Marina, F.; Fontdecaba, J. M.; García, L.; García-Cortés, I.; García-Gómez, R.; García-Regaña, J. M.; Guasp, J.; Hatzky, R.; Hernanz, J.; Hernández, J.; Herranz, J.; Hidalgo, C.; Hollmann, E.; Jiménez-Denche, A.; Kirpitchev, I.; Kleiber, R.; Komarov, A. D.; Kozachoek, A. S.; Krupnik, L.; Lapayese, F.; Liniers, M.; Liu, B.; López-Bruna, D.; López-Fraguas, A.; López-Miranda, B.; López-Razola, J.; Losada, U.; de la Luna, E.; Martín de Aguilera, A.; Martín-Díaz, F.; Martínez, M.; Martín-Gómez, G.; Martín-Hernández, F.; Martín-Rojo, A. B.; Martínez-Fernández, J.; McCarthy, K. J.; Medina, F.; Medrano, M.; Melón, L.; Melnikov, A. V.; Méndez, P.; Merino, R.; Miguel, F. J.; van Milligen, B.; Molinero, A.; Momo, B.; Monreal, P.; Moreno, R.; Navarro, M.; Narushima, Y.; Nedzelskiy, I. S.; Ochando, M. A.; Olivares, J.; Oyarzábal, E.; de Pablos, J. L.; Pacios, L.; Panadero, N.; Pastor, I.; Pedrosa, M. A.; de la Peña, A.; Pereira, A.; Petrov, A.; Petrov, S.; Portas, A. B.; Poveda, E.; Rattá, G. A.; Rincón, E.; Ríos, L.; Rodríguez, C.; Rojo, B.; Ros, A.; Sánchez, J.; Sánchez, M.; Sánchez, E.; Sánchez-Sarabia, E.; Sarksian, K.; Satake, S.; Sebastián, J. A.; Silva, C.; Solano, E. R.; Soleto, A.; Sun, B. J.; Tabarés, F. L.; Tafalla, D.; Tallents, S.; Tolkachev, A.; Vega, J.; Velasco, G.; Velasco, J. L.; Wolfers, G.; Yokoyama, M.; Zurro, B.

    2017-10-01

    The effects of 3D geometry are explored in TJ-II from two relevant points of view: neoclassical transport and modification of stability and dispersion relation of waves. Particle fuelling and impurity transport are studied considering the 3D transport properties, paying attention to both neoclassical transport and other possible mechanisms. The effects of the 3D magnetic topology on stability, confinement and Alfvén Eigenmodes properties are also explored, showing the possibility of controlling Alfvén modes by modifying the configuration; the onset of modes similar to geodesic acoustic modes are driven by fast electrons or fast ions; and the weak effect of magnetic well on confinement. Finally, we show innovative power exhaust scenarios using liquid metals.

  3. Depth enhancement of S3D content and the psychological effects

    NASA Astrophysics Data System (ADS)

    Hirahara, Masahiro; Shiraishi, Saki; Kawai, Takashi

    2012-03-01

    Stereoscopic 3D (S3D) imaging technologies are widely used recently to create content for movies, TV programs, games, etc. Although S3D content differs from 2D content by the use of binocular parallax to induce depth sensation, the relationship between depth control and the user experience remains unclear. In this study, the user experience was subjectively and objectively evaluated in order to determine the effectiveness of depth control, such as an expansion or reduction or a forward or backward shift in the range of maximum parallactic angles in the cross and uncross directions (depth bracket). Four types of S3D content were used in the subjective and objective evaluations. The depth brackets of comparison stimuli were modified in order to enhance the depth sensation corresponding to the content. Interpretation Based Quality (IBQ) methodology was used for the subjective evaluation and the heart rate was measured to evaluate the physiological effect. The results of the evaluations suggest the following two points. (1) Expansion/reduction of the depth bracket affects preference and enhances positive emotions to the S3D content. (2) Expansion/reduction of the depth bracket produces above-mentioned effects more notable than shifting the cross/uncross directions.

  4. 2D fluid model analysis for the effect of 3D gas flow on a capacitively coupled plasma deposition reactor

    NASA Astrophysics Data System (ADS)

    Kim, Ho Jun; Lee, Hae June

    2016-06-01

    The wide applicability of capacitively coupled plasma (CCP) deposition has increased the interest in developing comprehensive numerical models, but CCP imposes a tremendous computational cost when conducting a transient analysis in a three-dimensional (3D) model which reflects the real geometry of reactors. In particular, the detailed flow features of reactive gases induced by 3D geometric effects need to be considered for the precise calculation of radical distribution of reactive species. Thus, an alternative inclusive method for the numerical simulation of CCP deposition is proposed to simulate a two-dimensional (2D) CCP model based on the 3D gas flow results by simulating flow, temperature, and species fields in a 3D space at first without calculating the plasma chemistry. A numerical study of a cylindrical showerhead-electrode CCP reactor was conducted for particular cases of SiH4/NH3/N2/He gas mixture to deposit a hydrogenated silicon nitride (SiN x H y ) film. The proposed methodology produces numerical results for a 300 mm wafer deposition reactor which agree very well with the deposition rate profile measured experimentally along the wafer radius.

  5. Vibrating sample magnetometer 2D and 3D magnetization effects associated with different initial magnetization states

    NASA Astrophysics Data System (ADS)

    Lukins, Ronald E.

    2017-05-01

    Differences in VSM magnetization vector rotation associated with various initial magnetization states were demonstrated. Procedures and criteria were developed to select sample orientation and initial magnetization states to allow for the combination of two different 2D measurements runs (with the same field profiles) to generate a dataset that can be representative of actual 3D magnetization rotation. Nickel, cast iron, and low moment magnetic tape media were used to demonstrate these effects using hysteresis and remanent magnetization test sequences. These results can be used to generate 2D and 3D magnetic properties to better characterize magnetic phenomena which are inherently three dimensional. Example applications are magnetic tape-head orientation sensitivity, reinterpretation of 3D coercivity and other standard magnetic properties, and multi-dimensional shielding effectiveness.

  6. The effects of 3D asymmetries in ICF capsule implosions on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Chittenden, Jeremy; Taylor, Shaun; Appelbe, Brian; Niasse, Nicholas

    2013-10-01

    We report on investigations into the effect of asymmetry on thermonuclear yield in ICF implosions on the NIF. 3D radiation hydrodynamics calculations of the entire capsule volume are presented which attempt to predict the structural form of the perturbations at the stagnation phase, based upon initial capsule defects, dust particles, radiation drive asymmetries, etc. Asymmetries arising at the interface between the hotspot and the cold dense fuel layer are further amplified by the Rayleigh-Taylor instability during the deceleration phase. Where multi-mode asymmetries interact in three dimensions, not all of kinetic energy is dissipated effectively. Low mode asymmetries which change the overall shape of the hotspot increase the surface area leading to increased thermal conduction. Higher mode asymmetries promote mixing of the cold fuel layer into the hotspot at stagnation. This essentially acts as an increased rate of ablation of the dense fuel at the hotspot surface, pulling material with low specific enthalpy into the hotpot, lowering the average hotspot temperature and quenching the burn. Signatures of the form of the perturbations are revealed in synthetic neutron spectra, X-ray images and radiography data.

  7. Experimental validation of novel mask technology to reduce mask 3D effects

    NASA Astrophysics Data System (ADS)

    Van Look, Lieve; Philipsen, Vicky; Hendrickx, Eric; Davydova, Natalia; Wittebrood, Friso; de Kruif, Robert; van Oosten, Anton; Miyazaki, Junji; Fliervoet, Timon; van Schoot, Jan; Neumann, Jens Timo

    2015-10-01

    Traditional EUV masks, with absorber on top of the multi-layer (ML) mirror, generally suffer from mask 3D effects: H/V shadowing, best focus shifts through pitch and pattern shifts through focus. These effects reduce the overlapping process window, complicate optical proximity correction and generate overlay errors. With further pitch scaling, these mask 3D effects are expected to become stronger, increasing the need for a compensation strategy. In this study, we have proven by simulations and experiments that alternative mask technologies can lower mask 3D effects and therefore have the potential to improve the imaging of critical EUV layers. We have performed an experimental imaging study of a prototype etched ML mask, which has recently become available. This prototype alternative mask has only half the ML mirror thickness (20 Mo/Si pairs) and contains no absorber material at all. Instead, the ML mirror is etched away to the substrate at the location of the dark features. For this etched ML mask, we have compared the imaging performance for mask 3D related effects to that of a standard EUV mask, using wafer exposures at 0.33 NA. Experimental data are compared to the simulated predictions and the benefits and drawbacks of such an alternative mask are shown. Besides the imaging performance, we will also discuss the manufacturability challenges related to the etched ML mask technology.

  8. Alternative EUV mask technology to compensate for mask 3D effects

    NASA Astrophysics Data System (ADS)

    Van Look, Lieve; Philipsen, Vicky; Hendrickx, Eric; Vandenberghe, Geert; Davydova, Natalia; Wittebrood, Friso; de Kruif, Robert; van Oosten, Anton; Miyazaki, Junji; Fliervoet, Timon; van Schoot, Jan; Neumann, Jens Timo

    2015-07-01

    Traditional EUV masks, with absorber on top of the multi-layer (ML) mirror, generally suffer from mask 3D effects: H/V shadowing, best focus shifts through pitch and pattern shifts through focus. These effects reduce the overlapping process window, complicate optical proximity correction and generate overlay errors. With further pitch scaling, these mask 3D effects are expected to become stronger, increasing the need for a compensation strategy. In this study, we have proven by simulations and experiments that alternative mask technologies can lower mask 3D effects and therefore have the potential to improve the imaging of critical EUV layers. We have performed an experimental imaging study of a prototype Etched ML mask, which has recently become available. This prototype alternative mask has only half the ML mirror thickness (20 Mo/Si pairs) and contains no absorber material at all. Instead, the ML mirror is etched away to the substrate at the location of the dark features. For this Etched ML mask, we have compared the imaging performance for mask 3D related effects to that of a standard EUV mask, using wafer exposures at 0.33 NA. Experimental data are compared to the simulated predictions and the benefits and drawbacks of such an alternative mask are shown. Besides the imaging performance, we will also discuss the manufacturability challenges related to the etched ML mask technology.

  9. Experimental validation of novel EUV mask technology to reduce mask 3D effects

    NASA Astrophysics Data System (ADS)

    Van Look, Lieve; Philipsen, Vicky; Hendrickx, Eric; Davydova, Natalia; Wittebrood, Friso; de Kruif, Robert; van Oosten, Anton; Miyazaki, Junji; Fliervoet, Timon; van Schoot, Jan; Neumann, Jens Timo

    2015-09-01

    Traditional EUV masks, with absorber on top of the multi-layer (ML) mirror, generally suffer from mask 3D effects: H/V shadowing, best focus shifts through pitch and pattern shifts through focus. These effects reduce the overlapping process window, complicate optical proximity correction and generate overlay errors. With further pitch scaling, these mask 3D effects are expected to become stronger, increasing the need for a compensation strategy. In this study, we have proven by simulations and experiments that alternative mask technologies can lower mask 3D effects and therefore have the potential to improve the imaging of critical EUV layers. We have performed an experimental imaging study of a prototype etched ML mask, which has recently become available. This prototype alternative mask has only half the ML mirror thickness (20 Mo/Si pairs) and contains no absorber material at all. Instead, the ML mirror is etched away to the substrate at the location of the dark features. For this etched ML mask, we have compared the imaging performance for mask 3D related effects to that of a standard EUV mask, using wafer exposures at 0.33 NA. Experimental data are compared to the simulated predictions and the benefits and drawbacks of such an alternative mask are shown. Besides the imaging performance, we will also discuss the manufacturability challenges related to the etched ML mask technology.

  10. 3D study of intermetallics and their effect on the corrosion morphology of rheocast aluminium alloy

    SciTech Connect

    Mingo, B.; Arrabal, R.; Pardo, A.; Matykina, E.; Skeldon, P.

    2016-02-15

    In the present study, the effect of heat treatment T6.1 on the microstructure and corrosion behaviour of rheocast aluminium alloy A356 is investigated on the basis of 2D/3D characterization techniques and electrochemical and SKPFM measurements. Heat treatment strengthens the α-Al matrix, modifies the intermetallic particles and spheroidizes eutectic Si. These changes do not modify significantly the corrosion behaviour of the alloy. 3D SEM-Tomography clearly shows that the corrosion advances in the shape of narrow paths between closely spaced intermetallics without a major influence of eutectic Si. - Highlights: • T6.1 spheroidizes Si, strengthens the matrix and modifies the intermetallics. • Electrochemical behaviour of untreated and heat-treated alloys is similar. • 3D SEM-Tomography provides additional information on the corrosion morphology. • Corrosion advances as paths between intermetallics with little influence of Si.

  11. 3D calculation of Tucson-Melbourne 3NF effect in triton binding energy

    SciTech Connect

    Hadizadeh, M. R.; Tomio, L.; Bayegan, S.

    2010-08-04

    As an application of the new realistic three-dimensional (3D) formalism reported recently for three-nucleon (3N) bound states, an attempt is made to study the effect of three-nucleon forces (3NFs) in triton binding energy in a non partial wave (PW) approach. The spin-isospin dependent 3N Faddeev integral equations with the inclusion of 3NFs, which are formulated as function of vector Jacobi momenta, specifically the magnitudes of the momenta and the angle between them, are solved with Bonn-B and Tucson-Melbourne NN and 3N forces in operator forms which can be incorporated in our 3D formalism. The comparison with numerical results in both, novel 3D and standard PW schemes, shows that non PW calculations avoid the very involved angular momentum algebra occurring for the permutations and transformations and it is more efficient and less cumbersome for considering the 3NF.

  12. 3D calculation of Tucson-Melbourne 3NF effect in triton binding energy

    NASA Astrophysics Data System (ADS)

    Hadizadeh, M. R.; Tomio, L.; Bayegan, S.

    2010-08-01

    As an application of the new realistic three-dimensional (3D) formalism reported recently for three-nucleon (3N) bound states, an attempt is made to study the effect of three-nucleon forces (3NFs) in triton binding energy in a non partial wave (PW) approach. The spin-isospin dependent 3N Faddeev integral equations with the inclusion of 3NFs, which are formulated as function of vector Jacobi momenta, specifically the magnitudes of the momenta and the angle between them, are solved with Bonn-B and Tucson-Melbourne NN and 3N forces in operator forms which can be incorporated in our 3D formalism. The comparison with numerical results in both, novel 3D and standard PW schemes, shows that non PW calculations avoid the very involved angular momentum algebra occurring for the permutations and transformations and it is more efficient and less cumbersome for considering the 3NF.

  13. The effect of sound on visual fidelity perception in stereoscopic 3-D.

    PubMed

    Rojas, David; Kapralos, Bill; Hogue, Andrew; Collins, Karen; Nacke, Lennart; Cristancho, Sayra; Conati, Cristina; Dubrowski, Adam

    2013-12-01

    Visual and auditory cues are important facilitators of user engagement in virtual environments and video games. Prior research supports the notion that our perception of visual fidelity (quality) is influenced by auditory stimuli. Understanding exactly how our perception of visual fidelity changes in the presence of multimodal stimuli can potentially impact the design of virtual environments, thus creating more engaging virtual worlds and scenarios. Stereoscopic 3-D display technology provides the users with additional visual information (depth into and out of the screen plane). There have been relatively few studies that have investigated the impact that auditory stimuli have on our perception of visual fidelity in the presence of stereoscopic 3-D. Building on previous work, we examine the effect of auditory stimuli on our perception of visual fidelity within a stereoscopic 3-D environment.

  14. 3D near-to-surface conductivity reconstruction by inversion of VETEM data using the distorted Born iterative method

    USGS Publications Warehouse

    Wang, G.L.; Chew, W.C.; Cui, T.J.; Aydiner, A.A.; Wright, D.L.; Smith, D.V.

    2004-01-01

    Three-dimensional (3D) subsurface imaging by using inversion of data obtained from the very early time electromagnetic system (VETEM) was discussed. The study was carried out by using the distorted Born iterative method to match the internal nonlinear property of the 3D inversion problem. The forward solver was based on the total-current formulation bi-conjugate gradient-fast Fourier transform (BCCG-FFT). It was found that the selection of regularization parameter follow a heuristic rule as used in the Levenberg-Marquardt algorithm so that the iteration is stable.

  15. 3-D Printing as an Effective Educational Tool for MEMS Design and Fabrication

    ERIC Educational Resources Information Center

    Dahle, Reena; Rasel, Rafiul

    2016-01-01

    This paper presents a series of course modules developed as a high-impact and cost-effective learning tool for modeling and simulating the microfabrication process and design of microelectromechanical systems (MEMS) devices using three-dimensional (3-D) printing. Microfabrication technology is an established fabrication technique for small and…

  16. 3D collagen type I matrix inhibits the antimigratory effect of doxorubicin

    PubMed Central

    2010-01-01

    Background The cell microenvironment, especially extracellular matrix proteins, plays an important role in tumor cell response to chemotherapeutic drugs. The present study was designed to investigate whether this microenvironment can influence the antimigratory effect of an anthracycline drug, doxorubicin, when tumor cells are grown in a matrix of type I collagen, a three-dimensional (3D) context which simulates a natural microenvironment. Methods To this purpose, we studied the migratory parameters, the integrin expression, and the activation state of focal adhesion kinase (FAK) and GTPase RhoA involved in the formation of focal adhesions and cell movement. These parameters were evaluated at non toxic concentrations which did not affect HT1080 cell proliferation. Results We show that while doxorubicin decreased cell migration properties by 70% in conventional two-dimensional (2D) culture, this effect was completely abolished in a 3D one. Regarding the impact of doxorubicin on the focal adhesion complexes, unlike in 2D systems, the data indicated that the drug neither affected β1 integrin expression nor the state of phosphorylation of FAK and RhoA. Conclusion This study suggests the lack of antiinvasive effect of doxorubicin in a 3D environment which is generally considered to better mimic the phenotypic behaviour of cells in vivo. Consistent with the previously shown resistance to the cytotoxic effect in a 3D context, our results highlight the importance of the matrix configuration on the tumor cell response to antiinvasive drugs. PMID:20707917

  17. Study of non-axisymmetric divertor footprints using 2-D IR and visible cameras and a 3-D heat conduction solver in NSTX

    SciTech Connect

    Ahn, J-W.; Gan, K. F.; Scotti, F.; Lore, J. D.; Maingi, R.; Canik, J. M.; Gray, T. K.; McLean, A. G.; Roquemore, A. L.; Soukhanovskii, V. A.

    2013-01-12

    Toroidally non-axisymmetric divertor profiles during the 3-D field application and for ELMs are studied with simultaneous observation by a new wide angle visible camera and a high speed IR camera. A newly implemented 3-D heat conduction code, TACO, is used to obtain divertor heat flux. The wide angle camera data confirmed the previously reported result on the validity of vacuum field line tracing on the prediction of split strike point pattern by 3-D fields as well as the phase locking of ELM heat flux to the 3-D fields. TACO calculates the 2- D heat flux distribution allowing assessment of toroidal asymmetry of peak heat flux and heat flux width. Lastly, the degree of asymmetry (εDA) is defined to quantify the asymmetric heat deposition on the divertor surface and is found to have a strong positive dependence on peak heat flux.

  18. Effect of mental fatigue caused by mobile 3D viewing on selective attention: an ERP study.

    PubMed

    Mun, Sungchul; Kim, Eun-Soo; Park, Min-Chul

    2014-12-01

    This study investigated behavioral responses to and auditory event-related potential (ERP) correlates of mental fatigue caused by mobile three-dimensional (3D) viewing. Twenty-six participants (14 women) performed a selective attention task in which they were asked to respond to the sounds presented at the attended side while ignoring sounds at the ignored side before and after mobile 3D viewing. Considering different individual susceptibilities to 3D, participants' subjective fatigue data were used to categorize them into two groups: fatigued and unfatigued. The amplitudes of d-ERP components were defined as differences in amplitudes between time-locked brain oscillations of the attended and ignored sounds, and these values were used to calculate the degree to which spatial selective attention was impaired by 3D mental fatigue. The fatigued group showed significantly longer response times after mobile 3D viewing compared to before the viewing. However, response accuracy did not significantly change between the two conditions, implying that the participants used a behavioral strategy to cope with their performance accuracy decrement by increasing their response times. No significant differences were observed for the unfatigued group. Analysis of covariance revealed group differences with significant and trends toward significant decreases in the d-P200 and d-late positive potential (LPP) amplitudes at the occipital electrodes of the fatigued and unfatigued groups. Our findings indicate that mentally fatigued participants did not effectively block out distractors in their information processing mechanism, providing support for the hypothesis that 3D mental fatigue impairs spatial selective attention and is characterized by changes in d-P200 and d-LPP amplitudes.

  19. Model-based risk assessment for motion effects in 3D radiotherapy of lung tumors

    NASA Astrophysics Data System (ADS)

    Werner, René; Ehrhardt, Jan; Schmidt-Richberg, Alexander; Handels, Heinz

    2012-02-01

    Although 4D CT imaging becomes available in an increasing number of radiotherapy facilities, 3D imaging and planning is still standard in current clinical practice. In particular for lung tumors, respiratory motion is a known source of uncertainty and should be accounted for during radiotherapy planning - which is difficult by using only a 3D planning CT. In this contribution, we propose applying a statistical lung motion model to predict patients' motion patterns and to estimate dosimetric motion effects in lung tumor radiotherapy if only 3D images are available. Being generated based on 4D CT images of patients with unimpaired lung motion, the model tends to overestimate lung tumor motion. It therefore promises conservative risk assessment regarding tumor dose coverage. This is exemplarily evaluated using treatment plans of lung tumor patients with different tumor motion patterns and for two treatment modalities (conventional 3D conformal radiotherapy and step-&- shoot intensity modulated radiotherapy). For the test cases, 4D CT images are available. Thus, also a standard registration-based 4D dose calculation is performed, which serves as reference to judge plausibility of the modelbased 4D dose calculation. It will be shown that, if combined with an additional simple patient-specific breathing surrogate measurement (here: spirometry), the model-based dose calculation provides reasonable risk assessment of respiratory motion effects.

  20. The effect of motion on IMRT - looking at interplay with 3D measurements

    NASA Astrophysics Data System (ADS)

    Thomas, A.; Yan, H.; Oldham, M.; Juang, T.; Adamovics, J.; Yin, F. F.

    2013-06-01

    Clinical recommendations to address tumor motion management have been derived from studies dealing with simulations and 2D measurements. 3D measurements may provide more insight and possibly alter the current motion management guidelines. This study provides an initial look at true 3D measurements involving leaf motion deliveries by use of a motion phantom and the PRESAGE/DLOS dosimetry system. An IMRT and VMAT plan were delivered to the phantom and analyzed by means of DVHs to determine whether the expansion of treatment volumes based on known imaging motion adequately cover the target. DVHs confirmed that for these deliveries the expansion volumes were adequate to treat the intended target although further studies should be conducted to allow for differences in parameters that could alter the results, such as delivery dose and breathe rate.

  1. Effects of 1D and 3D Thermal Radiation on Cloud Dynamics and Microphysics

    NASA Astrophysics Data System (ADS)

    Klinger, C.; Mayer, B. C.; Jakub, F.; Zinner, T.

    2016-12-01

    Radiation is a key driver for the development of clouds. Solar radiation heats the surface and causes updrafts to rise, thus initializing cloud formation. In the very moment that a cloud forms, absorption and emission of thermal radiation at the cloud itself cause heating and cooling rates of several hundred K/d at the interface between cloud and cloudless sky. The magnitude of the cooling rates, compared to the commonly known clear sky cooling of 1-2 K/d, can alter cloud dynamics and microphysics and thus cloud development or lifetime. In cloud resolving numerical simulations, radiation is, if considered at all, usually applied as a 1D approximation, omitting horizontal transport of radiation through the modeling domain. However, it is obvious that radiation is a three dimensional problem. Applying 3D radiative transfer in cloud resolving simulations causes, in addition to cloud top cooling and cloud bottom warming, an additional cooling at cloud sides which is completely neglected by common 1D radiative transfer solutions. Here, we examine the effects of 1D and 3D thermal radiative transfer in cloud resolving simulation, by applying the newly developed "Neighboring Column Approximation" (NCA) - a fast 3D approximation for thermal radiative transfer in cloud resolving simulations. The NCA accurately represents 3D effects at moderate computational cost which make it an ideal tool to explore how 1D and 3D radiative transfer modify cloud development in numerical models. Thermal radiation can modify clouds in terms of cloud lifetime, cloud size and cloud circulation. These effects on cloud development will be analyzed in a set of cumulus cloud simulations.

  2. Effect of Ductile Agents on the Dynamic Behavior of SiC3D Network Composites

    NASA Astrophysics Data System (ADS)

    Zhu, Jingbo; Wang, Yangwei; Wang, Fuchi; Fan, Qunbo

    2016-10-01

    Co-continuous SiC ceramic composites using pure aluminum, epoxy, and polyurethane (PU) as ductile agents were developed. The dynamic mechanical behavior and failure mechanisms were investigated experimentally using the split Hopkinson pressure bar (SHPB) method and computationally by finite element (FE) simulations. The results show that the SiC3D/Al composite has the best overall performance in comparison with SiC3D/epoxy and SiC3D/PU composites. FE simulations are generally consistent with experimental data. These simulations provide valuable help in predicting mechanical strength and in interpreting the experimental results and failure mechanisms. They may be combined with micrographs for fracture characterizations of the composites. We found that interactions between the SiC phase and ductile agents under dynamic compression in the SHPB method are complex, and that interfacial condition is an important parameter that determines the mechanical response of SiC3D composites with a characteristic interlocking structure during dynamic compression. However, the effect of the mechanical properties of ductile agents on dynamic behavior of the composites is a second consideration in the production of the composites.

  3. 3D-printing and the effect on medical costs: a new era?

    PubMed

    Choonara, Yahya E; du Toit, Lisa C; Kumar, Pradeep; Kondiah, Pierre P D; Pillay, Viness

    2016-01-01

    3D-printing (3DP) is the art and science of printing in a new dimension using 3D printers to transform 3D computer aided designs (CAD) into life-changing products. This includes the design of more effective and patient-friendly pharmaceutical products as well as bio-inspired medical devices. It is poised as the next technology revolution for the pharmaceutical and medical-device industries. After decorous implementation scientists in collaboration with CAD designers have produced innovative medical devices ranging from pharmaceutical tablets to surgical transplants of the human face and skull, spinal implants, prosthetics, human organs and other biomaterials. While 3DP may be cost-efficient, a limitation exists in the availability of 3D printable biomaterials for most applications. In addition, the loss of skilled labor in producing medical devices such as prosthetics and other devices may affect developing economies. This review objectively explores the potential growth and impact of 3DP costs in the medical industry.

  4. Testing the effectiveness of 3D film for laboratory-based studies of emotion.

    PubMed

    Bride, Daniel L; Crowell, Sheila E; Baucom, Brian R; Kaufman, Erin A; O'Connor, Caitlin G; Skidmore, Chloe R; Yaptangco, Mona

    2014-01-01

    Research in psychology and affective neuroscience often relies on film as a standardized and reliable method for evoking emotion. However, clip validation is not undertaken regularly. This presents a challenge for research with adolescent and young adult samples who are exposed routinely to high-definition (HD) three-dimensional (3D) stimuli and may not respond to older, validated film clips. Studies with young people inform understanding of emotional development, dysregulated affect, and psychopathology, making it critical to assess whether technological advances improve the study of emotion. In the present study, we examine whether 3D film is more evocative than 2D using a tightly controlled within-subjects design. Participants (n  =  408) viewed clips during a concurrent psychophysiological assessment. Results indicate that both 2D and 3D technology are highly effective tools for emotion elicitation. However, 3D does not add incremental benefit over 2D, even when individual differences in anxiety, emotion dysregulation, and novelty seeking are considered.

  5. Testing the Effectiveness of 3D Film for Laboratory-Based Studies of Emotion

    PubMed Central

    Bride, Daniel L.; Crowell, Sheila E.; Baucom, Brian R.; Kaufman, Erin A.; O'Connor, Caitlin G.; Skidmore, Chloe R.; Yaptangco, Mona

    2014-01-01

    Research in psychology and affective neuroscience often relies on film as a standardized and reliable method for evoking emotion. However, clip validation is not undertaken regularly. This presents a challenge for research with adolescent and young adult samples who are exposed routinely to high-definition (HD) three-dimensional (3D) stimuli and may not respond to older, validated film clips. Studies with young people inform understanding of emotional development, dysregulated affect, and psychopathology, making it critical to assess whether technological advances improve the study of emotion. In the present study, we examine whether 3D film is more evocative than 2D using a tightly controlled within-subjects design. Participants (n  =  408) viewed clips during a concurrent psychophysiological assessment. Results indicate that both 2D and 3D technology are highly effective tools for emotion elicitation. However, 3D does not add incremental benefit over 2D, even when individual differences in anxiety, emotion dysregulation, and novelty seeking are considered. PMID:25170878

  6. Mechanical properties and shape memory effect of 3D-printed PLA-based porous scaffolds.

    PubMed

    Senatov, F S; Niaza, K V; Zadorozhnyy, M Yu; Maksimkin, A V; Kaloshkin, S D; Estrin, Y Z

    2016-04-01

    In the present work polylactide (PLA)/15wt% hydroxyapatite (HA) porous scaffolds with pre-modeled structure were obtained by 3D-printing by fused filament fabrication. Composite filament was obtained by extrusion. Mechanical properties, structural characteristics and shape memory effect (SME) were studied. Direct heating was used for activation of SME. The average pore size and porosity of the scaffolds were 700μm and 30vol%, respectively. Dispersed particles of HA acted as nucleation centers during the ordering of PLA molecular chains and formed an additional rigid fixed phase that reduced molecular mobility, which led to a shift of the onset of recovery stress growth from 53 to 57°C. A more rapid development of stresses was observed for PLA/HA composites with the maximum recovery stress of 3.0MPa at 70°C. Ceramic particles inhibited the growth of cracks during compression-heating-compression cycles when porous PLA/HA 3D-scaffolds recovered their initial shape. Shape recovery at the last cycle was about 96%. SME during heating may have resulted in "self-healing" of scaffold by narrowing the cracks. PLA/HA 3D-scaffolds were found to withstand up to three compression-heating-compression cycles without delamination. It was shown that PLA/15%HA porous scaffolds obtained by 3D-printing with shape recovery of 98% may be used as self-fitting implant for small bone defect replacement owing to SME.

  7. The effectiveness of 3D animations to enhance understanding of cranial cruciate ligament rupture.

    PubMed

    Clements, Dylan N; Broadhurst, Henry; Clarke, Stephen P; Farrell, Michael; Bennett, David; Mosley, John R; Mellanby, Richard J

    2013-01-01

    Cranial cruciate ligament (CCL) rupture is one of the most important orthopedic diseases taught to veterinary undergraduates. The complexity of the anatomy of the canine stifle joint combined with the plethora of different surgical interventions available for the treatment of the disease means that undergraduate veterinary students often have a poor understanding of the pathophysiology and treatment of CCL rupture. We designed, developed, and tested a three dimensional (3D) animation to illustrate the pertinent clinical anatomy of the stifle joint, the effects of CCL rupture, and the mechanisms by which different surgical techniques can stabilize the joint with CCL rupture. When compared with a non-animated 3D presentation, students' short-term retention of functional anatomy improved although they could not impart a better explanation of how different surgical techniques worked. More students found the animation useful than those who viewed a comparable non-animated 3D presentation. Multiple peer-review testing is required to maximize the usefulness of 3D animations during development. Free and open access to such tools should improve student learning and client understanding through wide-spread uptake and use.

  8. Contact Effects in thin 3D-Topological Insulators: How does the current flow?

    PubMed Central

    Gupta, Gaurav; Jalil, Mansoor Bin Abdul; Liang, Gengchiau

    2015-01-01

    The effect of different contact configurations (semi-infinite extended-channel, normal metal and ferromagnetic metal) on quantum transport through thin Bi2Se3 three-dimensional (3D) topological insulator (TI) slab (channel) has been investigated through Non-Equilibrium Green Function. The issue of contact dependent current flow and distribution across quintuple layers of 3D-TI has been addressed in this work and applied to expound the explanation for recent experimental work on electrical detection of spin-momentum locking on topological surface for long channel device. A theoretical model is propounded to develop a microscopic understanding of transport in 3D-TI in which contact type and magnetization concur with helical surface states of the TI channel to manifest seemingly counter-intuitive current distribution across layers. The quantum transport calculations for short channel devices with magnetic source and drain contacts postulate negative surface current for anti-phase magnetization whose axis is transverse to both current and quintuple layers. For in-phase magnetization at the two terminals, it is shown that observations can change fundamentally to result in anomalous current distribution. Such results are explained to stem from the confinement of 3D-TI between ferromagnetic contacts along the transport direction. A simple mechanism to validate topological insulators via quantum transport experiments has also been suggested. PMID:25820460

  9. Toward a rapid 3D spectral deconvolution of EMI conductivities measured with portable multi-configuration sensors

    NASA Astrophysics Data System (ADS)

    Guillemoteau, Julien; Tronicke, Jens

    2017-04-01

    Portable loop-loop electromagnetic induction (EMI) sensors using multiple coil configurations are of growing interest in hydrological, archaeological and agricultural studies for mapping the subsurface electrical conductivity. In contrast with EMI methods employing larger scale geometries (e.g., magnetotellurics, marine EM, airborne EM, transient EM, large offset loop-loop harmonic source EM), the portable EMI multi-configuration sensors operate in the low induction number (LIN) domain as they employ a rather low frequency harmonic source (< 20 kHz) and rather small coil separations (≤ 2 m). In the LIN domain, electrical conductivity has a minor effect on the forward modelling kernel. Accordingly, we have developed an algorithm to model this kind of data, which is based on a homogeneous half-space kernel. By formulating the problem in the hybrid spectral-spatial domain (kx, ky, z), we show that it is possible to generate large data maps containing more than 100,000 stations within a minute on a standard modern laptop computer. We compared this forward modelling approach to a robust approach based on the integral equation (IE) method. Our results show that, as long as the LIN approximation is fulfilled (i.e., for the system of interest, if the electrical conductivity is smaller than 0.5 S/m), the linear theory allows to accurately and robustly handle the structural characteristics of the subsurface conductivity distribution. We therefore expect that our forward modelling procedure can be implemented in rapid multi-channel deconvolution procedures in order to rapidly extract the structural properties of the subsurface conductivity distribution from data sets acquired across rather large (hectare scale) areas.

  10. Effects of camera location on the reconstruction of 3D flare trajectory with two cameras

    NASA Astrophysics Data System (ADS)

    Özsaraç, Seçkin; Yeşilkaya, Muhammed

    2015-05-01

    Flares are used as valuable electronic warfare assets for the battle against infrared guided missiles. The trajectory of the flare is one of the most important factors that determine the effectiveness of the counter measure. Reconstruction of the three dimensional (3D) position of a point, which is seen by multiple cameras, is a common problem. Camera placement, camera calibration, corresponding pixel determination in between the images of different cameras and also the triangulation algorithm affect the performance of 3D position estimation. In this paper, we specifically investigate the effects of camera placement on the flare trajectory estimation performance by simulations. Firstly, 3D trajectory of a flare and also the aircraft, which dispenses the flare, are generated with simple motion models. Then, we place two virtual ideal pinhole camera models on different locations. Assuming the cameras are tracking the aircraft perfectly, the view vectors of the cameras are computed. Afterwards, using the view vector of each camera and also the 3D position of the flare, image plane coordinates of the flare on both cameras are computed using the field of view (FOV) values. To increase the fidelity of the simulation, we have used two sources of error. One is used to model the uncertainties in the determination of the camera view vectors, i.e. the orientations of the cameras are measured noisy. Second noise source is used to model the imperfections of the corresponding pixel determination of the flare in between the two cameras. Finally, 3D position of the flare is estimated using the corresponding pixel indices, view vector and also the FOV of the cameras by triangulation. All the processes mentioned so far are repeated for different relative camera placements so that the optimum estimation error performance is found for the given aircraft and are trajectories.

  11. An investigation of unsteady 3D effects on trailing edge flaps

    NASA Astrophysics Data System (ADS)

    Jost, E.; Fischer, A.; Lutz, T.; Krämer, E.

    2016-09-01

    The present study investigates the impact of unsteady and viscous three-dimensional aerodynamic effects on a wind turbine blade with trailing edge flap by means of CFD. Harmonic oscillations are simulated on the DTU 10 MW rotor with a flap of 10% chord extent ranging from 70% to 80% blade radius. The deflection frequency is varied in the range between 1p and 6p. To quantify 3D effects, rotor simulations are compared to 2D airfoil computations. A significant influence of trailing and shed vortex structures has been found which leads to a reduction of the lift amplitude and hysteresis effects in the lift response with regard to the flap deflection. In the 3D rotor results greater amplitude reductions and less hystereses have been found compared to the 2D airfoil simulations.

  12. Effects of 3-D thermal radiation on the development of a shallow cumulus cloud field

    NASA Astrophysics Data System (ADS)

    Klinger, Carolin; Mayer, Bernhard; Jakub, Fabian; Zinner, Tobias; Park, Seung-Bu; Gentine, Pierre

    2017-04-01

    We investigate the effects of thermal radiation on cloud development in large-eddy simulations (LESs) with the UCLA-LES model. We investigate single convective clouds (driven by a warm bubble) at 50 m horizontal resolution and a large cumulus cloud field at 50 and 100 m horizontal resolutions. We compare the newly developed 3-D Neighboring Column Approximation with the independent column approximation and a simulation without radiation and their respective impact on clouds. Thermal radiation causes strong local cooling at cloud tops accompanied by a modest warming at the cloud bottom and, in the case of the 3-D scheme, also cloud side cooling. 3-D thermal radiation causes systematically larger cooling when averaged over the model domain. In order to investigate the effects of local cooling on the clouds and to separate these local effects from a systematically larger cooling effect in the modeling domain, we apply the radiative transfer solutions in different ways. The direct effect of heating and cooling at the clouds is applied (local thermal radiation) in a first simulation. Furthermore, a horizontal average of the 1-D and 3-D radiation in each layer is used to study the effect of local cloud radiation as opposed to the domain-averaged effect. These averaged radiation simulations exhibit a cooling profile with stronger cooling in the cloudy layers. In a final setup, we replace the radiation simulation by a uniform cooling of 2.6 K day-1. To focus on the radiation effects themselves and to avoid possible feedbacks, we fixed surface fluxes of latent and sensible heat and omitted the formation of rain in our simulations. Local thermal radiation changes cloud circulation in the single cloud simulations, as well as in the shallow cumulus cloud field, by causing stronger updrafts and stronger subsiding shells. In our cumulus cloud field simulation, we find that local radiation enhances the circulation compared to the averaged radiation applications. In addition, we

  13. Effect of Resonant Magnetic Perturbations on 3D equilibria in the MST RFP

    NASA Astrophysics Data System (ADS)

    Munaretto, Stefano

    2015-11-01

    The orientation of 3D, stellarator-like equilibria in the MST RFP can now be controlled with application of an m = 1 RMP. This has led to greatly improved diagnosis, revealing enhancements in both the central electron temperature and density. Coupled to a recent advance in the V3FIT code, reconstructions of the 3D equilibria have also been dramatically improved. The RMP also inhibits the generation of high-energy >20 keV electrons that is otherwise common with the 3D state. This state occurs when the normally broad spectrum of core-resonant m = 1 tearing modes condenses, with the innermost resonant mode growing to large amplitude, reaching ~ 8% of the axisymmetric field strength. This occurs in plasmas of sufficiently large Lundquist number ~ IpTe3/2, and the duration of the state is maximized with zero applied Bt (infinite toroidal beta). As the dominant mode grows, eddy current in MST's conducting shell slows the mode's rotation. This leads to locking of the 3D structure, but with an orientation that varies randomly shot to shot, making diagnosis difficult. An m = 1 RMP can now be applied with an array of saddle coils at the vertical insulated cut in the shell. With an amplitude br/B ~ 10% and a tailored temporal waveform, the RMP can force the 3D structure into any desired orientation relative to MST's diagnostics. A recent advance in V3FIT allows calculation of the substantial helical image current flowing in MST's shell, which has in turn allowed self-consistent utilization of both external and internal (Faraday rotation) measurements of the magnetic field. The ORBIT code predicts reduced stochasticity and improved confinement of high-energy electrons within the 3D structure. The suppression of these electrons by the m = 1 RMP may reflect a change to the central magnetic topology. The generation of these electrons is unaffected by non-resonant perturbations, such as m = 3. Supported by the US DOE.

  14. Fitting-determined formulation of effective medium approximation for 3D trench structures in model-based infrared reflectrometry.

    PubMed

    Zhang, Chuanwei; Liu, Shiyuan; Shi, Tielin; Tang, Zirong

    2011-02-01

    The success of the model-based infrared reflectrometry (MBIR) technique relies heavily on accurate modeling and fast calculation of the infrared metrology process, which continues to be a challenge, especially for three-dimensional (3D) trench structures. In this paper, we present a simplified formulation for effective medium approximation (EMA), determined by a fitting-based method for the modeling of 3D trench structures. Intensive investigations have been performed with an emphasis on the generality of the fitting-determined (FD)-EMA formulation in terms of trench depth, trench pitch, and incidence angle so that its application is not limited to a particular configuration. Simulations conducted on a taper trench structure have further verified the proposed FD-EMA and demonstrated that the MBIR metrology with the FD-EMA-based model achieves an accuracy one order higher than that of the conventional zeroth-order EMA-based model.

  15. Enhanced stability performance of nickel nanowire with 3D conducting network for planar sodium-nickel chloride batteries

    NASA Astrophysics Data System (ADS)

    Wu, Tian; Zhang, Sanpei; Ao, Xin; Wu, Xiangwei; Yang, Jianhua; Wen, Zhaoyin

    2017-08-01

    High temperature sodium batteries with inorganic electrolytes are attracting increasing attention due to their high thermal stability, reliability, long-cycle life and safety. Despite the intensive investigation of Na-NiCl2 batteries during last decades, designing a stable conducting network in the cathode is still challenging but desirable. In this work, a new cathode structure composed of Ni nanowires with an effective electron conducting network is proposed for planar sodium-nickel chloride batteries. During the first stage of charge, Ni nanowires reacted with Cl ion to form NiCl2 on the surface and the excessive Ni nanowires inside can serve as conducting framework to facilitate the fast electron transport. As expected, the metal nanowires show a high specific capacity of 130 mA h g-1 (∼14 mAh cm-2) at 0.05 C after 100 cycles. Meanwhile, the batteries show stable cycling performance at 0.05 C with a high cut-off energy density of 360 W h kg-1, much higher than the traditional tubular sodium-nickel chloride batteries (∼100 Wh kg-1). Scanning electron microscope (SEM) images of the cathode after long cycling reveal the ultra-slow growth of Ni particles, confirming the excellent stability of the prepared nanowires cathode.

  16. Stress-induced Effects Caused by 3D IC TSV Packaging in Advanced Semiconductor Device Performance

    NASA Astrophysics Data System (ADS)

    Sukharev, V.; Kteyan, A.; Choy, J.-H.; Hovsepyan, H.; Markosian, A.; Zschech, E.; Huebner, R.

    2011-11-01

    Potential challenges with managing mechanical stress and the consequent effects on device performance for advanced 3D through-silicon-via (TSV) based technologies are outlined. The paper addresses the growing need in a simulation-based design verification flow capable to analyze a design of 3D IC stacks and to determine across-die out-of-spec variations in device electrical characteristics caused by the layout and through-silicon-via (TSV)/package-induced mechanical stress. The limited characterization/measurement capabilities for 3D IC stacks and a strict "good die" requirement make this type of analysis critical for the achievement of an acceptable level of functional and parametric yield and reliability. The paper focuses on the development of a design-for-manufacturability (DFM) type of methodology for managing mechanical stresses during a sequence of designs of 3D TSV-based dies, stacks and packages. A set of physics-based compact models for a multi-scale simulation to assess the mechanical stress across the device layers in silicon chips stacked and packaged with the 3D TSV technology is proposed. A calibration technique based on fitting to measured stress components and electrical characteristics of the test-chip devices is presented. A strategy for generation of a simulation feeding data and respective materials characterization approach are proposed, with the goal to generate a database for multi-scale material parameters of wafer-level and package-level structures. For model validation, high-resolution strain measurements in Si channels of the test-chip devices are needed. At the nanoscale, the transmission electron microscopy (TEM) is the only technique available for sub-10 nm strain measurements so far.

  17. Hydraulic Tomography in Fractured Sedimentary Rocks to Estimate High-Resolution 3-D Distribution of Hydraulic Conductivity

    NASA Astrophysics Data System (ADS)

    Tiedeman, C. R.; Barrash, W.; Thrash, C. J.; Patterson, J.; Johnson, C. D.

    2016-12-01

    Hydraulic tomography was performed in a 100 m2 by 20 m thick volume of contaminated fractured mudstones at the former Naval Air Warfare Center (NAWC) in the Newark Basin, New Jersey, with the objective of estimating the detailed distribution of hydraulic conductivity (K). Characterizing the fine-scale K variability is important for designing effective remediation strategies in complex geologic settings such as fractured rock. In the tomography experiment, packers isolated two to six intervals in each of seven boreholes in the volume of investigation, and fiber-optic pressure transducers enabled collection of high-resolution drawdown observations. A hydraulic tomography dataset was obtained by conducting multiple aquifer tests in which a given isolated well interval was pumped and drawdown was monitored in all other intervals. The collective data from all tests display a wide range of behavior indicative of highly heterogeneous K within the tested volume, such as: drawdown curves for different intervals crossing one another on drawdown-time plots; unique drawdown curve shapes for certain intervals; and intervals with negligible drawdown adjacent to intervals with large drawdown. Tomographic inversion of data from 15 tests conducted in the first field season focused on estimating the K distribution at a scale of 1 m3 over approximately 25% of the investigated volume, where observation density was greatest. The estimated K field is consistent with prior geologic, geophysical, and hydraulic information, including: highly variable K within bedding-plane-parting fractures that are the primary flow and transport paths at NAWC, connected high-K features perpendicular to bedding, and a spatially heterogeneous distribution of low-K rock matrix and closed fractures. Subsequent tomographic testing was conducted in the second field season, with the region of high observation density expanded to cover a greater volume of the wellfield.

  18. Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Zinner, Tobias; Ackerman, S.

    2008-01-01

    Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.

  19. Modeling the Impact of Drizzle and 3D Cloud Structure on Remote Sensing of Effective Radius

    NASA Technical Reports Server (NTRS)

    Platnick, Steven; Zinner, Tobias; Ackerman, S.

    2008-01-01

    Remote sensing of cloud particle size with passive sensors like MODIS is an important tool for cloud microphysical studies. As a measure of the radiatively relevant droplet size, effective radius can be retrieved with different combinations of visible through shortwave infrared channels. MODIS observations sometimes show significantly larger effective radii in marine boundary layer cloud fields derived from the 1.6 and 2.1 pm channel observations than for 3.7 pm retrievals. Possible explanations range from 3D radiative transport effects and sub-pixel cloud inhomogeneity to the impact of drizzle formation on the droplet distribution. To investigate the potential influence of these factors, we use LES boundary layer cloud simulations in combination with 3D Monte Carlo simulations of MODIS observations. LES simulations of warm cloud spectral microphysics for cases of marine stratus and broken stratocumulus, each for two different values of cloud condensation nuclei density, produce cloud structures comprising droplet size distributions with and without drizzle size drops. In this study, synthetic MODIS observations generated from 3D radiative transport simulations that consider the full droplet size distribution will be generated for each scene. The operational MODIS effective radius retrievals will then be applied to the simulated reflectances and the results compared with the LES microphysics.

  20. Effect of Random Geometric Uncertainty on the Computational Design of a 3-D Flexible Wing

    NASA Technical Reports Server (NTRS)

    Gumbert, C. R.; Newman, P. A.; Hou, G. J.-W.

    2002-01-01

    The effect of geometric uncertainty due to statistically independent, random, normally distributed shape parameters is demonstrated in the computational design of a 3-D flexible wing. A first-order second-moment statistical approximation method is used to propagate the assumed input uncertainty through coupled Euler CFD aerodynamic / finite element structural codes for both analysis and sensitivity analysis. First-order sensitivity derivatives obtained by automatic differentiation are used in the input uncertainty propagation. These propagated uncertainties are then used to perform a robust design of a simple 3-D flexible wing at supercritical flow conditions. The effect of the random input uncertainties is shown by comparison with conventional deterministic design results. Sample results are shown for wing planform, airfoil section, and structural sizing variables.

  1. Simulation of sub-wavelength 3D photomask induced polarization effect by RCWA

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Yanqiu; Liu, Lihui; Wang, Jianfeng

    2012-10-01

    In 45nm technology node and beyond with hyper NA and Off-axis Illumination (OAI) lithography, mask induced polarization effect is remarkable. At this scale, traditional Kirchhoff approximation, in which the masks are considered to be infinitely thin objects, is no longer valid. Rigorous three-dimensional (3D) mask model is required for precise evaluation of mask diffraction. In this paper, a general 3D mask model based on the rigorous coupled-wave analysis (RCWA) is presented, and the change of polarization state as a function of mask and incident light properties is evaluated. The masks considered are the binary chrome mask and 10% Si-Si3N4 attenuated phase shifting mask. The results show that the mask induced polarization effects depend on the mask and incident light properties, such as mask material, absorber thickness, mask pitch, feature size, the polarization and incident angle of the light.

  2. 3D Cloud Effects in OCO-2 Observations - Evidence and Mitigation

    NASA Astrophysics Data System (ADS)

    Schmidt, Sebastian; Massie, Steven; Iwabuchi, Hironobu; Okamura, Rintaro; Crisp, David

    2016-04-01

    In July 2014, the NASA Orbiting Carbon Observatory (OCO-2) satellite was inserted into the 705-km Afternoon Constellation (A-Train). OCO-2 provides estimates of column-averaged CO2 dry air mixing ratios (XCO2), based on high spectral resolution radiance observations of reflected sunlight in the O2 A-band and in the weak and strong absorption CO2 bands at 1.6 and 2.1 μm. The accuracy requirement for OCO-2 XCO2 retrievals is 1 ppmv on regional scales (> 1000 km). At the single sounding level, inhomogeneous clouds, surface albedo, and aerosols introduce wavelength-dependent perturbations into the sensed radiance fields, affecting the retrieval products. Scattering and shadowing by clouds outside of the field of view (FOV) may be a leading source of error for clear-sky XCO2 retrievals in partially cloudy regions. To understand these effects, we developed a 3D OCO-2 simulator, which uses observations by MODIS (also in the A-Train) and other scene information as input to simulate OCO-2 radiance spectra at the full wavelength resolution of the three bands. It is based on MCARaTS (Monte Carlo Atmospheric Radiative Transfer Simulator) as the 3D radiative transfer solver. The OCO-2 3D simulator was applied to an observed scene near a Total Carbon Column Observing Network (TCCON) station. The 3D calculations reproduced the OCO-2 radiances, including the perturbations due to clouds, at the single sounding level. The analysis further suggests that clouds near an OCO-2 footprint leave systematic spectral imprints on the radiances, which could be parameterized to be included in the retrieval state vector. If successful, this new state vector element could account for 3D effects without the need for operational 3D radiative transfer calculations. This may be the starting point not only for the improved screening of low-level broken boundary layer clouds, but also for mitigating the effects of nearby clouds at the radiance level, thus improving the accuracy of retrievals in

  3. Effectiveness Evaluation of Force Protection Training Using Computer-Based Instruction and X3d Simulation

    DTIC Science & Technology

    2007-09-01

    to growing operational constraints accelerated by the Global War on Terror, the United States Navy is looking for alternative methods of training to...accomplished efficiently and effectively, saving the U.S. Navy time and resources while maintaining a high state of readiness. The goal of this thesis is...COMPUTER-BASED INSTRUCTION AND X3D SIMULATION Wilfredo Cruzbaez Lieutenant, United States Navy B.A., Norfolk State University, 2001 Submitted in

  4. Quantifying the Effect of 3D Spatial Resolution on the Accuracy of Microstructural Distributions (PREPRINT)

    DTIC Science & Technology

    2012-08-01

    Michael D. Uchic and Michael Groeber Metals Branch Structural Materials Division Megna Shah UES, Inc. Gregory Loughnane, Raghavan Srinivasan...AUTHOR(S) Michael D. Uchic and Michael Groeber (AFRL/RXCM) Megna Shah (UES, Inc.) Gregory Loughnane, Raghavan Srinivasan, and Ramana Grandhi (Wright...effect of 3D spatial resolution on the accuracy of microstructural distributions Gregory Loughnane 1 , Michael Groeber 2 , Michael Uchic 2 , Matthew

  5. An orientation measurement method based on Hall-effect sensors for permanent magnet spherical actuators with 3D magnet array.

    PubMed

    Yan, Liang; Zhu, Bo; Jiao, Zongxia; Chen, Chin-Yin; Chen, I-Ming

    2014-10-24

    An orientation measurement method based on Hall-effect sensors is proposed for permanent magnet (PM) spherical actuators with three-dimensional (3D) magnet array. As there is no contact between the measurement system and the rotor, this method could effectively avoid friction torque and additional inertial moment existing in conventional approaches. Curved surface fitting method based on exponential approximation is proposed to formulate the magnetic field distribution in 3D space. The comparison with conventional modeling method shows that it helps to improve the model accuracy. The Hall-effect sensors are distributed around the rotor with PM poles to detect the flux density at different points, and thus the rotor orientation can be computed from the measured results and analytical models. Experiments have been conducted on the developed research prototype of the spherical actuator to validate the accuracy of the analytical equations relating the rotor orientation and the value of magnetic flux density. The experimental results show that the proposed method can measure the rotor orientation precisely, and the measurement accuracy could be improved by the novel 3D magnet array. The study result could be used for real-time motion control of PM spherical actuators.

  6. A Radiative Transfer Case Study for 3-d cloud effects in the UV

    NASA Astrophysics Data System (ADS)

    Meerkötter, Ralf; Degünther, Markus

    Satellite UV mapping is usually based on the independent pixel approximation (IPA) which neglects horizontal photon transport between adjacent columns. Horizontal inhomogeneity of cloud fields therefore causes uncertainties in the derived UV radiation fields. While these effects are small for large pixel satellites, the broken-cloud errors increase as the pixel size decreases. By comparing results of 1-d and 3-d UV radiative transfer calculations for three selected cloud scenes that cover a rather broad range of cloud inhomogeneity the main 3-d cloud effects on the atmospheric UV transmission are identified and quantified in their order of magnitude. With respect to the different spatial resolutions of satellite instruments it is further shown how 3-d cloud effects average out with increasing spatial scale. It turns out that locally the IPA cause maximum uncertainties up to ±100% for a spatial resolution of about 1 × 1 km² (e.g., AVHRR), they are reduced to ±10% for a resolution of about 15 × 15 km² and below 5% for a resolution greater than 30 km (e.g., TOMS).

  7. Effect of postural changes on 3D joint angular velocity during starting block phase.

    PubMed

    Slawinski, Jean; Dumas, Raphaël; Cheze, Laurence; Ontanon, Guy; Miller, Christian; Mazure-Bonnefoy, Alice

    2013-01-01

    Few studies have focused on the effect of posture during sprint start. The aim of this study was to measure the effect of the modification of horizontal distance between the blocks during sprint start on three dimensional (3D) joint angular velocity. Nine trained sprinters started using three different starting positions (bunched, medium and elongated). They were equipped with 63 passive reflective markers, and an opto-electronic Motion Analysis system was used to collect the 3D marker trajectories. During the pushing phase on the blocks, norm of the joint angular velocity (NJAV), 3D Euler angular velocity (EAV) and pushing time on the blocks were calculated. The results demonstrated that the decrease of the block spacing induces an opposite effect on the angular velocity of joints of the lower and the upper limbs. The NJAV of the upper limbs is greater in the bunched start, whereas the NJAV of the lower limbs is smaller. The modifications of NJAV were due to a combination of the movement of the joints in the different degrees of freedom. The medium start seems to be the best compromise because it leads, in a short pushing time, to a combination of optimal joint velocities for upper and lower segments.

  8. The Effect of 3D-Modeling Training on Students' Spatial Reasoning Relative to Gender and Grade

    ERIC Educational Resources Information Center

    Šafhalter, Andrej; Vukman, Karin Bakracevic; Glodež, Srecko

    2016-01-01

    The aim of this research was to establish whether gender and age have an impact on spatial reasoning and its development through the use of 3D modeling. The study was conducted on a sample of 196 children from sixth to ninth grade, of whom 95 represented the experimental group and 101 the control group. The experimental group received 3D modeling…

  9. The Effect of 3D-Modeling Training on Students' Spatial Reasoning Relative to Gender and Grade

    ERIC Educational Resources Information Center

    Šafhalter, Andrej; Vukman, Karin Bakracevic; Glodež, Srecko

    2016-01-01

    The aim of this research was to establish whether gender and age have an impact on spatial reasoning and its development through the use of 3D modeling. The study was conducted on a sample of 196 children from sixth to ninth grade, of whom 95 represented the experimental group and 101 the control group. The experimental group received 3D modeling…

  10. Toward the establishment of design guidelines for effective 3D perspective interfaces

    NASA Astrophysics Data System (ADS)

    Fitzhugh, Elisabeth; Dixon, Sharon; Aleva, Denise; Smith, Eric; Ghrayeb, Joseph; Douglas, Lisa

    2009-05-01

    The propagation of information operation technologies, with correspondingly vast amounts of complex network information to be conveyed, significantly impacts operator workload. Information management research is rife with efforts to develop schemes to aid operators to identify, review, organize, and retrieve the wealth of available data. Data may take on such distinct forms as intelligence libraries, logistics databases, operational environment models, or network topologies. Increased use of taxonomies and semantic technologies opens opportunities to employ network visualization as a display mechanism for diverse information aggregations. The broad applicability of network visualizations is still being tested, but in current usage, the complexity of densely populated abstract networks suggests the potential utility of 3D. Employment of 2.5D in network visualization, using classic perceptual cues, creates a 3D experience within a 2D medium. It is anticipated that use of 3D perspective (2.5D) will enhance user ability to visually inspect large, complex, multidimensional networks. Current research for 2.5D visualizations demonstrates that display attributes, including color, shape, size, lighting, atmospheric effects, and shadows, significantly impact operator experience. However, guidelines for utilization of attributes in display design are limited. This paper discusses pilot experimentation intended to identify potential problem areas arising from these cues and determine how best to optimize perceptual cue settings. Development of optimized design guidelines will ensure that future experiments, comparing network displays with other visualizations, are not confounded or impeded by suboptimal attribute characterization. Current experimentation is anticipated to support development of cost-effective, visually effective methods to implement 3D in military applications.

  11. A study of the 3D radiative transfer effect in cloudy atmospheres

    NASA Astrophysics Data System (ADS)

    Okata, M.; Teruyuki, N.; Suzuki, K.

    2015-12-01

    Evaluation of the effect of clouds in the atmosphere is a significant problem in the Earth's radiation budget study with their large uncertainties of microphysics and the optical properties. In this situation, we still need more investigations of 3D cloud radiative transer problems using not only models but also satellite observational data.For this purpose, we have developed a 3D-Monte-Carlo radiative transfer code that is implemented with various functions compatible with the OpenCLASTR R-Star radiation code for radiance and flux computation, i.e. forward and backward tracing routines, non-linear k-distribution parameterization (Sekiguchi and Nakajima, 2008) for broad band solar flux calculation, and DM-method for flux and TMS-method for upward radiance (Nakajima and Tnaka 1998). We also developed a Minimum cloud Information Deviation Profiling Method (MIDPM) as a method for a construction of 3D cloud field with MODIS/AQUA and CPR/CloudSat data. We then selected a best-matched radar reflectivity factor profile from the library for each of off-nadir pixels of MODIS where CPR profile is not available, by minimizing the deviation between library MODIS parameters and those at the pixel. In this study, we have used three cloud microphysical parameters as key parameters for the MIDPM, i.e. effective particle radius, cloud optical thickness and top of cloud temperature, and estimated 3D cloud radiation budget. We examined the discrepancies between satellite observed and mode-simulated radiances and three cloud microphysical parameter's pattern for studying the effects of cloud optical and microphysical properties on the radiation budget of the cloud-laden atmospheres.

  12. Effects of 3D random correlated velocity perturbations on predicted ground motions

    USGS Publications Warehouse

    Hartzell, S.; Harmsen, S.; Frankel, A.

    2010-01-01

    Three-dimensional, finite-difference simulations of a realistic finite-fault rupture on the southern Hayward fault are used to evaluate the effects of random, correlated velocity perturbations on predicted ground motions. Velocity perturbations are added to a three-dimensional (3D) regional seismic velocity model of the San Francisco Bay Area using a 3D von Karman random medium. Velocity correlation lengths of 5 and 10 km and standard deviations in the velocity of 5% and 10% are considered. The results show that significant deviations in predicted ground velocities are seen in the calculated frequency range (≤1 Hz) for standard deviations in velocity of 5% to 10%. These results have implications for the practical limits on the accuracy of scenario ground-motion calculations and on retrieval of source parameters using higher-frequency, strong-motion data.

  13. Effect of 3D fractal dimension on contact area and asperity interactions in elastoplastic contact

    NASA Astrophysics Data System (ADS)

    Jourani, Abdeljalil

    2016-05-01

    Few models are devoted to investigate the effect of 3D fractal dimension Ds on contact area and asperity interactions. These models used statistical approaches or two-dimensional deterministic simulations without considering the asperity interactions and elastic-plastic transition regime. In this study, a complete 3D deterministic model is adopted to simulate the contact between fractal surfaces which are generated using a modified two-variable Weierstrass-Mandelbrot function. This model incorporates the asperity interactions and considers the different deformation modes of surface asperities which range from entirely elastic through elastic-plastic to entirely plastic contact. The simulations reveal that the elastoplastic model is more appropriate to calculate the contact area ratio and pressure field. It is also shown that the influence of the asperity interactions cannot be neglected, especially at lower fractal dimension Ds and higher load.

  14. Effect of tow alignment on the mechanical performance of 3D woven textile composites

    NASA Technical Reports Server (NTRS)

    Norman, Timothy L.; Allison, Patti; Baldwin, Jack W.; Gracias, Brian K.; Seesdorf, Dave

    1993-01-01

    Three-dimensional (3D) woven preforms are currently being considered for use as primary structural components. Lack of technology to properly manufacture, characterize and predict mechanical properties, and predict damage mechanisms leading to failure are problems facing designers of textile composite materials. Two material systems with identical specifications but different manufacturing approaches are investigated. One manufacturing approach resulted in an irregular (nonuniform) preform geometry. The other approach yielded the expected preform geometry (uniform). The objectives are to compare the mechanical properties of the uniform and nonuniform angle interlock 3D weave constructions. The effect of adding layers of laminated tape to the outer surfaces of the textile preform is also examined. Damage mechanisms are investigated and test methods are evaluated.

  15. A Cost-Effective Method to Assemble Biomimetic 3D Cell Culture Platforms

    PubMed Central

    Khalil, Sabreen; El-Badri, Nagwa; El-Mokhtaar, Mohamed; Al-Mofty, Saif; Farghaly, Mohamed; Ayman, Radwa; Habib, Dina; Mousa, Noha

    2016-01-01

    Developing effective stem cell based therapies requires the design of complex in vitro culture systems for more accurate representation of the stem cell niche. Attempts to improve conventional cell culture platforms include the use of biomaterial coated culture plates, sphere culture, microfluidic systems and bioreactors. Most of these platforms are not cost-effective, require industrial technical expertise to fabricate, and remain too simplistic compared to the physiological cell niche. The human amniotic membrane (hAM) has been used successfully in clinical grafting applications due to its unique biological composition and regenerative properties. In this study, we present a combinatorial platform that integrates the hAM with biomolecular, topographic and mechanical cues in one versatile model. Methods We utilized the hAM to provide the biological and the three dimensional (3D) topographic components of the prototype. The 3D nano-roughness of the hAM was characterized using surface electron microscopy and surface image analysis (ImageJ and SurfaceJ). We developed additional macro-scale and micro-scale versions of the platform which provided additional shear stress factors to simulate the fluid dynamics of the in vivo extracellular fluids. Results Three models of varying complexities of the prototype were assembled. A well-defined 3D surface modulation of the hAM in comparable to commercial 3D biomaterial culture substrates was achieved without complex fabrication and with significantly lower cost. Performance of the prototype was demonstrated through culture of primary human umbilical cord mononuclear blood cells (MNCs), human bone marrow mesenchymal stem cell line (hBMSC), and human breast cancer tissue. Conclusion This study presents methods of assembling an integrated, flexible and low cost biomimetic cell culture platform for diverse cell culture applications. PMID:27935982

  16. 3D scaffold with effective multidrug sequential release against bacteria biofilm.

    PubMed

    García-Alvarez, Rafaela; Izquierdo-Barba, Isabel; Vallet-Regí, María

    2017-02-01

    Bone infection is a feared complication following surgery or trauma that remains as an extremely difficult disease to deal with. So far, the outcome of therapy could be improved with the design of 3D implants, which combine the merits of osseous regeneration and local multidrug therapy so as to avoid bacterial growth, drug resistance and the feared side effects. Herein, hierarchical 3D multidrug scaffolds based on nanocomposite bioceramic and polyvinyl alcohol (PVA) prepared by rapid prototyping with an external coating of gelatin-glutaraldehyde (Gel-Glu) have been fabricated. These 3D scaffolds contain three antimicrobial agents (rifampin, levofloxacin and vancomycin), which have been localized in different compartments of the scaffold to obtain different release kinetics and more effective combined therapy. Levofloxacin was loaded into the mesopores of nanocomposite bioceramic part, vancomycin was localized into PVA biopolymer part and rifampin was loaded in the external coating of Gel-Glu. The obtained results show an early and fast release of rifampin followed by sustained and prolonged release of vancomycin and levofloxacin, respectively, which are mainly governed by the progressive in vitro degradability rate of these scaffolds. This combined therapy is able to destroy Gram-positive and Gram-negative bacteria biofilms as well as inhibit the bacteria growth. In addition, these multifunctional scaffolds exhibit excellent bioactivity as well as good biocompatibility with complete cell colonization of preosteoblast in the entire surface, ensuring good bone regeneration. These findings suggest that these hierarchical 3D multidrug scaffolds are promising candidates as platforms for local bone infection therapy.

  17. Magnetotelluric Transfer Functions: Phase Tensor and Tipper Vector above a Simple Anisotropic Three-Dimensional Conductivity Anomaly and Implications for 3D Isotropic Inversion

    NASA Astrophysics Data System (ADS)

    Löwer, Alexander; Junge, Andreas

    2017-05-01

    The influence of anisotropic conductivity structures on magnetotelluric transfer functions is not easy to analyse in its entire complexity. In this study, we investigate the spatial and frequency-dependent behaviour of phase tensors and tipper vectors above a 3D anisotropic conductivity anomaly. The anomaly consists of a simple cubic block embedded in a homogeneous half space. Using a 3D FD code, we compare an isotropic, 2 anisotropic models with an anisotropy factor of 10 and one anisotropic model with the anisotropy factor of 100. The results show characteristic differences between the isotropic and anisotropic cases. For the anisotropic anomalies, the tipper vectors are parallel over the entire area despite the 3D geometry of the anomalous body. The size of the tipper vectors depends on the position of the site relative to the anomaly's boundaries and the direction of the anisotropic strike. Above the anomalous anisotropic body, the main diagonal elements of the phase tensor show the well-known split. Outside the anomaly, the phase tensor principal axis rotates according to the site position in contrast to the constant tipper direction. The 3D inversion of the forward data using an isotropic 3D code (ModEM) yields a very good fit for all cases. Whereas the inversion result matches the isotropic model, wave-like structures with high conductivity contrast occur for the anisotropic models. These structures extend far beyond the extension of the original anomalous body. Thus, the study reveals important indications of the existence of anisotropic conductivity structures for observed magnetotelluric transfer functions.

  18. Probability of the moiré effect in barrier and lenticular autostereoscopic 3D displays.

    PubMed

    Saveljev, Vladimir; Kim, Sung-Kyu

    2015-10-05

    The probability of the moiré effect in LCD displays is estimated as a function of angle based on the experimental data; a theoretical function (node spacing) is proposed basing on the distance between nodes. Both functions are close to each other. The connection between the probability of the moiré effect and the Thomae's function is also found. The function proposed in this paper can be used in the minimization of the moiré effect in visual displays, especially in autostereoscopic 3D displays.

  19. Relaxation and merging flux ropes and 3D effects in the Reconnection Scaling Experiment at LANL

    NASA Astrophysics Data System (ADS)

    Intrator, T.; Furno, I.; Light, A.; Madziwa-Nussinov, T.; Lapenta, G.; Ricci, P.; Hemsing, E.

    2005-12-01

    Magnetic structures are embedded in astrophysical, space, solar and laboratory plasmas. The dynamics and relaxation of these plasmas can involve flows, changes in topology, magnetic reconnection, plasma heating, and dissipation of magnetic energy. This complex behavior is intrinsically three-dimensional (3D). Current-carrying magnetic flux ropes are the fundamental building blocks for many of these cases. At Los Alamos National Laboratory, we have an experimental realization of this model. The Reconnection Scaling Experiment (RSX) is a unique facility that can create multiple current-carrying flux ropes in an MHD experiment. Plasma guns are used to inject magnetic helicity into plasma columns. We show 3D structure with camera views, along with magnetic, electric, and particle probe data. Experiments in the presence of a strong guide magnetic field (Bz/Brcxn>10) show the formation of a current sheet and electron heating during the coalescence of two flux ropes. Computed simulations of the interactions of two current ropes are shown of that predict many of the experimental characteristics. A density wave structure that propagates opposite to the current is measured in the current sheet with wavelength and speed that are consistent with a kinetic Alfven wave. The current channels acquire angular momentum and rotate about each other developing helical structures, both individually and jointly. Parallel pressure gradients (a 3D effect) appear to be an important term in the Ohm's Law.

  20. Effects of magnetic ripple on 3D equilibrium and alpha particle confinement in the European DEMO

    NASA Astrophysics Data System (ADS)

    Pfefferlé, D.; Cooper, W. A.; Fasoli, A.; Graves, J. P.

    2016-11-01

    An assessment of alpha particle confinement is performed in the European DEMO reference design. 3D MHD equilibria with nested flux-surfaces and single magnetic axis are obtained with the VMEC free-boundary code, thereby including the plasma response to the magnetic ripple created by the finite number of TF coils. Populations of fusion alphas that are consistent with the equilibrium profiles are evolved until slowing-down with the VENUS-LEVIS orbit code in the guiding-centre approximation. Fast ion losses through the last-closed flux-surface are numerically evaluated with two ripple models: (1) using the 3D equilibrium and (2) algebraically adding the non-axisymmetric ripple perturbation to the 2D equilibrium. By virtue of the small ripple field and its non-resonant nature, both models quantitatively agree. Differences are however noted in the toroidal location of particles losses on the last-closed flux-surface, which in the first case is 3D and in the second not. Superbanana transport, i.e. ripple-well trapping and separatrix crossing, is expected to be the dominant loss mechanism, the strongest effect on alphas being between 100-200 KeV. Above this, stochastic ripple diffusion is responsible for a rather weak loss rate, as the stochastisation threshold is observed numerically to be higher than analytic estimates. The level of ripple in the current 18 TF coil design of the European DEMO is not found to be detrimental to fusion alpha confinement.

  1. The effect of volumetric (3D) tactile symbols within inclusive tactile maps.

    PubMed

    Gual, Jaume; Puyuelo, Marina; Lloveras, Joaquim

    2015-05-01

    Point, linear and areal elements, which are two-dimensional and of a graphic nature, are the morphological elements employed when designing tactile maps and symbols for visually impaired users. However, beyond the two-dimensional domain, there is a fourth group of elements - volumetric elements - which mapmakers do not take sufficiently into account when it comes to designing tactile maps and symbols. This study analyses the effect of including volumetric, or 3D, symbols within a tactile map. In order to do so, the researchers compared two tactile maps. One of them uses only two-dimensional elements and is produced using thermoforming, one of the most popular systems in this field, while the other includes volumetric symbols, thus highlighting the possibilities opened up by 3D printing, a new area of production. The results of the study show that including 3D symbols improves the efficiency and autonomous use of these products. Copyright © 2014 Elsevier Ltd and The Ergonomics Society. All rights reserved.

  2. Effect of background rotation on the evolution of 3D internal gravity wave beams

    NASA Astrophysics Data System (ADS)

    Fan, Boyu; Akylas, T. R.

    2016-11-01

    The effect of background rotation on the 3D propagation of internal gravity wave beams (IGWB) is studied, assuming that variations in the along-beam and transverse directions are of long length scale relative to the beam width. The present study generalizes the asymptotic model of KA (Kataoka & Akylas 2015) who considered the analogous problem in the absence of rotation. It is shown that the role of mean vertical vorticity in the earlier analysis is now taken by the flow mean potential vorticity (MPV). Specifically, 3D variations enable resonant transfer of energy to the flow MPV, resulting in strong nonlinear coupling between a 3D IGWB and its induced mean flow. This coupling mechanism is governed by a system of two nonlinear equations of the same form as those derived in KA. Accordingly, the induced mean flow features a purely inviscid modulational component, as well as a viscous one akin to acoustic streaming; the latter grows linearly with time for a quasi-steady IGWB. On the other hand, owing to background rotation, the induced mean flow in the vicinity of the IGWB is no longer purely horizontal and develops an asymmetric behavior. Supported by NSF.

  3. GISAXS analysis of 3D nanoparticle assemblies--effect of vertical nanoparticle ordering.

    PubMed

    Vegso, K; Siffalovic, P; Benkovicova, M; Jergel, M; Luby, S; Majkova, E; Capek, I; Kocsis, T; Perlich, J; Roth, S V

    2012-02-03

    We report on grazing-incidence small-angle x-ray scattering (GISAXS) study of 3D nanoparticle arrays prepared by two different methods from colloidal solutions-layer-by-layer Langmuir-Schaefer deposition and spontaneous self-assembling during the solvent evaporation. GISAXS results are evaluated within the distorted wave Born approximation (DWBA) considering the multiple scattering effects and employing a simplified multilayer model to reduce the computing time. In the model, particular layers are represented by nanoparticle chains where the positions of individual nanoparticles are generated following a model of cumulative disorder. The nanoparticle size dispersion is considered as well. Three model cases are distinguished-no shift between the neighboring chains (AA stacking), a shift equal to half of the mean interparticle distance (AB stacking) and random shift between the chains. The first two cases correspond to vertically correlated nanoparticle positions across different chains. A comparison of the experimental GISAXS patterns with the model cases enabled us to distinguish important differences between the 3D arrays prepared by the two methods. In particular, laterally ordered layers without vertical correlation of the nanoparticle positions were found in the nanoparticle multilayers prepared by the Langmuir-Schaefer method. On the other hand, the solvent evaporation under particular conditions produced highly ordered 3D nanoparticle assemblies where both laterally and vertically correlated nanoparticle positions were found.

  4. The effect of background and illumination on color identification of real, 3D objects

    PubMed Central

    Allred, Sarah R.; Olkkonen, Maria

    2013-01-01

    For the surface reflectance of an object to be a useful cue to object identity, judgments of its color should remain stable across changes in the object's environment. In 2D scenes, there is general consensus that color judgments are much more stable across illumination changes than background changes. Here we investigate whether these findings generalize to real 3D objects. Observers made color matches to cubes as we independently varied both the illumination impinging on the cube and the 3D background of the cube. As in 2D scenes, we found relatively high but imperfect stability of color judgments under an illuminant shift. In contrast to 2D scenes, we found that background had little effect on average color judgments. In addition, variability of color judgments was increased by an illuminant shift and decreased by embedding the cube within a background. Taken together, these results suggest that in real 3D scenes with ample cues to object segregation, the addition of a background may improve stability of color identification. PMID:24273521

  5. Comparison of 3D-OP-OSEM and 3D-FBP reconstruction algorithms for High-Resolution Research Tomograph studies: effects of randoms estimation methods

    NASA Astrophysics Data System (ADS)

    van Velden, Floris H. P.; Kloet, Reina W.; van Berckel, Bart N. M.; Wolfensberger, Saskia P. A.; Lammertsma, Adriaan A.; Boellaard, Ronald

    2008-06-01

    The High-Resolution Research Tomograph (HRRT) is a dedicated human brain positron emission tomography (PET) scanner. Recently, a 3D filtered backprojection (3D-FBP) reconstruction method has been implemented to reduce bias in short duration frames, currently observed in 3D ordinary Poisson OSEM (3D-OP-OSEM) reconstructions. Further improvements might be expected using a new method of variance reduction on randoms (VRR) based on coincidence histograms instead of using the delayed window technique (DW) to estimate randoms. The goal of this study was to evaluate VRR in combination with 3D-OP-OSEM and 3D-FBP reconstruction techniques. To this end, several phantom studies and a human brain study were performed. For most phantom studies, 3D-OP-OSEM showed higher accuracy of observed activity concentrations with VRR than with DW. However, both positive and negative deviations in reconstructed activity concentrations and large biases of grey to white matter contrast ratio (up to 88%) were still observed as a function of scan statistics. Moreover 3D-OP-OSEM+VRR also showed bias up to 64% in clinical data, i.e. in some pharmacokinetic parameters as compared with those obtained with 3D-FBP+VRR. In the case of 3D-FBP, VRR showed similar results as DW for both phantom and clinical data, except that VRR showed a better standard deviation of 6-10%. Therefore, VRR should be used to correct for randoms in HRRT PET studies.

  6. Reaching to virtual targets: The oblique effect reloaded in 3-D.

    PubMed

    Kaspiris-Rousellis, Christos; Siettos, Constantinos I; Evdokimidis, Ioannis; Smyrnis, Nikolaos

    2017-02-20

    Perceiving and reproducing direction of visual stimuli in 2-D space produces the visual oblique effect, which manifests as increased precision in the reproduction of cardinal compared to oblique directions. A second cognitive oblique effect emerges when stimulus information is degraded (such as when reproducing stimuli from memory) and manifests as a systematic distortion where reproduced directions close to the cardinal axes deviate toward the oblique, leading to space expansion at cardinal and contraction at oblique axes. We studied the oblique effect in 3-D using a virtual reality system to present a large number of stimuli, covering the surface of an imaginary half sphere, to which subjects had to reach. We used two conditions, one with no delay (no-memory condition) and one where a three-second delay intervened between stimulus presentation and movement initiation (memory condition). A visual oblique effect was observed for the reproduction of cardinal directions compared to oblique, which did not differ with memory condition. A cognitive oblique effect also emerged, which was significantly larger in the memory compared to the no-memory condition, leading to distortion of directional space with expansion near the cardinal axes and compression near the oblique axes on the hemispherical surface. This effect provides evidence that existing models of 2-D directional space categorization could be extended in the natural 3-D space.

  7. Effect of orthodontic debonding and residual adhesive removal on 3D enamel microroughness

    PubMed Central

    Tomkowski, Robert; Tandecka, Katarzyna; Stepien, Piotr; Szatkiewicz, Tomasz; Sporniak-Tutak, Katarzyna; Grocholewicz, Katarzyna

    2016-01-01

    scale-limited surface). Discussion Confocal laser microscopy allowed 3D surface analysis of enamel surface, avoiding the limitations of contact profilometry. Tungsten carbide burs are the most popular adhesive removing tools, however, the results of the present study indicate, that a one step polisher and finisher as well as Adhesive Residue Remover are less detrimental to the enamel. This is in agreement with a recent study based on direct 3D scanning enamel surface. It proved, that a one-step finisher and polisher as well as Adhesive Residue Remover are characterized by a similar effectiveness in removing residual remnants as tungsten carbide bur, but they remove significantly less enamel. Conclusion Orthodontic debonding and removal of adhesive remnants increases enamel roughness. The smoothest surfaces were achieved using Adhesive Residue Remover, and the roughest using tungsten carbide bur. PMID:27761343

  8. Effects of haptic information on the perception of dynamic 3-D movement.

    PubMed

    Umemura, Hiroyuki

    2014-01-01

    This study examined effects of hand movement on visual perception of 3-D movement. I used an apparatus in which a cursor position in a simulated 3-D space and the position of a stylus on a haptic device could coincide using a mirror. In three experiments, participants touched the center of a rectangle in the visual display with the stylus of the force-feedback device. Then the rectangle's surface stereoscopically either protruded toward a participant or indented away from the participant. Simultaneously, the stylus either pushed back participant's hand, pulled away, or remained static. Visual and haptic information were independently manipulated. Participants judged whether the rectangle visually protruded or dented. Results showed that when the hand was pulled away, subjects were biased to perceive rectangles indented; however, when the hand was pushed back, no effect of haptic information was observed (Experiment 1). This effect persisted even when the cursor position was spatially separated from the hand position (Experiment 2). But, when participants touched an object different from the visual stimulus, this effect disappeared (Experiment 3). These results suggest that the visual system tried to integrate the dynamic visual and haptic information when they coincided cognitively, and the effect of haptic information on visually perceived depth was direction-dependent.

  9. Seismic Hazard Maps for Seattle, Washington, Incorporating 3D Sedimentary Basin Effects, Nonlinear Site Response, and Rupture Directivity

    USGS Publications Warehouse

    Frankel, Arthur D.; Stephenson, William J.; Carver, David L.; Williams, Robert A.; Odum, Jack K.; Rhea, Susan

    2007-01-01

    This report presents probabilistic seismic hazard maps for Seattle, Washington, based on over 500 3D simulations of ground motions from scenario earthquakes. These maps include 3D sedimentary basin effects and rupture directivity. Nonlinear site response for soft-soil sites of fill and alluvium was also applied in the maps. The report describes the methodology for incorporating source and site dependent amplification factors into a probabilistic seismic hazard calculation. 3D simulations were conducted for the various earthquake sources that can affect Seattle: Seattle fault zone, Cascadia subduction zone, South Whidbey Island fault, and background shallow and deep earthquakes. The maps presented in this document used essentially the same set of faults and distributed-earthquake sources as in the 2002 national seismic hazard maps. The 3D velocity model utilized in the simulations was validated by modeling the amplitudes and waveforms of observed seismograms from five earthquakes in the region, including the 2001 M6.8 Nisqually earthquake. The probabilistic seismic hazard maps presented here depict 1 Hz response spectral accelerations with 10%, 5%, and 2% probabilities of exceedance in 50 years. The maps are based on determinations of seismic hazard for 7236 sites with a spacing of 280 m. The maps show that the most hazardous locations for this frequency band (around 1 Hz) are soft-soil sites (fill and alluvium) within the Seattle basin and along the inferred trace of the frontal fault of the Seattle fault zone. The next highest hazard is typically found for soft-soil sites in the Duwamish Valley south of the Seattle basin. In general, stiff-soil sites in the Seattle basin exhibit higher hazard than stiff-soil sites outside the basin. Sites with shallow bedrock outside the Seattle basin have the lowest estimated hazard for this frequency band.

  10. In vitro evaluation of curcumin effects on breast adenocarcinoma 2D and 3D cell cultures.

    PubMed

    Abuelba, Hussam; Cotrutz, Carmen Elena; Stoica, Bogdan Alexandru; Stoica, Laura; Olinici, DoiniŢa; Petreuş, Tudor

    2015-01-01

    Breast adenocarcinoma cell line MDA-MB-231, even if it expresses low levels of E-cadherin, still readily form multicellular aggregates of cells, namely spheroids. Curcumin is a diarylheptanoid antitumoral drug while it significantly inhibits cell migration, invasion, and colony formation in vitro and reduces tumor growth and liver metastasis in vivo. Curcumin photoactivation may enhance antiapoptotic role against cancer cells. To evaluate the effect of low curcumin concentrations, ranged from 1.9 to 15 μM, with and without photoactivation, using a manufactured 670 nm LED-matrix. A secondary aim was to evaluate the ideal method to produce easy-to-use tumor cell spheroids, comparing two low adherence plate supports. Breast adenocarcinoma cell line MDA-MB-231 were cultured according to 2D monolayer and 3D spheroid models then submitted to normal and photoactivated curcumin in micromolar concentrations. MTT assay was used to evaluate cell viability following curcumin application on cells. On 2D cell cultures, curcumin inhibits cell tumor development and proliferation at concentrations of 15 μM, with a viability of 65.7% at 48 hours incubation time. A decreased viability up to 25% for a concentration of 15 μM was recorded following photoactivation and cytotoxic action on breast cancer tumor cell line continued at concentrations of 7.5 and 3.75 μM. Curcumin photoactivation increases pro-apoptotic effects in both 2D and 3D tumor cell culture models and also responsiveness to curcumin is slightly reduced in spheroid-like structures. Thus, 3D tumor cell culture systems appear to be the ideal environment for in vitro assays regarding anticancer drug effects on cell viability.

  11. An electrically conductive 3D scaffold based on a nonwoven web of poly(L-lactic acid) and conductive poly(3,4-ethylenedioxythiophene).

    PubMed

    Niu, Xufeng; Rouabhia, Mahmoud; Chiffot, Nicolas; King, Martin W; Zhang, Ze

    2015-08-01

    This study was to demonstrate that an extremely thin coating of poly(3,4-ethylenedioxythiophene) (PEDOT) on nonwoven microfibrous poly(l-lactic acid) (PLLA) web is of sufficient electrical conductivity and stability in aqueous environment to sustain electrical stimulation (ES) to cultured human skin fibroblasts. The PEDOT imparted the web a surface resistivity of approximately 0.1 KΩ/square without altering the web morphology. X-ray photoelectron spectroscopy demonstrated that the surface chemistry of the PLLA/PEDOT is characteristic of both PLLA and PEDOT. The PEDOT-coated web also showed higher hydrophilicity, lower glass transition temperature and unchanged fiber crystallinity and thermal stability compared with the PLLA web. The addition of PEDOT to the web marginally increased the web's tensile strength and lowered the elongation. An electrical stability test showed that the PLLA/PEDOT structure was more stable than a polypyrrole treated PLLA fabric, showing only a slow deterioration in conductivity when exposed to culture medium. The cytotoxicity test showed that the PLLA/PEDOT scaffold was not cytotoxic and supported human dermal fibroblast adhesion, migration, and proliferation. Preliminary ES experiments have demonstrated that this conductive web mediated effective ES to fibroblasts. Therefore, this new conductive biodegradable scaffold may be used to electrically modulate cellular activity and tissue regeneration.

  12. Effects of a weakly 3-D equilibrium on ideal magnetohydrodynamic instabilities

    SciTech Connect

    Hegna, C. C.

    2014-07-15

    The effect of a small three-dimensional equilibrium distortion on an otherwise axisymmetric configuration is shown to be destabilizing to ideal magnetohydrodynamic modes. The calculations assume that the 3-D fields are weak and that shielding physics is present so that no islands appear in the resulting equilibrium. An eigenfunction that has coupled harmonics of different toroidal mode number is constructed using a perturbation approach. The theory is applied to the case of tokamak H-modes with shielded resonant magnetic perturbations (RMPs) present indicating RMPs can be destabilizing to intermediate-n peeling-ballooning modes.

  13. Global existence and asymptotic behavior for the 3D compressible Navier-Stokes equations without heat conductivity in a bounded domain

    NASA Astrophysics Data System (ADS)

    Wu, Guochun

    2017-01-01

    In this paper, we investigate the global existence and uniqueness of strong solutions to the initial boundary value problem for the 3D compressible Navier-Stokes equations without heat conductivity in a bounded domain with slip boundary. The global existence and uniqueness of strong solutions are obtained when the initial data is near its equilibrium in H2 (Ω). Furthermore, the exponential convergence rates of the pressure and velocity are also proved by delicate energy methods.

  14. Effect of Frictions on the Ballistic Performance of a 3D Warp Interlock Fabric: Numerical Analysis

    NASA Astrophysics Data System (ADS)

    Ha-Minh, Cuong; Boussu, François; Kanit, Toufik; Crépin, David; Imad, Abdellatif

    2012-06-01

    3D interlock woven fabrics are promising materials to replace the 2D structures in the field of ballistic protection. The structural complexity of this material caused many difficulties in numerical modeling. This paper presents a new tool that permits to generate a geometry model of any woven fabric, then, mesh this model in shell or solid elements, and apply the mechanical properties of yarns to them. The tool shows many advantages over existing software. It is very handy in use with an organization of the functions in menu and using a graphic interface. It can describe correctly the geometry of all textile woven fabrics. With this tool, the orientation of the local axes of finite elements following the yarn direction facilitates defining the yarn mechanical properties in a numerical model. This tool can be largely applied because it is compatible with popular finite element codes such as Abaqus, Ansys, Radioss etc. Thanks to this tool, a finite element model was carried out to describe a ballistic impact on a 3D warp interlock Kevlar KM2® fabric. This work focuses on studying the effect of friction onto the ballistic impact behavior of this textile interlock structure. Results showed that the friction among yarns affects considerably on the impact behavior of this fabric. The effect of the friction between projectile and yarn is less important. The friction plays an important role in keeping the fabric structural stability during the impact event. This phenomenon explained why the projectile is easier to penetrate this 3D warp interlock fabric in the no-friction case. This result also indicates that the ballistic performance of the interlock woven fabrics can be improved by using fibers with great friction coefficients.

  15. Effect of Damping and Yielding on the Seismic Response of 3D Steel Buildings with PMRF

    PubMed Central

    Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions. PMID:25097892

  16. Effects of scanning orientation on outlier formation in 3D laser scanning of reflective surfaces

    NASA Astrophysics Data System (ADS)

    Wang, Yutao; Feng, Hsi-Yung

    2016-06-01

    Inspecting objects with reflective surfaces using 3D laser scanning is a demanded but challenging part inspection task due to undesirable specular reflections, which produce extensive outliers in the scanned point cloud. These outliers need to be removed in order to alleviate subsequent data processing issues. Many existing automatic outlier removal methods do not detect outliers according to the outlier formation properties. As a result, these methods only offer limited capabilities in removing extensive and complex outliers from scanning objects with reflective surfaces. This paper reports an empirical study which experimentally investigates the outlier formation characteristics in relation to the scanning orientation of the laser probe. The objective is to characterize the scanning orientation effects on outlier formation in order to facilitate the development of an effective outlier detection and removal method. Such an experimental investigation was hardly done before. It has been found in this work that scanning orientation can directly affect outlier extensity and occurrence in 3D laser scanning. A general guidance on proper scan path planning can then be provided with an aim to reduce the occurrence of outliers. Further, the observed dependency of outlier formation on scanning orientation can be exploited to facilitate effective and automatic outlier detection and removal.

  17. Effect of damping and yielding on the seismic response of 3D steel buildings with PMRF.

    PubMed

    Reyes-Salazar, Alfredo; Haldar, Achintya; Rodelo-López, Ramon Eduardo; Bojórquez, Eden

    2014-01-01

    The effect of viscous damping and yielding, on the reduction of the seismic responses of steel buildings modeled as three-dimensional (3D) complex multidegree of freedom (MDOF) systems, is studied. The reduction produced by damping may be larger or smaller than that of yielding. This reduction can significantly vary from one structural idealization to another and is smaller for global than for local response parameters, which in turn depends on the particular local response parameter. The uncertainty in the estimation is significantly larger for local response parameter and decreases as damping increases. The results show the limitations of the commonly used static equivalent lateral force procedure where local and global response parameters are reduced in the same proportion. It is concluded that estimating the effect of damping and yielding on the seismic response of steel buildings by using simplified models may be a very crude approximation. Moreover, the effect of yielding should be explicitly calculated by using complex 3D MDOF models instead of estimating it in terms of equivalent viscous damping. The findings of this paper are for the particular models used in the study. Much more research is needed to reach more general conclusions.

  18. Effect of sterilization on structural and material properties of 3-D silk fibroin scaffolds.

    PubMed

    Hofmann, Sandra; Stok, Kathryn S; Kohler, Thomas; Meinel, Anne J; Müller, Ralph

    2014-01-01

    The development of porous scaffolds for tissue engineering applications requires the careful choice of properties, as these influence cell adhesion, proliferation and differentiation. Sterilization of scaffolds is a prerequisite for in vitro culture as well as for subsequent in vivo implantation. The variety of methods used to provide sterility is as diverse as the possible effects they can have on the structural and material properties of the three-dimensional (3-D) porous structure, especially in polymeric or proteinous scaffold materials. Silk fibroin (SF) has previously been demonstrated to offer exceptional benefits over conventional synthetic and natural biomaterials in generating scaffolds for tissue replacements. This study sought to determine the effect of sterilization methods, such as autoclaving, heat-, ethylene oxide-, ethanol- or antibiotic-antimycotic treatment, on porous 3-D SF scaffolds. In terms of scaffold morphology, topography, crystallinity and short-term cell viability, the different sterilization methods showed only few effects. Nevertheless, mechanical properties were significantly decreased by a factor of two by all methods except for dry autoclaving, which seemed not to affect mechanical properties compared to the native control group. These data suggest that SF scaffolds are in general highly resistant to various sterilization treatments. Nevertheless, care should be taken if initial mechanical properties are of interest. Copyright © 2013 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.

  19. The effect of object speed and direction on the performance of 3D speckle tracking using a 3D swept-volume ultrasound probe

    NASA Astrophysics Data System (ADS)

    Harris, Emma J.; Miller, Naomi R.; Bamber, Jeffrey C.; Symonds-Tayler, J. Richard N.; Evans, Philip M.

    2011-11-01

    Three-dimensional (3D) soft tissue tracking using 3D ultrasound is of interest for monitoring organ motion during therapy. Previously we demonstrated feature tracking of respiration-induced liver motion in vivo using a 3D swept-volume ultrasound probe. The aim of this study was to investigate how object speed affects the accuracy of tracking ultrasonic speckle in the absence of any structural information, which mimics the situation in homogenous tissue for motion in the azimuthal and elevational directions. For object motion prograde and retrograde to the sweep direction of the transducer, the spatial sampling frequency increases or decreases with object speed, respectively. We examined the effect object motion direction of the transducer on tracking accuracy. We imaged a homogenous ultrasound speckle phantom whilst moving the probe with linear motion at a speed of 0-35 mm s-1. Tracking accuracy and precision were investigated as a function of speed, depth and direction of motion for fixed displacements of 2 and 4 mm. For the azimuthal direction, accuracy was better than 0.1 and 0.15 mm for displacements of 2 and 4 mm, respectively. For a 2 mm displacement in the elevational direction, accuracy was better than 0.5 mm for most speeds. For 4 mm elevational displacement with retrograde motion, accuracy and precision reduced with speed and tracking failure was observed at speeds of greater than 14 mm s-1. Tracking failure was attributed to speckle de-correlation as a result of decreasing spatial sampling frequency with increasing speed of retrograde motion. For prograde motion, tracking failure was not observed. For inter-volume displacements greater than 2 mm, only prograde motion should be tracked which will decrease temporal resolution by a factor of 2. Tracking errors of the order of 0.5 mm for prograde motion in the elevational direction indicates that using the swept probe technology speckle tracking accuracy is currently too poor to track homogenous tissue over

  20. Quantum anomalous Hall effect and tunable topological states in 3d transition metals doped silicene.

    PubMed

    Zhang, Xiao-Long; Liu, Lan-Feng; Liu, Wu-Ming

    2013-10-09

    Silicene is an intriguing 2D topological material which is closely analogous to graphene but with stronger spin orbit coupling effect and natural compatibility with current silicon-based electronics industry. Here we demonstrate that silicene decorated with certain 3d transition metals (Vanadium) can sustain a stable quantum anomalous Hall effect using both analytical model and first-principles Wannier interpolation. We also predict the quantum valley Hall effect and electrically tunable topological states could be realized in certain transition metal doped silicene where the energy band inversion occurs. Our findings provide new scheme for the realization of quantum anomalous Hall effect and platform for electrically controllable topological states which are highly desirable for future nanoelectronics and spintronics application.

  1. Quantum Anomalous Hall Effect and Tunable Topological States in 3d Transition Metals Doped Silicene

    PubMed Central

    Zhang, Xiao-Long; Liu, Lan-Feng; Liu, Wu-Ming

    2013-01-01

    Silicene is an intriguing 2D topological material which is closely analogous to graphene but with stronger spin orbit coupling effect and natural compatibility with current silicon-based electronics industry. Here we demonstrate that silicene decorated with certain 3d transition metals (Vanadium) can sustain a stable quantum anomalous Hall effect using both analytical model and first-principles Wannier interpolation. We also predict the quantum valley Hall effect and electrically tunable topological states could be realized in certain transition metal doped silicene where the energy band inversion occurs. Our findings provide new scheme for the realization of quantum anomalous Hall effect and platform for electrically controllable topological states which are highly desirable for future nanoelectronics and spintronics application. PMID:24105063

  2. Seismic Response of 3D Steel Buildings considering the Effect of PR Connections and Gravity Frames

    PubMed Central

    Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J. Luz

    2014-01-01

    The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system. PMID:24995357

  3. Seismic response of 3D steel buildings considering the effect of PR connections and gravity frames.

    PubMed

    Reyes-Salazar, Alfredo; Bojórquez, Edén; Haldar, Achintya; López-Barraza, Arturo; Rivera-Salas, J Luz

    2014-01-01

    The nonlinear seismic responses of 3D steel buildings with perimeter moment resisting frames (PMRF) and interior gravity frames (IGF) are studied explicitly considering the contribution of the IGF. The effect on the structural response of the stiffness of the beam-to-column connections of the IGF, which is usually neglected, is also studied. It is commonly believed that the flexibility of shear connections is negligible and that 2D models can be used to properly represent 3D real structures. The results of the study indicate, however, that the moments developed on columns of IGF can be considerable and that modeling buildings as plane frames may result in very conservative designs. The contribution of IGF to the lateral structural resistance may be significant. The contribution increases when their connections are assumed to be partially restrained (PR). The incremented participation of IGF when the stiffness of their connections is considered helps to counteract the no conservative effect that results in practice when lateral seismic loads are not considered in IGF while designing steel buildings with PMRF. Thus, if the structural system under consideration is used, the three-dimensional model should be used in seismic analysis and the IGF and the stiffness of their connections should be considered as part of the lateral resistance system.

  4. Effects of 3D geometries on cellular gradient sensing and polarization

    NASA Astrophysics Data System (ADS)

    Spill, Fabian; Andasari, Vivi; Mak, Michael; Kamm, Roger D.; Zaman, Muhammad H.

    2016-06-01

    During cell migration, cells become polarized, change their shape, and move in response to various internal and external cues. Cell polarization is defined through the spatio-temporal organization of molecules such as PI3K or small GTPases, and is determined by intracellular signaling networks. It results in directional forces through actin polymerization and myosin contractions. Many existing mathematical models of cell polarization are formulated in terms of reaction-diffusion systems of interacting molecules, and are often defined in one or two spatial dimensions. In this paper, we introduce a 3D reaction-diffusion model of interacting molecules in a single cell, and find that cell geometry has an important role affecting the capability of a cell to polarize, or change polarization when an external signal changes direction. Our results suggest a geometrical argument why more roundish cells can repolarize more effectively than cells which are elongated along the direction of the original stimulus, and thus enable roundish cells to turn faster, as has been observed in experiments. On the other hand, elongated cells preferentially polarize along their main axis even when a gradient stimulus appears from another direction. Furthermore, our 3D model can accurately capture the effect of binding and unbinding of important regulators of cell polarization to and from the cell membrane. This spatial separation of membrane and cytosol, not possible to capture in 1D or 2D models, leads to marked differences of our model from comparable lower-dimensional models.

  5. The investigation of 193nm CPL 3D topology mask effect on wafer process performance

    NASA Astrophysics Data System (ADS)

    Cheng, Yung Feng; Chou, Yueh Lin; Yang, Chuen Huei

    2006-03-01

    As semiconductor process technology moves down below 90nm and 65nm, 193nm CPL (Chromeless Phase Lithography) technology becomes an important lithography strategy for process improvement on critical layers. In addition to the demand for very tight mask CD control, for a dry-etched process, there are two critical factors that can have significant impact on wafer CD control and window performance. They are etch-depth control (phase) through feature pitch and overall etching slope profile. Both affect image quality and the final overlapped process window. In this paper, we will study the effect of a 3D topology mask on the process window and wafer CD by making special 193nm CPL masks and printing them on 300mm wafers under a production-manufacturing environment. These masks had been specially designed with different sidewall angles and different etch depths (phase). There are 4 different quartz etch depths and 3 different sidewall angles for specially designed test patterns that are compatible with the 65nm technology node. They are printed on 300mm wafers by using a high NA ASML 193nm scanner and high contrast resist. In order to establish more effective specifications of phase and profile control on 193nm CPL between mask shops and wafer fabs, all AFM, wafer CD, and simulation results will be compared and correlated. By comparing the wafer CD and pattern profile on through focus conditions, we can understand the impact of phase and 3D mask profile on process performance.

  6. The Effects of 3D Computer Modelling on Conceptual Change about Seasons and Phases of the Moon

    ERIC Educational Resources Information Center

    Kucukozer, Huseyin

    2008-01-01

    In this study, prospective science teachers' misconceptions about the seasons and the phases of the Moon were determined, and then the effects of 3D computer modelling on their conceptual changes were investigated. The topics were covered in two classes with a total of 76 students using a predict-observe-explain strategy supported by 3D computer…

  7. Effects of Verbal Components in 3D Talking-Head on Pronunciation Learning among Non-Native Speakers

    ERIC Educational Resources Information Center

    Ali, Ahmad Zamzuri Mohamad; Segaran, Kogilathah; Hoe, Tan Wee

    2015-01-01

    This study was designed to investigate the benefit of inclusion of various verbal elements in 3D talking-head on pronunciation learning among non-native speakers. In particular, the study examines the effects of three different multimedia presentation strategies in 3D talking-head Mobile-Assisted-Language-Learning (MALL) on the learning…

  8. Evaluation of the Effectiveness of 3D Vascular Stereoscopic Models in Anatomy Instruction for First Year Medical Students

    ERIC Educational Resources Information Center

    Cui, Dongmei; Wilson, Timothy D.; Rockhold, Robin W.; Lehman, Michael N.; Lynch, James C.

    2017-01-01

    The head and neck region is one of the most complex areas featured in the medical gross anatomy curriculum. The effectiveness of using three-dimensional (3D) models to teach anatomy is a topic of much discussion in medical education research. However, the use of 3D stereoscopic models of the head and neck circulation in anatomy education has not…

  9. Evaluation of the Effectiveness of 3D Vascular Stereoscopic Models in Anatomy Instruction for First Year Medical Students

    ERIC Educational Resources Information Center

    Cui, Dongmei; Wilson, Timothy D.; Rockhold, Robin W.; Lehman, Michael N.; Lynch, James C.

    2017-01-01

    The head and neck region is one of the most complex areas featured in the medical gross anatomy curriculum. The effectiveness of using three-dimensional (3D) models to teach anatomy is a topic of much discussion in medical education research. However, the use of 3D stereoscopic models of the head and neck circulation in anatomy education has not…

  10. Are there side effects to watching 3D movies? A prospective crossover observational study on visually induced motion sickness.

    PubMed

    Solimini, Angelo G

    2013-01-01

    The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators.

  11. The Effects of 3D Computer Modelling on Conceptual Change about Seasons and Phases of the Moon

    ERIC Educational Resources Information Center

    Kucukozer, Huseyin

    2008-01-01

    In this study, prospective science teachers' misconceptions about the seasons and the phases of the Moon were determined, and then the effects of 3D computer modelling on their conceptual changes were investigated. The topics were covered in two classes with a total of 76 students using a predict-observe-explain strategy supported by 3D computer…

  12. Are There Side Effects to Watching 3D Movies? A Prospective Crossover Observational Study on Visually Induced Motion Sickness

    PubMed Central

    Solimini, Angelo G.

    2013-01-01

    Background The increasing popularity of commercial movies showing three dimensional (3D) images has raised concern about possible adverse side effects on viewers. Methods and Findings A prospective carryover observational study was designed to assess the effect of exposure (3D vs. 2D movie views) on self reported symptoms of visually induced motion sickness. The standardized Simulator Sickness Questionnaire (SSQ) was self administered on a convenience sample of 497 healthy adult volunteers before and after the vision of 2D and 3D movies. Viewers reporting some sickness (SSQ total score>15) were 54.8% of the total sample after the 3D movie compared to 14.1% of total sample after the 2D movie. Symptom intensity was 8.8 times higher than baseline after exposure to 3D movie (compared to the increase of 2 times the baseline after the 2D movie). Multivariate modeling of visually induced motion sickness as response variables pointed out the significant effects of exposure to 3D movie, history of car sickness and headache, after adjusting for gender, age, self reported anxiety level, attention to the movie and show time. Conclusions Seeing 3D movies can increase rating of symptoms of nausea, oculomotor and disorientation, especially in women with susceptible visual-vestibular system. Confirmatory studies which include examination of clinical signs on viewers are needed to pursue a conclusive evidence on the 3D vision effects on spectators. PMID:23418530

  13. Simulation of orographic effects with a Quasi-3-D Multiscale Modeling Framework: Basic algorithm and preliminary results

    NASA Astrophysics Data System (ADS)

    Jung, J.

    2016-12-01

    The global atmospheric models based on the Multi-scale Modeling Framework (MMF) are able to explicitly resolve subgrid-scale processes by using embedded 2-D Cloud-Resolving Models (CRMs). Up to now, however, those models do not include the orographic effects on the CRM grid scale. This study shows that the effects of CRM grid-scale orography can be simulated reasonably well by the Quasi-3-D MMF (Q3D MMF), which has been developed as a second-generation MMF. In the Q3D framework, the surface topography can be included in the CRM component by using a block representation of the mountains, so that no smoothing of the topographic height is necessary. To demonstrate the performance of such a model, the orographic effects over a steep mountain are simulated in an idealized experimental setup with each of the Q3D MMF and the full 3-D CRM. The latter is used as a benchmark. Comparison of the results shows that the Q3D MMF is able to reproduce the horizontal distribution of orographic precipitation and the flow changes around mountains as simulated by the 3-D CRM, even though the embedded CRMs of the Q3D MMF recognize only some aspects of the complex 3-D topography. It is also shown that the use of 3-D CRMs in the Q3D framework, rather than 2-D CRMs, has positive impacts on the simulation of wind fields but does not substantially change the simulated precipitation.

  14. Simulation of orographic effects with a Quasi-3-D Multiscale Modeling Framework: Basic algorithm and preliminary results

    SciTech Connect

    Jung, Joon -Hee

    2016-10-11

    Here, the global atmospheric models based on the Multi-scale Modeling Framework (MMF) are able to explicitly resolve subgrid-scale processes by using embedded 2-D Cloud-Resolving Models (CRMs). Up to now, however, those models do not include the orographic effects on the CRM grid scale. This study shows that the effects of CRM grid-scale orography can be simulated reasonably well by the Quasi-3-D MMF (Q3D MMF), which has been developed as a second-generation MMF. In the Q3D framework, the surface topography can be included in the CRM component by using a block representation of the mountains, so that no smoothing of the topographic height is necessary. To demonstrate the performance of such a model, the orographic effects over a steep mountain are simulated in an idealized experimental setup with each of the Q3D MMF and the full 3-D CRM. The latter is used as a benchmark. Comparison of the results shows that the Q3D MMF is able to reproduce the horizontal distribution of orographic precipitation and the flow changes around mountains as simulated by the 3-D CRM, even though the embedded CRMs of the Q3D MMF recognize only some aspects of the complex 3-D topography. It is also shown that the use of 3-D CRMs in the Q3D framework, rather than 2-D CRMs, has positive impacts on the simulation of wind fields but does not substantially change the simulated precipitation.

  15. Simulation of orographic effects with a Quasi-3-D Multiscale Modeling Framework: Basic algorithm and preliminary results

    DOE PAGES

    Jung, Joon -Hee

    2016-10-11

    Here, the global atmospheric models based on the Multi-scale Modeling Framework (MMF) are able to explicitly resolve subgrid-scale processes by using embedded 2-D Cloud-Resolving Models (CRMs). Up to now, however, those models do not include the orographic effects on the CRM grid scale. This study shows that the effects of CRM grid-scale orography can be simulated reasonably well by the Quasi-3-D MMF (Q3D MMF), which has been developed as a second-generation MMF. In the Q3D framework, the surface topography can be included in the CRM component by using a block representation of the mountains, so that no smoothing of themore » topographic height is necessary. To demonstrate the performance of such a model, the orographic effects over a steep mountain are simulated in an idealized experimental setup with each of the Q3D MMF and the full 3-D CRM. The latter is used as a benchmark. Comparison of the results shows that the Q3D MMF is able to reproduce the horizontal distribution of orographic precipitation and the flow changes around mountains as simulated by the 3-D CRM, even though the embedded CRMs of the Q3D MMF recognize only some aspects of the complex 3-D topography. It is also shown that the use of 3-D CRMs in the Q3D framework, rather than 2-D CRMs, has positive impacts on the simulation of wind fields but does not substantially change the simulated precipitation.« less

  16. Modeling the effects of 3-D slab geometry and oblique subduction on subduction zone thermal structure

    NASA Astrophysics Data System (ADS)

    Wada, I.; Wang, K.; He, J.

    2013-12-01

    In this study, we revisit the effects of along-strike variation in slab geometry and oblique subduction on subduction zone thermal structures. Along-strike variations in slab dip cause changes in the descending rate of the slab and generate trench-parallel pressure gradients that drive trench-parallel mantle flow (e.g., Kneller and van Keken, 2007). Oblique subduction also drives trench-parallel mantle flow. In this study, we use a finite element code PGCtherm3D and examine a range of generic subduction geometries and parameters to investigate the effects of the above two factors. This exercise is part of foundational work towards developing detailed 3-D thermal models for NE Japan, Nankai, and Cascadia to better constrain their 3-D thermal structures and to understand the role of temperature in controlling metamorphic, seismogenic, and volcanic processes. The 3-D geometry of the subducting slabs in the forearc and arc regions are well delineated at these three subduction zones. Further, relatively large compilations of surface heat flow data at these subduction zones make them excellent candidates for this study. At NE Japan, a megathrust earthquake occurred on March 11, 2011; at Nankai and Cascadia, there has been a great effort to constrain the scale of the next subduction thrust earthquake for the purpose of disaster prevention. Temperature influences the slip behavior of subduction faults by (1) affecting the rheology of the interface material and (2) controlling dehydration reactions, which can lead to elevated pore fluid pressure. Beyond the depths of subduction thrust earthquakes, the thermal structure is affected strongly by the pattern of mantle wedge flow. This flow is driven by viscous coupling between the subducting slab and the overriding mantle, and it brings in hot flowing mantle into the wedge. The trench-ward (up-dip) extent of the slab-mantle coupling is thus a key factor that controls the thermal structure. Slab-mantle decoupling at shallow

  17. Salinity effects on cracking morphology and dynamics in 3-D desiccating clays

    NASA Astrophysics Data System (ADS)

    DeCarlo, Keita F.; Shokri, Nima

    2014-04-01

    Saline conditions induce not only chemical but physical changes in swelling clays, and have a significant influence on the crack dynamics and morphology of desiccating clays. In this study, we used X-ray microtomography to experimentally investigate the effects of sodium chloride on the morphology and dynamics of desiccation cracks in three-dimensional mixtures of sand-bentonite slurry under varying rheological conditions. Rectangular glass containers were packed with slurries of different salt concentrations, with the top boundary exposed to air for evaporation. The growth and propagation of the cracking network that subsequently formed was visualized in 3-D at multiple intervals. The characterization of cracking and branching behavior shows a high extent of localized surficial crack networks at low salinity, with a transition to less extensive but more centralized crack networks with increased salinity. The observed behavior was described in the context of the physicochemical properties of the montmorillonite clay, where shifts from an "entangled" (large platelet spacing, small pore structure) to a "stacked" (small platelet spacing, open pore structure) network influence fluid distribution and thus extent of cracking and branching behavior. This is further corroborated by vertical profiles of water distribution, which shows localized desiccation fronts that shift to uniform desaturation with increasing salt concentration. Our results provide new insights regarding the formation, dynamics, and patterns of desiccation cracks formed during evaporation from 3-D saline clay structures, which will be useful in hydrological applications including water management, land surface evaporation, and subsurface contaminant transport.

  18. The cross-correlation between 3D cosmic shear and the integrated Sachs-Wolfe effect

    NASA Astrophysics Data System (ADS)

    Zieser, Britta; Merkel, Philipp M.

    2016-06-01

    We present the first calculation of the cross-correlation between 3D cosmic shear and the integrated Sachs-Wolfe (iSW) effect. Both signals are combined in a single formalism, which permits the computation of the full covariance matrix. In order to avoid the uncertainties presented by the non-linear evolution of the matter power spectrum and intrinsic alignments of galaxies, our analysis is restricted to large scales, i.e. multipoles below ℓ = 1000. We demonstrate in a Fisher analysis that this reduction compared to other studies of 3D weak lensing extending to smaller scales is compensated by the information that is gained if the additional iSW signal and in particular its cross-correlation with lensing data are considered. Given the observational standards of upcoming weak-lensing surveys like Euclid, marginal errors on cosmological parameters decrease by 10 per cent compared to a cosmic shear experiment if both types of information are combined without a cosmic wave background (CMB) prior. Once the constraining power of CMB data is added, the improvement becomes marginal.

  19. Effects of Matrix Alignment and Mechanical Constraints on Cellular Behavior in 3D Engineered Microtissues

    NASA Astrophysics Data System (ADS)

    Bose, Prasenjit; Eyckmans, Jeroen; Chen, Christopher; Reich, Daniel

    The adhesion of cells to the extracellular matrix (ECM) plays a crucial role in a variety of cellular functions. The main building blocks of the ECM are 3D networks of fibrous proteins whose structure and alignments varies with tissue type. However, the impact of ECM alignment on cellular behaviors such as cell adhesion, spreading, extension and mechanics remains poorly understood. We present results on the development of a microtissue-based system that enables control of the structure, orientation, and degree of fibrillar alignment in 3D fibroblast-populated collagen gels. The tissues self-assemble from cell-laden collagen gels placed in micro-fabricated wells containing sets of elastic pillars. The contractile action of the cells leads to controlled alignment of the fibrous collagen, depending on the number and location of the pillars in each well. The pillars are elastic, and are utilized to measure the contractile forces of the microtissues, and by incorporating magnetic material in selected pillars, time-varying forces can be applied to the tissues for dynamic stimulation and measurement of mechanical properties. Results on the effects of varying pillar shape, spacing, location, and stiffness on microtissue organization and contractility will be presented. This work is supported by NSF CMMI-1463011.

  20. Effects of extracellular fiber architecture on cell membrane shear stress in a 3D fibrous matrix.

    PubMed

    Pedersen, John A; Boschetti, Federica; Swartz, Melody A

    2007-01-01

    Interstitial fluid flow has been shown to affect the organization and behavior of cells in 3D environments in vivo and in vitro, yet the forces driving such responses are not clear. Due to the complex architecture of the extracellular matrix (ECM) and the difficulty of measuring fluid flow near cells embedded in it, the levels of shear stress experienced by cells in this environment are typically estimated using bulk-averaged matrix parameters such as hydraulic permeability. While this is useful for estimating average stresses, it cannot yield insight into how local matrix fiber architecture-which is cell-controlled in the immediate pericellular environment-affects the local stresses imposed on the cell surface. To address this, we used computational fluid dynamics to study flow through an idealized mesh constructed of a cubic lattice of fibers simulating a typical in vitro collagen gel. We found that, in such high porosity matrices, the fibers strongly affect the flow fields near the cell, with peak shear stresses up to five times higher than those predicted by the Brinkman equation. We also found that minor remodeling of the fibers near the cell surface had major effects on the shear stress profile on the cell. These findings demonstrate the importance of fiber architecture to the fluid forces on a cell embedded in a 3D matrix, and also show how small modifications in the local ECM can lead to large changes in the mechanical environment of the cell.

  1. An Effective QoS Control Scheme for 3D Virtual Environments Based on User's Perception

    NASA Astrophysics Data System (ADS)

    Kuroda, Takayuki; Suganuma, Takuo; Shiratori, Norio

    In this paper, we present a new three-dimensional (3D) virtual environment (3DVE) system named “QuViE/P”, which can enhance quality of service (QoS), that users actually feel, as good as possible when resources of computers and networks are limited. To realize this, we focus on characteristics of user's perceptual quality evaluation on 3D objects. We propose an effective QoS control scheme for QuViE/P by introducing relationships between system's internal quality parameters and user's perceptual quality parameters. This scheme can appropriately maintain the QoS of the 3DVE system and it is expected to improve convenience when using 3DVE system where resources are insufficient. We designed and implemented a prototype of QuViE/P using a multiagent framework. The experiment results show that even when the computer resource is reduced to 20% of the required amount, the proposed scheme can maintain the quality of important objects to a certain level.

  2. The Effect of Underwater Imagery Radiometry on 3d Reconstruction and Orthoimagery

    NASA Astrophysics Data System (ADS)

    Agrafiotis, P.; Drakonakis, G. I.; Georgopoulos, A.; Skarlatos, D.

    2017-02-01

    The work presented in this paper investigates the effect of the radiometry of the underwater imagery on automating the 3D reconstruction and the produced orthoimagery. Main aim is to investigate whether pre-processing of the underwater imagery improves the 3D reconstruction using automated SfM - MVS software or not. Since the processing of images either separately or in batch is a time-consuming procedure, it is critical to determine the necessity of implementing colour correction and enhancement before the SfM - MVS procedure or directly to the final orthoimage when the orthoimagery is the deliverable. Two different test sites were used to capture imagery ensuring different environmental conditions, depth and complexity. Three different image correction methods are applied: A very simple automated method using Adobe Photoshop, a developed colour correction algorithm using the CLAHE (Zuiderveld, 1994) method and an implementation of the algorithm described in Bianco et al., (2015). The produced point clouds using the initial and the corrected imagery are then being compared and evaluated.

  3. Characterizing the effects of droplines on target acquisition performance on a 3-D perspective display

    NASA Technical Reports Server (NTRS)

    Liao, Min-Ju; Johnson, Walter W.

    2004-01-01

    The present study investigated the effects of droplines on target acquisition performance on a 3-D perspective display in which participants were required to move a cursor into a target cube as quickly as possible. Participants' performance and coordination strategies were characterized using both Fitts' law and acquisition patterns of the 3 viewer-centered target display dimensions (azimuth, elevation, and range). Participants' movement trajectories were recorded and used to determine movement times for acquisitions of the entire target and of each of its display dimensions. The goodness of fit of the data to a modified Fitts function varied widely among participants, and the presence of droplines did not have observable impacts on the goodness of fit. However, droplines helped participants navigate via straighter paths and particularly benefited range dimension acquisition. A general preference for visually overlapping the target with the cursor prior to capturing the target was found. Potential applications of this research include the design of interactive 3-D perspective displays in which fast and accurate selection and manipulation of content residing at multiple ranges may be a challenge.

  4. Global 3-D imaging of mantle electrical conductivity based on inversion of observatory C-responses - I. An approach and its verification

    NASA Astrophysics Data System (ADS)

    Kuvshinov, Alexey; Semenov, Alexey

    2012-06-01

    We present a novel frequency-domain inverse solution to recover the 3-D electrical conductivity distribution in the mantle. The solution is based on analysis of local C-responses. It exploits an iterative gradient-type method - limited-memory quasi-Newton method - for minimizing the penalty function consisting of data misfit and regularization terms. The integral equation code is used as a forward engine to calculate responses and data misfit gradients during inversion. An adjoint approach is implemented to compute misfit gradients efficiently. Further improvements in computational load come from parallelizing the scheme with respect to frequencies, and from setting the most time-consuming part of the forward calculations - calculation of Green's tensors - apart from the inversion loop. Convergence, performance, and accuracy of our 3-D inverse solution are demonstrated with a synthetic numerical example. A companion paper applies the strategy set forth here to real data.

  5. Radiation Quality Effects on Transcriptome Profiles in 3-D Cultures After Charged Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Zarana S.; Kidane, Yared H.; Huff, Janice L.

    2014-01-01

    In this work, we evaluated the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Current risk models for assessment of space radiation-induced cancer have large uncertainties because the models for adverse health effects following radiation exposure are founded on epidemiological analyses of human populations exposed to low-LET radiation. Reducing these uncertainties requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. In order to better quantify these radiation quality effects in biological systems, we are utilizing novel 3-D organotypic human tissue models for space radiation research. These models hold promise for risk assessment as they provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information.

  6. Controlled 3D Assembly of Graphene Sheets to Build Conductive, Chemically Selective and Shape-Responsive Materials.

    PubMed

    Woltornist, Steven J; Varghese, Deepthi; Massucci, Daniel; Cao, Zhen; Dobrynin, Andrey V; Adamson, Douglas H

    2017-05-01

    Driven by the surface activity of graphene, electrically conductive elastomeric foams have been synthesized by the controlled reassembly of graphene sheets; from their initial stacked morphology, as found in graphite, to a percolating network of exfoliated sheets, defining hollow spheres. This network creates a template for the formation of composite foams, whose swelling behavior is sensitive to the composition of the solvent, and whose electrical resistance is sensitive to physical deformation. The self-assembly of graphene sheets is driven thermodynamically, as graphite is found to act as a 2D surfactant and is spread at high-energy interfaces. This spreading, or exfoliation, of graphite at an oil/water interface stabilizes water-in-oil emulsions, without the need for added surfactants or chemical modification of the graphene. Using a monomer such as butyl acrylate for the emulsion's oil phase, elastomeric foams are created by polymerizing the continuous oil phase. Removal of the aqueous phase then results in robust, conductive, porous, and inexpensive composites, with potential applications in energy storage, filtration, and sensing. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Porous 3D graphene-based bulk materials with exceptional high surface area and excellent conductivity for supercapacitors

    PubMed Central

    Zhang, Long; Zhang, Fan; Yang, Xi; Long, Guankui; Wu, Yingpeng; Zhang, Tengfei; Leng, Kai; Huang, Yi; Ma, Yanfeng; Yu, Ao; Chen, Yongsheng

    2013-01-01

    Until now, few sp2 carbon materials simultaneously exhibit superior performance for specific surface area (SSA) and electrical conductivity at bulk state. Thus, it is extremely important to make such materials at bulk scale with those two outstanding properties combined together. Here, we present a simple and green but very efficient approach using two standard and simple industry steps to make such three-dimensional graphene-based porous materials at the bulk scale, with ultrahigh SSA (3523 m2/g) and excellent bulk conductivity. We conclude that these materials consist of mainly defected/wrinkled single layer graphene sheets in the dimensional size of a few nanometers, with at least some covalent bond between each other. The outstanding properties of these materials are demonstrated by their superior supercapacitor performance in ionic liquid with specific capacitance and energy density of 231 F/g and 98 Wh/kg, respectively, so far the best reported capacitance performance for all bulk carbon materials. PMID:23474952

  8. Effects of 3D Toroidally Asymmetric Magnetic Field on Tokamak Magnetic Surfaces

    NASA Astrophysics Data System (ADS)

    Lao, L. L.

    2005-10-01

    The effects of 3D error magnetic field on magnetic surfaces are investigated using the DIII-D internal coils (I-Coils). Slowly rotating n=1 traveling waves at 5 Hz and various amplitudes were applied to systematically perturb the edge surfaces by programming the I-Coil currents. The vertical separatrix location difference between EFIT magnetic reconstructions that assumes toroidal symmetry and Thomson scattering Te measurements responds in phase to the applied perturbed field. The oscillation amplitudes increase with the strength of the applied field but are much smaller than those expected from the applied field alone. The results indicate that plasma response is important. Various plasma response models based on results from the MHD codes MARS and GATO are being developed and compared to the experimental observations. To more accurately evaluate the effects of magnetic measurement errors, a new form of the magnetic uncertainty matrix is also being implemented into EFIT. Details will be presented.

  9. 3D viscosity maps for Greenland and effect on GRACE mass balance estimates

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Xu, Zheng

    2016-04-01

    The GRACE satellite mission measures mass loss of the Greenland ice sheet. To correct for glacial isostatic adjustment numerical models are used. Although generally found to be a small signal, the full range of possible GIA models has not been explored yet. In particular, low viscosities due to a wet mantle and high temperatures due to the nearby Iceland hotspot could have a significant effect on GIA gravity rates. The goal of this study is to present a range of possible viscosity maps, and investigate the effect on GRACE mass balance estimates. Viscosity is derived using flow laws for olivine. Mantle temperature is computed from global seismology models, based on temperature derivatives for different mantle compositions. An indication for grain sizes is obtained by xenolith findings at a few locations. We also investigate the weakening effect of the presence of melt. To calculate gravity rates, we use a finite-element GIA model with the 3D viscosity maps and the ICE-5G loading history. GRACE mass balances for mascons in Greenland are derived with a least-squares inversion, using separate constraints for the inland and coastal areas in Greenland. Biases in the least-squares inversion are corrected using scale factors estimated from a simulation based on a surface mass balance model (Xu et al., submitted to The Cryosphere). Model results show enhanced gravity rates in the west and south of Greenland with 3D viscosity maps, compared to GIA models with 1D viscosity. The effect on regional mass balance is up to 5 Gt/year. Regional low viscosity can make present-day gravity rates sensitivity to ice thickness changes in the last decades. Therefore, an improved ice loading history for these time scales is needed.

  10. Trehalose effectiveness as a cryoprotectant in 2D and 3D cell cultures of human embryonic kidney cells.

    PubMed

    Hara, Jared; Tottori, Jordan; Anders, Megan; Dadhwal, Smritee; Asuri, Prashanth; Mobed-Miremadi, Maryam

    2017-05-01

    Post cryopreservation viability of human embryonic kidney (HEK) cells under two-dimensional (2D) and three-dimensional (3D) culture conditions was studied using trehalose as the sole cryoprotective agent. An L9 (3(4)) Taguchi design was used to optimize the cryoprotection cocktail seeding process prior to slow-freezing with the specific aim of maximizing cell viability measured 7 days post thaw, using the combinatorial cell viability and in-vitro cytotoxicity WST assay. At low (200 mM) and medium (800 mM) levels of trehalose concentration, encapsulation in alginate offered a greater protection to cryopreservation. However, at the highest trehalose concentration (1200 mM) and in the absence of the pre-incubation step, there was no statistical difference at the 95% CI (p = 0.0212) between the viability of the HEK cells under 2D and 3D culture conditions estimated to be 17.9 ± 4.6% and 14.0 ± 3.6%, respectively. A parallel comparison between cryoprotective agents conducted at the optimal levels of the L9 study, using trehalose, dimethylsulfoxide and glycerol in alginate microcapsules yielded a viability of 36.0 ± 7.4% for trehalose, in average 75% higher than the results associated with the other two cell membrane-permeating compounds. In summary, the effectiveness of trehalose has been demonstrated by the fact that 3D cell cultures can readily be equilibrated with trehalose before cryopreservation, thus mitigating the cytotoxic effects of glycerol and dimethylsulfoxide.

  11. Cardiac-induced physiological noise in 3D gradient echo brain imaging: Effect of k -space sampling scheme

    NASA Astrophysics Data System (ADS)

    Kristoffersen, Anders; Goa, Pål Erik

    2011-09-01

    The physiological noise in 3D image acquisition is shown to depend strongly on the sampling scheme. Five sampling schemes are considered: Linear, Centric, Segmented, Random and Tuned. Tuned acquisition means that data acquisition at k-space positions k and - k are separated with a specific time interval. We model physiological noise as a periodic temporal oscillation with arbitrary spatial amplitude in the physical object and develop a general framework to describe how this is rendered in the reconstructed image. Reconstructed noise can be decomposed in one component that is in phase with the signal (parallel) and one that is 90° out of phase (orthogonal). Only the former has a significant influence on the magnitude of the signal. The study focuses on fMRI using 3D EPI. Each k-space plane is acquired in a single shot in a time much shorter than the period of the physiological noise. The above mentioned sampling schemes are applied in the slow k-space direction and noise propagates almost exclusively in this direction. The problem then, is effectively one-dimensional. Numerical simulations and analytical expressions are presented. 3D noise measurements and 2D measurements with high temporal resolution are conducted. The measurements are performed under breath-hold to isolate the effect of cardiac-induced pulsatile motion. We compare the time-course stability of the sampling schemes and the extent to which noise propagates from a localized source into other parts of the imaging volume. Tuned and Linear acquisitions perform better than Centric, Segmented and Random.

  12. Conducting effective tailgate trainings.

    PubMed

    Harrington, David; Materna, Barbara; Vannoy, Jim; Scholz, Peter

    2009-07-01

    The California Department of Health Services' Occupational Health Branch and others have identified the construction industry as being at high risk for injuries, illnesses, and fatalities. Effective tailgate trainings (brief job site safety meetings) can be a powerful tool to promote hazard awareness and safe work practices. The authors found that many contractors and supervisors conducted ineffective tailgate trainings. They developed the BuildSafe California Project to assist contractors to have more effective programs by holding 25 training-of-trainers sessions reaching 1,525 participants. The needs assessment, intervention, and evaluation results from the first 18 trainings are presented. Eighty-six percent of the participants found the program "very helpful." Participants used the materials and made improvements in the quality and frequency of trainings. Supervisors must be skilled at conducting tailgate trainings as part of their responsibilities. There is a serious need to provide more culturally appropriate safety training in a workforce increasingly made up of Latino workers.

  13. Stochastic inverse modelling of hydraulic conductivity fields taking into account independent stochastic structures: A 3D case study

    NASA Astrophysics Data System (ADS)

    Llopis-Albert, C.; Capilla, J. E.

    2010-09-01

    SummaryMajor factors affecting groundwater flow through fractured rocks include the geometry of each fracture, its properties and the fracture-network connectivity together with the porosity and conductivity of the rock matrix. When modelling fractured rocks this is translated into attaining a characterization of the hydraulic conductivity ( K) as adequately as possible, despite its high heterogeneity. This links with the main goal of this paper, which is to present an improvement of a stochastic inverse model, named as Gradual Conditioning (GC) method, to better characterise K in a fractured rock medium by considering different K stochastic structures, belonging to independent K statistical populations (SP) of fracture families and the rock matrix, each one with its own statistical properties. The new methodology is carried out by applying independent deformations to each SP during the conditioning process for constraining stochastic simulations to data. This allows that the statistical properties of each SPs tend to be preserved during the iterative optimization process. It is worthwhile mentioning that so far, no other stochastic inverse modelling technique, with the whole capabilities implemented in the GC method, is able to work with a domain covered by several different stochastic structures taking into account the independence of different populations. The GC method is based on a procedure that gradually changes an initial K field, which is conditioned only to K data, to approximate the reproduction of other types of information, i.e., piezometric head and solute concentration data. The approach is applied to the Äspö Hard Rock Laboratory (HRL) in Sweden, where, since the middle nineties, many experiments have been carried out to increase confidence in alternative radionuclide transport modelling approaches. Because the description of fracture locations and the distribution of hydrodynamic parameters within them are not accurate enough, we address the

  14. Monitoring the effects of doxorubicin on 3D-spheroid tumor cells in real-time

    PubMed Central

    Baek, NamHuk; Seo, Ok Won; Kim, MinSung; Hulme, John; An, Seong Soo A

    2016-01-01

    Recently, increasing numbers of cell culture experiments with 3D spheroids presented better correlating results in vivo than traditional 2D cell culture systems. 3D spheroids could offer a simple and highly reproducible model that would exhibit many characteristics of natural tissue, such as the production of extracellular matrix. In this paper numerous cell lines were screened and selected depending on their ability to form and maintain a spherical shape. The effects of increasing concentrations of doxorubicin (DXR) on the integrity and viability of the selected spheroids were then measured at regular intervals and in real-time. In total 12 cell lines, adenocarcinomic alveolar basal epithelial (A549), muscle (C2C12), prostate (DU145), testis (F9), pituitary epithelial-like (GH3), cervical cancer (HeLa), HeLa contaminant (HEp2), embryo (NIH3T3), embryo (PA317), neuroblastoma (SH-SY5Y), osteosarcoma U2OS, and embryonic kidney cells (293T), were screened. Out of the 12, 8 cell lines, NIH3T3, C2C12, 293T, SH-SY5Y, A549, HeLa, PA317, and U2OS formed regular spheroids and the effects of DXR on these structures were measured at regular intervals. Finally, 5 cell lines, A549, HeLa, SH-SY5Y, U2OS, and 293T, were selected for real-time monitoring and the effects of DXR treatment on their behavior were continuously recorded for 5 days. A potential correlation regarding the effects of DXR on spheroid viability and ATP production was measured on days 1, 3, and 5. Cytotoxicity of DXR seemed to occur after endocytosis, since the cellular activities and ATP productions were still viable after 1 day of the treatment in all spheroids, except SH-SY5Y. Both cellular activity and ATP production were halted 3 and 5 days from the start of the treatment in all spheroids. All cell lines maintained their spheroid shape, except SHSY-5, which behaved in an unpredictable manner when exposed to toxic concentrations of DXR. Cytotoxic effects of DXR towards SH-SY5Y seemed to cause degradation of

  15. Characterization of a contaminated wellfield using 3D electrical resistivity tomography implemented with geostatistical, discontinuous boundary, and known conductivity constraints

    SciTech Connect

    Johnson, Timothy C.; Versteeg, Roelof J.; Rockhold, Mark L.; Slater, Lee D.; Ntarlagiannis, Dimitrios; Greenwood, William J.; Zachara, John M.

    2012-09-17

    Continuing advancements in subsurface electrical resistivity tomography (ERT) are giving the method increasing capability for understanding shallow subsurface properties and processes. The inability of ERT imaging data to uniquely resolve subsurface structure and the corresponding need include constraining information remains one of the greatest limitations, and provides one of the greatest opportunities, for further advancing the utility of the method. In this work we describe and demonstrate a method of incorporating constraining information into an ERT imaging algorithm in the form on discontinuous boundaries, known values, and spatial covariance information. We demonstrate the approach by imaging a uranium-contaminated wellfield at the Hanford Site in southwestern Washington State, USA. We incorporate into the algorithm known boundary information and spatial covariance structure derived from the highly resolved near-borehole regions of a regularized ERT inversion. The resulting inversion provides a solution which fits the ERT data (given the estimated noise level), honors the spatial covariance structure throughout the model, and is consistent with known bulk-conductivity discontinuities. The results are validated with core-scale measurements, and display a significant improvement in accuracy over the standard regularized inversion, revealing important subsurface structure known influence flow and transport at the site.

  16. Peripheral viewing during exposure to a 2D/3D video clip: effects on the human body.

    PubMed

    Takada, Masumi; Fukui, Yuta; Matsuura, Yasuyuki; Sato, Motohiko; Takada, Hiroki

    2015-03-01

    Symptoms of three-dimensional (3D) sickness, such as intoxication and eye fatigue, have been observed in subjects viewing 3D films and vary according to the image quality and visual environment. In addition, the influence of stereoscopic vision on the incidence of 3D sickness has not been explored sufficiently. Therefore, it is important to examine the safety of viewing virtual 3D content. The present study examines the effects of peripheral vision on reported motion sickness during exposure to 2D/3D video clips for 1 min and for 1 min afterwards in human subjects. Stabilograms were recorded during exposure to video clips with or without visual pursuit of a 3D object and compared, and subjects were administered the simulator sickness questionnaire after stabilometry. There were no significant main effects of solidity of the visual stimulous (2D/3D) and the vision method (visual pursuit/peripheral viewing) in accordance with the two-way analysis of variance of the sway values, although the sway values during the 2D/3D video clips were higher than in control subjects. A consistent trend in the main effect of stability was observed. Further, the sway values changed remarkably after the 3D video clip was viewed peripherally and produced a persistent instability in equilibrium function. The questionnaire findings also significantly changed after the subjects viewed the video clips peripherally. Subjective exacerbation and deterioration of equilibrium function were observed after peripheral viewing of 3D video clips. This persistent influence may result when subjects view a poorly depicted background element peripherally, which generates depth perception that contradicts daily experience.

  17. Observation of the universal magnetoelectric effect in a 3D topological insulator

    NASA Astrophysics Data System (ADS)

    Dziom, V.; Shuvaev, A.; Pimenov, A.; Astakhov, G. V.; Ames, C.; Bendias, K.; Böttcher, J.; Tkachov, G.; Hankiewicz, E. M.; Brüne, C.; Buhmann, H.; Molenkamp, L. W.

    2017-05-01

    The electrodynamics of topological insulators (TIs) is described by modified Maxwell's equations, which contain additional terms that couple an electric field to a magnetization and a magnetic field to a polarization of the medium, such that the coupling coefficient is quantized in odd multiples of α/4π per surface. Here we report on the observation of this so-called topological magnetoelectric effect. We use monochromatic terahertz (THz) spectroscopy of TI structures equipped with a semitransparent gate to selectively address surface states. In high external magnetic fields, we observe a universal Faraday rotation angle equal to the fine structure constant α=e2/2hc (in SI units) when a linearly polarized THz radiation of a certain frequency passes through the two surfaces of a strained HgTe 3D TI. These experiments give insight into axion electrodynamics of TIs and may potentially be used for a metrological definition of the three basic physical constants.

  18. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  19. Effect of Single-Electron Interface Trapping in Decanano MOSFETs: A 3D Atomistic Simulation Study

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Balasubramaniam, R.; Brown, A. R.; Davies, J. H.

    2000-01-01

    We study the effect of trapping/detrapping of a single-electron in interface states in the channel of n-type MOSFETs with decanano dimensions using 3D atomistic simulation techniques. In order to highlight the basic dependencies, the simulations are carried out initially assuming continuous doping charge, and discrete localized charge only for the trapped electron. The dependence of the random telegraph signal (RTS) amplitudes on the device dimensions and on the position of the trapped charge in the channel are studied in detail. Later, in full-scale, atomistic simulations assuming discrete charge for both randomly placed dopants and the trapped electron, we highlight the importance of current percolation and of traps with strategic position where the trapped electron blocks a dominant current path.

  20. 3D-echo in preoperative assessment of aortic cusps effective height.

    PubMed

    Nijs, Jan; Gelsomino, Sandro; Kietselaer, Bastian Bljh; Parise, Orlando; Lucà, Fabiana; Maessen, Jos G; Meir, Mark La

    2014-07-26

    Effective height, which represents the height difference between the central free margins and the aortic insertion lines can be easily determined by 2-D echocardiography and allows for identification of prolapse in the native cusps and assessment of prolapse correction after valve repair. Nonetheless, it allows to see only two of three aortic valve (AV) coaptation planes and this may lead to misunderstanding of the underlying pathophysiological mechanism for aortic regurgitation and hence in unsuccessful repair. In contrast, 3D transoesophageal echocardiography and multiple plane reconstruction lets visualize all the three coaptation planes between the AV cusps and it represents an invaluable tool in the assessment of aortic valve geometry. It is highly recommendable before AV repair to accurately study the complex three dimensional cusps anatomy and their geometric interrelation with aortic root.

  1. Micropolar hyperelasticity: constitutive model, consistent linearization and simulation of 3D scale effects

    NASA Astrophysics Data System (ADS)

    Bauer, S.; Dettmer, W. G.; Perić, D.; Schäfer, M.

    2012-10-01

    This study describes a computational framework for three-dimensional finite strain and finite curvature micropolar hyperelasticity. The model is based on the non-linear kinematic setting and features an appropriate hyperelastic material law which is derived within the thermodynamically consistent framework. The material tangent operator is obtained by consistent linearization. An implicit finite element method with a Newton-Raphson procedure is employed for the computation of the nodal displacements and rotations. A number of numerical examples is presented. The results demonstrate (i) that the methodology is capable of capturing 3D length scale effects in finite deformation, (ii) that it is robust and computationally efficient and (iii) that the proposed micropolar element tangent renders asymptotically quadratic convergence of the Newton-Raphson procedure. It is shown that the classical Neo-Hooke type material behaviour is recovered as a special case within the proposed micropolar setting.

  2. 3d Transition Metal Adsorption Induced the valley-polarized Anomalous Hall Effect in Germanene

    PubMed Central

    Zhou, P.; Sun, L. Z.

    2016-01-01

    Based on DFT + U and Berry curvature calculations, we study the electronic structures and topological properties of 3d transition metal (TM) atom (from Ti to Co) adsorbed germanene (TM-germanene). We find that valley-polarized anomalous Hall effect (VAHE) can be realized in germanene by adsorbing Cr, Mn, or Co atoms on its surface. A finite valley Hall voltage can be easily detected in their nanoribbon, which is important for valleytronics devices. Moreover, different valley-polarized current and even reversible valley Hall voltage can be archived by shifting the Fermi energy of the systems. Such versatile features of the systems show potential in next generation electronics devices. PMID:27312176

  3. Assessment of 3D aerodynamic effects on the behaviour of floating wind turbines

    NASA Astrophysics Data System (ADS)

    Manolas, D.; Riziotis, V.; Voutsinas, S.

    2014-12-01

    Current state-of-art models for floating wind turbines are built by merging separate modules addressing the four basic aspects leading to a compound hydro-servo-aero-elastic time domain solver. While current state-of-the-art models differ in many aspects, they all use the blade element momentum (BEM) aerodynamic modelling. Due to its low cost, BEM is the standard choice for design purposes. However the use of BEM entails several semi-empirical corrections and add-ons that need reconsideration and recalibration when new features appear. For floating wind turbines, the effect of the floater motions is such a new feature. In the present paper, this aspect is investigated by comparing BEM based results against 3D free-wake simulations. Deterministic as well as stochastic simulations are presented in pure aerodynamic and full aeroelastic context. It is confirmed that asymmetric inflow originating from yaw misalignment and shear give significant differences reflected on mean values and amplitudes.

  4. Sensor Spatial Distortion, Visual Latency, and Update Rate Effects on 3D Tracking in Virtual Environments

    NASA Technical Reports Server (NTRS)

    Ellis, S. R.; Adelstein, B. D.; Baumeler, S.; Jense, G. J.; Jacoby, R. H.; Trejo, Leonard (Technical Monitor)

    1998-01-01

    Several common defects that we have sought to minimize in immersing virtual environments are: static sensor spatial distortion, visual latency, and low update rates. Human performance within our environments during large amplitude 3D tracking was assessed by objective and subjective methods in the presence and absence of these defects. Results show that 1) removal of our relatively small spatial sensor distortion had minor effects on the tracking activity, 2) an Adapted Cooper-Harper controllability scale proved the most sensitive subjective indicator of the degradation of dynamic fidelity caused by increasing latency and decreasing frame rates, and 3) performance, as measured by normalized RMS tracking error or subjective impressions, was more markedly influenced by changing visual latency than by update rate.

  5. Residual lens effects in 2D mode of auto-stereoscopic lenticular-based switchable 2D/3D displays

    NASA Astrophysics Data System (ADS)

    Sluijter, M.; IJzerman, W. L.; de Boer, D. K. G.; de Zwart, S. T.

    2006-04-01

    We discuss residual lens effects in multi-view switchable auto-stereoscopic lenticular-based 2D/3D displays. With the introduction of a switchable lenticular, it is possible to switch between a 2D mode and a 3D mode. The 2D mode displays conventional content, whereas the 3D mode provides the sensation of depth to the viewer. The uniformity of a display in the 2D mode is quantified by the quality parameter modulation depth. In order to reduce the modulation depth in the 2D mode, birefringent lens plates are investigated analytically and numerically, by ray tracing. We can conclude that the modulation depth in the 2D mode can be substantially decreased by using birefringent lens plates with a perfect index match between lens material and lens plate. Birefringent lens plates do not disturb the 3D performance of a switchable 2D/3D display.

  6. Flow effects of blood constitutive equations in 3D models of vascular anomalies

    NASA Astrophysics Data System (ADS)

    Neofytou, Panagiotis; Tsangaris, Sokrates

    2006-06-01

    The effects of different blood rheological models are investigated numerically utilizing two three- dimensional (3D) models of vascular anomalies, namely a stenosis and an abdominal aortic aneurysm model. The employed CFD code incorporates the SIMPLE scheme in conjunction with the finite-volume method with collocated arrangement of variables. The approximation of the convection terms is carried out using the QUICK differencing scheme, whereas the code enables also multi-block computations, which are useful in order to cope with the two-block grid structure of the current computational domain. Three non-Newtonian models are employed, namely the Casson, Power-Law and Quemada models, which have been introduced in the past for modelling the rheological behaviour of blood and cover both the viscous as well as the two-phase character of blood. In view of the haemodynamical mechanisms related to abnormalities in the vascular network and the role of the wall shear stress in initiating and further developing of arterial diseases, the present study focuses on the 3D flow field and in particular on the distribution as well as on both low and high values of the wall shear stress in the vicinity of the anomaly. Finally, a comparison is made between the effects of each rheological model on the aforementioned parameters. Results show marked differences between simulating blood as Newtonian and non-Newtonian fluid and furthermore the Power-Law model exhibits different behaviour in all cases compared to the other models whereas Quemada and Casson models exhibit similar behaviour in the case of the stenosis but different behaviour in the case of the aneurysm.

  7. Quantified effects of chromosome-nuclear envelope attachments on 3D organization of chromosomes.

    PubMed

    Kinney, Nicholas Allen; Onufriev, Alexey V; Sharakhov, Igor V

    2015-01-01

    We use a combined experimental and computational approach to study the effects of chromosome-nuclear envelope (Chr-NE) attachments on the 3D genome organization of Drosophila melanogaster (fruit fly) salivary gland nuclei. We consider 3 distinct models: a Null model - without specific Chr-NE attachments, a 15-attachment model - with 15 previously known Chr-NE attachments, and a 48-attachment model - with 15 original and 33 recently identified Chr-NE attachments. The radial densities of chromosomes in the models are compared to the densities observed in 100 experimental images of optically sectioned salivary gland nuclei forming "z-stacks." Most of the experimental z-stacks support the Chr-NE 48-attachment model suggesting that as many as 48 chromosome loci with appreciable affinity for the NE are necessary to reproduce the experimentally observed distribution of chromosome density in fruit fly nuclei. Next, we investigate if and how the presence and the number of Chr-NE attachments affect several key characteristics of 3D genome organization: chromosome territories and gene-gene contacts. This analysis leads to novel insight about the possible role of Chr-NE attachments in regulating the genome architecture. Specifically, we find that model nuclei with more numerous Chr-NE attachments form more distinct chromosome territories and their chromosomes intertwine less frequently. Intra-chromosome and intra-arm contacts are more common in model nuclei with Chr-NE attachments compared to the Null model (no specific attachments), while inter-chromosome and inter-arm contacts are less common in nuclei with Chr-NE attachments. We demonstrate that Chr-NE attachments increase the specificity of long-range inter-chromosome and inter-arm contacts. The predicted effects of Chr-NE attachments are rationalized by intuitive volume vs. surface accessibility arguments.

  8. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT

    PubMed Central

    Maret, D; Telmon, N; Peters, O A; Lepage, B; Treil, J; Inglèse, J M; Peyre, A; Kahn, J L; Sixou, M

    2012-01-01

    Objectives The various types of cone beam CT (CBCT) differ in several technical characteristics, notably their spatial resolution, which is defined by the acquisition voxel size. However, data are still lacking on the effects of voxel size on the metric accuracy of three-dimensional (3D) reconstructions. This study was designed to assess the effect of isotropic voxel size on the 3D reconstruction accuracy and reproducibility of CBCT data. Methods The study sample comprised 70 teeth (from the Institut d’Anatomie Normale, Strasbourg, France). The teeth were scanned with a KODAK 9500 3D® CBCT (Carestream Health, Inc., Marne-la-Vallée, France), which has two voxel sizes: 200 µm (CBCT 200 µm group) and 300 µm (CBCT 300 µm group). These teeth had also been scanned with the KODAK 9000 3D® CBCT (Carestream Health, Inc.) (CBCT 76 µm group) and the SCANCO Medical micro-CT XtremeCT (SCANCO Medical, Brüttisellen, Switzerland) (micro-CT 41 µm group) considered as references. After semi-automatic segmentation with AMIRA® software (Visualization Sciences Group, Burlington, MA), tooth volumetric measurements were obtained. Results The Bland–Altman method showed no difference in tooth volumes despite a slight underestimation for the CBCT 200 µm and 300 µm groups compared with the two reference groups. The underestimation was statistically significant for the volumetric measurements of the CBCT 300 µm group relative to the two reference groups (Passing–Bablok method). Conclusions CBCT is not only a tool that helps in diagnosis and detection but it has the complementary advantage of being a measuring instrument, the accuracy of which appears connected to the size of the voxels. Future applications of such measurements with CBCT are discussed. PMID:23166362

  9. Quantified effects of chromosome-nuclear envelope attachments on 3D organization of chromosomes

    PubMed Central

    Kinney, Nicholas Allen; Onufriev, Alexey V; Sharakhov, Igor V

    2015-01-01

    We use a combined experimental and computational approach to study the effects of chromosome-nuclear envelope (Chr-NE) attachments on the 3D genome organization of Drosophila melanogaster (fruit fly) salivary gland nuclei. We consider 3 distinct models: a Null model – without specific Chr-NE attachments, a 15-attachment model – with 15 previously known Chr-NE attachments, and a 48-attachment model – with 15 original and 33 recently identified Chr-NE attachments. The radial densities of chromosomes in the models are compared to the densities observed in 100 experimental images of optically sectioned salivary gland nuclei forming “z-stacks.” Most of the experimental z-stacks support the Chr-NE 48-attachment model suggesting that as many as 48 chromosome loci with appreciable affinity for the NE are necessary to reproduce the experimentally observed distribution of chromosome density in fruit fly nuclei. Next, we investigate if and how the presence and the number of Chr-NE attachments affect several key characteristics of 3D genome organization: chromosome territories and gene-gene contacts. This analysis leads to novel insight about the possible role of Chr-NE attachments in regulating the genome architecture. Specifically, we find that model nuclei with more numerous Chr-NE attachments form more distinct chromosome territories and their chromosomes intertwine less frequently. Intra-chromosome and intra-arm contacts are more common in model nuclei with Chr-NE attachments compared to the Null model (no specific attachments), while inter-chromosome and inter-arm contacts are less common in nuclei with Chr-NE attachments. We demonstrate that Chr-NE attachments increase the specificity of long-range inter-chromosome and inter-arm contacts. The predicted effects of Chr-NE attachments are rationalized by intuitive volume vs. surface accessibility arguments. PMID:26068134

  10. The effect of smiling on facial asymmetry in adults: a 3D evaluation.

    PubMed

    Darby, Laura J; Millett, Declan T; Kelly, Niamh; McIntyre, Grant T; Cronin, Michael S

    2015-11-01

    Mild resting facial asymmetry exists in clinically symmetrical faces, but the effect of smiling on the magnitude of overall facial asymmetry in adults has not been assessed. The aim of the present study was to use stereophotogrammetry to quantify the effect of smiling on overall facial asymmetry in Caucasian adults who presented with Class I incisor relationships and no history of orthodontic treatment. Twenty male and 20 female Caucasians aged 1 8-30 years with no history of orthodontic treatment, a clinically symmetrical face and a Class I incisor relationship had 3D stereophotogrammetric images captured at rest and on natural and maximal smile (T1). The images were repeated 2-4 weeks later (T2) to assess expression reproducibility. Overall facial asymmetry scores were produced from 27 landmarks using partial Ordinary Procrustes Analysis (OPA) and assessed by an Analysis of Covariance (ANCOVA) model. A random sample of the images was re-examined two months later to calculate intraobserver landmark reproducibility. Mean landmark error was low (0.41 ± 0.07 mm). Mean overall facial asymmetry scores were not significantly gender different (p = 0.5300); therefore, the male and female data were pooled. Mean overall facial asymmetry scores for maximal (0.91 ± 0.16) and natural smile (0.88 ± 0.18) were higher than at rest (0.80 ± 0.17) (p < 0.0001) and were reproducible across (T1-T2) sessions (p = 0.3204). Overall 3D facial asymmetry scores for the sampled Caucasian adults with clinically symmetrical faces increased in magnitude from rest to natural and to maximal smile. Clinicians should assess overall facial asymmetry at rest and on natural and maximal smile at baseline, during treatment and as part of a core outcome assessment, particularly for cases with unilateral posterior crossbite, unilateral cleft lip and palate or skeletal asymmetry.

  11. Effect of voxel size on the accuracy of 3D reconstructions with cone beam CT.

    PubMed

    Maret, D; Telmon, N; Peters, O A; Lepage, B; Treil, J; Inglèse, J M; Peyre, A; Kahn, J L; Sixou, M

    2012-12-01

    The various types of cone beam CT (CBCT) differ in several technical characteristics, notably their spatial resolution, which is defined by the acquisition voxel size. However, data are still lacking on the effects of voxel size on the metric accuracy of three-dimensional (3D) reconstructions. This study was designed to assess the effect of isotropic voxel size on the 3D reconstruction accuracy and reproducibility of CBCT data. The study sample comprised 70 teeth (from the Institut d'Anatomie Normale, Strasbourg, France). The teeth were scanned with a KODAK 9500 3D® CBCT (Carestream Health, Inc., Marne-la-Vallée, France), which has two voxel sizes: 200 µm (CBCT 200 µm group) and 300 µm (CBCT 300 µm group). These teeth had also been scanned with the KODAK 9000 3D® CBCT (Carestream Health, Inc.) (CBCT 76 µm group) and the SCANCO Medical micro-CT XtremeCT (SCANCO Medical, Brüttisellen, Switzerland) (micro-CT 41 µm group) considered as references. After semi-automatic segmentation with AMIRA® software (Visualization Sciences Group, Burlington, MA), tooth volumetric measurements were obtained. The Bland-Altman method showed no difference in tooth volumes despite a slight underestimation for the CBCT 200 µm and 300 µm groups compared with the two reference groups. The underestimation was statistically significant for the volumetric measurements of the CBCT 300 µm group relative to the two reference groups (Passing-Bablok method). CBCT is not only a tool that helps in diagnosis and detection but it has the complementary advantage of being a measuring instrument, the accuracy of which appears connected to the size of the voxels. Future applications of such measurements with CBCT are discussed.

  12. Modeling of 3D magnetic equilibrium effects on edge turbulence stability during RMP ELM suppression in tokamaks

    DOE PAGES

    Wilcox, R. S.; Wingen, Andreas; Cianciosa, Mark R.; ...

    2017-07-28

    Some recent experimental observations have found turbulent fluctuation structures that are non-axisymmetric in a tokamak with applied 3D fields. Here, two fluid resistive effects are shown to produce changes relevant to turbulent transport in the modeled 3D magnetohydrodynamic (MHD) equilibrium of tokamak pedestals with these 3D fields applied. Ideal MHD models are insufficient to reproduce the relevant effects. By calculating the ideal 3D equilibrium using the VMEC code, the geometric shaping parameters that determine linear turbulence stability, including the normal curvature and local magnetic shear, are shown to be only weakly modified by applied 3D fields in the DIII-D tokamak.more » These ideal MHD effects are therefore not sufficient to explain the observed changes to fluctuations and transport. Using the M3D-C1 code to model the 3D equilibrium, density is shown to be redistributed on flux surfaces in the pedestal when resistive two fluid effects are included, while islands are screened by rotation in this region. Furthermore, the redistribution of density results in density and pressure gradient scale lengths that vary within pedestal flux surfaces between different helically localized flux tubes. This would produce different drive terms for trapped electron mode and kinetic ballooning mode turbulence, the latter of which is expected to be the limiting factor for pedestal pressure gradients in DIII-D.« less

  13. Regional conductivity structures of the northwestern segment of the North American Plate derived from 3-D inversion of USArray magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Meqbel, N. M.; Egbert, G. D.; Kelbert, A.

    2010-12-01

    Long period (10-20,000 s) magnetotelluric (MT) data are being acquired in a series of temporary arrays deployed across the continental United States through EMScope, a component of EarthScope, a multidisciplinary decade-long project to study the structure and evolution of the North American Continent. MT deployments in 2006-2010 have so far acquired data at 237 sites on an approximately regular grid, with the same nominal spacing as the USArray broadband seismic transportable array (~70 km), covering the Northwestern US, from the Oregon-Washington coast across the Rocky Mountains, into Montana and Wyoming. Preliminary 3-D inversion results (Patro and Egbert; 2008), based on data from the 110 westernmost “Cascadia” sites collected in the first two years, revealed extensive areas of high conductivity in the lower crust beneath the Northwest Basin and Range (NBR), inferred to result from fluids (including possibly partial melt at depth) associated with magmatic underplating, and beneath the Cascade Mountains, probably due to fluids released by the subducting Juan de Fuca slab. Here we extend this study, refining and further testing the preliminary results from Cascadia, and extending the inversion domain to the East, to include all of the EarthScope data. Although site spacing is very broad, distinct regional structures are clearly evident even in simple maps of apparent resistivity, phase and induction vectors. For the 3-D inversion we are using the parallelized version of our recently developed Modular Code (ModEM), which supports Non-Linear Conjugate Gradient and several Gauss-Newton type schemes. Our initial 3-D inversion results using 212 MT sites, fitting impedances and vertical field transfer functions (together and separately) suggest several conductive and resistive structures which appear to be stable and required by the measured data. These include: - A conductive structure elongated in the N-S direction underneath the volcanic arc of the Cascadia

  14. Effect of rheological approximations on slab detachment in 3D numerical simulations of continental collision

    NASA Astrophysics Data System (ADS)

    Pusok, Adina E.; Kaus, Boris; Popov, Anton

    2017-04-01

    It is commonly accepted that slab detachment results from the development of extensional stresses within the subducting slab. Subduction slowdown due to arrival of buoyant continental material at the trench is considered to cause such stress build up in the slab. Following slab detachment, slab pull partially or completely loses its strength and hot asthenosphere may flow through the slab window, which can have major consequences for continental collision. The dynamics of slab detachment has been extensively studied in 2D (i.e. analytical and numerical), but 3D models of slab detachment during continental collision remain largely unexplored. Some of the previous 3D models have investigated the role of an asymmetric margin on the propagation of slab detachment (van Hunen and Allen, 2011), the impact of slab detachment on the curvature of orogenic belts (Capitanio and Replumaz, 2013), the role of the collision rate on slab detachment depth (Li et al., 2013) or the effect of along-trench variations on slab detachment (Duretz et al., 2014). However, rheology of mantle and lithosphere is known to have a major influence on the dynamics of subduction. Here, we explore a range of different rheological approximations to understand their sensitivity on the possible scenarios. We employ the code LaMEM (Kaus et al., 2016) to perform 3D simulations of subduction/continental collision in an integrated lithospheric and upper-mantle scale model. The models exhibit a wide range of behaviours depending on the rheological law employed: from linear, to temperature-dependent visco-elasto-plastic rheology that takes into account both diffusion and dislocation creep. For example, we find that slab dynamics varies drastically between end member models: in viscous approximations, slab detachment is slow, dominated by viscous thinning, while for a non-linear visco-elasto-plastic rheology, slab detachment is relatively fast, dominated by plastic breaking and inducing strong mantle flow in

  15. Effects of ocean mixed layer with 3-D ocean data on WRF model for Typhoon simulation

    NASA Astrophysics Data System (ADS)

    Kwun, J.; You, S.; Ryoo, S.; Cho, C.

    2010-12-01

    The accurate typhoon prediction is an essential point for the mitigation of natural disaster and economic losses. Oceanic environment such as SST, ocean heat contents and ocean mixed layer depth has great influences on the intensity and thermodynamic features of Tropical Cyclone. The accurate establishment of air-sea interaction could lead to better performances of Typhoon prediction. In this study, we developed high resolution weather model considering ocean mixed layer(OML) with 3-D ocean data in order to take a close look at the characteristics of oceanic effects induced from applying air-sea interaction process during Typhoon Ewiniar(0603). We performed typhoon simulation using the Advanced Research Weather Research and Forecast(ARW-WRF) model version 3.2 with 10 km horizontal grid resolution and 40 sigma levels of vertical resolution. The initial and boundary condition of WRF model were obtained from the Global Data Assimilation and Prediction System(GDAPS) in Korea Meteorological Administration(KMA). NCEP Final(FNL) Global Analysis data was used for bottom condition such as soil moisture and soil temperature. For ocean feedback processing, we used WRF model coupled with the ocean mixed layer model. The OML model loaded in WRF model is a simplified 1-D ocean model rather than full layered model(Pollard et al.,1973) which included wind driven ocean mixing and mixed layer deepening process. In order to establish spatially varying upper-ocean thermodynamic structure to OML model, 3-D Hybrid Coordinate Ocean Model(HYCOM) temperature profile data(www.hycom.org) was used to calculate the initial ocean mixed layer depth, which is applied to OML model as the initial condition. The mixed layer depth was calculated by considering ocean heat content. The OML model is applied at every atmospheric model grid point and used the same time step. The updated SST is fed back to the atmospheric surface conditions. Moreover, Tropical Cyclone (TC) Bogussing scheme was used to

  16. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  17. 3d-3d correspondence revisited

    SciTech Connect

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  18. 3D-CAD Effects on Creative Design Performance of Different Spatial Abilities Students

    ERIC Educational Resources Information Center

    Chang, Y.

    2014-01-01

    Students' creativity is an important focus globally and is interrelated with students' spatial abilities. Additionally, three-dimensional computer-assisted drawing (3D-CAD) overcomes barriers to spatial expression during the creative design process. Does 3D-CAD affect students' creative abilities? The purpose of this study was to explore the…

  19. 3D-CAD Effects on Creative Design Performance of Different Spatial Abilities Students

    ERIC Educational Resources Information Center

    Chang, Y.

    2014-01-01

    Students' creativity is an important focus globally and is interrelated with students' spatial abilities. Additionally, three-dimensional computer-assisted drawing (3D-CAD) overcomes barriers to spatial expression during the creative design process. Does 3D-CAD affect students' creative abilities? The purpose of this study was to explore the…

  20. The Effect of Frame Rate on 3D Video Quality and Bitrate

    NASA Astrophysics Data System (ADS)

    Banitalebi-Dehkordi, Amin; Pourazad, Mahsa T.; Nasiopoulos, Panos

    2015-03-01

    Increasing the frame rate of a 3D video generally results in improved Quality of Experience (QoE). However, higher frame rates involve a higher degree of complexity in capturing, transmission, storage, and display. The question that arises here is what frame rate guarantees high viewing quality of experience given the existing/required 3D devices and technologies (3D cameras, 3D TVs, compression, transmission bandwidth, and storage capacity). This question has already been addressed for the case of 2D video, but not for 3D. The objective of this paper is to study the relationship between 3D quality and bitrate at different frame rates. Our performance evaluations show that increasing the frame rate of 3D videos beyond 60 fps may not be visually distinguishable. In addition, our experiments show that when the available bandwidth is reduced, the highest possible 3D quality of experience can be achieved by adjusting (decreasing) the frame rate instead of increasing the compression ratio. The results of our study are of particular interest to network providers for rate adaptation in variable bitrate channels.

  1. Effect of 3d doping on the electronic structure of BaFe2As2

    SciTech Connect

    McLeod, John A.; Buling, A.; Green, R.J.; Boyko, T.D.; Skorikov, N.A.; Kurmaev, E.Z.; Neumann, M.; Finkelstein, L.D.; Ni, Ni; Thaler, Alexander; Budko, Serguei L.; Canfield, Paul; Moewes, A.

    2012-04-25

    The electronic structure of BaFe2As2 doped with Co, Ni and Cu has been studied by a variety of experimental and theoretical methods, but a clear picture of the dopant 3d states has not yet emerged. Herein we provide experimental evidence of the distribution of Co, Ni and Cu 3d states in the valence band. We conclude that the Co and Ni 3d states provide additional free carriers to the Fermi level, while the Cu 3d states are found at the bottom of the valence band in a localized 3d10 shell. These findings help shed light on why superconductivity can occur in BaFe2As2 doped with Co and Ni but not Cu.

  2. Terahertz 3D printed diffractive lens matrices for field-effect transistor detector focal plane arrays.

    PubMed

    Szkudlarek, Krzesimir; Sypek, Maciej; Cywiński, Grzegorz; Suszek, Jarosław; Zagrajek, Przemysław; Feduniewicz-Żmuda, Anna; Yahniuk, Ivan; Yatsunenko, Sergey; Nowakowska-Siwińska, Anna; Coquillat, Dominique; But, Dmytro B; Rachoń, Martyna; Węgrzyńska, Karolina; Skierbiszewski, Czesław; Knap, Wojciech

    2016-09-05

    We present the concept, the fabrication processes and the experimental results for materials and optics that can be used for terahertz field-effect transistor detector focal plane arrays. More specifically, we propose 3D printed arrays of a new type - diffractive multi-zone lenses of which the performance is superior to that of previously used mono-zone diffractive or refractive elements and evaluate them with GaN/AlGaN field-effect transistor terahertz detectors. Experiments performed in the 300-GHz atmospheric window show that the lens arrays offer both a good efficiency and good uniformity, and may improve the signal-to-noise ratio of the terahertz field-effect transistor detectors by more than one order of magnitude. In practice, we tested 3 × 12 lens linear arrays with printed circuit board THz detector arrays used in postal security scanners and observed significant signal-to-noise improvements. Our results clearly show that the proposed technology provides a way to produce cost-effective, reproducible, flat optics for large-size field-effect transistor THz-detector focal plane arrays.

  3. A computational model of perceptual grouping and 3D surface completion in the mime effect.

    PubMed

    Mtibaa, Riadh; Idesawa, Masanori; Sakaguchi, Yutaka; Ishida, Fumihiko

    2008-09-01

    We propose a computational model of perceptual grouping for explaining the 3D shape representation of an illusory percept called "mime effect." This effect is associated with the generation of an illusory, volumetric perception that can be induced by particular distributions of inducing stimuli such as cones, whose orientations affect the stability of illusory perception. The authors have attempted to explain the characteristics of the shape representation of the mime effect using a neural network model that consists of four types of cells-encoding (E), normalizing (N), energetic (EN), and geometric (G) cells. E cells represent both the positions and orientations of inducing stimuli and the mime-effect shape, and N cells regulate the activity of E cells. The interactions of E cells generate dynamics whose mode indicates the stability of illusory perception; a stable dynamics mode indicates a stable perception, whereas a chaotic dynamics mode indicates an unstable perception. EN cells compute the Liapunov energetic exponent (LEE) from an energy function of the system of E cells. The stable and chaotic dynamics modes are identified by strictly negative and strictly positive values of LEE, respectively. In case of stability, G cells perform a particular surface interpolation for completing the mime effect shape. The authors confirm the model behaviour by means of computer-simulated experiments. The relation between the model behaviour and the shape representation in the human brain is also discussed.

  4. The Environmental Effect of Meteoritic Impacts on Early Mars with a Versatile 3-D Global Climate Model

    NASA Astrophysics Data System (ADS)

    Turbet, M.; Forget, F.; Svetsov, V.; Tran, H.; Hartmann, J.-M.; Karatekin, O.; Gillmann, C.; Popova, O.; Head, J.

    2017-10-01

    We simulated the environmental effect of meteoritic impacts with a 3-D Global Climate Model to explore if they could trigger the warm conditions and the precipitation rates required to explain the formation of the Martian valley networks.

  5. Image quality and effective dose of a robotic flat panel 3D C-arm vs computed tomography.

    PubMed

    Kraus, Michael; Fischer, Eric; Gebhard, Florian; Richter, Peter H

    2016-12-01

    The aim of this study was to determine the effective dose and corresponding image quality of different imaging protocols of a robotic 3D flat panel C-arm in comparison to computed tomography (CT). Dose measurements were performed using a Rando-Alderson Phantom. The phantom was exposed to different scanning protocols of the 3D C-arm and the CT. Pedicle screws were inserted in a fresh swine cadaver. Images were obtained using the same scanning protocols. At the thoracolumbar junction, the effective dose was comparable for 3D high-dose protocols, with (4.4 mSv) and without (4.3 mSv) collimation and routine CT (5 mSv), as well as a dose-reduction CT (4.0 mSv). A relevant reduction was achieved with the 3D low-dose protocol (1.0 mSv). Focusing on Th6, a similar reduction with the 3D low-dose protocol was achieved. The image quality of the 3D protocols using titanium screws was rated as 'good' by all viewers, with excellent correlation. Modern intra-operative 3D-C-arms produce images of CT-like quality with low-dose radiation. Copyright © 2015 John Wiley & Sons, Ltd. Copyright © 2015 John Wiley & Sons, Ltd.

  6. 3D finite element simulation of effects of deflection rate on energy absorption for TRIP steel

    NASA Astrophysics Data System (ADS)

    Hayashi, Asuka; Pham, Hang; Iwamoto, Takeshi

    2015-09-01

    Recently, with the requirement of lighter weight and more safety for a design of automobile, energy absorption capability of structural materials has become important. TRIP (Transformation-induced Plasticity) steel is expected to apply to safety members because of excellent energy absorption capability and ductility. Past studies proved that such excellent characteristics in TRIP steel are dominated by strain-induced martensitic transformation (SIMT) during plastic deformation. Because SIMT strongly depends on deformation rate and temperature, an investigation of the effects of deformation rate and temperature on energy absorption in TRIP is essential. Although energy absorption capability of material can be estimated by J-integral experimentally by using pre-cracked specimen, it is difficult to determine volume fraction of martensite and temperature rise during the crack extension. In addition, their effects on J-integral, especially at high deformation rate in experiment might be quite hard. Thus, a computational prediction needs to be performed. In this study, bending deformation behavior of pre-cracked specimen until the onset point of crack extension are predicted by 3D finite element simulation based on the transformation kinetics model proposed by Iwamoto et al. (1998). It is challenged to take effects of temperature, volume fraction of martensite and deformation rate into account. Then, the mechanism for higher energy absorption characteristic will be discussed.

  7. 3D faces are recognized more accurately and faster than 2D faces, but with similar inversion effects.

    PubMed

    Eng, Z H D; Yick, Y Y; Guo, Y; Xu, H; Reiner, M; Cham, T J; Chen, S H A

    2017-09-01

    Recognition of faces typically occurs via holistic processing where individual features are combined to provide an overall facial representation. However, when faces are inverted, there is greater reliance on featural processing where faces are recognized based on their individual features. These findings are based on a substantial number of studies using 2-dimensional (2D) faces and it is unknown whether these results can be extended to 3-dimensional (3D) faces, which have more depth information that is absent in the typical 2D stimuli used in face recognition literature. The current study used the face inversion paradigm as a means to investigate how holistic and featural processing are differentially influenced by 2D and 3D faces. Twenty-five participants completed a delayed face-matching task consisting of upright and inverted faces that were presented as both 2D and 3D stereoscopic images. Recognition accuracy was significantly higher for 3D upright faces compared to 2D upright faces, providing support that the enriched visual information in 3D stereoscopic images facilitates holistic processing that is essential for the recognition of upright faces. Typical face inversion effects were also obtained, regardless of whether the faces were presented in 2D or 3D. Moreover, recognition performances for 2D inverted and 3D inverted faces did not differ. Taken together, these results demonstrated that 3D stereoscopic effects influence face recognition during holistic processing but not during featural processing. Our findings therefore provide a novel perspective that furthers our understanding of face recognition mechanisms, shedding light on how the integration of stereoscopic information in 3D faces influences face recognition processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. The effects of 3D interactive animated graphics on student learning and attitudes in computer-based instruction

    NASA Astrophysics Data System (ADS)

    Moon, Hye Sun

    Visuals are most extensively used as instructional tools in education to present spatially-based information. Recent computer technology allows the generation of 3D animated visuals to extend the presentation in computer-based instruction. Animated visuals in 3D representation not only possess motivational value that promotes positive attitudes toward instruction but also facilitate learning when the subject matter requires dynamic motion and 3D visual cue. In this study, three questions are explored: (1) how 3D graphics affects student learning and attitude, in comparison with 2D graphics; (2) how animated graphics affects student learning and attitude, in comparison with static graphics; and (3) whether the use of 3D graphics, when they are supported by interactive animation, is the most effective visual cues to improve learning and to develop positive attitudes. A total of 145 eighth-grade students participated in a 2 x 2 factorial design study. The subjects were randomly assigned to one of four computer-based instructions: 2D static; 2D animated; 3D static; and 3D animated. The results indicated that: (1) Students in the 3D graphic condition exhibited more positive attitudes toward instruction than those in the 2D graphic condition. No group differences were found between the posttest score of 3D graphic condition and that of 2D graphic condition. However, students in the 3D graphic condition took less time for information retrieval on posttest than those in the 2D graphic condition. (2) Students in the animated graphic condition exhibited slightly more positive attitudes toward instruction than those in the static graphic condition. No group differences were found between the posttest score of animated graphic condition and that of static graphic condition. However, students in the animated graphic condition took less time for information retrieval on posttest than those in the static graphic condition. (3) Students in the 3D animated graphic condition

  9. Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Kidane, Y. H.; Huff, J. L.

    2014-01-01

    In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is

  10. Highly conformal and high-ionic conductivity thin-film electrolyte for 3D-structured micro batteries: Characterization of LiPON film deposited by MOCVD method

    NASA Astrophysics Data System (ADS)

    Fujibayashi, Takashi; Kubota, Yusuke; Iwabuchi, Katsuhiko; Yoshii, Naoki

    2017-08-01

    This paper reports a lithium phosphorus oxynitride (LiPON) thin-film electrolyte deposited using a metalorganic-chemical vapor deposition (MOCVD) method for 3D-structured micro batteries. It is shown that the MOCVD-LiPON film has both highly-conformal step coverage on a patterned substrate with line/space=2μm/2μm and aspect ratio=1 (51±3 nm) and high-ionic conductivity for very thin films deposited at 4.7 nm/min (5.9×10-6 S/cm for 190 nm and 5.3×10-6 S/cm for 95 nm). Detailed material characterization attributes the enhancement in ionic conductivity to a decrease in nanocrystallite size and improvement in chemical-composition uniformity in the film. In addition, electrochemical characterization of an all-solid-state thin-film battery fabricated with the 190 nm-thick LiPON film (Si substrate/Ti/Pt/LiCoO2/LiPON/a-Si:H/Cu) demonstrates that the LiPON film can successfully act as the electrolyte for lithium-ion batteries. Therefore, the MOCVD-LiPON film is a promising candidate material to realize 3D-structured micro batteries in the near future.

  11. The effects of task difficulty on visual search strategy in virtual 3D displays

    PubMed Central

    Pomplun, Marc; Garaas, Tyler W.; Carrasco, Marisa

    2013-01-01

    Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an “easy” conjunction search task and a “difficult” shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x−y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the “easy” task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the “difficult” task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios. PMID:23986539

  12. The effects of task difficulty on visual search strategy in virtual 3D displays.

    PubMed

    Pomplun, Marc; Garaas, Tyler W; Carrasco, Marisa

    2013-08-28

    Analyzing the factors that determine our choice of visual search strategy may shed light on visual behavior in everyday situations. Previous results suggest that increasing task difficulty leads to more systematic search paths. Here we analyze observers' eye movements in an "easy" conjunction search task and a "difficult" shape search task to study visual search strategies in stereoscopic search displays with virtual depth induced by binocular disparity. Standard eye-movement variables, such as fixation duration and initial saccade latency, as well as new measures proposed here, such as saccadic step size, relative saccadic selectivity, and x-y target distance, revealed systematic effects on search dynamics in the horizontal-vertical plane throughout the search process. We found that in the "easy" task, observers start with the processing of display items in the display center immediately after stimulus onset and subsequently move their gaze outwards, guided by extrafoveally perceived stimulus color. In contrast, the "difficult" task induced an initial gaze shift to the upper-left display corner, followed by a systematic left-right and top-down search process. The only consistent depth effect was a trend of initial saccades in the easy task with smallest displays to the items closest to the observer. The results demonstrate the utility of eye-movement analysis for understanding search strategies and provide a first step toward studying search strategies in actual 3D scenarios.

  13. Convection and chemistry effects in CVD: A 3-D analysis for silicon deposition

    NASA Technical Reports Server (NTRS)

    Gokoglu, S. A.; Kuczmarski, M. A.; Tsui, P.; Chait, A.

    1989-01-01

    The computational fluid dynamics code FLUENT has been adopted to simulate the entire rectangular-channel-like (3-D) geometry of an experimental CVD reactor designed for Si deposition. The code incorporated the effects of both homogeneous (gas phase) and heterogeneous (surface) chemistry with finite reaction rates of important species existing in silane dissociation. The experiments were designed to elucidate the effects of gravitationally-induced buoyancy-driven convection flows on the quality of the grown Si films. This goal is accomplished by contrasting the results obtained from a carrier gas mixture of H2/Ar with the ones obtained from the same molar mixture ratio of H2/He, without any accompanying change in the chemistry. Computationally, these cases are simulated in the terrestrial gravitational field and in the absence of gravity. The numerical results compare favorably with experiments. Powerful computational tools provide invaluable insights into the complex physicochemical phenomena taking place in CVD reactors. Such information is essential for the improved design and optimization of future CVD reactors.

  14. 13CH3D kinetic isotope effects for methane oxidation by OH - predicting the "clumped" isotopic signature of atmospheric methane

    NASA Astrophysics Data System (ADS)

    Whitehill, A. R.; Joelsson, L. M. T.; Wang, D. T.; Johnson, M. S.; Ono, S.

    2015-12-01

    Methane is a significant long-lived greenhouse gas, but the tropospheric methane budget is not entirely constrained. "Clumped" isotopologues of methane, including 13CH3D, can provide additional constraints on the atmospheric methane cycle. Interpretation of these novel isotope tracers requires an understanding of the "clumped" isotopic signature of various methane sources, as well as the kinetic isotope effects of the methane sink reactions. We performed a series of photochemical experiments to measure the isotopic fractionation during the CH4+OH reaction. Experiments were carried out in a 100 L quartz photochemical reactor. Photolysis of ozone (O3) in the presence of water (H2O) was used to produce OH radicals. Experiments were performed in a helium bath gas. Fourier transform infrared spectroscopy (FTIR) was used to monitor reaction progress. At various intervals during the reaction, methane was sampled from the cell and analyzed for isotope ratios by tunable infrared laser direct absorption spectroscopy (TILDAS). By simultaneously measuring four different isotopologues of methane (12CH4,12CH3D, 13CH4, 13CH3D), we were able to constrain the kinetic isotope effects for 12CH3D, 13CH4, and the doubly-substitued isotopologue 13CH3D. These results are combined with published clumped isotope data from different methane sources to model the Δ13CH3D (i.e. deviation from "stochastic" distribution of isotopes) of tropospheric methane and its sensitivity to different sources. The Δ13CH3D value of tropospheric methane does not strongly depend upon isotope fractionation during the OH sink reaction. Rather, the Δ13CH3D value of tropospheric methane reflects a mixing of different source signatures. Due to nonlinearity in mixing of Δ13CH3D, the Δ13CH3D value of tropospheric methane will be larger than the weighted average of the Δ13CH3D value of the sources. A first order interpretation of variations in the Δ13CH3D value of tropospheric methane is that it reflects changes

  15. Impact of 3-D printed PLA- and chitosan-based scaffolds on human monocyte/macrophage responses: unraveling the effect of 3-D structures on inflammation.

    PubMed

    Almeida, Catarina R; Serra, Tiziano; Oliveira, Marta I; Planell, Josep A; Barbosa, Mário A; Navarro, Melba

    2014-02-01

    Recent studies have pointed towards a decisive role of inflammation in triggering tissue repair and regeneration, while at the same time it is accepted that an exacerbated inflammatory response may lead to rejection of an implant. Within this context, understanding and having the capacity to regulate the inflammatory response elicited by 3-D scaffolds aimed for tissue regeneration is crucial. This work reports on the analysis of the cytokine profile of human monocytes/macrophages in contact with biodegradable 3-D scaffolds with different surface properties, architecture and controlled pore geometry, fabricated by 3-D printing technology. Fabrication processes were optimized to create four different 3-D platforms based on polylactic acid (PLA), PLA/calcium phosphate glass or chitosan. Cytokine secretion and cell morphology of human peripheral blood monocytes allowed to differentiate on the different matrices were analyzed. While all scaffolds supported monocyte/macrophage adhesion and stimulated cytokine production, striking differences between PLA-based and chitosan scaffolds were found, with chitosan eliciting increased secretion of tumor necrosis factor (TNF)-α, while PLA-based scaffolds induced higher production of interleukin (IL)-6, IL-12/23 and IL-10. Even though the material itself induced the biggest differences, the scaffold geometry also impacted on TNF-α and IL-12/23 production, with chitosan scaffolds having larger pores and wider angles leading to a higher secretion of these pro-inflammatory cytokines. These findings strengthen the appropriateness of these 3-D platforms to study modulation of macrophage responses by specific parameters (chemistry, topography, scaffold architecture).

  16. Development methods of steam turbines 3D geometry optical control for effective heat power equipment quality improvement

    NASA Astrophysics Data System (ADS)

    Dvoynishnikov, Sergey

    2014-08-01

    A method for steam turbines 3D geometry optical control for effective heat power equipment quality improvement is proposed. It is shown that technical characteristics of the developed optical phase triangulation method for precision contactless geometry diagnostics of steam turbines meet modern requirements to 3D geometry measuring instruments and are perspective for further development. It is shown that used phase step method provides measurement error less than 0.024% of measurement range.

  17. SU-E-J-55: End-To-End Effectiveness Analysis of 3D Surface Image Guided Voluntary Breath-Holding Radiotherapy for Left Breast

    SciTech Connect

    Lin, M; Feigenberg, S

    2015-06-15

    Purpose To evaluate the effectiveness of using 3D-surface-image to guide breath-holding (BH) left-side breast treatment. Methods Two 3D surface image guided BH procedures were implemented and evaluated: normal-BH, taking BH at a comfortable level, and deep-inspiration-breath-holding (DIBH). A total of 20 patients (10 Normal-BH and 10 DIBH) were recruited. Patients received a BH evaluation using a commercialized 3D-surface- tracking-system (VisionRT, London, UK) to quantify the reproducibility of BH positions prior to CT scan. Tangential 3D/IMRT plans were conducted. Patients were initially setup under free-breathing (FB) condition using the FB surface obtained from the untaged CT to ensure a correct patient position. Patients were then guided to reach the planned BH position using the BH surface obtained from the BH CT. Action-levels were set at each phase of treatment process based on the information provided by the 3D-surface-tracking-system for proper interventions (eliminate/re-setup/ re-coaching). We reviewed the frequency of interventions to evaluate its effectiveness. The FB-CBCT and port-film were utilized to evaluate the accuracy of 3D-surface-guided setups. Results 25% of BH candidates with BH positioning uncertainty > 2mm are eliminated prior to CT scan. For >90% of fractions, based on the setup deltas from3D-surface-trackingsystem, adjustments of patient setup are needed after the initial-setup using laser. 3D-surface-guided-setup accuracy is comparable as CBCT. For the BH guidance, frequency of interventions (a re-coaching/re-setup) is 40%(Normal-BH)/91%(DIBH) of treatments for the first 5-fractions and then drops to 16%(Normal-BH)/46%(DIBH). The necessity of re-setup is highly patient-specific for Normal-BH but highly random among patients for DIBH. Overall, a −0.8±2.4 mm accuracy of the anterior pericardial shadow position was achieved. Conclusion 3D-surface-image technology provides effective intervention to the treatment process and ensures

  18. Study of the effects of surface cladding on 3D transmon

    NASA Astrophysics Data System (ADS)

    Yoscovits, Zachary Robert

    Quantum computing is a very interesting field, due to the ability of quantum computers to solve many problems much faster than a classical computer. Superconducting qubits are electronic circuits composed of superconducting capacitors, inductors and Josephson junctions, which can implement a physical qubit. However they need improvements in their coherence time to create a viable quantum computing. In this work I study the effect on decoherence caused by two level systems in the native oxide that forms on the surface of qubit. To this end I fabricate 3D transmon qubits using materials grown my molecular beam epitaxy, to which a variety of different surface treatments had been applied. I began by fabricating qubits from niobium/aluminum oxide/niobium trilayers. To this end I developed a self-aligned process for fabricating sub-micron Josephson junctions. This process presented many challenges. During the development of this process, it became clear that niobium was an inferior material for fabricating qubits compared to aluminum. I then switched to making qubits from Aluminum. I began by studying the growth of aluminum on sapphire, and was able to achieve aluminum films with an RMS roughness of 0.2 nm by growing on c-plane sapphire that had been annealed in oxygen at 1100 °C and dipped in BOE. Next I fabricated 3D transmon qubits by adapting the standard shadowmask process for use with MBE. I fabricated qubits with a long in situ oxidation to fully passivate the surface before exposure to air. I also passivated the surface by means of growing co deposited aluminum oxide, and by grown aluminum nitride using a nitrogen plasma source. The coherence times of these qubits were compared to those a control sample that had been exposed to air immediately after growth. Overall it doesn't appear that cladding the surface changes the coherence time much, however it is difficult to form conclusions with this small sample size. The coated samples appeared to have slightly

  19. Kinematic ground motion simulations on rough faults including effects of 3D stochastic velocity perturbations

    USGS Publications Warehouse

    Graves, Robert; Pitarka, Arben

    2016-01-01

    We describe a methodology for generating kinematic earthquake ruptures for use in 3D ground‐motion simulations over the 0–5 Hz frequency band. Our approach begins by specifying a spatially random slip distribution that has a roughly wavenumber‐squared fall‐off. Given a hypocenter, the rupture speed is specified to average about 75%–80% of the local shear wavespeed and the prescribed slip‐rate function has a Kostrov‐like shape with a fault‐averaged rise time that scales self‐similarly with the seismic moment. Both the rupture time and rise time include significant local perturbations across the fault surface specified by spatially random fields that are partially correlated with the underlying slip distribution. We represent velocity‐strengthening fault zones in the shallow (<5  km) and deep (>15  km) crust by decreasing rupture speed and increasing rise time in these regions. Additional refinements to this approach include the incorporation of geometric perturbations to the fault surface, 3D stochastic correlated perturbations to the P‐ and S‐wave velocity structure, and a damage zone surrounding the shallow fault surface characterized by a 30% reduction in seismic velocity. We demonstrate the approach using a suite of simulations for a hypothetical Mw 6.45 strike‐slip earthquake embedded in a generalized hard‐rock velocity structure. The simulation results are compared with the median predictions from the 2014 Next Generation Attenuation‐West2 Project ground‐motion prediction equations and show very good agreement over the frequency band 0.1–5 Hz for distances out to 25 km from the fault. Additionally, the newly added features act to reduce the coherency of the radiated higher frequency (f>1  Hz) ground motions, and homogenize radiation‐pattern effects in this same bandwidth, which move the simulations closer to the statistical characteristics of observed motions as illustrated by comparison with recordings from

  20. 3-D Waveguide Effects of Topographical Structural Variation on Full Waveform Propagation: 3-D Finite Difference Modeling Comparisons with Field Data From Yuma Proving Ground, Arizona

    NASA Astrophysics Data System (ADS)

    Anderson, T. S.; Miller, R.; Greenfield, R.; Fisk, D.

    2002-12-01

    The propagation of seismic waves through regions of complex topography is not thoroughly understood. Surface waves, are of particular interest, as they are large in amplitude and can characterize the source depth, magnitude, and frequency content. The amplitude and frequency content of seismic waves that propagate in regions with large topographical variations are affected by both the scattering and blockage of the wave energy. The ability to predict the 3-d scattering due to topography will improve the understanding of both regional scale surface wave magnitudes, and refine surface wave discriminants as well as at the local scale (<2 km ) where it will aid in the development of rule of thumb guide lines for array sensor placement for real time sensing technologies. Ideally, when validating the numerical accuracy of a propagation model against field data, the input geologic parameters would be known and thus eliminates geology as a source of error in the calculation. In March of 2001, Kansas Geological Survey (KGS) performed a detailed seismic site characterization at the Smart Weapons Test Range, Yuma Proving Ground, Arizona. The result of the KGS characterization study is a high-resolution 3-d model that is used in our seismic simulations. The velocities Vs, Vp are calculated by tomography and refraction, attenuation coefficients estimated from the surface wave and from p-waves and are provided in a model with attributes resolved in 3-d to 0.5 meters. In the present work, we present comparisons of synthetic data with seismic data collected at the Smart Weapons Test Range to benchmark the accuracy achieved in simulating 3-d wave propagation in the vicinity of a topographical anomaly (trench). Synthetic seismograms are generated using a 3-d 8th order staggered grid visco-elastic finite difference code that accounts for topography. The geologic model is based on the Yuma site characterization. The size of these calculations required use of the DoD High Performance

  1. Permuting input for more effective sampling of 3D conformer space

    NASA Astrophysics Data System (ADS)

    Carta, Giorgio; Onnis, Valeria; Knox, Andrew J. S.; Fayne, Darren; Lloyd, David G.

    2006-03-01

    SMILES strings and other classic 2D structural formats offer a convenient way to represent molecules as a simplistic connection table, with the inherent advantages of ease of handling and storage. In the context of virtual screening, chemical databases to be screened are often initially represented by canonicalised SMILES strings that can be filtered and pre-processed in a number of ways, resulting in molecules that occupy similar regions of chemical space to active compounds of a therapeutic target. A wide variety of software exists to convert molecules into SMILES format, namely, Mol2smi (Daylight Inc.), MOE (Chemical Computing Group) and Babel (Openeye Scientific Software). Depending on the algorithm employed, the atoms of a SMILES string defining a molecule can be ordered differently. Upon conversion to 3D coordinates they result in the production of ostensibly the same molecule. In this work we show how different permutations of a SMILES string can affect conformer generation, affecting reliability and repeatability of the results. Furthermore, we propose a novel procedure for the generation of conformers, taking advantage of the permutation of the input strings—both SMILES and other 2D formats, leading to more effective sampling of conformation space in output, and also implementing fingerprint and principal component analyses step to post process and visualise the results.

  2. Effect of particle size in a colloidal hydrogel scaffold for 3D cell culture.

    PubMed

    Gu, Jianjun; Zhao, Yening; Guan, Ying; Zhang, Yongjun

    2015-12-01

    The in situ-forming colloidal hydrogels from the thermal gelation of poly(N-isopropylacrylamide) (PNIPAM) microgel dispersions have been exploited for 3D cell culture. The properties of the hydrogel scaffold need to be tuned to further improve its performance. In addition, cellular uptake of the microgel particles need to be reduced to avoid their potential undesired influence. For these purposes we systematically examined the effect of microgel particle size on the hydrogel scaffold. It was found that gel properties could be tuned via changing particle size. Increasing particle size reduces the gel strength and its syneresis degree, both of which are favorable for cell growth. Meanwhile increasing particle size could also reduce significantly the cellular uptake of the microgel particles. Microgel with a size of ~162 nm shows the highest cellular uptake, beyond which cellular uptake decreases with increasing particle size. Hydrogel scaffold from 300 nm microgel, with suitable physical properties and reduced cellular uptake, were successfully used for multicellular spheroid generation. Copyright © 2015 Elsevier B.V. All rights reserved.

  3. 3D simulations of gas puff effects on edge plasma and ICRF coupling in JET

    NASA Astrophysics Data System (ADS)

    Zhang, W.; Jacquet, P.; Lerche, E.; Bilato, R.; Bobkov, V.; Coster, D.; Feng, Y.; Guillemaut, C.; Goniche, M.; Harting, D.; Lunt, T.; Noterdaeme, J.-M.; Szepesi, G.; Van Eester, D.; JET Contributors, the

    2017-05-01

    Recent JET (ITER-Like Wall) experiments have shown that the fueling gas puffed from different locations of the vessel can result in different scrape-off layer (SOL) density profiles and therefore different radio frequency (RF) coupling. To reproduce the experimental observations, to understand the associated physics and to optimize the gas puff methods, we have carried out three-dimensional (3D) simulations with the EMC3-EIRENE code in JET-ILW including a realistic description of the vessel geometry and the gas injection modules (GIMs) configuration. Various gas puffing methods have been investigated, in which the location of gas fueling is the only variable parameter. The simulation results are in quantitative agreement with the experimental measurements. They confirm that compared to divertor gas fueling, mid-plane gas puffing increases the SOL density most significantly but locally, while top gas puffing increases it uniformly in toroidal direction but to a lower degree. Moreover, the present analysis corroborates the experimental findings that combined gas puff scenarios—based on distributed main chamber gas puffing—can be effective in increasing the RF coupling for multiple antennas simultaneously. The results indicate that the spreading of the gas, the local ionization and the transport of the ionized gas along the magnetic field lines connecting the local gas cloud in front of the GIMs to the antennas are responsible for the enhanced SOL density and thus the larger RF coupling.

  4. Target Properties Effects on Central versus Peripheral Vertical Fusion Interaction Tested on a 3D Platform.

    PubMed

    Zhang, Di; Neveu, Pascaline; Fattakhova, Yulia; Ferragut, Stéphanie; Lamard, Mathieu; Cochener, Béatrice; de Bougrenet de la Tocnaye, Jean-Louis

    2017-03-01

    We investigated the impact of target properties on vertical fusion amplitude (VFA) using a 3D display platform; the performance of the subjects allowed us to assess how central and peripheral retina regions interact during the fusion process. Fourteen subjects were involved in the test. VFA was recorded by varying the viewing distance, target complexity, disparity velocity, lighting condition and background luminance. Base-up prisms were introduced to create vertical disparity in the peripheral retinal area, whereas an offset compensation was added in the central area. Data were analyzed in JMP software using T-test and repeated-measures ANOVA tests. VFA is significantly affected by target properties including viewing distance, target complexity and disparity velocity; the impact from lighting condition and background luminance is not significant. Although central retina plays a crucial role in the fusion process, peripheral regions also affect the fusion performance when stimulus size on retina and contents disparity values are modified between central and peripheral vision. Vertical fusion is affected by various target properties. For the first time, peripheral vertical disparity direction effects on central fusion and eye motion response have been explored. Besides, a quantitative interaction of central and peripheral fusion is observed, which could be applied in clinical measurement on binocular disease concerning central and peripheral vision conflict.

  5. CAST: Effective and Efficient User Interaction for Context-Aware Selection in 3D Particle Clouds.

    PubMed

    Yu, Lingyun; Efstathiou, Konstantinos; Isenberg, Petra; Isenberg, Tobias

    2016-01-01

    We present a family of three interactive Context-Aware Selection Techniques (CAST) for the analysis of large 3D particle datasets. For these datasets, spatial selection is an essential prerequisite to many other analysis tasks. Traditionally, such interactive target selection has been particularly challenging when the data subsets of interest were implicitly defined in the form of complicated structures of thousands of particles. Our new techniques SpaceCast, TraceCast, and PointCast improve usability and speed of spatial selection in point clouds through novel context-aware algorithms. They are able to infer a user's subtle selection intention from gestural input, can deal with complex situations such as partially occluded point clusters or multiple cluster layers, and can all be fine-tuned after the selection interaction has been completed. Together, they provide an effective and efficient tool set for the fast exploratory analysis of large datasets. In addition to presenting Cast, we report on a formal user study that compares our new techniques not only to each other but also to existing state-of-the-art selection methods. Our results show that Cast family members are virtually always faster than existing methods without tradeoffs in accuracy. In addition, qualitative feedback shows that PointCast and TraceCast were strongly favored by our participants for intuitiveness and efficiency.

  6. On the effect of muscular cocontraction on the 3-D human arm impedance.

    PubMed

    Patel, Harshil; O'Neill, Gerald; Artemiadis, Panagiotis

    2014-10-01

    Humans have the inherent ability to perform highly dexterous tasks with their arms, involving maintenance of posture, movement, and interaction with the environment. The latter requires the human to control the dynamic characteristics of the upper limb musculoskeletal system. These characteristics are quantitatively represented by inertia, damping, and stiffness, which are measures of mechanical impedance. Many previous studies have shown that arm posture is a dominant factor in determining the end point impedance on a horizontal plane. This paper presents the characterization of the end point impedance of the human arm in 3-D space. Moreover, it models the regulation of the arm impedance with muscle cocontraction. The characterization is made by route of experimental trials where human subjects maintained arm posture while their arms were perturbed by a robot arm. Furthermore, the subjects were asked to control the level of their arm muscles' cocontraction, using visual feedback, in order to investigate the effect of muscle cocontraction on the arm impedance. The results of this study show an anisotropic increase of arm stiffness due to muscle cocontraction. These results could improve our understanding of the human arm biomechanics, as well as provide implications for human motor control-specifically the control of arm impedance through muscle cocontraction.

  7. An Effective 3D Shape Descriptor for Object Recognition with RGB-D Sensors

    PubMed Central

    Liu, Zhong; Zhao, Changchen; Wu, Xingming; Chen, Weihai

    2017-01-01

    RGB-D sensors have been widely used in various areas of computer vision and graphics. A good descriptor will effectively improve the performance of operation. This article further analyzes the recognition performance of shape features extracted from multi-modality source data using RGB-D sensors. A hybrid shape descriptor is proposed as a representation of objects for recognition. We first extracted five 2D shape features from contour-based images and five 3D shape features over point cloud data to capture the global and local shape characteristics of an object. The recognition performance was tested for category recognition and instance recognition. Experimental results show that the proposed shape descriptor outperforms several common global-to-global shape descriptors and is comparable to some partial-to-global shape descriptors that achieved the best accuracies in category and instance recognition. Contribution of partial features and computational complexity were also analyzed. The results indicate that the proposed shape features are strong cues for object recognition and can be combined with other features to boost accuracy. PMID:28245553

  8. Local and Global 3-D Effects in the Magnetic Reconnection Experiment (MRX)

    NASA Astrophysics Data System (ADS)

    Dorfman, S.; Ji, H.; Yamada, M.; Oz, E.; Yoo, J.; Daughton, W.; Roytershteyn, V.

    2009-11-01

    One of the key open questions in Magnetic Reconnection is the nature of the mechanism that governs the reconnection rate in real astrophysical and laboratory systems. Comparisons between fully kinetic 2-D simulations of the Magnetic Reconnection Experiment (MRX) and experimental data show that the 2-D, collisionless expression for the electric field due to particle dynamics [1] does not match MRX data; related to this is a factor of 3-5 discrepancy in the layer width [2,3]. Adding collisions to the simulation leads to a broadening of the layer, but the level of collisionality present in MRX may not be high enough to resolve the discrepancy. Ongoing research on MRX explores the role of fluctuations and 3-D effects in the force balance. Significant toroidal asymmetries have been found, manifested by regions of high inductive electric field moving in the electron flow direction within the layer. Electromagnetic fluctuations in the lower hybrid frequency range [4] tend to occur in discharges with high local currents and a rapid local reconnection rate. The precise relation of these phenomena to fast reconnection is actively being investigated. [1] M. Hesse, et al., Phys. Plasmas, 6:1781 (1999). [2] Y. Ren, et al., Phys. Plasmas 15, 082113 (2008). [3] S. Dorfman, et al., Phys. Plasmas 15, 102107 (2008). [4] H. Ji, et al., Phys.Rev.Lett. 92 (2004) 115001. Supported by NDSEG, DOE, NASA, and NSF.

  9. On Integral Invariants for Effective 3-D Motion Trajectory Matching and Recognition.

    PubMed

    Shao, Zhanpeng; Li, Youfu

    2016-02-01

    Motion trajectories tracked from the motions of human, robots, and moving objects can provide an important clue for motion analysis, classification, and recognition. This paper defines some new integral invariants for a 3-D motion trajectory. Based on two typical kernel functions, we design two integral invariants, the distance and area integral invariants. The area integral invariants are estimated based on the blurred segment of noisy discrete curve to avoid the computation of high-order derivatives. Such integral invariants for a motion trajectory enjoy some desirable properties, such as computational locality, uniqueness of representation, and noise insensitivity. Moreover, our formulation allows the analysis of motion trajectories at a range of scales by varying the scale of kernel function. The features of motion trajectories can thus be perceived at multiscale levels in a coarse-to-fine manner. Finally, we define a distance function to measure the trajectory similarity to find similar trajectories. Through the experiments, we examine the robustness and effectiveness of the proposed integral invariants and find that they can capture the motion cues in trajectory matching and sign recognition satisfactorily.

  10. An Examination of the Effects of Collaborative Scientific Visualization via Model-based Reasoning on Science, Technology, Engineering, and Mathematics (STEM) Learning Within an Immersive 3D World

    NASA Astrophysics Data System (ADS)

    Soleimani, Ali

    Immersive 3D worlds can be designed to effectively engage students in peer-to-peer collaborative learning activities, supported by scientific visualization, to help with understanding complex concepts associated with learning science, technology, engineering, and mathematics (STEM). Previous research studies have shown STEM learning benefits associated with the use of scientific visualization tools involving model-based reasoning (MBR). Little is known, however, about collaborative use of scientific visualization, via MBR, within an immersive 3D-world learning environment for helping to improve perceived value of STEM learning and knowledge acquisition in a targeted domain such as geothermal energy. Geothermal energy was selected as the study's STEM focus, because understanding in the domain is highly dependent on successfully integrating science and mathematics concepts. This study used a 2x2 Mixed ANOVA, with repeated measures, design to analyze collaborative usage of a geothermal energy MBR model and its effects on learning within an immersive 3D world. The immersive 3D world used for the study is supported by the Open Simulator platform. Findings from this study can suggest ways to improve STEM learning and inform the design of MBR activities when conducted within an immersive 3D world.

  11. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  12. Clinical effects of 3-D printing-assisted personalized reconstructive surgery for blowout orbital fractures.

    PubMed

    Fan, Bin; Chen, Han; Sun, Ying-Jian; Wang, Bei-Fen; Che, Lin; Liu, Shu-Yan; Li, Guang-Yu

    2017-08-07

    One of the key challenges during orbital fracture reconstructive surgery, due to the complex anatomy of the orbit, is shaping and trimming the precise contour of the implants. The objectives of this study were to describe and evaluate the use of a three-dimensional (3-D) printing technique for personalized reconstructive surgery for repairing orbital fractures. A total of 29 cases which had 3-D technique-assisted surgical reconstruction, and 27 cases which had traditional surgery, were retrospectively analyzed. Preoperative and postoperative CT images were measured using MIMICS software, and the contour of the fracture zone and the Medpor-titanium implant were analyzed and compared. The surgical duration was also compared between the two groups. There were statistically significant differences in the maximum width, depth and area between fracture zone and implant between the two groups, with the absolute value in the 3-D group markedly lower as compared to the control group. In addition, the difference in the medial-inferior wall angle between the surgical eye and healthy eye was also statistically significant between the groups. The average surgical duration in the 3-D group was substantially shorter than in the control group. Additionally, the postoperative clinical evaluation in the 3-D group was superior to that of the control group. The 3-D printing technique is of great value for predicting the precise fracture zone before, and during, personalized surgery, and can help surgeons achieve accurate anatomical reconstruction for repairs of blowout orbital fractures. Moreover, the simulated bone template produced by 3-D printing models allows for "true-to-original" orbital reconstruction, which can shorten the surgical duration and improve the accuracy and safety of the operation.

  13. Numerical study of the 3-D effect on FEL performance and its application to the APS LEUTL FEL

    SciTech Connect

    Chae, Y.C.

    1998-09-01

    A Low-Energy Undulator Test Line (LEUTL) is under construction at the Advanced Photon Source (APS). In LEUTL periodic focusing is provided by external quadrupoles. This results in an elliptical beam with its betatron oscillation envelope varying along the undulators. The free-electron laser (FEL) interaction with such a beam will exhibit truly 3-D effects. Thus the investigation of 3-D effects is important in optimizing the FEL performance. The programs GINGER and TDA3D, coupled with theoretically known facts, have been used for this purpose. Both programs are fully 3-D in moving the particle, but model the interaction between particles and axially symmetric electromagnetic waves. Even though TDA3D can include a few azimuthal modes in the interaction, it is still not a fully 3-D FEL code. However, they show that these 2-D programs can still be used for an elliptical beam whose aspect ratio is within certain limits. The author presents numerical results of FEL performance for the circular beam, the elliptical beam, and finally for the beam in the realistic LEUTL lattice.

  14. Effect of rosiglitazone on progression of atherosclerosis: insights using 3D carotid cardiovascular magnetic resonance

    PubMed Central

    Varghese, Anitha; Yee, Michael S; Chan, Cheuk F; Crowe, Lindsey A; Keenan, Niall G; Johnston, Desmond G; Pennell, Dudley J

    2009-01-01

    Background There is recent evidence suggesting that rosiglitazone increases death from cardiovascular causes. We investigated the direct effect of this drug on atheroma using 3D carotid cardiovascular magnetic resonance. Results A randomized, placebo-controlled, double-blind study was performed to evaluate the effect of rosiglitazone treatment on carotid atherosclerosis in subjects with type 2 diabetes and coexisting vascular disease or hypertension. The primary endpoint of the study was the change from baseline to 52 weeks of carotid arterial wall volume, reflecting plaque burden, as measured by carotid cardiovascular magnetic resonance. Rosiglitazone or placebo was allocated to 28 and 29 patients respectively. Patients were managed to have equivalent glycemic control over the study period, but in fact the rosiglitazone group lowered their HbA1c by 0.88% relative to placebo (P < 0.001). Most patients received a statin or fibrate as lipid control medication (rosiglitazone 78%, controls 83%). Data are presented as mean ± SD. At baseline, the carotid arterial wall volume in the placebo group was 1146 ± 550 mm3 and in the rosiglitazone group was 1354 ± 532 mm3. After 52 weeks, the respective volumes were 1134 ± 523 mm3 and 1348 ± 531 mm3. These changes (-12.1 mm3 and -5.7 mm3 in the placebo and rosiglitazone groups, respectively) were not statistically significant between groups (P = 0.57). Conclusion Treatment with rosiglitazone over 1 year had no effect on progression of carotid atheroma in patients with type 2 diabetes mellitus compared to placebo. PMID:19635160

  15. Zebrafish response to 3D printed shoals of conspecifics: the effect of body size.

    PubMed

    Bartolini, Tiziana; Mwaffo, Violet; Showler, Ashleigh; Macrì, Simone; Butail, Sachit; Porfiri, Maurizio

    2016-02-18

    Recent progress in three-dimensional (3D) printing technology has enabled rapid prototyping of complex models at a limited cost. Virtually every research laboratory has access to a 3D printer, which can assist in the design and implementation of hypothesis-driven studies on animal behavior. In this study, we explore the possibility of using 3D printing technology to understand the role of body size in the social behavior of the zebrafish model organism. In a dichotomous preference test, we study the behavioral response of zebrafish to shoals of 3D printed replicas of varying size. We systematically vary the size of each replica without altering the coloration, aspect ratio, and stripe patterns, which are all selected to closely mimic zebrafish morphophysiology. The replicas are actuated through a robotic manipulator, mimicking the natural motion of live subjects. Zebrafish preference is assessed by scoring the time spent in the vicinity of the shoal of replicas, and the information theoretic construct of transfer entropy is used to further elucidate the influence of the replicas on zebrafish motion. Our results demonstrate that zebrafish adjust their behavior in response to variations in the size of the replicas. Subjects exhibit an avoidance reaction for larger replicas, and they are attracted toward and influenced by smaller replicas. The approach presented in this study, integrating 3D printing technology, robotics, and information theory, is expected to significantly aid preclinical research on zebrafish behavior.

  16. Numerical Simulation of the Effect of 3D Needle Movement on Cavitation and Spray Formation in a Diesel Injector

    NASA Astrophysics Data System (ADS)

    Mandumpala Devassy, B.; Edelbauer, W.; Greif, D.

    2015-12-01

    Cavitation and its effect on spray formation and its dispersion play a crucial role in proper engine combustion and controlled emission. This study focuses on these effects in a typical common rail 6-hole diesel injector accounting for 3D needle movement and flow compressibility effects. Coupled numerical simulations using 1D and 3D CFD codes are used for this investigation. Previous studies in this direction have already presented a detailed structure of the adopted methodology. Compared to the previous analysis, the present study investigates the effect of 3D needle movement and cavitation on the spray formation for pilot and main injection events for a typical diesel engine operating point. The present setup performs a 3D compressible multiphase simulation coupled with a standalone 1D high pressure flow simulation. The simulation proceeds by the mutual communication between 1D and 3D solvers. In this work a typical common rail injector with a mini-sac nozzle is studied. The lateral and radial movement of the needle and its effect on the cavitation generation and the subsequent spray penetration are analyzed. The result indicates the effect of compressibility of the liquid on damping the needle forces, and also the difference in the spray penetration levels due to the asymmetrical flow field. Therefore, this work intends to provide an efficient and user-friendly engineering tool for simulating a complete fuel injector including spray propagation.

  17. 3-D numerical simulations of eruption clouds: Effects of the environmental wind on the turbulent mixing

    NASA Astrophysics Data System (ADS)

    Suzuki, Y. J.; Koyaguchi, T.

    2011-12-01

    During an explosive volcanic eruption, a mixture of volcanic gas and solid pyroclasts are ejected from a volcanic vent with a high temperature. As it rises, the mixture entrains ambient air owing to turbulent mixing. The entrained air expands by heating from the hot pyroclasts, and the eruption cloud (i.e., the ejected material plus the entrained air) rises as a buoyant plume. Because the plume height is principally determined by the balance between the thermal energy ejected at the vent and the work done in transporting the ejected material plus entrained air through the atmospheric stratification, it is controlled by the efficiency of turbulent mixing; as the amount of entrained air increases, the plume height decreases. In the 1-D models of eruption column (e.g., Woods, 1988), the plume height is calculated on the assumption that the mean inflow velocity across the edge of turbulent jet and/or plume is proportional to the mean vertical velocity (Morton et al., 1956). Experimental studies suggest that the proportionality constant (i.e., entrainment coefficient, k), which represents the efficiency of turbulent mixing, is about 0.10 for pure plumes when there is no wind. When an environmental wind is present, however, the interaction between a buoyant plume and the wind may enhance the entrainment of air and can significantly decrease the plume height (Bursik, 2001). In order to investigate the effects of wind on the vortical structures and the efficiency of turbulent mixing in an eruption cloud, we have carried out 3-D numerical simulations of eruption column which is ejected in a wind field. The simulation results indicate that a buoyant plume vertically rises as a "strong plume" (e.g., Bonadonna et al., 2003) when the wind velocity is low: the cloud reaches the neutral buoyancy level and overshoots until the upward momentum is exhausted. In this case, the plume height is consistent with prediction by the 1-D model with k~0.10. When the wind velocity is high, on

  18. Effect of a Material Contrast on a Dynamic Rupture: 3-D

    NASA Astrophysics Data System (ADS)

    Harris, R. A.; Day, S. M.

    2003-12-01

    We use numerical simulations of spontaneously propagating ruptures to examine the effect of a material contrast on earthquake dynamics. We specifically study the case of a lateral contrast whereby the fault is the boundary between two different rock-types. This scenario was previously studied in two-dimensions by Harris and Day [BSSA, 1997], and Andrews and Ben-Zion [JGR, 1997], in addition to subsequent 2-D studies, but it has not been known if the two-dimensional results are applicable to the real three-dimensional world. The addition of the third dimension implies a transition from pure mode II (i.e., plane-strain) to mixed-mode crack dynamics, which is more complicated since in mode II the shear and normal stresses are coupled whereas in mode III (i.e., anti-plane strain) they are not coupled. We use a slip-weakening fracture criterion and examine the effect on an earthquake rupture of material contrasts of up to 50 percent across the fault zone. We find a surprisingly good agreement between our earlier 2-D results, and our 3-D results for along-strike propagation. We find that the analytical solution presented in Harris and Day [BSSA, 1997] does an excellent job at predicting the bilateral, along-strike rupture velocities for the three-dimensional situation. In contrast, the along-dip propagation behaves much as expected for a purely mode-III rupture, with the rupture velocities up-dip and down-dip showing the expected symmetries.

  19. Left Ventricular Myocardial Segmentation in 3D Ultrasound Recordings: Effect of Different Endoand Epicardial Coupling Strategies.

    PubMed

    Pedrosa, Joao; Barbosa, Daniel; Heyde, Brecht; Schnell, Frederic; Rosner, Assami; Claus, Piet; D Hooge, Jan

    2016-12-12

    Cardiac volume/function assessment remains a critical step in daily cardiology and 3D ultrasound plays an increasingly important role. Though development of automatic endocardial segmentation methods has received much attention, the same cannot be said about epicardial segmentation, in spite of the importance of full myocardial segmentation. In this study, different ways of coupling the endo- and epicardial segmentation are contrasted and compared to uncoupled segmentation. For this purpose, the B-spline Explicit Active Surfaces framework was used. Twenty-seven 3D echocardiographic images were used to validate the different coupling strategies which were compared to manual contouring of the endo- and epicardial borders performed by an expert. It is shown that an independent segmentation of the endocardium followed by an epicardial segmentation coupled to the endocardium is the most advantageous. In this way, a framework for fully automatic 3D myocardial segmentation is proposed using a novel coupling strategy.

  20. Effects of Processing and Medical Sterilization Techniques on 3D-Printed and Molded Polylactic Acid

    NASA Astrophysics Data System (ADS)

    Geritano, Mariah Nicole

    Manufacturing industries have evolved tremendously in the past decade with the introduction of Additive Manufacturing (AM), also known as 3D Printing. The medical device industry has been a leader in adapting this new technology into research and development. 3D printing enables medical devices and implants to become more customizable, patient specific, and allows for low production numbers. This study compares the mechanical and thermal properties of traditionally manufactured parts versus parts manufactured through 3D printing before and after sterilization, and the ability of an FDM printer to produce reliable, identical samples. It was found that molded samples and 100% infill high-resolution samples have almost identical changes in properties when exposed to different sterilization methods, and similar cooling rates. The data shown throughout this investigation confirms that manipulation of printing parameters can result in an object with comparable material properties to that created through traditional manufacturing methods.

  1. Use of reconstructed 3D VMEC equilibria to match effects of toroidally rotating discharges in DIII-D

    SciTech Connect

    Wingen, Andreas; Wilcox, Robert S.; Cianciosa, Mark R.; Seal, Sudip K.; Unterberg, Ezekial A.; Hanson, Jeremy M.; Hirshman, Steven Paul; Lao, L. L.; Logan, N. C.; Paz-Soldan, Carlos; Shafer, Morgan W.

    2016-10-13

    Here, a technique for tokamak equilibrium reconstructions is used for multiple DIII-D discharges, including L-mode and H-mode cases when weakly 3D fields $\\left(\\delta B/B\\sim {{10}^{-3}}\\right)$ are applied. The technique couples diagnostics to the non-linear, ideal MHD equilibrium solver VMEC, using the V3FIT code, to find the most likely 3D equilibrium based on a suite of measurements. It is demonstrated that V3FIT can be used to find non-linear 3D equilibria that are consistent with experimental measurements of the plasma response to very weak 3D perturbations, as well as with 2D profile measurements. Observations at DIII-D show that plasma rotation larger than 20 krad s–1 changes the relative phase between the applied 3D fields and the measured plasma response. Discharges with low averaged rotation (10 krad s–1) and peaked rotation profiles (40 krad s–1) are reconstructed. Similarities and differences to forward modeled VMEC equilibria, which do not include rotational effects, are shown. Toroidal phase shifts of up to ${{30}^{\\circ}}$ are found between the measured and forward modeled plasma responses at the highest values of rotation. The plasma response phases of reconstructed equilibra on the other hand match the measured ones. This is the first time V3FIT has been used to reconstruct weakly 3D tokamak equilibria.

  2. Use of reconstructed 3D VMEC equilibria to match effects of toroidally rotating discharges in DIII-D

    DOE PAGES

    Wingen, Andreas; Wilcox, Robert S.; Cianciosa, Mark R.; ...

    2016-10-13

    Here, a technique for tokamak equilibrium reconstructions is used for multiple DIII-D discharges, including L-mode and H-mode cases when weakly 3D fieldsmore » $$\\left(\\delta B/B\\sim {{10}^{-3}}\\right)$$ are applied. The technique couples diagnostics to the non-linear, ideal MHD equilibrium solver VMEC, using the V3FIT code, to find the most likely 3D equilibrium based on a suite of measurements. It is demonstrated that V3FIT can be used to find non-linear 3D equilibria that are consistent with experimental measurements of the plasma response to very weak 3D perturbations, as well as with 2D profile measurements. Observations at DIII-D show that plasma rotation larger than 20 krad s–1 changes the relative phase between the applied 3D fields and the measured plasma response. Discharges with low averaged rotation (10 krad s–1) and peaked rotation profiles (40 krad s–1) are reconstructed. Similarities and differences to forward modeled VMEC equilibria, which do not include rotational effects, are shown. Toroidal phase shifts of up to $${{30}^{\\circ}}$$ are found between the measured and forward modeled plasma responses at the highest values of rotation. The plasma response phases of reconstructed equilibra on the other hand match the measured ones. This is the first time V3FIT has been used to reconstruct weakly 3D tokamak equilibria.« less

  3. Effects of 3D microlens transfer into fused silica substrate by CF4/O2 dry etching

    NASA Astrophysics Data System (ADS)

    Grigaliūnas, Viktoras; Jucius, Dalius; Lazauskas, Algirdas; Andrulevičius, Mindaugas; Sakaliūnienė, Jolita; Abakevičienė, Brigita; Kopustinskas, Vitoldas; Smetona, Saulius; Tamulevičius, Sigitas

    2017-01-01

    Nowadays, 3D microoptical elements find a variety of applications from light emitting diodes and household appliances to precise medical endoscopes. Such elements, fabricated in a fused silica substrate by combining 3D e-beam patterning and dry etching, can be used as a mold for the high throughput replication in polymeric materials by UV nanoimprint technique. Flexible and precise control of 3D shape in the resist layer can be achieved by e-beam patterning, but it is also very important to know peculiarities of 3D pattern transfer from resist layer into the fused silica substrate. This paper reports on the effects of PMMA 3D microlens pattern transfer into fused silica substrate by CF4/O2 dry etching. It is demonstrated that etching rate ratio between PMMA and fused silica changes during plasma treatment. Thus, the resulting shape of transferred 3D profile is different from the shape in PMMA and this variation must be assessed during the design phase.

  4. Use of reconstructed 3D VMEC equilibria to match effects of toroidally rotating discharges in DIII-D

    NASA Astrophysics Data System (ADS)

    Wingen, A.; Wilcox, R. S.; Cianciosa, M. R.; Seal, S. K.; Unterberg, E. A.; Hanson, J. M.; Hirshman, S. P.; Lao, L. L.; Logan, N. C.; Paz-Soldan, C.; Shafer, M. W.

    2017-01-01

    A technique for tokamak equilibrium reconstructions is used for multiple DIII-D discharges, including L-mode and H-mode cases when weakly 3D fields ≤ft(δ B/B˜ {{10}-3}\\right) are applied. The technique couples diagnostics to the non-linear, ideal MHD equilibrium solver VMEC, using the V3FIT code, to find the most likely 3D equilibrium based on a suite of measurements. It is demonstrated that V3FIT can be used to find non-linear 3D equilibria that are consistent with experimental measurements of the plasma response to very weak 3D perturbations, as well as with 2D profile measurements. Observations at DIII-D show that plasma rotation larger than 20 krad s-1 changes the relative phase between the applied 3D fields and the measured plasma response. Discharges with low averaged rotation (10 krad s-1) and peaked rotation profiles (40 krad s-1) are reconstructed. Similarities and differences to forward modeled VMEC equilibria, which do not include rotational effects, are shown. Toroidal phase shifts of up to {{30}\\circ} are found between the measured and forward modeled plasma responses at the highest values of rotation. The plasma response phases of reconstructed equilibra on the other hand match the measured ones. This is the first time V3FIT has been used to reconstruct weakly 3D tokamak equilibria.

  5. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model

    PubMed Central

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-01-01

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area. PMID:27345436

  6. In vivo 3D analysis of systemic effects after local heavy-ion beam irradiation in an animal model.

    PubMed

    Nagata, Kento; Hashimoto, Chika; Watanabe-Asaka, Tomomi; Itoh, Kazusa; Yasuda, Takako; Ohta, Kousaku; Oonishi, Hisako; Igarashi, Kento; Suzuki, Michiyo; Funayama, Tomoo; Kobayashi, Yasuhiko; Nishimaki, Toshiyuki; Katsumura, Takafumi; Oota, Hiroki; Ogawa, Motoyuki; Oga, Atsunori; Ikemoto, Kenzo; Itoh, Hiroshi; Kutsuna, Natsumaro; Oda, Shoji; Mitani, Hiroshi

    2016-06-27

    Radiotherapy is widely used in cancer treatment. In addition to inducing effects in the irradiated area, irradiation may induce effects on tissues close to and distant from the irradiated area. Japanese medaka, Oryzias latipes, is a small teleost fish and a model organism for evaluating the environmental effects of radiation. In this study, we applied low-energy carbon-ion (26.7 MeV/u) irradiation to adult medaka to a depth of approximately 2.2 mm from the body surface using an irradiation system at the National Institutes for Quantum and Radiological Science and Technology. We histologically evaluated the systemic alterations induced by irradiation using serial sections of the whole body, and conducted a heart rate analysis. Tissues from the irradiated side showed signs of serious injury that corresponded with the radiation dose. A 3D reconstruction analysis of the kidney sections showed reductions in the kidney volume and blood cell mass along the irradiated area, reflecting the precise localization of the injuries caused by carbon-beam irradiation. Capillary aneurysms were observed in the gill in both ventrally and dorsally irradiated fish, suggesting systemic irradiation effects. The present study provides an in vivo model for further investigation of the effects of irradiation beyond the locally irradiated area.

  7. Enhanced zero-bias conductance peak and splitting at mesoscopic interfaces between an s-wave superconductor and a 3D Dirac semimetal

    NASA Astrophysics Data System (ADS)

    Aggarwal, Leena; Gayen, Sirshendu; Das, Shekhar; Thakur, Gohil S.; Ganguli, Ashok K.; Sheet, Goutam

    2016-12-01

    Mesoscopic point contacts between elemental metals and the topological 3D Dirac semimetal Cd3As2 have been recently shown to be superconducting with unconventional pairing while Cd3As2 itself does not superconduct. Here we show that the same superconducting phase at mesoscopic interfaces on Cd3As2 can be induced with a known conventional superconductor Nb where a pronounced zero-bias conductance peak is observed which undergoes splitting in energy under certain conditions. The observations are consistent with the theory of the emergence of Andreev bound states due to the presence of a pair potential with broken time reversal symmetry. The data also indicate the possibility of Majorana bound states as expected at the interfaces between s-wave superconductors and topologically non-trivial materials with a high degree of spin-orbit coupling.

  8. Effects of inhomogeneity at stagnation in 3D simulations of ICF implosions

    NASA Astrophysics Data System (ADS)

    Appelbe, Brian

    2016-10-01

    The stagnation phase of an ICF implosion is characterized by a hotspot and dense fuel layer that are spatially and temporally inhomogeneous. Perturbation growth during the implosion results in significant asymmetry at stagnation while the hotspot size, density and temperature change rapidly, even in non-igniting capsules. Diagnosing these inhomogeneities is necessary to increase yield in ICF experiments. In this work, 3D radiation hydrodynamic simulations of perturbed indirect drive ICF capsules are carried out using the CHIMERA code. During the stagnation phase a suite of novel and computationally efficient simulation tools are used to produce synthetic time-resolved neutron spectra and images. These tools allow a detailed study of the effects of hotspot inhomogeneities on diagnostic signals. Results show that the burn-averaged ion temperature drops rapidly during thermonuclear burn as the hotspot evolves from a localised, shock-heated region to a more massive, non-uniform plasma. Primary DD and DT neutron spectra show that there is significant residual bulk fluid motion at stagnation, complicating the measurement of ion temperature. Different perturbation modes cause different levels of anisotropic spectra shifts and broadening. However, in all cases the discrepancies between the DD and DT spectra are a reliable indicator of residual motion at stagnation. The simulations are used to examine the relationship between neutron scattering and areal density (ρR). Three measures of areal density are simulated: downscattered neutron ratio, attenuated primary neutron yield and nT backscatter edge. Each of these diagnoses the magnitude and anisotropy of the ρR with varying success, with accuracy decreasing for higher mode perturbations. Contributions to the neutron energy spectra from T +T reactions, secondary DT reactions and deuteron break-up are also evaluated.

  9. Effect of Kayak Ergometer Elastic Tension on Upper Limb EMG Activity and 3D Kinematics.

    PubMed

    Fleming, Neil; Donne, Bernard; Fletcher, David

    2012-01-01

    Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10) performed 4 by 1 min on-ergometer exercise bouts at 85%VO2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p < 0.001), no significant differences were detected in assessed force variables during the stroke cycle. In contrast, increasing tension induced significantly higher Anterior Deltoid (AD) activity in the latter stages (70 to 90%) of the cycle (p < 0.05). No significant differences were observed across tension levels for Triceps Brachii or Latissimus Dorsi. Kinematic analysis revealed that overhead arm movements accounted for 39 ± 16% of the cycle. Elbow angle at stroke cycle onset was 144 ± 10°; maximal elbow angle (151 ± 7°) occurred at 78 ± 10% into the cycle. All kinematic markers moved to a more anterior position as tension increased. No significant change in wrist marker elevation was observed, while elbow and shoulder marker elevations significantly increased across tension levels (p < 0.05). In conclusion, data suggested that kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces. Key pointsKayak ergometer elastic tension significantly alters Anterior Deltoid recruitment patterns.Kayakers maintain optimal arm kinematics despite changing external forces via altered shoulder muscle recruitment.Overhead arm movements account for a high proportion of the kayak

  10. 3D ultrasound estimation of the effective volume for popliteal block at the level of division.

    PubMed

    Sala-Blanch, X; Franco, J; Bergé, R; Marín, R; López, A M; Agustí, M

    2017-03-01

    Local anaesthetic injection between the tibial and commmon peroneal nerves within connective tissue sheath results in a predictable diffusion and allows for a reduction in the volume needed to achieve a consistent sciatic popliteal block. Using 3D ultrasound volumetric acquisition, we quantified the visible volume in contact with the nerve along a 5cm segment. We included 20 consecutive patients scheduled for bunion surgery. Ultrasound guided popliteal block was performed using a posterior, out of plane approach at the level of división of the sciatic nerve. Thirty ml of mepivacaine 1.5% and levobupivacaine 0.5% were slowly injected while assessing the injection pressure and the diffusion of the local anaesthetic. Volumetric acquisition was performed before and after the block to quantify the the volume of the sciatic nerve and the volume of the surrounding hypoechoic halo contained inside the connective tissue in a 5cm segment. All blocks were successful within 20min after the injection. The total estimated volume contained inside the common connective tissue sheath was 6.8±2.6cm(3). Of this, the volume of the halo sorrounding the nerve was 4.4±1.7cm(3) and the volume inside the sciatic nerve was 2.4±1.7cm(3). The volume of local anaesthetic in close contact with the sciatic nerve can be estimated by volumetric acquisition. Our results suggest that the effective volume of local anaesthetic needed for a successful sciatic popliteal block could be reduced to less than 7ml. Copyright © 2016 Sociedad Española de Anestesiología, Reanimación y Terapéutica del Dolor. Publicado por Elsevier España, S.L.U. All rights reserved.

  11. Effect of Kayak Ergometer Elastic Tension on Upper Limb EMG Activity and 3D Kinematics

    PubMed Central

    Fleming, Neil; Donne, Bernard; Fletcher, David

    2012-01-01

    Despite the prevalence of shoulder injury in kayakers, limited published research examining associated upper limb kinematics and recruitment patterns exists. Altered muscle recruitment patterns on-ergometer vs. on-water kayaking were recently reported, however, mechanisms underlying changes remain to be elucidated. The current study assessed the effect of ergometer recoil tension on upper limb recruitment and kinematics during the kayak stroke. Male kayakers (n = 10) performed 4 by 1 min on-ergometer exercise bouts at 85%VO2max at varying elastic recoil tension; EMG, stroke force and three-dimensional 3D kinematic data were recorded. While stationary recoil forces significantly increased across investigated tensions (125% increase, p < 0.001), no significant differences were detected in assessed force variables during the stroke cycle. In contrast, increasing tension induced significantly higher Anterior Deltoid (AD) activity in the latter stages (70 to 90%) of the cycle (p < 0.05). No significant differences were observed across tension levels for Triceps Brachii or Latissimus Dorsi. Kinematic analysis revealed that overhead arm movements accounted for 39 ± 16% of the cycle. Elbow angle at stroke cycle onset was 144 ± 10°; maximal elbow angle (151 ± 7°) occurred at 78 ± 10% into the cycle. All kinematic markers moved to a more anterior position as tension increased. No significant change in wrist marker elevation was observed, while elbow and shoulder marker elevations significantly increased across tension levels (p < 0.05). In conclusion, data suggested that kayakers maintained normal upper limb kinematics via additional AD recruitment despite ergometer induced recoil forces. Key pointsKayak ergometer elastic tension significantly alters Anterior Deltoid recruitment patterns.Kayakers maintain optimal arm kinematics despite changing external forces via altered shoulder muscle recruitment.Overhead arm movements account for a high proportion of the kayak

  12. Effect of voxel size on 3D micro-CT analysis of cortical bone porosity.

    PubMed

    Cooper, David; Turinsky, Andrei; Sensen, Christoph; Hallgrimsson, Benedikt

    2007-03-01

    This study examines the impact of voxel size on 3D micro-CT analysis of human cortical bone porosity. The study is based on computed microtomography scans of 10 human anterior femoral midshaft specimens acquired at 5, 10, and 15 microm voxel sizes. Artificial voxel sizes (10, 20, and 40 microm) were generated from the smallest scan voxel size (5 microm) in order to compare actual scanning with artificial degradation, a method employed in other similar studies. Canal volume fraction (CaV/TV), canal surface to volume ratio (CaS/CaV), mean canal diameter (CaDm), mean canal separation (CaSp), canal number (CaN), degree of anisotropy (DA), and canal connectivity density (CaConnD) were calculated from matching volumes of interest for all datasets. Qualitatively, the clarity of the actual scan datasets deteriorated rapidly as voxel size increased. In contrast, within the artificially generated datasets, the clarity of cortical pores was better maintained until the largest voxel size (40 microm). Mean absolute percent error values, correlation coefficients, and paired t-tests revealed a pattern of increasing, and generally significant, differences between the smallest and progressively larger voxel sizes (both scanned and artificial). Relative to the actual scans, however, the artificial datasets were less sensitive to changing voxel size. These findings indicated that subtle changes in voxel size, within the range examined, have a considerable effect on human cortical porosity structural parameters. Additionally, the use of artificially increased voxel sizes should be viewed with caution as they may not reflect what can actually be obtained by scanning.

  13. Effect of nitrogen availability on the poly-3-D-hydroxybutyrate accumulation by engineered Saccharomyces cerevisiae.

    PubMed

    Portugal-Nunes, Diogo J; Pawar, Sudhanshu S; Lidén, Gunnar; Gorwa-Grauslund, Marie F

    2017-12-01

    Poly-3-D-hydroxybutyrate (or PHB) is a polyester which can be used in the production of biodegradable plastics from renewable resources. It is naturally produced by several bacteria as a response to nutrient starvation in the excess of a carbon source. The yeast Saccharomyces cerevisiae could be an alternative production host as it offers good inhibitor tolerance towards weak acids and phenolic compounds and does not depolymerize the produced PHB. As nitrogen limitation is known to boost the accumulation of PHB in bacteria, the present study aimed at investigating the effect of nitrogen availability on PHB accumulation in two recombinant S. cerevisiae strains harboring different xylose consuming and PHB producing pathways: TMB4443 expressing an NADPH-dependent acetoacetyl-CoA reductase and a wild-type S. stipitis XR with preferential use of NADPH and TMB4425 which expresses an NADH-dependent acetoacetyl-CoA reductase and a mutated XR with a balanced affinity for NADPH/NADH. TMB4443 accumulated most PHB under aerobic conditions and with glucose as sole carbon source, whereas the highest PHB concentrations were obtained with TMB4425 under anaerobic conditions and xylose as carbon source. In both cases, the highest PHB contents were obtained with high availability of nitrogen. The major impact of nitrogen availability was observed in TMB4425, where a 2.7-fold increase in PHB content was obtained. In contrast to what was observed in natural PHB-producing bacteria, nitrogen deficiency did not improve PHB accumulation in S. cerevisiae. Instead the excess available carbon from xylose was shunted into glycogen, indicating a significant gluconeogenic activity on xylose.

  14. COMPUTER SIMULATIONS OF SPRAY RETENTION BY A 3D BARLEY PLANT: EFFECT OF FORMULATION SURFACE TENSION.

    PubMed

    Massinon, M; De Cock, N; Salah, S Ouled Taleb; Lebeau, F

    2015-01-01

    A spray retention model was used in this study to explore theoretically the effect of a range of mixture surface tension on the spray retention and the variability of deposits. The spray retention model was based on an algorithm that tested whether droplets from a virtual nozzle intercepted a 3D plant model. If so, the algorithm determined the contribution of the droplet to the overall retention depending on the droplet impact behaviour on the leaf; adhesion, rebound or splashing. The impact outcome probabilities, function of droplet impact energy, were measured using high-speed imaging on an excised indoor grown barley leaf (BBCH12) both for pure water (surface tension of 0.072 N/m) and a non-ionic super spreader (static surface tension of 0.021 N/m) depending on the surface orientation. The modification of spray mixture properties in the simulations was performed by gradually changing the spray the droplet impact probabilities between pure water and a solution with non-ionic surfactant exhibiting super spreading properties. The plant architecture was measured using a structured light scanner. The final retention was expressed as the volume of liquid retained by the whole plant relative to the projected leaf surface area in the main spray direction. One hundred simulations were performed at different volumes per hectare and flat-fan nozzles for each formulation surface tension. The coefficient of variation was used as indicator of variability of deposits. The model was able to discriminate between mixture surface tension. The spray retention increased as the mixture surface tension decreased. The variability of deposits also decreased as the surface tension decreased. The proposed modelling approach provides a suited tool for sensitivity analysis: nozzle kind, pressure, volume per hectare applied, spray mixture physicochemical properties, plant species, growth stage could be screened to determine the best spraying characteristics maximizing the retention. The

  15. The effect of anisotropic heat transport on magnetic islands in 3-D configurations

    SciTech Connect

    Schlutt, M. G.; Hegna, C. C.

    2012-08-15

    An analytic theory of nonlinear pressure-induced magnetic island formation using a boundary layer analysis is presented. This theory extends previous work by including the effects of finite parallel heat transport and is applicable to general three dimensional magnetic configurations. In this work, particular attention is paid to the role of finite parallel heat conduction in the context of pressure-induced island physics. It is found that localized currents that require self-consistent deformation of the pressure profile, such as resistive interchange and bootstrap currents, are attenuated by finite parallel heat conduction when the magnetic islands are sufficiently small. However, these anisotropic effects do not change saturated island widths caused by Pfirsch-Schlueter current effects. Implications for finite pressure-induced island healing are discussed.

  16. Finite Gyroradius Effects in the Plasma Environment Near Titan: 3D Hybrid Modeling of the T5 Encounter

    NASA Astrophysics Data System (ADS)

    Simpson, D. G.; Lipatov, A. S.; Sittler, E. C.; Cooper, J. F.; Hartle, R. E.; Sarantos, M.

    2012-12-01

    In this report we discuss the results of a 3D hybrid modeling of the interaction between Saturn's magnetosphere and Titan's atmosphere/ionosphere for the T5 encounter. The T5 flyby is the only encounter when the two main ionizing sources of Titan's atmosphere, solar radiation and corotating plasma, align quasi-anti-parallel. The model is based on recent analysis of the Cassini Plasma Spectrometer (CAPS) and the Cassini Ion and Neutral Mass Spectrometer (INMS) measurements during the T5 flyby through Titan's ram-side and polar ionosphere [1,2]. Magnetic field data was used from the MAG instrument [3]. In our model the background ions (O+, H+), all pickup ions, and ionospheric ions are considered as a particles, whereas the electrons are described as a fluid (see e.g. [4]). Inhomogeneous photoionization (in the dayside ionosphere), electron-impact ionization, and charge exchange are included in our model. The temperature of the background electrons and pickup electrons was also incorporated into the generalized Ohm's law. We also take into account collisions between ions and neutrals. In our hybrid simulations we use Chamberlain profiles for the exosphere's components. The moon is considered as a weakly conducting body. The first results of our hybrid modeling show a strong asymmetry in the background (H+, O+) and pickup (H2+, N2+, CH4+) ion density profiles. Such strong asymmetry cannot be explained by a single-fluid multi-species 3D MHD model [5], which includes complex chemistry but does not produce finite gyroradius and kinetic effects. References [1] Sittler, et al., Energy Deposition Processes in Titan's Atmosphere and Its Induced Magnetosphere. In: Titan from Cassini-Huygens, Brown, R.H., Lebreton, J.P., Waite, J.H., Eds., Springer, (Dordrecht, Heidelberg, London, New York), pp. 393-455, 2010. [2] Agren, K., et al., On magnetosphere electron impact ionization and dynamics in Titan's ram-side and polar ionosphere -- a Cassini case study, Ann. Geophys., 25, 2359

  17. Effects of Training Method and Gender on Learning 2D/3D Geometry

    ERIC Educational Resources Information Center

    Khairulanuar, Samsudin; Nazre, Abd Rashid; Jamilah, H.; Sairabanu, Omar Khan; Norasikin, Fabil

    2010-01-01

    This article reports the findings of an experimental study involving 36 primary school students (16 girls, 20 boys, Mean age = 9.5 years, age range: 8-10 years) in geometrical understanding of 2D and 3D objects. Students were assigned into two experimental groups and one control group based on a stratified random sampling procedure. The first…

  18. 3D-2D registration for surgical guidance: effect of projection view angles on registration accuracy.

    PubMed

    Uneri, A; Otake, Y; Wang, A S; Kleinszig, G; Vogt, S; Khanna, A J; Siewerdsen, J H

    2014-01-20

    An algorithm for intensity-based 3D-2D registration of CT and x-ray projections is evaluated, specifically using single- or dual-projection views to provide 3D localization. The registration framework employs the gradient information similarity metric and covariance matrix adaptation evolution strategy to solve for the patient pose in six degrees of freedom. Registration performance was evaluated in an anthropomorphic phantom and cadaver, using C-arm projection views acquired at angular separation, Δθ, ranging from ∼0°-180° at variable C-arm magnification. Registration accuracy was assessed in terms of 2D projection distance error and 3D target registration error (TRE) and compared to that of an electromagnetic (EM) tracker. The results indicate that angular separation as small as Δθ ∼10°-20° achieved TRE <2 mm with 95% confidence, comparable or superior to that of the EM tracker. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers and manual registration.

  19. 3D-2D registration for surgical guidance: effect of projection view angles on registration accuracy

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Otake, Y.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Siewerdsen, J. H.

    2014-01-01

    An algorithm for intensity-based 3D-2D registration of CT and x-ray projections is evaluated, specifically using single- or dual-projection views to provide 3D localization. The registration framework employs the gradient information similarity metric and covariance matrix adaptation evolution strategy to solve for the patient pose in six degrees of freedom. Registration performance was evaluated in an anthropomorphic phantom and cadaver, using C-arm projection views acquired at angular separation, Δθ, ranging from ˜0°-180° at variable C-arm magnification. Registration accuracy was assessed in terms of 2D projection distance error and 3D target registration error (TRE) and compared to that of an electromagnetic (EM) tracker. The results indicate that angular separation as small as Δθ ˜10°-20° achieved TRE <2 mm with 95% confidence, comparable or superior to that of the EM tracker. The method allows direct registration of preoperative CT and planning data to intraoperative fluoroscopy, providing 3D localization free from conventional limitations associated with external fiducial markers, stereotactic frames, trackers and manual registration.

  20. System-crosstalk effect on stereopsis human factor study for 3D displays

    NASA Astrophysics Data System (ADS)

    Huang, Kuo-Chung; Yang, Jinn-Cherng; Wu, Chou-Lin; Lee, Kuen; Hwang, Sheue-Ling

    2010-02-01

    The ghost image induced by System-Crosstalk (SCT) of 3D display, due to optical hardware imperfections, is the major factor to jeopardize stereopsis. The system crosstalk can be measured by optical measuring instrument and describes the optical leakage from the neighboring viewing zones. The amount of crosstalk reduces the ability of the viewer to fuse the stereo-images into 3D images. The Viewer-Crosstalk (VCT), combined with hardware and content issues, is an overall evaluation of the ghost image and can be easily interpreted based on the principle of binocular 3D display. The examination of different SCT values was carried out with a seven-grade subjective evaluation test. In our previous study, it was shown that many other factors, such as contrast ratio, disparity and monocular cues of the images, play important roles in the stereopsis. In this paper, we study the factors of stereo-images with different crosstalk levels that may affect stereopsis. For simulate the interference between stereo-images, digital image processing are employed to assign different levels of crosstalk to each other at properly specified disparity between images. Results of this research can provide valuable reference to the content makers and for the optimized design of 3D displays with minimum System Crosstalk.

  1. Effects of 3D Earth structure on W-phase CMT parameters

    NASA Astrophysics Data System (ADS)

    Morales, Catalina; Duputel, Zacharie; Rivera, Luis; Kanamori, Hiroo

    2017-04-01

    The source inversion of the W-phase has demonstrated a great potential to provide fast and reliable estimates of the centroid moment tensor (CMT) for moderate to large earthquakes. It has since been implemented in different operational environments (NEIC-USGS, PTWC, etc.) with the aim of providing rapid CMT solutions. These solutions are in particular useful for tsunami warning purposes. Computationally, W-phase waveforms are usually synthetized by summation of normal modes at long period (100 - 1000 s) for a spherical Earth model (e.g., PREM). Although the energy of these modes mainly stays in the mantle where lateral structural variations are relatively small, the impact of 3D heterogeneities on W-phase solutions have not yet been quantified. In this study, we investigate possible bias in W-phase source parameters due to unmodeled lateral structural heterogeneities. We generate a simulated dataset consisting of synthetic seismograms of large past earthquakes that accounts for the Earth's 3D structure. The W-phase algorithm is then used to invert the synthetic dataset for earthquake CMT parameters with and without added noise. Results show that the impact of 3D heterogeneities is generally larger for surface-waves than for W-phase waveforms. However, some discrepancies are noted between inverted W-phase parameters and target values. Particular attention is paid to the possible bias induced by the unmodeled 3D structure into the location of the W-phase centroid. Preliminary results indicate that the parameter that is most susceptible to 3D Earth structure seems to be the centroid depth.

  2. The Effectiveness of a 3D Computerized Tutorial to Enhance Learning of the Canine Larynx and Hyoid Apparatus.

    PubMed

    Nemanic, Sarah; Mills, Serena; Viehdorfer, Matt; Clark, Terri; Bailey, Mike

    Teaching the anatomy of the canine larynx and hyoid apparatus is challenging because dissection disassembles and/or damages these structures, making it difficult to understand their three-dimensional (3D) anatomy and spatial interrelationships. This study assessed the effectiveness of an interactive, computerized 3D tutorial for teaching the anatomy of the canine larynx and hyoid apparatus using a randomized control design with students enrolled in the first-year professional program at Oregon State University College of Veterinary Medicine. All first-year students from 2 consecutive years were eligible. All students received the traditional methods of didactic teaching and dissection to learn the anatomy of the canine larynx and hyoid apparatus, after which they were divided into two statistically equal groups based on their cumulative anatomy test scores from the prior term. The tutorial group received an interactive, computerized tutorial developed by the investigators containing 3D images of the canine larynx and hyoid apparatus, while the control group received the same 3D images without the computerized tutorial. Both groups received the same post-learning assessment and survey. Sixty-three first-year students participated in the study, 28 in the tutorial group, and 35 in the control group. Post-learning assessment and survey scores were both significantly higher among students in the computerized tutorial group than those in the control group. This study demonstrates that a 3D computerized tutorial is more effective in teaching the anatomy of the canine hyoid apparatus and larynx than 3D images without a tutorial. Students likewise rated their learning experience higher when using the 3D computerized tutorial.

  3. The effect of pose variability and repeated reliability of segmental centres of mass acquisition when using 3D photonic scanning.

    PubMed

    Chiu, Chuang-Yuan; Pease, David L; Sanders, Ross H

    2016-12-01

    Three-dimensional (3D) photonic scanning is an emerging technique to acquire accurate body segment parameter data. This study established the repeated reliability of segmental centres of mass when using 3D photonic scanning (3DPS). Seventeen male participants were scanned twice by a 3D whole-body laser scanner. The same operators conducted the reconstruction and segmentation processes to obtain segmental meshes for calculating the segmental centres of mass. The segmental centres of mass obtained from repeated 3DPS were compared by relative technical error of measurement (TEM). Hypothesis tests were conducted to determine the size of change required for each segment to be determined a true variation. The relative TEMs for all segments were less than 5%. The relative changes in centres of mass at ±1.5% for most segments can be detected (p < 0.05). The arm segments which are difficult to keep in the same scanning pose generated more error than other segments. Practitioner Summary: Three-dimensional photonic scanning is an emerging technique to acquire body segment parameter data. This study established the repeated reliability of segmental centres of mass when using 3D photonic scanning and emphasised that the error for arm segments need to be considered while using this technique to acquire centres of mass.

  4. Cost-effectiveness analysis of 3-D computerized tomography colonography versus optical colonoscopy for imaging symptomatic gastroenterology patients.

    PubMed

    Gomes, Manuel; Aldridge, Robert W; Wylie, Peter; Bell, James; Epstein, Owen

    2013-04-01

    When symptomatic gastroenterology patients have an indication for colonic imaging, clinicians have a choice between optical colonoscopy (OC) and computerized tomography colonography with three-dimensional reconstruction (3-D CTC). 3-D CTC provides a minimally invasive and rapid evaluation of the entire colon, and it can be an efficient modality for diagnosing symptoms. It allows for a more targeted use of OC, which is associated with a higher risk of major adverse events and higher procedural costs. A case can be made for 3-D CTC as a primary test for colonic imaging followed if necessary by targeted therapeutic OC; however, the relative long-term costs and benefits of introducing 3-D CTC as a first-line investigation are unknown. The aim of this study was to assess the cost effectiveness of 3-D CTC versus OC for colonic imaging of symptomatic gastroenterology patients in the UK NHS. We used a Markov model to follow a cohort of 100,000 symptomatic gastroenterology patients, aged 50 years or older, and estimate the expected lifetime outcomes, life years (LYs) and quality-adjusted life years (QALYs), and costs (£, 2010-2011) associated with 3-D CTC and OC. Sensitivity analyses were performed to assess the robustness of the base-case cost-effectiveness results to variation in input parameters and methodological assumptions. 3D-CTC provided a similar number of LYs (7.737 vs 7.739) and QALYs (7.013 vs 7.018) per individual compared with OC, and it was associated with substantially lower mean costs per patient (£467 vs £583), leading to a positive incremental net benefit. After accounting for the overall uncertainty, the probability of 3-D CTC being cost effective was around 60 %, at typical willingness-to-pay values of £20,000-£30,000 per QALY gained. 3-D CTC is a cost-saving and cost-effective option for colonic imaging of symptomatic gastroenterology patients compared with OC.

  5. Representing 3-D cloud radiation effects in two-stream schemes: 1. Longwave considerations and effective cloud edge length

    NASA Astrophysics Data System (ADS)

    Schäfer, Sophia A. K.; Hogan, Robin J.; Klinger, Carolin; Chiu, J. Christine; Mayer, Bernhard

    2016-07-01

    Current weather and climate models neglect 3-D radiative transfer through cloud sides, which can change the cloud radiative effect (CRE) significantly. This two-part paper describes the development of the SPeedy Algorithm for Radiative TrAnsfer through CloUd Sides (SPARTACUS) to capture these effects efficiently in a two-stream radiation scheme for use in global models. The present paper concerns the longwave spectral region, where not much work has been done previously, although the limited previous work has suggested that radiative transfer through cloud sides increases the longwave surface CRE of shallow cumulus by around 30%. To assist the development of a longwave capability for SPARTACUS, we use a reference case of an isolated, isothermal, optically thick, cubic cloud in vacuum, for which 3-D effects increase CRE by exactly 200%. It is shown that for any cloud shape, the 3-D effect can be represented in SPARTACUS provided that correct account is made for (1) the effective zenith angle of diffuse radiation emitted from a cloud, (2) the spatial distribution of fluxes in the cloud, (3) cloud clustering that enhances the interception of emitted radiation by neighboring clouds, and (4) radiative smoothing leading to the effective cloud edge length being less than the measured value. We find empirically that the circumference of an ellipse fitted to a horizontal cross section through a cumulus cloud provides a good estimate of the radiatively effective cloud edge length, which provides some guidance to how cloud observations could be analyzed to extract their most important properties for radiation.

  6. The Effect of Scattering on the Temperature Stratification of 3D Model Atmospheres of Metal-Poor Red Giants

    NASA Astrophysics Data System (ADS)

    Collet, Remo; Hayek, Wolfgang; Asplund, Martin

    2011-08-01

    We study the effects of different approximations of scattering in 3D radiation-hydrodynamics simulations on the photospheric temperature stratification of metal-poor red giant stars. We find that assuming a Planckian source function and neglecting the contribution of scattering to extinction in optically thin layers provides a good approximation of the effects of coherent scattering on the photospheric temperature balance.

  7. Effects of Na+ and He+ pickup ions on the lunar plasma environment: 3D hybrid modeling

    NASA Astrophysics Data System (ADS)

    Lipatov, A. S.; Cooper, J. F.; Sittler, E. C.; Hartle, R. E.; Sarantos, M.

    2011-12-01

    The hybrid kinetic model used here supports comprehensive simulation of the interaction between different spatial and energetic elements of the moon-solar wind-magnetosphere of the Earth system. There is a set of MHD,kinetic, hybrid, drift kinetic, electrostatic and full kinetic modeling of the lunar plasma environment [1]. However, observations show the existence of several species of the neutrals and pickup ions like Na, He, K, O etc., (see e.g., [2,3,4]). The solar wind parameters are chosen from the ARTEMIS observations [5]. The Na+, He+ lunar exosphere's parameters are chosen from [6,7]. The hybrid kinetic model allows us to take into account the finite gyroradius effects of pickup ions and to correctly estimate the ions velocity distribution and the fluxes along the magnetic field, and on the lunar surface. Modeling shows the formation of the asymmetric Mach cone, the structuring of the pickup ion tails, and presents another type of lunar-solar wind interaction. We will compare the results of our modeling with observed distributions. References [1] Lipatov, A.S., and Cooper, J.F., Hybrid kinetic modeling of the Lunar plasma environment: Past, present and future. In: Lunar Dust, Plasma and Atmosphere: The Next Steps, January 27-29, 2010, Boulder, Colorado, Abstracts/lpa2010.colorado.edu/. [2] Potter, A.E., and Morgan, T.H., Discovery of sodium and potassium vapor in the atmosphere of the Moon, Science, 241, 675-680, doi:10.1126/science.241.4866.675, 1988. [3] Tyler, A.L., et al., Observations of sodium in the tenuous lunar atmosphere, Geophys. Res. Lett., 15(10), 1141-1144, doi:10.1029/GL015i010p01141, 1988. [4] Tanaka, T., et al., First in situ observation of the Moon-originating ions in the Earth's Magnetosphere by MAP-PACE on SELENE (KAGUYA), Geophys. Res. Lett., 36, L22106, doi:10.1029/2009GL040682, 2009. [5] Wiehle, S., et al., First Lunar Wake Passage of ARTEMIS: Discrimination of Wake Effects and Solar Wind Fluctuations by 3D Hybrid Simulations, Planet

  8. 3D porous sol-gel matrix incorporated microdevice for effective large volume cell sample pretreatment.

    PubMed

    Lee, Chan Joo; Jung, Jae Hwan; Seo, Tae Seok

    2012-06-05

    In this study, we demonstrated an effective sample pretreatment microdevice that could perform the capture, purification, and release of pathogenic bacteria with a large-volume sample and at a high speed and high-capture yield. We integrated a sol-gel matrix into the microdevice which forms three-dimensional (3D) micropores for the cell solution to pass through and provides a large surface area for the immobilization of antibodies to capture the target Staphylococcus aureus (S. aureus) cells. The antibody was linked to the surface of the sol-gel via a photocleavable linker, allowing the cell-captured antibody moiety to be released by UV irradiation. In addition to the optimization of the antibody immobilization and UV cleavage processes, the cell-capture efficiency was maximized by controlling the sample flow rate with a pumping scheme (3 steps, 5 steps: 3 steps with one flutter step, 7 steps: 3 steps with two flutter steps) and the pumping time (100, 200, and 300 ms). A quantitative capture analysis was performed by targeting a specific gene site of protein A of S. aureus in real-time PCR (RT-PCR). While the 3-step process with an actuation time of 100 ms showed the fastest flow rate (1 mL sample processing time in 10 min), the pumping scheme with the 7-step process and the 300 ms actuation time revealed the highest cell-capture efficiency. A limit of detection study with the 7-step and the 300 ms pumping scheme demonstrated that 100 cells per 100 μL were detected with a 70% yield, and even a single cell could be analyzed via on-chip sample preparation. Thus, our novel sol-gel based microdevice was proven more cost-effective, simple, and efficient in terms of its sample pretreatment ability compared to the use of a conventional 2D flat microdevice. This proposed sample pretreatment device can be further incorporated to an analytical functional unit to realize a micrototal analysis system (μTAS) with sample-in-answer-out capability in the fields of biomedical

  9. Biomimicry 3D gastrointestinal spheroid platform for the assessment of toxicity and inflammatory effects of zinc oxide nanoparticles.

    PubMed

    Chia, Sing Ling; Tay, Chor Yong; Setyawati, Magdiel I; Leong, David T

    2015-02-11

    Our current mechanistic understanding on the effects of engineered nanoparticles (NPs) on cellular physiology is derived mainly from 2D cell culture studies. However, conventional monolayer cell culture may not accurately model the mass transfer gradient that is expected in 3D tissue physiology and thus may lead to artifactual experimental conclusions. Herein, using a micropatterned agarose hydrogel platform, the effects of ZnO NPs (25 nm) on 3D colon cell spheroids of well-defined sizes are examined. The findings show that cell dimensionality plays a critical role in governing the spatiotemporal cellular outcomes like inflammatory response and cytotoxicity in response to ZnO NPs treatment. More importantly, ZnO NPs can induce different modes of cell death in 2D and 3D cell culture systems. Interestingly, the outer few layers of cells in 3D model could only protect the inner core of cells for a limited time and periodically slough off from the spheroids surface. These findings suggest that toxicological conclusions made from 2D cell models might overestimate the toxicity of ZnO NPs. This 3D cell spheroid model can serve as a reproducible platform to better reflect the actual cell response to NPs and to study a more realistic mechanism of nanoparticle-induced toxicity.

  10. Synthesis, Structure, Multiband Optical, and Electrical Conductive Properties of a 3D Open Cubic Framework Based on [Cu8Sn6S24](z-) Clusters.

    PubMed

    Zhang, Xian; Wang, Qiuran; Ma, Zhimin; He, Jianqiao; Wang, Zhe; Zheng, Chong; Lin, Jianhua; Huang, Fuqiang

    2015-06-01

    Two compounds with the formulas of Na4Cu32Sn12S48·4H2O and K11Cu32Sn12S48·4H2O were synthesized via flux (with thiourea as reactive flux) and hydrothermal method, respectively. The black crystals of Na4Cu32Sn12S48·4H2O and K11Cu32Sn12S48·4H2O both crystallize in the cubic space group of Fm3̅c with the cell constants a = 17.921(2) Å and a = 18.0559(6) Å, respectively. The crystal structures feature a 3D open-framework with the unique [Cu8Sn6S24](z-) (z = 13 for Na4Cu32Sn12S48·4H2O; z = 14.75 for K11Cu32Sn12S48·4H2O) clusters acting as building blocks. The [Cu8Sn6S24](z-) cluster of the Th symmetry is built up by eight [CuS3] triangles and six [SnS4] tetrahedra. The powder samples were investigated by X-ray diffraction and optical absorption measurements. Both phase-pure compounds show multiabsorption character with a main absorption edge (2.0 eV for Na4Cu32Sn12S48·4H2O and 1.9 eV for K11Cu32Sn12S48·4H2O) and an additional absorption peak (1.61 eV for Na4Cu32Sn12S48·4H2O and 1.52 eV for K11Cu32Sn12S48·4H2O), which are perfectly consistent with the first-principle calculation results. The analyses of the density of states further reveal that the two optical absorption bands in each compound are attributed to the two transitions of Cu-3d-S-3p → Sn-5s. The multiband nature of two compounds also enhances photocatalytic activity under visible light irradiation, with which the degradation of methyl blue over Na4Cu32Sn12S48·4H2O reached 100% in 3 h. The 3D open-framework features also facilitate the ionic conductivity nature of the Na4Cu32Sn12S48·4H2O compound, which achieved ∼10(-5) S/cm at room temperature.

  11. Effects of 3-D Visualization of Groundwater Modeling for Water Resource Decision Making

    NASA Astrophysics Data System (ADS)

    Block, J. L.; Arrowsmith, R.

    2006-12-01

    The rise of 3-D visualization hardware and software technology provides important opportunities to advance scientific and policy research. Although the petroleum industry has used immersive 3-D technology since the early 1990's for the visualization of geologic data among experts, there has been little use of this technology for decision making. The Decision Theater at ASU is a new facility using immersive visualization technology designed to combine scientific research at the university with policy decision making in the community. I document a case study in the use of 3-D immersive technology for water resource management in Arizona. Since the turn of the 20th century, natural hydrologic processes in the greater Phoenix region (Salt River Valley) have been shut down via the construction of dams, canals, wells, water treatment plants, and recharge facilities. Water from rivers that once naturally recharged the groundwater aquifer have thus been diverted while continuing groundwater outflow from wells has drawn the aquifer down hundreds of feet. MODFLOW is used to simulate groundwater response to the different water management decisions which impact the artificial and natural inflow and outflow. The East Valley Water Forum, a partnership of water providers east of Phoenix, used the 3-D capabilities of the Decision Theater to build visualizations of the East Salt River Valley groundwater system based on MODFLOW outputs to aid the design of a regional groundwater management plan. The resulting visualizations are now being integrated into policy decisions about long term water management. I address challenges in visualizing scientific information for policy making and highlight the roles of policy actors, specifically geologists, computer scientists, and political decision makers, involved in designing the visualizations. The results show that policy actors respond differently to the 3-D visualization techniques based on their experience, background, and objectives

  12. Evaluation of the effectiveness of 3D vascular stereoscopic models in anatomy instruction for first year medical students.

    PubMed

    Cui, Dongmei; Wilson, Timothy D; Rockhold, Robin W; Lehman, Michael N; Lynch, James C

    2017-01-01

    The head and neck region is one of the most complex areas featured in the medical gross anatomy curriculum. The effectiveness of using three-dimensional (3D) models to teach anatomy is a topic of much discussion in medical education research. However, the use of 3D stereoscopic models of the head and neck circulation in anatomy education has not been previously studied in detail. This study investigated whether 3D stereoscopic models created from computed tomographic angiography (CTA) data were efficacious teaching tools for the head and neck vascular anatomy. The test subjects were first year medical students at the University of Mississippi Medical Center. The assessment tools included: anatomy knowledge tests (prelearning session knowledge test and postlearning session knowledge test), mental rotation tests (spatial ability; presession MRT and postsession MRT), and a satisfaction survey. Results were analyzed using a Wilcoxon rank-sum test and linear regression analysis. A total of 39 first year medical students participated in the study. The results indicated that all students who were exposed to the stereoscopic 3D vascular models in 3D learning sessions increased their ability to correctly identify the head and neck vascular anatomy. Most importantly, for students with low-spatial ability, 3D learning sessions improved postsession knowledge scores to a level comparable to that demonstrated by students with high-spatial ability indicating that the use of 3D stereoscopic models may be particularly valuable to these students with low-spatial ability. Anat Sci Educ 10: 34-45. © 2016 American Association of Anatomists.

  13. Spontaneous organization of uniform CeO2 nanoflowers by 3D oriented attachment in hot surfactant solutions monitored with an in situ electrical conductance technique.

    PubMed

    Zhou, Huan-Ping; Zhang, Ya-Wen; Mai, Hao-Xin; Sun, Xiao; Liu, Qiang; Song, Wei-Guo; Yan, Chun-Hua

    2008-01-01

    Uniform CeO(2) nanoflowers were synthesized by rapid thermolysis of (NH(4))(2)Ce(NO(3))(6) in oleic acid (OA)/oleylamine (OM), by a unique 3D oriented-attachment mechanism. CeO(2) nanoflowers with controlled shape (cubic, four-petaled, and starlike) and tunable size (10-40 nm) were obtained by adjusting the reaction conditions including solvent composition, precursor concentration, reaction temperature, and reaction time. The nanoflower growth mechanism was investigated by in situ electrical conductance measurements, transmission electron microscopy, and UV/Vis spectroscopy. The CeO(2) nanoflowers are likely formed in two major steps, that is, initial formation of ceria cluster particles capped with various ligands (e.g., OA, OM, and NO(3) (-)) via hydrolysis of (NH(4))(2)Ce(NO(3))(6) at temperatures in the range 140-220 degrees C, and subsequent spontaneous organization of the primary particles into nanoflowers by 3D oriented attachment, due to a rapid decrease in surface ligand coverage caused by sudden decomposition of the precursor at temperatures above 220 degrees C in a strong redox reaction. After calcination at 400 degrees C for 4 h the 33.8 nm CeO(2) nanoflowers have a specific surface area as large as 156 m(2) g(-1) with high porosity, and they are highly active for conversion of CO to CO(2) in the low temperature range of 200-400 degrees C. The present approach has also been extended to the preparation of other transition metal oxide (CoO, NiO, and CuO(x)) nanoflowers.

  14. Suppressed 3D conductivity in Mn doped Cu0.5Tl0.5Ba2Ca2-yMnyCu3O10-δ superconductors

    NASA Astrophysics Data System (ADS)

    Qurat-ul-Ain, Khan, Nawazish A.

    2013-04-01

    We have synthesised Mn-doped Cu0.5Tl0.5Ba2(Ca2-yMny)Cu3O10-δ superconducting samples and studied their Fluctuation Induced Conductivity (FIC) analysis. The Tc(R = 0) and magnitude of diamagnetism are suppressed with increased Mn-doping in the final compound. FIC analyses have shown a suppression of 3D Lawrence and Doniach (LD) regime and a significant enhancement of 2D LD regime of Mn-doping of y = 0.35. In the sample with Mn-doping of y = 0.5, the 3D LD regime vanishes altogether and only 2D LD regime is observed, showing the confinement of superconductivity in the two dimensional planes. The coherence length along the c-axis and the Fermi velocity of the carriers are suppressed with increased Mn doping. Using the Ginzburg-Landau (GL) number [NG] and GL equations, the thermodynamic critical magnetic field Bc(0), the lower critical field Bc1(0), the upper critical field Bc2(0), the critical current density Jc(0), and penetration depth λp.d are determined. The values of critical fields Bc(0) and Bc1(0) increases, despite suppression in the Tc(R = 0) with increased Mn-doping. The values of Jc(0), the penetration depth Λp.d, and inter-layer coupling are suppressed with enhanced Mn-doping. These observations suggested that Mn ions act as sub-nano-scale pinning centers between the CuO2 planes and their presence at the Ca-sites promote the de-coupling of CuO2 planes.

  15. Light-Driven Overall Water Splitting Enabled by a Photo-Dember Effect Realized on 3D Plasmonic Structures.

    PubMed

    Chen, Min; Gu, Jiajun; Sun, Cheng; Zhao, Yixin; Zhang, Ruoxi; You, Xinyuan; Liu, Qinglei; Zhang, Wang; Su, Yishi; Su, Huilan; Zhang, Di

    2016-07-26

    Photoelectric conversion driven by sunlight has a broad range of energy/environmental applications (e.g., in solar cells and water splitting). However, difficulties are encountered in the separation of photoexcited charges. Here, we realize a long-range (∼1.5 μm period) electric polarization via asymmetric localization of surface plasmons on a three-dimensional silver structure (3D-Ag). This visible-light-responsive effect-the photo-Dember effect, can be analogous to the thermoelectric effect, in which hot carriers are thermally generated instead of being photogenerated. The induced electric field can efficiently separate photogenerated charges, enabling sunlight-driven overall water splitting on a series of dopant-free commercial semiconductor particles (i.e., ZnO, CeO2, TiO2, and WO3) once they are combined with the 3D-Ag substrate. These photocatalytic processes can last over 30 h on 3D-Ag+ZnO, 3D-Ag+CeO2, and 3D-Ag+TiO2, thus demonstrating good catalytic stability for these systems. Using commercial WO3 powder as a reference, the amount of O2 generated with 3D-Ag+CeO2 surpasses even its recently reported counterpart in which sacrificial reagents had to be involved to run half-reactions. This plasmon-mediated charge separation strategy provides an effective way to improve the efficiency of photoelectric energy conversion, which can be useful in photovoltaics and photocatalysis.

  16. Geomanetically Induced Currents (GIC) calculation, impact assessment on transmission system and validation using 3-D earth conductivity tensors and GIC measurements.

    NASA Astrophysics Data System (ADS)

    Sharma, R.; McCalley, J. D.

    2016-12-01

    Geomagnetic disturbance (GMD) causes the flow of geomagnetically induced currents (GIC) in the power transmission system that may cause large scale power outages and power system equipment damage. In order to plan for defense against GMD, it is necessary to accurately estimate the flow of GICs in the power transmission system. The current calculation as per NERC standards uses the 1-D earth conductivity models that don't reflect the coupling between the geoelectric and geomagnetic field components in the same direction. For accurate estimation of GICs, it is important to have spatially granular 3-D earth conductivity tensors, accurate DC network model of the transmission system and precisely estimated or measured input in the form of geomagnetic or geoelectric field data. Using these models and data the pre event, post event and online planning and assessment can be performed. The pre, post and online planning can be done by calculating GIC, analyzing voltage stability margin, identifying protection system vulnerabilities and estimating heating in transmission equipment. In order to perform the above mentioned tasks, an established GIC calculation and analysis procedure is needed that uses improved geophysical and DC network models obtained by model parameter tuning. The issue is addressed by performing the following tasks; 1) Geomagnetic field data and improved 3-D earth conductivity tensors are used to plot the geoelectric field map of a given area. The obtained geoelectric field map then serves as an input to the PSS/E platform, where through DC circuit analysis the GIC flows are calculated. 2) The computed GIC is evaluated against GIC measurements in order to fine tune the geophysical and DC network model parameters for any mismatch in the calculated and measured GIC. 3) The GIC calculation procedure is then adapted for a one in 100 year storm, in order to assess the impact of the worst case GMD on the power system. 4) Using the transformer models, the voltage

  17. Effects of changes in rock microstructures on permeability: 3-D printing investigation

    NASA Astrophysics Data System (ADS)

    Head, D.; Vanorio, T.

    2016-07-01

    Rocks are naturally heterogeneous; two rock samples with identical bulk properties can vary widely in microstructure. Understanding how the microstructure and bulk properties of rocks then evolve during experiments and computations simulating diagenesis is inherently a multiscale problem. The advent of modern 3-D printing has provided an unprecedented opportunity to link those scales by combining the strengths of digital and experimental rock physics. In this study, we take a computerized tomography-scanned model of a natural carbonate pore space then iteratively digitally manipulate, 3-D print, and measure the flow properties in the laboratory. This approach allows us to access multiple scales digitally and experimentally and test hypotheses about how changes in rock microstructure due to compaction and dissolution affect bulk transport properties in a repeatable manner.

  18. Effect of geometry and magnetic field on the coherence time of 3D transmons

    NASA Astrophysics Data System (ADS)

    Wang, Chen; Gao, Y.; Axline, C.; Brecht, T.; Frunzio, L.; Schoelkopf, R. J.

    2014-03-01

    The three-dimensional circuit QED architecture has enabled nearly two orders of magnitude of improvement in the coherence time of transmon qubits over the last couple of years. Continued improvement moving forward relies on a better understanding of the factors limiting coherence of the current generation of transmons. Here we present a systematic study of the energy relaxation time (T1) of transmon qubits coupled to 3D waveguide cavities with various designs of capacitor geometries and its dependence on temperature and external magnetic field. Our measurement and analysis indicate both surface dielectric loss and quasiparticle loss play important roles in limiting T1 of 3D transmons. More interestingly, with certain geometric design we found qubit T1 can be improved by cooling in a small magnetic field. These results suggest more complex interplays of loss mechanisms than was previously appreciated and may have important implications for future design of transmons. Work supported by IARPA.

  19. Effective 3D protein structure prediction with local adjustment genetic-annealing algorithm.

    PubMed

    Zhang, Xiao-Long; Lin, Xiao-Li

    2010-09-01

    The protein folding problem consists of predicting protein tertiary structure from a given amino acid sequence by minimizing the energy function. The protein folding structure prediction is computationally challenging and has been shown to be NP-hard problem when the 3D off-lattice AB model is employed. In this paper, the local adjustment genetic-annealing (LAGA) algorithm was used to search the ground state of 3D offlattice AB model for protein folding structure. The algorithm included an improved crossover strategy and an improved mutation strategy, where a local adjustment strategy was also used to enhance the searching ability. The experiments were carried out with the Fibonacci sequences. The experimental results demonstrate that the LAGA algorithm appears to have better performance and accuracy compared to the previous methods.

  20. Cloud 3D Effects Evidenced in Landsat Power Spectra and Autocorrelation Functions

    NASA Technical Reports Server (NTRS)

    Oreopoulos, Lazaros; Marshak, Alexander; Cahalan, Robert F.; Wen, Guoyong

    1999-01-01

    the spectral signatures of decorrelation between reflectance and optical depth at large scales becoming stronger as the magnitude of cloud top variations increase. Finally, the usefulness of power spectral analysis in evaluating the skill of novel optical depth retrieval techniques in removing 3D radiative effects is demonstrated. New techniques using inverse Non-local Independent Pixel Approximation (NIPA) and Normalized Difference of Nadir Reflectivity (NDNR) yield optical depth fields which better match the scale-by-scale variability of the true optical depth field.

  1. Tetradecanuclearity in 3d-4f chemistry: relaxation and magnetocaloric effects in [NiLn] species.

    PubMed

    Canaj, Angelos B; Kalofolias, Dimitris A; Siczek, Milosz; Lis, Tadeusz; McNab, Robbie; Lorusso, Giulia; Inglis, Ross; Evangelisti, Marco; Milios, Constantinos J

    2017-03-14

    The employment of 2-amino-isobutyric acid, Haib, and 2-hydroxy-1-naphthaldehyde, Hnaphth, in Ni(II)/Ln(III) chemistry has led to the isolation and characterization of two new isostructural 3d-4f tetradecanuclear [NiLn] clusters (Ln = Gd(III), Dy(III)), with the Dy analogue displaying temperature and frequency dependent out-of-phase signals, and the Gd analogue showing interesting magnetocaloric properties.

  2. Effects of Stereoscopic 3D Digital Radar Displays on Air Traffic Controller Performance

    DTIC Science & Technology

    2013-03-01

    of air traffic control. As early as 1948, papers were written examining the potential for 3D displays of radar images (Parker and Wallis , 1948...stereoscopic viewing for the purpose of air traffic control potential has been met with mixed results (Parker & Wallis , 1948; McIntire et al, 2012). In...visual, audio and written cues to gather needed information upon which to make decisions. In fact, Hopkin claims that forgetting information may be

  3. The Effect of Ultrasound Stimulation on the Cytoskeletal Organization of Chondrocytes Seeded In 3D Matrices

    PubMed Central

    Noriega, Sandra; Hasanova, Gulnara; Subramanian, Anuradha

    2013-01-01

    The impact of low intensity diffuse ultrasound (LIDUS) stimulation on the cytoskeletal organization of chondrocytes seeded in 3D scaffolds was evaluated. Chondrocytes seeded on 3D chitosan matrices were exposed to LIDUS at 5.0 MHz (~15kPa, 51-secs, 4-applications/day) in order to study the organization of actin, tubulin and vimentin. The results showed that actin presented a cytosolic punctuated distribution, tubulin presented a quasi parallel organization of microtubules whereas vimentin distribution was unaffected. Chondrocytes seeded on 3D scaffolds responded to US stimulation by the disruption of actin stress fibers and were sensitive to the presence of ROCK inhibitor (Y27632). The gene expression of ROCK-I, a key element in the formation of stress fibers and mDia1, was significantly up-regulated under the application of US. We conclude that the results of both the cytoskeletal analyses and gene expression support the argument that the presence of punctuated actin upon US stimulation was accompanied by the up-regulation of the RhoA/ROCK pathway. PMID:22987069

  4. 3D Bioprinting of complex channels-Effects of material, orientation, geometry, and cell embedding.

    PubMed

    Wüst, Silke; Müller, Ralph; Hofmann, Sandra

    2015-08-01

    Creating filled or hollow channels within 3D tissues has become increasingly important in tissue engineering. Channels can serve as vasculature enhancing medium perfusion or as conduits for nerve regeneration. The 3D biofabrication seems to be a promising method to generate these structures within 3D constructs layer-by-layer. In this study, geometry and interface of bioprinted channels were investigated with micro-computed tomography and fluorescent imaging. In filament printing, size and shape of printed channels are influenced by their orientation, which was analyzed by printing horizontally and vertically aligned channels, and by the ink, which was evaluated by comparing channels printed with an alginate-gelatin hydrogel or with an emulsion. The influence of geometry and cell-embedding in the hydrogel on feature size and shape was investigated by printing more complex channels. The generation of hollow channels, induced through leaching of a support phase, was monitored over time. Horizontally aligned channels provided 16× smaller cross-sectional areas than channels in vertical orientation. The smallest feature size of hydrogel filaments was twice as large compared to emulsion filaments. Feature size and shape depended on the geometry but did not alter when living cells were embedded. With that knowledge, channels can be consciously tailored to the particular needs.

  5. The Hologram in My Hand: How Effective is Interactive Exploration of 3D Visualizations in Immersive Tangible Augmented Reality?

    PubMed

    Bach, Benjamin; Sicat, Ronell; Beyer, Johanna; Cordeil, Maxime; Pfister, Hanspeter

    2017-08-29

    We report on a controlled user study comparing three visualization environments for common 3D exploration. Our environments differ in how they exploit natural human perception and interaction capabilities. We compare an augmented-reality head-mounted display (Microsoft HoloLens), a handheld tablet, and a desktop setup. The novel head-mounted HoloLens display projects stereoscopic images of virtual content into a user's real world and allows for interaction in-situ at the spatial position of the 3D hologram. The tablet is able to interact with 3D content through touch, spatial positioning, and tangible markers, however, 3D content is still presented on a 2D surface. Our hypothesis is that visualization environments that match human perceptual and interaction capabilities better to the task at hand improve understanding of 3D visualizations. To better understand the space of display and interaction modalities in visualization environments, we first propose a classification based on three dimensions: perception, interaction, and the spatial and cognitive proximity of the two. Each technique in our study is located at a different position along these three dimensions. We asked 15 participants to perform four tasks, each task having different levels of difficulty for both spatial perception and degrees of freedom for interaction. Our results show that each of the tested environments is more effective for certain tasks, but that generally the desktop environment is still fastest and most precise in almost all cases.

  6. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  7. Dirac Circles and Quantum Hall Effect in 3D Inversion-Symmetric Crystals

    NASA Astrophysics Data System (ADS)

    Wieder, Benjamin J.; Kim, Youngkuk; Kane, C. L.

    2015-03-01

    In the presence of inversion and time-reversal symmetries, materials with weak spin-orbit coupling may host topologically protected Dirac line nodes. A band inversion transition in these systems can produce a line node which closes on itself and forms a protected Dirac circle. The surfaces parallel to this circle host zero-energy puddles in momentum space which are flat if the inverting bands have the same effective mass. In cases with differing effective masses, the surface modes disperse, but the bulk Dirac circle remains gapless. Adding an external magnetic field perpendicular to this circle creates surface Landau levels, whose number can be controlled by tuning the field strength. When a new level is created or destroyed, the bulk becomes gapless and the zero-temperature bulk conductivity displays a sharp peak. The sequence of conductivity peaks describes an unusual manifestation of the integer quantum hall effect. We characterize surface and bulk transport as a function of magnetic field strength and in the presence of disorder.

  8. Effect of benzalkonium chloride on trabecular meshwork cells in a new in vitro 3D trabecular meshwork model for glaucoma.

    PubMed

    Bouchemi, Meryem; Roubeix, Christophe; Kessal, Karima; Riancho, Luisa; Raveu, Anne-Laure; Soualmia, Hayet; Baudouin, Christophe; Brignole-Baudouin, Françoise

    2017-06-01

    To validate a new culture model of primary human trabecular meshwork cells (p-hTMCs) using Matrigel®, in order to mimic in vitro 3D-TM organization, and to investigate the proinflammatory effect of benzalkonium chloride (BAK) in 3D p-hTMC cultures. p-hTMCs, seeded onto Matrigel®-coated inserts were stimulated with BAK (10(-4)%), dexamethasone (DEX) (10(-6)M) or transforming growth factor-beta 2 (TGF-β2) (5ng/ml) for 48h and observed with confocal microscopy. The BAK effect at 10(-4)% or 5.10(-3)% on the gene expressions of interleukin-6 (IL-6), interleukin-8 (IL-8) and matrix metalloproteinase (MMP-9) was investigated using qRT-PCR in 2D and 3D p-hTMC cultures. p-hTMCs seeded in Matrigel® were able to organize themselves in a 3D-spatial conformation in the different conditions tested with cross-linked actin network (CLAN) formation in presence of DEX or TGF-β2 and intercellular space contraction with TGF-β2. IL-6 and IL-8 gene expressions increased in presence of BAK in 2D and in 3D p-hTMC cultures. BAK 10(-4)% only showed a tendency to stimulate MMP-9 expression in p-hTMCs after 24h-recovery. We investigated this new 3D-TM in vitro model in Matrigel(®) matrix for pathophysiological and toxicological purposes. It appears as a new promising tool for a better understanding of TM behavior in physiological and stress conditions, as well as toxicological evaluations of antiglaucoma eyedrops and preservatives. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. 3D Simulation Technology as an Effective Instructional Tool for Enhancing Spatial Visualization Skills in Apparel Design

    ERIC Educational Resources Information Center

    Park, Juyeon; Kim, Dong-Eun; Sohn, MyungHee

    2011-01-01

    The purpose of this study is to explore the effectiveness of 3D simulation technology for enhancing spatial visualization skills in apparel design education and further to suggest an innovative teaching approach using the technology. Apparel design majors in an introductory patternmaking course, at a large Midwestern University in the United…

  10. Sedimentary basin effects in Seattle, Washington: Ground-motion observations and 3D simulations

    USGS Publications Warehouse

    Frankel, Arthur; Stephenson, William; Carver, David

    2009-01-01

    Seismograms of local earthquakes recorded in Seattle exhibit surface waves in the Seattle basin and basin-edge focusing of S waves. Spectral ratios of Swaves and later arrivals at 1 Hz for stiff-soil sites in the Seattle basin show a dependence on the direction to the earthquake, with earthquakes to the south and southwest producing higher average amplification. Earthquakes to the southwest typically produce larger basin surface waves relative to S waves than earthquakes to the north and northwest, probably because of the velocity contrast across the Seattle fault along the southern margin of the Seattle basin. S to P conversions are observed for some events and are likely converted at the bottom of the Seattle basin. We model five earthquakes, including the M 6.8 Nisqually earthquake, using 3D finite-difference simulations accurate up to 1 Hz. The simulations reproduce the observed dependence of amplification on the direction to the earthquake. The simulations generally match the timing and character of basin surface waves observed for many events. The 3D simulation for the Nisqually earth-quake produces focusing of S waves along the southern margin of the Seattle basin near the area in west Seattle that experienced increased chimney damage from the earthquake, similar to the results of the higher-frequency 2D simulation reported by Stephenson et al. (2006). Waveforms from the 3D simulations show reasonable agreement with the data at low frequencies (0.2-0.4 Hz) for the Nisqually earthquake and an M 4.8 deep earthquake west of Seattle.

  11. Integration Of 3D Geographic Information System (GIS) For Effective Waste Management Practice

    SciTech Connect

    Rood, G.J.; Hecox, G.R.

    2006-07-01

    Soil remediation in response to the presence of residual radioactivity resulting from past MED/AEC activities is currently in progress under the Formerly Utilized Sites Remedial Action Program near the St. Louis, MO airport. During GY05, approximately 92,000 cubic meters (120,000 cubic yards) of radioactive soil was excavated, packaged and transported via rail for disposal at U.S. Ecology or Envirocare of Utah, LLC. To facilitate the management of excavation/transportation/disposal activities, a 3D GIS was developed for the site that was used to estimate the in-situ radionuclide activities, activities in excavation block areas, and shipping activities using a sum-of ratio (SOR) method for combining various radionuclide compounds into applicable transportation and disposal SOR values. The 3D GIS was developed starting with the SOR values for the approximately 900 samples from 90 borings. These values were processed into a three-dimensional (3D) point grid using kriging with nominal grid spacing of 1.5 by 1.5 meter horizontal by 0.3 meter vertical. The final grid, clipped to the area and soil interval above the planned base of excavation, consisted of 210,000 individual points. Standard GIS volumetric and spatial join procedures were used to calculate the volume of soil represented by each grid point, the base of excavation, depth below ground surface, elevation, surface elevation and SOR values for each point in the final grid. To create the maps needed for management, the point grid results were spatially joined to each excavation area in 0.9 meter (3 foot) depth intervals and the average SOR and total volumes were calculations. The final maps were color-coded for easy identification of areas above the specific transportation or disposal criteria. (authors)

  12. 3-D Hybrid Simulation of Quasi-Parallel Bow Shock and Its Effects on the Magnetosphere

    SciTech Connect

    Lin, Y.; Wang, X.Y.

    2005-08-01

    A three-dimensional (3-D) global-scale hybrid simulation is carried out for the structure of the quasi-parallel bow shock, in particular the foreshock waves and pressure pulses. The wave evolution and interaction with the dayside magnetosphere are discussed. It is shown that diamagnetic cavities are generated in the turbulent foreshock due to the ion beam plasma interaction, and these compressional pulses lead to strong surface perturbations at the magnetopause and Alfven waves/field line resonance in the magnetosphere.

  13. A coarse-grained model with implicit salt for RNAs: Predicting 3D structure, stability and salt effect

    SciTech Connect

    Shi, Ya-Zhou; Wang, Feng-Hua; Wu, Yuan-Yan; Tan, Zhi-Jie

    2014-09-14

    To bridge the gap between the sequences and 3-dimensional (3D) structures of RNAs, some computational models have been proposed for predicting RNA 3D structures. However, the existed models seldom consider the conditions departing from the room/body temperature and high salt (1M NaCl), and thus generally hardly predict the thermodynamics and salt effect. In this study, we propose a coarse-grained model with implicit salt for RNAs to predict 3D structures, stability, and salt effect. Combined with Monte Carlo simulated annealing algorithm and a coarse-grained force field, the model folds 46 tested RNAs (≤45 nt) including pseudoknots into their native-like structures from their sequences, with an overall mean RMSD of 3.5 Å and an overall minimum RMSD of 1.9 Å from the experimental structures. For 30 RNA hairpins, the present model also gives the reliable predictions for the stability and salt effect with the mean deviation ∼ 1.0 °C of melting temperatures, as compared with the extensive experimental data. In addition, the model could provide the ensemble of possible 3D structures for a short RNA at a given temperature/salt condition.

  14. Conducting Effective Simulator Training.

    ERIC Educational Resources Information Center

    Gerling, Kenneth D.

    This paper describes the simulator phase of Commonwealth Edison's program for training and licensing operators of nuclear power stations. Topics covered include (1) preparing the students before starting the simulator phase; (2) the simulator schedule and the number of students that can be trained effectively in a class; (3) format and structure…

  15. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  16. Effect of geometry on drug release from 3D printed tablets.

    PubMed

    Goyanes, Alvaro; Robles Martinez, Pamela; Buanz, Asma; Basit, Abdul W; Gaisford, Simon

    2015-10-30

    The aim of this work was to explore the feasibility of combining hot melt extrusion (HME) with 3D printing (3DP) technology, with a view to producing different shaped tablets which would be otherwise difficult to produce using traditional methods. A filament extruder was used to obtain approx. 4% paracetamol loaded filaments of polyvinyl alcohol with characteristics suitable for use in fused-deposition modelling 3DP. Five different tablet geometries were successfully 3D-printed-cube, pyramid, cylinder, sphere and torus. The printing process did not affect the stability of the drug. Drug release from the tablets was not dependent on the surface area but instead on surface area to volume ratio, indicating the influence that geometrical shape has on drug release. An erosion-mediated process controlled drug release. This work has demonstrated the potential of 3DP to manufacture tablet shapes of different geometries, many of which would be challenging to manufacture by powder compaction. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. Effects of 2D and 3D Error Fields on the SAS Divertor Magnetic Topology

    NASA Astrophysics Data System (ADS)

    Trevisan, G. L.; Lao, L. L.; Strait, E. J.; Guo, H. Y.; Wu, W.; Evans, T. E.

    2016-10-01

    The successful design of plasma-facing components in fusion experiments is of paramount importance in both the operation of future reactors and in the modification of operating machines. Indeed, the Small Angle Slot (SAS) divertor concept, proposed for application on the DIII-D experiment, combines a small incident angle at the plasma strike point with a progressively opening slot, so as to better control heat flux and erosion in high-performance tokamak plasmas. Uncertainty quantification of the error fields expected around the striking point provides additional useful information in both the design and the modeling phases of the new divertor, in part due to the particular geometric requirement of the striking flux surfaces. The presented work involves both 2D and 3D magnetic error field analysis on the SAS strike point carried out using the EFIT code for 2D equilibrium reconstruction, V3POST for vacuum 3D computations and the OMFIT integrated modeling framework for data analysis. An uncertainty in the magnetic probes' signals is found to propagate non-linearly as an uncertainty in the striking point and angle, which can be quantified through statistical analysis to yield robust estimates. Work supported by contracts DE-FG02-95ER54309 and DE-FC02-04ER54698.

  18. Effect of fiber diameter on the assembly of functional 3D cardiac patches

    NASA Astrophysics Data System (ADS)

    Fleischer, Sharon; Miller, Jacob; Hurowitz, Haley; Shapira, Assaf; Dvir, Tal

    2015-07-01

    The cardiac ECM has a unique 3D structure responsible for tissue morphogenesis and strong contractions. It is divided into three fiber groups with specific roles and distinct dimensions; nanoscale endomysial fibers, perimysial fibers with a diameter of 1 μm, and epimysial fibers, which have a diameter of several micrometers. We report here on our work, where distinct 3D fibrous scaffolds, each of them recapitulating the dimension scales of a single fiber population in the heart matrix, were fabricated. We have assessed the mechanical properties of these scaffolds and the contribution of each fiber population to cardiomyocyte morphogenesis, tissue assembly and function. Our results show that the nanoscale fiber scaffolds were more elastic than the microscale scaffolds, however, cardiomyocytes cultured on microscale fiber scaffolds exhibited enhanced spreading and elongation, both on the single cell and on the engineered tissue levels. In addition, lower fibroblast proliferation rates were observed on these microscale topographies. Based on the collected data we have fabricated composite scaffolds containing micro and nanoscale fibers, promoting superior tissue morphogenesis without compromising tissue contraction. Cardiac tissues, engineered within these composite scaffolds exhibited superior function, including lower excitation threshold and stronger contraction forces than tissue engineered within the single-population fiber scaffolds.

  19. 3D Equilibrium Effects Due to RMP Application on DIII-D

    SciTech Connect

    Lazerson, S.; Lazarus, E.; Hudson, S.; Pablant, N.; Gates, D.

    2012-06-20

    The mitigation and suppression of edge localized modes (ELMs) through application of resonant magnetic perturbations (RMPs) in Tokamak plasmas is a well documented phenomenon. Vacuum calculations suggest the formation of edge islands and stochastic regions when RMPs are applied to the axisymmetric equilibria. Self-consistent calculations of the plasma equilibrium with the VMEC and SPEC codes have been performed for an up-down symmetric shot in DIII-D. In these codes, a self-consistent calculation of the plasma response due to the RMP coils is calculated. The VMEC code globally enforces the constraints of ideal MHD; consequently, a continuously nested family of flux surfaces is enforced throughout the plasma domain. This approach necessarily precludes the observation of islands or field-line chaos. The SPEC code relaxes the constraints of ideal MHD locally, and allows for islands and field line chaos at or near the rational surfaces. Equilibria with finite pressure gradients are approximated by a set of discrete "ideal-interfaces" at the most irrational flux surfaces and where the strongest pressure gradients are observed. Both the VMEC and SPEC calculations are initialized from EFIT reconstructions of the plasma that are consistent with the experimental pressure and current profiles. A 3D reconstruction using the STELLOPT code, which fits VMEC equilibria to experimental measurements, has also been performed. Comparisons between the equilibria generated by the 3D codes and between STELLOPT and EFIT are presented.

  20. 3D Equilibrium Effects Due to RMP Application on DIII-D

    SciTech Connect

    S. Lazerson, E. Lazarus, S. Hudson, N. Pablant and D. Gates

    2012-06-20

    The mitigation and suppression of edge localized modes (ELMs) through application of resonant magnetic perturbations (RMPs) in Tokamak plasmas is a well documented phenomenon [1]. Vacuum calculations suggest the formation of edge islands and stochastic regions when RMPs are applied to the axisymmetric equilibria. Self-consistent calculations of the plasma equilibrium with the VMEC [2] and SPEC [3] codes have been performed for an up-down symmetric shot (142603) in DIII-D. In these codes, a self-consistent calculation of the plasma response due to the RMP coils is calculated. The VMEC code globally enforces the constraints of ideal MHD; consequently, a continuously nested family of flux surfaces is enforced throughout the plasma domain. This approach necessarily precludes the observation of islands or field-line chaos. The SPEC code relaxes the constraints of ideal MHD locally, and allows for islands and field line chaos at or near the rational surfaces. Equilibria with finite pressure gradients are approximated by a set of discrete "ideal-interfaces" at the most irrational flux surfaces and where the strongest pressure gradients are observed. Both the VMEC and SPEC calculations are initialized from EFIT reconstructions of the plasma that are consistent with the experimental pressure and current profiles. A 3D reconstruction using the STELLOPT code, which fits VMEC equilibria to experimental measurements, has also been performed. Comparisons between the equilibria generated by the 3D codes and between STELLOPT and EFIT are presented.

  1. Effect of 3D animation videos over 2D video projections in periodontal health education among dental students.

    PubMed

    Dhulipalla, Ravindranath; Marella, Yamuna; Katuri, Kishore Kumar; Nagamani, Penupothu; Talada, Kishore; Kakarlapudi, Anusha

    2015-01-01

    There is limited evidence about the distinguished effect of 3D oral health education videos over conventional 2 dimensional projections in improving oral health knowledge. This randomized controlled trial was done to test the effect of 3 dimensional oral health educational videos among first year dental students. 80 first year dental students were enrolled and divided into two groups (test and control). In the test group, 3D animation and in the control group, regular 2D video projections pertaining to periodontal anatomy, etiology, presenting conditions, preventive measures and treatment of periodontal problems were shown. Effect of 3D animation was evaluated by using a questionnaire consisting of 10 multiple choice questions given to all participants at baseline, immediately after and 1month after the intervention. Clinical parameters like Plaque Index (PI), Gingival Bleeding Index (GBI), and Oral Hygiene Index Simplified (OHI-S) were measured at baseline and 1 month follow up. A significant difference in the post intervention knowledge scores was found between the groups as assessed by unpaired t-test (p<0.001) at baseline, immediate and after 1 month. At baseline, all the clinical parameters in the both the groups were similar and showed a significant reduction (p<0.001)p after 1 month, whereas no significant difference was noticed post intervention between the groups. 3D animation videos are more effective over 2D videos in periodontal disease education and knowledge recall. The application of 3D animation results also demonstrate a better visual comprehension for students and greater health care outcomes.

  2. 3-D Storybook: Effects on Surgical Knowledge and Anxiety Among Four- to Six-Year-Old Surgical Patients.

    PubMed

    Macindo, John Rey B; Macabuag, Katherine R; Macadangdang, Carlo Miguel P; Macaranas, Margaux Valerie S; Macarilay, Marianne Jezelle Jem T; Madriñan, Natasha Nikki M; Villarama, Rouena S

    2015-07-01

    Inadequate surgical knowledge potentiates anxiety; however, no methodology simultaneously addresses anxiety and surgical knowledge. Our quasi-experimental study determined the effectiveness of a three-dimensional (3-D) storybook in increasing surgical knowledge and decreasing anxiety among young children scheduled for planned or required major surgeries. We studied 20 randomly assigned participants who received either the 3-D storybook or traditional health teaching. A presurgical knowledge questionnaire and modified Yale Preoperative Anxiety Scale assessed surgical knowledge and anxiety. Data were analyzed with one-way and repeated-measures multivariate analysis of variance. Results showed that both groups had higher knowledge scores (F = 8.94; P = .008) and lower anxiety scores (F = 5.13; P = .036) after the intervention. The children who received information from the 3-D storybook exhibited a significantly higher posttest knowledge score (F = 11.71; P = .003) and lower anxiety score (F = 10.05; P = .005) than the traditionally educated group of children. The 3-D storybook effectively increased surgical knowledge and decreased anxiety and could be used as an alternative method to prepare pediatric surgical patients.

  3. Sunlight effects on the 3D polar current system determined from low Earth orbit measurements

    NASA Astrophysics Data System (ADS)

    Laundal, Karl M.; Finlay, Christopher C.; Olsen, Nils

    2016-08-01

    Interaction between the solar wind and the Earth's magnetosphere is associated with large-scale currents in the ionosphere at polar latitudes that flow along magnetic field lines (Birkeland currents) and horizontally. These current systems are tightly linked, but their global behaviors are rarely analyzed together. In this paper, we present estimates of the average global Birkeland currents and horizontal ionospheric currents from the same set of magnetic field measurements. The magnetic field measurements, from the low Earth orbiting Swarm and CHAMP satellites, are used to co-estimate poloidal and toroidal parts of the magnetic disturbance field, represented in magnetic apex coordinates. The use of apex coordinates reduces effects of longitudinal and hemispheric variations in the Earth's main field. We present global currents from both hemispheres during different sunlight conditions. The results show that the Birkeland currents vary with the conductivity, which depends most strongly on solar EUV emissions on the dayside and on particle precipitation at pre-midnight magnetic local times. In sunlight, the horizontal equivalent current flows in two cells, resembling an opposite ionospheric convection pattern, which implies that it is dominated by Hall currents. By combining the Birkeland current maps and the equivalent current, we are able to calculate the total horizontal current, without any assumptions about the conductivity. We show that the total horizontal current is close to zero in the polar cap when it is dark. That implies that the equivalent current, which is sensed by ground magnetometers, is largely canceled by the horizontal closure of the Birkeland currents.

  4. Evaluation of vision training using 3D play game

    NASA Astrophysics Data System (ADS)

    Kim, Jung-Ho; Kwon, Soon-Chul; Son, Kwang-Chul; Lee, Seung-Hyun

    2015-03-01

    The present study aimed to examine the effect of the vision training, which is a benefit of watching 3D video images (3D video shooting game in this study), focusing on its accommodative facility and vergence facility. Both facilities, which are the scales used to measure human visual performance, are very important factors for man in leading comfortable and easy life. This study was conducted on 30 participants in their 20s through 30s (19 males and 11 females at 24.53 ± 2.94 years), who can watch 3D video images and play 3D game. Their accommodative and vergence facility were measured before and after they watched 2D and 3D game. It turned out that their accommodative facility improved after they played both 2D and 3D games and more improved right after they played 3D game than 2D game. Likewise, their vergence facility was proved to improve after they played both 2D and 3D games and more improved soon after they played 3D game than 2D game. In addition, it was demonstrated that their accommodative facility improved to greater extent than their vergence facility. While studies have been so far conducted on the adverse effects of 3D contents, from the perspective of human factor, on the imbalance of visual accommodation and convergence, the present study is expected to broaden the applicable scope of 3D contents by utilizing the visual benefit of 3D contents for vision training.

  5. 3D Microstructure Effects in Ni-YSZ Anodes: Influence of TPB Lengths on the Electrochemical Performance

    PubMed Central

    Pecho, Omar M.; Mai, Andreas; Münch, Beat; Hocker, Thomas; Flatt, Robert J.; Holzer, Lorenz

    2015-01-01

    3D microstructure-performance relationships in Ni-YSZ anodes for electrolyte-supported cells are investigated in terms of the correlation between the triple phase boundary (TPB) length and polarization resistance (Rpol). Three different Ni-YSZ anodes of varying microstructure are subjected to eight reduction-oxidation (redox) cycles at 950 °C. In general the TPB lengths correlate with anode performance. However, the quantitative results also show that there is no simplistic relationship between TPB and Rpol. The degradation mechanism strongly depends on the initial microstructure. Finer microstructures exhibit lower degradation rates of TPB and Rpol. In fine microstructures, TPB loss is found to be due to Ni coarsening, while in coarse microstructures reduction of active TPB results mainly from loss of YSZ percolation. The latter is attributed to weak bottlenecks associated with lower sintering activity of the coarse YSZ. The coarse anode suffers from complete loss of YSZ connectivity and associated drop of TPBactive by 93%. Surprisingly, this severe microstructure degradation did not lead to electrochemical failure. Mechanistic scenarios are discussed for different anode microstructures. These scenarios are based on a model for coupled charge transfer and transport, which allows using TPB and effective properties as input. The mechanistic scenarios describe the microstructure influence on current distributions, which explains the observed complex relationship between TPB lengths and anode performances. The observed loss of YSZ percolation in the coarse anode is not detrimental because the electrochemical activity is concentrated in a narrow active layer. The anode performance can be predicted reliably if the volume-averaged properties (TPBactive, effective ionic conductivity) are corrected for the so-called short-range effect, which is particularly important in cases with a narrow active layer. PMID:28793624

  6. Investigation of gravitational effects in pulse tube cryocoolers using 3-D CFD

    NASA Astrophysics Data System (ADS)

    Mulcahey, T. I.; Conrad, T. J.; Ghiaasiaan, S. M.; Pathak, M. G.

    2014-01-01

    Stirling-type pulse tube cryocoolers (PTC) are often selected for cryogenic cooling applications for their robustness and mechanical simplicity, having no moving parts at the cold end of the cooler. Originally designed for space applications, increased terrestrial use in tactical applications as well as ground testing of space systems has revealed that some PTCs exhibit sensitivity to gravitational orientation, often losing significant cooling performance unless situated with the cold end pointing downward. Previous investigations have indicated that some coolers exhibit sensitivity while others do not; however, a reliable method of predicting the level of sensitivity during the design process has not been developed. We have utilized 3-D computational fluid dynamics (CFD) to predict the percent of cooling capacity lost as a result of off-axis operation. The computational model has been validated experimentally on a number of coolers to enhance confidence in the method used.

  7. Influence of 3D Radiative Effects on Satellite Retrievals of Cloud Properties

    NASA Technical Reports Server (NTRS)

    Varnai, Tamas; Marshak, Alexander; Einaudi, Franco (Technical Monitor)

    2001-01-01

    When cloud properties are retrieved from satellite observations, the calculations apply 1D theory to the 3D world: they only consider vertical structures and ignore horizontal cloud variability. This presentation discusses how big the resulting errors can be in the operational retrievals of cloud optical thickness. A new technique was developed to estimate the magnitude of potential errors by analyzing the spatial patterns of visible and infrared images. The proposed technique was used to set error bars for optical depths retrieved from new MODIS measurements. Initial results indicate that the 1 km resolution retrievals are subject to abundant uncertainties. Averaging over 50 by 50 km areas reduces the errors, but does not remove them completely; even in the relatively simple case of high sun (30 degree zenith angle), about a fifth of the examined areas had biases larger than ten percent. As expected, errors increase substantially for more oblique illumination.

  8. Evaluation of Effective Material Parameters of CNT-reinforced Composites via 3D BEM

    SciTech Connect

    De Araujo, Francisco Celio

    2008-01-01

    In recent years, carbon nanotubes (CNTs) have been widely employed to build advanced composites. In this work, a Boundary Element Method (BEM) is applied to 3D representative volume elements (RVEs) to estimate mechanical properties of CNT-based composites. To model the thin-walled nanotubes, special integration procedures for calculating nearly-strongly-singular integrals have been developed. The generic BE substructuring algorithm allows modeling complex CNT-reinforced polymers, containing any number of nanotubes of any shape (straight or curved). The subregion-by-subregion strategy, based on Krylov solvers, makes the independent generation, assembly, and storage of the many parts of the complete BE model possible. Thus, significant memory and CPU-time reductions are achieved in avoiding working with an explicit global system of equations. Further CPU-time reduction is obtained by employing a matrix-copy option for repeated subregions. Several applications will illustrate the ability of this algorithm to analyze CNT-based composites.

  9. Thermomechanical effects on permeability for a 3-D model of YM rock

    SciTech Connect

    Berge, P A; Blair, S C; Wang, H F

    1999-01-12

    The authors estimate how thermomechanical processes affect the spatial variability of fracture permeability for a 3-D model representing Topopah Spring tuff at the nuclear-waste repository horizon in Yucca Mountain, Nevada. Using a finite-difference code, they compute thermal stress changes. They evaluate possible permeability enhancement resulting from shear slip along various mapped fracture sets after 50 years of heating, for rock in the near-field environment of the proposed repository. The results indicate permeability enhancement of a factor of 2 for regions about 10 to 30 m above drifts, for north-south striking vertical fractures. Shear slip and permeability increases of a factor of 4 can occur in regions just above drifts, for east-west striking vertical fractures. Information on how permeability may change over the lifetime of a geologic repository is important to the prediction and evaluation of repository performance.

  10. Charge spreading effects during 3D tunneling through a supported carbon nanotube

    NASA Astrophysics Data System (ADS)

    Márk, Géza I.; Biró, László P.; Koós, Antal; Osváth, Zoltán; Gyulai, József; Benito, Ana M.; Thiry, Paul A.; Lambin, Philippe

    2001-11-01

    Investigating the distribution of the scanning tunneling microscope (STM) current through a nanostructured material is a subject of great current interest. In this work, the transmission of an electron wave packet was calculated through a jellium potential model of a carbon nanotube under the tip of a STM. Snapshots of the full three-dimensional (3D) probability density of the wave packet enabled us to study in detail the tunneling event. The theory shows that the wave packet spreads along the nanotube while it tunnels through it and the nanotube-support tunneling channel is also extended along the direction of the tube as compared to the tip-nanotube channel which remains narrow. We demonstrate how can this spread explain the characteristics of the apparent height measured by STM of a nanotube crossing a step on graphite.

  11. 3D Orthogonal Woven Triboelectric Nanogenerator for Effective Biomechanical Energy Harvesting and as Self-Powered Active Motion Sensors.

    PubMed

    Dong, Kai; Deng, Jianan; Zi, Yunlong; Wang, Yi-Cheng; Xu, Cheng; Zou, Haiyang; Ding, Wenbo; Dai, Yejing; Gu, Bohong; Sun, Baozhong; Wang, Zhong Lin

    2017-10-01

    The development of wearable and large-area energy-harvesting textiles has received intensive attention due to their promising applications in next-generation wearable functional electronics. However, the limited power outputs of conventional textiles have largely hindered their development. Here, in combination with the stainless steel/polyester fiber blended yarn, the polydimethylsiloxane-coated energy-harvesting yarn, and nonconductive binding yarn, a high-power-output textile triboelectric nanogenerator (TENG) with 3D orthogonal woven structure is developed for effective biomechanical energy harvesting and active motion signal tracking. Based on the advanced 3D structural design, the maximum peak power density of 3D textile can reach 263.36 mW m(-2) under the tapping frequency of 3 Hz, which is several times more than that of conventional 2D textile TENGs. Besides, its collected power is capable of lighting up a warning indicator, sustainably charging a commercial capacitor, and powering a smart watch. The 3D textile TENG can also be used as a self-powered active motion sensor to constantly monitor the movement signals of human body. Furthermore, a smart dancing blanket is designed to simultaneously convert biomechanical energy and perceive body movement. This work provides a new direction for multifunctional self-powered textiles with potential applications in wearable electronics, home security, and personalized healthcare. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Diffraction effects incorporated design of a parallax barrier for a high-density multi-view autostereoscopic 3D display.

    PubMed

    Yoon, Ki-Hyuk; Ju, Heongkyu; Kwon, Hyunkyung; Park, Inkyu; Kim, Sung-Kyu

    2016-02-22

    We present optical characteristics of view image provided by a high-density multi-view autostereoscopic 3D display (HD-MVA3D) with a parallax barrier (PB). Diffraction effects that become of great importance in such a display system that uses a PB, are considered in an one-dimensional model of the 3D display, in which the numerical simulation of light from display panel pixels through PB slits to viewing zone is performed. The simulation results are then compared to the corresponding experimental measurements with discussion. We demonstrate that, as a main parameter for view image quality evaluation, the Fresnel number can be used to determine the PB slit aperture for the best performance of the display system. It is revealed that a set of the display parameters, which gives the Fresnel number of ∼ 0.7 offers maximized brightness of the view images while that corresponding to the Fresnel number of 0.4 ∼ 0.5 offers minimized image crosstalk. The compromise between the brightness and crosstalk enables optimization of the relative magnitude of the brightness to the crosstalk and lead to the choice of display parameter set for the HD-MVA3D with a PB, which satisfies the condition where the Fresnel number lies between 0.4 and 0.7.

  13. Effects of 3D Virtual Simulators in the Introductory Wind Energy Course: A Tool for Teaching Engineering Concepts

    DOE PAGES

    Do, Phuong T.; Moreland, John R.; Delgado, Catherine; ...

    2013-01-01

    Our research provides an innovative solution for optimizing learning effectiveness and improving postsecondary education through the development of virtual simulators that can be easily used and integrated into existing wind energy curriculum. Two 3D virtual simulators are developed in our laboratory for use in an immersive 3D virtual reality (VR) system or for 3D display on a 2D screen. Our goal is to apply these prototypical simulators to train postsecondary students and professionals in wind energy education; and to offer experiential learning opportunities in 3D modeling, simulation, and visualization. The issue of transferring learned concepts to practical applications is amore » widespread problem in postsecondary education. Related to this issue is a critical demand to educate and train a generation of professionals for the wind energy industry. With initiatives such as the U.S. Department of Energy's “20% Wind Energy by 2030” outlining an exponential increase of wind energy capacity over the coming years, revolutionary educational reform is needed to meet the demand for education in the field of wind energy. These developments and implementation of Virtual Simulators and accompanying curriculum will propel national reforms, meeting the needs of the wind energy industrial movement and addressing broader educational issues that affect a number of disciplines.« less

  14. Effects of 3D Virtual Simulators in the Introductory Wind Energy Course: A Tool for Teaching Engineering Concepts

    SciTech Connect

    Do, Phuong T.; Moreland, John R.; Delgado, Catherine; Wilson, Kristina; Wang, Xiuling; Zhou, Chenn; Ice, Phil

    2013-01-01

    Our research provides an innovative solution for optimizing learning effectiveness and improving postsecondary education through the development of virtual simulators that can be easily used and integrated into existing wind energy curriculum. Two 3D virtual simulators are developed in our laboratory for use in an immersive 3D virtual reality (VR) system or for 3D display on a 2D screen. Our goal is to apply these prototypical simulators to train postsecondary students and professionals in wind energy education; and to offer experiential learning opportunities in 3D modeling, simulation, and visualization. The issue of transferring learned concepts to practical applications is a widespread problem in postsecondary education. Related to this issue is a critical demand to educate and train a generation of professionals for the wind energy industry. With initiatives such as the U.S. Department of Energy's “20% Wind Energy by 2030” outlining an exponential increase of wind energy capacity over the coming years, revolutionary educational reform is needed to meet the demand for education in the field of wind energy. These developments and implementation of Virtual Simulators and accompanying curriculum will propel national reforms, meeting the needs of the wind energy industrial movement and addressing broader educational issues that affect a number of disciplines.

  15. Monte Carlo - Metropolis Investigations of Shape and Matrix Effects in 2D and 3D Spin-Crossover Nanoparticles

    NASA Astrophysics Data System (ADS)

    Guerroudj, Salim; Caballero, Rafael; De Zela, Francisco; Jureschi, Catalin; Linares, Jorge; Boukheddaden, Kamel

    2016-08-01

    The Ising like model, taking into account short-, long-range interaction as well as surface effects is used to investigate size and shape effects on the thermal behaviour of 2D and 3D spin crossover (SCO) nanoparticles embedded in a matrix. We analyze the role of the parametert, representing the ratio between the number of surface and volume molecules, on the unusual thermal hysteresis behaviour (appearance of the hysteresis and a re-entrance phase transition) at small scales.

  16. 3D Mapping of plasma effective areas via detection of cancer cell damage induced by atmospheric pressure plasma jets

    NASA Astrophysics Data System (ADS)

    Han, Xu; Liu, Yueing; Stack, M. Sharon; Ptasinska, Sylwia

    2014-12-01

    In the present study, a nitrogen atmospheric pressure plasma jet (APPJ) was used for irradiation of oral cancer cells. Since cancer cells are very susceptible to plasma treatment, they can be used as a tool for detection of APPJ-effective areas, which extended much further than the visible part of the APPJ. An immunofluorescence assay was used for DNA damage identification, visualization and quantification. Thus, the effective damage area and damage level were determined and plotted as 3D images.

  17. Fast and effective occlusion culling for 3D holographic displays by inverse orthographic projection with low angular sampling.

    PubMed

    Jia, Jia; Liu, Juan; Jin, Guofan; Wang, Yongtian

    2014-09-20

    Occlusion culling is an important process that produces correct depth cues for observers in holographic displays, whereas current methods suffer from occlusion errors or high computational loads. We propose a fast and effective method for occlusion culling based on multiple light-point sampling planes and an inverse orthographic projection technique. Multiple light-point sampling planes are employed to remove the hidden surfaces for each direction of the view of the three-dimensional (3D) scene by forward orthographic projection, and the inverse orthographic projection technique is used to determine the effective sampling points of the 3D scene. A numerical simulation and an optical experiment are performed. The results show that this approach can realize accurate occlusion effects, smooth motion parallax, and continuous depth using low angular sampling without any extra computation costs.

  18. An approximate analytical methodology for the concentration CDF and corresponding adverse health effects in 3D heterogeneous aquifers

    NASA Astrophysics Data System (ADS)

    Zarlenga, Antonio; de Barros, Felipe; Fiori, Aldo

    2017-04-01

    Predicting solutes displacement in ecosystems is a complex task because of heterogeneity of hydrogeological properties and limited financial resources for characterization. As a consequence, solute transport model predictions are subject to uncertainty and probabilistic methods are invoked. Despite the significant theoretical advances in subsurface hydrology, there is a compelling need to transfer those specialized know-hows into an easy-to-use practical tool. The deterministic approach is able to capture some features of the transport behavior but its adoption in practical applications (e.g. remediation strategies or health risk assessment) is often inadequate because of its inability to accurately model the phenomena triggered by the spatial heterogeneity. The rigorous evaluation of the local contaminant concentration in natural aquifers requires an accurate estimate of the domain properties and huge computational times; those aspects limit the adoption of fully 3D numerical models. In this presentation, we illustrate a physically-based methodology to analytically estimate of the statistics of the solute concentration in natural aquifers and the related health risk. Our methodology aims to provide a simple tool for a quick assessment of the contamination level in aquifers, as function of a few relevant, physically based parameters such as the log conductivity variance, the mean flow velocity, the Péclet number. Solutions of the 3D analytical model adopt the results of previous works: transport model is based on the solutions proposed by Zarlenga and Fiori (2013, 2014) where semi-analytical relations for the statics of local contaminant concentration are carry out through a Lagrangian first-order model. As suggested in de Barros and Fiori (2014), the Beta distribution is assumed for the concentration cumulative density function (CDF). We illustrate the use of the closed-form equations for the probability of local contaminant concentration and health risk in a

  19. Implications of 3D electrical conductivity beneath the Payun Matru basalt province in western Argentina (36.5S, 69.5W)

    NASA Astrophysics Data System (ADS)

    Booker, J. R.; Burd, A.; Mackie, R.; Favetto, A.; Pomposiello, C.

    2009-12-01

    To understand geologic processes that shaped western North America in the early Cenozoic, it is useful to look at southern South America, where similar processes such as flat-slab subduction and intraplate basaltic volcanism are active today. Payún Matrú is a very large shield volcano east of the Andes at 36.5 S 69.5 W. It is the largest feature of the “Payunia” basalt province that covers about 15,000 sq km. The most recent activity may have been about 1,000 years ago. Lava chemistry has evolved with time. Despite being only 150 km east of the axis of the Andean Southern Volcanic Zone, the younger lavas are essentially OIB. We have collected 38 long period magnetolluric (MT) sites in an array that extends beyond the Payunia basalts to investigate the source of magma. MT impedance tensor data (including vertical to horizontal magnetic field transfer functions) have been inverted for smoothest log resistivity using a 3D non-linear conjugate gradient (NLCG) algorithm. The model includes the Atlantic and Pacific oceans, which both significantly affect the data. The image shows the isosurface at 30 Ohm-m together with the locations of sites (inverted triangles), earthquakes deeper than 50 km (filled circles) and volcanoes with geological recent activity (normal triangles). The result is that Payún Matrú (the large triangle) lies at the northern end of a conductive finger at the top of the mantle. This finger has a pimple that rises into the upper crust just west of the caldera. The finger appears to originate in anomalously conductive mantle deeper than 150 km that extends south and to the east (away from the Andes). If this conductor is due to fully interconnected basalt partial melt, the region inside this isosurface has more than 3% partial melt. This structure appears to rule out such processes as crustal delamination or a vertical plume for this volcanic province. It also suggests that the lithosphere east of the asthenospheric wedge under the Andes is

  20. A radiobiological analysis of the effect of 3D versus 4D image-based planning in lung cancer radiotherapy.

    PubMed

    Roland, Teboh; Mavroidis, Panayiotis; Gutierrez, Alonso; Goytia, Virginia; Papanikolaou, Niko

    2009-09-21

    Dose distributions generated on a static anatomy may differ significantly from those delivered to temporally varying anatomy such as for abdominal and thoracic tumors, due largely in part to the unavoidable organ motion and deformation effects stemming from respiration. In this work, the degree of such variation for three treatment techniques, namely static conventional, gating and target tracking radiotherapy, was investigated. The actual delivered dose was approximated by planning all the phases of a 4DCT image set. Data from six (n = 6) previously treated lung cancer patients were used for this study with tumor motion ranging from 2 to 10 mm. Complete radiobiological analyses were performed to assess the clinical significance of the observed discrepancies between the 3D and 4DCT image-based dose distributions. Using the complication-free tumor control probability (P+) objective, we observed small differences in P+ between the 3D and 4DCT image-based plans (<2.0% difference on average) for the gating and static conventional regimens and higher differences in P+ (4.0% on average) for the tracking regimen. Furthermore, we observed, as a general trend, that the 3D plan underestimated the P+ values. While it is not possible to draw any general conclusions from a small patient cohort, our results suggest that there exists a patient population in which 4D planning does not provide any additional benefits beyond that afforded by 3D planning for static conventional or gated radiotherapy. This statement is consistent with previous studies based on physical dosimetric evaluations only. The higher differences observed with the tracking technique suggest that individual patient plans should be evaluated on a case-by-case basis to assess if 3D or 4D imaging is appropriate for the tracking technique.

  1. Electrical Conductivity Beneath the Andean Back-arc in Argentina Near 36.5°S: Creation of Minimum Structure 2D Model Across EW Transect Based on Significantly 3D Data

    NASA Astrophysics Data System (ADS)

    Burd, A.; Booker, J.; Favetto, A.; Pomposiello, M.; Giordanengo, G.; Larsen, J. C.

    2006-12-01

    S. Mendoza Province, south of the Nazca flat slab, has widespread recent basaltic volcanism, but no historic activity. Over the last 1 MY, the basalt has evolved from having a slab signature to OIB. In early 2005, we collected 18 MT sites from 67 to 70°W along 36.7°S, near the large caldera Payún Matrú. Significantly 3D data cause difficulty identifying regional strike and performing minimum structure 2D inversions. Use of phase tensors and induction vectors allow identification of possible regional strikes. Various starting models for the minimum structure inversion allow comparison of effect of different regional strikes on the resulting electrical conductivity models. Preliminary analysis of a piecewise-2D region at the center of the profile suggests the west end of the profile to contain lower crustal to upper mantle conductivity which decreases and deepens to the east.

  2. Effects of heat treatments and UV exposures on mechanical properties of 3D printed acrylonitrile butadiene styrene specimens

    NASA Astrophysics Data System (ADS)

    Hughes, Shawn M.; Alamir, Mohammed; Neas, Brian; Alzahrani, Naif; Asmatulu, Ramazan

    2017-04-01

    Over the last few years, tremendous amount of research efforts has been conducted on 3D printing materials, methods and systems. Various 3D printer materials in different size, shape and geometry can be used for advanced designs, modeling, and manufacturing for different industrial applications. In the present study, dog bone shape specimen was designed via a CATIA CAD model, and then printed by a 3D printer using a polymeric filament (acrylonitrile butadiene styrene - ABS). Some of the prepared samples were heat treated at 40 °C, 60 °C, and 80 °C for 30 minutes, while the others were exposed to the UV light in a chamber for 0, 5, 10, 15 and 20 days. The surface and mechanical properties of the conditioned samples were determined using water contact angle and tensile test units, respectively. The test results indicated that the heat treatment process increased the mechanical properties; however, the UV exposure tests significantly reduced the water contact angle and properties of the samples. During these studies, undergraduate engineering students were involved in the tests, and gained a lot of hands-on research experiences.

  3. Numerical investigation of 3-D constraint effects on brittle fracture in SE(B) and C(T) specimens

    SciTech Connect

    Nevalainen, M.; Dodds, R.H. Jr.

    1996-07-01

    This investigation employs 3-D nonlinear finite element analyses to conduct an extensive parametric evaluation of crack front stress triaxiality for deep notch SE(B) and C(T) specimens and shallow notch SE(B) specimens, with and without side grooves. Crack front conditions are characterized in terms of J-Q trajectories and the constraint scaling model for cleavage fracture toughness proposed previously by Dodds and Anderson. The 3-D computational results imply that a significantly less strict size/deformation limit, relative to the limits indicated by previous plane-strain computations, is needed to maintain small-scale yielding conditions at fracture by a stress- controlled, cleavage mechanism in deep notch SE(B) and C(T) specimens. Additional new results made available from the 3-D analyses also include revised {eta}-plastic factors for use in experimental studies to convert measured work quantities to thickness average and maximum (local) J-values over the crack front.

  4. 3-D Printing: A New Method to Investigate the Effect of Deformation on Remanent Magnetization

    NASA Astrophysics Data System (ADS)

    Hirt, Ann; Mahfuj, Ali; Pané, Salvador; Gervasoni, Simone

    2017-04-01

    A fundamental assumption in paleomagnetism is that a sediment or rock retains the direction of the Earth's magnetic field over its geologic history. Sedimentary compaction or tectonic deformation can lead to the realignment of minerals, which could deflect the direction of the original natural remanent magnetization. Correction of the deflection often assumes a simple March model, in which it is assumed that the material deforms under pure shear. Sedimentary compaction and tectonic deformation involve a number of geological processes, which makes it difficult to reproduce these processes on a laboratory scale. Redepositional experiments have been carried out to examine how remanent magnetization is affected by sedimentary compaction, but little experimental data is available for the deformation of rocks. Previous experiments used deformation rigs to subject rocks to compactional or torsional deformation; however, the remanent magnetization of the rocks was often reset, due to strong magnetic fields associated with the rigs. 3-D printing opens new possibilities to create analogue rocks that can be subjected to deformation. In a proof-of-concept study, we have examined two designs to explore the applicability of the March model for simple compaction. In the first case cubes with different geometries of pore openings were printed with non-magnetic inks. The samples were then submerged in a ferrofluid and left to dry. An anhysteretic remanent magnetization (ARM) was imparted in a 50 µT DC field superimposed on a 100 mT alternating field and measured using a 2G cryogenic magnetometer. A sample holder was constructed to allow incremental, uniaxial compaction of the sample, whereby the magnetization was measured after each step. In a second set of experiments, 30 nm particles of magnetite/maghemite were incorporated into the material used to make the filament that is then used in the 3-D printer. This assures that the ferromagnetic particles are imbedded in the material

  5. Fast 3D Net Expeditions: Tools for Effective Scientific Collaboration on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Watson, Val; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of

  6. Fast 3D Net Expeditions: Tools for Effective Scientific Collaboration on the World Wide Web

    NASA Technical Reports Server (NTRS)

    Watson, Val; Chancellor, Marisa K. (Technical Monitor)

    1996-01-01

    Two new technologies, the FASTexpedition and Remote FAST, have been developed that provide remote, 3D (three dimensional), high resolution, dynamic, interactive viewing of scientific data. The FASTexpedition permits one to access scientific data from the World Wide Web, take guided expeditions through the data, and continue with self controlled expeditions through the data. Remote FAST permits collaborators at remote sites to simultaneously view an analysis of scientific data being controlled by one of the collaborators. Control can be transferred between sites. These technologies are now being used for remote collaboration in joint university, industry, and NASA projects. Also, NASA Ames Research Center has initiated a project to make scientific data and guided expeditions through the data available as FASTexpeditions on the World Wide Web for educational purposes. Previously, remote visualization of dynamic data was done using video format (transmitting pixel information) such as video conferencing or MPEG (Motion Picture Expert Group) movies on the Internet. The concept for this new technology is to send the raw data (e.g., grids, vectors, and scalars) along with viewing scripts over the Internet and have the pixels generated by a visualization tool running on the viewers local workstation. The visualization tool that is currently used is FAST (Flow Analysis Software Toolkit). The advantages of this new technology over using video format are: (1) The visual is much higher in resolution (1280x1024 pixels with 24 bits of color) than typical video format transmitted over the network. (2) The form of the visualization can be controlled interactively (because the viewer is interactively controlling the visualization tool running on his workstation). (3) A rich variety of guided expeditions through the data can be included easily. (4) A capability is provided for other sites to see a visual analysis of one site as the analysis is interactively performed. Control of

  7. Effect of magnetism on the solubility of 3 d elements in BCC iron: Results of first-principle investigations

    NASA Astrophysics Data System (ADS)

    Gorbatov, O. I.; Okatov, S. V.; Gornostyrev, Yu. N.; Korzhavyi, P. A.; Ruban, A. V.

    2013-08-01

    The methods of quantum-mechanical simulation have been used to study alloys of bcc iron with 3 d transition metals in the ferromagnetic and paramagnetic states. It has been shown that the main factor that determines the solubility of the 3 d elements is their electronic structure. The energy of the solution, mixing, and effective interatomic interactions vary regularly depending on the position of the element in the Periodic Table and on the magnetic state of the matrix. In some cases, depending on the magnetic state, changes in these quantities lead to the violation of the Hume-Rothery rules that determine the solubility of substitutional elements in alloys. The results obtained help us to understand the microscopic mechanisms that determine the solubility of alloying elements and their effect on the phase stability and structural state of steels.

  8. Revealing correlation effect of Co 3d electrons in La3Co4Sn13 and Ce3Co4Sn13 by infrared spectroscopy study

    NASA Astrophysics Data System (ADS)

    Ban, W. J.; Luo, J. L.; Wang, N. L.

    2017-10-01

    We report resistivity, specific heat and optical spectroscopy measurements on single crystal samples of La3 Co4 Sn13 and Ce3 Co4 Sn13 . We observed clear temperature-induced spectral weight suppression below 4000 cm-1 for both compounds in the conductivity spectra σ_1(ω) , indicating the progressive formation of gap-like features with decreasing temperature. The suppressed spectral weight transfers mostly to the higher energy region. This observation reflects the presence of the correlation effect in the compounds. We attribute the correlation effect to the Co 3d electrons.

  9. Acute effects of delayed reperfusion following myocardial infarction: a 3D x-ray imaging analysis

    NASA Astrophysics Data System (ADS)

    Simari, Robert D.; Bell, M. R.; Pao, Y. C.; Gersh, B. J.; Ritman, Erik L.

    1996-04-01

    Clinical and experimental data suggest that delayed reperfusion of the infarct related artery may limit infarct expansion without increasing myocardial salvage. In order to assess the potential mechanisms involved, an acute closed chest canine model of myocardial infarction and delayed reperfusion was studied. Nineteen dogs underwent 3D computed tomography in the Dynamic Spatial Reconstructor (a fast, volume imaging, CT scanner) at baseline and three and four hours later to estimate left ventricular chamber volumes, global distensibility and regional myocardial stiffness. A control group was scanned without intervention. An occlusion group underwent four hours of coronary artery occlusion. A reperfusion group underwent three hours of coronary artery occlusion followed by one hour of reperfusion. Similar infarct sizes were seen in the occlusion and reperfusion groups. Globally reperfusion was associated with increased left ventricular end diastolic pressure and prolongation of global relaxation. Regionally reperfusion was associated with increased myocardial stiffness, intramyocardial blood volume and wall thickness within the infarct zone relative to the not reperfused myocardium.

  10. Design and testing of indigenous cost effective three dimensional radiation field analyser (3D RFA).

    PubMed

    Ganesh, K M; Pichandi, A; Nehru, R M; Ravikumar, M

    2014-06-01

    The aim of the study is to design and validate an indigenous three dimensional Radiation Field Analyser (3D RFA). The feed system made for X, Y and Z axis movements is of lead screw with deep ball bearing mechanism made up of stain less steel driven by stepper motors with accuracy less than 0.5 mm. The telescopic column lifting unit was designed using linear actuation technology for lifting the water phantom. The acrylic phantom with dimensions of 800 x 750 x 570 mm was made with thickness of 15 mm. The software was developed in visual basic programming language, classified into two types, viz. beam analyzer software and beam acquisition software. The premeasurement checks were performed as per TG 106 recommendations. The physical parameters of photon PDDs such as Dmax, D10, D20 and Quality Index (QI), and the electron PDDs such as R50, Rp, E0, Epo and X-ray contamination values can be obtained instantaneously by using the developed RFA system. Also the results for profile data such as field size, central axis deviation, penumbra, flatness and symmetry calculated according to various protocols can be obtained for both photon and electron beams. The result of PDDs for photon beams were compared with BJR25 supplement values and the profile data were compared with TG 40 recommendation. The results were in agreement with standard protocols.

  11. Effects of changes in size, speed, and distance on the perception of curved 3-D trajectories.

    PubMed

    Zhang, Junjun; Braunstein, Myron L; Andersen, George J

    2013-01-01

    Previous research on the perception of 3-D object motion has considered time to collision, time to passage, collision detection, and judgments of speed and direction of motion but has not directly studied the perception of the overall shape of the motion path. We examined the perception of the magnitude of curvature and sign of curvature of the motion path for objects moving at eye level in a horizontal plane parallel to the line of sight. We considered two sources of information for the perception of motion trajectories: changes in angular size and changes in angular speed. Three experiments examined judgments of relative curvature for objects moving at different distances. At the closest distance studied, accuracy was high with size information alone but near chance with speed information alone. At the greatest distance, accuracy with size information alone decreased sharply, but accuracy for displays with both size and speed information remained high. We found similar results in two experiments with judgments of sign of curvature. Accuracy was higher for displays with both size and speed information than with size information alone, even when the speed information was based on parallel projections and was not informative about sign of curvature. For both magnitude of curvature and sign of curvature judgments, information indicating that the trajectory was curved increased accuracy, even when this information was not directly relevant to the required judgment.

  12. Effects of changes in size, speed and distance on the perception of curved 3D trajectories

    PubMed Central

    Zhang, Junjun; Braunstein, Myron L.; Andersen, George J.

    2012-01-01

    Previous research on the perception of 3D object motion has considered time to collision, time to passage, collision detection and judgments of speed and direction of motion, but has not directly studied the perception of the overall shape of the motion path. We examined the perception of the magnitude of curvature and sign of curvature of the motion path for objects moving at eye level in a horizontal plane parallel to the line of sight. We considered two sources of information for the perception of motion trajectories: changes in angular size and changes in angular speed. Three experiments examined judgments of relative curvature for objects moving at different distances. At the closest distance studied, accuracy was high with size information alone but near chance with speed information alone. At the greatest distance, accuracy with size information alone decreased sharply but accuracy for displays with both size and speed information remained high. We found similar results in two experiments with judgments of sign of curvature. Accuracy was higher for displays with both size and speed information than with size information alone, even when the speed information was based on parallel projections and was not informative about sign of curvature. For both magnitude of curvature and sign of curvature judgments, information indicating that the trajectory was curved increased accuracy, even when this information was not directly relevant to the required judgment. PMID:23007204

  13. Effect of microgravity simulation using 3D clinostat on cavendish banana (Musa acuminata AAA Group) ripening process

    NASA Astrophysics Data System (ADS)

    Dwivany, Fenny Martha; Esyanti, Rizkita R.; Prapaisie, Adeline; Puspa Kirana, Listya; Latief, Chunaeni; Ginaldi, Ari

    2016-11-01

    The objective of the research was to determine the effect of microgravity simulation by 3D clinostat on Cavendish banana (Musa acuminata AAA group) ripening process. In this study, physical, physiological changes as well as genes expression were analysed. The result showed that in microgravity simulation condition ripening process in banana was delayed and the MaACOl, MaACSl and MaACS5 gene expression were affected.

  14. Evaluation of the cytotoxic effects of ophthalmic solutions containing benzalkonium chloride on corneal epithelium using an organotypic 3-D model

    PubMed Central

    Khoh-Reiter, Su; Jessen, Bart A

    2009-01-01

    Background Benzalkonium chloride (BAC) is a common preservative used in ophthalmic solutions. The aim of this study was to compare the cytotoxic effects of BAC-containing ophthalmic solutions with a BAC-free ophthalmic solution using an organotypic 3-dimensional (3-D) corneal epithelial model and to determine the effects of latanoprost ophthalmic solution and its BAC-containing vehicle on corneal thickness in a monkey model. Methods The cytotoxicity of commercially available BAC-containing ophthalmic formulations of latanoprost (0.02% BAC) and olopatadine (0.01% BAC) was compared to that of BAC-free travoprost and saline in a corneal organotypic 3-D model using incubation times of 10 and 25 minutes. To compare the extent of differentiation of 3-D corneal cultures to monolayer transformed human corneal epithelial (HCE-T) cell cultures, expression levels (mRNA and protein) of the corneal markers epidermal growth factor receptor, transglutaminase 1 and involucrin were quantified. Finally, latanoprost ophthalmic solution or its vehicle was administered at suprapharmacologic doses (two 30 μL drops twice daily in 1 eye for 1 year) in monkey eyes, and corneal pachymetry was performed at baseline and at weeks 4, 13, 26 and 52. Results In the 3-D corneal epithelial culture assays, there were no significant differences in cytotoxicity between the BAC-containing latanoprost and olopatadine ophthalmic solutions and BAC-free travoprost ophthalmic solution at either the 10- or 25-minute time points. The 3-D cultures expressed higher levels of corneal epithelial markers than the HCE-T monolayers, indicating a greater degree of differentiation. There were no significant differences between the corneal thickness of monkey eyes treated with latanoprost ophthalmic solution or its vehicle (both containing 0.02% BAC) and untreated eyes. Conclusion The lack of cytotoxicity demonstrated in 3-D corneal cultures and in monkey studies suggests that the levels of BAC contained in ophthalmic

  15. ALE-AMR: A new 3D multi-physics code for modeling laser/target effects

    NASA Astrophysics Data System (ADS)

    Koniges, A. E.; Masters, N. D.; Fisher, A. C.; Anderson, R. W.; Eder, D. C.; Kaiser, T. B.; Bailey, D. S.; Gunney, B.; Wang, P.; Brown, B.; Fisher, K.; Hansen, F.; Maddox, B. R.; Benson, D. J.; Meyers, M.; Geille, A.

    2010-08-01

    We have developed a new 3D multi-physics multi-material code, ALE-AMR, for modeling laser/target effects including debris/shrapnel generation. The code combines Arbitrary Lagrangian Eulerian (ALE) hydrodynamics with Adaptive Mesh Refinement (AMR) to connect the continuum to microstructural regimes. The code is unique in its ability to model hot radiating plasmas and cold fragmenting solids. New numerical techniques were developed for many of the physics packages to work efficiency on a dynamically moving and adapting mesh. A flexible strength/failure framework allows for pluggable material models. Material history arrays are used to store persistent data required by the material models, for instance, the level of accumulated damage or the evolving yield stress in J2 plasticity models. We model ductile metals as well as brittle materials such as Si, Be, and B4C. We use interface reconstruction based on volume fractions of the material components within mixed zones and reconstruct interfaces as needed. This interface reconstruction model is also used for void coalescence and fragmentation. The AMR framework allows for hierarchical material modeling (HMM) with different material models at different levels of refinement. Laser rays are propagated through a virtual composite mesh consisting of the finest resolution representation of the modeled space. A new 2nd order accurate diffusion solver has been implemented for the thermal conduction and radiation transport packages. The code is validated using laser and x-ray driven spall experiments in the US and France. We present an overview of the code and simulation results.

  16. 3-D Grab!

    NASA Astrophysics Data System (ADS)

    Connors, M. G.; Schofield, I. S.

    2012-12-01

    Modern technologies in imaging greatly extend the potential to present visual information. With recently developed software tools, the perception of the third dimension can not only dramatically enhance presentation, but also allow spatial data to be better encoded. 3-D images can be taken for many subjects with only one camera, carefully moved to generate a stereo pair. Color anaglyph viewing now can be very effective using computer screens, and active filter technologies can enhance visual effects with ever-decreasing cost. We will present various novel results of 3-D imaging, including those from the auroral observations of the new twinned Athabasca University Geophysical Observatories.; Single camera stereo image for viewing with red/cyan glasses.

  17. Resveratrol Effect on Osteogenic Differentiation of Rat and Human Adipose Derived Stem Cells in a 3-D Culture Environment

    PubMed Central

    Dosier, Christopher R.; Erdman, Christopher P.; Park, Jung Hwa; Schwartz, Zvi; Boyan, Barbara D.; Guldberg, Robert E.

    2011-01-01

    The goal of this study was to investigate the effect of resveratrol treatment on the osteogenic potential of human and rat adipose derived stem cells in a 3-D culture environment. Adipose derived stem cells (ADSCs) have been widely studied and have shown promise as a potential source of osteogenic progenitor cells. Previous work had investigated the effect of 25 μM resveratrol on the osteogenic differentiation of rat ADSCs in a 3-D environment and found that pre-treating cells for one passage prior to seeding on the scaffold yielded significantly more mineralization than untreated cells. We first sought to investigate whether this result was also observable with human ADSCs and found that the human cells did not respond to 25 μM resveratrol in a positive manner suggesting a species specific difference in resveratrol dosage. Therefore we next investigated multiple doses at or below 25 μM resveratrol for both rat and human ADSCs. We found that doses below 25 μM caused significantly more mineralization than 0 (untreated) and 25 μM treated cells in a 3-D culture environment. Further, we observed species differences in the total amount of mineralized matrix, as well as the mean mineral density suggesting that the nature of mineralization of the extracellular matrix was different between species. Histological examination of the scaffolds showed that the human cell constructs remain highly cellular in nature with small pockets of mineralization; while rat cell constructs showed much larger and more mature mineralized nodules. Taken together we demonstrate dose dependent differences in the mineralization response of human and rat ADSCs to resveratrol treatment, suggesting that in vitro pre-conditioning of 3D adipose-derived stem cell constructs may be an effective strategy to promote osteogenic differentiation prior to implantation. PMID:22658160

  18. Effects of Surface Morphology on the 3D Topological Insulator Samarium Hexaboride

    NASA Astrophysics Data System (ADS)

    Wolgast, Steven; Eo, Yun Suk; Kurdak, Cagliyan; Kim, Dae-Jeong; Fisk, Zachary

    2015-03-01

    The recent verification of a topologically-protected surface state in SmB6 at low temperatures has led to several transport studies of the surface states. This task is complicated because current can flow on all surfaces of a topological insulator, each of which can have different transport characteristics. Our own measurements using a Corbino disc geometry overcome this difficulty, limiting the conduction to individual surfaces. However, the sheet conductivities of our samples counter-intuitively decrease with finer surface polishing. We therefore investigate surface and sub-surface morphology as a factor affecting the surface conductivity. Specifically, surface cracks may themselves harbor surface states and contribute to the total electrical conduction, yielding a higher measured sheet conductivity than that of a flat surface. This situation may contribute to the (sometimes unphysically) large surface conductivities already observed in SmB6. Performed in part at the Lurie Nanofabrication Facility and the Electron Microbeam Analysis Laboratory. Funded by NSF Grant #DMR-1006500 and DMR-1441965. Thanks to Gang Li and Fan Yu for optical imaging.

  19. A 3D Faraday Shield for Interdigitated Dielectrometry Sensors and Its Effect on Capacitance

    PubMed Central

    Risos, Alex; Long, Nicholas; Hunze, Arvid; Gouws, Gideon

    2016-01-01

    Interdigitated dielectrometry sensors (IDS) are capacitive sensors investigated to precisely measure the relative permittivity (ϵr) of insulating liquids. Such liquids used in the power industry exhibit a change in ϵr as they degrade. The IDS ability to measure ϵr in-situ can potentially reduce maintenance, increase grid stability and improve safety. Noise from external electric field sources is a prominent issue with IDS. This paper investigates the novelty of applying a Faraday cage onto an IDS as a 3D shield to reduce this noise. This alters the spatially distributed electric field of an IDS affecting its sensing properties. Therefore, dependency of the sensor’s signal with the distance to a shield above the IDS electrodes has been investigated experimentally and theoretically via a Green’s function calculation and FEM. A criteria of the shield’s distance s = s0 has been defined as the distance which gives a capacitance for the IDS equal to 1 − e−2=86.5% of its unshielded value. Theoretical calculations using a simplified geometry gave a constant value for s0/λ = 1.65, where λ is the IDS wavelength. In the experiment, values for s0 were found to be lower than predicted as from theory and the ratio s0/λ variable. This was analyzed in detail and it was found to be resulting from the specific spatial structure of the IDS. A subsequent measurement of a common insulating liquid with a nearby noise source demonstrates a considerable reduction in the standard deviation of the relative permittivity from σunshielded=±9.5% to σshielded=±0.6%. The presented findings enhance our understanding of IDS in respect to the influence of a Faraday shield on the capacitance, parasitic capacitances of the IDS and external noise impact on the measurement of ϵr. PMID:28042868

  20. A 3D Faraday Shield for Interdigitated Dielectrometry Sensors and Its Effect on Capacitance.

    PubMed

    Risos, Alex; Long, Nicholas; Hunze, Arvid; Gouws, Gideon

    2016-12-31

    Interdigitated dielectrometry sensors (IDS) are capacitive sensors investigated to precisely measure the relative permittivity ( ϵ r ) of insulating liquids. Such liquids used in the power industry exhibit a change in ϵ r as they degrade. The IDS ability to measure ϵ r in-situ can potentially reduce maintenance, increase grid stability and improve safety. Noise from external electric field sources is a prominent issue with IDS. This paper investigates the novelty of applying a Faraday cage onto an IDS as a 3D shield to reduce this noise. This alters the spatially distributed electric field of an IDS affecting its sensing properties. Therefore, dependency of the sensor's signal with the distance to a shield above the IDS electrodes has been investigated experimentally and theoretically via a Green's function calculation and FEM. A criteria of the shield's distance s = s 0 has been defined as the distance which gives a capacitance for the IDS equal to 1 - e - 2 = 86.5 % of its unshielded value. Theoretical calculations using a simplified geometry gave a constant value for s 0 / λ = 1.65, where λ is the IDS wavelength. In the experiment, values for s 0 were found to be lower than predicted as from theory and the ratio s 0 / λ variable. This was analyzed in detail and it was found to be resulting from the specific spatial structure of the IDS. A subsequent measurement of a common insulating liquid with a nearby noise source demonstrates a considerable reduction in the standard deviation of the relative permittivity from σ unshielded = ± 9.5% to σ shielded = ± 0.6%. The presented findings enhance our understanding of IDS in respect to the influence of a Faraday shield on the capacitance, parasitic capacitances of the IDS and external noise impact on the measurement of ϵ r .

  1. Effects of Novel 3D Antibiotic-Containing Electrospun Scaffolds on Dentin Discoloration

    PubMed Central

    Porter, Margaret Louise A.; Münchow, Eliseu A.; Albuquerque, Maria T. P.; Spolnik, Kenneth J.; Hara, Anderson T.; Bottino, Marco C.

    2016-01-01

    Introduction Although intracanal application of the triple antibiotic paste (TAP) may offer advantages (e.g., disinfection), this practice has been associated with significant drawbacks, including tooth discoloration. In this study, the color change of dentin was monitored during treatment with distinct TAP pastes and novel tubular-shaped three-dimensional (3D) electrospun scaffolds containing minocycline-MINO or doxycycline-DOX. Methods Two TAP pastes (TAPMINO–MINO, metronidazole/MET, and ciprofloxacin/CIP; and TAPDOX–DOX, MET, and CIP), four scaffold-based groups containing MINO or DOX, at distinct concentrations; one antibiotic-free scaffold (Scaffold); and one untreated group (Control) were investigated. Human canines were sectioned at the cemento-enamel junction (CEJ) and tubular-shaped scaffolds or paste were placed into the root canals and sealed. Color measurements (CIEL*a*b* parameters) were performed at baseline and after 1, 3, 7, 14, 21, and 28 days. Color changes were expressed as ΔE* values. In addition, scanning electron microscopy (SEM) and energy-dispersive X-ray spectroscopy (EDS) were also performed on the specimens after treatment. Data were analyzed using Repeated-measures ANOVA (alpha=0.05). Results All antibiotic-containing groups led to greater discoloration than the antibiotic-free groups. A severe discoloration occurred after 1 day. At the end of the experiment, antibiotic-treated samples exhibited crusts/agglomerates over the dentin surface, which totally or partially obliterated the dentinal tubules. The presence of MINO resulted in greater color change than DOX. Conclusion Scaffolds containing MINO or DOX produced similar color change to dentin when compared to their respective TAP systems, although DOX-related discoloration was less pronounced. PMID:26602451

  2. Modeling of fission gas effects observed in TREAT loss-of-flow test R8 using SAS3D. [LMFBR

    SciTech Connect

    Dunn, F.E.; Morris, E.E.

    1985-01-01

    The TREAT loss-of-flow test R8 has been analyzed using a modified version of the SAS3D accident analysis code in order to establish experimental verification of SAS3D modeling changes introduced to assess the effects of fission gas release from the upper gas plenum on coolant voiding dynamics and clad motion prior to the onset of fuel motion in whole core accident studies. The specific motivation for the analysis was the necessity of investigating the potential for fuel compaction by the fission gas stored in the gas plena at the upper end of the fuel pins in the Clinch River Breeder Reactor Project (CRBRP). These investigations were required to support licensing activities underway just prior to the demise of the project. In test R8, an unirradiated, seven-pin fuel bundle was subjected to a simulated Fast Flux Test Facility flow coastdown. The power was held constant at its nominal value.

  3. CFD Code Calibration and Inlet-Fairing Effects On a 3D Hypersonic Powered-Simulation Model

    NASA Technical Reports Server (NTRS)

    Huebner, Lawrence D.; Tatum, Kenneth E.

    1993-01-01

    A three-dimensional (3D) computational study has been performed addressing issues related to the wind tunnel testing of a hypersonic powered-simulation model. The study consisted of three objectives. The first objective was to calibrate a state-of-the-art computational fluid dynamics (CFD) code in its ability to predict hypersonic powered-simulation flows by comparing CFD solutions with experimental surface pressure data. Aftbody lower surface pressures were well predicted, but lower surface wing pressures were less accurately predicted. The second objective was to determine the 3D effects on the aftbody created by fairing over the inlet; this was accomplished by comparing the CFD solutions of two closed-inlet powered configurations with a flowing- inlet powered configuration. Although results at four freestream Mach numbers indicate that the exhaust plume tends to isolate the aftbody surface from most forebody flow- field differences, a smooth inlet fairing provides the least aftbody force and moment variation compared to a flowing inlet. The final objective was to predict and understand the 3D characteristics of exhaust plume development at selected points on a representative flight path. Results showed a dramatic effect of plume expansion onto the wings as the freestream Mach number and corresponding nozzle pressure ratio are increased.

  4. 3D digital image correlation investigation of PLC effect in a new Ni-Co base superalloy

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Fu, S. H.; Cheng, T.; Huo, X.; Zhang, Q. C.

    2013-06-01

    Repeated plastic instability accompanying serrated yielding in stress-strain curves and localization of deformation is observed during plastic deformation of many metallic alloys when tensile specimens are deformed under certain experimental conditions of temperature, strain rate, and pre-deformation. This phenomenon is referred to as the Portevin- Le Chatelier (PLC) effect. TMW alloy, a newly developed Ni-Co base superalloy for aircraft engine application, also exhibit PLC effect during tensile test at temperatures ranging from 300 ° to 600 °, which are also the temperature range for engine working. In this paper, a 3D digital image correlation (3D DIC) measurement system was established to observe the localization of deformation (PLC band) in a tensile test performed on TMW alloy specimen at temperature of 400 °. The 3D DIC system, with displacement measurement accuracy up to 0.01 pixels and strain measurement accuracy up to 100 μɛ, has a high performance in displacement field calculation with more than 10000 points every second on a 3.1G Hz CPU computer. The test result shows that, the PLC bands are inclined at an angle of about 60° to the tensile axis. Unlike tensile test performed on aluminums alloy, the widths of PLC bands of TMW alloy specimen, ranging from 4 mm to 4.5 mm, are much greater than the specimen thickness (0.25 mm).

  5. Effect of space balance 3D training using visual feedback on balance and mobility in acute stroke patients

    PubMed Central

    Ko, YoungJun; Ha, HyunGeun; Bae, Young-Hyeon; Lee, WanHee

    2015-01-01

    [Purpose] The purpose of the study was to determine the effects of balance training with Space Balance 3D, which is a computerized measurement and visual feedback balance assessment system, on balance and mobility in acute stroke patients. [Subjects and Methods] This was a randomized controlled trial in which 52 subjects were assigned randomly into either an experimental group or a control group. The experimental group, which contained 26 subjects, received balance training with a Space Balance 3D exercise program and conventional physical therapy interventions 5 times per week during 3 weeks. Outcome measures were examined before and after the 3-week interventions using the Berg Balance Scale (BBS), Timed Up and Go (TUG) test, and Postural Assessment Scale for Stroke Patients (PASS). The data were analyzed by a two-way repeated measures ANOVA using SPSS 19.0. [Results] The results revealed a nonsignificant interaction effect between group and time period for both groups before and after the interventions in the BBS score, TUG score, and PASS score. In addition, the experimental group showed more improvement than the control group in the BBS, TUG and PASS scores, but the differences were not significant. In the comparisons within the groups by time, both groups showed significant improvement in BBS, TUG, and PASS scores. [Conclusion] The Space Balance 3D training with conventional physical therapy intervention is recommended for improvement of balance and mobility in acute stroke patients. PMID:26157270

  6. Effect of GIA models with 3D composite mantle viscosity on GRACE mass balance estimates for Antarctica

    NASA Astrophysics Data System (ADS)

    van der Wal, Wouter; Whitehouse, Pippa L.; Schrama, Ernst J. O.

    2015-03-01

    Seismic data indicate that there are large viscosity variations in the mantle beneath Antarctica. Consideration of such variations would affect predictions of models of Glacial Isostatic Adjustment (GIA), which are used to correct satellite measurements of ice mass change. However, most GIA models used for that purpose have assumed the mantle to be uniformly stratified in terms of viscosity. The goal of this study is to estimate the effect of lateral variations in viscosity on Antarctic mass balance estimates derived from the Gravity Recovery and Climate Experiment (GRACE) data. To this end, recently-developed global GIA models based on lateral variations in mantle temperature are tuned to fit constraints in the northern hemisphere and then compared to GPS-derived uplift rates in Antarctica. We find that these models can provide a better fit to GPS uplift rates in Antarctica than existing GIA models with a radially-varying (1D) rheology. When 3D viscosity models in combination with specific ice loading histories are used to correct GRACE measurements, mass loss in Antarctica is smaller than previously found for the same ice loading histories and their preferred 1D viscosity profiles. The variation in mass balance estimates arising from using different plausible realizations of 3D viscosity amounts to 20 Gt/yr for the ICE-5G ice model and 16 Gt/yr for the W12a ice model; these values are larger than the GRACE measurement error, but smaller than the variation arising from unknown ice history. While there exist 1D Earth models that can reproduce the total mass balance estimates derived using 3D Earth models, the spatial pattern of gravity rates can be significantly affected by 3D viscosity in a way that cannot be reproduced by GIA models with 1D viscosity. As an example, models with 1D viscosity always predict maximum gravity rates in the Ross Sea for the ICE-5G ice model, however, for one of the three preferred 3D models the maximum (for the same ice model) is found

  7. Biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs).

    PubMed

    Collado-González, M; Pecci-Lloret, M P; García-Bernal, D; Aznar-Cervantes, S; Oñate-Sánchez, R E; Moraleda, J M; Cenis, J L; Rodríguez-Lozano, F J

    2017-06-14

    The aim is to investigate in vitro biological effects of silk fibroin 3D scaffolds on stem cells from human exfoliated deciduous teeth (SHEDs) in terms of proliferation, morphological appearance, cell viability, and expression of mesenchymal stem cell markers. Silk fibroin 3D scaffolding materials may represent promising suitable scaffolds for their application in regenerative endodontic therapy approaches. SHEDs were cultured in silk fibroin 3D scaffolds. Then, cell numbers were counted and the Alamar blue colorimetric assay was used to analyse cell proliferation after 24, 48, 72, and 168 h of culture. The morphological features of SHEDs cultured on silk fibroin scaffolds were evaluated by scanning electron microscopy (SEM). Finally, cell viability and the expression of mesenchymal stem cell markers were analysed by flow cytometry. One-way analysis of variance (ANOVA) followed by a Bonferroni post-test was performed (P < 0.05). At 24 and 48 h of culture, SHED proliferation on scaffolds was modest compared to the control although still significant (p < 0.05). However, cell proliferation progressively increased from 72 to 168 h compared with the control (p < 0.001; p < 0.01). In addition, flow cytometry analysis showed that the culture of SHEDs on silk fibroin scaffolds did not significantly alter the level of expression of the mesenchymal markers CD73, CD90, or CD105 up to 168 h; in addition, cell viability in silk fibroin was similar to than obtained in plastic. Moreover, SEM studies revealed a suitable degree of proliferation, cell spreading, and attachment, especially after 168 h of culture. The findings from the current study suggest that silk fibroin 3D scaffolds had a favourable effect on the biological responses of SHEDs. Further in vivo investigations are required to confirm these results.