Science.gov

Sample records for 3d coordination polymers

  1. Novel 3D bismuth-based coordination polymers: Synthesis, structure, and second harmonic generation properties

    SciTech Connect

    Wibowo, Arief C.; Smith, Mark D.; Yeon, Jeongho; Halasyamani, P. Shiv; Loye, Hans-Conrad zur

    2012-11-15

    Two new 3D bismuth containing coordination polymers are reported along with their single crystal structures and SHG properties. Compound 1: Bi{sub 2}O{sub 2}(pydc) (pydc=pyridine-2, 5-dicarboxylate), crystallizes in the monoclinic, polar space group, P2{sub 1} (a=9.6479(9) A, b=4.2349(4) A, c=11.9615(11) A, {beta}=109.587(1) Degree-Sign ), which contains Bi{sub 2}O{sub 2} chains that are connected into a 3D structure via the pydc ligands. Compound 2: Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (1R3S cam=1R3S-camphoric acid) crystallizes in the monoclinic, polar space group, P2{sub 1} (a=19.0855(7) A, b=13.7706(5) A, c=19.2429(7) A, {beta}=90.701(1) Degree-Sign ) and is a true 3D coordination polymer. These are two example of SHG compounds prepared using unsymmetric ligands (compound 1) or chiral ligands (compound 2), together with metals that often exhibit stereochemically-active lone pairs, such as Bi{sup 3+}, a synthetic approach that resulted in polar, non-centrosymmetric, 3D metal-organic coordination polymer. - Graphical Abstract: Structures of two new, polar, 3D Bismuth(III)-based coordination polymers: Bi{sub 2}O{sub 2}(pydc) (compound 1), and Bi{sub 4}Na{sub 4}(1R3S-cam){sub 8}(EtOH){sub 3.1}(H{sub 2}O){sub 3.4} (compound 2). Highlights: Black-Right-Pointing-Pointer New, polar, 3D Bismuth(III)-based coordination polymers. Black-Right-Pointing-Pointer First polar bismuth-based coordination polymers synthesized via a 'hybrid' strategy. Black-Right-Pointing-Pointer Combination of stereochemically-active lone pairs and unsymmetrical or chiral ligands. Black-Right-Pointing-Pointer Synthesis of class C-SHG materials based on Kurtz-Perry categories.

  2. Unusual Transformation from a Solvent-Stabilized 1D Coordination Polymer to a Metal-Organic Framework (MOF)-Like Cross-Linked 3D Coordination Polymer.

    PubMed

    Lee, Seung-Chul; Choi, Eun-Young; Lee, Sang-Beom; Kim, Sang-Wook; Kwon, O-Pil

    2015-10-26

    An unusual 1D-to-3D transformation of a coordination polymer based on organic linkers containing highly polar push-pull π-conjugated side chains is reported. The coordination polymers are synthesized from zinc nitrate and an organic linker, namely, 2,5-bis{4-[1-(4-nitrophenyl)pyrrolidin-2-yl]butoxy}terephthalic acid, which possesses highly polar (4-nitrophenyl)pyrrolidine groups, with high dipole moments of about 7 D. The coordination polymers exhibit an unusual transformation from a soluble, solvent-stabilized 1D coordination polymer into an insoluble, metal-organic framework (MOF)-like 3D coordination polymer. The coordination polymer exhibits good film-forming ability, and the MOF-like films are insoluble in conventional organic solvents.

  3. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    SciTech Connect

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

    2015-03-15

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N′-donor ligands yielded three new coordination polymers as [Cu{sub 4}(fph){sub 2}(bpe){sub 3}(H{sub 2}O){sub 2}]·2H{sub 2}O (fph=4,4′-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co{sub 2}(fph)(bpa){sub 2}(H{sub 2}O){sub 2}]·3H{sub 2}O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H{sub 2}O)(H{sub 2}oph)(bpa)] (oph=4,4′-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu{sup 2+} ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co{sup 2+} ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1–3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors. - Graphical abstract: Structures of three semi-rigid V-shape tetracarboxylate-based coordination polymers were reported, and their magnetic properties were investigated. - Highlights: • Structures of three tetracarboxylate-based coordination polymers were reported. • Role of organic bases in metal–tetracarboxylate compounds was discussed. • Characters of V-shape and semi-rigidity for tetracarboxylate play a key role in crystal growth. • Their magnetic properties were investigated.

  4. New 3-D coordination polymers based on semi-rigid V-shape tetracarboxylates

    NASA Astrophysics Data System (ADS)

    Huang, Jing-Jing; Xu, Wei; Wang, Yan-Ning; Yu, Jie-Hui; Zhang, Ping; Xu, Ji-Qing

    2015-03-01

    Under the hydrothermal conditions, the reactions of transition-metal salts, tetracarboxylic acids and N,N‧-donor ligands yielded three new coordination polymers as [Cu4(fph)2(bpe)3(H2O)2]·2H2O (fph=4,4‧-(hexafluoroisopropylidene)diphthalate, bpe=1,2-bis(pyridyl)ethylene) 1, [Co2(fph)(bpa)2(H2O)2]·3H2O (bpa=1,2-bis(pyridyl)ethylane) 2, and [Ni(H2O)(H2oph)(bpa)] (oph=4,4‧-oxydiphthalate) 3. X-ray single-crystal diffraction analysis revealed that the title three compounds all possess the three-dimensional (3-D) network structures. For compound 1, the fph molecules first link the Cu2+ ions into a two-dimensional (2-D) wave-like layer with a (4,4) topology. The bpe molecules act as the second linkers, extending the 2-D layers into a 3-D network. For compound 2, the fph molecules still serve as the first connectors, linking the Co2+ ions into a one-dimensional (1-D) tube-like chain. Then the bpa molecules propagate the chains into a 3-D (4,4,4)-connected network. In the formation of the 3-D network of compound 3, the oph molecule does not play a role. The bpa molecules as well as the water molecules act as a mixed bridge. Only a kind of 4-connected metal node is observed in compound 3. The magnetic properties of compounds 1-3 were investigated and all exhibit the predominant antiferromegnetic magnetic behaviors.

  5. Hydrothermal reactions: From the synthesis of ligand to new lanthanide 3D-coordination polymers

    SciTech Connect

    Silva, Fausthon Fred da; Fernandes de Oliveira, Carlos Alberto; Lago Falcão, Eduardo Henrique; Gatto, Claudia Cristina; Bezerra da Costa, Nivan; Oliveira Freire, Ricardo; Chojnacki, Jarosław; Alves Júnior, Severino

    2013-11-15

    The organic ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) was synthesized under hydrothermal conditions starting from the iminodiacetic acid and catalyzed by oxalic acid. The X-ray powder diffraction data indicates that the compound crystallizes in the P2{sub 1}/c monoclinic system as reported in the literature. The ligand was also characterized by elemental analysis, magnetic nuclear resonance, infrared spectroscopy and thermogravimetric analysis. Two new coordination networks based on lanthanide ions were obtained with this ligand using hydrothermal reaction. In addition to single-crystal X-ray diffraction, the compounds were characterized by infrared spectroscopy, thermogravimetric analysis, scanning electron microscopy and elemental analysis. Single-crystal XRD showed that the compounds are isostructural, crystallizing in P2{sub 1}/n monoclinic system with chemical formula [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+}(1) and Eu{sup 3+}(2)).The luminescence properties of both compounds were studied. In the compound (1), a broad emission band was observed at 479 nm, redshifted by 70 nm in comparison of the free ligand. In (2), the typical f–f transition was observed with a maximum peak at 618 nm, related with the red emission of the europium ions. Computational methods were performed to simulate the crystal structure of (2). The theoretical calculations of the intensity parameters are in good agreement with the experimental values. - Graphical abstract: Scheme of obtaining the ligand 2,5-piperazinedione-1,4-diacetic acid (H{sub 2}PDA) and two new isostructural 3D-coordination polymers [Ln(PDA){sub 1.5}(H{sub 2}O)](H{sub 2}O){sub 3} (Ln=Gd{sup 3+} and Eu{sup 3+}) by hydrothermal synthesis. Display Omitted - Highlights: • The ligand 2,5-piperazinedione-1,4-diacetic acid was synthetized using the hydrothermic method and characterized. • Two new 3D-coordination polymers with this ligand containing Gd{sup 3+} and Eu{sup 3+} ions

  6. In Vitro Antihepatoma Activity of Novel 3D-Copper Cyanide Supramolecular Coordination Polymers.

    PubMed

    Darwish, Noura M; Sultan, Ahmed S; Malki, Ahmed M; Khamis, Hossam; El-Ziady, Mohamed

    2016-09-01

    This study aimed to investigate the inhibitory effect of novel 3D-organocopper supramolecular coordination polymers (SCPs) on the invasive potential of HepG2 cells. Chemoprevention could represent an important means to inhibit the process of hepatocarcinogenesis. The inhibitory effect of an SCP compound on the proliferation of HepG2 hepatoma cells was evaluated by cell vibility assay. DNA ladder bands were observed by DNA agarose gel electrophoresis. The influence of the SCP compound on phosphorylated ERK1/2, Bcl-2, and β-catenin protein expression of HepG2 cells was analyzed by Western blot. The SCP compound exerted an inhibitory effect on HepG2 cell proliferation in a dose-dependent manner. This inhibitory effect was confirmed by examination of cell morphology and DNA fragmentation. Furthermore, Western blot analysis revealed that phosphorylated ERK1/2 and β-catenin protein expression was inhibited after 24 h of treatment with the SCP compound, and that this event was associated with decreased Bcl-2 expression. We concluded that SCP can effectively inhibit the invasive potential of the ERK signaling pathway in HepG2 cells by altering apoptosis and by inhibiting Bcl-2 and β-catenin, which may play a significant role in this process.

  7. Supramolecular self-assembly of 1D and 3D heterometallic coordination polymers with triruthenium building blocks.

    PubMed

    Chan, Sharon Lai-Fung; Gao, Song; Chui, Stephen Sin-Yin; Shek, Lam; Huang, Jie-Sheng; Che, Chi-Ming

    2012-09-01

    Ru(3)(TSA)(6) (1; H(2)TSA=2-thiosalicylic acid), which bears six peripheral carboxylate groups and was isolated in the form [NEt(4)](1.5)[Ru(3)(HTSA)(2)(TSA)(4)](OAc)(0.5)·3.5H(2)O, serves as a building block for assembly of heterometallic coordination polymers. Treatment of 1 with [Fe(acac)(3)] (acac=acetylacetonate) in EG/H(2)O (EG=ethylene glycol) afforded 1D Ru(3)-Fe coordination polymer 2 by means of the connection of the building block 1 through iron centers. Treatment of 1 with MnCl(2) in EG resulted in the formation of 1D Ru(3)-Mn(3) coordination polymer 3, which features self-assembled polynuclear linking units Mn(3)(OCH(2)CH(2)O)(3), each of which contains a planar Mn(3)O(3) ring. By treating 1 with Gd(NO(3))(3) and NaHCO(3) in EG, a 3D Ru(3)-Gd(6) coordination polymer 4 was obtained; this 3D coordination polymer features unprecedented Gd(6)(μ(3)-CO(3))(4) units. The magnetic properties of 1-4, along with DFT calculations on the electronic structure of 1, are also described.

  8. Coronates, spherical containers, bowl-shaped surfaces, porous 1D-, 2D-, 3D-metallo-coordination polymers, and metallodendrimers.

    PubMed

    Saalfrank, Rolf W; Scheurer, Andreas

    2012-01-01

    Supramolecular coordination cages and polymers bear exceptional advantages over their organic counterparts. They are available in one-pot reactions and in high yields and display physical properties that are generally inaccessible with organic species. Moreover, their weak, reversible, noncovalent bonding interactions facilitate error checking and self-correction. This review emphasizes the achievements in supramolecular coordination container as well as polymer chemistry initiated by serendipity and their materialization based on rational design. The recognition of similarities in the synthesis of different supramolecular assemblies allows prediction of potential structures in related cases. The combination of detailed symmetry considerations with the basic rules of coordination chemistry has only recently allowed for the design of rational strategies for the construction of a variety of nanosized spherical containers, bowls, 1D-, 2D-, and 3D-coordination polymers with specified size and shape. PMID:22160460

  9. Synthesis, structure and fluorescence properties of a novel 3D Sr(II) coordination polymer

    NASA Astrophysics Data System (ADS)

    Tan, Yu-Hui; Xu, Qing; Gu, Zhi-Feng; Gao, Ji-Xing; Wang, Bin; Liu, Yi; Yang, Chang-Shan; Tang, Yun-Zhi

    2016-09-01

    Solvothermal reaction of 2,2‧-bipyridine-5,5‧-dicarboxylic acid (H2bpdc) and SrCl2 affords a novel coordination polymer [Sr(Hbpdc)2]n1. X-ray structure determination shows that 1 exhibits a novel three-dimensional network. The unique Sr II cation sits on a two-fold axis and coordinated by four O-atom donors from four Hbptc- ligands and four N-atom donors from two Hbptc- ligands in distorted dodecahedral geometry. In 1 each Sr II cation connects to six different Hbptc- ligands and each Hbptc- ligand bridges three different Sr II cations which results in the formation of a three-dimensional polymeric structure. Corresponding to the free ligand, the fluorescent emission of complex 1 display remarkable "Einstain" shifts, which may be attributed to the coordination interaction of Sr atoms, thus reduce the rigidity of pyridyl rings.

  10. Heterobimetallic coordination polymers involving 3d metal complexes and heavier transition metals cyanometallates

    SciTech Connect

    Peresypkina, Eugenia V.; Samsonenko, Denis G.; Vostrikova, Kira E.

    2015-04-15

    The results of the first steps in the design of coordination polymers based on penta- and heptacyanometallates of heavier d transitions metals are presented. The 2D structure of the coordination polymers: [(Mn(acacen)){sub 2}Ru(NO)(CN){sub 5}]{sub n} and two complexes composed of different cyanorhenates, [Ni(cyclam)]{sub 2}[ReO(OH)(CN){sub 4}](ClO{sub 4}){sub 2}(H{sub 2}O){sub 1.25} and [Cu(cyclam)]{sub 2}[Re(CN){sub 7}](H{sub 2}O){sub 12}, was confirmed by single crystal XRD study, the rhenium oxidation state having been proved by the magnetic measurements. An amorphism of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} (M=Ni, Cu) polymers does not allow to define strictly their dimensionality and to model anisotropic magnetic behavior of the compounds. However, with high probability a honey-comb like layer structure could be expected for [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2} complexes, studied in this work, because such an arrangement is the most common among the bimetallic assemblies of hexa- and octacyanometallates with a ratio [M(cyclam)]/[M(CN){sub n}]=3/2. For the first time was prepared and fully characterized a precursor (n-Bu{sub 4}N){sub 2}[Ru(NO)(CN){sub 5}], soluble in organic media. - Graphical abstract: The very first results in the design of 2D coordination polymers based on penta- and heptacyanometallates of 4d and5d transitions metals are presented. - Highlights: • Design of coordination polymers based on penta- and heptacyanometallates. • New Ru and Re cyanide based heterobimetallic coordination complexes. • Hydrolysis and ox/red processes involving [Re(CN){sub 7}]{sup 3+} during crystallization. • High magnetic anisotropy of [M(cyclam)]{sub 3}[Re(CN){sub 7}]{sub 2}(H{sub 2}O){sub n}, M=Cu, Ni, complexes.

  11. Phenylthiolate as a sigma- and pi- donor ligand: synthesis of a 3-D organometallic coordination polymer [K2Fe(SPh)4]n.

    PubMed

    Yu, Xiao-Yan; Jin, Guo-Xin; Weng, Lin-Hong

    2004-07-01

    The synthesis and crystal structure of the first mixed-metal organometallic polymer network containing phenylthiolato ligands, [K2Fe(SPh)4]n, are investigated. The simple phenylthiolate acts as a sigma- and pi-donor ligand to give a 3-D potassium iron coordination polymer with both metal-carbon and metal-sulfur coordination interactions.

  12. 3-D coordination polymers based on the tetrathiafulvalenetetracarboxylate (TTF-TC) derivative: synthesis, characterization, and oxidation issues.

    PubMed

    Nguyen, Thi Le Anh; Demir-Cakan, Rezan; Devic, Thomas; Morcrette, Mathieu; Ahnfeldt, Tim; Auban-Senzier, Pascale; Stock, Norbert; Goncalves, Anne-Marie; Filinchuk, Yaroslav; Tarascon, Jean-Marie; Férey, Gérard

    2010-08-01

    The reactivity of the redox-active tetracarboxylic acid derived from the tetrathiafulvalene (TTF-TC)H(4) with alkaline cations (K, Rb, Cs) is reported. The exploration of various experimental parameters (temperature, pH) led to the formation of four crystalline three-dimensional coordination polymers formulated M(2)(TTF-TC)H(2) (M = K, Rb, Cs), denoted MIL-132(K), MIL-133(isostructural K, Rb), and MIL-134(Cs). Thermogravimetric analysis and thermodiffraction show that all of the solids are thermally stable up to 150-200 degrees C in the air. In order to exploit the possibility of oxidation of the organic linker in TTF-based compounds, they were employed as positive electrodes in a classical lithium cell. A highly reversible cyclability was achieved at high current density (10 C) with a reasonable performance (approximately 50 mAh g(-1)). Finally, combined electro-(sub)hydrothermal synthesis was used to prepare a fifth 3-D coordination polymer formulated K(TTF-TC)H(2) (denoted MIL-135(K)), this time not based on the neutral TTF-TC linker but its radical, oxidized form TTF-TC(+*). This solid is less thermally stable than its neutral counterparts but exhibits a semiconducting behavior, with a conductivity at room temperature of about 1 mS cm(-1).

  13. Bringing an "old" biological buffer to coordination chemistry: new 1D and 3D coordination polymers with [Cu(4)(Hbes)(4)] cores for mild hydrocarboxylation of alkanes.

    PubMed

    Kirillov, Alexander M; Coelho, Jaime A S; Kirillova, Marina V; da Silva, M Fátima C Guedes; Nesterov, Dmytro S; Gruenwald, Katrin R; Haukka, Matti; Pombeiro, Armando J L

    2010-07-19

    New water-soluble 1D and 3D Cu(II)/Na coordination polymers 1-3 bearing unprecedented [Cu(4)(Hbes)(4)] cores have been easily generated by aqueous-medium self-assembly and fully characterized, thus opening up the use of the common biological buffer H(3)bes, (HO(3)SCH(2)CH(2))N(CH(2)CH(2)OH)(2), in synthetic coordination chemistry. Apart from representing the first isolated and structurally characterized coordination compounds derived from H(3)bes, 1-3 show a remarkable promoting effect in the mild aqueous-medium hydrocarboxylation, by CO and H(2)O, of gaseous alkanes (C(3)H(8) and n-C(4)H(10)) to the corresponding carboxylic acids, which are obtained in up to 95% yields based on the alkane.

  14. A 3D Heterometallic Coordination Polymer Constructed by Trimeric {NiDy2} Single-Molecule Magnet Units.

    PubMed

    Zhang, Shaowei; Li, Han; Duan, Eryue; Han, Zongsu; Li, Leilei; Tang, Jinkui; Shi, Wei; Cheng, Peng

    2016-02-01

    The solvothermal reaction of DyCl3·6H2O, Ni(NO3)2·6H2O, and H4abtc ligands (H4abtc = 3,3',5,5'-azobenzene-tetracarboxylic acid) in the mixed DMF/H2O solvents (DMF = N,N-dimethylformamide) produced a three-dimensional (3D) Ni(II)-Dy(III) heterometallic coordination polymer (HCP) formulated as {[NH2(CH3)2]2[NiDy2(HCOO)2(abtc)2]}n (1). In 1, Dy(III) and Ni(II) ions interconnect through carboxylic O donors of abtc(4-) ligands to generate a linear trimer "Hourglass"-type {NiDy2} cluster, and the adjacent trinuclear {NiDy2} units are bridged by HCOO(-) groups to give a 1D "ladder" chain, which is further bridged by abtc(4-) ligands to form a new topology and named as "zsw3". Alternating-current magnetic susceptibility results indicate that 1 exhibits frequency-dependent out-of-phase signals with two relaxation processes, which suggests that it shows single-molecule magnet (SMM) behavior and represents the first example by using an SMM cluster as the building block to create a 3D Ni-Ln HCP, to the best of our knowledge. The energy barriers for 1 under a 1000 Oe applied direct current magnetic field are estimated from Arrhenius plots to be 40 and 42 K at higher and lower frequencies, respectively. Additionally, the crystalline structure of 1 could be stable to at least 310 °C, supported by thermogravimetric analyses and in situ variable-temperature powder X-ray diffraction patterns.

  15. Seven 3d-4f coordination polymers of macrocyclic oxamide with polycarboxylates: Syntheses, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Xin, Na; Sun, Ya-Qiu; Zheng, Yan-Feng; Xu, Yan-Yan; Gao, Dong-Zhao; Zhang, Guo-Ying

    2016-11-01

    Seven new 3d-4f heterometallic coordination polymers, [Ln(CuL)2(Hbtca)(btca)(H2O)]·2H2O (Ln = TbIII1, PrIII2, SmIII3, EuIII4, YbIII5), [Nd(NiL)(nip)(Rnip)]·0·25H2O·0.25CH3OH (R= 0.6CH3, 0.4H) 6 and [Nd2(NiL)(nip)3(H2O)]·2H2O 7(CuL or NiL, H2L = 2, 3-dioxo-5, 6, 14, 15-dibenzo-1, 4, 8, 12-tetraazacyclo-pentadeca-7, 13-dien; H2btca = benzotriazole-5-carboxylic acid; H2nip = 5-nitroisophthalic acid) have been synthesized by a solvothermal method and characterized by single-crystal X-ray diffraction. Complexes 1-5 exhibit a double-strand meso-helical chain structures formed by [LnIIICuII2] units via the oxamide and benzotriazole-5-carboxylate bridges, while complex 6 exhibits a four-strand meso-helical chain formed by NdNi unit via the oxamide and 5-nitroisophthalate bridges. Complex 7 consists of a 2D layer framework formed by four-strand meso-helical chain via the nip2- bridges. Moreover, the magnetic properties of them were investigated, and the best-fit analysis of χMT versus T show that the anisotropic contribution of Ln(III) ions (arising from the spin-orbit coupling or the crystal field perturbation) dominates (weak exchange limit) in these complexes(for 3, λ = 214.6 cm-1, zj' = -0.33 cm-1, gav = 1.94; for 5, Δ = 6.98 cm-1, zj' = 1.53 cm-1, gav = 1.85).

  16. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  17. Syntheses, structures and properties of four 3D microporous lanthanide coordination polymers based on 3,5-pyrazoledicarboxylate and oxalate ligands

    SciTech Connect

    Song, Juan; Wang, Ji-Jiang; Hu, Huai-Ming; Wu, Qing-Ran; Xie, Juan; Dong, Fa-Xin; Yang, Meng-Lin; Xue, Gang-Lin

    2014-04-01

    Four three-dimensional lanthanide coordination polymers with reversible structural interconversions, [Ln{sub 2}(Hpdc){sub 2}(C{sub 2}O{sub 4})(H{sub 2}O){sub 4}]{sub n}·2nH{sub 2}O [Ln=Sm (1), Eu (2), Tb (3) and Dy (4)], have been synthesized by hydrothermal reactions of lanthanide nitrates with 3,5-pyrazoledicarboxylic (H{sub 3}pdc) and oxalic acids. It is noteworthy that there is an in situ reaction in 1, in which H{sub 3}pdc was decomposed into (ox){sup 2−} with Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. These compounds are isostructural and crystallized in the monoclinic P2{sub 1}/c space group. The Ln(III) ions are eight-coordinated with dodecahedron coordination geometry. These polyhedra are linked by oxalate groups to form 1D zigzag chain, which are further connected by 3,5-pyrazoledicarboxylate to extend similar 3D frameworks with channels along c-axis in 1–4. These coordination polymers display the characteristic emission bands of the Ln(III) ions in the solid state and possess good thermal stabilities. - Graphical abstract: Four 3D microporous lanthanide coordination polymers with reversible structural interconversion have been synthesized. They exhibit characteristic emission bands of the lanthanide ions and possess great thermal stability. - Highlights: • Four lanthanide coordination polymers have been hydrothermal synthesized. • There is an in situ reaction in 1 in which H{sub 3}pdc was decomposed into (ox){sup 2−} with the Cu(II)–Sm(III) synergistic effect under hydrothermal conditions. • TGA and XRD studies reveal that upon hydration–dehydration, compounds 1–4 undergo a reversible structural interconversion process through a cooling-heating cycle. • Compounds 1–4 exhibit characteristic lanthanide-centered luminescence.

  18. Dehydration induced 2D-to-3D crystal-to-crystal network re-assembly and ferromagnetism tuning within two chiral copper(II)-tartrate coordination polymers.

    PubMed

    Liu, Yen-Hsiang; Lee, Szu-Hsuan; Chiang, Jung-Chun; Chen, Po-Chen; Chien, Po-Hsiu; Yang, Chen-I

    2013-12-28

    The synthesis of two homochiral l-tartrate-copper(II) coordination polymers, [Cu2(C4H4O6)2(H2O)2·xH2O]n (1), and [Cu(C4H4O6)]n (2), under hydrothermal conditions, is reported. Compound 1 adopts a 2D layered network structure with a space group of P21, while compound 2 features a 3D network structure with a space group P21212. Interestingly, the 2D layered structure of compound 1 can undergo a crystal-to-crystal network reassembly, with the formation of the 3D network structure of compound 2 under dehydration conditions. Variable temperature and field magnetic studies reveal the existence of a distinct ferromagnetic interaction between Cu(2+) ions as the result of distinct syn-anti carboxylate bridging coordination modes.

  19. Hydrothermal synthesis of zinc(II)-phosphonate coordination polymers with different dimensionality (0D, 2D, 3D) and dimensionality change in the solid phase (0D→3D) induced by temperature

    SciTech Connect

    Fernández-Zapico, Eva; Montejo-Bernardo, Jose; Fernández-González, Alfonso; García, José R. García-Granda, Santiago

    2015-05-15

    Three new zinc(II) coordination polymers, [Zn(HO{sub 3}PCH{sub 2}CH{sub 2}COO)(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)] (1), [Zn{sub 3}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2})](H{sub 2}O){sub 3.40} (2) and [Zn{sub 5}(HO{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(O{sub 3}PCH{sub 2}CH{sub 2}COO){sub 2}(C{sub 12}H{sub 8}N{sub 2}){sub 4}](H{sub 2}O){sub 0.32} (3), with different structural dimensionality (0D, 2D and 3D, respectively) have been prepared by hydrothermal synthesis, and their structures were determined by single-crystal X-ray diffraction. Compound 1 crystallizes in the monoclinic system (P2{sub 1}/c) forming discrete dimeric units bonded through H-bonds, while compounds 2 and 3 crystallize in the triclinic (P−1) and the monoclinic (C2/c) systems, respectively. Compound 3, showing three different coordination numbers (4, 5 and 6) for the zinc atoms, has also been obtained by thermal treatment of 1 (probed by high-temperature XRPD experiments). The crystalline features of these compounds, related to the coordination environments for the zinc atoms in each structure, provoke the increase of the relative fluorescence for 2 and 3, compared to the free phenanthroline. Thermal analysis (TG and DSC) and XPS studies have been also carried out for all compounds. - Graphical abstract: Three new coordination compounds of zinc with 2-carboxyethylphosphonic acid (H{sub 2}PPA) and phenanthroline have been obtained by hydrothermal synthesis. The crystalline structure depends on the different coordination environments of the zinc atoms (see two comparative Zn{sub 6}-moieties). The influence of the different coordination modes of H{sub 2}PPA with the central atom in all structures have been studied, being found new coordination modes for this ligand. Several compounds show a significant increase in relative fluorescence with respect to the free phenanthroline. - Highlights: • Compounds have been obtained modifying the reaction time and the rate of

  20. Synthesis, characterisation and adsorption properties of a porous copper(II) 3D coordination polymer exhibiting strong binding enthalpy and adsorption capacity for carbon dioxide.

    PubMed

    Eckold, Pierre; Gee, William J; Hill, Matthew R; Batten, Stuart R

    2012-11-21

    The synthesis and characterisation of microporous coordination polymers containing copper(II) or cobalt(II) and 2-(pyridin-4-yl)malonaldehyde (Hpma) is described and the gas adsorption properties evaluated. Single-crystal X-ray structure determinations identified the structures as [M(pma)(2)]·2X (M = Cu, 1; Co, 2; X = MeOH, MeCN), which contain 3D networks with rutile topology and continuous 1D rectangular channels with diameters ranging from 3 to 4 Å. The materials exhibit low BET surface areas of 143 m(2) g(-1), but possess large capacities for carbon dioxide capture of 14.1 wt%. The small pore channels are shown to account for this, delivering a particularly strong binding enthalpy to adsorbed CO(2) of 38 kJ mol(-1), and a very large adsorption capacity relative to the low surface area.

  1. A Step-by-Step Assembly of a 3D Coordination Polymer in the Solid-State by Desolvation and [2+2] Cycloaddition Reactions.

    PubMed

    Medishetty, Raghavender; Tandiana, Rika; Wu, Jien; Bai, Zhaozhi; Du, Yonghua; Vittal, Jagadese J

    2015-08-17

    Two solid-state structural transformations that occur in a stepwise and a controlled manner are described. A combination of desolvation and cycloaddition reactions has been employed to synthesise a 3D coordination polymer (CP) from 1D CP [Cd(bdc)(4-spy)2 (H2 O)]⋅2 H2 O⋅2 DMF (bdc=1,4-benzenedicarboxylate, 4-spy=4-styrylpyridine) presumably via a 2D layered structure, [Cd2 (bdc)2 (4-spy)4 ]. In the absence of single crystals to follow the course of the photocycloaddition reaction, thermogravimetry, XAFS and NOESY NMR experiments were used to propose the formation of layered and pillared layered structures. Further, the present strategy enables us to synthesise new multidimensional architectures that are otherwise inaccessible by the self-assembly process. PMID:26150356

  2. Reversible supra-channel effects: 3D kagome structure and catalysis via a molecular array of 1D coordination polymers.

    PubMed

    Lee, Haeri; Noh, Tae Hwan; Jung, Ok-Sang

    2013-10-14

    Self-assembly of CuX2 (X(-) = ClO4(-) and BF4(-)) with 2,3-bis(nicotinoyloxy)naphthalene yields a 1D loop-chain skeleton. The loop-chains form an ensemble constituting a unique 3D kagome-type structure with both hexagonal and trigonal supra-channels. The unprecedented supra-channel effects on the catalytic oxidation of 3,5-di-tert-butylcatechol to 3,5-di-tert-butylbenzoquinone were investigated.

  3. Mechanochemical and thermal formation of 1H-benzotriazole coordination polymers and complexes of 3d-transition metals with intriguing dielectric properties.

    PubMed

    Brede, Franziska A; Mühlbach, Friedrich; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2016-07-14

    Liquid-assisted grinding (LAG) reactions have been successfully applied to achieve a series of complexes and coordination polymers based on divalent 3d-transition metal chlorides (TM chlorides) and the aromatic ligand 1H-benzotriazole (BtzH). The obtained substances were investigated via single crystal X-ray, powder X-ray determination and simultaneous DTA/TG analysis as model compounds for structural and chemical influences on their dielectric properties. Depending on the synthesis method, different constitutions and structures are observed. Two polymorphous forms of the 1D polymer [MnCl2(BtzH)2] (1 and 2) as well as the complexes [ZnCl2(BtzH)2]·BtzH (3) and [CoCl2(BtzH)2]·BtzH (4) have been obtained as phase-pure bulk substances via the mechanochemical LAG route, and even single crystals are available. For comparison, thermal reactions were also carried out and have led to the formation of the neutral complexes: [CoCl2(BtzH)2] (5) and [CoCl2(BtzH)4]·4BtzH (6), [ZnCl2(BtzH)2] (7) and the anionic complex BtzH2[CoCl3BtzH] (8). In addition, thermal treatment of 3 yields the benzotriazolium salt {(BtzH)2H}Cl (9). The transition metal compounds were additionally analysed regarding their dielectric properties by frequency-dependent as well as temperature-dependent permittivity investigations. It is intriguing that compounds 1 and 3 show remarkably low dielectric constants and loss factors up to 50 °C highlighting them as potential "low-k materials".

  4. 3D visualization of polymer nanostructure

    SciTech Connect

    Werner, James H

    2009-01-01

    Soft materials and structured polymers are extremely useful nanotechnology building blocks. Block copolymers, in particular, have served as 2D masks for nanolithography and 3D scaffolds for photonic crystals, nanoparticle fabrication, and solar cells. F or many of these applications, the precise 3 dimensional structure and the number and type of defects in the polymer is important for ultimate function. However, directly visualizing the 3D structure of a soft material from the nanometer to millimeter length scales is a significant technical challenge. Here, we propose to develop the instrumentation needed for direct 3D structure determination at near nanometer resolution throughout a nearly millimeter-cubed volume of a soft, potentially heterogeneous, material. This new capability will be a valuable research tool for LANL missions in chemistry, materials science, and nanoscience. Our approach to soft materials visualization builds upon exciting developments in super-resolution optical microscopy that have occurred over the past two years. To date, these new, truly revolutionary, imaging methods have been developed and almost exclusively used for biological applications. However, in addition to biological cells, these super-resolution imaging techniques hold extreme promise for direct visualization of many important nanostructured polymers and other heterogeneous chemical systems. Los Alamos has a unique opportunity to lead the development of these super-resolution imaging methods for problems of chemical rather than biological significance. While these optical methods are limited to systems transparent to visible wavelengths, we stress that many important functional chemicals such as polymers, glasses, sol-gels, aerogels, or colloidal assemblies meet this requirement, with specific examples including materials designed for optical communication, manipulation, or light-harvesting Our Research Goals are: (1) Develop the instrumentation necessary for imaging materials

  5. Mechanochemical Synthesis of 3d Transition-Metal-1,2,4-Triazole Complexes as Precursors for Microwave-Assisted and Thermal Conversion to Coordination Polymers with a High Influence on the Dielectric Properties.

    PubMed

    Brede, Franziska A; Heine, Johanna; Sextl, Gerhard; Müller-Buschbaum, Klaus

    2016-02-18

    The complexes [MCl2 (TzH)4] (M=Mn (1), Fe (2); TzH=1,2,4-1H-triazole) and [ZnCl2 (TzH)2] (3) have been obtained by mechanochemical reactions of the corresponding divalent metal chloride and 1,2,4-1H-triazole. They were successfully used as precursors for the formation of coordination polymers either by a microwave-assisted reaction or by thermal conversion. For manganese, the conversion directly yielded 1∞ [MnCl2 TzH] (4), whereas for the iron-containing precursor, 1∞ [FeCl2 TzH] (6), was formed via the intermediate coordination polymer 1∞ [FeCl(TzH)2]Cl (5). For cobalt, the isotypic polymer 1∞ [CoCl(TzH)2]Cl (7) was obtained, but exclusively by a microwave-induced reaction directly from CoCl2 . The crystal structures were resolved from single crystals and powders. The dielectric properties were determined and revealed large differences in permittivity between the precursor complexes and the rigid chain-like coordination polymers. Whereas the monomeric complexes exhibit very different dielectric behaviour, depending on the transition metal, from "low-k" to "high-k" with the permittivity ranging from 4.3 to >100 for frequencies of up to 1000 Hz, the coordination polymers and complexes with strong intermolecular interactions are all close to "low-k" materials with very low dielectric constants up to 50 °C. Therefore, the conversion procedures can be used to deliberately influence the dielectric properties from complex to polymer and for different 3d transition-metal ions.

  6. Assembly of 1D, 2D and 3D lanthanum(iii) coordination polymers with perchlorinated benzenedicarboxylates: positional isomeric effect, structural transformation and ring-opening polymerisation of glycolide.

    PubMed

    Chen, Sheng-Chun; Dai, An-Qi; Huang, Kun-Lin; Zhang, Zhi-Hui; Cui, Ai-Jun; He, Ming-Yang; Chen, Qun

    2016-02-28

    Utilizing a series of positional isomers of tetrachlorinated benzenedicarboxylic acid ligands, seven La(iii)-based coordination polymers were solvothermally synthesized and structurally characterized. Their structural dimensionalities varying from 1D double chains, to the 2D 3,4,5-connected network, to 3D 6-connected pcu topological nets are only governed by the positions of carboxyl groups on the tetrachlorinated benzene ring. A comprehensive analysis and comparison reveals that the size of the carbonyl solvent molecules (DMF, DEF, DMA, and NMP) can affect the coordination geometries around the La(iii) ions, the coordination modes of carboxylate groups, the packing arrangements, and the void volumes of the overall crystal lattices. One as-synthesized framework further shows an unprecedented structural transformation from a 3D 6-connected network to a 3D 4,5-connected net through the dissolution and reformation pathway in water, suggesting that these easily hydrolyzed lanthanide complexes may serve as precursors to produce new high-dimensional frameworks. The bulk solvent-free melt polymerisation of glycolide utilizing these La(iii) complexes as initiators has been reported herein for the first time. All complexes were found to promote the polymerization of glycolide over a temperature range of 200 to 220 °C, producing poly(glycolic acid) (PGA) with a molecular weight up to 93,280. Under the same experimental conditions, the different catalytic activities for these complexes may result from their structural discrepancy.

  7. Assembly of 1D, 2D and 3D lanthanum(iii) coordination polymers with perchlorinated benzenedicarboxylates: positional isomeric effect, structural transformation and ring-opening polymerisation of glycolide.

    PubMed

    Chen, Sheng-Chun; Dai, An-Qi; Huang, Kun-Lin; Zhang, Zhi-Hui; Cui, Ai-Jun; He, Ming-Yang; Chen, Qun

    2016-02-28

    Utilizing a series of positional isomers of tetrachlorinated benzenedicarboxylic acid ligands, seven La(iii)-based coordination polymers were solvothermally synthesized and structurally characterized. Their structural dimensionalities varying from 1D double chains, to the 2D 3,4,5-connected network, to 3D 6-connected pcu topological nets are only governed by the positions of carboxyl groups on the tetrachlorinated benzene ring. A comprehensive analysis and comparison reveals that the size of the carbonyl solvent molecules (DMF, DEF, DMA, and NMP) can affect the coordination geometries around the La(iii) ions, the coordination modes of carboxylate groups, the packing arrangements, and the void volumes of the overall crystal lattices. One as-synthesized framework further shows an unprecedented structural transformation from a 3D 6-connected network to a 3D 4,5-connected net through the dissolution and reformation pathway in water, suggesting that these easily hydrolyzed lanthanide complexes may serve as precursors to produce new high-dimensional frameworks. The bulk solvent-free melt polymerisation of glycolide utilizing these La(iii) complexes as initiators has been reported herein for the first time. All complexes were found to promote the polymerization of glycolide over a temperature range of 200 to 220 °C, producing poly(glycolic acid) (PGA) with a molecular weight up to 93,280. Under the same experimental conditions, the different catalytic activities for these complexes may result from their structural discrepancy. PMID:26811117

  8. Balance and coordination after viewing stereoscopic 3D television

    PubMed Central

    Read, Jenny C. A.; Simonotto, Jennifer; Bohr, Iwo; Godfrey, Alan; Galna, Brook; Rochester, Lynn; Smulders, Tom V.

    2015-01-01

    Manufacturers and the media have raised the possibility that viewing stereoscopic 3D television (S3D TV) may cause temporary disruption to balance and visuomotor coordination. We looked for evidence of such effects in a laboratory-based study. Four hundred and thirty-three people aged 4–82 years old carried out tests of balance and coordination before and after viewing an 80 min movie in either conventional 2D or stereoscopic 3D, while wearing two triaxial accelerometers. Accelerometry produced little evidence of any change in body motion associated with S3D TV. We found no evidence that viewing the movie in S3D causes a detectable impairment in balance or in visuomotor coordination. PMID:26587261

  9. New coordination polymers from 1D chain, 2D layer to 3D framework constructed from 1,2-phenylenediacetic acid and 1,3-bis(4-pyridyl)propane flexible ligands

    SciTech Connect

    Xin Lingyun; Liu Guangzhen; Wang Liya

    2011-06-15

    The hydrothermal reactions of Cd, Zn, or Cu(II) acetate salts with H{sub 2}PHDA and BPP flexible ligands afford three new coordination polymers, including [Cd(PHDA)(BPP)(H{sub 2}O)]{sub n}(1), [Zn(PHDA)(BPP)]{sub n}(2), and [Cu{sub 2}(PHDA){sub 2}(BPP)]{sub n}(3) (H{sub 2}PHDA=1,2-phenylenediacetic acid, BPP=1,3-bis(4-pyridyl)propane). The single-crystal X-ray diffractions reveal that all three complexes feature various metal carboxylate subunits extended further by the BPP ligands to form a diverse range of structures, displaying a remarked structural sensitivity to metal(II) cation. Complex 1 containing PHDA-bridged binuclear cadmium generates 1D double-stranded chain, complex 2 results in 2D{yields}2D interpenetrated (4,4) grids, and complex 3 displays a 3D self-penetrated framework with 4{sup 8}6{sup 6}8 rob topology. In addition, fluorescent analyses show that both 1 and 2 exhibit intense blue-violet photoluminescence in the solid state. - Graphical Abstract: We show diverse supramolecular frameworks based on the same ligands (PHDA and BPP) and different metal acetate salts including 1D double-stranded chain, 2D {yields} 2D twofold interpenetrated layer, and 3D self-penetration networks. Highlights: > Three metal(II = 2 /* ROMAN ) coordination polymers were synthesized using H{sub 2}PHDA and BPP. > The diversity of structures show a remarked sensitivity to metal(II) center. > Complexes show the enhancement of fluorescence compared to that of free ligand.

  10. Measurement system for 3-D foot coordinates and parameters

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Li, Yunhui; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-12-01

    The 3-D foot-shape measurement system based on laser-line-scanning principle and the model of the measurement system were presented. Errors caused by nonlinearity of CCD cameras and caused by installation can be eliminated by using the global calibration method for CCD cameras, which based on nonlinear coordinate mapping function and the optimized method. A local foot coordinate system is defined with the Pternion and the Acropodion extracted from the boundaries of foot projections. The characteristic points can thus be located and foot parameters be extracted automatically by the local foot coordinate system and the related sections. Foot measurements for about 200 participants were conducted and the measurement results for male and female participants were presented. 3-D foot coordinates and parameters measurement makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers.

  11. Modelling Polymer Deformation during 3D Printing

    NASA Astrophysics Data System (ADS)

    McIlroy, Claire; Olmsted, Peter

    Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.

  12. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges. PMID:24901707

  13. Two-dimensional 3d-4f heterometallic coordination polymers: syntheses, crystal structures, and magnetic properties of six new Co(II)-Ln(III) compounds.

    PubMed

    Díaz-Gallifa, Pau; Fabelo, Oscar; Pasán, Jorge; Cañadillas-Delgado, Laura; Lloret, Francesc; Julve, Miguel; Ruiz-Pérez, Catalina

    2014-06-16

    Six new heterometallic cobalt(II)-lanthanide(III) complexes of formulas [Ln(bta)(H2O)2]2[Co(H2O)6]·10H2O [Ln = Nd(III) (1) and Eu(III) (2)] and [Ln2Co(bta)2(H2O)8]n·6nH2O [Ln = Eu(III) (3), Sm(III) (4), Gd(III) (5), and Tb(III) (6)] (H4bta = 1,2,4,5-benzenetretracaboxylic acid) have been synthesized and characterized via single-crystal X-ray diffraction. 1 and 2 are isostructural compounds with a structure composed of anionic layers of [Ln(bta)(H2O)2]n(n-) sandwiching mononuclear [Co(H2O)6](2+) cations plus crystallization water molecules, which are interlinked by electrostatic forces and hydrogen bonds, leading to a supramolecular three-dimensional network. 3-6 are also isostructural compounds, and their structure consists of neutral layers of formula [Ln2Co(bta)2(H2O)8]n and crystallization water molecules, which are connected through hydrogen bonds to afford a supramolecular three-dimensional network. Heterometallic chains formed by the regular alternation of two nine-coordinate lanthanide(III) polyhedra [Ln(III)O9] and one compressed cobalt(II) octahedron [Co(II)O6] along the crystallographic c-axis are cross-linked by bta ligands within each layer of 3-6. Magnetic susceptibility measurements on polycrystalline samples for 3-6 have been carried out in the temperature range of 2.0-300 K. The magnetic behavior of these types of Ln(III)-Co(II) complexes, which have been modeled by using matrix dagonalization techniques, reveals the lack of magnetic coupling for 3 and 4, and the occurrence of weak antiferromagnetic interactions within the Gd(III)-Gd(III) (5) and Tb(III)-Tb(III) (6) dinuclear units through the exchange pathway provided by the double oxo(carboxylate) and double syn-syn carboxylate bridges.

  14. Polymer-Enriched 3D Graphene Foams for Biomedical Applications.

    PubMed

    Wang, Jun Kit; Xiong, Gordon Minru; Zhu, Minmin; Özyilmaz, Barbaros; Castro Neto, Antonio Helio; Tan, Nguan Soon; Choong, Cleo

    2015-04-22

    Graphene foams (GFs) are versatile nanoplatforms for biomedical applications because of their excellent physical, chemical, and mechanical properties. However, the brittleness and inflexibility of pristine GF (pGF) are some of the important factors restricting their widespread application. Here, a chemical-vapor-deposition-assisted method was used to synthesize 3D GFs, which were subsequently spin-coated with polymer to produce polymer-enriched 3D GFs with high conductivity and flexibility. Compared to pGF, both poly(vinylidene fluoride)-enriched GF (PVDF/GF) and polycaprolactone-enriched GF (PCL/GF) scaffolds showed improved flexibility and handleability. Despite the presence of the polymers, the polymer-enriched 3D GF scaffolds retained high levels of electrical conductivity because of the presence of microcracks that allowed for the flow of electrons through the material. In addition, polymer enrichment of GF led to an enhancement in the formation of calcium phosphate (Ca-P) compounds when the scaffolds were exposed to simulated body fluid. Between the two polymers tested, PCL enrichment of GF resulted in a higher in vitro mineralization nucleation rate because the oxygen-containing functional group of PCL had a higher affinity for Ca-P deposition and formation compared to the polar carbon-fluorine (C-F) bond in PVDF. Taken together, our current findings are a stepping stone toward future applications of polymer-enriched 3D GFs in the treatment of bone defects as well as other biomedical applications. PMID:25822669

  15. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    PubMed

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure.

  16. 3D Printing of Biocompatible Supramolecular Polymers and their Composites.

    PubMed

    Hart, Lewis R; Li, Siwei; Sturgess, Craig; Wildman, Ricky; Jones, Julian R; Hayes, Wayne

    2016-02-10

    A series of polymers capable of self-assembling into infinite networks via supramolecular interactions have been designed, synthesized, and characterized for use in 3D printing applications. The biocompatible polymers and their composites with silica nanoparticles were successfully utilized to deposit both simple cubic structures, as well as a more complex twisted pyramidal feature. The polymers were found to be not toxic to a chondrogenic cell line, according to ISO 10993-5 and 10993-12 standard tests and the cells attached to the supramolecular polymers as demonstrated by confocal microscopy. Silica nanoparticles were then dispersed within the polymer matrix, yielding a composite material which was optimized for inkjet printing. The hybrid material showed promise in preliminary tests to facilitate the 3D deposition of a more complex structure. PMID:26766139

  17. Cyano-bridged coordination polymer hydrogel-derived Sn-Fe binary oxide nanohybrids with structural diversity: from 3D, 2D, to 2D/1D and enhanced lithium-storage performance

    NASA Astrophysics Data System (ADS)

    Zhang, Weiyu; Zhu, Xiaoshu; Chen, Xuguang; Zhou, Yiming; Tang, Yawen; Ding, Liangxin; Wu, Ping

    2016-05-01

    Metal oxide nanohybrids with uniform dimensions and controlled architectures possess unique compositional and structural superiorities, and thus harbor promising potential for a series of applications in energy, catalysis, and sensing systems. Herein, we propose a facile, general, and scalable cyano-bridged coordination polymer hydrogel-derived thermal-oxidation route for the construction of main-group metal and transition-metal heterometallic oxide nanohybrids with controlled constituents and architectures. The formation of Sn-Fe binary oxide nanohybrids has been demonstrated as an example by using cyano-bridged Sn(iv)-Fe(ii) bimetallic coordination polymer hydrogels (i.e., SnCl4-K4Fe(CN)6 cyanogels, Sn-Fe cyanogels) as precursors. The physicochemical properties of Sn-Fe cyanogels with different Sn/Fe ratios have been systematically examined, and it is found that perfect Sn-Fe cyanogels without unbridged Sn(iv) or Fe(ii) can be formed with Sn/Fe ratios from 2 : 1 to 1 : 2. More importantly, the simple adjustment of Sn/Fe ratios in the Sn-Fe cyanogel precursors can realize flexible dimensional control of the Sn-Fe binary oxide nanohybrids, and 2D/1D SnO2-Fe2O3 hierarchitectures, 2D SnO2-Fe2O3 nanosheets, and 3D SnO2-Fe2O3 networks have been synthesized using the Sn-Fe 1 : 2, Sn-Fe 1 : 1, and Sn-Fe 2 : 1 cyanogels as precursors, respectively. To demonstrate their compositional/structural superiorities and potential applications, the lithium-storage utilization of the Sn-Fe binary oxide nanohybrids has been selected as an objective application, and the nanohybrids exhibit Sn/Fe ratio-dependent lithium-storage performance. As a representative example, the 2D/1D SnO2-Fe2O3 hierarchitectures manifest markedly enhanced Li-storage performance in terms of reversible capacities and cycling stability in comparison with their constituent units, i.e., bare SnO2 nanosheets and Fe2O3 nanorods. The proposed cyanogel-derived thermal-oxidation strategy could open up new

  18. Optical 3D-coordinate measuring system using structured light

    NASA Astrophysics Data System (ADS)

    Schreiber, Wolfgang; Notni, Gunther; Kuehmstedt, Peter; Gerber, Joerg; Kowarschik, Richard M.

    1996-09-01

    The paper is aimed at the description of an optical shape measuring technique based on a consistent principle using fringe projection technique. We demonstrate a real 3D- coordinate measuring system where the sale of coordinates is given only by the illumination-structures. This method has the advantages that the aberration of the observing system and the depth-dependent imaging scale have no influence on the measuring accuracy and, moreover, the measurements are independent of the position of the camera with respect to the object under test. Furthermore, it is shown that the influence of specular effects of the surface on the measuring result can be eliminated. Moreover, we developed a very simple algorithm to calibrate the measuring system. The measuring examples show that a measuring accuracy of 10-4 (i.e. 10 micrometers ) within an object volume of 100 X 100 X 70 mm3 is achievable. Furthermore, it is demonstrated that the set of coordinate values can be processed in CNC- and CAD-systems.

  19. Towards 3-D laser nano patterning in polymer optical materials

    NASA Astrophysics Data System (ADS)

    Scully, Patricia J.; Perrie, Walter

    2015-03-01

    Progress towards 3-D subsurface structuring of polymers using femtosecond lasers is presented. Highly localised refractive index changes can be generated deep in transparent optical polymers without pre doping for photosensitisation or post processing by annealing. Understanding the writing conditions surpasses the limitations of materials, dimensions and chemistry, to facilitate unique structures entirely formed by laser-polymeric interactions to overcome materials, dimensional, refractive index and wavelength constraints.. Numerical aperture, fluence, temporal pulselength, wavelength and incident polarisation are important parameters to be considered, in achieving the desired inscription. Non-linear aspects of multiphoton absorption, plasma generation, filamentation and effects of incident polarisation on the writing conditions will be presented.

  20. 3D structuring of biocompatible and biodegradable polymers via stereolithography.

    PubMed

    Gill, Andrew A; Claeyssens, Frederik

    2011-01-01

    The production of user-defined 3D microstructures from biocompatible and biodegradable materials via free-form fabrication is an important step to create off-the-shelf technologies to be used as tissue engineering scaffolds. One method of achieving this is the microstereolithography of block copolymers, allowing high resolution microstructuring of materials with tuneable physical properties. A versatile protocol for the production and photofunctionalisation of pre-polymers for microstereolithography is presented along with a discussion of the possible microstereolithography set-ups and previous work in the field.

  1. 3D holographic polymer photonic crystal for superprism application

    NASA Astrophysics Data System (ADS)

    Chen, Jiaqi; Jiang, Wei; Chen, Xiaonan; Wang, Li; Zhang, Sasa; Chen, Ray T.

    2007-02-01

    Photonic crystal based superprism offers a new way to design new optical components for beam steering and DWDM application. 3D photonic crystals are especially attractive as they could offer more control of the light beam based on the needs. A polygonal prism based holographic fabrication method has been demonstrated for a three-dimensional face-centered-cubic (FCC)-type submicron polymer photonic crystal using SU8 as the photo-sensitive material. Therefore antivibration equipment and complicated optical alignment system are not needed and the requirement for the coherence of the laser source is relaxed compared with the traditional holographic setup. By changing the top-cut prism structure, the polarization of the laser beam, the exposure and development conditions we can achieve different kinds of triclinic or orthorhombic photonic crystals on demand. Special fabrication treatments have been introduced to ensure the survivability of the fabricated large area (cm2) nano-structures. Scanning electron microscopy and diffraction results proved the good uniformity of the fabricated structures. With the proper design of the refraction prism we have achieved a partial bandgap for S+C band (1460-1565nm) in the [111] direction. The transmission and reflection spectra obtained by Fourier transform infrared spectroscopy (FTIR) are in good agreement with simulated band structure. The superprism effects around 1550nm wavelength for the fabricated 3D polymer photonic crystal have been theoretically calculated and such effects can be used for beam steering purpose.

  2. Studies of the structural and magnetic properties of an unsymmetrical ligand 1,2,4-benzenetricarboxylic acid based chiral 3-D trinickel coordination polymer as an alkali base-influenced hydrothermal reaction product

    SciTech Connect

    Peng, Yi-Ru; Chien, Po-Hsiu; Chung, Huey-Ting; Pan, Pei-Yun; Liu, Yen-Hsiang Yang, En-Che

    2014-04-01

    The reaction of 1,2,4-benzenetricarboxylic acid (H{sub 3}btc), as a ligand, under pH-controlled hydrothermal conditions with nickel salts leads to the formation of a coordination polymer of (CsNi{sub 3}(OH)(H{sub 2}O){sub 3}[C{sub 6}H{sub 3}(CO{sub 2}){sub 3}]{sub 2}·3H{sub 2}O){sub n} (1). The subunit of compound 1 contains a hydroxide- and carboxylate-bridged trinickel clusters that are linked by an unsymmetrical organic carboxylate spacer to form a chiral three-dimensional anionic framework, in which cesium cations and guest water molecules are located in one-dimensional channels. The presence of a hydroxide ion serves both as a deprotonation agent and a cation source during the hydrothermal reaction, thus permitting the extent of deprotonation of the unsymmetrical ligand H{sub 3}btc to be controlled, which is essential for the successful formation of compound 1. The magnetic properties of compound 1 were analyzed. Both dc and ac magnetic susceptibility as well as reduced magnetization measurements confirmed the spin-frustration nature of 1. - Graphical abstract: A chiral three-dimension MOF compound and its magnetic properties are described. - Highlights: • A new chiral three-dimension coordination polymer were made. • An un-symmetric bridging ligand was used. • Alkali metal ion Cs{sup +} was incorporated in the structure. • Magnetic properties were studied.

  3. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2‧,3‧-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    NASA Astrophysics Data System (ADS)

    Liu, Guocheng; Chen, Yongqiang; Wang, Xiuli; Chen, Baokuan; Lin, Hongyan

    2009-03-01

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H 2O) 2][Cd(Dpq)(1,8-NDC)]·2H 2O ( 1), [Cd(Dpq)(1,4-NDC)(H 2O)] ( 2), and [Cd(Dpq)(2,6-NDC)] ( 3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H 2NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H 2NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H 2NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and π- π stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer π- π stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature.

  4. Ligand-controlled assembly of Cd(II) coordination polymers based on mixed ligands of naphthalene-dicarboxylate and dipyrido[3,2-d:2',3'-f]quinoxaline: From 0D+1D cocrystal, 2D rectangular network (4,4), to 3D PtS-type architecture

    SciTech Connect

    Liu Guocheng; Chen Yongqiang; Wang Xiuli Chen Baokuan; Lin Hongyan

    2009-03-15

    Three novel Cd(II) coordination polymers, namely, [Cd(Dpq)(1,8-NDC)(H{sub 2}O){sub 2}][Cd(Dpq)(1,8-NDC)].2H{sub 2}O (1), [Cd(Dpq)(1,4-NDC)(H{sub 2}O)] (2), and [Cd(Dpq)(2,6-NDC)] (3) have been obtained from hydrothermal reactions of cadmium(II) nitrate with the mixed ligands dipyrido [3,2-d:2',3'-f]quinoxaline (Dpq) and three structurally related naphthalene-dicarboxylate ligands [1,8-naphthalene-dicarboxylic acid (1,8-H{sub 2}NDC), 1,4-naphthalene-dicarboxylic acid (1,4-H{sub 2}NDC), and 2,6-naphthalene-dicarboxylic acid (2,6-H{sub 2}NDC)]. Single-crystal X-ray diffraction analysis reveals that the three polymers exhibit novel structures due to different naphthalene-dicarboxylic acid. Compound 1 is a novel cocrystal of left- and right-handed helical chains and binuclear complexes and ultimately packed into a 3D supramolecular structure through hydrogen bonds and {pi}-{pi} stacking interactions. Compound 2 shows a 2D rectangular network (4,4) bridged by 1,4-NDC with two kinds of coordination modes and ultimately packed into a 3D supramolecular structure through inter-layer {pi}-{pi} stacking interactions. Compound 3 is a new 3D coordination polymer with distorted PtS-type network. In addition, the title compounds exhibit blue/green emission in solid state at room temperature. - Graphical abstract: Three novel Cd(II) compounds have been synthesized under hydrothermal conditions exhibiting a systematic variation of architecture by the employment of three structurally related naphthalene-dicarboxylate ligands.

  5. Functional polymers by two-photon 3D lithography

    NASA Astrophysics Data System (ADS)

    Infuehr, Robert; Pucher, Niklas; Heller, Christian; Lichtenegger, Helga; Liska, Robert; Schmidt, Volker; Kuna, Ladislav; Haase, Anja; Stampfl, Jürgen

    2007-12-01

    In the presented work, two-photon 3D lithography and selective single-photon photopolymerization in a prefabricated polydimethylsiloxane matrix is presented as an approach with potential applicability of waveguide writing in 3D by two-photon polymerization. Photopolymers based on acrylate chemistry were used in order to evaluate the optical capabilities of the available two-photon system. Several photoinitiators, tailored for two-photon absorption, were tested in a mixture of trimethylolpropane triacrylate and ethoxylated trimethylolpropane triacrylate. Best results were obtained with a recently synthesized diynone-based photoinitiator. Feature resolutions in the range of 300 nm were achieved. Due to the cross-conjugated nature of that donor-π-acceptor-π-donor system a high two-photon absorption activity was achieved. Therefore, a resin mixture containing only 0.025 wt% of photoinitiator was practical for structuring by two-photon polymerization. The required initiator content was therefore a factor of 100 lower than in traditional one-photon lithography. The aim of the second part of this work was to fabricate optical waveguides by selectively irradiating a polymer network, which was swollen by a monomer. The monomer was polymerized by conventional single-photon polymerization and the uncured monomer was removed by evaporation at elevated temperatures. This treatment leads to a local change in refractive index. Refractive index changes in the range of Δ n = 0.01 (Δ n/ n = 0.7%) were achieved, which is sufficient for structuring waveguides for optoelectronic applications.

  6. 3D print of polymer bonded rare-earth magnets, and 3D magnetic field scanning with an end-user 3D printer

    NASA Astrophysics Data System (ADS)

    Huber, C.; Abert, C.; Bruckner, F.; Groenefeld, M.; Muthsam, O.; Schuschnigg, S.; Sirak, K.; Thanhoffer, R.; Teliban, I.; Vogler, C.; Windl, R.; Suess, D.

    2016-10-01

    3D print is a recently developed technique, for single-unit production, and for structures that have been impossible to build previously. The current work presents a method to 3D print polymer bonded isotropic hard magnets with a low-cost, end-user 3D printer. Commercially available isotropic NdFeB powder inside a PA11 matrix is characterized, and prepared for the printing process. An example of a printed magnet with a complex shape that was designed to generate a specific stray field is presented, and compared with finite element simulation solving the macroscopic Maxwell equations. For magnetic characterization, and comparing 3D printed structures with injection molded parts, hysteresis measurements are performed. To measure the stray field outside the magnet, the printer is upgraded to a 3D magnetic flux density measurement system. To skip an elaborate adjusting of the sensor, a simulation is used to calibrate the angles, sensitivity, and the offset of the sensor. With this setup, a measurement resolution of 0.05 mm along the z-axes is achievable. The effectiveness of our calibration method is shown. With our setup, we are able to print polymer bonded magnetic systems with the freedom of having a specific complex shape with locally tailored magnetic properties. The 3D scanning setup is easy to mount, and with our calibration method we are able to get accurate measuring results of the stray field.

  7. Reading PDB: perception of molecules from 3D atomic coordinates.

    PubMed

    Urbaczek, Sascha; Kolodzik, Adrian; Groth, Inken; Heuser, Stefan; Rarey, Matthias

    2013-01-28

    The analysis of small molecule crystal structures is a common way to gather valuable information for drug development. The necessary structural data is usually provided in specific file formats containing only element identities and three-dimensional atomic coordinates as reliable chemical information. Consequently, the automated perception of molecular structures from atomic coordinates has become a standard task in cheminformatics. The molecules generated by such methods must be both chemically valid and reasonable to provide a reliable basis for subsequent calculations. This can be a difficult task since the provided coordinates may deviate from ideal molecular geometries due to experimental uncertainties or low resolution. Additionally, the quality of the input data often differs significantly thus making it difficult to distinguish between actual structural features and mere geometric distortions. We present a method for the generation of molecular structures from atomic coordinates based on the recently published NAOMI model. By making use of this consistent chemical description, our method is able to generate reliable results even with input data of low quality. Molecules from 363 Protein Data Bank (PDB) entries could be perceived with a success rate of 98%, a result which could not be achieved with previously described methods. The robustness of our approach has been assessed by processing all small molecules from the PDB and comparing them to reference structures. The complete data set can be processed in less than 3 min, thus showing that our approach is suitable for large scale applications.

  8. Viewing 3D TV over two months produces no discernible effects on balance, coordination or eyesight.

    PubMed

    Read, Jenny C A; Godfrey, Alan; Bohr, Iwo; Simonotto, Jennifer; Galna, Brook; Smulders, Tom V

    2016-08-01

    With the rise in stereoscopic 3D media, there has been concern that viewing stereoscopic 3D (S3D) content could have long-term adverse effects, but little data are available. In the first study to address this, 28 households who did not currently own a 3D TV were given a new TV set, either S3D or 2D. The 116 members of these households all underwent tests of balance, coordination and eyesight, both before they received their new TV set, and after they had owned it for 2 months. We did not detect any changes which appeared to be associated with viewing 3D TV. We conclude that viewing 3D TV does not produce detectable effects on balance, coordination or eyesight over the timescale studied. Practitioner Summary: Concern has been expressed over possible long-term effects of stereoscopic 3D (S3D). We looked for any changes in vision, balance and coordination associated with normal home S3D TV viewing in the 2 months after first acquiring a 3D TV. We find no evidence of any changes over this timescale.

  9. Viewing 3D TV over two months produces no discernible effects on balance, coordination or eyesight

    PubMed Central

    Read, Jenny C.A.; Godfrey, Alan; Bohr, Iwo; Simonotto, Jennifer; Galna, Brook; Smulders, Tom V.

    2016-01-01

    Abstract With the rise in stereoscopic 3D media, there has been concern that viewing stereoscopic 3D (S3D) content could have long-term adverse effects, but little data are available. In the first study to address this, 28 households who did not currently own a 3D TV were given a new TV set, either S3D or 2D. The 116 members of these households all underwent tests of balance, coordination and eyesight, both before they received their new TV set, and after they had owned it for 2 months. We did not detect any changes which appeared to be associated with viewing 3D TV. We conclude that viewing 3D TV does not produce detectable effects on balance, coordination or eyesight over the timescale studied. Practitioner Summary: Concern has been expressed over possible long-term effects of stereoscopic 3D (S3D). We looked for any changes in vision, balance and coordination associated with normal home S3D TV viewing in the 2 months after first acquiring a 3D TV. We find no evidence of any changes over this timescale. PMID:26758965

  10. 3D fiber probe for multi sensor coordinate measurement

    NASA Astrophysics Data System (ADS)

    Ettemeyer, A.

    2011-12-01

    Increasing manufacturing accuracy requirements enforce the development of innovative and highly sensitive measuring tools. Especially for measurement with sub micrometer accuracy, the sensor principle has to be chosen appropriately for each measurement surface. Modern multi sensor coordinate measurements systems allow automatic selection of different sensor heads to measure different areas or properties of a sample. As example, different types of optical sensors as well as tactile sensors can be used with the same machine. In this paper we describe different principles of optical sensors used in multi sensor coordinate measurement systems as well as a new approach for tactile measurement with sub micrometer accuracy. A special fiber probe has been developed. The tip of the fiber probe is formed as a sphere. The lateral position of this sphere is observed by a microscope optics and can be determined to a fraction of a micrometer. Additionally, a novel optical set-up now even allows the determination of the z-position of the fiber tip with sub micrometer accuracy. For this purpose we use an interferometric set-up. The light of laser is coupled into the optical fiber. The light, exiting the fiber tip is collected by a microscope optics and superposed with a reference wave, generated directly from the laser. The result is an interferometric signal which is recorded by the camera and processed by a computer. With this set-up, the zdisplacement of the fiber sphere can be measured with an accuracy of a fraction of the used laser wavelength.

  11. Fused filament 3D printing of ionic polymer-metal composites (IPMCs)

    NASA Astrophysics Data System (ADS)

    Carrico, James D.; Traeden, Nicklaus W.; Aureli, Matteo; Leang, Kam K.

    2015-12-01

    This paper describes a new three-dimensional (3D) fused filament additive manufacturing (AM) technique in which electroactive polymer filament material is used to build soft active 3D structures, layer by layer. Specifically, the unique actuation and sensing properties of ionic polymer-metal composites (IPMCs) are exploited in 3D printing to create electroactive polymer structures for application in soft robotics and bio-inspired systems. The process begins with extruding a precursor material (non-acid Nafion precursor resin) into a thermoplastic filament for 3D printing. The filament is then used by a custom-designed 3D printer to manufacture the desired soft polymer structures, layer by layer. Since at this stage the 3D-printed samples are not yet electroactive, a chemical functionalization process follows, consisting in hydrolyzing the precursor samples in an aqueous solution of potassium hydroxide and dimethyl sulfoxide. Upon functionalization, metal electrodes are applied on the samples through an electroless plating process, which enables the 3D-printed IPMC structures to be controlled by voltage signals for actuation (or to act as sensors). This innovative AM process is described in detail and the performance of 3D printed IPMC actuators is compared to an IPMC actuator fabricated from commercially available Nafion sheet material. The experimental results show comparable performance between the two types of actuators, demonstrating the potential and feasibility of creating functional 3D-printed IPMCs.

  12. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2012-12-04

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  13. Porphyrin coordination polymer nanospheres and nanorods

    DOEpatents

    Wang, Zhongchun; Shelnutt, John A.; Medforth, Craig J.

    2013-09-10

    A porphyrin coordination polymer nanostructure comprising a network of pyridyl porphyrin molecules and coordinating metal ions coordinatively bound through the pyridyl groups. In some embodiments, the porphyrins are metalloporphyrins. A variety of nanostructures are formed by the network polymer, including nanospheres, polygonal nanostructures, nanorods, and nanofibers, depending on a variety of factors including coordination metal ion, porphyrin type, metal of the metalloporphyrin, and degree of agitation during nanostructure formation. Reduction of coordinating metal ions may be used to form metal nanoparticles on the coordination polymer nanostructure.

  14. Highly accurate video coordinate generation for automatic 3-D trajectory calculation

    NASA Astrophysics Data System (ADS)

    Macleod, A.; Morris, Julian R. W.; Lyster, M.

    1990-08-01

    Most TV-based motion analysis systems, including the original version of 1/ICON, produce 3D coordinates by combining pre-tracked 2D trajectories from each camera. The latest version of the system, VICON-VX, uses totally automatic 3D trajectory calculation using the Geometric Self Identification (GSI) technique. This is achieved by matching unsorted 2D image coordinates from all cameras, looking for intersecting marker 'rays', and matching intersections into 3D trajectories. Effective GSI, with low false-positive intersection rates is only possible with highly accurate 2D data, produced by stable, high-resolution coordinate generators, and incorporating appropriate compensation for lens distortions. Data capture software and hardware have been completely redesigned to achieve this accuracy, together with higher throughput rates and better resistance to errors. In addition, a new ADC facility has been incorporated to allow very high speed analog data acquisition, synchronised with video measurements.

  15. Infrared imaging of the polymer 3D-printing process

    NASA Astrophysics Data System (ADS)

    Dinwiddie, Ralph B.; Kunc, Vlastimil; Lindal, John M.; Post, Brian; Smith, Rachel J.; Love, Lonnie; Duty, Chad E.

    2014-05-01

    Both mid-wave and long-wave IR cameras are used to measure various temperature profiles in thermoplastic parts as they are printed. Two significantly different 3D-printers are used in this study. The first is a small scale commercially available Solidoodle 3 printer, which prints parts with layer thicknesses on the order of 125μm. The second printer used is a "Big Area Additive Manufacturing" (BAAM) 3D-printer developed at Oak Ridge National Laboratory. The BAAM prints parts with a layer thicknesses of 4.06 mm. Of particular interest is the temperature of the previously deposited layer as the new hot layer is about to be extruded onto it. The two layers are expected have a stronger bond if the temperature of the substrate layer is above the glass transition temperature. This paper describes the measurement technique and results for a study of temperature decay and substrate layer temperature for ABS thermoplastic with and without the addition of chopped carbon fibers.

  16. Polymer physics of chromosome large-scale 3D organisation

    NASA Astrophysics Data System (ADS)

    Chiariello, Andrea M.; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-07-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  17. Polymer physics of chromosome large-scale 3D organisation

    PubMed Central

    Chiariello, Andrea M.; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding. PMID:27405443

  18. Polymer physics of chromosome large-scale 3D organisation.

    PubMed

    Chiariello, Andrea M; Annunziatella, Carlo; Bianco, Simona; Esposito, Andrea; Nicodemi, Mario

    2016-01-01

    Chromosomes have a complex architecture in the cell nucleus, which serves vital functional purposes, yet its structure and folding mechanisms remain still incompletely understood. Here we show that genome-wide chromatin architecture data, as mapped by Hi-C methods across mammalian cell types and chromosomes, are well described by classical scaling concepts of polymer physics, from the sub-Mb to chromosomal scales. Chromatin is a complex mixture of different regions, folded in the conformational classes predicted by polymer thermodynamics. The contact matrix of the Sox9 locus, a region linked to severe human congenital diseases, is derived with high accuracy in mESCs and its molecular determinants identified by the theory; Sox9 self-assembles hierarchically in higher-order domains, involving abundant many-body contacts. Our approach is also applied to the Bmp7 locus. Finally, the model predictions on the effects of mutations on folding are tested against available data on a deletion in the Xist locus. Our results can help progressing new diagnostic tools for diseases linked to chromatin misfolding.

  19. A new neural net approach to robot 3D perception and visuo-motor coordination

    NASA Technical Reports Server (NTRS)

    Lee, Sukhan

    1992-01-01

    A novel neural network approach to robot hand-eye coordination is presented. The approach provides a true sense of visual error servoing, redundant arm configuration control for collision avoidance, and invariant visuo-motor learning under gazing control. A 3-D perception network is introduced to represent the robot internal 3-D metric space in which visual error servoing and arm configuration control are performed. The arm kinematic network performs the bidirectional association between 3-D space arm configurations and joint angles, and enforces the legitimate arm configurations. The arm kinematic net is structured by a radial-based competitive and cooperative network with hierarchical self-organizing learning. The main goal of the present work is to demonstrate that the neural net representation of the robot 3-D perception net serves as an important intermediate functional block connecting robot eyes and arms.

  20. Optical absorption enhancement in 3D nanofibers coated on polymer substrate for photovoltaic devices.

    PubMed

    Kiani, Amirkianoosh; Venkatakrishnan, Krishnan; Tan, Bo

    2015-06-01

    Recent research in the field of photovoltaics has shown that polymer solar cells have great potential to provide low-cost, lightweight and flexible electronic devices to harvest solar energy. In this paper, we propose a new method for the generation of three-dimensional nanofibers coated on polymer substrate induced by femtosecond laser pulses. In this new method, a thin layer of polymer is irradiated by megahertz femtosecond laser pulses under ambient conditions, and a thin fibrous layer is generated on top of the polymer substrate. This method is single step; no additional materials are added, and the layers of the three-dimensional (3D) polymer nanofibrous structures are grown on top of the substrate after laser irradiation. Light spectroscopy results show significant enhancement of light absorption in the generated 3D nanofibrous layers of polymer. Finally, we suggest how to maximize the light trapping and optical absorption of the generated nanofiber cells by optimizing the laser parameters. PMID:26072881

  1. Tailorable 3D microfabrication for photonic applications: two-polymer microtransfer molding (proceedings paper)

    SciTech Connect

    Lee, Jae-Hwang; kim, Chang-Hwan; Constant, Kristen; Ho, Kai-Ming

    2006-02-28

    For photonic devices, extending beyond the planar regime to the third dimension can allow a higher degree of integration and novel functionalities for applications such as photonic crystals and integrated optical circuits. Although conventional photolithography can achieve both high quality and structural control, it is still costly and slow for three-dimensional (3D) fabrication. Moreover, as diverse functional polymers emerge, there is potential to develop new techniques for quick and economical fabrication of 3D structures. We present a 3D microfabrication technique based on the soft lithographic technique, called two-polymer microtransfer molding (2P-{micro}TM) to accomplish low cost, high structural fidelity and tailorable 3D microfabrication for polymers. Using 2P-{micro}TM, highly layered polymeric microstructures are achievable by stacking planar structures layer by layer. For increased processing control, the surface chemistry of the polymers is characterized as a function of changing ultraviolet dosage to optimize yield in layer transfer. We discuss the application of the 2P-{micro}TM to build polymer templates for woodpile photonic crystals, and demonstrate methods for converting the polymer templates to dielectric and metallic photonic crystal structures. Finally, we will show that 2P-{micro}TM is promising for fabricating 3D polymeric optical waveguides.

  2. Bi-Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    NASA Astrophysics Data System (ADS)

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-01

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn-Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi2O(1,3,5-BTC)2]n (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi4O2(COO)12 clusters which are further connected to Mn(COO)6 fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of {413.62}{413.68}{416.65}{418.610}{422.614}{43} corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones.

  3. Two photon polymerization lithography for 3D microfabrication of single wall carbon nanotube/polymer composites

    NASA Astrophysics Data System (ADS)

    Ushiba, Shota; Shoji, Satoru; Kuray, Preeya; Masui, Kyoko; Kono, Junichiro; Kawata, Satoshi

    2013-03-01

    Two photon polymerization (TPP) lithography has been established as a powerful tool to develop 3D fine structures of polymer materials, opening up a wide range applications such as micro-electromechanical systems (MEMS). TPP lithography is also promising for 3D micro fabrication of nanocomposites embedded with nanomaterials such as metal nanoparticles. Here, we make use of TPP lithography to fabricate 3D micro structural single wall carbon nanotube (SWCNT)/polymer composites. SWCNTs exhibit remarkable mechanical, electrical, thermal and optical properties, which leads to enhance performances of polymers by loading SWCNTs. SWCNTs were uniformly dispersed in an acrylate UV-curable monomer including a few amounts of photo-initiator and photo-sensitizer. A femtosecond pulsed laser emitting at 780 nm was focused onto the resin, resulting in the photo-polymerization of a nanometric volume of the resin through TPP. By scanning the focus spot three dimensionally, arbitrary 3D structures were created. The spatial resolution of the fabrication was sub-micrometer, and SWCNTs were embedded in the sub-micro sized structures. The fabrication technique enables one to fabricate 3D micro structural SWCNT/polymer composites into desired shapes, and thus the technique should open up the further applications of SWCNT/polymer composites such as micro sized photomechanical actuators.

  4. Measuring a hidden coordinate: Rate-exchange kinetics from 3D correlation functions

    NASA Astrophysics Data System (ADS)

    Berg, Mark A.; Darvin, Jason R.

    2016-08-01

    Nonexponential kinetics imply the existence of at least one slow variable other than the observable, that is, the system has a "hidden" coordinate. We develop a simple, but general, model that allows multidimensional correlation functions to be calculated for these systems. Homogeneous and heterogeneous mechanisms are both included, and slow exchange of the rates is allowed. This model shows that 2D and 3D correlation functions of the observable measure the distribution and kinetics of the hidden coordinate controlling the rate exchange. Both the mean exchange time and the shape of the exchange relaxation are measurable. However, complications arise because higher correlation functions are sums of multiple "pathways," each of which measures different dynamics. Only one 3D pathway involves exchange dynamics. Care must be used to extract exchange dynamics without contamination from other processes.

  5. L- and D-[LnZn(IN)3(C2H4O2)]n (Ln = Eu, Sm, and Gd): Chiral Enantiomerically 3D 3d-4f Coordination Polymers Constructed by Interesting Butterfly-like Building Units and -[Ln-O-Zn]n- Helices.

    PubMed

    He, Xingxiang; Liu, Ying; Lv, Yun; Dong, Yayu; Hu, Gonghao; Zhou, Shuai; Xu, Yan

    2016-03-01

    A total of six three-dimensional chiral coordination compounds L- and D-[LnZn(IN)3(C2H4O2)]n (Ln = Eu, Sm, and Gd; HIN = isonicotinic acid) have been successfully synthesized under hydrothermal conditions without any chiral auxiliary and characterized by IR, TG, elemental analyses, and solid-state circular dichroism spectra. The structures of 1-6 were determined by single-crystal X-ray structural analysis, which shows that L-[LnZn(IN)3(C2H4O2)]n (Ln = Eu (1), Sm (2), and Gd (3)) crystallize in space group P6522 and are levogyrate. The chiral frameworks of L-[LnZn(IN)3(C2H4O2)]n are constructed from L-helical Ln-O-Zn cluster chains, while adjacent L-type helical -[Ln-O-Zn]n- chains are connected through IN(-) ligands. D-[LnZn(IN)3(C2H4O2)]n (Ln = Eu (4), Sm (5), and Gd (6)) crystallize in space group P6122, and their chiral frameworks consist of D-helical Ln-O-Zn cluster chains. The observed second-harmonic generation efficiencies of [EuZn(IN)3(C2H4O2)]n, [SmZn(IN)3(C2H4O2)]n, and [GdZn(IN)3(C2H4O2)]n are 0.4, 0.3, and 0.3 times that of urea, respectively. We also studied luminescence spectra and luminescence lifetimes of 1 and 2. The luminescence lifetimes of 1 and 2 are 1.18 ms, and 29.6 μs, respectively.

  6. Documentation of program AFTBDY to generate coordinate system for 3D after body using body fitted curvilinear coordinates, part 1

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program AFTBDY generates a body fitted curvilinear coordinate system for a wedge curved after body. This wedge curved after body is being used in an experimental program. The coordinate system generated by AFTBDY is used to solve 3D compressible N.S. equations. The coordinate system in the physical plane is a cartesian x,y,z system, whereas, in the transformed plane a rectangular xi, eta, zeta system is used. The coordinate system generated is such that in the transformed plane coordinate spacing in the xi, eta, zeta direction is constant and equal to unity. The physical plane coordinate lines in the different regions are clustered heavily or sparsely depending on the regions where physical quantities to be solved for by the N.S. equations have high or low gradients. The coordinate distribution in the physical plane is such that x stays constant in eta and zeta direction, whereas, z stays constant in xi and eta direction. The desired distribution in x and z is input to the program. Consequently, only the y-coordinate is solved for by the program AFTBDY.

  7. Pattern Transformation of Heat-Shrinkable Polymer by Three-Dimensional (3D) Printing Technique

    PubMed Central

    Zhang, Quan; Yan, Dong; Zhang, Kai; Hu, Gengkai

    2015-01-01

    A significant challenge in conventional heat-shrinkable polymers is to produce controllable microstructures. Here we report that the polymer material fabricated by three-dimensional (3D) printing technique has a heat-shrinkable property, whose initial microstructure can undergo a spontaneous pattern transformation under heating. The underlying mechanism is revealed by evaluating internal strain of the printed polymer from its fabricating process. It is shown that a uniform internal strain is stored in the polymer during the printing process and can be released when heated above its glass transition temperature. Furthermore, the internal strain can be used to trigger the pattern transformation of the heat-shrinkable polymer in a controllable way. Our work provides insightful ideas to understand a novel mechanism on the heat-shrinkable effect of printed material, but also to present a simple approach to fabricate heat-shrinkable polymer with a controllable thermo-structural response. PMID:25757881

  8. 3D optical printing of piezoelectric nanoparticle-polymer composite materials.

    PubMed

    Kim, Kanguk; Zhu, Wei; Qu, Xin; Aaronson, Chase; McCall, William R; Chen, Shaochen; Sirbuly, Donald J

    2014-10-28

    Here we demonstrate that efficient piezoelectric nanoparticle-polymer composite materials can be optically printed into three-dimensional (3D) microstructures using digital projection printing. Piezoelectric polymers were fabricated by incorporating barium titanate (BaTiO3, BTO) nanoparticles into photoliable polymer solutions such as polyethylene glycol diacrylate and exposing to digital optical masks that could be dynamically altered to generate user-defined 3D microstructures. To enhance the mechanical-to-electrical conversion efficiency of the composites, the BTO nanoparticles were chemically modified with acrylate surface groups, which formed direct covalent linkages with the polymer matrix under light exposure. The composites with a 10% mass loading of the chemically modified BTO nanoparticles showed piezoelectric coefficients (d(33)) of ∼ 40 pC/N, which were over 10 times larger than composites synthesized with unmodified BTO nanoparticles and over 2 times larger than composites containing unmodified BTO nanoparticles and carbon nanotubes to boost mechanical stress transfer efficiencies. These results not only provide a tool for fabricating 3D piezoelectric polymers but lay the groundwork for creating highly efficient piezoelectric polymer materials via nanointerfacial tuning.

  9. Motion error analysis of the 3D coordinates of airborne lidar for typical terrains

    NASA Astrophysics Data System (ADS)

    Peng, Tao; Lan, Tian; Ni, Guoqiang

    2013-07-01

    A motion error model of 3D coordinates is established and the impact on coordinate errors caused by the non-ideal movement of the airborne platform is analyzed. The simulation results of the model show that when the lidar system operates at high altitude, the influence on the positioning errors derived from laser point cloud spacing is small. For the model the positioning errors obey simple harmonic vibration whose amplitude envelope gradually reduces with the increase of the vibration frequency. When the vibration period number is larger than 50, the coordinate errors are almost uncorrelated with time. The elevation error is less than the plane error and in the plane the error in the scanning direction is less than the error in the flight direction. Through the analysis of flight test data, the conclusion is verified.

  10. Rapid 3D µ-printing of polymer optical whispering-gallery mode resonators.

    PubMed

    Wu, Jushuai; Guo, Xin; Zhang, A Ping; Tam, Hwa-Yaw

    2015-11-16

    A novel microfabrication method for rapid printing of polymer optical whispering-gallery mode (WGM) resonators is presented. A 3D micro-printing technology based on high-speed optical spatial modulator (SLM) and high-power UV light source is developed to fabricate suspended-disk WGM resonator array using SU-8 photoresist. The optical spectral responses of the fabricated polymer WGM resonators were measured with a biconically tapered optical fiber. Experimental results reveal that the demonstrated method is very flexible and time-saving for rapid fabrication of complex polymer WGM resonators. PMID:26698452

  11. Adsorption Kinetics in Nanoscale Porous Coordination Polymers

    SciTech Connect

    Nune, Satish K.; Thallapally, Praveen K.; McGrail, Benard Peter; Annapureddy, Harsha V. R.; Dang, Liem X.; Mei, Donghai; Karri, Naveen; Alvine, Kyle J.; Olszta, Matthew J.; Arey, Bruce W.; Dohnalkova, Alice

    2015-10-07

    Nanoscale porous coordination polymers were synthesized using simple wet chemical method. The effect of various polymer surfactants on colloidal stability and shape selectivity was investigated. Our results suggest that the nanoparticles exhibited significantly improved adsorption kinetics compared to bulk crystals due to decreased diffusion path lengths and preferred crystal plane interaction.

  12. Robust 3D face landmark localization based on local coordinate coding.

    PubMed

    Song, Mingli; Tao, Dacheng; Sun, Shengpeng; Chen, Chun; Maybank, Stephen J

    2014-12-01

    In the 3D facial animation and synthesis community, input faces are usually required to be labeled by a set of landmarks for parameterization. Because of the variations in pose, expression and resolution, automatic 3D face landmark localization remains a challenge. In this paper, a novel landmark localization approach is presented. The approach is based on local coordinate coding (LCC) and consists of two stages. In the first stage, we perform nose detection, relying on the fact that the nose shape is usually invariant under the variations in the pose, expression, and resolution. Then, we use the iterative closest points algorithm to find a 3D affine transformation that aligns the input face to a reference face. In the second stage, we perform resampling to build correspondences between the input 3D face and the training faces. Then, an LCC-based localization algorithm is proposed to obtain the positions of the landmarks in the input face. Experimental results show that the proposed method is comparable to state of the art methods in terms of its robustness, flexibility, and accuracy. PMID:25296404

  13. Bi–Mn mixed metal organic oxide: A novel 3d-6p mixed metal coordination network

    SciTech Connect

    Shi, Fa-Nian; Rosa Silva, Ana; Bian, Liang

    2015-05-15

    A new terminology of metal organic oxide (MOO) was given a definition as a type of coordination polymers which possess the feature of inorganic connectivity between metals and the direct bonded atoms and show 1D, 2D or 3D inorganic sub-networks. One such compound was shown as an example. A 3d-6p (Mn–Bi. Named MOOMnBi) mixed metals coordination network has been synthesized via hydrothermal method. The new compound with the molecular formula of [MnBi{sub 2}O(1,3,5-BTC){sub 2}]{sub n} (1,3,5-BTC stands for benzene-1,3,5-tricarboxylate) was characterized via single crystal X-ray diffraction technique that revealed a very interesting 3-dimensional (3D) framework with Bi{sub 4}O{sub 2}(COO){sub 12} clusters which are further connected to Mn(COO){sub 6} fragments into a 2D MOO. The topology study indicates an unprecedented topological type with the net point group of (4{sup 13}.6{sup 2})(4{sup 13}.6{sup 8})(4{sup 16}.6{sup 5})(4{sup 18}.6{sup 10})(4{sup 22}.6{sup 14})(4{sup 3}) corresponding to 3,6,7,7,8,9-c hexa-nodal net. MOOMnBi shows catalytic activity in the synthesis of (E)-α,β-unsaturated ketones. - Graphical abstract: This metal organic framework (MOF) is the essence of a 2D metal organic oxide (MOO). - Highlights: • New concept of metal organic oxide (MOO) was defined and made difference from metal organic framework. • New MOO of MOOMnBi was synthesized by hydrothermal method. • Crystal structure of MOOMnBi was determined by single crystal X-ray analysis. • The catalytic activity of MOOMnBi was studied showing reusable after 2 cycles.

  14. Comparison of clinical bracket point registration with 3D laser scanner and coordinate measuring machine

    PubMed Central

    Nouri, Mahtab; Farzan, Arash; Baghban, Ali Reza Akbarzadeh; Massudi, Reza

    2015-01-01

    OBJECTIVE: The aim of the present study was to assess the diagnostic value of a laser scanner developed to determine the coordinates of clinical bracket points and to compare with the results of a coordinate measuring machine (CMM). METHODS: This diagnostic experimental study was conducted on maxillary and mandibular orthodontic study casts of 18 adults with normal Class I occlusion. First, the coordinates of the bracket points were measured on all casts by a CMM. Then, the three-dimensional coordinates (X, Y, Z) of the bracket points were measured on the same casts by a 3D laser scanner designed at Shahid Beheshti University, Tehran, Iran. The validity and reliability of each system were assessed by means of intraclass correlation coefficient (ICC) and Dahlberg's formula. RESULTS: The difference between the mean dimension and the actual value for the CMM was 0.0066 mm. (95% CI: 69.98340, 69.99140). The mean difference for the laser scanner was 0.107 ± 0.133 mm (95% CI: -0.002, 0.24). In each method, differences were not significant. The ICC comparing the two methods was 0.998 for the X coordinate, and 0.996 for the Y coordinate; the mean difference for coordinates recorded in the entire arch and for each tooth was 0.616 mm. CONCLUSION: The accuracy of clinical bracket point coordinates measured by the laser scanner was equal to that of CMM. The mean difference in measurements was within the range of operator errors. PMID:25741826

  15. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    PubMed Central

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-01-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3−/I−) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization. PMID:26961256

  16. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites

    NASA Astrophysics Data System (ADS)

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-03-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3‑/I‑) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization.

  17. Pt-Free Counter Electrodes with Carbon Black and 3D Network Epoxy Polymer Composites.

    PubMed

    Kang, Gyeongho; Choi, Jongmin; Park, Taiho

    2016-01-01

    Carbon black (CB) and a 3D network epoxy polymer composite, representing dual functions for conductive corrosion protective layer (CCPL) and catalytic layer (CL) by the control of CB weight ratio against polymer is developed. Our strategy provides a proper approach which applies high catalytic ability and chemical stability of CB in corrosive triiodide/iodide (I3(-)/I(-)) redox electrolyte system. The CB and a 3D network epoxy polymer composite coated on the stainless steel (SS) electrode to alternate counter electrodes in dye sensitized solar cells (DSSCs). A two-step spray pyrolysis process is used to apply a solution containing epoxy monomers and a polyfunctional amine hardener with 6 wt% CB to a SS substrate, which forms a CCPL. Subsequently, an 86 wt% CB is applied to form a CL. The excellent catalytic properties and corrosion protective properties of the CB and 3D network epoxy polymer composites produce efficient counter electrodes that can replace fluorine-doped tin oxide (FTO) with CCPL/SS and Pt/FTO with CL/CCPL/SS in DSSCs. This approach provides a promising approach to the development of efficient, stable, and cheap solar cells, paving the way for large-scale commercialization. PMID:26961256

  18. Implementation of 3D wave forcing terms in the HYbrid Coordinate Ocean Model

    NASA Astrophysics Data System (ADS)

    Ody, Cédric; Filipot, Jean-François; Pichon, Annick; Lathuilière, Cyril; Baraille, Rémy

    2013-04-01

    Waves may influence the circulation in coastal regions at temporal and spatial scales that are larger than the periods and wavelengths of the waves respectively. The setup of the mean sea surface level or longshore currents are two examples of coastal processes that are generated by the mean effects of waves. Although simple models have been shown to provide reasonable estimates of setup and mean currents, the prediction of such wave-induced mechanisms has been improved since the recent development of theories on 3D wave-current interactions. Amongst these theories, the works of Ardhuin et al. (2008) and Mc Williams et al. (2004) give rise to forcing terms that may be used in existing circulation models. Under some assumptions on the shear of the mean current, the two previous works derive similar expressions for the wave forcing terms. In this talk, we will detail and discuss the implementation of these 3D terms in the HYbrid Coordinate Ocean Model (HYCOM, Bleck 2002). We will focus in particular on the hybrid and layered features of the code. The hybrid coordinate, which allows to use distinct vertical coordinates in a same simulation, requires to reformulate the wave forcing terms with a generalised vertical coordinate. Then, these terms must be averaged on each layer of the water column. Two academic tests are investigated to validate the numerical implementation : the gently sloping bottom of Ardhuin (2008) and the plane beach of Haas and Warner (2009). Forcing terms are calculated with simple numerical methods under classical assumptions on conservation of wave properties. The results obtained with distinct configurations are shown to agree with the analytical or numerical known solutions. To conclude, we will discuss the impact of wetting and drying in numerical simulations.

  19. Reconstruction and Visualization of Coordinated 3D Cell Migration Based on Optical Flow.

    PubMed

    Kappe, Christopher P; Schütz, Lucas; Gunther, Stefan; Hufnagel, Lars; Lemke, Steffen; Leitte, Heike

    2016-01-01

    Animal development is marked by the repeated reorganization of cells and cell populations, which ultimately determine form and shape of the growing organism. One of the central questions in developmental biology is to understand precisely how cells reorganize, as well as how and to what extent this reorganization is coordinated. While modern microscopes can record video data for every cell during animal development in 3D+t, analyzing these videos remains a major challenge: reconstruction of comprehensive cell tracks turned out to be very demanding especially with decreasing data quality and increasing cell densities. In this paper, we present an analysis pipeline for coordinated cellular motions in developing embryos based on the optical flow of a series of 3D images. We use numerical integration to reconstruct cellular long-term motions in the optical flow of the video, we take care of data validation, and we derive a LIC-based, dense flow visualization for the resulting pathlines. This approach allows us to handle low video quality such as noisy data or poorly separated cells, and it allows the biologists to get a comprehensive understanding of their data by capturing dynamic growth processes in stills. We validate our methods using three videos of growing fruit fly embryos.

  20. 3D printed sensing patches with embedded polymer optical fibre Bragg gratings

    NASA Astrophysics Data System (ADS)

    Zubel, Michal G.; Sugden, Kate; Saez-Rodriguez, D.; Nielsen, K.; Bang, O.

    2016-05-01

    The first demonstration of a polymer optical fibre Bragg grating (POFBG) embedded in a 3-D printed structure is reported. Its cyclic strain performance and temperature characteristics are examined and discussed. The sensing patch has a repeatable strain sensitivity of 0.38 pm/μepsilon. Its temperature behaviour is unstable, with temperature sensitivity values varying between 30-40 pm/°C.

  1. Facile 3D Metal Electrode Fabrication for Energy Applications via Inkjet Printing and Shape Memory Polymer

    NASA Astrophysics Data System (ADS)

    Roberts, R. C.; Wu, J.; Hau, N. Y.; Chang, Y. H.; Feng, S. P.; Li, D. C.

    2014-11-01

    This paper reports on a simple 3D metal electrode fabrication technique via inkjet printing onto a thermally contracting shape memory polymer (SMP) substrate. Inkjet printing allows for the direct patterning of structures from metal nanoparticle bearing liquid inks. After deposition, these inks require thermal curing steps to render a stable conductive film. By printing onto a SMP substrate, the metal nanoparticle ink can be cured and substrate shrunk simultaneously to create 3D metal microstructures, forming a large surface area topology well suited for energy applications. Polystyrene SMP shrinkage was characterized in a laboratory oven from 150-240°C, resulting in a size reduction of 1.97-2.58. Silver nanoparticle ink was patterned into electrodes, shrunk, and the topology characterized using scanning electron microscopy. Zinc-Silver Oxide microbatteries were fabricated to demonstrate the 3D electrodes compared to planar references. Characterization was performed using 10M potassium hydroxide electrolyte solution doped with zinc oxide (57g/L). After a 300s oxidation at 3Vdc, the 3D electrode battery demonstrated a 125% increased capacity over the reference cell. Reference cells degraded with longer oxidations, but the 3D electrodes were fully oxidized for 4 hours, and exhibited a capacity of 5.5mA-hr/cm2 with stable metal performance.

  2. EB1-recruited microtubule +TIP complexes coordinate protrusion dynamics during 3D epithelial remodeling

    PubMed Central

    Gierke, Sarah; Wittmann, Torsten

    2012-01-01

    SUMMARY Background Epithelial remodeling, in which apical-basal polarized cells switch to a migratory phenotype, plays a central role in development and disease of multicellular organisms. Although dynamic microtubules (MTs) are required for directed migration on flat surfaces, how MT dynamics are controlled or contribute to epithelial remodeling in a more physiological three-dimensional (3D) environment is not understood. We use confocal live cell imaging to analyze MT function and dynamics during 3D epithelial morphogenesis and remodeling of polarized Madin-Darby canine kidney (MDCK) epithelial cells that undergo partial epithelial-to-mesenchymal transition (EMT) in response to hepatocyte growth factor (HGF). Results We find that HGF treatment increases MT growth rate before morphological changes are evident, and that large numbers of MTs grow into HGF-induced cell extensions independent of centrosome reorientation. Using lentivirus-mediated shRNA, we demonstrate that EB1, an adaptor protein that mediates recruitment of numerous other +TIP proteins to growing MT plus ends, is required for this HGF-induced MT reorganization. We further show that protrusion and adhesion dynamics are disorganized, and that vesicular trafficking to the tip of HGF-induced cell extensions is disrupted in EB1-depleted cells. Conclusions We conclude that EB1-mediated interactions with growing MTs are important to coordinate cell shape changes and directed migration into the surrounding extracellular matrix during epithelial remodeling in a physiological 3D environment. In contrast, EB1 is not required for the establishment or maintenance of apical-basal cell polarity, suggesting different functions of +TIPs and MTs in different types of cell polarity. PMID:22483942

  3. A coordinate transformation method for calculating the 3D light intensity distribution in ICF hohlraum

    NASA Astrophysics Data System (ADS)

    Lin, Zhili; Li, Xiaoyan; Zhao, Kuixia; Chen, Xudong; Chen, Mingyu; Pu, Jixiong

    2016-06-01

    For an inertial confinement fusion (ICF) system, the light intensity distribution in the hohlraum is key to the initial plasma excitation and later laser-plasma interaction process. Based on the concept of coordinate transformation of spatial points and vector, we present a robust method with a detailed procedure that makes the calculation of the three dimensional (3D) light intensity distribution in hohlraum easily. The method is intuitive but powerful enough to solve the complex cases of random number of laser beams with arbitrary polarization states and incidence angles. Its application is exemplified in the Shenguang III Facility (SG-III) that verifies its effectiveness and it is useful for guiding the design of hohlraum structure parameter.

  4. Measuring large aspherics using a commercially available 3D-coordinate measuring machine

    NASA Astrophysics Data System (ADS)

    Otto, Wolfgang; Matthes, Axel; Schiehle, Heinz

    2000-07-01

    A CNC-controlled precision measuring machine is a very powerful tool in the optical shop not only to determine the surface figure, but also to qualify the radius of curvature and conic constant of aspherics. We used a commercially available 3D-coordinate measuring machine (CMM, ZEISS UPMC 850 CARAT S-ACC) to measure the shape of the GEMINI 1-m convex secondary mirrors at different lapping and polishing stages. To determine the measuring accuracy we compared the mechanical measurements with the results achieved by means of an interferometrical test setup. The data obtained in an early stage of polishing were evaluated in Zernike polynomials which show a very good agreement. The deviation concerning long wave rotational symmetrical errors was 20 nm rms, whereas the accuracy measuring of mid spatial frequency deviations was limited to about 100 nm rms.

  5. The light pen of a no guide 3D-coordinate measuring system

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaofang; Jiang, Chengzhi; Xue, Tongze; Li, Cuiying; Wang, Biru

    2006-11-01

    With the advantages of simple structure, high speed, and high accuracy, a no guide 3D-coordinate measuring technique that using the photoelectric detectors with intersection converge imaging has the predominance in workshop measurement. Its measuring head is made in a pen shape with several light sources, which is called as the light pen. In this paper, the structure design and self-calibration of light pen system are analyzed, and the identifying way for multi-sources on light pen is present. The Laser-balls are offered to be the light-sources while the principles as well as fabrication are introduced. The light pen can insert and touch the points of inner surface in a deep hole. So the localization of CMM can be avoided by using the light pen with simple and deft structure.

  6. 3D fabrication of all-polymer conductive microstructures by two photon polymerization.

    PubMed

    Kurselis, Kestutis; Kiyan, Roman; Bagratashvili, Victor N; Popov, Vladimir K; Chichkov, Boris N

    2013-12-16

    A technique to fabricate electrically conductive all-polymer 3D microstructures is reported. Superior conductivity, high spatial resolution and three-dimensionality are achieved by successive application of two-photon polymerization and in situ oxidative polymerization to a bi-component formulation, containing a photosensitive host matrix and an intrinsically conductive polymer precursor. By using polyethylene glycol diacrylate (PEG-DA) and 3,4-ethylenedioxythiophene (EDOT), the conductivity of 0.04 S/cm is reached, which is the highest value for the two-photon polymerized all-polymer microstructures to date. The measured electrical conductivity dependency on the EDOT concentration indicates percolation phenomenon and a three-dimensional nature of the conductive pathways. Tunable conductivity, biocompatibility, and environmental stability are the characteristics offered by PEG-DA/EDOT blends which can be employed in biomedicine, MEMS, microfluidics, and sensorics.

  7. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques. PMID:27273436

  8. 3D Printing: 3D Printing of Shape Memory Polymers for Flexible Electronic Devices (Adv. Mater. 22/2016).

    PubMed

    Zarek, Matt; Layani, Michael; Cooperstein, Ido; Sachyani, Ela; Cohn, Daniel; Magdassi, Shlomo

    2016-06-01

    On page 4449, D. Cohn, S. Magdassi, and co-workers describe a general and facile method based on 3D printing of methacrylated macromonomers to fabricate shape-memory objects that can be used in flexible and responsive electrical circuits. Such responsive objects can be used in the fabrication of soft robotics, minimal invasive medical devices, sensors, and wearable electronics. The use of 3D printing overcomes the poor processing characteristics of thermosets and enables complex geometries that are not easily accessible by other techniques.

  9. A coordinate-free method for the analysis of 3D facial change

    NASA Astrophysics Data System (ADS)

    Mao, Zhili; Siebert, Jan Paul; Cockshott, W. Paul; Ayoub, Ashraf Farouk

    2004-05-01

    Euclidean Distance Matrix Analysis (EDMA) is widely held as the most important coordinate-free method by which to analyze landmarks. It has been used extensively in the field of medical anthropometry and has already produced many useful results. Unfortunately this method renders little information regarding the surface on which these points are located and accordingly is inadequate for the 3D analysis of surface anatomy. Here we shall present a new inverse surface flatness metric, the ratio between the Geodesic and the Euclidean inter-landmark distances. Because this metric also only reflects one aspect of three-dimensional shape, i.e. surface flatness, we have combined it with the Euclidean distance to investigate 3D facial change. The goal of this investigation is to be able to analyze three-dimensional facial change in terms of bilateral symmetry as encoded both by surface flatness and by geometric configuration. Our initial study, based on 25 models of surgically managed children (unilateral cleft lip repair) and 40 models of control children at the age of 2 years, indicates that the faces of the surgically managed group were found to be significantly less symmetric than those of the control group in terms of surface flatness, geometric configuration and overall symmetry.

  10. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    PubMed Central

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-01-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies. PMID:26677949

  11. Liquid immersion thermal crosslinking of 3D polymer nanopatterns for direct carbonisation with high structural integrity

    NASA Astrophysics Data System (ADS)

    Kang, Da-Young; Kim, Cheolho; Park, Gyurim; Moon, Jun Hyuk

    2015-12-01

    The direct pyrolytic carbonisation of polymer patterns has attracted interest for its use in obtaining carbon materials. In the case of carbonisation of nanopatterned polymers, the polymer flow and subsequent pattern change may occur in order to relieve their high surface energies. Here, we demonstrated that liquid immersion thermal crosslinking of polymer nanopatterns effectively enhanced the thermal resistance and maintained the structure integrity during the heat treatment. We employed the liquid immersion thermal crosslinking for 3D porous SU8 photoresist nanopatterns and successfully converted them to carbon nanopatterns while maintaining their porous features. The thermal crosslinking reaction and carbonisation of SU8 nanopatterns were characterised. The micro-crystallinity of the SU8-derived carbon nanopatterns was also characterised. The liquid immersion heat treatment can be extended to the carbonisation of various polymer or photoresist nanopatterns and also provide a facile way to control the surface energy of polymer nanopatterns for various purposes, for example, to block copolymer or surfactant self-assemblies.

  12. 3D printed polymers toxicity profiling: a caution for biodevice applications

    NASA Astrophysics Data System (ADS)

    Zhu, Feng; Skommer, Joanna; Friedrich, Timo; Kaslin, Jan; Wlodkowic, Donald

    2015-12-01

    A recent revolution in additive manufacturing technologies and access to 3D Computer Assisted Design (CAD) software has spurred an explosive growth of new technologies in biomedical engineering. This includes biomodels for diagnosis, surgical training, hard and soft tissue replacement, biodevices and tissue engineering. Moreover, recent developments in high-definition additive manufacturing systems such as Multi-Jet Modelling (MJM) and Stereolithography (SLA), capable of reproducing feature sizes close to 100 μm, promise brand new capabilities in fabrication of optical-grade biomicrofluidic Lab-on-a-Chip and MEMS devices. Compared with other rapid prototyping technologies such as soft lithography and infrared laser micromachining in PMMA, SLA and MJM systems can enable user-friendly production of prototypes, superior feature reproduction quality and comparable levels of optical transparency. Prospectively they can revolutionize fabrication of microfluidic devices with complex geometric features and eliminate the need to use clean room environment and conventional microfabrication techniques. In this work we demonstrate preliminary data on toxicity profiling of a panel of common polymers used in 3D printing applications. The main motivation of our work was to evaluate toxicity profiles of most commonly used polymers using standardized biotests according to OECD guidelines for testing of chemic risk assessment. Our work for the first time provides a multispecies view of potential dangers and limitation for building biocompatible devices using FDM, SLA and MJM additive manufacturing systems. Our work shows that additive manufacturing holds significant promise for fabricating LOC and MEMS but requires caution when selecting systems and polymers due to toxicity exhibited by some 3D printing polymers.

  13. Performance of a commercial optical CT scanner and polymer gel dosimeters for 3-D dose verification

    SciTech Connect

    Xu, Y.; Wuu, C.-S.; Maryanski, Marek J.

    2004-11-01

    Performance analysis of a commercial three-dimensional (3-D) dose mapping system based on optical CT scanning of polymer gels is presented. The system consists of BANG{sup reg}3 polymer gels (MGS Research, Inc., Madison, CT), OCTOPUS{sup TM} laser CT scanner (MGS Research, Inc., Madison, CT), and an in-house developed software for optical CT image reconstruction and 3-D dose distribution comparison between the gel, film measurements and the radiation therapy treatment plans. Various sources of image noise (digitization, electronic, optical, and mechanical) generated by the scanner as well as optical uniformity of the polymer gel are analyzed. The performance of the scanner is further evaluated in terms of the reproducibility of the data acquisition process, the uncertainties at different levels of reconstructed optical density per unit length and the effects of scanning parameters. It is demonstrated that for BANG{sup registered}3 gel phantoms held in cylindrical plastic containers, the relative dose distribution can be reproduced by the scanner with an overall uncertainty of about 3% within approximately 75% of the radius of the container. In regions located closer to the container wall, however, the scanner generates erroneous optical density values that arise from the reflection and refraction of the laser rays at the interface between the gel and the container. The analysis of the accuracy of the polymer gel dosimeter is exemplified by the comparison of the gel/OCT-derived dose distributions with those from film measurements and a commercial treatment planning system (Cadplan, Varian Corporation, Palo Alto, CA) for a 6 cmx6 cm single field of 6 MV x rays and a 3-D conformal radiotherapy (3DCRT) plan. The gel measurements agree with the treatment plans and the film measurements within the '3%-or-2 mm' criterion throughout the usable, artifact-free central region of the gel volume. Discrepancies among the three data sets are analyzed.

  14. Massively parallel patterning of complex 2D and 3D functional polymer brushes by polymer pen lithography.

    PubMed

    Xie, Zhuang; Chen, Chaojian; Zhou, Xuechang; Gao, Tingting; Liu, Danqing; Miao, Qian; Zheng, Zijian

    2014-08-13

    We report the first demonstration of centimeter-area serial patterning of complex 2D and 3D functional polymer brushes by high-throughput polymer pen lithography. Arbitrary 2D and 3D structures of poly(glycidyl methacrylate) (PGMA) brushes are fabricated over areas as large as 2 cm × 1 cm, with a remarkable throughput being 3 orders of magnitudes higher than the state-of-the-arts. Patterned PGMA brushes are further employed as resist for fabricating Au micro/nanostructures and hard molds for the subsequent replica molding of soft stamps. On the other hand, these 2D and 3D PGMA brushes are also utilized as robust and versatile platforms for the immobilization of bioactive molecules to form 2D and 3D patterned DNA oligonucleotide and protein chips. Therefore, this low-cost, yet high-throughput "bench-top" serial fabrication method can be readily applied to a wide range of fields including micro/nanofabrication, optics and electronics, smart surfaces, and biorelated studies.

  15. Development of a 3D polymer reinforced calcium phosphate cement scaffold for cranial bone tissue engineering

    NASA Astrophysics Data System (ADS)

    Alge, Daniel L.

    The repair of critical-sized cranial bone defects represents an important clinical challenge. The limitations of autografts and alloplastic materials make a bone tissue engineering strategy desirable, but success depends on the development of an appropriate scaffold. Key scaffold properties include biocompatibility, osteoconductivity, sufficient strength to maintain its structure, and resorbability. Furthermore, amenability to rapid prototyping fabrication methods is desirable, as these approaches offer precise control over scaffold architecture and have the potential for customization. While calcium phosphate cements meet many of these criteria due to their composition and their injectability, which can be leveraged for scaffold fabrication via indirect casting, their mechanical properties are a major limitation. Thus, the overall goal of this work was to develop a 3D polymer reinforced calcium phosphate cement scaffold for use in cranial bone tissue engineering. Dicalcium phosphate dihydrate (DCPD) setting cements are of particular interest because of their excellent resorbability. We demonstrated for the first time that DCPD cement can be prepared from monocalcium phosphate monohydrate (MCPM)/hydroxyapatite (HA) mixtures. However, subsequent characterization revealed that MCPM/HA cements rapidly convert to HA during degradation, which is undesirable and led us to choose a more conventional formulation for scaffold fabrication. In addition, we developed a novel method for calcium phosphate cement reinforcement that is based on infiltrating a pre-set cement structure with a polymer, and then crosslinking the polymer in situ. Unlike prior methods of cement reinforcement, this method can be applied to the reinforcement of 3D scaffolds fabricated by indirect casting. Using our novel method, composites of poly(propylene fumarate) (PPF) reinforced DCPD were prepared and demonstrated as excellent candidate scaffold materials, as they had increased strength and ductility

  16. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites.

    PubMed

    Castles, F; Isakov, D; Lui, A; Lei, Q; Dancer, C E J; Wang, Y; Janurudin, J M; Speller, S C; Grovenor, C R M; Grant, P S

    2016-01-01

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity-which are required in important technology sectors such as electronics and communications-may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6-8.7 and loss tangents in the range 0.005-0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites. PMID:26940381

  17. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites.

    PubMed

    Castles, F; Isakov, D; Lui, A; Lei, Q; Dancer, C E J; Wang, Y; Janurudin, J M; Speller, S C; Grovenor, C R M; Grant, P S

    2016-03-04

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity-which are required in important technology sectors such as electronics and communications-may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6-8.7 and loss tangents in the range 0.005-0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites.

  18. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites

    NASA Astrophysics Data System (ADS)

    Castles, F.; Isakov, D.; Lui, A.; Lei, Q.; Dancer, C. E. J.; Wang, Y.; Janurudin, J. M.; Speller, S. C.; Grovenor, C. R. M.; Grant, P. S.

    2016-03-01

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity—which are required in important technology sectors such as electronics and communications—may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6–8.7 and loss tangents in the range 0.005–0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites.

  19. Microwave dielectric characterisation of 3D-printed BaTiO3/ABS polymer composites

    PubMed Central

    Castles, F.; Isakov, D.; Lui, A.; Lei, Q.; Dancer, C. E. J.; Wang, Y.; Janurudin, J. M.; Speller, S. C.; Grovenor, C. R. M.; Grant, P. S.

    2016-01-01

    3D printing is used extensively in product prototyping and continues to emerge as a viable option for the direct manufacture of final parts. It is known that dielectric materials with relatively high real permittivity—which are required in important technology sectors such as electronics and communications—may be 3D printed using a variety of techniques. Among these, the fused deposition of polymer composites is particularly straightforward but the range of dielectric permittivities available through commercial feedstock materials is limited. Here we report on the fabrication of a series of composites composed of various loadings of BaTiO3 microparticles in the polymer acrylonitrile butadiene styrene (ABS), which may be used with a commercial desktop 3D printer to produce printed parts containing user-defined regions with high permittivity. The microwave dielectric properties of printed parts with BaTiO3 loadings up to 70 wt% were characterised using a 15 GHz split post dielectric resonator and had real relative permittivities in the range 2.6–8.7 and loss tangents in the range 0.005–0.027. Permittivities were reproducible over the entire process, and matched those of bulk unprinted materials, to within ~1%, suggesting that the technique may be employed as a viable manufacturing process for dielectric composites. PMID:26940381

  20. A 3-D microstructural level model for analyzing the response of polymer bonded explosives

    NASA Astrophysics Data System (ADS)

    Hardin, David; Zhou, Min

    2011-06-01

    A three-dimensional finite element model is developed to study the microstructural level response of polymer-bonded explosives (PBX) under impact loading. The study focuses on the effect of the morphology and packing of energetic grains on the overall thermomechanical response of the composites. A cohesive finite element method (CFEM) is utilized to account for failure in the form of debonding between the HMX grains and the polymer matrix. Frictional heating along crack faces is tracked through a contact algorithm. Microstructures with cubic and multifaceted three-dimensional polygonal granules with packing densities between 0.42 and 0.74 are generated and used. Both 2D and 3D calculations are carried to analyze the differences between the models. To ensure consistency, the 2D microstructures are sections of the 3D microstructures. In this presentation, we will discuss differences in results from the 2D and 3D calculations, with a particular focus on the progression of damage and heating under impact loading.

  1. Coordinate transformation method for the solution of inverse problem in 2D and 3D scatterometry

    NASA Astrophysics Data System (ADS)

    Ponnusamy, Sekar

    2005-05-01

    For scatterometry applications, diffraction analysis of gratings is carried out by using Rigorous Coupled Wave Analysis (RCWA). Though RCWA method is originally developed for lamellar gratings, arbitrary profiles can be analyzed using staircase approximation with S-Matrix propagation of field components. For improved accuracy, more number of Fourier waves need to be included in Floquet-Bloch expansion of the field components and also more number of slices are to be made in staircase approximation. These requirements increase the time required for the analysis. A coordinate transformation method (CTM) developed by Chandezon et. al renders the arbitrary grating profile into a plane surface in the new coordinate system and hence it does not require slicing. This method is extended to 3D structures by several authors notably, by Harris et al for non-orthogonal unit cells and by Granet for correct Fourier expansion. Also extended is to handle sharp-edged gratings through adaptive spatial resolution. In this paper, an attempt is made to employ CTM with correct Fourier expansion in conjunction with adaptive spatial resolution, for scatterometry applications. A MATLAB program is developed, and thereby, demonstrated that CTM can be used for diffraction analysis of trapezoidal profiles that are typically encountered in scatterometry applications.

  2. Design and verification of an ultra-precision 3D-coordinate measuring machine with parallel drives

    NASA Astrophysics Data System (ADS)

    Bos, Edwin; Moers, Ton; van Riel, Martijn

    2015-08-01

    An ultra-precision 3D coordinate measuring machine (CMM), the TriNano N100, has been developed. In our design, the workpiece is mounted on a 3D stage, which is driven by three parallel drives that are mutually orthogonal. The linear drives support the 3D stage using vacuum preloaded (VPL) air bearings, whereby each drive determines the position of the 3D stage along one translation direction only. An exactly constrained design results in highly repeatable machine behavior. Furthermore, the machine complies with the Abbé principle over its full measurement range and the application of parallel drives allows for excellent dynamic behavior. The design allows a 3D measurement uncertainty of 100 nanometers in a measurement range of 200 cubic centimeters. Verification measurements using a Gannen XP 3D tactile probing system on a spherical artifact show a standard deviation in single point repeatability of around 2 nm in each direction.

  3. Polymer-Based Mesh as Supports for Multi-layered 3D Cell Culture and Assays

    PubMed Central

    Simon, Karen A.; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron; Ngo, Phil M.; Whitesides, George M.

    2013-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system – Cells-in-Gels-in-Mesh (CiGiM) – that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells—layer-by-layer—within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis—(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format. PMID:24095253

  4. Estimation of 3-D pore network coordination number of rocks from watershed segmentation of a single 2-D image

    NASA Astrophysics Data System (ADS)

    Rabbani, Arash; Ayatollahi, Shahab; Kharrat, Riyaz; Dashti, Nader

    2016-08-01

    In this study, we have utilized 3-D micro-tomography images of real and synthetic rocks to introduce two mathematical correlations which estimate the distribution parameters of 3-D coordination number using a single 2-D cross-sectional image. By applying a watershed segmentation algorithm, it is found that the distribution of 3-D coordination number is acceptably predictable by statistical analysis of the network extracted from 2-D images. In this study, we have utilized 25 volumetric images of rocks in order to propose two mathematical formulas. These formulas aim to approximate the average and standard deviation of coordination number in 3-D pore networks. Then, the formulas are applied for five independent test samples to evaluate the reliability. Finally, pore network flow modeling is used to find the error of absolute permeability prediction using estimated and measured coordination numbers. Results show that the 2-D images are considerably informative about the 3-D network of the rocks and can be utilized to approximate the 3-D connectivity of the porous spaces with determination coefficient of about 0.85 that seems to be acceptable considering the variety of the studied samples.

  5. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    PubMed Central

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  6. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-09-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

  7. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers.

    PubMed

    Mao, Yiqi; Yu, Kai; Isakov, Michael S; Wu, Jiangtao; Dunn, Martin L; Jerry Qi, H

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  8. Plasmon assisted 3D microstructuring of gold nanoparticle-doped polymers

    NASA Astrophysics Data System (ADS)

    Jonušauskas, Linas; Lau, Marcus; Gruber, Peter; Gökce, Bilal; Barcikowski, Stephan; Malinauskas, Mangirdas; Ovsianikov, Aleksandr

    2016-04-01

    3D laser lithography of a negative photopolymer (zirconium/silicon hybrid solgel SZ2080) doped with gold nanoparticles (Au NPs) is performed with a 515 nm and 300 fs laser system and the effect of doping is explored. By varying the laser-generated Au NP doping concentration from 4.8 · 10-6 wt% to 9.8 · 10-3 wt% we find that the fabricated line widths are enlarged by up to 14.8% compared to structures achieved in pure SZ2080. While implicating a positive effect on the photosensitivity, the doping has no adverse impact on the mechanical quality of intricate 3D microstructures produced from the doped nanocompound. Additionally, we found that SZ2080 increases the long term (˜months) colloidal stability of Au NPs in isopropanol. By discussing the nanoparticle-light interaction in the 3D polymer structures we provide implications that our findings might have on other fields, such as biomedicine and photonics.

  9. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  10. Polymer optical fibers integrated directly into 3D orthogonal woven composites for sensing

    NASA Astrophysics Data System (ADS)

    Hamouda, Tamer; Seyam, Abdel-Fattah M.; Peters, Kara

    2015-02-01

    This study demonstrates that standard polymer optical fibers (POF) can be directly integrated into composites from 3D orthogonal woven preforms during the weaving process and then serve as in-situ sensors to detect damage due to bending or impact loads. Different composite samples with embedded POF were fabricated of 3D orthogonal woven composites with different parameters namely number of y-/x-layers and x-yarn density. The signal of POF was not affected significantly by the preform structure. During application of resin using VARTM technique, significant drop in backscattering level was observed due to pressure caused by vacuum on the embedded POF. Measurements of POF signal while in the final composites after resin cure indicated that the backscattering level almost returned to the original level of un-embedded POF. The POF responded to application of bending and impact loads to the composite with a reduction in the backscattering level. The backscattering level almost returned back to its original level after removing the bending load until damage was present in the composite. Similar behavior occurred due to impact events. As the POF itself is used as the sensor and can be integrated throughout the composite, large sections of future 3D woven composite structures could be monitored without the need for specialized sensors or complex instrumentation.

  11. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  12. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  13. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder.

    PubMed

    Zocca, A; Elsayed, H; Bernardo, E; Gomes, C M; Lopez-Heredia, M A; Knabe, C; Colombo, P; Günster, J

    2015-05-22

    Silicate bioceramics possess an excellent bioactivity; however, shaping them into complex geometries is still challenging. Therefore, this paper aims to present a new strategy for the shaping of a bioglass-ceramic with controlled geometry and properties starting from a glass powder combined with a preceramic polymer, i.e. a silicon resin, and reactive fillers. The powder-based three-dimensional (3D)-printing of wollastonite (CaSiO3)-based silicate bioceramic parts was demonstrated in this work. The resin plays a dual role, as it not only acts as a non-sacrificial binder for the filler powders in the printing process but it also reacts with the fillers to generate the desired bioceramic phases. The mechanical and physical properties, i.e. ball-on-three-balls test, density, porosity and morphology, were evaluated in 3D-printed discs. These samples possessed a total porosity around 64 vol% and a biaxial flexural strength around 6 MPa. The raw materials used in this work also enabled the 3D-printing of scaffolds possessing a designed multi-scale porosity, suitable bioceramic phase assemblage and a compressive strength of 1 MPa (for cylindrical scaffolds with total porosity ~80 vol%). Solubility in TRIS/HCl and in vitro assays, i.e. viability, cytotoxicity and apoptosis assays, were also performed. In vitro tests indicated good cell viability and no cytotoxicity effect on the cells.

  14. 3D-printed silicate porous bioceramics using a non-sacrificial preceramic polymer binder.

    PubMed

    Zocca, A; Elsayed, H; Bernardo, E; Gomes, C M; Lopez-Heredia, M A; Knabe, C; Colombo, P; Günster, J

    2015-06-01

    Silicate bioceramics possess an excellent bioactivity; however, shaping them into complex geometries is still challenging. Therefore, this paper aims to present a new strategy for the shaping of a bioglass-ceramic with controlled geometry and properties starting from a glass powder combined with a preceramic polymer, i.e. a silicon resin, and reactive fillers. The powder-based three-dimensional (3D)-printing of wollastonite (CaSiO3)-based silicate bioceramic parts was demonstrated in this work. The resin plays a dual role, as it not only acts as a non-sacrificial binder for the filler powders in the printing process but it also reacts with the fillers to generate the desired bioceramic phases. The mechanical and physical properties, i.e. ball-on-three-balls test, density, porosity and morphology, were evaluated in 3D-printed discs. These samples possessed a total porosity around 64 vol% and a biaxial flexural strength around 6 MPa. The raw materials used in this work also enabled the 3D-printing of scaffolds possessing a designed multi-scale porosity, suitable bioceramic phase assemblage and a compressive strength of 1 MPa (for cylindrical scaffolds with total porosity ~80 vol%). Solubility in TRIS/HCl and in vitro assays, i.e. viability, cytotoxicity and apoptosis assays, were also performed. In vitro tests indicated good cell viability and no cytotoxicity effect on the cells. PMID:26000907

  15. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  16. High-speed real-time 3-D coordinates measurement based on fringe projection profilometry considering camera lens distortion

    NASA Astrophysics Data System (ADS)

    Feng, Shijie; Chen, Qian; Zuo, Chao; Sun, Jiasong; Yu, Shi Ling

    2014-10-01

    Optical three-dimensional (3-D) profilometry is gaining increasing attention for its simplicity, flexibility, high accuracy, and non-contact nature. Recent advances in imaging sensors and digital projection technology further its progress in high-speed, real-time applications, enabling 3-D shapes reconstruction of moving objects and dynamic scenes. However, the camera lens is never perfect and the lens distortion does influence the accuracy of the measurement result, which is often overlooked in the existing real-time 3-D shape measurement systems. To this end, here we present a novel high-speed real-time 3-D coordinates measuring technique based on fringe projection with the consideration of the camera lens distortion. A pixel mapping relation between a distorted image and a corrected one is pre-determined and stored in computer memory for real-time fringe correction. The out-of-plane height is obtained firstly and the acquisition for the two corresponding in-plane coordinates follows on the basis of the solved height. Besides, a method of lookup table (LUT) is introduced as well for fast data processing. Our experimental results reveal that the measurement error of the in-plane coordinates has been reduced by one order of magnitude and the accuracy of the out-plane coordinate been tripled after the distortions being eliminated. Moreover, owing to the generated LUTs, a 3-D reconstruction speed of 92.34 frames per second can be achieved.

  17. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers. PMID:26471940

  18. Nanometrization of Lanthanide-Based Coordination Polymers.

    PubMed

    Neaime, Chrystelle; Daiguebonne, Carole; Calvez, Guillaume; Freslon, Stéphane; Bernot, Kevin; Grasset, Fabien; Cordier, Stéphane; Guillou, Olivier

    2015-11-23

    Heteronuclear lanthanide-based coordination polymers are microcrystalline powders, the luminescence properties of which can be precisely tuned by judicious choice of the rare-earth ions. In this study, we demonstrate that such materials can also be obtained as stable solutions of nanoparticles in non-toxic polyols. Bulk powders of the formula [Ln2-2x Ln'2x (bdc)3 ⋅4 H2 O]∞ (where H2 bdc denotes 1,4-benzene-dicarboxylic acid, 0≤x≤1, and Ln and Ln' denote lanthanide ions of the series La to Tm plus Y) afford nanoparticles that have been characterized by dynamic light-scattering (DLS) and transmission electron microscopy (TEM) measurements. Their luminescence properties are similar to those of the bulk materials. Stabilities versus time and versus dilution with another solvent have been studied. This study has revealed that it is possible to tune the size of the nanoparticles. This process offers a reliable means of synthesizing suspensions of nanoparticles with tunable luminescence properties and tunable size distributions in a green solvent (glycerol). The process is also extendable to other coordination polymers and other solvents (ethylene glycol, for example). It constitutes a new route for the facile solubilization of lanthanide-based coordination polymers.

  19. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    NASA Astrophysics Data System (ADS)

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-10-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications.

  20. Wavelength-scale light concentrator made by direct 3D laser writing of polymer metamaterials

    PubMed Central

    Moughames, J.; Jradi, S.; Chan, T. M.; Akil, S.; Battie, Y.; Naciri, A. En; Herro, Z.; Guenneau, S.; Enoch, S.; Joly, L.; Cousin, J.; Bruyant, A.

    2016-01-01

    We report on the realization of functional infrared light concentrators based on a thick layer of air-polymer metamaterial with controlled pore size gradients. The design features an optimum gradient index profile leading to light focusing in the Fresnel zone of the structures for two selected operating wavelength domains near 5.6 and 10.4 μm. The metamaterial which consists in a thick polymer containing air holes with diameters ranging from λ/20 to λ/8 is made using a 3D lithography technique based on the two-photon polymerization of a homemade photopolymer. Infrared imaging of the structures reveals a tight focusing for both structures with a maximum local intensity increase by a factor of 2.5 for a concentrator volume of 1.5 λ3, slightly limited by the residual absorption of the selected polymer. Such porous and flat metamaterial structures offer interesting perspectives to increase infrared detector performance at the pixel level for imaging or sensing applications. PMID:27698476

  1. 3D networked graphene-ferromagnetic hybrids for fast shape memory polymers with enhanced mechanical stiffness and thermal conductivity.

    PubMed

    Lee, Sang-Heon; Jung, Jung-Hwan; Oh, Il-Kwon

    2014-10-15

    A novel 3D networked graphene-ferromagnetic hybrid can be easily fabricated using one-step microwave irradiation. By incorporating this hybrid material into shape memory polymers, the synergistic effects of fast speed and the enhancement of thermal conductivity and mechanical stiffness can be achieved. This can be broadly applicable to designing magneto-responsive shape memory polymers for multifunction applications.

  2. On the validity of 3D polymer gel dosimetry: I. Reproducibility study

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-01-01

    The intra- and inter-batch accuracy and precision of MRI (polyacrylamide gelatin gel fabricated at atmospheric conditions) polymer gel dosimeters are assessed in full 3D. In the intra-batch study, eight spherical flasks were filled with the same polymer gel along with a set of test tubes that served as calibration phantoms. In the inter-batch study, the eight spherical flasks were filled with different batches of gel. For each spherical phantom, a separate set of calibration phantoms was used. The spherical phantoms were irradiated using a three-field coplanar beam configuration in a very reproducible manner. The calibration phantoms were irradiated to known doses to obtain a dose-R2 calibration plot which was applied on the corresponding R2 maps of all spherical phantoms on an individual basis. The intra-batch study showed high dosimetric precision (3.1%) notwithstanding poor accuracy (mean dose discrepancies up to 13.0%). In the inter-batch study, a similar dosimetric precision (4.3%) and accuracy (mean dose discrepancies up to 13.7%) were found. The poor dosimetric accuracy was attributed to a systematic fault that was related to the calibration method. Therefore, the dose maps were renormalized using an independent ion chamber dose measurement. It is illustrated that with this renormalization, excellent agreement between the gel measured and TPS calculated 3D dose maps is achievable: 97% and 99% of the pixels meet the 3%/3 mm criteria for the intra- and inter-batch experiments, respectively. However renormalization will result in significant dose deviations inside a realistically sized anthropomorphic phantom as will be shown in a concurrent paper. Both authors contributed equally to this study.

  3. Embedding silica and polymer fibre Bragg gratings (FBG) in plastic 3D-printed sensing patches

    NASA Astrophysics Data System (ADS)

    Zubel, Michal G.; Sugden, Kate; Webb, David J.; Sáez-Rodríguez, David; Nielsen, Kristian; Bang, Ole

    2016-04-01

    This paper reports the first demonstration of a silica fibre Bragg grating (SOFBG) embedded in an FDM 3-D printed housing to yield a dual grating temperature-compensated strain sensor. We also report the first ever integration of polymer fibre Bragg grating (POFBG) within a 3-D printed sensing patch for strain or temperature sensing. The cyclic strain performance and temperature characteristics of both devices are examined and discussed. The strain sensitivities of the sensing patches were 0.40 and 0.95 pm/μɛ for SOFBG embedded in ABS, 0.38 pm/μɛ for POFBG in PLA, and 0.15 pm/μɛ for POFBG in ABS. The strain response was linear above a threshold and repeatable. The temperature sensitivity of the SOFBG sensing patch was found to be up to 169 pm/°C, which was up to 17 times higher than for an unembedded silica grating. Unstable temperature response POFBG embedded in PLA was reported, with temperature sensitivity values varying between 30 and 40 pm/°C.

  4. Laser 3D micro/nanofabrication of polymers for tissue engineering applications

    NASA Astrophysics Data System (ADS)

    Danilevičius, P.; Rekštytė, S.; Balčiūnas, E.; Kraniauskas, A.; Širmenis, R.; Baltriukienė, D.; Bukelskienė, V.; Gadonas, R.; Sirvydis, V.; Piskarskas, A.; Malinauskas, M.

    2013-02-01

    In this work, we applied a constructed multi-photon polymerization system based on diode-pumped solid state femtosecond Yb:KGW laser used as pulsed irradiation light source (300 fs, 1030 nm, 200 kHz) in combination with large area high sample translation velocity (up to 300 mm/s) linear motor-driven stages (100×100×50 mm3) designed for high resolution and throughput 3D micro/nanofabrication. It enables rapid prototyping out of most polymers up to cm in scale with sub-micrometer spatial resolution. This can be used for production of three-dimensional artificial polymeric scaffolds applied for cell growth and expansion experiments as well as tissue engineering. Biocompatibilities of different acrylate, hybrid organic-inorganic and biodegradable polymeric materials were evaluated experimentally in vitro. Various in size and form scaffolds of biocompatible photopolymers were successfully fabricated having intricate 3D geometry, thus demonstrating the potential of the applied method. Adult rabbit myogenic stem cell proliferation tests show artificial scaffolds to be applicable for biomedical practice. Additionally, a micromolding technique was used for a rapid multiplication of adequate laser manufactured structures.

  5. An axis-free overset grid in spherical polar coordinates for simulating 3D self-gravitating flows

    NASA Astrophysics Data System (ADS)

    Wongwathanarat, A.; Hammer, N. J.; Müller, E.

    2010-05-01

    Aims: Three dimensional explicit hydrodynamic codes based on spherical polar coordinates using a single spherical polar grid suffer from a severe restriction of the time step size due to the convergence of grid lines near the poles of the coordinate system. More importantly, numerical artifacts are encountered at the symmetry axis of the grid where boundary conditions have to be imposed that flaw the flow near the axis. The first problem can be eased and the second one avoided by applying an overlapping grid technique. Methods: A type of overlapping grid in spherical coordinates is adopted. This so called “Yin-Yang” grid is a two-patch overset grid proposed by Kageyama and Sato for geophysical simulations. Its two grid patches contain only the low-latitude regions of the usual spherical polar grid and are combined together in a simple manner. This property of the Yin-Yang grid greatly simplifies its implementation into a 3D code already employing spherical polar coordinates. It further allows for a much larger time step in 3D simulations using high angular resolution (⪉1°) than that required in 3D simulations using a regular spherical grid with the same angular resolution. Results: The Yin-Yang grid is successfully implemented into a 3D version of the explicit Eulerian grid-based code PROMETHEUS including self-gravity. The modified code successfully passed several standard hydrodynamic tests producing results which are in very good agreement with analytic solutions. Moreover, the solutions obtained with the Yin-Yang grid exhibit no peculiar behaviour at the boundary between the two grid patches. The code has also been successfully used to model astrophysically relevant situations, namely equilibrium polytropes, a Taylor-Sedov explosion, and Rayleigh-Taylor instabilities. According to our results, the usage of the Yin-Yang grid greatly enhances the suitability and efficiency of 3D explicit Eulerian codes based on spherical polar coordinates for astrophysical

  6. Inorganic nanoparticles in porous coordination polymers.

    PubMed

    Kim, Cho Rong; Uemura, Takashi; Kitagawa, Susumu

    2016-07-21

    Porous coordination polymers (PCPs) have been recently highlighted because of their high synthetic designability in structure and functions. Because of their ordered nanoporous structures with a large surface area and tunable pore surface functionality, PCPs have emerged as a significant class of nanoporous materials with potential applications in gas storage, separation, catalysis, and chemical sensing. Recent research has shown the utility of PCPs as host materials for the confinement of nanoparticles of inorganic polymers (IPs), such as metals, metal oxides, and metal chalcogenides. The fabrication of IP nanoparticles in PCPs (PCP⊃IP) has been studied for manifesting specific nanosized-dependent properties and host-guest synergistic functions. In this review, we describe the recent progress in the accommodation of IPs in the nanochannels of PCPs and the remarkable functions of the composite materials. PMID:27051891

  7. Improving the Presage® polymer radiosensitivity for hot cell and glovebox 3D characterization.

    PubMed

    Adamovics, John; Farfán, Eduardo B; Coleman, J Rusty

    2013-01-01

    RadBall is a novel, passive, radiation detection device that provides 3D mapping of radiation from areas where measurements have not been possible previously due to lack of access or extremely high radiation doses. This kind of technology is beneficial when decommissioning and decontamination of nuclear facilities occur. The key components of the RadBall technology include a tungsten outer shell that houses a radiosensitive PRESAGE polymer. The 1.0-cm-thick tungsten shell has a number of holes that allow photons to reach the polymer, thus generating radiation tracks that are analyzed to characterize the radiation sources within the contaminated area being considered. Facilities being mapped frequently have to be shut down to minimize radiation exposures to workers; therefore, reducing the mapping or characterization time is significant. The objective of this study was to reduce the RadBall deployment time by increasing the radiosensitivity of the PRESAGE formulation. The new formulation is four times more radiosensitive than the original formulation. Consequently, RadBall deployment times can be reduced fourfold, which is a considerable improvement.

  8. Improving the Presage® polymer radiosensitivity for hot cell and glovebox 3D characterization.

    PubMed

    Adamovics, John; Farfán, Eduardo B; Coleman, J Rusty

    2013-01-01

    RadBall is a novel, passive, radiation detection device that provides 3D mapping of radiation from areas where measurements have not been possible previously due to lack of access or extremely high radiation doses. This kind of technology is beneficial when decommissioning and decontamination of nuclear facilities occur. The key components of the RadBall technology include a tungsten outer shell that houses a radiosensitive PRESAGE polymer. The 1.0-cm-thick tungsten shell has a number of holes that allow photons to reach the polymer, thus generating radiation tracks that are analyzed to characterize the radiation sources within the contaminated area being considered. Facilities being mapped frequently have to be shut down to minimize radiation exposures to workers; therefore, reducing the mapping or characterization time is significant. The objective of this study was to reduce the RadBall deployment time by increasing the radiosensitivity of the PRESAGE formulation. The new formulation is four times more radiosensitive than the original formulation. Consequently, RadBall deployment times can be reduced fourfold, which is a considerable improvement. PMID:23192088

  9. Uranium(VI) coordination polymers with pyromellitate ligand: Unique 1D channel structures and diverse fluorescence

    SciTech Connect

    Zhang, Yingjie; Bhadbhade, Mohan; Karatchevtseva, Inna; Price, Jason R.; Liu, Hao; Zhang, Zhaoming; Kong, Linggen; Čejka, Jiří; Lu, Kim; Lumpkin, Gregory R.

    2015-03-15

    Three new coordination polymers of uranium(VI) with pyromellitic acid (H{sub 4}btca) have been synthesized and structurally characterized. (ED)[(UO{sub 2})(btca)]·(DMSO)·3H{sub 2}O (1) (ED=ethylenediammonium; DMSO=dimethylsulfoxide) has a lamellar structure with intercalation of ED and DMSO. (NH{sub 4}){sub 2}[(UO{sub 2}){sub 6}O{sub 2}(OH){sub 6}(btca)]·~6H{sub 2}O (2) has a 3D framework built from 7-fold coordinated uranyl trinuclear units and btca ligands with 1D diamond-shaped channels (~8.5 Å×~8.6 Å). [(UO{sub 2}){sub 2}(H{sub 2}O)(btca)]·4H{sub 2}O (3) has a 3D network constructed by two types of 7-fold coordinated uranium polyhedron. The unique μ{sub 5}-coordination mode of btca in 3 enables the formation of 1D olive-shaped large channels (~4.5 Å×~19 Å). Vibrational modes, thermal stabilities and fluorescence properties have been investigated. - Graphical abstract: Table of content: three new uranium(VI) coordination polymers with pyromellitic acid (H{sub 4}btca) have been synthesized via room temperature and hydrothermal synthesis methods, and structurally characterized. Two to three dimensional (3D) frameworks are revealed. All 3D frameworks have unique 1D large channels. Their vibrational modes, thermal stabilities and photoluminescence properties have been investigated. - Highlights: • Three new coordination polymers of U(VI) with pyromellitic acid (H{sub 4}btca). • Structures from a 2D layer to 3D frameworks with unique 1D channels. • Unusual µ{sub 5}-(η{sub 1}:η{sub 2}:η{sub 1}:η{sub 2:}η{sub 1}) coordination mode of btca ligand. • Vibrational modes, thermal stabilities and luminescent properties reported.

  10. On the validity of 3D polymer gel dosimetry: III. MRI-related error sources

    NASA Astrophysics Data System (ADS)

    Vandecasteele, Jan; De Deene, Yves

    2013-01-01

    In MRI (PAGAT) polymer gel dosimetry, there exists some controversy on the validity of 3D dose verifications of clinical treatments. The relative contribution of important sources of uncertainty in MR scanning to the overall accuracy and precision of 3D MRI polymer gel dosimetry is quantified in this study. The performance in terms of signal-to-noise and imaging artefacts was evaluated on three different MR scanners (two 1.5 T and a 3 T scanner). These include: (1) B0-field inhomogeneity, (2) B1-field inhomogeneity, (3) dielectric effects (losses and standing waves) and (4) temperature inhomogeneity during scanning. B0-field inhomogeneities that amount to maximum 5 ppm result in dose deviations of up to 4.3% and deformations of up to 5 pixels. Compensation methods are proposed. B1-field inhomogeneities were found to induce R2 variations in large anthropomorphic phantoms both at 1.5 and 3 T. At 1.5 T these effects are mainly caused by the coil geometry resulting in dose deviations of up to 25%. After the correction of the R2 maps using a heuristic flip angle-R2 relation, these dose deviations are reduced to 2.4%. At 3 T, the dielectric properties of the gel phantoms are shown to strongly influence B1-field homogeneity, hence R2 homogeneity, especially of large anthropomorphic phantoms. The low electrical conductivity of polymer gel dosimeters induces standing wave patterns resulting in dose deviations up to 50%. Increasing the conductivity of the gel by adding NaCl reduces the dose deviation to 25% after which the post-processing is successful in reducing the remaining inhomogeneities caused by the coil geometry to within 2.4%. The measurements are supported by computational modelling of the B1-field. Finally, temperature fluctuations of 1 °C frequently encountered in clinical MRI scanners result in dose deviations up to 15%. It is illustrated that with adequate temperature stabilization, the dose uncertainty is reduced to within 2.58%. Both authors contributed

  11. Development of 3D carbon nanotube interdigitated finger electrodes on polymer substrate for flexible capacitive sensor application

    NASA Astrophysics Data System (ADS)

    Hu, Chih-Fan; Wang, Jhih-Yu; Liu, Yu-Chia; Tsai, Ming-Han; Fang, Weileun

    2013-11-01

    This study reports a novel approach to the implementation of 3D carbon nanotube (CNT) interdigitated finger electrodes on flexible polymer, and the detection of strain, bending curvature, tactile force and proximity distance are demonstrated. The merits of the presented CNT-based flexible sensor are as follows: (1) the silicon substrate is patterned to enable the formation of 3D vertically aligned CNTs on the substrate surface; (2) polymer molding on the silicon substrate with 3D CNTs is further employed to transfer the 3D CNTs to the flexible polymer substrate; (3) the CNT-polymer composite (˜70 μm in height) is employed to form interdigitated finger electrodes to increase the sensing area and initial capacitance; (4) other structures such as electrical routings, resistors and mechanical supporters are also available using the CNT-polymer composite. The preliminary fabrication results demonstrate a flexible capacitive sensor with 50 μm high CNT interdigitated electrodes on a poly-dimethylsiloxane substrate. The tests show that the typical capacitance change is several dozens of fF and the gauge factor is in the range of 3.44-4.88 for strain and bending curvature measurement; the sensitivity of the tactile sensor is 1.11% N-1 a proximity distance near 2 mm away from the sensor can be detected.

  12. 2D Cu(I) and 3D mixed-valence Cu(I)/Cu(II) coordination polymers: Synthesis and structural characterization of [CuCl(pyz-H) 2]·2H 2O and [Cu 2Cl 2(pyz)(H 2O)]·H 2O (pyz-H = pyrazinic acid)

    NASA Astrophysics Data System (ADS)

    Goher, Mohamed A. S.; Mautner, Franz A.; Vicente, Ramon

    2007-11-01

    Two new coordination polymers of copper(I) chloride and pyrazinic acid (pyz-H), namely [CuCl(pyz-H) 2]·2H 2O ( 1) and [Cu 2Cl 2(pyz)(H 2O)]·H 2O ( 2) have been prepared and characterized by spectroscopic, magnetic and crystallographic methods. The overall physical measurements suggest that 1 is diamagnetic and contains monodentate N-pyrazinic acid, whereas 2 is paramagnetic and contains tridentate N, N', O- chelating bridging pyrazinato anion. In the structure of 1 as elucidated by X-ray single crystal analysis, the asymmetric units [CuCl(pyz) 2] are linked together forming a zigzag chain with tetrahedral copper(I) environment. The two lattice water molecules form hydrogen bonds with the uncoordinated N atom and carboxylate group O atom of pyz-H molecules. The Cu-N bond lengths are 2.009(6) Å and Cu-Cl distances are 2.337(2) Å. Complex 2 has a three-dimensional structure with the chains [Cu(I)Cu(II)(C 5H 3N 2O 2)Cl 2(H 2O)] interconnected by [Cu(I)Cl 2N] tetrahedral unit and [Cu(II)NO 2Cl 2] polyhedra. The Cu(I)-Cl and Cu(I)-N distances are 2.327(2)-2.581(2) Å and 1.988(6) Å, respectively, whereas the Cu(II)-Cl and Cu(II)-N bond lengths are 2.258(2), 2.581(2) Å, and 2.017(6) Å, respectively. Hydrogen bonds of the type O-H⋯O are formed between lattice and coordinated water, and carboxylate oxygens of pyrazinato ligand giving rise to a three-dimensional network. The Cl - anions act as bridging ligands in both complexes. The magnetic data of complex 2 have been measured from 2 to 300 K and discussed.

  13. Reproducibility of Acetabular Landmarks and a Standardized Coordinate System Obtained from 3D Hip Ultrasound.

    PubMed

    Mabee, Myles; Dulai, Sukhdeep; Thompson, Richard B; Jaremko, Jacob L

    2015-10-01

    Two-dimensional (2D) ultrasound detection of developmental dysplasia of the hip (DDH) is limited by variation in acetabular appearance and alpha angle measurements, which change with position of the ultrasound probe. Three-dimensional (3D) ultrasound captures the entire acetabular shape, and a reproducible "standard central plane" may be generated, from two landmarks located on opposite ends of the acetabulum, for measurement of alpha angle and other indices. Two users identified landmarks on 51 3D ultrasounds, with ranging severity of disease, and inter- and intra-observer reproducibility of landmark and "standard plane" locations was compared; landmarks were chosen within 2 mm, and the "standard plane" rotation was reproducible within 10° between observers. We observed no difference in variability between alpha angles measured on the "standard plane" in comparison with 2D ultrasound. Applications of the standardized 3D ultrasound central plane will be to fuse serial ultrasounds for follow-up and development of new indices of 3D deformity. PMID:25394808

  14. Using Polymer Confinement for Stem Cell Differentiation: 3D Printed vs Molded Scaffolds

    NASA Astrophysics Data System (ADS)

    Rafailovich, Miriam

    Additive manufacturing technologies are increasingly being used to replace standard extrusion or molding methods in engineering polymeric biomedical implants, which can be further seeded with cells for tissue regeneration. The principal advantage of this new technology is the ability to print directly from a scan and hence produce parts which are an ideal fit for an individual, eliminating much of the sizing and fitting associated with standard manufacturing methods. The question though arises whether devices which may be macroscopically similar, serve identical functions and are produced from the same material, interact in the same manner with cells and living tissue. Here we show that fundamental differences can exist between 3-D printed and extruded scaffolds which can impact stem cell differentiation and lineage selection. We will show how polymer confinement inherent in these methods affect the printed features on multiple length scales. We will also and how the differentiation of stem cells is affected by substrate heterogeneity in both morphological and mechanical features. NSF-Inspire award # 1344267.

  15. Polymer Crosslinked 3-D Assemblies of Nanoparticles: Mechanically Strong Lightweight Porous Materials

    NASA Technical Reports Server (NTRS)

    Leventis, Nicholas

    2005-01-01

    In analogy to supramolecular assemblies, which are pursued because of properties above and beyond those of the individual molecules, self-standing monolithic three-dimensional assemblies of nanoparticles also have unique properties attributed to their structure. For example, ultra low-density 3-D assemblies of silica nanoparticles, known as silica aerogels, are characterized by large internal void space, high surface area and very low thermal conductivity. Aerogels, however, are also extremely fragile materials, limiting their application to a few specialized environments, e.g., in nuclear reactors as Cerenkov radiation detectors, in space (refer to NASA's Stardust Program) and aboard certain planetary vehicles (thermal insulators on Mars Rovers in 1997 and 2004). The fragility problem is traced to well-defined weak points in the aerogel skeletal framework, the interparticle necks. Using the surface functionality of the nanoparticle building blocks as a focal point, we have directed attachment of a conformal polymer coating over the entire framework, rendering all necks wider. Thus, although the bulk density may increase only by 3x, the mesoporosity (pores in the range 2-50 nm) remains unchanged, while the strength of the material increases by up to 300... Having addressed the fragility problem, aerogels are now robust materials, and a variety of applications, ranging from thermal/acoustic insulators to catalyst supports, to platform for sensors, and dielectrics are all within reach. Our approach employs molecular science to manipulate nanoscopic matter for achieving useful macroscopic properties, and in our view it resides at the core of what defines nanotechnology. In that spirit, this technology is expandable in three directions. Thus, we have already crosslinked successfully amine-modified silica, and we anticipate that more rich chemistry will be realized by been creative with the nanoparticle surface modifiers. On the other hand, although we do not expect

  16. INS3D: An incompressible Navier-Stokes code in generalized three-dimensional coordinates

    NASA Technical Reports Server (NTRS)

    Rogers, S. E.; Kwak, D.; Chang, J. L. C.

    1987-01-01

    The operation of the INS3D code, which computes steady-state solutions to the incompressible Navier-Stokes equations, is described. The flow solver utilizes a pseudocompressibility approach combined with an approximate factorization scheme. This manual describes key operating features to orient new users. This includes the organization of the code, description of the input parameters, description of each subroutine, and sample problems. Details for more extended operations, including possible code modifications, are given in the appendix.

  17. A reduced-coordinate approach to modeling RNA 3-D structures

    SciTech Connect

    Tung, Chang-Shung

    1997-09-01

    With the realization of RNA molecules capable of performing very specific functions (e.g., catalytic RNAs and RNAs that bind ligand with affinity and specificity of an anti-body) and contrary to the traditional view that structure of RNA molecules being functionally passive, it has become clear that studying the 3-dimensional (3-D) folding of RNA molecules is a very important task. In the absence of sufficient number of experimentally determined RNA structures available up-to-date, folding of RNA structures computationally provides an alternative approach in studying the 3-D structure of RNA molecules. We have developed a computational approach for folding RNA 3-D structures. The method is conceptually simple and general. It consists of two major components. The first being the arrangement of all helices in space. Once the helices are positioned and oriented in space, structures of the connecting loops are modeled and inserted between the helices. Any number of structural constraints derived either experimentally or theoretically can be used to guide the folding processes. A conformational sampling approach is developed with structural equilibration using the Metropolis Monte Carlo simulation. The lengths of various loop sizes (ranging from 1 base to 7 bases) are calculated based on a set of RNA structures deposited in PDB as well as a set of loop structures constructed using our method. The validity of using the averaged loop lengths of the connecting loops as distance constraints for arranging the helices in space is studied.

  18. Controlled isotropic or anisotropic nanoscale growth of coordination polymers: formation of hybrid coordination polymer particles.

    PubMed

    Lee, Hee Jung; Cho, Yea Jin; Cho, Won; Oh, Moonhyun

    2013-01-22

    The ability to fabricate multicompositional hybrid materials in a precise and controlled manner is one of the primary goals of modern materials science research. In addition, an understanding of the phenomena associated with the systematic growth of one material on another can facilitate the evolution of multifunctional hybrid materials. Here, we demonstrate precise manipulation of the isotropic and/or anisotropic nanoscale growth of various coordination polymers (CPs) to obtain heterocompositional hybrid coordination polymer particles. Chemical composition analyses conducted at every growth step reveal the formation of accurately assembled hybrid nanoscale CPs, and microscopy images are used to examine the morphology of the particles and visualize the hybrid structures. The dissimilar growth behavior, that is, growth in an isotropic or anisotropic fashion, is found to be dependent on the size of the metal ions involved within the CPs.

  19. Vestibulo-ocular reflex responses to a multichannel vestibular prosthesis incorporating a 3D coordinate transformation for correction of misalignment.

    PubMed

    Fridman, Gene Y; Davidovics, Natan S; Dai, Chenkai; Migliaccio, Americo A; Della Santina, Charles C

    2010-09-01

    There is no effective treatment available for individuals unable to compensate for bilateral profound loss of vestibular sensation, which causes chronic disequilibrium and blurs vision by disrupting vestibulo-ocular reflexes that normally stabilize the eyes during head movement. Previous work suggests that a multichannel vestibular prosthesis can emulate normal semicircular canals by electrically stimulating vestibular nerve branches to encode head movements detected by mutually orthogonal gyroscopes affixed to the skull. Until now, that approach has been limited by current spread resulting in distortion of the vestibular nerve activation pattern and consequent inability to accurately encode head movements throughout the full 3-dimensional (3D) range normally transduced by the labyrinths. We report that the electrically evoked 3D angular vestibulo-ocular reflex exhibits vector superposition and linearity to a sufficient degree that a multichannel vestibular prosthesis incorporating a precompensatory 3D coordinate transformation to correct misalignment can accurately emulate semicircular canals for head rotations throughout the range of 3D axes normally transduced by a healthy labyrinth.

  20. Reconstruction Error of Calibration Volume’s Coordinates for 3D Swimming Kinematics

    PubMed Central

    Figueiredo, Pedro; Machado, Leandro; Vilas-Boas, João Paulo; Fernandes, Ricardo J.

    2011-01-01

    The aim of this study was to investigate the accuracy and reliability of above and underwater 3D reconstruction of three calibration volumes with different control points disposal (#1 - on vertical and horizontal rods; #2 - on vertical and horizontal rods and facets; #3 - on crossed horizontal rods). Each calibration volume (3 × 2 × 3 m) was positioned in a 25 m swimming pool (half above and half below the water surface) and recorded with four underwater and two above water synchronised cameras (50 Hz). Reconstruction accuracy was determined calculating the RMS error of twelve validation points. The standard deviation across all digitisation of the same marker was used for assessing the reliability estimation. Comparison among different number of control points showed that the set of 24 points produced the most accurate results. The volume #2 presented higher accuracy (RMS errors: 5.86 and 3.59 mm for x axis, 3.45 and 3.11 mm for y axis and 4.38 and 4.00 mm for z axis, considering under and above water, respectively) and reliability (SD: underwater cameras ± [0.2; 0.6] mm; above water cameras ± [0.2; 0.3] mm) that may be considered suitable for 3D swimming kinematic analysis. Results revealed that RMS error was greater during underwater analysis, possibly due to refraction. PMID:23486761

  1. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates. PMID:26479262

  2. Ice-Templated Assembly Strategy to Construct 3D Boron Nitride Nanosheet Networks in Polymer Composites for Thermal Conductivity Improvement.

    PubMed

    Zeng, Xiaoliang; Yao, Yimin; Gong, Zhengyu; Wang, Fangfang; Sun, Rong; Xu, Jianbin; Wong, Ching-Ping

    2015-12-01

    Owing to the growing heat removal issue of modern electronic devices, polymer composites with high thermal conductivity have drawn much attention in the past few years. However, a traditional method to enhance the thermal conductivity of the polymers by addition of inorganic fillers usually creates composite with not only limited thermal conductivity but also other detrimental effects due to large amount of fillers required. Here, novel polymer composites are reported by first constructing 3D boron nitride nanosheets (3D-BNNS) network using ice-templated approach and then infiltrating them with epoxy matrix. The obtained polymer composites exhibit a high thermal conductivity (2.85 W m(-1) K(-1)), a low thermal expansion coefficient (24-32 ppm K(-1)), and an increased glass transition temperature (T(g)) at relatively low BNNSs loading (9.29 vol%). These results demonstrate that this approach opens a new avenue for design and preparation of polymer composites with high thermal conductivity. The polymer composites are potentially useful in advanced electronic packaging techniques, namely, thermal interface materials, underfill materials, molding compounds, and organic substrates.

  3. Coordination between Understanding Historic Buildings and BIM Modelling: A 3D-Output Oriented and typological Data Capture Method

    NASA Astrophysics Data System (ADS)

    Li, K.; Li, S. J.; Liu, Y.; Wang, W.; Wu, C.

    2015-08-01

    At the present, in trend of shifting the old 2D-output oriented survey to a new 3D-output oriented survey based on BIM technology, the corresponding working methods and workflow for data capture, process, representation, etc. have to be changed.Based on case study of two buildings in the Summer Palace of Beijing, and Jiayuguan Pass at the west end of the Great Wall (both World Heritage sites), this paper puts forward a "structure-and-type method" by means of typological method used in archaeology, Revit family system, and the tectonic logic of building to realize a good coordination between understanding of historic buildings and BIM modelling.

  4. Antibacterial activity of silver camphorimine coordination polymers.

    PubMed

    Cardoso, João M S; Galvão, Adelino M; Guerreiro, Soraia I; Leitão, Jorge H; Suarez, Ana C; Carvalho, M Fernanda N N

    2016-04-28

    Five new silver camphorimine complexes of general formula [Ag(NO3)(Y)L] were synthesized and fully characterized using spectroscopic and analytical techniques. The structure of [Ag(NO3)(OC10H14NC6H4NC10H14O)] () was analyzed using single crystal X-ray diffraction, showing that it arranges as a coordination polymer formed by sequential Ag(NO3) units bridged by the bi-camphor ligand (). The antimicrobial properties of the new complexes were screened using the disk diffusion method and their Minimal Inhibitory Concentrations (MIC) were assessed against selected bacterial strains of the Gram-positive Staphylococcus aureus and the Gram-negative Escherichia coli, Pseudomonas aeruginosa, and Burkholderia contaminans. The lowest MICs were observed for , with estimated values of 72, 20, 32 and 19 μg mL(-1) for S. aureus, E. coli, B. contaminans, and P. aeruginosa, respectively. In the case of S. aureus, similar MIC values were obtained for silver nitrate and compound . All five compounds were bactericidal when used in concentrations equal or above the MIC value, as found by enumerating the total colony forming units (CFUs) after incubation in their presence. PMID:27007331

  5. The study of dual camera 3D coordinate vision measurement system using a special probe

    NASA Astrophysics Data System (ADS)

    Liu, Shugui; Peng, Kai; Zhang, Xuefei; Zhang, Haifeng; Huang, Fengshan

    2006-11-01

    Due to high precision and convenient operation, the vision coordinate measurement machine with one probe has become the research focus in visual industry. In general such a visual system can be setup conveniently with just one CCD camera and probe. However, the price of the system will surge up too high to accept while the top performance hardware, such as CCD camera, image captured card and etc, have to be applied in the system to obtain the high axis-oriented measurement precision. In this paper, a new dual CCD camera vision coordinate measurement system based on redundancy principle is proposed to achieve high precision by moderate price. Since two CCD cameras are placed with the angle of camera axis like about 90 degrees to build the system, two sub-systems can be built by each CCD camera and the probe. With the help of the probe the inner and outer parameters of camera are first calibrated, the system by use of redundancy technique is set up now. When axis-oriented error is eliminated within the two sub-systems, which is so large and always exits in the single camera system, the high precision measurement is obtained by the system. The result of experiment compared to that from CMM shows that the system proposed is more excellent in stableness and precision with the uncertainty beyond +/-0.1 mm in xyz orient within the distance of 2m using two common CCD cameras.

  6. Representation of protein 3D structures in spherical (ρ, ϕ, θ) coordinates and two of its potential applications.

    PubMed

    Reyes, Vicente M

    2011-09-01

    Three-dimensional objects can be represented using cartesian, spherical or cylindrical coordinate systems, among many others. Currently all protein 3D structures in the PDB are in cartesian coordinates. We wanted to explore the possibility that protein 3D structures, especially the globular type (spheroproteins), when represented in spherical coordinates might find useful novel applications. A Fortran program was written to transform protein 3D structure files in cartesian coordinates (x,y,z) to spherical coordinates (ρ, ϕ, θ), with the centroid of the protein molecule as origin. We present here two applications, namely, (1) separation of the protein outer layer (OL) from the inner core (IC); and (2) identifying protrusions and invaginations on the protein surface. In the first application, ϕ and θ were partitioned into suitable intervals and the point with maximum ρ in each such 'ϕ-θ bin' was determined. A suitable cutoff value for ρ is adopted, and for each ϕ-θ bin, all points with ρ values less than the cutoff are considered part of the IC, and those with ρ values equal to or greater than the cutoff are considered part of the OL. We show that this separation procedure is successful as it gives rise to an OL that is significantly more enriched in hydrophilic amino acid residues, and an IC that is significantly more enriched in hydrophobic amino acid residues, as expected. In the second application, the point with maximum ρ in each ϕ-θ bin are sequestered and their frequency distribution constructed (i.e., maximum ρ's sorted from lowest to highest, collected into 1.50Å-intervals, and the frequency in each interval plotted). We show in such plots that invaginations on the protein surface give rise to subpeaks or shoulders on the lagging side of the main peak, while protrusions give rise to similar subpeaks or shoulders, but on the leading side of the main peak. We used the dataset of Laskowski et al. (1996) to demonstrate both applications.

  7. Development of a 3D immersive videogame to improve arm-postural coordination in patients with TBI

    PubMed Central

    2011-01-01

    Background Traumatic brain injury (TBI) disrupts the central and executive mechanisms of arm(s) and postural (trunk and legs) coordination. To address these issues, we developed a 3D immersive videogame-- Octopus. The game was developed using the basic principles of videogame design and previous experience of using videogames for rehabilitation of patients with acquired brain injuries. Unlike many other custom-designed virtual environments, Octopus included an actual gaming component with a system of multiple rewards, making the game challenging, competitive, motivating and fun. Effect of a short-term practice with the Octopus game on arm-postural coordination in patients with TBI was tested. Methods The game was developed using WorldViz Vizard software, integrated with the Qualysis system for motion analysis. Avatars of the participant's hands precisely reproducing the real-time kinematic patterns were synchronized with the simulated environment, presented in the first person 3D view on an 82-inch DLP screen. 13 individuals with mild-to-moderate manifestations of TBI participated in the study. While standing in front of the screen, the participants interacted with a computer-generated environment by popping bubbles blown by the Octopus. The bubbles followed a specific trajectory. Interception of the bubbles with the left or right hand avatar allowed flexible use of the postural segments for balance maintenance and arm transport. All participants practiced ten 90-s gaming trials during a single session, followed by a retention test. Arm-postural coordination was analysed using principal component analysis. Results As a result of the short-term practice, the participants improved in game performance, arm movement time, and precision. Improvements were achieved mostly by adapting efficient arm-postural coordination strategies. Of the 13 participants, 10 showed an immediate increase in arm forward reach and single-leg stance time. Conclusion These results support the

  8. Representation of protein 3D structures in spherical (ρ, ϕ, θ) coordinates and two of its potential applications.

    PubMed

    Reyes, Vicente M

    2011-09-01

    Three-dimensional objects can be represented using cartesian, spherical or cylindrical coordinate systems, among many others. Currently all protein 3D structures in the PDB are in cartesian coordinates. We wanted to explore the possibility that protein 3D structures, especially the globular type (spheroproteins), when represented in spherical coordinates might find useful novel applications. A Fortran program was written to transform protein 3D structure files in cartesian coordinates (x,y,z) to spherical coordinates (ρ, ϕ, θ), with the centroid of the protein molecule as origin. We present here two applications, namely, (1) separation of the protein outer layer (OL) from the inner core (IC); and (2) identifying protrusions and invaginations on the protein surface. In the first application, ϕ and θ were partitioned into suitable intervals and the point with maximum ρ in each such 'ϕ-θ bin' was determined. A suitable cutoff value for ρ is adopted, and for each ϕ-θ bin, all points with ρ values less than the cutoff are considered part of the IC, and those with ρ values equal to or greater than the cutoff are considered part of the OL. We show that this separation procedure is successful as it gives rise to an OL that is significantly more enriched in hydrophilic amino acid residues, and an IC that is significantly more enriched in hydrophobic amino acid residues, as expected. In the second application, the point with maximum ρ in each ϕ-θ bin are sequestered and their frequency distribution constructed (i.e., maximum ρ's sorted from lowest to highest, collected into 1.50Å-intervals, and the frequency in each interval plotted). We show in such plots that invaginations on the protein surface give rise to subpeaks or shoulders on the lagging side of the main peak, while protrusions give rise to similar subpeaks or shoulders, but on the leading side of the main peak. We used the dataset of Laskowski et al. (1996) to demonstrate both applications. PMID

  9. One- and three-dimensional silver(I)-5-sulfosalicylate coordination polymers having ligand-supported and unsupported argentophilic interactions

    SciTech Connect

    Arıcı, Mürsel; Yeşilel, Okan Zafer; Yeşilöz, Yeşim; Şahin, Onur

    2014-12-15

    Four new coordination polymers, namely, (Hemim·[Ag(Hssa)(H{sub 2}O)]){sub n} (1), ([Ag(ina){sub 2} Ag(Hssa)]·CH{sub 3}OH·H{sub 2}O){sub n} (2), ([Ag{sub 2}(Hssa)(dmp){sub 1.5}]·2H{sub 2}O){sub n} (3) and [Ag{sub 2}(Hssa)(daoc)]{sub n} (4) (Hssa: 5-Sulfosalicylate, emim: 2-ethyl-4-methylimidazole, ina: isonicotinamide, dmp: 2,5-dimethylpyrazine and daoc: 1,8-diaminooctane) were synthesized and characterized by IR spectroscopy, elemental analysis, single crystal X-ray diffraction, powder X-ray diffraction (PXRD) and thermal analysis techniques. Complexes 1 and 2 are one-dimensional (1D) coordination polymers while complexes 3 and 4 are three-dimensional (3D) coordination polymers. Complex 3 consists of three dimensional (3D) 3,3,6-c net with 3,3,6T37 topology. Complex 4 exhibits a 2-fold interpenetrating 3D framework with tfc topology. Complexes 1–4 contain ligand-supported (1–3) and unsupported (4) argentophilic Ag⋯Ag interactions. Photoluminescence spectra of the complexes demonstrate that photoluminescent properties may be attributed to intraligand transition of coordinated Hssa ligand. - Graphical abstract: In this study, four new Ag(I)-coordination polymers with 5-sulfosalicylate and some N-donor ligands were synthesized and characterized. Complexes 1 and 2 are one-dimensional (1D) coordination polymers while complexes 3 and 4 are three-dimensional (3D) coordination polymers. Complex 3 consists of three dimensional (3D) 3,3,6-c net with 3,3,6T37 topology. Complex 4 exhibits a 2-fold interpenetrating 3D framework with tfc topology. The complexes 1–4 contain ligand-supported (1–3) and unsupported (4) argentophilic Ag⋯Ag interactions. Photoluminescence spectra of the complexes demonstrated that photoluminescent properties may be attributed to intraligand transition of coordinated Hssa ligand. - Highlights: • Four novel Ag(I)-coordination polymers with 5-sulfosalicylate and N-donor ligands. • Complexes 1–4 contain ligand-supported (1–3) and

  10. Time-Dependent Effects of Pre-Aging 3D Polymer Scaffolds in Cell Culture Medium on Cell Proliferation.

    PubMed

    Chatterjee, Kaushik; Hung, Stevephen; Kumar, Girish; Simon, Carl G

    2012-01-01

    Protein adsorption is known to direct biological response to biomaterials and is important in determining cellular response in tissue scaffolds. In this study we investigated the effect of the duration of protein adsorption to 3D polymer scaffolds on cell attachment and proliferation. 3D macro-porous polymer scaffolds were pre-aged in serum-containing culture medium for 5 min, 1 d or 7 d prior to seeding osteoblasts. The total amount of protein adsorbed was found to increase with pre-ageing time. Cell attachment and proliferation were measured 1 d and 14 d, respectively, after cell seeding. Osteoblast proliferation, but not attachment, increased with scaffold pre-ageing time and amount of adsorbed serum protein. These results demonstrate that the amount of time that scaffolds are exposed to serum-containing medium can affect cell proliferation and suggest that these effects are mediated by differences in the amount of protein adsorption.

  11. Syntheses, structures and photoelectric properties of a series of Cd(II)/Zn(II) coordination polymers and coordination supramolecules

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Han, Xiao; Meng, Qin; Li, Dan; Chi, Yu-Xian; Niu, Shu-Yun

    2013-01-01

    Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz)2(H2O)]n (1), [Cd1Cd2(btec)(H2O)6]n (2), [Cd(3,4-pdc) (H2O)]n (3), [Zn(2,5-pdc)(H2O)4]·2H2O (4) and {[Zn(2,5-pdc)(H2O)2]·H2O}n (5) (H2bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H4btec=1,2,4,5-benzenetetracarboxylic acid, H2pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexes were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response.

  12. Coordinated assembly of a new 3D mesoporous Fe₃O₄@Cu₂O-graphene oxide framework as a highly efficient and reusable catalyst for the synthesis of quinoxalines.

    PubMed

    Wang, Zhiyi; Hu, Guowen; Liu, Jian; Liu, Weisheng; Zhang, Haoli; Wang, Baodui

    2015-03-25

    A new three-dimensional (3D) mesoporous hybrid framework was synthesized by coordinated layer-by-layer assembly between nanosheets of reduced graphene oxide and Fe3O4@Cu2O. This 3D mesoporous framework shows an excellent catalytic performance with a remarkable activity, selectivity (>99%), and strong durability in the synthesis of quinoxalines.

  13. Coordinated assembly of a new 3D mesoporous Fe₃O₄@Cu₂O-graphene oxide framework as a highly efficient and reusable catalyst for the synthesis of quinoxalines.

    PubMed

    Wang, Zhiyi; Hu, Guowen; Liu, Jian; Liu, Weisheng; Zhang, Haoli; Wang, Baodui

    2015-03-25

    A new three-dimensional (3D) mesoporous hybrid framework was synthesized by coordinated layer-by-layer assembly between nanosheets of reduced graphene oxide and Fe3O4@Cu2O. This 3D mesoporous framework shows an excellent catalytic performance with a remarkable activity, selectivity (>99%), and strong durability in the synthesis of quinoxalines. PMID:25712163

  14. Coordinate systems and transformations for 3D modeling: the unifying concept in the RADIUS common development environment

    NASA Astrophysics Data System (ADS)

    Quam, Lynn H.; Heller, Aaron J.

    1996-02-01

    The RADIUS Common Development Environment pulls together many diverse functions into an integrated whole. The main goal of the environment is to provide a system to do interactive modeling of 3-dimensional scenes from multiple images, as well as, providing an infrastructure to support the research in and implementation of image understanding-based algorithms for this and other tasks. The RCDE contains facilities for: CAD-system-like 3D modeling; image processing; electronic-light-table image viewing and exploitation; frame and non-frame camera photogrammetry; and photo realistic rendering. The major achievement of the system is the high level of integration and interoperability between and among these facilities. The key realization that enables this is that every entity represented in the RCDE has an associated local coordinate system. This includes cartographic and cultural features, images and sub-images, text annotations, graphical user interface elements, photogrammetric conjugate points and even the earth itself. These entities are tied together through a flexible and efficient network of coordinate transformations. This allows each type of data to be represented, manipulated, and displayed in the most convenient and precise form, without sacrificing functionality or generality, in addition to enabling the fusion of different types of geometric data. In this paper, we explain the coordinate system representations and transformation facilities in the RCDE and outline some of the rationale and strategies behind the current design and implementation. Also included are examples drawn from its use in the government sponsored RADIUS program.

  15. Photocatalytic activity of PANI loaded coordination polymer composite materials: Photoresponse region extension and quantum yields enhancement via the loading of PANI nanofibers on surface of coordination polymer

    SciTech Connect

    Cui, Zhongping; Qi, Ji; Xu, Xinxin Liu, Lu; Wang, Yi

    2013-09-15

    To enhance photocatalytic property of coordination polymer in visible light region, polyaniline (PANI) loaded coordination polymer photocatalyst was synthesized through in-situ chemical oxidation of aniline on the surface of coordination polymer. The photocatalytic activity of PANI loaded coordination polymer composite material for degradation of Rhodamine B (RhB) was investigated. Compared with pure coordination polymer photocatalyst, which can decompose RhB merely under UV light irradiation, PANI loaded coordination polymer photocatalyst displays more excellent photocatalytic activity in visible light region. Furthermore, PANI loaded coordination polymer photocatalyst exhibits outstanding stability during the degradation of RhB. - Graphical abstract: PANI loaded coordination polymer composite material, which displays excellent photocatalytic activity under visible light was firstly synthesized through in-situ chemical oxidation of aniline on surface of coordination polymer. Display Omitted - Highlights: • This PANI loaded coordination polymer composite material represents the first conductive polymer loaded coordination polymer composite material. • PANI/coordination polymer composite material displays more excellent photocatalytic activity for the degradation of MO in visible light region. • The “combination” of coordination polymer and PANI will enable us to design high-activity, high-stability and visible light driven photocatalyst in the future.

  16. Nanoscale coordination polymers for anticancer drug delivery

    NASA Astrophysics Data System (ADS)

    Phillips, Rachel Huxford

    This dissertation reports the synthesis and characterization of nanoscale coordination polymers (NCPs) for anticancer drug delivery. Nanoparticles have been explored in order to address the limitations of small molecule chemotherapeutics. NCPs have been investigated as drug delivery vehicles as they can exhibit the same beneficial properties as the bulk metal-organic frameworks as well as interesting characteristics that are unique to nanomaterials. Gd-MTX (MTX = methotrexate) NCPs with a MTX loading of 71.6 wt% were synthesized and stabilized by encapsulation within a lipid bilayer containing anisamide (AA), a small molecule that targets sigma receptors which are overexpressed in many cancer tissues. Functionalization with AA allows for targeted delivery and controlled release to cancer cells, as shown by enhanced efficacy against leukemia cells. The NCPs were doped with Ru(bpy)32+ (bpy = 2,2'-bipyridine), and this formulation was utilized as an optical imaging agent by confocal microscopy. NCPs containing the chemotherapeutic pemetrexed (PMX) were synthesized using different binding metals. Zr-based materials could not be stabilized by encapsulation with a lipid bilayer, and Gd-based materials showed that PMX had degraded during synthesis. However, Hf-based NCPs containing 19.7 wt% PMX were stabilized by a lipid coating and showed in vitro efficacy against non-small cell lung cancer (NSCLC) cell lines. Enhanced efficacy was observed for formulations containing AA. Additionally, NCP formulations containing the cisplatin prodrug disuccinatocisplatin were prepared; one of these formulations could be stabilized by encapsulation within a lipid layer. Coating with a lipid layer doped with AA rendered this formulation an active targeting agent. The resulting formulation proved more potent than free cisplatin in NSCLC cell lines. Improved NCP uptake was demonstrated by confocal microscopy and competitive binding assays. Finally, a Pt(IV) oxaliplatin prodrug was

  17. Syntheses, structures, and photoluminescence of d 10 coordination architectures: From 1D to 3D complexes based on mixed ligands

    NASA Astrophysics Data System (ADS)

    Yuan, Gang; Shao, Kui-Zhan; Du, Dong-Ying; Wang, Xin-Long; Su, Zhong-Min

    2011-05-01

    Six new compounds, namely, {[Cd 3(Himpy) 3(tda) 2]·3H 2O} n ( 1), {[Zn 3(bipy) 2(tda) 2(H 2O) 2]·4H 2O} n ( 2), {[Cd 3(bipy) 3(tda) 2]·4H 2O} n ( 3), {[Cd 3(tda) 2(H 2O) 3Cl]·H 2O} n ( 4), {[Zn 2(tz)(tda)(H 2O) 2]·H 2O} n ( 5) and {[Cd 7(pz)(tda) 4(OAc)(H 2O) 7]·3H 2O} n ( 6) [H 3tda = 1H-1,2,3-triazole-4,5-dicarboxylic acid, Himpy = 2-(1H-imidazol-2-yl)pyridine, bipy = 2,2'-bipyridine, Htz = 1H-1,2,4-triazole, H 2pz = piperazine] have been prepared under hydrothermal condition and characterized by elemental analyses, infrared spectroscopy, powder X-ray diffraction and single-crystal X-ray diffraction analyses. Compound 1 is a 1D column-like structure and displays a 3D supramolecular network via the π···π stacking interaction. The compounds 2 and 3 exhibit similar 2D layer-like structure, which further extend to 3D supermolecular structure by the π···π stacking interaction. All of compounds 4- 6 display 3D framework with diverse topology constructed from the tda 3- ligands in different coordination modes and secondary ligands (or bridging atom) connecting metal ions. Furthermore, the thermal stabilities and photoluminescent properties of compounds 1- 6 were studied.

  18. 3D Printing of Human Tissue Mimics via Layer-by-Layer Assembly of Polymer/Hydrogel Biopapers

    NASA Astrophysics Data System (ADS)

    Ringeisen, Bradley

    2015-03-01

    The foundations of tissue engineering were built on two fundamental areas of research: cells and scaffolds. Multipotent cells and their derivatives are traditionally randomly seeded into sophisticated polymer or hydrogel scaffolds, ultimately with the goal of forming a tissue-like material through cell differentiation and cell-material interactions. One problem with this approach is that no matter how complex or biomimetic the scaffold is, the cells are still homogeneously distributed throughout this three dimensional (3D) material. Natural tissue is inherently heterogeneous on both a microscopic and macroscopic level. It also contains different types of cells in close proximity, extracellular matrix, voids, and a complex vascularized network. Recently developed 3D cell and organ printers may be able to enhance traditional tissue engineering experiments by building scaffolds layer-by-layer that are crafted to mimic the microscopic and macroscopic structure of natural tissue or organs. Over the past decade, my laboratory has developed a capillary-free, live cell printer termed biological laser printing, or BioLP. We find that printed cells do not express heat shock protein and retain >99% viability. Printed cells also incur no DNA strand fracture and preserve their ability to differentiate. Recent work has used a layer-by-layer approach, stacking sheets of hybrid polymer/hydrogel biopapers in conjunction with live cell printing to create 3D tissue structures. Our specific work is now focused on the blood-brain-barrier and air-lung interface and will be described during the presentation.

  19. Isostructural 1D coordination polymers of Zn(II), Cd(II) and Cu(II) with phenylpropynoic acid and DABCO as organic linkers

    NASA Astrophysics Data System (ADS)

    Saravanakumar, Rajendran; Varghese, Babu; Sankararaman, Sethuraman

    2014-11-01

    Using phenylpropynoic acid (PPA) and 1,4-diazabicyclo[2.2.2]octane (DABCO) as organic spacers, isostructural coordination polymers of Zn(II), Cd(II) and Cu(II) were synthesized by solvothermal method and structurally characterized using single crystal XRD, powder XRD, 13C CP-MAS NMR spectroscopy. Single crystal XRD data revealed four PPA units coordinating with two metal ions forming a paddle wheel secondary building unit (SBU). The paddle wheel units are connected through coordination of DABCO nitrogen to the metal centers from the axial positions leading to the formation of the 1D coordination polymers along the c axis. Intermolecular π stacking and Csbnd H…π interactions between the adjacent polymer chains convert the 1D coordination polymer into an interesting 3D network with the Csbnd H…π bonds running along the crystallographic a and b axes. Thermal and nitrogen adsorption studies of these coordination polymers are reported.

  20. Microstructure of 3D-Printed Polymer Composites Investigated by Small-Angle Neutron Scattering

    NASA Astrophysics Data System (ADS)

    Kang, Tae Hui; Compton, Brett G.; Heller, William T.; Urban, Voker S.; Duty, Chad E.; Do, Changwoo

    Polymer composites printed from the large scale printer at Manufacturing Demonstration Facility at Oak Ridge National Laboratory have been investigated by small-angle neutron scattering (SANS). For the Acrylonitrile Butadiene Styrene (ABS)/Carbon Fiber (CF) composites, the microstructure of polymer domains and the alignment of CF have been characterized across the layer from the printed piece. CF shows strong anisotropic alignment along the printing direction due to the flow of polymer melt at the nozzle. Order parameter of the anisotropy which ranges from -0.11 to -0.06 exhibits strong correlation with the position within the layer: stronger alignment near the layer interface. It is also confirmed that the existence of CF reduces the polymer domain correlation length significantly and reinforces the mechanical strength of the polymer composites. For the Epoxy/nano-clay platelet composites, the effect of processing condition, nozzle size, and the addition of the another filler, Silicon Carbide (SC), have been investigated by SANS. Nano-clay platelet shows strong anisotropic alignment along the printing direction as well. Order parameter of the anisotropy varies according to nozzle size and presence of the SC, and difference disappears at high Q region. Scientific User Facilities Division and Materials Sciences and Energy Division, Office of Basic Energy Sciences, U.S. Department of Energy.

  1. 3D Conducting Polymer Platforms for Electrical Control of Protein Conformation and Cellular Functions

    PubMed Central

    Wan, Alwin Ming-Doug; Inal, Sahika; Williams, Tiffany; Wang, Karin; Leleux, Pierre; Estevez, Luis; Giannelis, Emmanuel P.; Fischbach, Claudia; Malliaras, George G.; Gourdon, Delphine

    2015-01-01

    We report the fabrication of three dimensional (3D) macroporous scaffolds made from poly(3,4-ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) via an ice-templating method. The scaffolds offer tunable pore size and morphology, and are electrochemically active. When a potential is applied to the scaffolds, reversible changes take place in their electrical doping state, which in turn enables precise control over the conformation of adsorbed proteins (e.g., fibronectin). Additionally, the scaffolds support the growth of mouse fibroblasts (3T3-L1) for 7 days, and are able to electrically control cell adhesion and pro-angiogenic capability. These 3D matrix-mimicking platforms offer precise control of protein conformation and major cell functions, over large volumes and long cell culture times. As such, they represent a new tool for biological research with many potential applications in bioelectronics, tissue engineering, and regenerative medicine. PMID:26413300

  2. Determination of Rectification Corrections for Semi Gantry Crane Rail Axes in the Local 3D Coordinate System

    NASA Astrophysics Data System (ADS)

    Filipiak, Daria; Kamiński, Waldemar

    2015-02-01

    Electronic tacheometers are currently the standard instruments used in geodetic work, including also geodetic engineering measurements. The main advantage connected with this equipment is among others high accuracy of the measurement and thus high accuracy of the final determinations represented for example by the points' coordinates. One of many applications of the tacheometers is the measurement of crane rail axes. This measurement is based on polar method and it allows to get the spatial coordinates of points in 3D local system. The standard technology of measurement of crane rail axes and development of its calculations' results is well-known and widely presented in the subject literature. At the same time new methods of observations results evaluation are developing. Some new proposals for the development of measurement results were already presented in (Kamiński, 2013). This paper is a generalisation of the paper quoted above. The authors developed the concept which was presented there by a proposal for determining rectification corrections for semi gantry crane rail axes. To carried out the task, the parametric method with conditions on parameters was used. Moreover the practical tests on simulated measurement results were conducted. The results obtained from alignment confirmed the theoretical assumptions. Despite the fact that analyses were carried out only on the simulated data, it is already possible to say that presented method for determination of rectification corrections for crane rail axes can be used for development of the observations from real measurement.

  3. Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides.

    PubMed

    Lamprou, Alexandros; Wang, Hongxia; Saeed, Adeela; Svec, Frantisek; Britt, David; Maya, Fernando

    2015-07-14

    We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process. The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications.

  4. Preparation of Highly Porous Coordination Polymer Coatings on Macroporous Polymer Monoliths for Enhanced Enrichment of Phosphopeptides.

    PubMed

    Lamprou, Alexandros; Wang, Hongxia; Saeed, Adeela; Svec, Frantisek; Britt, David; Maya, Fernando

    2015-01-01

    We describe a protocol for the preparation of hybrid materials based on highly porous coordination polymer coatings on the internal surface of macroporous polymer monoliths. The developed approach is based on the preparation of a macroporous polymer containing carboxylic acid functional groups and the subsequent step-by-step solution-based controlled growth of a layer of a porous coordination polymer on the surface of the pores of the polymer monolith. The prepared metal-organic polymer hybrid has a high specific micropore surface area. The amount of iron(III) sites is enhanced through metal-organic coordination on the surface of the pores of the functional polymer support. The increase of metal sites is related to the number of iterations of the coating process. The developed preparation scheme is easily adapted to a capillary column format. The functional porous polymer is prepared as a self-contained single-block porous monolith within the capillary, yielding a flow-through separation device with excellent flow permeability and modest back-pressure. The metal-organic polymer hybrid column showed excellent performance for the enrichment of phosphopeptides from digested proteins and their subsequent detection using matrix-assisted laser desorption/ionization time-of-flight mass spectrometry. The presented experimental protocol is highly versatile, and can be easily implemented to different organic polymer supports and coatings with a plethora of porous coordination polymers and metal-organic frameworks for multiple purification and/or separation applications. PMID:26273850

  5. Synthesis, structure, luminescence and photocatalytic properties of an uranyl-2,5-pyridinedicarboxylate coordination polymer

    NASA Astrophysics Data System (ADS)

    Si, Zhen-Xiu; Xu, Wei; Zheng, Yue-Qing

    2016-07-01

    An uranium coordination polymer, namely [(UO2(pydc)(H2O)]·H2O (1) (H2pydc=2,5-pyridinedicarboxylic acid), has been obtained by hydrothermal method and characterized by X-ray single crystal structure determination. Structural analysis reveals that complex 1 exhibits 1D chain coordination polymer, in which UO22+ ions are bridged by 2,5-pyridinedicarboxylate ligands and the chains are connected into a 3D supramolecular network by O-H···O hydrogen bond interactions and π-π stacking interactions. The photocatalytic properties of 1 for degradation of methylene blue (MB), Rhodamine B (RhB) and methyl orange (MO) under Hg-lamp irradiation have been performed, and the amount of the catalyst as well as Hg-lamp irradiation with different power on the photodegradation efficiency of MB have been investigated. Elemental analyses, infrared spectroscopy, TG-DTA analyses and luminescence properties were also discussed.

  6. Two Zn coordination polymers with meso-helical chains based on mononuclear or dinuclear cluster units

    NASA Astrophysics Data System (ADS)

    Qin, Ling; Qiao, Wen-Cheng; Zuo, Wei-Juan; Zeng, Si-Ying; Mei, Cao; Liu, Chang-Jiang

    2016-07-01

    Two zinc coordination polymers {[Zn2(TPPBDA)(oba)2]·DMF·1.5H2O}n (1), {[Zn(TPPBDA)1/2(tpdc)]·DMF}n (2) have been synthesized by zinc metal salt, nanosized tetradentate pyridine ligand with flexible or rigid V-shaped carboxylate co-ligands. These complexes were characterized by elemental analyses and X-ray single-crystal diffraction analyses. Compound 1 is a 2-fold interpenetrated 3D framework with [Zn2(CO2)4] clusters. Compound 2 can be defined as a five folded interpenetrating bbf topology with mononuclear Zn2+. These mononuclear or dinuclear cluster units are linked by mix-ligands, resulting in various degrees of interpenetration. In addition, the photoluminescent properties for TPPBDA ligand under different state and coordination polymers have been investigated in detail.

  7. Fabrication of 3D polymer photonic crystals for near-IR applications

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric

    2008-02-01

    Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem

  8. Base and salt 3D forms of Emeraldine II polymers by Car-Parrinello molecular dynamics

    NASA Astrophysics Data System (ADS)

    Cavazzoni, Carlo; Colle, Renato; Farchioni, Riccardo; Grosso, Giuseppe

    2005-07-01

    We have studied structural and electronic properties of the three-dimensional crystalline regions of Emeraldine II polymers, in the base (EB-II) and salt (ES-II) forms, by means of first principle Car-Parrinello molecular dynamics. We compare the geometrical structures of the polymer chains in the primitive cells of EB-II and ES-II, pointing out the structural effects due to the protonation with HCl of the iminic nitrogens in the EB-II chains, and the effect of the counterions between neighboring chains. We also analyze the HOMO electron density distribution, band structure and density of states of the resulting bipolaronic structure of ES-II, which is energetically stable and maintains semiconductor character.

  9. Coordination chemistry of 6-thioguanine derivatives with cobalt: toward formation of electrical conductive one-dimensional coordination polymers.

    PubMed

    Amo-Ochoa, Pilar; Alexandre, Simone S; Hribesh, Samira; Galindo, Miguel A; Castillo, Oscar; Gómez-García, Carlos J; Pike, Andrew R; Soler, José M; Houlton, Andrew; Zamora, Félix; Harrington, Ross W; Clegg, William

    2013-05-01

    In this work we have synthetized and characterized by X-ray diffraction five cobalt complexes with 6-thioguanine (6-ThioGH), 6-thioguanosine (6-ThioGuoH), or 2'-deoxy-6-thioguanosine (2'-d-6-ThioGuoH) ligands. In all cases, these ligands coordinate to cobalt via N7 and S6 forming a chelate ring. However, independently of reagents ratio, 6-ThioGH provided monodimensional cobalt(II) coordination polymers, in which the 6-ThioG(-) acts as bridging ligand. However, for 2'-d-6-ThioGuoH and 6-ThioGuoH, the structure directing effect of the sugar residue gives rise to mononuclear cobalt complexes which form extensive H-bond interactions to generate 3D supramolecular networks. Furthermore, with 2'-d-6-ThioGuoH the cobalt ion remains in the divalent state, whereas with 6-ThioGuoH oxidation occurs and Co(III) is found. The electrical and magnetic properties of the coordination polymers isolated have been studied and the results discussed with the aid of DFT calculations, in the context of molecular wires.

  10. A 3D Sphere Culture System Containing Functional Polymers for Large-Scale Human Pluripotent Stem Cell Production

    PubMed Central

    Otsuji, Tomomi G.; Bin, Jiang; Yoshimura, Azumi; Tomura, Misayo; Tateyama, Daiki; Minami, Itsunari; Yoshikawa, Yoshihiro; Aiba, Kazuhiro; Heuser, John E.; Nishino, Taito; Hasegawa, Kouichi; Nakatsuji, Norio

    2014-01-01

    Summary Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production. PMID:24936458

  11. 3D Mapping of Polymer Crosslink Density with Magnetic Resonance Imaging

    SciTech Connect

    Herberg, J L; Gjersing, E L; Chinn, S C; Maxwell, R S

    2005-03-11

    Magnetic Resonance Imaging (MRI) techniques have been used to detect areas of low crosslink density in damaged silicone parts in an effort to develop a QA/QC protocol to be used in the development of new parts. Model materials of varying crosslink density first demonstrated the applicability of the method. Analysis of damaged pads has been shown to be clearly distinguishable by MRI. It is our belief that both the T{sub 2} weighted SPI NMR and the T{sub 2} weighted water/fat suppression MRI experiments can be used to map out the location of different cross-linking densities, ultimately determining the quality or homogeneity in polymers.

  12. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot.

    PubMed

    Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin

    2015-04-22

    Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called "Octopus", which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust.

  13. A Novel Identification Methodology for the Coordinate Relationship between a 3D Vision System and a Legged Robot

    PubMed Central

    Chai, Xun; Gao, Feng; Pan, Yang; Qi, Chenkun; Xu, Yilin

    2015-01-01

    Coordinate identification between vision systems and robots is quite a challenging issue in the field of intelligent robotic applications, involving steps such as perceiving the immediate environment, building the terrain map and planning the locomotion automatically. It is now well established that current identification methods have non-negligible limitations such as a difficult feature matching, the requirement of external tools and the intervention of multiple people. In this paper, we propose a novel methodology to identify the geometric parameters of 3D vision systems mounted on robots without involving other people or additional equipment. In particular, our method focuses on legged robots which have complex body structures and excellent locomotion ability compared to their wheeled/tracked counterparts. The parameters can be identified only by moving robots on a relatively flat ground. Concretely, an estimation approach is provided to calculate the ground plane. In addition, the relationship between the robot and the ground is modeled. The parameters are obtained by formulating the identification problem as an optimization problem. The methodology is integrated on a legged robot called “Octopus”, which can traverse through rough terrains with high stability after obtaining the identification parameters of its mounted vision system using the proposed method. Diverse experiments in different environments demonstrate our novel method is accurate and robust. PMID:25912350

  14. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography

    PubMed Central

    Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  15. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography.

    PubMed

    Shih, Tian-Yu; Wu, Jay; Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation. PMID:26974434

  16. Small-Field Measurements of 3D Polymer Gel Dosimeters through Optical Computed Tomography.

    PubMed

    Shih, Tian-Yu; Wu, Jay; Shih, Cheng-Ting; Lee, Yao-Ting; Wu, Shin-Hua; Yao, Chun-Hsu; Hsieh, Bor-Tsung

    2016-01-01

    With advances in therapeutic instruments and techniques, three-dimensional dose delivery has been widely used in radiotherapy. The verification of dose distribution in a small field becomes critical because of the obvious dose gradient within the field. The study investigates the dose distributions of various field sizes by using NIPAM polymer gel dosimeter. The dosimeter consists of 5% gelatin, 5% monomers, 3% cross linkers, and 5 mM THPC. After irradiation, a 24 to 96 hour delay was applied, and the gel dosimeters were read by a cone beam optical computed tomography (optical CT) scanner. The dose distributions measured by the NIPAM gel dosimeter were compared to the outputs of the treatment planning system using gamma evaluation. For the criteria of 3%/3 mm, the pass rates for 5 × 5, 3 × 3, 2 × 2, 1 × 1, and 0.5 × 0.5 cm2 were as high as 91.7%, 90.7%, 88.2%, 74.8%, and 37.3%, respectively. For the criteria of 5%/5 mm, the gamma pass rates of the 5 × 5, 3 × 3, and 2 × 2 cm2 fields were over 99%. The NIPAM gel dosimeter provides high chemical stability. With cone-beam optical CT readouts, the NIPAM polymer gel dosimeter has potential for clinical dose verification of small-field irradiation.

  17. Magnetic nanosized {M(II)24}-wheel-based (M = Co, Ni) coordination polymers.

    PubMed

    Li, Jia; Tao, Jun; Huang, Rong-Bin; Zheng, Lan-Sun

    2012-06-01

    Two 3D coordination polymers, [Co(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(18)(H(2)O)(6)]·(DMSO)(6)(EtOH)(6)(H(2)O)(36) (1·guests, ip = isophthalate) and [Ni(24)(OH)(12)(SO(4))(12)(ip)(6)(DMSO)(12)(H(2)O)(12)]·(DMSO)(6)(EtOH)(6)(H(2)O)(20) (2·guests), constructed with nanosized tetraicosanuclear Co(II) and Ni(II) wheels are solvothermally synthesized. Both complexes show intra- and interwheel dominant antiferromagnetic interactions.

  18. 3D Rare earth porous coordination frameworks with formamide generated in situ syntheses: Crystal structure and down- and up-conversion luminescence

    SciTech Connect

    Ma, Xue; Tian, Jing; Yang, Hong-Y.; Zhao, Kai; Li, Xia

    2013-05-01

    The reaction of RE(NO)₃·6H₂O and formamide yielded the coordination polymers, [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ (RE=Y 1, Eu 2, Gd 3, Tb 4, Dy 5, Er 6, and Yb 7). They possess 3D porous frameworks with the 1D rhombic channels occupied by [NH₂CHNH₂]⁺ cations. Complexes 2 and 4 display the characteristic down-conversion emissions corresponding to ⁵D₀→⁷FJ (J=1–4) transitions of Eu(III) ion and ⁵D₄→⁷FJ (J=6–3) transitions of Tb(III) ion, respectively. Longer lifetime values of 2.128±0.002 ms (⁵D₀) for 2 and 2.132±0.002 ms (⁵D₄) for 4 have been observed. The up-conversion spectra of the Y:Yb,Er and Gd:Yb,Er codoped complexes exhibit three emission bands around 410 (⁴H9/2→⁴I15/2, blue), 518–570 (⁴S3/2, ²H11/2→⁴I15/2, green), and 655 nm (⁴F9/2→⁴I15/2, red). - Graphical Abstract: The complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺ possess 3D porous frameworks. Eu(III) and Tb(III) complexes show characteristic emission of Ln(III) ions. The up-conversion emission of the Y:Yb,Er and Gd:Yb,Er codoped complexes was observed. Highlights: •The reaction of RE(NO)₃·6H₂O and formamide produced complexes [RE(HCOO)₄]⁻[NH₂CHNH₂]⁺. • The complexes possess 3D frameworks with the 1D channels occupied by [NH₂CHNH₂]+ cations. • Eu(III)/Tb(III) complexes display the characteristic down-conversion emission of Ln(III) ions. • The Y:Yb,Er and Gd:Yb,Er doped complexes exhibit the up-conversion emission.

  19. Syntheses, structural analyses and luminescent property of four alkaline-earth coordination polymers

    SciTech Connect

    Zhang, Sheng; Qu, Xiao-Ni; Xie, Gang; Wei, Qing; Chen, San-Ping

    2014-02-15

    Four alkaline-earth coordination polymers, [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized and characterized by single-crystal X-ray diffraction. Compounds 1 and 2 afford 2D layer networks generated by one-dimensional chains containing the [Ba{sub 2}O{sub 11}N] units. Compound 3 is of 2D mixed-metal coordination network formed by one-dimensional chain units, while 4 is of a 3D heterometallic framework. Interestingly, 1 and 2 can undergo reversible SCSC structural transformation upon dehydration/rehydration of coordinated water molecules. In addition, the π–π stacking interactions dominate fluorescent properties of compounds 1 and 2. - Graphical abstract: Four new coordination polymers [Ba(Pzdc)(H{sub 2}O)]{sub n} (1), [Ba(Pzdc)]{sub n} (2), [AgSr(Pzdc)(NO{sub 3})(H{sub 2}O)]{sub n} (3), [Ag{sub 2}Ca(Pzdc){sub 2}(H{sub 2}O)]{sub n} (4) (H{sub 2}Pzdc=2, 3-pyrazinedicarboxylic acid) have been synthesized. Compounds 1–3 display 2D topology structures and compound 4 exhibits a 3D topology structure. Fortunately, 1 and 2 undergo reversible dehydration/rehydration of coordinated water molecules. Display Omitted - Highlights: • All structures are generated by 1D chains. • 1 and 2 show reversible dehydration/rehydration of coordinated water molecules. • The π–π stacking interactions dominate fluorescent properties of compounds 1 and 2.

  20. Mixing of immiscible polymers using nanoporous coordination templates

    PubMed Central

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-01-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters. PMID:26130294

  1. Mixing of immiscible polymers using nanoporous coordination templates.

    PubMed

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-01-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters. PMID:26130294

  2. Mixing of immiscible polymers using nanoporous coordination templates

    NASA Astrophysics Data System (ADS)

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-07-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters.

  3. Mixing of immiscible polymers using nanoporous coordination templates.

    PubMed

    Uemura, Takashi; Kaseda, Tetsuya; Sasaki, Yotaro; Inukai, Munehiro; Toriyama, Takaaki; Takahara, Atsushi; Jinnai, Hiroshi; Kitagawa, Susumu

    2015-01-01

    The establishment of methodologies for the mixing of immiscible substances is highly desirable to facilitate the development of fundamental science and materials technology. Herein we describe a new protocol for the compatibilization of immiscible polymers at the molecular level using porous coordination polymers (PCPs) as removable templates. In this process, the typical immiscible polymer pair of polystyrene (PSt) and poly(methyl methacrylate) (PMMA) was prepared via the successive homopolymerizations of their monomers in a PCP to distribute the polymers inside the PCP particles. Subsequent dissolution of the PCP frameworks in a chelator solution affords a PSt/PMMA blend that is homogeneous in the range of several nanometers. Due to the unusual compatibilization, the thermal properties of the polymer blend are remarkably improved compared with the conventional solvent-cast blend. This method is also applicable to the compatibilization of PSt and polyacrylonitrile, which have very different solubility parameters.

  4. Tensile strengths of polyamide based 3D printed polymers in liquid nitrogen

    NASA Astrophysics Data System (ADS)

    Cruz, P.; Shoemake, E. D.; Adam, P.; Leachman, J.

    2015-12-01

    Advances in additive manufacturing technology have made 3D printing a viable solution for many industries, allowing for the manufacture of designs that could not be made through traditional subtractive methods. Applicability of additive manufacturing in cryogenic applications is hindered, however, by a lack of accurate material properties information. Nylon is available for printing using fused deposition modeling (FDM) and selective laser sintering (SLS). We selected 5 SLS (DuraForm® EX, DuraForm® HST, DuraForm® PA, PA 640-GSL, and PA 840-GSL) and 2 FDM (Nylon 12, ULTEM) nylon variants based on the bulk material properties and printed properties at room temperature. Tensile tests were performed on five samples of each material while immersed in liquid nitrogen at approximately 77 Kelvin. Samples were tested in XY and, where available, Z printing directions to determine influence on material properties. Results show typical SLS and FDM nylon ultimate strength retention at 77 K, when compared to (extruded or molded) nylon ultimate strength.

  5. Quartic canonical force field in curvilinear internal coordinates for XY3 (D3h) molecules. The case of the BH3 molecule.

    PubMed

    Ródenas, Consuelo Rosales; Quesada, Juana Vázquez; Torres, Emilio Martínez; González, Juan Jesús López

    2014-06-01

    Using the canonical force field theory, expressions of quadratic, cubic, and quartic canonical force constants are obtained for XY3 (D3h) molecules in curvilinear redundant coordinates, i.e., simple valence internal coordinates (VICs), in terms of force constants in normal coordinates and in independent symmetry coordinates. To carry out this task, it was previously necessary to obtain for the first time the non-linear redundancy relation and the corresponding orthogonal projection onto the pure vibrational manifold for XY3 (D3h) molecules corresponding to a set of seven VICs. As an application, the quartic canonical force field in curvilinear redundant internal coordinates of BH3 is determined from ab initio force fields in normal coordinates calculated at the coupled-cluster singles and doubles level with perturbative treatment of the triples in conjunction with a triple- and quadruple-ζ size basis set. This anharmonic force field so obtained for the borane molecule, and in general for XY3 (D3h) molecules, is uniquely defined (therefore in an unambiguous form) and depending on the same number of parameters, i.e., force constants, when independent coordinates (natural or symmetry) are used in its description.

  6. A Zn based coordination polymer exhibiting long-lasting phosphorescence.

    PubMed

    Cepeda, Javier; Sebastian, Eider San; Padro, Daniel; Rodríguez-Diéguez, Antonio; García, Jose A; Ugalde, Jesus M; Seco, Jose M

    2016-07-01

    A new Zn(ii) based coordination polymer (CP) built by the cohesive pilling of 2D Shubnikov type layers is reported. This material exhibits time dependent multicoloured emission, part of which shows a persistent green phosphorescence visible for up to two seconds to the naked eye, which originates from multiple charge transfer mechanisms. PMID:27297330

  7. Zinc oxide nano- and microfabrication from coordination-polymer templates.

    PubMed

    Liu, Xiaogang

    2009-01-01

    Hex nut: An emerging synthetic approach based on metal-organic coordination-polymer templates has been used to fabricate micro- and nanoscale crystals. By using a diverse range of molecular building blocks coupled with conventional synthetic techniques, it is possible to synthesize ZnO crystals with tailored sizes, shapes (such as hexagonal rings; see figure), and surface properties.

  8. Rendering non-energetic microporous coordination polymers explosive.

    PubMed

    McDonald, Kyle A; Bennion, Jonathan C; Leone, Amanda K; Matzger, Adam J

    2016-09-18

    Adsorption of oxidizing guest molecules into a non-energetic microporous coordination polymer produces explosives with desirable oxygen balance, high heat released upon decomposition, and suppressed vapor pressure of the guest. Here, this results in primary explosives, materials very sensitive to impact, that have the potential to be used as replacements for lead-based initiators.

  9. A new redox-active coordination polymer with cobalticinium dicarboxylate.

    PubMed

    Kondo, Mitsuru; Hayakawa, Yuri; Miyazawa, Makoto; Oyama, Aiko; Unoura, Kei; Kawaguchi, Hiroyuki; Naito, Tetsuyoshi; Maeda, Kenji; Uchida, Fumio

    2004-09-20

    A new two-dimensional coordination polymer with cobalticinium 1,1'-dicarboxylate (ccdc) incorporated in the framework has been prepared, the ccdc functioning as unique monoanionic dicarboxylate ligands. The compound shows a high redox activity based on the ccdc units.

  10. Coordination polymer particles as potential drug delivery systems.

    PubMed

    Imaz, Inhar; Rubio-Martínez, Marta; García-Fernández, Lorena; García, Francisca; Ruiz-Molina, Daniel; Hernando, Jordi; Puntes, Victor; Maspoch, Daniel

    2010-07-14

    Micro- and nanoscale coordination polymer particles can be used for encapsulating and delivering drugs. In vitro cancer cell cytotoxicity assays showed that these capsules readily release doxorubicin, which shows anticancer efficacy. The results from this work open up new avenues for metal-organic capsules to be used as potential drug delivery systems.

  11. Strategies, linkers and coordination polymers for high-performance sorbents

    SciTech Connect

    Matzger, Adam J.; Wong-Foy, Antek G.; Lebel, Oliver

    2015-09-15

    A linking ligand compound includes three bidentate chemical moieties distributed about a central chemical moiety. Another linking ligand compound includes a bidentate linking ligand and a monodentate chemical moiety. Coordination polymers include a plurality of metal clusters linked together by residues of the linking ligand compounds.

  12. Coordination polymer particles as potential drug delivery systems.

    PubMed

    Imaz, Inhar; Rubio-Martínez, Marta; García-Fernández, Lorena; García, Francisca; Ruiz-Molina, Daniel; Hernando, Jordi; Puntes, Victor; Maspoch, Daniel

    2010-07-14

    Micro- and nanoscale coordination polymer particles can be used for encapsulating and delivering drugs. In vitro cancer cell cytotoxicity assays showed that these capsules readily release doxorubicin, which shows anticancer efficacy. The results from this work open up new avenues for metal-organic capsules to be used as potential drug delivery systems. PMID:20485835

  13. Rendering non-energetic microporous coordination polymers explosive.

    PubMed

    McDonald, Kyle A; Bennion, Jonathan C; Leone, Amanda K; Matzger, Adam J

    2016-09-18

    Adsorption of oxidizing guest molecules into a non-energetic microporous coordination polymer produces explosives with desirable oxygen balance, high heat released upon decomposition, and suppressed vapor pressure of the guest. Here, this results in primary explosives, materials very sensitive to impact, that have the potential to be used as replacements for lead-based initiators. PMID:27523573

  14. Revealing the 3D internal structure of natural polymer microcomposites using X-ray ultra microtomography.

    PubMed

    Pakzad, A; Parikh, N; Heiden, P A; Yassar, R S

    2011-07-01

    Properties of composite materials are directly affected by the spatial arrangement of reinforcement and matrix. In this research, partially hydrolysed cellulose microcrystals were used to fabricate polycaprolactone microcomposites. The spatial distribution of cellulose microcrystals was characterized by a newly developed technique of X-ray ultra microscopy and microtomography. The phase and absorption contrast imaging of X-ray ultra microscopy revealed two-dimensional and three-dimensional information on CMC distribution in polymer matrices. The highest contrast and flux (signal-to-noise ratio) were obtained using vanadium foil targets with the accelerating voltage of 30 keV and beam current of >200 nA. The spatial distribution of cellulose microcrystals was correlated to the mechanical properties of the microcomposites. It was observed that heterogeneous distribution and clustering of cellulose microcrystals resulted in degradation of tensile strength and elastic modulus of composites. The utilization of X-ray ultra microscopy can open up new opportunities for composite researchers to explore the internal structure of microcomposites. X-ray ultra microscopy sample preparation is relatively simple in comparison to transmission electron microscopy and the spatial information is gathered at much larger scale.

  15. Multi-shape memory polymers achieved by the spatio-assembly of 3D printable thermoplastic building blocks.

    PubMed

    Li, Hongze; Gao, Xiang; Luo, Yingwu

    2016-04-01

    Multi-shape memory polymers were prepared by the macroscale spatio-assembly of building blocks in this work. The building blocks were methyl acrylate-co-styrene (MA-co-St) copolymers, which have the St-block-(St-random-MA)-block-St tri-block chain sequence. This design ensures that their transition temperatures can be adjusted over a wide range by varying the composition of the middle block. The two St blocks at the chain ends can generate a crosslink network in the final device to achieve strong bonding force between building blocks and the shape memory capacity. Due to their thermoplastic properties, 3D printing was employed for the spatio-assembly to build devices. This method is capable of introducing many transition phases into one device and preparing complicated shapes via 3D printing. The device can perform a complex action via a series of shape changes. Besides, this method can avoid the difficult programing of a series of temporary shapes. The control of intermediate temporary shapes was realized via programing the shapes and locations of building blocks in the final device. PMID:26924759

  16. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells

    NASA Astrophysics Data System (ADS)

    Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef

    2016-08-01

    Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140 °C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner.

  17. 3D printed sample holder for in-operando EPR spectroscopy on high temperature polymer electrolyte fuel cells.

    PubMed

    Niemöller, Arvid; Jakes, Peter; Kayser, Steffen; Lin, Yu; Lehnert, Werner; Granwehr, Josef

    2016-08-01

    Electrochemical cells contain electrically conductive components, which causes various problems if such a cell is analyzed during operation in an EPR resonator. The optimum cell design strongly depends on the application and it is necessary to make certain compromises that need to be individually arranged. Rapid prototyping presents a straightforward option to implement a variable cell design that can be easily adapted to changing requirements. In this communication, it is demonstrated that sample containers produced by 3D printing are suitable for EPR applications, with a particular emphasis on electrochemical applications. The housing of a high temperature polymer electrolyte fuel cell (HT-PEFC) with a phosphoric acid doped polybenzimidazole membrane was prepared from polycarbonate by 3D printing. Using a custom glass Dewar, this fuel cell could be operated at temperatures up to 140°C in a standard EPR cavity. The carbon-based gas diffusion layer showed an EPR signal with a characteristic Dysonian line shape, whose evolution could be monitored in-operando in a non-invasive manner.

  18. Alkaline earth-based coordination polymers derived from a cyclotriphosphazene-functionalized hexacarboxylate

    NASA Astrophysics Data System (ADS)

    Ling, Yajing; Bai, Dongjie; Feng, Yunlong; He, Yabing

    2016-10-01

    Combination of hexakis(4-carboxylatephenoxy)cyclotriphosphazene with alkaline earth ions of increasing ionic radii (Mg2+, Ca2+ and Ba2+) under different solvothermal conditions yielded three new coordination polymers, and their crystal structures were determined by single-crystal X-ray diffraction analysis. The magnesium compound displays a three dimensional (3D) network structure constructed from the deprotonated ligand and the secondary building block Mg(COO)4, which can be rationalized as a (4,6)-connected topological net with the Schläfli symbol of (44·62)3(49·66)2. The calcium compound consists of 1D infinite "Ca-O" inorganic chains connected by the deprotonated ligands to from a 3D framework. The barium compound exhibits a 3D framework in which 1D "Ba-O" inorganic chains are connected together by the deprotonated organic linkers. Due to the semi-rigid nature, the ligand adopts distinctly different conformations in the three compounds. The metal ions' influence exerted on the final structure of the resulting coordination polymers is also discussed. When the radii of alkaline earth ions increases descending down the group from Mg(II) to Ba(II), the coordination number becomes larger and more versatile: from 6 in the magnesium compound, to 6,7 and 10 in the calcium compound, and to 8 and 9 in the barium compound, thus substantially influencing the resulting final framework structures. Also, the photophysical properties were investigated systematically, revealing that the three compounds are photoluminscent in the solid state at room temperature. This work demonstrates that although the multiplicity of conformation in the hexacarboxylate ligand based on the inorganic scaffold cyclotriphosphazene makes it difficult to predict how this ligand will form extended network, but provides unique opportunities for the formation of diverse inorganic-organic hybrids exhibiting rich structural topologies.

  19. Syntheses, structures and photoelectric properties of a series of Cd(II)/Zn(II) coordination polymers and coordination supramolecules

    SciTech Connect

    Jin Jing; Han Xiao; Meng Qin; Li Dan; Chi Yuxian; Niu Shuyun

    2013-01-15

    Five Cd(II)/Zn(II) complexes [Cd(1,2-bdc)(pz){sub 2}(H{sub 2}O)]{sub n} (1), [Cd1Cd2(btec)(H{sub 2}O){sub 6}]{sub n} (2), [Cd(3,4-pdc) (H{sub 2}O)]{sub n} (3), [Zn(2,5-pdc)(H{sub 2}O){sub 4}]{center_dot}2H{sub 2}O (4) and {l_brace} [Zn(2,5-pdc)(H{sub 2}O){sub 2}]{center_dot}H{sub 2}O{r_brace} {sub n} (5) (H{sub 2}bdc=1,2-benzenedicarboxylic acid, pz=pyrazole, H{sub 4}btec=1,2,4,5-benzenetetracarboxylic acid, H{sub 2}pdc=pyridine-dicarboxylic acid) were hydrothermally synthesized and characterized by single-crystal X-ray diffraction, surface photovoltage spectroscopy, XRD, TG analysis, IR and UV-vis spectra and elemental analysis. Structural analyses show that complexes 1-3 are 1D, 2D and 3D Cd(II) coordination polymers, respectively. Complex 4 is a mononuclear Zn(II) complex. Complex 5 is a 3D Zn(II) coordination polymer. The surface photoelectric properties of complexes were investigated by SPS. The results indicate that all complexes exhibit photoelectric responses in the range of 300-600 nm, which reveals that they all possess certain photoelectric conversion properties. By the comparative analyses, it can be found that the species and coordination micro-environment of central metal ion, the species and property of ligands affect the intensity and scope of photoelectric response. - Graphical abstract: Five Cd(II)/Zn(II) complexes have been hydrothermally synthesized and characterized. The photoelectric properties were studied with SPS. The species and coordination micro-environment of central metal ion, the species and property of ligands all affect the photoelectric responses. Highlights: Black-Right-Pointing-Pointer Five Cd/Zn complexes have been synthesized and characterized. Black-Right-Pointing-Pointer The SPS results indicate they possess obvious photoelectric conversion property. Black-Right-Pointing-Pointer The species and coordination environment of central metal ion affect SPS. Black-Right-Pointing-Pointer The species and property of ligands affect SPS

  20. Structural Diversity of Cadmium(II) Coordination Polymers Induced by Tuning the Coordination Sites of Isomeric Ligands.

    PubMed

    Liu, Bo; Zhou, Hui-Fang; Hou, Lei; Wang, Jian-Ping; Wang, Yao-Yu; Zhu, Zhonghua

    2016-09-01

    When the coordination sites of ligands were shifted, the solvothermal reactions of four positional isomeric asymmetrical pyridyldicarboxylatic acids with Cd(NO3)2 generated four new coordination polymers, [Cd(L1)(DMF)3]·DMF·H2O (1), [H2N(CH3)2]2[Cd(L2)2]·3DMF·H2O (2), [Cd(L3)(H2O)2] (3), and [Cd(L4)]·1.5DMF (4), where DMF = N,N-dimethylformamide, H2L1 = 2-(3'-carboxylphenyl)isonicotinic acid, H2L2 = 2-(4'-carboxylphenyl)isonicotinic acid, H2L3 = 5-(3'-carboxylphenyl)nicotic acid, and H2L4 = 2-(3'-pyridyl)terephthalic acid. 1 shows a rare 2D fabric structure. 2 discloses a grid-layer structure with heterochiral helical chains and in which three sets of layers stack in different directions, affording an unprecedented 2D + 2D + 2D → 3D polycatenating framework with 3D intersecting porous systems. 3 also displays a 2D layer possessing strong intralayer π···π interactions and interlayer hydrogen bonds. 4 contains a rare Cd2(COO)4 paddle-wheel unit and forms a 3D framework with 1D open channels. The carboxyl and pyridyl groups of the positional isomeric H2L1-H2L4 ligands show distinct bridging fashions, which leads to the production of versatile architectures of 1-4, and their effects on the crystal structures are discussed. 1-4 reveal solid-state photoluminescence stemming from intraligand charge transfer. 2 and 4 show high selectivity for CO2 over CH4 but with different CO2 adsorption enthalpies. Grand canonical Monte Carlo simulations identified the multiple adsorption sites in 2 for CO2. PMID:27513092

  1. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.

    PubMed

    Melocchi, Alice; Parietti, Federico; Maroni, Alessandra; Foppoli, Anastasia; Gazzaniga, Andrea; Zema, Lucia

    2016-07-25

    Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation. Challenges in this field are mainly related to the paucity of adequate filaments composed of pharmaceutical grade materials, which are needed for feeding the FDM equipment. Accordingly, a number of polymers of common use in pharmaceutical formulation were evaluated as starting materials for fabrication via hot melt extrusion of filaments suitable for FDM processes. By using a twin-screw extruder, filaments based on insoluble (ethylcellulose, Eudragit(®) RL), promptly soluble (polyethylene oxide, Kollicoat(®) IR), enteric soluble (Eudragit(®) L, hydroxypropyl methylcellulose acetate succinate) and swellable/erodible (hydrophilic cellulose derivatives, polyvinyl alcohol, Soluplus(®)) polymers were successfully produced, and the possibility of employing them for printing 600μm thick disks was demonstrated. The behavior of disks as barriers when in contact with aqueous fluids was shown consistent with the functional application of the relevant polymeric components. The produced filaments were thus considered potentially suitable for printing capsules and coating layers for immediate or modified release, and, when loaded with active ingredients, any type of dosage forms.

  2. Hot-melt extruded filaments based on pharmaceutical grade polymers for 3D printing by fused deposition modeling.

    PubMed

    Melocchi, Alice; Parietti, Federico; Maroni, Alessandra; Foppoli, Anastasia; Gazzaniga, Andrea; Zema, Lucia

    2016-07-25

    Fused deposition modeling (FDM) is a 3D printing technique based on the deposition of successive layers of thermoplastic materials following their softening/melting. Such a technique holds huge potential for the manufacturing of pharmaceutical products and is currently under extensive investigation. Challenges in this field are mainly related to the paucity of adequate filaments composed of pharmaceutical grade materials, which are needed for feeding the FDM equipment. Accordingly, a number of polymers of common use in pharmaceutical formulation were evaluated as starting materials for fabrication via hot melt extrusion of filaments suitable for FDM processes. By using a twin-screw extruder, filaments based on insoluble (ethylcellulose, Eudragit(®) RL), promptly soluble (polyethylene oxide, Kollicoat(®) IR), enteric soluble (Eudragit(®) L, hydroxypropyl methylcellulose acetate succinate) and swellable/erodible (hydrophilic cellulose derivatives, polyvinyl alcohol, Soluplus(®)) polymers were successfully produced, and the possibility of employing them for printing 600μm thick disks was demonstrated. The behavior of disks as barriers when in contact with aqueous fluids was shown consistent with the functional application of the relevant polymeric components. The produced filaments were thus considered potentially suitable for printing capsules and coating layers for immediate or modified release, and, when loaded with active ingredients, any type of dosage forms. PMID:27215535

  3. Conductive polymer-mediated 2D and 3D arrays of Mn3O4 nanoblocks and mesoporous conductive polymers as their replicas

    NASA Astrophysics Data System (ADS)

    Nakagawa, Yoshitaka; Kageyama, Hiroyuki; Matsumoto, Riho; Oaki, Yuya; Imai, Hiroaki

    2015-11-01

    Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery.Orientation-controlled 2D and 3D microarrays of Mn3O4 nanocuboids that were mediated by a conductive polymer were fabricated by evaporation-induced self-assembly of the oxide nanoblocks and subsequent polymerization of pyrrole in the interparticle spaces. Free-standing mesoporous polypyrroles (PPy) having chain- and square-grid-like nanovoid arrays were obtained as replicas of the composite assemblies by dissolving the oxide nanoblocks. The PPy-mediated manganese oxide arrays exhibited stable electrochemical performance as an ultrathin anode of a lithium-ion secondary battery. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr05912g

  4. Syntheses, crystal structures, and properties of new metal-5-bromonicotinate coordination polymers

    SciTech Connect

    Li, Wenjie; Li, Guoting; Lv, Lulu; Zhao, Hong; Wu, Benlai

    2015-05-15

    Four metal–5-bromonicotinate (Brnic) coordination polymers [Fe(Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (1), [Ni(Brnic){sub 2}]{sub n} (2), [Ni(Brnic)(bpy)(H{sub 2}O){sub 2}]{sub n}·n(Brnic)·4.5nH{sub 2}O (3), and [Co{sub 2}(Brnic){sub 3}(bpy){sub 2}(OH)]{sub n}·nH{sub 2}O (4) have been synthesized and structurally characterized (bpy=4,4′-bipyridine). Complex 1 has corrugated (4,4) sheets formed by μ-Brnic ligands and planar nodes Fe(II). As for 2–4, they all built up from Brnic-bridged dinuclear subunits, but have very different structure features. Complex 2 is a twin-like polymer with (4,4) layers formed by twin paddle-wheel [Ni{sub 2}(Brnic){sub 4}] subunits. Through the bridge coordination of bpy ligands with dinuclear rings [Ni{sub 2}(Brnic){sub 2}] and trigons [Co{sub 2}(Brnic){sub 3}(OH)], 6{sup 3}-topological cationic layers with nanosized grids of 3 and chiral ladder-type double chains of 4 formed, respectively. Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules 1–4. The thermostabilities of all compounds have been discussed in detail. Moreover, the magnetic investigations of 2 and 4 indicate that there exist antiferromagnetic interactions in the paddle-wheel [Ni{sub 2}(Brnic){sub 4}] and trigon [Co{sub 2}(Brnic){sub 3}(OH)] cores, respectively. - Highlights: • Four novel metal–5-bromonicotinate coordination polymers have been synthesized. • Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules. • Antiferromagnetic interactions in nickel(II) paddle-wheel and cobalt(II) trigon cores were observed.

  5. TESS: a geometric hashing algorithm for deriving 3D coordinate templates for searching structural databases. Application to enzyme active sites.

    PubMed

    Wallace, A C; Borkakoti, N; Thornton, J M

    1997-11-01

    It is well established that sequence templates such as those in the PROSITE and PRINTS databases are powerful tools for predicting the biological function and tertiary structure for newly derived protein sequences. The number of X-ray and NMR protein structures is increasing rapidly and it is apparent that a 3D equivalent of the sequence templates is needed. Here, we describe an algorithm called TESS that automatically derives 3D templates from structures deposited in the Brookhaven Protein Data Bank. While a new sequence can be searched for sequence patterns, a new structure can be scanned against these 3D templates to identify functional sites. As examples, 3D templates are derived for enzymes with an O-His-O "catalytic triad" and for the ribonucleases and lysozymes. When these 3D templates are applied to a large data set of nonidentical proteins, several interesting hits are located. This suggests that the development of a 3D template database may help to identify the function of new protein structures, if unknown, as well as to design proteins with specific functions.

  6. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    SciTech Connect

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-09-15

    Three new metal-organic coordination polymers [Co(4-bbc){sub 2}(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H{sub 2}O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H{sub 2}pdc=3,5-pyridinedicarboxylic acid, 1,4-H{sub 2}ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and Co{sup II} ions. Polymer 2 exhibits a 2D network with a (3·4·5)(3{sup 2}·4·5·6{sup 2}·7{sup 4}) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1–3. Moreover, the thermal stability, electrochemical and luminescent properties of 1–3 were investigated. - graphical abstract: Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were hydrothermally synthesized and structurally characterized. The aromatic carboxylates play a key role in the dimensionality of three polymers. The electrochemical and luminescent properties of three polymers were investigated. Display Omitted - Highlights: • Three bis(benzimidazole)-based cobalt(II) coordination polymers tuned by aromatic carboxylates were obtained. • The aromatic carboxylates have an important influence on the dimensionality of three polymers. • The electrochemical and luminescent properties of three polymers were investigated.

  7. Lanthanide coordination polymers: Synthesis, diverse structure and luminescence properties

    SciTech Connect

    Song, Xue-Qin Lei, Yao-Kun; Wang, Xiao-Run; Zhao, Meng-Meng; Peng, Yun-Qiao; Cheng, Guo-Quan

    2014-10-15

    The new semirigid exo-bidentate ligand incorporating furfurysalicylamide terminal groups, namely, 1,4-bis([(2′-furfurylaminoformyl)phenoxyl]methyl)-2,5-bismethylbenzene (L) was synthesized and used as building blocks for constructing lanthanide coordination polymers with luminescent properties. The series of lanthanide nitrate complexes have been characterized by elemental analysis, IR spectroscopy, and X-ray diffraction analysis. The semirigid ligand L, as a bridging ligand, reacts with lanthanide nitrates forming three distinct structure types: chiral noninterpenetrated two-dimensional (2D) honeycomblike (6,3) (hcb, Schläfli symbol 6{sup 3}, vertex symbol 6 6 6) topological network as type I, 1D zigzag chain as type II and 1D trapezoid ladder-like chain as type III. The structural diversities indicate that lanthanide contraction effect played significant roles in the structural self-assembled process. The luminescent properties of Eu{sup III}, Tb{sup III} and Dy{sup III} complexes are discussed in detail. Due to the good match between the lowest triplet state of the ligand and the resonant energy level of the lanthanide ion, the lanthanide ions in Eu{sup III}, Tb{sup III} and Dy{sup III} complexes can be efficiently sensitized by the ligand. - Graphical abstract: We present herein six lanthanide coordination polymers of a new semirigid exo-bidentate ligand which not only display diverse structures but also possess strong luminescence properties. - Highlights: • We present lanthanide coordination polymers of a new semirigid exo-bidentate ligand. • The lanthanide coordination polymers exhibit diverse structures. • The luminescent properties of Tb{sup III}, Eu{sup III} and Dy{sup III} complexes are discussed in detail.

  8. Defining the medial-lateral axis of an anatomical femur coordinate system using freehand 3D ultrasound imaging.

    PubMed

    Passmore, Elyse; Sangeux, Morgan

    2016-03-01

    Hip rotation from gait analysis informs clinical decisions regarding correction of femoral torsional deformities. However, it is among the least repeatable due to discrepancies in determining the medial-lateral axis of the femur. Conventional or functional calibration methods may be used to define the axis but there is no benchmark to evaluate these methods. Freehand 3D ultrasound, the coupling of ultrasound with 3D motion capture, may provide such a benchmark. We measured the accuracy in vitro and repeatability in vivo of determining the femur condylar axis from freehand 3D ultrasound. The condylar axis provided the reference medial-lateral axis of the femur and was used to evaluate one conventional method and three functional calibration methods, applied to three calibration movements. Ten healthy subjects (20 limbs) underwent 3D gait analysis and freehand 3D ultrasound. The functional calibration methods were a transformation technique, a geometrical method and a method that minimises variance of knee varus-valgus kinematics (DynaKAD). The conventional method used markers over the femoral epicondyles. The condylar axis determined by 3D ultrasound showed good accuracy in vitro, 1.6° (SD: 0.3°) and good repeatability in vivo, 0.2° (RSMD: 2.3°). The DynaKAD method applied to the walking calibration movement determined the medial-lateral axis closest to the ultrasound reference. The average angular difference in the transverse plane was 3.1° (SD: 6.1°). Freehand 3D ultrasound offers an accurate, non-invasive and relatively fast method to locate the medial-lateral axis of the femur for gait analysis.

  9. Arene Selectivity by a Flexible Coordination Polymer Host.

    PubMed

    Wright, James S; Vitórica-Yrezábal, Iñigo J; Thompson, Stephen P; Brammer, Lee

    2016-09-01

    The coordination polymers [Ag4 (O2 CCF3 )4 (phen)3 ]⋅ phen⋅arene (1⋅phen⋅arene) (phen=phenazine; arene=toluene, p-xylene or benzene) have been synthesised from the solution phase in a series of arene solvents and crystallographically characterised. By contrast, analogous syntheses from o-xylene and m-xylene as the solvent yield the solvent-free coordination polymer [Ag4 (O2 CCF3 )4 (phen)2 ] (2). Toluene, p-xylene and benzene have been successfully used in mixed-arene syntheses to template the formation of coordination polymers 1⋅phen⋅arene, which incorporate o- or m-xylene. The selectivity of 1⋅phen⋅arene for the arene guests was determined, through pairwise competition experiments, to be p-xylene>toluene≈benzene>o-xylene>m-xylene. The largest selectivity coefficient was determined as 14.2 for p-xylene:m-xylene and the smallest was 1.0 for toluene:benzene. PMID:27483388

  10. Arene Selectivity by a Flexible Coordination Polymer Host.

    PubMed

    Wright, James S; Vitórica-Yrezábal, Iñigo J; Thompson, Stephen P; Brammer, Lee

    2016-09-01

    The coordination polymers [Ag4 (O2 CCF3 )4 (phen)3 ]⋅ phen⋅arene (1⋅phen⋅arene) (phen=phenazine; arene=toluene, p-xylene or benzene) have been synthesised from the solution phase in a series of arene solvents and crystallographically characterised. By contrast, analogous syntheses from o-xylene and m-xylene as the solvent yield the solvent-free coordination polymer [Ag4 (O2 CCF3 )4 (phen)2 ] (2). Toluene, p-xylene and benzene have been successfully used in mixed-arene syntheses to template the formation of coordination polymers 1⋅phen⋅arene, which incorporate o- or m-xylene. The selectivity of 1⋅phen⋅arene for the arene guests was determined, through pairwise competition experiments, to be p-xylene>toluene≈benzene>o-xylene>m-xylene. The largest selectivity coefficient was determined as 14.2 for p-xylene:m-xylene and the smallest was 1.0 for toluene:benzene.

  11. Electrical conductivity and luminescence properties of two silver(I) coordination polymers with heterocyclic nitrogen ligands

    SciTech Connect

    Rana, Abhinandan; Kumar Jana, Swapan; Pal, Tanusri; Puschmann, Horst; Zangrando, Ennio; Dalai, Sudipta

    2014-08-15

    The synthesis and X-ray structural characterization of two novel silver(I) coordination polymers, [Ag(NO{sub 3})(quin)]{sub n} (1) and [Ag{sub 8}(HL){sub 2}(H{sub 2}O){sub 4}(mpyz)]·3H{sub 2}O (2) are reported, where quin=5,6,7,8-tetrahydroquinoxaline, H{sub 6}L=cyclohexane-1,2,3,4,5,6-hexacarboxylic acid and mpyz=2-methyl pyrazine. The single crystal diffraction analyses showed that complex 1 is a 2D layered structure, while 2 presents a 3D polymeric architecture. In complex 2 the network is stabilized by argentophilic interactions and hydrogen bonding. Electrical conductivity of order 3×10{sup −4} Scm{sup −1} (1) and 1.6×10{sup −4} Scm{sup −1} (2) is measured on thin film specimen at room temperature. The photoluminescence and thermal properties of the complexes have also been studied. - Graphical abstract: Two new 1D and 3D coordination polymers of Ag(I) have been synthesized and characterized by X-ray analysis. The electrical, luminescence and thermal properties have been studied. - Highlights: • 1 is 2D layered while 2 present a 3D polymeric architecture. • The network in 2 is stabilized by argentophilic interactions and hydrogen bonding. • Electrical conductivity measurement is quite interesting. • Argentophilic interaction and intra-ligand π{sup ⁎}–π CT explains emission behavior of 2.

  12. 3D fine scale PZT skeletons of 1-3 ceramic polymer composites formed by ink-jet prototyping process

    NASA Astrophysics Data System (ADS)

    Noguera, R.; Dossou-Yovo, C.; Lejeune, M.; Chartier, T.

    2005-06-01

    Different investigations have been carried out to optimize an ink-jet printing technique, devoted to the fabrication of 3D fine scale PZT parts, by adjustment of the fluid properties of the ceramic suspensions and by controlling the ejection and impact phenomena. A 10 vol% PZT loaded suspension characterized by a Newtonian behavior, corresponding to a viscosity of 10mPa.s and to a ratio Re/We1/2 of 5.98 has been selected. The ejection and impact phenomena strongly depend on the driving parameters of the printing head, in particular the formation of the droplet, with satellite or not, as well as its velocity and volume which are function of the pulse amplitude. Moreover, the conditions of ejection (droplet velocity and volume) control the characteristics of the deposit (definition, spreading, thickness uniformity). Sintered PZT pillar array corresponding to the skeleton of 1-3 ceramic polymer composite for imaging probes has been achieved by ink-jet printing with a definition equal to 50μ m.

  13. 3D polymer gel dosimetry and Geant4 Monte Carlo characterization of novel needle based X-ray source

    NASA Astrophysics Data System (ADS)

    Liu, Y.; Sozontov, E.; Safronov, V.; Gutman, G.; Strumban, E.; Jiang, Q.; Li, S.

    2010-11-01

    In the recent years, there have been a few attempts to develop a low energy x-ray radiation sources alternative to conventional radioisotopes used in brachytherapy. So far, all efforts have been centered around the intent to design an interstitial miniaturized x-ray tube. Though direct irradiation of tumors looks very promising, the known insertable miniature x-ray tubes have many limitations: (a) difficulties with focusing and steering the electron beam to the target; (b)necessity to cool the target to increase x-ray production efficiency; (c)impracticability to reduce the diameter of the miniaturized x-ray tube below 4mm (the requirement to decrease the diameter of the x-ray tube and the need to have a cooling system for the target have are mutually exclusive); (c) significant limitations in changing shape and energy of the emitted radiation. The specific aim of this study is to demonstrate the feasibility of a new concept for an insertable low-energy needle x-ray device based on simulation with Geant4 Monte Carlo code and to measure the dose rate distribution for low energy (17.5 keV) x-ray radiation with the 3D polymer gel dosimetry.

  14. A 3D porous polymer monolith-based platform integrated in poly(dimethylsiloxane) microchips for immunoassay.

    PubMed

    Kang, Qin-Shu; Shen, Xiao-Fan; Hu, Na-Na; Hu, Meng-Jia; Liao, Hui; Wang, Han-Zhong; He, Zhi-Ke; Huang, Wei-Hua

    2013-05-01

    In this work, we demonstrate the immunocapture and on-line fluorescence immunoassay of protein and virus based on porous polymer monoliths (PPM) in microfluidic devices. Poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) [poly(GMA-co-EGDMA)] monoliths were successfully synthesized in the polydimethylsiloxane (PDMS) microfluidic channels by in situ UV-initiated free radical polymerization. After surface modification, PPM provides a high-surface area and specific affinity 3D substrate for immunoassays. Combining with well controlled microfluidic devices, the direct immunoassay of IgG and sandwich immunoassay of inactivated H1N1 influenza virus using 5 μL sample has been accomplished, with detection limits of 4 ng mL(-1) and less than 10 pg mL(-1), respectively. The enhanced detection sensitivity is due to both high surface area of PPM and flow-through design. The detection time was obviously decreased mainly due to the shortened diffusion distance and improved convective mass transfer inside the monolith, which accelerates the reaction kinetics between antigen and antibody. This work provides a novel microfluidic immunoassay platform with high efficiency thereby enabling fast and sensitive immunoassay.

  15. Different dimensional coordination polymers with 4,4'-oxybis(benzoate): Syntheses, structures and properties

    SciTech Connect

    Lun, Huijie; Li, Yamin; Zhang, Xudong; Yang, Jing-He; Xiao, Changyu; Xu, Yanqing; Li, Junrui

    2014-07-01

    Five transition-metal coordination polymers, namely, [Zn{sub 7}Cl{sub 6}(oba){sub 4}]{sub n} (1), [Cd{sub 7}Cl{sub 6}(oba){sub 4}]{sub n} (2), [Zn(oba)(H{sub 2}O)]{sub n} (3), [Ag{sub 2}(oba)]{sub n} (4) and [Co(oba)(H{sub 2}O){sub 2}]{sub n} (5) (H{sub 2}oba=4,4′-oxydibenzoic acid), have been achieved under hydrothermal conditions and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isomorphism, featuring pillared-layer 3D motifs, in which the 2D inorganic layers (Zn{sub 6}Cl{sub 7}){sub n} (or (Cd{sub 6}Cl{sub 7}){sub n}) are connected by oba{sup 2−} pillars. Compound 3 exhibits 1D stair-like chain and extends to a 3D network by two different interchain O–H–O hydrogen bonding interactions while compound 4 features wave chains and stretches to 2D layer by interchain Ag–O weak contacts. Compound 5 shows 2D network in which Co-chains are pillared by oba{sup 2−} ligand and then forms a 3D network by four different O–H–O hydrogen bonding interactions. Furthermore, 1–4 exhibit luminescent properties at a solid state and 5 shows antiferromagnetic behavior. - Graphical abstract: Five new transition-metal coordination complexes 1–5 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses (TGA), photoluminescent spectra and magnetic measurement. - Highlights: • Compound 1 exhibits a pillared-layer 3D network. • The photoluminescent properties of 1–4 have been measured. • Compound 5 exhibits antiferromagnetic behavior.

  16. Syntheses, structures, and photoluminescence of three-dimensional lanthanide coordination polymers with 2,5-pyridinedicarboxylic acid

    SciTech Connect

    Huang Yan; Song Yishan; Yan, Bing Shao Min

    2008-08-15

    Four new open-framework coordination polymers of lanthanide 2,5-pyridinedicarboxylates, with the formulas Pr2(pydc){sub 3}(H{sub 2}O){sub 2} (1), Ln(pydc)(Hpydc) (Ln=Tb (2), Er (3), Eu (5)), and Gd(pydc)(nic)(H{sub 2}O) (4) (H{sub 2}pydc=2,5-pyridinedicarboxylic acid, Hnic=nicotinic acid), have been hydrothermally synthesized and four of them (except Eu (5)) have been structurally characterized. Complex 1 consists of two types of ligand-binding modes contributing to link the PrO{sub 7}N(H{sub 2}O) polyhedral chains to three-dimensional (3D) open-framework architecture. Complexes 2 and 3 are isostructural and feature unique 3D cage-like supramolecular frameworks remarkably different from that of 1, owing to the different ligand-bridging pattern. Complex 4, however, has the distinct 3D open-framework architecture due to the presence of unexpected nicotinate ligands, which may be derived from pydc ligands via in-situ decarboxylation under the hydrothermal condition. - Graphical abstract: Four new lanthanide coordination polymers have been hydrothermally synthesized by the reaction of 2,5-pyridinedicarboxylic acid with the corresponding lanthanide nitrates, and they show three types of 3D open-framework architecture. Complexes 2 and 5 show strong characteristic green (or red) luminescence and long lifetimes.

  17. Spectroscopic properties of a series of Co(II) coordination polymers and the influence of Co(II) coordination environment on photoelectric property

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Gong, Yuanyuan; Li, Lei; Han, Xiao; Meng, Qin; Liu, Yonghua; Niu, Shuyun

    2015-02-01

    Four Co(II) coordination polymers, [Co(suc)]n1, [Co(pdc)]n2, {[Co7(suc)4(OH)6(H2O)3] · 8H2O}n3, {[Co(bdc)(phen)(H2O)] · H2O}n4 (H2suc = succinic acid, H2pdc = pyridine-3,4-dicarboxylic acid, H2bdc = 1,2-benzenedicarboxylic acid, phen = 1,10-phenanthroline) were hydrothermally synthesized and characterized by X-ray single-crystal diffraction, surface photovoltage spectroscopy (SPS), electrical conductivity, thermogravimetric analysis (TG), ultraviolet visible and near-infrared absorption spectrum (UV-Vis-NIR), infrared spectrum (IR), and elemental analysis. The structural analyses indicate that the coordination numbers of the Co(II) ions are 4, 5, 6 and 6 for the polymers 1-4, respectively. And polymers 1 and 2 exhibit 3D structure formed by suc2- and pdc2- anions bridging Co(II) ions, respectively. Polymer 3 exhibits a 2D structure with suc2- anions bridging seven-nuclear [Co7(OH)6(H2O)3]3- unit and polymer 4 is a 1D structure bridged by bdc2- anions. The surface photoelectric properties of the cobalt polymers were mainly studied by SPS. The results of SPS reveal that all polymers possess certain photoelectric conversion property in the range of 300-800 nm. The influences of the structure, coordination micro-environment of central metal ion and structural dimensionality on response bands of SPS were discussed.

  18. Spectroscopic properties of a series of Co(II) coordination polymers and the influence of Co(II) coordination environment on photoelectric property.

    PubMed

    Jin, Jing; Gong, Yuanyuan; Li, Lei; Han, Xiao; Meng, Qin; Liu, Yonghua; Niu, Shuyun

    2015-02-25

    Four Co(II) coordination polymers, [Co(suc)]n 1, [Co(pdc)]n 2, {[Co7(suc)4(OH)6(H2O)3]·8H2O}n 3, {[Co(bdc)(phen)(H2O)]·H2O}n 4 (H2suc=succinic acid, H2pdc=pyridine-3,4-dicarboxylic acid, H2bdc=1,2-benzenedicarboxylic acid, phen=1,10-phenanthroline) were hydrothermally synthesized and characterized by X-ray single-crystal diffraction, surface photovoltage spectroscopy (SPS), electrical conductivity, thermogravimetric analysis (TG), ultraviolet visible and near-infrared absorption spectrum (UV-Vis-NIR), infrared spectrum (IR), and elemental analysis. The structural analyses indicate that the coordination numbers of the Co(II) ions are 4, 5, 6 and 6 for the polymers 1-4, respectively. And polymers 1 and 2 exhibit 3D structure formed by suc(2-) and pdc(2-) anions bridging Co(II) ions, respectively. Polymer 3 exhibits a 2D structure with suc(2-) anions bridging seven-nuclear [Co7(OH)6(H2O)3](3-) unit and polymer 4 is a 1D structure bridged by bdc(2-) anions. The surface photoelectric properties of the cobalt polymers were mainly studied by SPS. The results of SPS reveal that all polymers possess certain photoelectric conversion property in the range of 300-800 nm. The influences of the structure, coordination micro-environment of central metal ion and structural dimensionality on response bands of SPS were discussed.

  19. Spectroscopic properties of a series of Co(II) coordination polymers and the influence of Co(II) coordination environment on photoelectric property.

    PubMed

    Jin, Jing; Gong, Yuanyuan; Li, Lei; Han, Xiao; Meng, Qin; Liu, Yonghua; Niu, Shuyun

    2015-02-25

    Four Co(II) coordination polymers, [Co(suc)]n 1, [Co(pdc)]n 2, {[Co7(suc)4(OH)6(H2O)3]·8H2O}n 3, {[Co(bdc)(phen)(H2O)]·H2O}n 4 (H2suc=succinic acid, H2pdc=pyridine-3,4-dicarboxylic acid, H2bdc=1,2-benzenedicarboxylic acid, phen=1,10-phenanthroline) were hydrothermally synthesized and characterized by X-ray single-crystal diffraction, surface photovoltage spectroscopy (SPS), electrical conductivity, thermogravimetric analysis (TG), ultraviolet visible and near-infrared absorption spectrum (UV-Vis-NIR), infrared spectrum (IR), and elemental analysis. The structural analyses indicate that the coordination numbers of the Co(II) ions are 4, 5, 6 and 6 for the polymers 1-4, respectively. And polymers 1 and 2 exhibit 3D structure formed by suc(2-) and pdc(2-) anions bridging Co(II) ions, respectively. Polymer 3 exhibits a 2D structure with suc(2-) anions bridging seven-nuclear [Co7(OH)6(H2O)3](3-) unit and polymer 4 is a 1D structure bridged by bdc(2-) anions. The surface photoelectric properties of the cobalt polymers were mainly studied by SPS. The results of SPS reveal that all polymers possess certain photoelectric conversion property in the range of 300-800 nm. The influences of the structure, coordination micro-environment of central metal ion and structural dimensionality on response bands of SPS were discussed. PMID:25280332

  20. Stability of complex coacervate core micelles containing metal coordination polymer.

    PubMed

    Yan, Yun; de Keizer, Arie; Cohen Stuart, Martien A; Drechsler, Markus; Besseling, Nicolaas A M

    2008-09-01

    We report on the stability of complex coacervate core micelles, i.e., C3Ms (or PIC, BIC micelles), containing metal coordination polymers. In aqueous solutions these micelles are formed between charged-neutral diblock copolymers and oppositely charged coordination polymers formed from metal ions and bisligand molecules. The influence of added salt, polymer concentration, and charge composition was investigated by using light scattering and cryo-TEM techniques. The scattering intensity decreases strongly with increasing salt concentration until a critical salt concentration beyond which no micelles exist. The critical micelle concentration increases almost exponentially with the salt concentration. From the scattering results it follows that the aggregation number decreases with the square root of the salt concentration, but the hydrodynamic radius remains constant or increases slightly. It was concluded that the density of the core decreases with increasing ionic strength. This is in agreement with theoretical predictions and is also confirmed by cryo-TEM measurements. A complete composition diagram was constructed based on the composition boundaries obtained from light scattering titrations.

  1. 3-D solution of flow in an infinite square array of circular tubes by using boundary-fitted coordinate system

    SciTech Connect

    Chen, B.C.J.; Chien, T.H.; Sha, W.T.; Kim, J.H.

    1982-01-01

    Heat transfer and fluid flow over circular tubes have wide applications in the design of heat exchangers and nuclear reactors. However, it is often difficult to accurately calculate the detailed velocity and temperature distributions of the flow because of the complex geometry involved in the analysis, and a lack of an appropriate coordinate system for the analysis. Boundary conditions on the surfaces of the tubes are often interpolated. This interpolation process introduces inaccuracy. To overcome this difficulty, the present study used the technique of the boundary-fitted coordinate system. In this technique, all the physical boundaries are transformed into constant coordinate lines in the transformed coordinates. Therefore, the boundary conditions can be specified on the grid points without interpolation.

  2. Designer coordination polymers: dimensional crossover architectures and proton conduction.

    PubMed

    Yamada, Teppei; Otsubo, Kazuya; Makiura, Rie; Kitagawa, Hiroshi

    2013-08-21

    Coordination polymers (CPs) have large degrees of freedom in framework compositions and in the structures and environment of the inner pores. This review focuses on the recent significant progress achieved by controlling these degrees of freedom. Two breakthroughs are reviewed for constructing sophisticated structures of CP frameworks, especially in dimensional crossover regions. The first is the synthesis of quasi one-dimensional halogen-bridged coordinative tubes by applying state-of-the-art techniques of coordination chemistry. The electronic state of the coordinative tube was studied by structural, spectroscopic and theoretical methods and found to be distinct from conventional one-dimensional systems. The second breakthrough is the achievement of a quasi-two-dimensional architecture by combining Langmuir-Blodgett and layer-by-layer methods. Two-dimensional LB CP films were prepared on liquid; the films were stacked layer by layer, and a crystalline quasi-two-dimensional structure was constructed. This review also covers the design of the environment of the inner pore, where hydrogen bond networks with various acidic sites were modified. By appropriate design of the hydrogen bond network, proton-conductive CPs are invented, which are summarized in this review. Types of proton donor sites are discussed and classified, and superprotonic conductive CPs were achieved in these investigations. These results will provide new strategies for constructing functional materials for smart devices.

  3. Yttrium-succinates coordination polymers: Hydrothermal synthesis, crystal structure and thermal decomposition

    SciTech Connect

    Amghouz, Zakariae; Roces, Laura; Garcia-Granda, Santiago; Garcia, Jose R.; Souhail, Badredine; Mafra, Luis; Shi, Fa-nian; Rocha, Joao

    2009-12-15

    New polymeric yttrium-succinates, Y{sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}(H{sub 2}O){sub 4}.6H{sub 2}O and Y{sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}(H{sub 2}O){sub 2}, have been synthesized, and their structures (solved by single crystal XRD) are compared with that of Y{sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}(H{sub 2}O){sub 2}.H{sub 2}O. Three compounds were obtained as single phases, and their thermal behaviour is described. - Graphical abstract: In the field of coordination polymers or MOF's, few studies report on the polymorphs of Ln(III)-succinic acid. Here, we describe the hydrothermal synthesis and structural characterization of two novel yttrium-succinates coordination polymers, respectively 2D and 3D, Y{sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}(H{sub 2}O){sub 4}.6H{sub 2}O and Y{sub 2}(C{sub 4}H{sub 4}O{sub 4}){sub 3}(H{sub 2}O){sub 2}.

  4. Syntheses, crystal structures, and properties of new metal--5-bromonicotinate coordination polymers

    NASA Astrophysics Data System (ADS)

    Li, Wenjie; Li, Guoting; Lv, Lulu; Zhao, Hong; Wu, Benlai

    2015-05-01

    Four metal-5-bromonicotinate (Brnic) coordination polymers [Fe(Brnic)2(H2O)2]n (1), [Ni(Brnic)2]n (2), [Ni(Brnic)(bpy)(H2O)2]n·n(Brnic)·4.5nH2O (3), and [Co2(Brnic)3(bpy)2(OH)]n·nH2O (4) have been synthesized and structurally characterized (bpy=4,4‧-bipyridine). Complex 1 has corrugated (4,4) sheets formed by μ-Brnic ligands and planar nodes Fe(II). As for 2-4, they all built up from Brnic-bridged dinuclear subunits, but have very different structure features. Complex 2 is a twin-like polymer with (4,4) layers formed by twin paddle-wheel [Ni2(Brnic)4] subunits. Through the bridge coordination of bpy ligands with dinuclear rings [Ni2(Brnic)2] and trigons [Co2(Brnic)3(OH)], 63-topological cationic layers with nanosized grids of 3 and chiral ladder-type double chains of 4 formed, respectively. Notably, halogen-related interactions play an important role in the formation of 3D metallosupermolecules 1-4. The thermostabilities of all compounds have been discussed in detail. Moreover, the magnetic investigations of 2 and 4 indicate that there exist antiferromagnetic interactions in the paddle-wheel [Ni2(Brnic)4] and trigon [Co2(Brnic)3(OH)] cores, respectively.

  5. Utilization of mixed ligands to construct two new coordination polymers: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Wang, Yansong; Zhou, Zhimin

    2015-08-01

    The use of triazine and aromatic carboxylic acid as mixed chelating ligands in preparing two coordination polymers is described. Two new transition-metal coordination polymers, namely, [Co2(bpdc)4(phdat)2] (1) and [Zn(bpdc)]n (2) (H2bpdc=2,4-biphenyldicarboxylic acid, phdat=2,4-diamine-6-phenyl-1,3,5-triazine), have been hydrothermally synthesized and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. Compound 1 is a 0D structure and extends to a 3D network by two different N-H···O and N-H···N hydrogen bonds. Compound 2 exhibits a 2D network with 44.62 topological net, which contains two kinds of single helical chains. The interactions within each Co(II)-Co(II) pair of compound 1 are antiferromagnetic (g=2.19, J=-22 K, zj‧=-0.00351 K). Furthermore, the photoluminescence property of 2 was also investigated in the solid state at room temperature.

  6. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    SciTech Connect

    Li, Meng-Li; Song, Hui-Hua

    2013-10-15

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers ([Zn(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}1, ([Co(acty)(bipy){sub 2}(H{sub 2}O){sub 2}]·NO{sub 3}·2H{sub 2}O){sub n}2, ([Cd(acty){sub 2}(bipy)H{sub 2}O]·H{sub 2}O){sub n}3, and ([Cd(acty)(bpe){sub 2}(Ac)]·6H{sub 2}O){sub n}4 (bipy=4,4′-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated. - Graphical abstract: Four new homochiral coordination polymers were prepared and structurally characterized, which investigate the influence of the ancillary ligands and metal ions on the design and synthesis of coordination polymers. Display Omitted - Highlights: • It is rarely reported that the chiral coordination polymers prepared with N-acetyl-L-tyrosine ligands. • The alkalescent acetyl oxygen atom is difficult to participate in coordination but it is happened in the N-acetyl-L-tyrosine ligands. • The ancillary ligands (4,4′-bipy and bpe) are present in an unusual coordination modes, monodentate decorating ligands in 1, 2 and 4. • Structure comparative analyses results indicate that the

  7. An analogue contact probe using a compact 3D optical sensor for micro/nano coordinate measuring machines

    NASA Astrophysics Data System (ADS)

    Li, Rui-Jun; Fan, Kuang-Chao; Miao, Jin-Wei; Huang, Qiang-Xian; Tao, Sheng; Gong, Er-min

    2014-09-01

    This paper presents a new analogue contact probe based on a compact 3D optical sensor with high precision. The sensor comprises an autocollimator and a polarizing Michelson interferometer, which can detect two angles and one displacement of the plane mirror at the same time. In this probe system, a tungsten stylus with a ruby tip-ball is attached to a floating plate, which is supported by four V-shape leaf springs fixed to the outer case. When a contact force is applied to the tip, the leaf springs will experience elastic deformation and the plane mirror mounted on the floating plate will be displaced. The force-motion characteristics of this probe were investigated and optimum parameters were obtained with the constraint of allowable physical size of the probe. Simulation results show that the probe is uniform in 3D and its contacting force gradient is within 1 mN µm - 1. Experimental results indicate that the probe has 1 nm resolution,  ± 10 µm measuring range in X - Y plane, 10 µm measuring range in Z direction and within 30 nm measuring standard deviation. The feasibility of the probe has been preliminarily verified by testing the flatness and step height of high precision gauge blocks.

  8. Honeycomb-shaped coordination polymers based on the self-assembly of long flexible ligands and alkaline-earth ions

    NASA Astrophysics Data System (ADS)

    Lian, Chen; Liu, Liu; Guo, Xu; Long, Yinshuang; Jia, Shanshan; Li, Huanhuan; Yang, Lirong

    2016-01-01

    Two novel coordination polymers, namely, [Ca(NCP)2]∞ (I) and [Sr(NCP)2]∞ (II) were synthesized under hydrothermal conditions based on 2-(4-carboxyphenyl)imidazo(4,5-f)-(1,10)phenanthroline (HNCP) and characterized by elemental analysis, infrared spectrometry, X-ray powder diffraction and single crystal X-ray diffraction. Findings indicate that I and II are isomorphous and isostructural, containing the unit of M(NCP-)4 (M=Ca(II) and Sr(II)), based on which to assemble into three-dimensional (3D) porous 4-fold interpenetration honeycomb-shaped neutral coordination polymers (CPs). Between the adjacent lamellar structures in I and II, there exist π-π interactions between the pyridine rings belonging to phenanthroline of NCP- which stabilize the frameworks. Both I and II display stronger fluorescence emissions as well as high thermal stability.

  9. One- and two-dimensional divalent copper coordination polymers based on kinked organodiimine and long flexible aliphatic dicarboxylate ligands

    NASA Astrophysics Data System (ADS)

    Mallika Krishnan, Subhashree; Supkowski, Ronald M.; LaDuca, Robert L.

    2008-11-01

    Hydrothermal synthesis under acidic conditions has afforded a pair of divalent copper coordination polymers containing the kinked dipodal tethering organodiimine 4,4'-dipyridylamine (dpa) and flexible long-chain aliphatic dicarboxylate ligands. The new materials were characterized by single crystal X-ray structure determination, infrared spectroscopy, and thermogravimetric analysis. [CuCl(suberate) 0.5(dpa)] ( 1) manifests 1-D ladder-like motifs aggregated into 3-D through hydrogen bonding and copper-mediated supramolecular interactions. Extension of the aliphatic chain within the dicarboxylate ligand by one methylene unit resulted in {[Cu(azelate)(dpa)(H 2O)] · 3H 2O} ( 2), a (4,4) rhomboid grid 2-D coordination polymer encapsulating acyclic water molecule trimers.

  10. Complex coacervate core micelles from iron-based coordination polymers.

    PubMed

    Wang, Junyou; de Keizer, Arie; Fokkink, Remco; Yan, Yun; Cohen Stuart, Martien A; van der Gucht, Jasper

    2010-07-01

    Complex coacervate core micelles (C3Ms) from cationic poly(N-methyl-2-vinyl-pyridinium iodide)-b-poly(ethylene oxide) (P2MVP(41)-b-PEO(205)) and anionic iron coordination polymers are investigated in the present work. Micelle formation is studied by light scattering for both Fe(II)- and Fe(III)-containing C3Ms. At the stoichiometric charge ratio, both Fe(II)-C3Ms and Fe(III)-C3Ms are stable for at least 1 week at room temperature. Excess of iron coordination polymers has almost no effect on the formed Fe(II)-C3Ms and Fe(III)-C3Ms, whereas excess of P2MVP(41)-b-PEO(205) copolymers in the solution can dissociate the formed micelles. Upon increasing salt concentration, the scattering intensity decreases. This decrease is due to both a decrease in the number of micelles (or an increase in CMC) and a decrease in aggregation number. The salt dependence of the CMC and the aggregation number is explained using a scaling argument for C3M formation. Compared with Fe(II)-C3Ms, Fe(III)-C3Ms have a lower CMC and a higher stability against dissociation by added salt.

  11. Hydrogen bonding and multiphonon structure in copper pyrazine coordination polymers.

    PubMed

    Brown, S; Cao, J; Musfeldt, J L; Conner, M M; McConnell, A C; Southerland, H I; Manson, J L; Schlueter, J A; Phillips, M D; Turnbull, M M; Landee, C P

    2007-10-15

    We report a systematic investigation of the temperature-dependent infrared vibrational spectra of a family of chemically related coordination polymer magnets based upon bridging bifluoride (HF(2)-) and terminal fluoride (F-) ligands in copper pyrazine complexes including Cu(HF(2))(pyz)(2)BF(4), Cu(HF(2))(pyz)(2)ClO(4), and CuF(2)(H(2)O)(2)(pyz). We compare our results with several one- and two-dimensional prototype materials including Cu(pyz)(NO(3))(2) and Cu(pyz)(2)(ClO(4))(2). Unusual low-temperature hydrogen bonding, local structural transitions associated with stronger low-temperature hydrogen bonding, and striking multiphonon effects that derive from coupling of an infrared-active fundamental with strong Raman-active modes of the pyrazine building-block molecule are observed. On the basis of the spectroscopic evidence, these interactions are ubiquitous to this family of coordination polymers and may work to stabilize long-range magnetic ordering at low temperature. Similar interactions are likely to be present in other molecule-based magnets.

  12. Magnetic Iron Oxide Nanoparticle Seeded Growth of Nucleotide Coordinated Polymers.

    PubMed

    Liang, Hao; Liu, Biwu; Yuan, Qipeng; Liu, Juewen

    2016-06-22

    The introduction of functional molecules to the surface of magnetic iron oxide nanoparticles (NPs) is of critical importance. Most previously reported methods were focused on surface ligand attachment either by physisorption or covalent conjugation, resulting in limited ligand loading capacity. In this work, we report the seeded growth of a nucleotide coordinated polymer shell, which can be considered as a special form of adsorption by forming a complete shell. Among all of the tested metal ions, Fe(3+) is the most efficient for this seeded growth. A diverse range of guest molecules, including small organic dyes, proteins, DNA, and gold NPs, can be encapsulated in the shell. All of these molecules were loaded at a much higher capacity compared to that on the naked iron oxide NP core, confirming the advantage of the coordination polymer (CP) shell. In addition, the CP shell provides better guest protein stability compared to that of simple physisorption while retaining guest activity as confirmed by the entrapped glucose oxidase assay. Use of this system as a peroxidase nanozyme and glucose biosensor was demonstrated, detecting glucose as low as 1.4 μM with excellent stability. This work describes a new way to functionalize inorganic materials with a biocompatible shell. PMID:27248668

  13. A Lamellar Coordination Polymer with Remarkable Catalytic Activity.

    PubMed

    Mendes, Ricardo F; Antunes, Margarida M; Silva, Patrícia; Barbosa, Paula; Figueiredo, Filipe; Linden, Anthony; Rocha, João; Valente, Anabela A; Almeida Paz, Filipe A

    2016-09-01

    A positively charged lamellar coordination polymer based on a flexible triphosphonic acid linker is reported. [Gd(H4 nmp)(H2 O)2 ]Cl⋅2 H2 O (1) [H6 nmp=nitrilotris(methylenephosphonic acid)] was obtained by a one-pot approach by using water as a green solvent and by forcing the inclusion of additional acid sites by employing HCl in the synthesis. Compound 1 acts as a versatile heterogeneous acid catalyst with outstanding activity in organic reactions such as alcoholysis of styrene oxide, acetalization of benzaldehyde and cyclohexanaldehyde and ketalization of cyclohexanone. For all reaction systems, very high conversions were reached (92-97 %) in only 15-30 min under mild conditions (35 °C, atmospheric pressure). The coordination polymer exhibits a protonic conductivity of 1.23×10(-5)  S cm(-1) at 98 % relative humidity and 40 °C. PMID:27505712

  14. Cu{sup II} coordination polymers based on 5-methoxyisophthalate and flexible N-donor ligands: Structures and magnetic properties

    SciTech Connect

    Chang, Xin-Hong; Qin, Jian-Hua; Ma, Lu-Fang; Wang, Li-Ya

    2014-04-01

    Three Cu{sup II} coordination polymers, ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib)]){sub n} (1), ([Cu{sub 2}(CH{sub 3}O-ip){sub 2}(bmib){sub 2}]){sub n} (2) and ([Cu(CH{sub 3}O-ip)(bbip)]∙2H{sub 2}O){sub n} (3) (CH{sub 3}O-H{sub 2}ip is 5-methoxyisophthalic acid, bmib is 1,4-bis(2-methylimidazol-1-yl)butane and bbip is 1,3-bis(1H-benzimidazolyl)propane), have been synthesized by hydrothermal methods. Complexes 1–3 were structurally characterized by elemental analysis, infrared (IR) spectra and X-ray single-crystal diffraction. Complex 1 shows a 3D six-connected self-penetrating network based on paddlewheel secondary building units. Complex 2 has a 3-fold interpenetrating 3D diamond framework. Complex 3 possesses a 1D tube-like chain. Thermo-gravimetric and magnetic properties of 1–3 were also investigated. - Graphical abstract: Structures and magnetic properties of copper(II) coordination polymers constructed from 5-methoxyisophthalate linker and two flexible N-donor ancillary ligands. Three copper(II) coordination polymers with 5-methoxyisophthalate and two related flexible N-donor ancillary ligands have been synthesized and structurally characterized. Moreover, thermal behaviors and magnetic properties of these complexes have also been investigated. - Highlights: • Three Cu(II) coordination polymers were synthesized. • The conformations of N-donor ligands and pH value have an effect on the final structures. • The magnetic properties of 1–3 have been investigated.

  15. The structures and luminescence properties of lanthanide (Ln = Sm, Eu and Tb) metal-organic coordination polymers based on 5-(2-hydroxyethoxy)isophthalate ligand

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Zhang, Yu-Jie; Qin, Jie; Chen, Yong; Zhao, Ying

    2015-03-01

    Three unreported isomorphous Ln-containing metal-organic coordination polymeric complexes {LnL(HL)ṡ(H2O)2}n (Ln = Sm (1), Eu (2) and Tb (3), CCDC 971815-971817) were synthesized based on 5-(2-hydroxyethoxy) isophthalic acid (H2L) under hydrothermal conditions. The obtained coordination polymers were characterized by IR, elemental analysis, thermal analysis and X-ray diffraction In solid state, these polymers featured 3-D supramolecular structures constructed by 2-D sheets through H-bonds. Investigation of photoluminescence properties of H2L and 1-3 showed all of them exhibited intense fluorescent emissions in the solid state at room temperature.

  16. Structural diversification and photocatalytic properties of three Cd(II) coordination polymers decorated with different auxiliary ligands

    NASA Astrophysics Data System (ADS)

    Yin, Wen-Yu; Zhuang, Guo-Yong; Huang, Zuo-Long; Cheng, Hong-Jian; Zhou, Li; Ma, Man-Hong; Wang, Hao; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin

    2016-03-01

    Three cadmium coordination polymers, [Cd(bismip)]n (1), {[Cd(bismip)(phen)]·H2O}n (2) and {[Cd2(bismip)2(4,4‧-bipy)]·2H2O}n (3) (H2bismip=5-(1H-benzoimidazol-2-ylsulfanylmethyl)-isophthalic acid, phen=1,10-phenanthroline, 4,4‧-bipy=4,4‧-bipyridine) have been prepared under solvothermal conditions. In 1, the [Cd4(bismip)3] units are jointed by bismip ligands to afford a three-dimensional (3D) architecture. Complex 2 exhibits a 3D supramolecular framework based on the interconnection of 1D chains through hydrogen bonding interactions and π-π packing interactions. 3 is a two-fold interpenetrating 3D architecture with a (4·82)(42·84) Schläfli symbol in which 2D layers are interlinked by 4,4‧-bipy ligands. The diverse structures of compounds 1-3 indicate that the auxiliary ligands have significant effects on the final structures. The photoluminescent properties and photocatalytic properties of these coordination polymers in the solid state were also investigated. Remarkably, 3 shows the wide gap semiconductor nature and exhibit excellent photocatalytic performance.

  17. Documentation of program COORDC to generate and coordinate system for 3D corners with or without fillet using body fitted curvilinear coordinates, part 2

    NASA Technical Reports Server (NTRS)

    Kumar, D.

    1980-01-01

    The computer program COORDC generates a body fitted curvilinear coordinate system for corner geometry with or without corner fillets. It is assumed that at any given xi, x remains constant; consequently the only variation is in y and z. It is also assumed that for all xi's in the physical plane the coordinate system in y-z plane is similar. This enables solution of coordinate system for one particular xi = 1 (x for xi = 1 is arbitrarily chosen to be 0.0) and the solution for all other xi plane can be easily specified once the coordinates in the physical plane on the line 1 or = to xi or = to IMAX, eta = 1, zeta = 1 are specified.

  18. One dimensional coordination polymers: Synthesis, crystal structures and spectroscopic properties

    NASA Astrophysics Data System (ADS)

    Karaağaç, Dursun; Kürkçüoğlu, Güneş Süheyla; Şenyel, Mustafa; Şahin, Onur

    2016-11-01

    Two new one dimensional (1D) cyanide complexes, namely [M(4-aepy)2(H2O)2][Pt(CN)4], (4-aepy = 4-(2-aminoethyl)pyridine M = Cu(II) (1) or Zn(II) (2)), have been synthesized and characterized by vibrational (FT-IR and Raman) spectroscopy, single crystal X-ray diffraction, thermal and elemental analyses techniques. The crystallographic analyses reveal that 1 and 2 are isomorphous and isostructural, and crystallize in the monoclinic system and C2 space group. The Pt(II) ions are coordinated by four cyanide-carbon atoms in the square-planar geometry and the [Pt(CN)4]2- ions act as a counter ion. The M(II) ions display an N4O2 coordination sphere with a distorted octahedral geometry, the nitrogen donors belonging to four molecules of the organic 4-aepy that act as unidentate ligands and two oxygen atoms from aqua ligands. The crystal structures of 1 and 2 are similar each other and linked via intermolecular hydrogen bonding, Pt⋯π interactions to form 3D supramolecular network. Vibration assignments of all the observed bands are given and the spectral features also supported to the crystal structures of the complexes.

  19. Unravelling the Proton Conduction Mechanism from Room Temperature to 553 K in a 3D Inorganic Coordination Framework.

    PubMed

    Wang, Yaxing; Tao, Zetian; Yin, Xuemiao; Shu, Jie; Chen, Lanhua; Sheng, Daopeng; Chai, Zhifang; Albrecht-Schmitt, Thomas E; Wang, Shuao

    2015-10-19

    The preparation of proton-conducting materials that are functional and stable at intermediate temperatures (393-573 K) is a focal point of fuel cell development. The purely inorganic material, HNd(IO3)4, which possesses a dense 3D framework structure, can reach a maximum of 4.6 × 10(-4) S·cm(-1) at 353 K and 95% relative humidity and exhibit a high conductivity of 8.0 × 10(-5) S·cm(-1) from 373 to 553 K under the flow of wet N2. HNd(IO3)4 exhibits a variety of improvements including high thermal stability, low solubility in water, and resistance to reducing atmosphere. The proton conductivity in such a wide temperature range originates from the intrinsic liberated protons in the structure and the resulting 1D hydrogen-bonding network confirmed by bond valence sum calculation and solid-state NMR analysis. Moreover, two different activation energies are observed in different temperature regions (0.23 eV below 373 K and 0.026 eV from 373 to 553 K), indicating that two types of proton motion are responsible for proton diffusion, as further domenstrated by temperature-dependent open-circuit voltage hysteresis in a tested fuel cell assembly as well as variable-temperature and double quantum filtered solid-state NMR measurements. PMID:26444097

  20. Five new Mn(II)/Co(II) coordination polymers constructed from flexible multicarboxylate ligands with varying magnetic properties

    SciTech Connect

    Liu, Sui-Jun; Zeng, Yong-Fei; Hu, Xin; Xue, Li; Han, Song-De; Jia, Ji-Min; Hu, Tong-Liang

    2013-08-15

    Five new Mn(II)/Co(II) coordination polymers [Mn{sub 2}(Adi){sub 2}(DMA)]{sub n} (1), [Mn{sub 2}(Adi){sub 2}(DMF)]{sub n} (2), [Mn{sub 4}(Adi){sub 4}(DMF){sub 2}]{sub n} (3), [Co{sub 4}(Adi){sub 4}(DMF){sub 2}]{sub n} (4) and ([Co{sub 3}(Cit){sub 2}(H{sub 2}O){sub 3}]·(H{sub 2}O)){sub n} (5) [Adi=adipate anion, Cit=citrate anion, DMA=N,N′-dimethylacetamide and DMF=N,N′-dimethylformamide] have been successfully constructed from two flexible multicarboxylate ligands under solvothermal conditions. Complexes 1 and 2 exhibit 2-D network featured 1-D Mn{sup II} chain, 3 and 4 are 3-D frameworks containing different 1-D carboxylate–metal chain, while 5 shows a 3-D structure based on Co{sub 6} wheel clusters. Magnetic investigations indicate antiferromagnetic behaviors for 1–4 and weak ferromagnetic behavior for 5 because of distinct linkage modes of metal ions. - Graphical abstract: Five new Mn(II)/Co(II) coordination polymers display 2-D/3-D structures containing 1-D carboxylate–metal chains or wheel clusters. Magnetic analyses reveal that they show antiferromagnetic, canted antiferromagnetic and weak ferromagnetic behaviors, respectively. Highlights: ●Five new Mn(II)/Co(II) coordination polymers have been synthesized. ●A complex-based Co{sub 6} wheel cluster was obtained. ●The different magnetic properties of the complexes are discussed.

  1. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    PubMed

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here.

  2. Solid-state polymerisation via [2+2] cycloaddition reaction involving coordination polymers.

    PubMed

    Medishetty, Raghavender; Park, In-Hyeok; Lee, Shim Sung; Vittal, Jagadese J

    2016-03-14

    Highly crystalline metal ions containing organic polymers are potentially useful to manipulate the magnetic and optical properties to make advanced multifunctional materials. However, it is challenging to synthesise monocrystalline metal complexes of organic polymers and single-phase hybrid materials made up of both coordination and organic polymers by traditional solution crystallisation. This requires an entirely different approach in the solid-state by thermal or photo polymerisation of the ligands. Among the photochemical methods available, [2+2] cycloaddition reaction has been recently employed to generate cyclobutane based coordination polymers from the metal complexes. Cyclobutane polymers have also been integrated into coordination polymers in this way. Recent advancements in the construction of polymeric chains of cyclobutane rings through photo-dimerisation reaction in the monocrystalline solids containing metal complexes, coordination polymers and metal-organic framework structures are discussed here. PMID:26687811

  3. Utilization of mixed ligands to construct two new coordination polymers: Syntheses, structures and properties

    SciTech Connect

    Wang, Yansong; Zhou, Zhimin

    2015-08-15

    The use of triazine and aromatic carboxylic acid as mixed chelating ligands in preparing two coordination polymers is described. Two new transition-metal coordination polymers, namely, [Co{sub 2}(bpdc){sub 4}(phdat){sub 2}] (1) and [Zn(bpdc)]{sub n} (2) (H{sub 2}bpdc=2,4-biphenyldicarboxylic acid, phdat=2,4-diamine-6-phenyl-1,3,5-triazine), have been hydrothermally synthesized and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. Compound 1 is a 0D structure and extends to a 3D network by two different N–H···O and N–H···N hydrogen bonds. Compound 2 exhibits a 2D network with 4{sup 4}.6{sup 2} topological net, which contains two kinds of single helical chains. The interactions within each Co(II)–Co(II) pair of compound 1 are antiferromagnetic (g=2.19, J=−22 K, zj′=−0.00351 K). Furthermore, the photoluminescence property of 2 was also investigated in the solid state at room temperature. - Graphical abstract: Two polymeric metal compounds based on mixed-ligands were synthesized and characterized. The use of different metal ions results in distinct structures. The magnetic and fluorescent properties were also studied. - Highlights: • The first bpdc{sup 2−}/phdat-based 0D discrete coordination complex. • A new 2D architecture with two kinds of helical chains. • The structure-dependent magnetism and photoluminescence properties.

  4. New 4,5-dichlorophthalhydrazidate-bridged chained coordination polymers

    SciTech Connect

    Jin, Juan; Wu, Di; Jia, Ming-Jun; Peng, Yu; Yu, Jie-Hui; Wang, Yu-Chang; Xu, Ji-Qing

    2011-03-15

    The hydrothermal self-assemblies of Pb{sup 2+}/Cd{sup 2+} salt, 4,5-dichlorophthalic acid (dcpha), N{sub 2}H{sub 4}.H{sub 2}O together with 1,10-phenanthroline.H{sub 2}O (phen) or 2,2'-bipyridine (bpy) generated two new monoacylhydrazidate-bridged 1-D chained coordination polymers [Pb{sub 2}(DCPTH){sub 4}(phen){sub 2}] 1 and [Cd{sub 3}(DCPTH){sub 2}(dcph){sub 2}(bpy){sub 2}] 2 (DCPTH=4,5-dichlorophthalhydrazidate, dcph=4,5-dichlorophthalate). The monoacylhydrazidate ligand DCPTH originated from the hydrothermal in situ acylation reaction between dcpha and N{sub 2}H{sub 4}.H{sub 2}O. In compound 1, two types of coordination modes for DCPTH are found, which link alternately the Pb(II) centers into a 1-D chain structure of compound 1 with ancillary phen molecules. In compound 2, DCPTH and dcph as the mixed bridges extend the Cd(II) centers into a 1-D chain structure of compound 2 with auxiliary bpy molecules. DCPTH in compound 2 shows a different coordination mode from those observed in compound 1. -- Graphical abstract: By applying the in situ acylation reaction between 4,5-diclorophthalic acid and N{sub 2}H{sub 4}.H{sub 2}O, two 4,5-dichlorophthalhydrazidate-bridged chained compounds [Pb{sub 2}(DCPTH){sub 4}(phen){sub 2}] and [Cd{sub 3}(DCPTH){sub 2}(dcph){sub 2}(bpy){sub 2}] (4,5-dichlorophthalhydrazidate=DCPTH, and dcph=4,5-dichlorophthalate) were hydrothermally synthesized. Display Omitted Research highlights: > In this article, we first reported the preparations and structural characterization of two examples of 4,5-dichlorophthalhydrazidate-bridged chained coordination polymers [Pb{sub 2}(DCPTH){sub 4}(phen){sub 2}] 1 and [Cd{sub 3}(DCPTH){sub 2}(dcph){sub 2}(bpy){sub 2}] 2. 4,5-dichlorophthalhydrazidate derived from the hydrothermal in situ acylation reactions between 4,5-dichlorophthalic acid and N{sub 2}H{sub 4}.H{sub 2}O. > In this article, a simple method to judge whether the polycarboxylic acid precursors have acylated into the acylhydrazidate ligands is

  5. Spectroscopic properties and the catalytic activity of new organo-lead supramolecular coordination polymer containing quinoxaline

    NASA Astrophysics Data System (ADS)

    Etaiw, Safaa El-din H.; Abdou, Safaa N.

    2015-01-01

    The 3D-supramolecular coordination polymer (SCP) 3∞[ Cu2(CN)3(Me3Pb)(qox)], 1, as the first example of the CuCN SCP containing the (Me3Pb) fragment, was explored to investigate its catalytic and photo-catalytic activities. The structure of 1 contains two chemically identical but crystallographically different [Cu2(CN)3ṡMe3Pbṡqox]2 units with four Cu(I) sites assuming distorted TP-3 geometry. Two non-linear chains of equal abundance are formed producing corrugated parallel chains which are connected laterally by quinoxaline creating 2D-layers which are arranged parallel in an (AB⋯AB⋯AB)n fashion forming 3D-network. IR, mass, electronic absorption and fluorescence spectra are also investigated. The SCP 1 is diamagnetic and exhibits good catalytic and photo-catalytic activities for the degradation of methylene blue (MB). The reaction is first order with respect to MB dye. The irradiation of the reaction with UV-light enhanced the rate of MB mineralization. The efficiency of recycled the 1 and the mechanism of degradation of MB dye were investigated.

  6. Spectroscopic properties and the catalytic activity of new organo-lead supramolecular coordination polymer containing quinoxaline.

    PubMed

    Etaiw, Safaa El-din H; Abdou, Safaa N

    2015-01-25

    The 3D-supramolecular coordination polymer (SCP) (3)∞[ Cu2(CN)3(Me3Pb)(qox)], 1, as the first example of the CuCN SCP containing the (Me3Pb) fragment, was explored to investigate its catalytic and photo-catalytic activities. The structure of 1 contains two chemically identical but crystallographically different [Cu2(CN)3⋅Me3Pb⋅qox]2 units with four Cu(I) sites assuming distorted TP-3 geometry. Two non-linear chains of equal abundance are formed producing corrugated parallel chains which are connected laterally by quinoxaline creating 2D-layers which are arranged parallel in an (AB⋯AB⋯AB)n fashion forming 3D-network. IR, mass, electronic absorption and fluorescence spectra are also investigated. The SCP 1 is diamagnetic and exhibits good catalytic and photo-catalytic activities for the degradation of methylene blue (MB). The reaction is first order with respect to MB dye. The irradiation of the reaction with UV-light enhanced the rate of MB mineralization. The efficiency of recycled the 1 and the mechanism of degradation of MB dye were investigated.

  7. Spectroscopic properties and the catalytic activity of new organo-lead supramolecular coordination polymer containing quinoxaline.

    PubMed

    Etaiw, Safaa El-din H; Abdou, Safaa N

    2015-01-25

    The 3D-supramolecular coordination polymer (SCP) (3)∞[ Cu2(CN)3(Me3Pb)(qox)], 1, as the first example of the CuCN SCP containing the (Me3Pb) fragment, was explored to investigate its catalytic and photo-catalytic activities. The structure of 1 contains two chemically identical but crystallographically different [Cu2(CN)3⋅Me3Pb⋅qox]2 units with four Cu(I) sites assuming distorted TP-3 geometry. Two non-linear chains of equal abundance are formed producing corrugated parallel chains which are connected laterally by quinoxaline creating 2D-layers which are arranged parallel in an (AB⋯AB⋯AB)n fashion forming 3D-network. IR, mass, electronic absorption and fluorescence spectra are also investigated. The SCP 1 is diamagnetic and exhibits good catalytic and photo-catalytic activities for the degradation of methylene blue (MB). The reaction is first order with respect to MB dye. The irradiation of the reaction with UV-light enhanced the rate of MB mineralization. The efficiency of recycled the 1 and the mechanism of degradation of MB dye were investigated. PMID:25124847

  8. Synthesis and crystal structures of two nickel coordination polymers generated from asymmetric malate ligand

    SciTech Connect

    Guo Yaqin; Xiao Dongrong; Wang Enbo . E-mail: wangenbo@public.cc.jl.cn; Lu Ying; Lue Jian; Xu Xinxin; Xu Lin

    2005-03-15

    Two nickel coordination polymers [Ni(H{sub 2}O)(C{sub 4}H{sub 4}O{sub 5})].H{sub 2}O 1 and [Ni(H{sub 2}O)(mal)(phen)] 2, have been hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction. Crystal data for 1: C{sub 4}H{sub 8}O{sub 7}Ni, monoclinic Cc, a=13.156(3)A, b=7.5436(15)A, c=9.6982(19)A, {beta}=130.96(3){sup o}, Z=4. Crystal data for 2: C{sub 16}H{sub 14}N{sub 2}O{sub 6}Ni, orthorhombic Pna2{sub 1}, a=9.6113(19)A, b=19.691(4)A, c=8.0944(16)A, Z=4. Compound 1 is constructed from [Ni(H{sub 2}O)(C{sub 4}H{sub 4}O{sub 5})] sheets pillared through {beta}-carboxylate groups into a 3D framework, which exhibits a diamond-like network. Compound 2 exhibits a 3D supramolecular network. To our knowledge, compound 1 represents the first diamond-like topology in the system of metal-malate. Other characterizations by elemental analysis, IR and TG are also described. The magnetic behavior of compound 1 has been studied.

  9. A three-dimensional microporous coordination polymer with fluorescent property

    NASA Astrophysics Data System (ADS)

    Gao, Chaoying; Liu, Shuxia; Xie, Linhua; Ren, Yuanhang; Cao, Ruige; Cao, Jianfang; Zhao, Xinyu

    2008-11-01

    A microporous metal-organic coordination polymer formulated as [Cd 2(btec)(H 2O) 2]·0.8DMF (1), where btec = 1,2,4,5-benzenetetracarboxylate and DMF = N, N-dimethylformamide, has been isolated under solvothermal condition and characterized by elemental analyses, IR, thermal stability analysis, fluorescent spectrum, and single-crystal X-ray diffraction analysis. The framework in 1 possesses a three-dimensional architecture with ordered one-dimensional rhombus channels, the dimensions of channels are approximately 10 Å at the widest and 3 Å at the narrowest spacing considering the van der Waal radii of atoms in the framework running along the a-axis. Furthermore, compound 1 shows intense photoluminescent property at room temperature.

  10. SU-E-CAMPUS-T-05: Validation of High-Resolution 3D Patient QA for Proton Pencil Beam Scanning and IMPT by Polymer Gel Dosimetry

    SciTech Connect

    Cardin, A; Avery, S; Ding, X; Kassaee, A; Lin, L; Maryanski, M

    2014-06-15

    Purpose: Validation of high-resolution 3D patient QA for proton pencil beam scanning and IMPT by polymer gel dosimetry. Methods: Four BANG3Pro polymer gel dosimeters (manufactured by MGS Research Inc, Madison, CT) were used for patient QA at the Robert's Proton Therapy Center (RPTC, Philadelphia, PA). All dosimeters were sealed in identical thin-wall Pyrex glass spheres. Each dosimeter contained a set of markers for 3D registration purposes. The dosimeters were mounted in a consistent and reproducible manner using a custom build holder. Two proton pencil beam scanning plans were designed using Varian Eclipse™ treatment planning system: 1) A two-field intensity modulated proton therapy (IMPT) plan and 2) one single field uniform dose (SFUD) plan. The IMPT fields were evaluated as a composite plan and individual fields, the SFUD plan was delivered as a single field plan.Laser CT scanning was performed using the manufacturer's OCTOPUS-IQ axial transmission laser CT scanner using a 1 mm slice thickness. 3D registration, analysis, and OD/cm to absorbed dose calibrations were perfomed using DICOM RT-Dose and CT files, and software developed by the manufacturer. 3D delta index, a metric equivalent to the gamma tool, was used for dose comparison. Results: Very good agreement with single IMPT fields and with SFUD was obtained. Composite IMPT fields had a less satisfactory agreement. The single fields had 3D delta index passing rates (3% dose difference, 3 mm DTA) of 98.98% and 94.91%. The composite 3D delta index passing rate was 80.80%. The SFUD passing rate was 93.77%. Required shifts of the dose distributions were less than 4 mm. Conclusion: A formulation of the BANG3Pro polymer gel dosimeter, suitable for 3D QA of proton patient plans is established and validated. Likewise, the mailed QA analysis service provided by the manufacturer is a practical option when required resources are unavailable. We fully disclose that the subject of this research regards a production

  11. A coordination polymer nanobelt (CPNB)-based aptasensor for sulfadimethoxine.

    PubMed

    Song, Kyung-Mi; Jeong, Euiyoung; Jeon, Weejeong; Jo, Hunho; Ban, Changill

    2012-03-15

    A polymer-based aptasensor, which consisted of fluorescein amidite (FAM)-modified aptamers and coordination polymer nanobelts (CPNBs), was developed utilizing the fluorescence quenching effect to detect sulfadimethoxine residue in food products. A single-stranded DNA (ssDNA) aptamer, which was a specific bio-probe for sulfadimethoxine (Su13; 5'-GAGGGCAACGAGTGTTTATAGA-3'), was discovered by a magnetic bead-based systematic evolution of ligands by exponential enrichment (SELEX) technique, and the fluorescent quenchers CPNBs were produced by mixing AgNO(3) and 4,4'-bipyridine. This aptasensor easily and sensitively detected sulfadimethoxine in solution with a limit of detection (LOD) of 10ng/mL. Furthermore, the antibiotic dissolved in milk was also effectively detected with the same LOD value. In addition, this aptamer probe offered high specificity for sulfadimethoxine compared to other antibiotics. These valuable results provide ample evidence that the CPNB-based aptasensor can be used to quantify sulfadimethoxine residue in food products. PMID:22244734

  12. Nanoscale coordination polymers exhibiting luminescence properties and NMR relaxivity.

    PubMed

    Chelebaeva, Elena; Larionova, Joulia; Guari, Yannick; Ferreira, Rute A S; Carlos, Luis D; Trifonov, Alexander A; Kalaivani, Thangavel; Lascialfari, Alessandro; Guérin, Christian; Molvinger, Karine; Datas, Lucien; Maynadier, Marie; Gary-Bobo, Magali; Garcia, Marcel

    2011-03-01

    This article presents the first example of ultra-small (3-4 nm) magneto-luminescent cyano-bridged coordination polymer nanoparticles Ln0.33(3+)Gdx3+/[Mo(CN)8]3- (Ln=Eu (x=0.34), Tb (x=0.35)) enwrapped by a natural biocompatible polymer chitosan. The aqueous colloidal solutions of these nanoparticles present a luminescence characteristic of the corresponding lanthanides (5D0→7F0-4 (Eu3+) or the 5D4→7F6-2 (Tb3+)) under UV excitation and a green luminescence of the chitosan shell under excitation in the visible region. Magnetic Resonance Imaging (MRI) efficiency, i.e. the nuclear relaxivity, measurements performed for Ln0.33(3+)Gdx3+/[Mo(CN)8]3- nanoparticles show r1p and r2p relaxivities slightly higher than or comparable to the ones of the commercial paramagnetic compounds Gd-DTPA® or Omniscan® indicating that our samples may potentially be considered as a positive contrast agent for MRI. The in vitro studies performed on these nanoparticles show that they maybe internalized into human cancer and normal cells and well detected by fluorescence at the single cell level. They present high stability even at low pH and lack of cytotoxicity both in human cancer and normal cells.

  13. Three new homochiral coordination polymers involving two three-dimensional structural architectures: Syntheses, structures and magnetic properties

    SciTech Connect

    Chao, Tzu-Ling; Yang, Chen-I.

    2014-03-15

    The preparations and properties of three new homochiral three-dimensional (3D) coordination polymers, [M(D-cam)(pyz)(H{sub 2}O){sub 2}]{sub n} (M=Co (1) and Ni (2); D-H{sub 2}cam=(+) D-camphoric acid; pyz=pyrazine) and [Mn{sub 2}(D-cam){sub 2}(H{sub 2}O){sub 2}] (3), under solvothermal conditions is described. Single-crystal X-ray diffraction analyses revealed that all of compounds are homochiral 3D structure. 1 and 2 are isostructural and crystallize in the trigonal space group P3{sub 2}21, while 3 crystallizes in monoclinic space group P2{sub 1}. The structure of 1 and 2 consists of metal-D-cam helical chains which are pillared with pyrazine ligands into a 3D framework structure and 3 features a 3D homochiral framework involving one-dimensional manganese-carboxylate chains that are aligned parallel to the b axis. Magnetic susceptibility data of all compounds were collected. The findings indicate that μ{sub 2}-pyrazine dominate weak antiferromagnetic coupling within 1 and 2, while 3 exhibits antiferromagnetic behavior through the carboxylate groups of D-cam ligand. -- Graphical abstract: The preparations and properties of three new homochiral three-dimensional (3D) coordination polymers, [M(D-cam)(pyz)(H{sub 2}O){sub 2}]{sub n} (M=Co (1) and Ni (2); D-H{sub 2}cam=(+) D-camphoric acid; pyz=pyrazine) and [Mn{sub 2}(D-cam){sub 2}(H{sub 2}O){sub 2}] (3), under solvothermal conditions is described. Single-crystal X-ray diffraction analyses revealed that all of compounds are homochiral 3D structure. 1 and 2 are isostructural and crystallize in the trigonal space group P3{sub 2}21, while 3 crystallizes in monoclinic space group P2{sub 1}. The structure of 1 and 2 consists of metal-D-cam helical chains which are pillared with pyrazine ligands into a 3D framework structure and 3 features a 3D homochiral framework involving one-dimensional manganese-carboxylate chains that are aligned parallel to the b axis. Magnetic susceptibility data of all compounds were collected. The

  14. pH- and mol-ratio dependent formation of zinc(II) coordination polymers with iminodiacetic acid: Synthesis, spectroscopic, crystal structure and thermal studies

    SciTech Connect

    Ni Lubin; Zhang Ronghua; Liu Qiongxin; Xia Wensheng; Wang Hongxin; Zhou Zhaohui

    2009-10-15

    Three novel zinc coordination polymers (NH{sub 4}){sub n}[Zn(Hida)Cl{sub 2}]{sub n} (1), [Zn(ida)(H{sub 2}O){sub 2}]{sub n} (2), [Zn(Hida){sub 2}]{sub n}.4nH{sub 2}O (3) (H{sub 2}ida=iminodiacetic acid) and a monomeric complex [Zn(ida)(phen)(H{sub 2}O)].2H{sub 2}O (4) (phen=1,10-phenanthroline) have been synthesized and characterized by X-ray diffraction methods. 1 and 2 form one-dimensional (1-D) chain structures, whereas 3 exhibits a three-dimensional (3-D) diamondoid framework with an open channel. The mononuclear complex 4 is extended into a 3-D supramolecular architecture through hydrogen bonds and pi-pi stacking. Interestingly, cyclic nonplanar tetrameric water clusters are observed that encapsulated in the 3-D lattice of 4. Based on {sup 1}H and {sup 13}C NMR observations, there is obvious coordination of complex 2 in solution, while 1 and 3 decompose into free iminodiacetate ligand. Monomer [Zn(ida)(H{sub 2}O){sub 3}] (5) is considered as a possible discrete species from 2. These coordination polymers can serve as good molecular precursors for zinc oxide. - Text3: Reaction of zinc salt with iminodiacetic acid afforded three new coordination polymers 1-3 and a monomer 4, which is dependent on pH value and molar ratio of the reactants.

  15. 3D printing of textile-based structures by Fused Deposition Modelling (FDM) with different polymer materials

    NASA Astrophysics Data System (ADS)

    Melnikova, R.; Ehrmann, A.; Finsterbusch, K.

    2014-08-01

    3D printing is a form of additive manufacturing, i.e. creating objects by sequential layering, for pre-production or production. After creating a 3D model with a CAD program, a printable file is used to create a layer design which is printed afterwards. While often more expensive than traditional techniques like injection moulding, 3D printing can significantly enhance production times of small parts produced in small numbers, additionally allowing for large flexibility and the possibility to create parts that would be impossible to produce with conventional techniques. The Fused Deposition Modelling technique uses a plastic filament which is pushed through a heated extrusion nozzle melting the material. Depending on the material, different challenges occur in the production process, and the produced part shows different mechanical properties. The article describes some standard and novel materials and their influence on the resulting parts.

  16. INS3D - NUMERICAL SOLUTION OF THE INCOMPRESSIBLE NAVIER-STOKES EQUATIONS IN THREE-DIMENSIONAL GENERALIZED CURVILINEAR COORDINATES (IBM VERSION)

    NASA Technical Reports Server (NTRS)

    Kwak, D.

    1994-01-01

    INS3D computes steady-state solutions to the incompressible Navier-Stokes equations. The INS3D approach utilizes pseudo-compressibility combined with an approximate factorization scheme. This computational fluid dynamics (CFD) code has been verified on problems such as flow through a channel, flow over a backwardfacing step and flow over a circular cylinder. Three dimensional cases include flow over an ogive cylinder, flow through a rectangular duct, wind tunnel inlet flow, cylinder-wall juncture flow and flow through multiple posts mounted between two plates. INS3D uses a pseudo-compressibility approach in which a time derivative of pressure is added to the continuity equation, which together with the momentum equations form a set of four equations with pressure and velocity as the dependent variables. The equations' coordinates are transformed for general three dimensional applications. The equations are advanced in time by the implicit, non-iterative, approximately-factored, finite-difference scheme of Beam and Warming. The numerical stability of the scheme depends on the use of higher-order smoothing terms to damp out higher-frequency oscillations caused by second-order central differencing. The artificial compressibility introduces pressure (sound) waves of finite speed (whereas the speed of sound would be infinite in an incompressible fluid). As the solution converges, these pressure waves die out, causing the derivation of pressure with respect to time to approach zero. Thus, continuity is satisfied for the incompressible fluid in the steady state. Computational efficiency is achieved using a diagonal algorithm. A block tri-diagonal option is also available. When a steady-state solution is reached, the modified continuity equation will satisfy the divergence-free velocity field condition. INS3D is capable of handling several different types of boundaries encountered in numerical simulations, including solid-surface, inflow and outflow, and far

  17. Syntheses, structures and luminescence properties of lanthanide coordination polymers with helical character

    SciTech Connect

    Zhou Ruisha; Cui Xiaobing; Song Jiangfeng; Xu Xiaoyu; Xu Jiqing Wang Tiegang

    2008-08-15

    A series of lanthanide coordination polymers, (Him){sub n}[Ln(ip){sub 2}(H{sub 2}O)]{sub n} [Ln=La(1), Pr(2), Nd(3) and Dy(4), H{sub 2}ip=isophthalic acid, im=imidazole] and [Y{sub 2}(ip){sub 3}(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (5), have been synthesized and characterized by elemental analyses, infrared (IR), ultraviolet-visible-near infrared (UV-Vis-NIR) and single-crystal X-ray diffraction analyses. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 features a 2-D network making of two different kinds of quadruple-helical chains. Compounds 2 and 3 present the characteristic emissions of Pr(III) and Nd(III) ions in NIR region, respectively. Compound 4 shows sensitized luminescence of Dy(III) ions in visible region. - Graphical abstract: A series of lanthanide coodination polymers, (Him){sub n}[Ln(ip){sub 2}(H{sub 2}O)]{sub n} [Ln=La(1), Pr(2), Nd(3) and Dy(4)] and [Y{sub 2}(ip){sub 3}(H{sub 2}O){sub 2}]{sub n}.nH{sub 2}O (5), have been reported. The isostructural compounds 1-4 possess 3-D structures with three different kinds of channels. Compound 5 displays a 2-D network making of two kinds of quadruple-helical chains. Display Omitted.

  18. 3D Motions of Iron in Six-Coordinate {FeNO}(7) Hemes by Nuclear Resonance Vibration Spectroscopy.

    PubMed

    Peng, Qian; Pavlik, Jeffrey W; Silvernail, Nathan J; Alp, E Ercan; Hu, Michael Y; Zhao, Jiyong; Sage, J Timothy; Scheidt, W Robert

    2016-04-25

    The vibrational spectrum of a six-coordinate nitrosyl iron porphyrinate, monoclinic [Fe(TpFPP)(1-MeIm)(NO)] (TpFPP=tetra-para-fluorophenylporphyrin; 1-MeIm=1-methylimidazole), has been studied by oriented single-crystal nuclear resonance vibrational spectroscopy (NRVS). The crystal was oriented to give spectra perpendicular to the porphyrin plane and two in-plane spectra perpendicular or parallel to the projection of the FeNO plane. These enable assignment of the FeNO bending and stretching modes. The measurements reveal that the two in-plane spectra have substantial differences that result from the strongly bonded axial NO ligand. The direction of the in-plane iron motion is found to be largely parallel and perpendicular to the projection of the bent FeNO on the porphyrin plane. The out-of-plane Fe-N-O stretching and bending modes are strongly mixed with each other, as well as with porphyrin ligand modes. The stretch is mixed with v50 as was also observed for dioxygen complexes. The frequency of the assigned stretching mode of eight Fe-X-O (X=N, C, and O) complexes is correlated with the Fe-XO bond lengths. The nature of highest frequency band at ≈560 cm(-1) has also been examined in two additional new derivatives. Previously assigned as the Fe-NO stretch (by resonance Raman), it is better described as the bend, as the motion of the central nitrogen atom of the FeNO group is very large. There is significant mixing of this mode. The results emphasize the importance of mode mixing; the extent of mixing must be related to the peripheral phenyl substituents.

  19. Two new coordination polymers, a trinuclear metal complex and their interconversion depending on the solvent.

    PubMed

    Koike, Shiori; Hirakawa, Takeshi; Yamanishi, Katsunori; Kondo, Mitsuru

    2014-09-14

    Two new 1-D coordination polymers and a discrete trinuclear complex with a double-ring framework were synthesized and structurally characterized. The unique irreversible conversion from one of the 1-D coordination polymers to the trinuclear complex by contact with MeCN is described.

  20. Tricarboxylate-based Gd(III) coordination polymers exhibiting large magnetocaloric effects.

    PubMed

    Liu, Sui-Jun; Cao, Chen; Xie, Chen-Chao; Zheng, Teng-Fei; Tong, Xiao-Lan; Liao, Jin-Sheng; Chen, Jing-Lin; Wen, He-Rui; Chang, Ze; Bu, Xian-He

    2016-05-31

    Two Gd(III) coordination polymers with the formula [Gd(cit)(H2O)]∞ () and [Gd(nta)(H2O)2]∞ () (H4cit = citric acid, H3nta = nitrilotriacetic acid) have been successfully prepared under hydrothermal conditions. Complex exhibits a three-dimensional (3D) structure based on carboxylate-bridged layers, while complex is a double-layer structure containing eight-coordinated Gd(III). Magnetic investigations reveal that weak antiferromagnetic couplings between adjacent Gd(III) ions in both and with different Weiss values result in large cryogenic magnetocaloric effects. It is notable that the maximum entropy changes (-ΔS) of and reach 31.3 J kg(-1) K(-1) and 32.2 J kg(-1) K(-1) at 2 K for a moderate field change (ΔH = 3 T), and a remarkable -ΔS (41.5 J kg(-1) K(-1) for and 42.0 J kg(-1) K(-1) for ) could be obtained for ΔH = 7 T.

  1. Mechanical, Electromagnetic, and X-ray Shielding Characterization of a 3D Printable Tungsten-Polycarbonate Polymer Matrix Composite for Space-Based Applications

    NASA Astrophysics Data System (ADS)

    Shemelya, Corey M.; Rivera, Armando; Perez, Angel Torrado; Rocha, Carmen; Liang, Min; Yu, Xiaoju; Kief, Craig; Alexander, David; Stegeman, James; Xin, Hao; Wicker, Ryan B.; MacDonald, Eric; Roberson, David A.

    2015-08-01

    Material-extrusion three-dimensional (3D) printing has recently attracted much interest because of its process flexibility, rapid response to design alterations, and ability to create structures "on-the-go". For this reason, 3D printing has possible applications in rapid creation of space-based devices, for example cube satellites (CubeSat). This work focused on fabrication and characterization of tungsten-doped polycarbonate polymer matrix composites specifically designed for x-ray radiation-shielding applications. The polycarbonate-tungsten polymer composite obtained intentionally utilizes low loading levels to provide x-ray shielding while limiting effects on other properties of the material, for example weight, electromagnetic functionality, and mechanical strength. The fabrication process, from tungsten functionalization to filament extrusion and material characterization, is described, including printability, determination of x-ray attenuation, tensile strength, impact resistance, and gigahertz permittivity, and failure analysis. The proposed materials are uniquely advantageous when implemented in 3D printed structures, because even a small volume fraction of tungsten has been shown to substantially alter the properties of the resulting composite.

  2. Thermo-mechanical Characterization of Metal/Polymer Composite Filaments and Printing Parameter Study for Fused Deposition Modeling in the 3D Printing Process

    NASA Astrophysics Data System (ADS)

    Hwang, Seyeon; Reyes, Edgar I.; Moon, Kyoung-sik; Rumpf, Raymond C.; Kim, Nam Soo

    2015-03-01

    New metal/polymer composite filaments for fused deposition modeling (FDM) processes were developed in order to observe the thermo-mechanical properties of the new filaments. The acrylonitrile butadiene styrene (ABS) thermoplastic was mixed with copper and iron particles. The percent loading of the metal powder was varied to confirm the effects of metal particles on the thermo-mechanical properties of the filament, such as tensile strength and thermal conductivity. The printing parameters such as temperature and fill density were also varied to see the effects of the parameters on the tensile strength of the final product which was made with the FDM process. As a result of this study, it was confirmed that the tensile strength of the composites is decreased by increasing the loading of metal particles. Additionally, the thermal conductivity of the metal/polymer composite filament was improved by increasing the metal content. It is believed that the metal/polymer filament could be used to print metal and large-scale 3-dimensional (3D) structures without any distortion by the thermal expansion of thermoplastics. The material could also be used in 3D printed circuits and electromagnetic structures for shielding and other applications.

  3. Synthesis, crystal structure and photoluminescent properties of four lanthanide 5-nitroisophthalate coordination polymers

    SciTech Connect

    Huang Yan; Yan Bing; Shao Min

    2009-04-15

    Four new lanthanide coordination polymers, [Y(Hnip)(nip)(H{sub 2}O)].H{sub 2}O (1), [Ln(Hnip)(nip)(H{sub 2}O){sub 2}].2H{sub 2}O [Ln=Eu(2), Tb(3)] and [Y(nip){sub 2}].(H{sub 2}4,4'-bpy){sub 0.5} (4) [5-nip=5-nitroisophthalate, 4,4'-bpy=4,4'-bipyridine], have been hydrothermally synthesized and structurally characterized. Compound 1 features novel lanthanide-carboxylate groups chains composed of three samehanded helical strands intersecting each other through hinged lanthanide atoms, and these chains are cross-linked by phenylene moieties of carboxylate ligands into a 2D layer structure. Compounds 2 and 3 are isomorphous, and contain 1D catenanelike Ln-O-C-O-Ln chains, which are interconnected by phenylene moieties into 2D layer structures. Compound 4, however, displays a 3D architecture sustained by strong hydrogen bonding interactions between the protonated 4,4'-bpy and the carboxyl oxygen atom from [Y{sub 2}(nip){sub 4}]{sup 2-} with 2D layer structure, and 4,4'-bpy as the guest molecules exist in bilayer channel. The studies for the thermal stabilities of the four compounds show that compound 4 is more stable than other compounds. Compound 2 emits characteristic red luminescence of Eu{sup 3+} ions at room temperature, and its luminescent lifetime and quantum efficiency has been determined. - Graphical abstract: Four lanthanide 5-nitroisophthalate coordination polymers have been hydrothermally prepared and resent different structures and thermal stabilities and photoluminescence properties.

  4. Investigation of cyano-bridged coordination nanoparticles Gd3+/[Fe(CN)6]3-/d-mannitol as T1-weighted MRI contrast agents

    NASA Astrophysics Data System (ADS)

    Perrier, M.; Gallud, A.; Ayadi, A.; Kennouche, S.; Porredon, C.; Gary-Bobo, M.; Larionova, J.; Goze-Bac, Ch.; Zanca, M.; Garcia, M.; Basile, I.; Long, J.; de Lapuente, J.; Borras, M.; Guari, Y.

    2015-07-01

    Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity.Cyano-bridged Gd3+/[Fe(CN)6]3- coordination polymer nanoparticles of 3-4 nm stabilized with d-mannitol presenting a high r1 relaxivity value of 11.4 mM-1 s-1 were investigated in vivo as contrast agents (CA) for Magnetic Resonance Imaging (MRI). They allow an increase of the MR image contrast and can act as an efficient intravascular T1 CA with a relatively long blood-circulation lifetime (60 min) without specific toxicity. Electronic supplementary information (ESI) available: Experimental details and procedures, toxicological data, physical characterization. See DOI: 10.1039/c5nr01557j

  5. pySeismicFMM: Python based travel time calculation in regular 2D and 3D grids in Cartesian and geographic coordinates using Fast Marching Method

    NASA Astrophysics Data System (ADS)

    Polkowski, Marcin

    2016-04-01

    Seismic wave travel time calculation is the most common numerical operation in seismology. The most efficient is travel time calculation in 1D velocity model - for given source, receiver depths and angular distance time is calculated within fraction of a second. Unfortunately, in most cases 1D is not enough to encounter differentiating local and regional structures. Whenever possible travel time through 3D velocity model has to be calculated. It can be achieved using ray calculation or time propagation in space. While single ray path calculation is quick it is complicated to find the ray path that connects source with the receiver. Time propagation in space using Fast Marching Method seems more efficient in most cases, especially when there are multiple receivers. In this presentation a Python module pySeismicFMM is presented - simple and very efficient tool for calculating travel time from sources to receivers. Calculation requires regular 2D or 3D velocity grid either in Cartesian or geographic coordinates. On desktop class computer calculation speed is 200k grid cells per second. Calculation has to be performed once for every source location and provides travel time to all receivers. pySeismicFMM is free and open source. Development of this tool is a part of authors PhD thesis. National Science Centre Poland provided financial support for this work via NCN grant DEC-2011/02/A/ST10/00284.

  6. Chemical proteomic tool for ligand mapping of CYP antitargets: an NMR-compatible 3D QSAR descriptor in the Heme-Based Coordinate System.

    PubMed

    Yao, Huili; Costache, Aurora D; Sem, Daniel S

    2004-01-01

    Chemical proteomic strategies strive to probe and understand protein-ligand interactions across gene families. One gene family of particular interest in drug and xenobiotic metabolism are the cytochromes P450 (CYPs), the topic of this article. Although numerous tools exist to probe affinity of CYP-ligand interactions, fewer exist for the rapid experimental characterization of the structural nature of these interactions. As a complement to recent advances in X-ray crystallography, NMR methods are being developed that allow for fairly high throughput characterization of protein-ligand interactions. One especially promising NMR approach involves the use of paramagnetic induced relaxation effects to measure distances of ligand atoms from the heme iron in CYP enzymes. Distances obtained from these T(1) relaxation measurements can be used as a direct source of 1-dimensional structural information or to restrain a ligand docking to generate a 3-dimensional data set. To facilitate such studies, we introduce the concept of the Heme-Based Coordinate System and present how it can be used in combination with NMR T(1) relaxation data to derive 3D QSAR descriptors directly or in combination with in silico docking. These descriptors should have application in defining the binding preferences of CYP binding sites using 3D QSAR models. They are especially well-suited for the biasing of fragment assembly and combinatorial chemistry drug design strategies, to avoid fragment or reagent combinations with enhanced affinity for CYP antitargets.

  7. Syntheses, crystal structure and properties of two novel coordination polymers with the flexible tetrazole-1-acetic acid (Htza)

    SciTech Connect

    Dong Wenwen; Zhao Jun; Xu Li

    2008-05-15

    Two new coordination polymers, [Ag(tza)]{sub {infinity}} (1) (Htza=tetrazole-1-acetic acid) and [Cu(tza){sub 2}]{sub {infinity}} (2) have been prepared at room temperature and characterized by X-ray crystallography, IR, UV-vis, fluorescence spectra and magnetism analysis. Compound 1 exhibits extended helical chains through bridging ligand tza. The Ag{center_dot}{center_dot}{center_dot}Ag interactions between the adjacent chains form a 3-D framework featuring the extended tza-connected Ag chains that obviously affect the photoluminescent property. Compound 2 features undulated layered structure with hourglass-shaped [Cu{sub 4}(tza){sub 4}] as subunits with the weak ferromagnetic interactions between Cu(II) ions, which are further stabilized by inter-lamellar C-H{center_dot}{center_dot}{center_dot}O hydrogen bonds in the resulting 3-D supramolecular framework. - Graphical abstract: Two novel coordination polymers, [Ag(tza)]{sub {infinity}} (1) and [Cu(tza){sub 2{infinity}} (2) have been prepared and characterized. Compound 1 features extended double-stranded helical chains. Compound 2 features undulated layered structure with hourglass-shaped [Cu{sub 4}(tza){sub 4}] as subunits with the weak ferromagnetic interactions between Cu(II) ions.

  8. Structural Design Parameters for Highly Birefringent Coordination Polymers.

    PubMed

    Thompson, John R; Katz, Michael J; Williams, Vance E; Leznoff, Daniel B

    2015-07-01

    A series of coordination polymer materials incorporating the highly anisotropic 2-(2-pyridyl)-1,10-phenanthroline (phenpy) building block have been synthesized and structurally characterized. M(phenpy)[Au(CN)2]2 (M = Cd, Mn) are isostructural and form a 1-D chain through bridging [Au(CN)2](-) units and extend into a 2-D sheet through aurophilic interactions. M(phenpy)(H2O)[Au(CN)2]2·2H2O (M = Cd, Mn, and Zn) are also isostructural but differ from the first set via the inclusion of a water molecule into the coordination sphere, resulting in a 1-D topology through aurophilic interactions. In(phenpy)(Cl)2[Au(CN)2]·0.5H2O forms a dimer through bridging chlorides and contains a free [Au(CN)2](-) unit. In the plane of the primary crystal growth direction, the birefringence values (Δn) of 0.37(2) (Cd(phenpy)[Au(CN)2]2), 0.50(3) (In(phenpy)(Cl)2[Au(CN)2]·0.5H2O), 0.56(3) and 0.59(6) (M(phenpy)(H2O)[Au(CN)2]2·2H2O M = Cd and Zn, respectively) were determined. β, a structural parameter defined by phenpy units rotated in the A-C plane relative to the light propagation (C) direction, was found to correlate to Δn magnitudes. The addition of a carbon-carbon double bond to terpy has increased the molecular polarizability anisotropy of the building block, and all structures have reduced deviation from planarity in comparison to terpy and terpy derivative structures, leading to these higher Δn values, which are among the highest reported for crystalline solids. PMID:26098267

  9. Polymer complexes. LX. Supramolecular coordination and structures of N(4-(acrylamido)-2-hydroxybenzoic acid) polymer complexes

    NASA Astrophysics Data System (ADS)

    Ghoneim, M. M.; El-Sonbati, A. Z.; El-Bindary, A. A.; Diab, M. A.; Serag, L. S.

    2015-04-01

    A number of novel polymer complexes of various anions of copper(II), cobalt(II), nickel(II) and uranyl(II) with N(4-(acrylamido)-2-hydroxy benzoic acid) (ABH) have been synthesized and characterized by elemental analysis, IR, 1H NMR, magnetic susceptibility measurements, electronic spin resonance, vibrational spectra and thermal analysis. The molecular structures of the ligand are optimized theoretically and the quantum chemical parameters are calculated. Tentative structures for the polymeric metal complexes due to their potential application are also suggested. The IR data exhibit the coordination of ONO2/OAc/SO4 with the metal ions in the polymeric metal complex. Vibrational spectra indicate coordination of carboxylate oxygen and phenolic OH of the ligand giving a MO4 square planar chromophore. Ligand field ESR spectra support square planar geometry around Cu(II). The thermal decomposition of the polymer complexes were discussed in relation to structure, and the thermodynamic parameters of the decomposition stages were evaluated applying Coast-Redfern and Horowitz-Metzger methods.

  10. Four homochiral coordination polymers contain N-acetyl-L-tyrosine and different N-donor ligand: Influence of metal cations, ancillary ligands and coordination modes

    NASA Astrophysics Data System (ADS)

    Li, Meng-Li; Song, Hui-Hua

    2013-10-01

    Using the chiral ligand N-acetyl-L-tyrosine (Hacty) and maintaining identical reaction conditions, Zn(II), Co(II), and Cd(II) salts provided four novel homochiral coordination polymers {[Zn(acty)(bipy)2(H2O)2]·NO3·2H2O}n1, {[Co(acty)(bipy)2(H2O)2]·NO3·2H2O}n2, {[Cd(acty)2(bipy)H2O]·H2O}n3, and {[Cd(acty)(bpe)2(Ac)]·6H2O}n4 (bipy=4,4‧-bipyridine; bpe=1,2-di(4-pyridyl)ethane) in the presence of ancillary ligands. Compounds 1 and 2 are isostructural 1D chain structures. The neighboring chains are further linked into a 3D supramolecular structure via π⋯π stacking and hydrogen bond interactions. Compound 3 shows a 2D network and 4 generates 1D infinite chains along the c-axis. Compounds 3 and 4 are further connected into 3D supramolecular network by hydrogen bond interactions. More importantly, coordination in acyl oxygen atoms and ancillary ligands (bpe) as monodentate decorating ligands in 4 are rarely reported. Ancillary ligands and metal cations significantly influence the structure of the complexes. The photoluminescence properties of 1, 3, and 4 were studied at room temperature. Circular dichroism (CD) of the complexes have been investigated.

  11. Synthesis, structure, and luminescence property of a series of Ag-Ln coordination polymers with the N-heterocyclic carboxylato ligand

    NASA Astrophysics Data System (ADS)

    Jin, Jing; Chen, Chong; Gao, Yan; Zhao, Ran; Wang, Xiuyan; Lü, Chunxin; Chi, Yuxian; Niu, Shuyun

    2016-03-01

    Six Ln-Ag coordination polymers {[LnAg2(IN)4(H2O)5]·NO3·2H2O}n (Ln=Ho (1) and Tb (2), HIN=isonicotinic acid), {[PrAg2(IN)4(H2O)2]·NO3·H2O}n (3), [LnAg(pdc)2]n (Ln=Eu(4) and Pr (5), H2pdc=3,4-pyridine-dicarboxylic acid) and [NdAg(bidc)2(H2O)4]n (6) (H2bidc=benzimidazole-5,6-dicarboxylic acid) have been hydrothermally synthesized and characterized by single crystal X-ray diffraction, elemental analysis, IR, UV-vis-NIR absorption spectra, fluorescence spectra and thermogravimetric analysis. Structural analyses reveal that the six polymers exhibit 0D (polymer (1)), 1D (polymer (2)), 2D (polymers (3) and (5)) and 3D (polymers (4) and (6)) infinite structures, respectively. Polymers (1)-(6) exhibit the Ln(III) characteristic emission in the near-infrared (NIR) region or in the visible region. Especially, the NIR emission bands of polymers 1, 5 and 6 evidently present shift or splitting due to formation of the Ln-Ag coordination polymers. This can be attributed to the tune of inner levels in Ln-Ag system caused by the interact and influence between the 4d orbital of the Ag(I) ion and the 4f orbital of the Ln(III) ion, which can be confirmed by the UV-vis-NIR absorption spectra of the polymers. In addition, the distortion of coordination geometry as well as difference of the coordination number around the Ag(I) ion affect the structure framework.

  12. Aromatic carboxylate effect on dimensionality of three bis(benzimidazole)-based cobalt(II) coordination polymers: Syntheses, structures and properties

    NASA Astrophysics Data System (ADS)

    Zhang, Ju-Wen; Gong, Chun-Hua; Hou, Li-Li; Tian, Ai-Xiang; Wang, Xiu-Li

    2013-09-01

    Three new metal-organic coordination polymers [Co(4-bbc)2(bbbm)] (1), [Co(3,5-pdc)(bbbm)]·2H2O (2) and [Co(1,4-ndc)(bbbm)] (3) (4-Hbbc=4-bromobenzoic acid, 3,5-H2pdc=3,5-pyridinedicarboxylic acid, 1,4-H2ndc=1,4-naphthalenedicarboxylic acid and bbbm=1,1-(1,4-butanediyl)bis-1H-benzimidazole) were hydrothermally synthesized and structurally characterized. Polymer 1 is a 1D chain formed by the bbbm ligands and CoII ions. Polymer 2 exhibits a 2D network with a (3·4·5)(32·4·5·62·74) topology. Polymer 3 possesses a 3D three-fold interpenetrating framework. The versatile structures of title polymers indicate that the aromatic carboxylates have an important influence on the dimensionality of 1-3. Moreover, the thermal stability, electrochemical and luminescent properties of 1-3 were investigated.

  13. Carbon dioxide (CO2) absorption behavior of mixed matrix polymer composites containing a flexible coordination polymer.

    PubMed

    Culp, Jeffrey T; Sui, Lang; Goodman, Angela; Luebke, David

    2013-03-01

    Mixed matrix membranes (MMMs) comprised of metal organic frameworks (MOFs) dispersed in organic polymers are popular materials under study for potential applications in gas separations. However, research on MMMs containing structurally dynamic sorbents known as flexible MOFs has only very recently appeared in the literature. The thermodynamic requirements of the structure transition between the low porosity and high porosity phases of flexible MOFs may provide a mechanism for high adsorption selectivity in these materials. A fundamental question in MMMs containing flexible MOFs is how the constraint of the polymer matrix on the intrinsic expansion of the flexible MOF particles that occurs during gas adsorption might affect the thermodynamics of this structural phase transition and influence the gas adsorption properties of the embedded MOF. To investigate the fundamental nature of this flexible MOF-polymer interface, thin films of ~20 um thickness were prepared using the flexible linear chain coordination polymer catena-bis(dibenzoylmethanato)-(4,4'bipyridyl)nickel(II) "Ni(Bpy)(DBM)(2)" embedded as 35 wt% dispersions in Matrimid®, polystyrene, and polysulfone. The adsorption of CO(2) in the polymers and embedded particles was studied using in situ ATR-FTIR spectroscopy and variable temperature volumetric CO(2) adsorption/desorption isotherms. Interestingly, no effect of the polymer matrix on the gas adsorption behavior of the embedded Ni(Bpy)(DBM)(2) particles was observed. The composite samples all showed the same threshold pressures for CO(2) absorption and desorption hysteresis associated with the structural phase change in the polymer embedded Ni(Bpy)(DBM)(2) particles as was observed in the pristine polycrystalline sample. The current results contrast those recently reported for a MMM containing the flexible MOF "NH(2)-MIL-53" where a significant increase in the threshold pressure for CO(2) adsorption associated with the structural phase change of the MOF was

  14. Nanoscale coordination polymers for platinum-based anticancer drug delivery.

    PubMed

    Rieter, William J; Pott, Kimberly M; Taylor, Kathryn M L; Lin, Wenbin

    2008-09-01

    Pt-containing nanoscale coordination polymer (NCP) particles with the formula of Tb2(DSCP)3(H2O)12 (where DSCP represents disuccinatocisplatin), NCP-1, were precipitated from an aqueous solution of Tb3+ ions and DSCP bridging ligands via the addition of a poor solvent. SEM and TEM images showed that as-synthesized NCP-1 exhibited a spherical morphology with a DLS diameter of 58.3 +/- 11.3 nm. NCP-1 particles were stabilized against rapid dissolution in water by encapsulation in shells of amorphous silica. The resulting silica-coated particles NCP-1' exhibited significantly longer half-lives for DSCP release from the particles (a t1/2 of 9 h for NCP-1' with 7 nm silica coating vs t1/2 of 1 h for as-synthesized NCP-1). In vitro cancer cell cytotoxicity assays with the human colon carcinoma cell line (HT-29) showed that internalized NCP-1' particles readily released the DSCP moieties which were presumably reduced to cytotoxic Pt(II) species to give the Pt-containing NCPs anticancer efficacy superior to the cisplatin standard. The generality of this degradable nanoparticle formulation should allow for the design of NCPs as effective delivery vehicles for a variety of biologically and medically important cargoes such as therapeutic and imaging agents.

  15. Soluble porous coordination polymers by mechanochemistry: from metal-containing films/membranes to active catalysts for aerobic oxidation.

    PubMed

    Zhang, Pengfei; Li, Haiying; Veith, Gabriel M; Dai, Sheng

    2015-01-14

    Soluble porous coordination polymers from mechanochemical synthesis are presented through a coordination polymerization between highly contorted, rigid tetraphenol and a broad variety of transition metal ions. These polymers can be easily cast as metal-containing films or freestanding membranes. Importantly, as-made coordination polymers are highly active and stable in the aerobic oxidation of allylic C-H bonds. PMID:25389070

  16. Different geometrical arrangements in carboxylate coordination polymers of flexible dicarboxylic acid

    SciTech Connect

    Deka, Himangshu; Sarma, Rupam; Kumari, Satchi; Khare, Alika; Baruah, Jubaraj B.

    2011-07-15

    Dicarboxylate coordination polymers (1-5) of Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II), respectively, derived from (7-carboxymethoxy-naphthalen-2-yloxy)-acetic acid (L{sub 1}H{sub 2}) are synthesized and characterized. Depending on the coordination sites around the metal centers and coordination mode of the ligand, dimensionality of these polymers varies. The dicarboxylates adopt three spatial orientations: in-plane linear coordination, out-of-plane cis coordination and out-of-plane trans coordination mode. Both the cis and trans out-of-plane coordination modes are found to exist only if the ancillary ligand pyridine is coordinated to the metal ion. When the aquoligand coordinates the in-plane linear coordination mode of L{sub 1} predominates. The coordination polymers 4 and 5 show photoluminescence in solution. The dicarboxylate of (5-carboxymethoxy-naphthalen-1-yloxy)-acetic acid (L{sub 2}H{sub 2}) does not form coordination polymer under ambient conditions, but prefers to remain as uncoordinated anion providing hydrophobic confinement to hexa-aquometal(II) cation. Compound 3 crystallizes in P2{sub 1} space group and it shows broadband ultra-violet fluorescence centered at 352.9 nm on focusing 632.8 nm He:Ne laser. - Graphical abstract: Different geometrical arrangements in coordination polymers derived from (7-carboxymethoxy-naphthalen-2-yloxy)-acetic acid of metal ions Mn(II), Ni(II), Cu(II), Zn(II) and Cd(II) are presented. The (5-carboxymethoxy-naphthalen-1-yloxy)-acetic acid led to hexa-aquo cadmium(II) dicarboxylate. Highlights: > Structural and spectroscopic characterizations of five dicarboxylate coordination polymers of (7-carboxymethoxy-naphthalen-2-yloxy)-acetic acid with different metal ions are presented. > Different geometrical arrangements of coordination polymers stabilized in solid state are described. > Photoluminescence properties of the polymers are shown. > NLO property of a copper coordination polymer is described.

  17. Two new pyridine-2,3-dicarboxylate coordination polymers prepared from zerovalent metal precursor: Syntheses, luminescent and magnetic properties

    NASA Astrophysics Data System (ADS)

    Semerci, Fatih; Yeşilel, Okan Zafer; Soylu, Mustafa Serkan; Yerli, Yusuf; Dal, Hakan

    2014-02-01

    Two new K+/Cu(II) and Zn(II) coordination polymers with pyridine-2,3-dicarboxylate (pydc), {K2[Cu(μ-pydc)2]·3H2O}n (1) and {[Zn(μ-pydc)(H2O)(4-mim)]·H2O}n (2) (4-mim=4-methylimidazole) have been synthesized from zerovalent metal and characterized by IR, EPR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. In the sandwiched 3D anionic framework of 1, pydc ligands exhibit hexadentate coordination; tridentate coordination bond with Cu(II) and tridentate ionic interaction with K+ ions. {K2[Cu(μ-pydc)2]·3H2O}n shows a rare topology consists of three dimensional (3,4,5)-connected network with the point symbol of {42.6}2{42.84}{43.6.86}2. The distorted square pyramidal geometry of 2 is completed with an nitrogen atom from 4-mim and aqua ligand to form a 1D polynuclear structure. The hydrogen bonds link the 1D chains into 3D architecture. The temperature dependent magnetic property of complex 1 has been studied. Complex 2 exhibits unusual yellow luminescence in the solid state at room temperature.

  18. Comparison of 3D dose distributions for HDR {sup 192}Ir brachytherapy sources with normoxic polymer gel dosimetry and treatment planning system

    SciTech Connect

    Senkesen, Oznur; Tezcanli, Evrim; Buyuksarac, Bora; Ozbay, Ismail

    2014-10-01

    Radiation fluence changes caused by the dosimeter itself and poor spatial resolution may lead to lack of 3-dimensional (3D) information depending on the features of the dosimeter and quality assurance of dose distributions for high–dose rate (HDR) iridium-192 ({sup 192}Ir) brachytherapy sources is challenging and experimental dosimetry methods used for brachytherapy sources are limited. In this study, we investigated 3D dose distributions of {sup 192}Ir brachytherapy sources for irradiation with single and multiple dwell positions using a normoxic gel dosimeter and compared them with treatment planning system (TPS) calculations. For dose calibration purposes, 100-mL gel-containing vials were irradiated at predefined doses and then scanned in an magnetic resonance (MR) imaging unit. Gel phantoms prepared in 2 spherical glasses were irradiated with {sup 192}Ir for the calculated dwell positions, and MR scans of the phantoms were obtained. The images were analyzed with MATLAB software. Dose distributions and profiles derived with 1-mm resolution were compared with TPS calculations. Linearity was observed between the delivered dose and the reciprocal of the T2 relaxation time constant of the gel. The x-, y-, and z-axes were defined as the sagittal, coronal, and axial planes, respectively, the sagittal and axial planes were defined parallel to the long axis of the source while the coronal plane was defined horizontally to the long axis of the source. The differences between measured and calculated profile widths of 3-cm source length and point source for 70%, 50%, and 30% isodose lines were evaluated at 3 dose levels using 18 profiles of comparison. The calculations for 3-cm source length revealed a difference of > 3 mm in 1 coordinate at 50% profile width on the sagittal plane and 3 coordinates at 70% profile width and 2 coordinates at 50% and 30% profile widths on the axial plane. Calculations on the coronal plane for 3-cm source length showed > 3-mm difference in 1

  19. 3D interconnected ionic nano-channels formed in polymer films: self-organization and polymerization of thermotropic bicontinuous cubic liquid crystals.

    PubMed

    Ichikawa, Takahiro; Yoshio, Masafumi; Hamasaki, Atsushi; Kagimoto, Junko; Ohno, Hiroyuki; Kato, Takashi

    2011-02-23

    Thermotropic bicontinuous cubic (Cub(bi)) liquid-crystalline (LC) compounds based on a polymerizable ammonium moiety complexed with a lithium salt have been designed to obtain lithium ion-conductive all solid polymeric films having 3D interconnected ionic channels. The monomer shows a Cub(bi) phase from -5 to 19 °C on heating. The complexes retain the ability to form the Cub(bi) LC phase. They also form hexagonal columnar (Col(h)) LC phases at temperatures higher than those of the Cub(bi) phases. The complex of the monomer and LiBF(4) at the molar ratio of 4:1 exhibits the Cub(bi) and Col(h) phases between -6 to 19 °C and 19 to 56 °C, respectively, on heating. The Cub(bi) LC structure formed by the complex has been successfully preserved by in situ photopolymerization through UV irradiation in the presence of a photoinitiator. The resultant nanostructured film is optically transparent and free-standing. The X-ray analysis of the film confirms the preservation of the self-assembled nanostructure. The polymer film with the Cub(bi) LC nanostructure exhibits higher ionic conductivities than the polymer films obtained by photopolymerization of the complex in the Col(h) and isotropic phases. It is found that the 3D interconnected ionic channels derived from the Cub(bi) phase function as efficient ion-conductive pathways.

  20. Crystal structures and luminescent properties of lanthanide nitrate coordination polymers with structurally related amide type bridging podands

    SciTech Connect

    Wang, Qing; Yan, Xuhuan; Zhang, Hongrui; Liu, Weisheng; Tang, Yu; Tan, Minyu

    2011-01-15

    A one-dimensional linear chain coordination polymer [ErL{sup I}(NO{sub 3}){sub 3}(CH{sub 3}CO{sub 2}Et)]{sub n} (L{sup I}=1,2-bis{l_brace}[(2'-furfurylaminoformyl)phenoxyl]methyl{r_brace}benzene) and a one-dimensional zig-zag coordination polymer {l_brace}[TbL{sup II}(NO{sub 3}){sub 3}(H{sub 2}O)].(H{sub 2}O){r_brace}{sub n} (L{sup II}=1,2-bis{l_brace}[2'-(2-pyridylmethylaminoformyl)phenoxyl]methyl{r_brace}benzene) were assembled by two structurally related bridging podands L{sup I} and L{sup II} which have uniform skeleton and different terminal groups. In {l_brace}[TbL{sup II}(NO{sub 3}){sub 3}(H{sub 2}O)].(H{sub 2}O){r_brace}{sub n}, the neutral chains were linked by the hydrogen bonding interactions between the free and coordinated water molecules from two different directions to interpenetrate into a 3D supramolecular structure. At the same time, the luminescent properties of the solid Tb(III) nitrate complexes of these podands were investigated at room temperature. The lowest triplet state energy levels T{sub 1} of the podands L{sup I} and L{sup II} indicate that the triplet state energy levels of the antennae are both above the lowest excited resonance level of {sup 5}D{sub 4} of Tb{sup 3+} ion. Thus the absorbed energy could be transferred from ligands to the central Tb{sup 3+} ions. And the influence of the hydrogen bonding on the luminescence efficiencies of the coordination polymers was also discussed. -- Graphical Abstract: Two one-dimensional lanthanide coordination polymers were assembled by two structurally related bridging podands, and the effects of the structures on luminescent properties of the solid Tb(III) nitrate complexes were investigated. Display Omitted Research highlights: > Two structurally related amide type bridging ligands were designed and synthesized. > Two one dimensional lanthanide nitrate coordination polymers were obtained. > The structure effects on luminescent properties of the terbium complexes were discussed.

  1. Synthesis, crystal structure and catalytic behavior of homo- and heteronuclear coordination polymers [M(tdc)(bpy)] (M2+ = Fe2+, Co2+, Zn2+, Cd2+; tdc2- = 2,5-thiophenedicarboxylate).

    PubMed

    Kettner, Florian; Worch, Christian; Moellmer, Jens; Gläser, Roger; Staudt, Reiner; Krautscheid, Harald

    2013-08-01

    A series of isostructural 3D coordination polymers (3)∞[M(tdc)(bpy)] (M(2+) = Zn(2+), Cd(2+), Co(2+), Fe(2+); tdc(2-) = 2,5-thiophenedicarboxylate; bpy = 4,4'-bipyridine) was synthesized and characterized by X-ray diffraction, thermal analysis, and gas adsorption measurements. The materials show high thermal stability up to approximately 400 °C and a solvent induced phase transition. Single crystal X-ray structure determination was successfully performed for all compounds after the phase transition. In the zinc-based coordination polymer, various amounts of a second type of metal ions such as Co(2+) or Fe(2+) could be incorporated. Furthermore, the catalytic behavior of the homo- and heteronuclear 3D coordination polymers in an oxidation model reaction was investigated.

  2. Tumor-tracking radiotherapy of moving targets; verification using 3D polymer gel, 2D ion-chamber array and biplanar diode array

    NASA Astrophysics Data System (ADS)

    Ceberg, Sofie; Falk, Marianne; Rosenschöld, Per Munck Af; Cattell, Herbert; Gustafsson, Helen; Keall, Paul; Korreman, Stine S.; Medin, Joakim; Nordström, Fredrik; Persson, Gitte; Sawant, Amit; Svatos, Michelle; Zimmerman, Jens; Bäck, Sven ÅJ

    2010-11-01

    The aim of this study was to carry out a dosimetric verification of a dynamic multileaf collimator (DMLC)-based tumor-tracking delivery during respiratory-like motion. The advantage of tumor-tracking radiation delivery is the ability to allow a tighter margin around the target by continuously following and adapting the dose delivery to its motion. However, there are geometric and dosimetric uncertainties associated with beam delivery system constraints and output variations, and several investigations have to be accomplished before a clinical integration of this tracking technique. Two types of delivery were investigated in this study I) a single beam perpendicular to a target with a one dimensional motion parallel to the MLC moving direction, and II) an intensity modulated arc delivery (RapidArc®) with a target motion diagonal to the MLC moving direction. The feasibility study (I) was made using an 2D ionisation chamber array and a true 3D polymer gel. The arc delivery (II) was verified using polymer gel and a biplanar diode array. Good agreement in absorbed dose was found between delivery to a static target and to a moving target with DMLC tracking using all three detector systems. However, due to the limited spatial resolution of the 2D array a detailed comparison was not possible. The RapidArc® plan delivery was successfully verified using the biplanar diode array and true 3D polymer gel, and both detector systems could verify that the DMLC-based tumor-tracking delivery system has a very good ability to account for respiratory target motion.

  3. Mesoporous graphitic carbon nanodisks fabricated via catalytic carbonization of coordination polymers.

    PubMed

    Su, Panpan; Jiang, Liang; Zhao, Jiao; Yan, Jingwang; Li, Can; Yang, Qihua

    2012-09-11

    Mesoporous graphitic carbon nanodisks with hierarchical porous structure, facilely fabricated by catalytic carbonization of iron-based coordination polymer nanodisks, exhibit high capacitance even at high scan rates as electrode materials for electrochemical double layer capacitors.

  4. Lanthanide coordination polymers based on multi-donor ligand containing pyridine and phthalate moieties: Structures, luminescence and magnetic properties

    SciTech Connect

    Feng, Xun; Liu, Lang; Wang, Li-Ya; Song, Hong-Liang; Qiang Shi, Zhi; Wu, Xu-Hong; Ng, Seik-Weng

    2013-10-15

    A new family of five lanthanide-organic coordination polymers incorporating multi-functional N-hetrocyclic dicarboxylate ligand, namely, [Ln{sub 2}(Hdpp){sub 2}(dpp){sub 2}]{sub n}Ln=Pr(1), Eu(2), Gd(3), Dy(4), Er(5) (H{sub 2}dpp=1-(3, 4-dicarboxyphenyl) pyridin-4-ol) have been fabricated successfully through solvothermal reaction of 1-(3,4-dicarboxyphenyl)-4-hydroxypyridin-1-ium chloride with trivalent lanthanide salts, and have been characterized systematically. The complexes 1–5 are isomorphous and isostructural. They all feature three dimensional (3D) frameworks based on the interconnection of 1D double chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 4+} basic carboxylate as secondary building unit (SBU). The results of magnetic analysis shows the same bridging fashion of carboxylic group in this case results in the different magnetic properties occurring within lanthanide polymers. Moreover, the Eu(III) and Dy(III) complexes display characteristic luminescence emission in the visible regions. - Graphical abstract: A new family of lanthanide-organic frameworks incorporating multi-donor twisted ligand has been fabricated successfully, and has been characterized systematically. The complexes 1–5 are isostructural, and all feather three dimensional (3D) frameworks based on the interconnection of 1D double stride chains composed of the binuclear moiety [Ln{sub 2}(Hdpp){sub 2}]{sup 2+} basic carboxylate as secondary building unit (SBU). Display Omitted - Highlights: • New family of lanthanide–organic coordination polymers incorporating multifunctional N-hetrocyclic dicarboxylate ligand has been fabricated. • They have been characterized systematically. • They all feather three dimensional frameworks based on the binuclear moiety of [Ln{sub 2}(Hdpp){sub 2}]{sup 2+}. • The Eu(III) and Dy(III) analogues exhibit intense photoluminescence.

  5. Copper(II)-lanthanide(III) coordination polymers constructed from pyridine-2,5-dicarboxylic acid: Preparation, crystal structure and photoluminescence

    NASA Astrophysics Data System (ADS)

    Xia, Zheng-Qiang; Wei, Qing; Chen, San-Ping; Feng, Xin-Ming; Xie, Gang; Qiao, Cheng-Fang; Zhang, Guo-Chun; Gao, Sheng-Li

    2013-01-01

    A series of 3d-4f heterometallic coordination polymers, formulated as {[Cu3Ln2(pydc)6(H2O)12]·4H2O}n [Ln=Tb (1), Eu (2), Dy (3), Ho (4), Lu (5)], {[CuNd2(pydc)4(H2O)3]·H2O}n (6) and {[Cu3Pr2(pydc)6(H2O)13]·4H2O}n (7) (where H2pydc=pyridine-2,5-dicarboxylic acid), have been hydrothermally prepared by reactions of H2pydc ligand with lanthanide ions in the presence of Cu(II) ion. X-ray crystal structure analysis reveals that these compounds exhibit rich structural chemistry. 1-5 are isomorphous and present a two-dimensional network constructed from Ln2Cu2L2(H2O)2 SBU rings and CuL2(H2O) building blocks. In 6, two-dimensional ladder-like layers based on Nd(III) belts and CuL2O2 units are assembled by H2pydc ligands into a three-dimensional open framework. Polymer 7 displays a two-dimensional wave-like layer structure containing two distinct ring units, in which a new coordination mode of the pydc2- ligand is observed. The results indicate that the coordination flexibility of the pydc2- ligand and lanthanide contraction effect play cooperative roles in the formation of coordination polymers with different polymeric architectures. Compounds 1-2 exhibit intense green and red luminescence emission characteristics of Tb(III) and Eu(III), respectively. Furthermore, elemental analyses (EA), infrared spectra (IR) and thermogravimetric analyses (TGA) of these compounds were also studied.

  6. Syntheses and structures of three heterometallic coordination polymers derived from 4-pyridin-3-yl-benzoic acid

    SciTech Connect

    Fang, Wei-Hui; Yang, Guo-Yu

    2014-04-01

    Three lanthanide–transition-metal coordination polymers, namely, [Er{sub 2}L{sub 6}(H{sub 2}O)][Cu{sub 2}I{sub 2}] (1), [ErL{sub 3}][CuI] (2), and [Dy{sub 2}L{sub 6}(BPDC){sub 0.5}(H{sub 2}O){sub 4}][Cu{sub 3}I{sub 2}] (3) (HL=4-pyridin-3-yl-benzoic acid, H{sub 2}BPDC=4,4′-biphenyldicarboxylic acid) have been made by reacting Ln{sub 2}O{sub 3} and CuI with HL at different temperatures under hydrothermal conditions. All the complexes are characterized by elemental analysis, IR spectroscopy, thermogravimetric analysis, powder X-ray diffraction, and single-crystal X-ray diffraction, respectively. 1–3 all construct from dimeric (Ln{sub 2}) and (Cu{sub 2}) units and exhibit two types of the structural features: 1 is a two-dimensional layer, 2–3 are three-dimensional frameworks. Interestingly, the in situ formation of the BPDC ligand is found in the structure of 3. The distinct architectures of these complexes indicated that the reaction temperature plays an important role in the formation of higher dimensional coordination polymers. - Graphical abstract: By hydrothermal reaction of lanthanide oxide, copper halide, and 4-pyridin-3-yl-benzoic ligand at different temperatures, a series of 1-D to 3-D 3d–4f coordination polymers, namely [ErL{sub 3}(H{sub 2}O){sub 2}][CuI], [Er{sub 2}L{sub 6}(H{sub 2}O)][Cu{sub 2}I{sub 2}], [ErL{sub 3}][CuI], and [Dy{sub 2}L{sub 6}(BPDC){sub 0.5}(H{sub 2}O){sub 4}][Cu{sub 3}I{sub 2}], have been made, respectively. - Highlights: • Three novel heterometallic coordination polymers derived from 4-pyridin-3-yl-benzoic acid have been hydrothermally synthesized. • Mixed dinuclear motifs of (Ln{sub 2}) and (Cu{sub 2}) serve as secondary building units to generate 2-D layer and 3-D frameworks. • It is proved that higher temperature is apt to permit construction of high dimensional architectures.

  7. Linking homogeneous and heterogeneous enantioselective catalysis through a self-assembled coordination polymer.

    PubMed

    García, José I; López-Sánchez, Beatriz; Mayoral, José A

    2008-11-01

    Combining the advantages of homogeneous and heterogeneous enantioselective catalysis is possible through self-supported copper coordination polymers, based on a new kind of ditopic chiral ligand bearing two azabis(oxazoline) moieties. When the coordination polymer is used to catalyze a cyclopropanation reaction, it becomes soluble in reaction conditions but precipitates after reaction completion, allowing easy recovery and efficient reuse in the same reaction up to 14 times.

  8. Bis(oxazoline)-based coordination polymers: a recoverable system for enantioselective Henry reactions.

    PubMed

    Angulo, Beatriz; García, José I; Herrerías, Clara I; Mayoral, José A; Miñana, Ana C

    2012-07-01

    An efficient release-capture strategy for the recovery and reuse of enantioselective catalysts in the Henry reaction is described. This strategy is based on the precipitation of an insoluble coordination polymer at the end of each reaction, allowing easy separation from products. The coordination polymer is formed through aggregation of Cu(II) ions with ditopic bisoxazoline-based chiral ligands. Up to 11 catalytic cycles have been conducted keeping good yields and enantioselectivities.

  9. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions

    NASA Astrophysics Data System (ADS)

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-01

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution.

  10. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions.

    PubMed

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-30

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution. PMID:27662260

  11. 3D Numerical study on the hollow profile polymer extrusion forming based on the gas-assisted technique

    NASA Astrophysics Data System (ADS)

    Ren, Z.; Huang, X. Y.; Liu, H. S.

    2016-07-01

    In this study, gas-assisted extrusion method was introduced into the extrusion of the hollow profiles. To validate the feasibility of the new extrusion method, 3D numerical simulation of the hollow profiles based on gas-assisted technique was carried out by using the finite element method. The Phan-Thien-Tanner (PTT) mode was selected as the construction equation. In the simulations, the physical field distributions of four different extrusion modes were obtained and analyzed. Results showed that the extrudate effect of traditional no gas- assisted mode was poor because the extrudate swell phenomenon is obvious and the physical field values are larger. For the gas-assisted of the inner wall, the extrudate swell of the melt was more obvious than that of the traditional no gas-assisted mode on account of the no-slip boundary condition on the outer wall. For the gas-assisted of the outer wall, the dimple effect of the inner wall is more obvious owing to the no-slip boundary condition on the inner wall. However, the extrusion effect of the double walls gas-assisted mode is very good because of the full-slip effect on the both walls.

  12. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography.

    PubMed

    Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett

    2016-03-01

    The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm. PMID:26873472

  13. Detection of human genome mutations associated with pregnancy complications using 3-D microarray based on macroporous polymer monoliths.

    PubMed

    Glotov, A S; Sinitsyna, E S; Danilova, M M; Vashukova, E S; Walter, J G; Stahl, F; Baranov, V S; Vlakh, E G; Tennikova, T B

    2016-01-15

    Analysis of variations in DNA structure using a low-density microarray technology for routine diagnostic in evidence-based medicine is still relevant. In this work the applicability of 3-D macroporous monolithic methacrylate-based platforms for detection of different pathogenic genomic substitutions was studied. The detection of nucleotide replacements in F5 (Leiden G/A, rs6025), MTHFR (C/T, rs1801133) and ITGB3 (T/C, rs5918), involved in coagulation, and COMT (C/G, rs4818), TPH2 (T/A, rs11178997), PON1 (T/A rs854560), AGTR2 (C/A, rs11091046) and SERPINE1 (5G/4G, rs1799889), associated with pregnancy complications, was performed. The effect of such parameters as amount and type of oligonucleotide probe, amount of PCR product on signal-to-noise ratio, as well as mismatch discrimination was analyzed. Sensitivity and specificity of mutation detections were coincided and equal to 98.6%. The analysis of SERPINE1 and MTHFR genotypes by both NGS and developed microarray was performed and compared. PMID:26592644

  14. 3D printed titanium micro-bore columns containing polymer monoliths for reversed-phase liquid chromatography.

    PubMed

    Gupta, Vipul; Talebi, Mohammad; Deverell, Jeremy; Sandron, Sara; Nesterenko, Pavel N; Heery, Brendan; Thompson, Fletcher; Beirne, Stephen; Wallace, Gordon G; Paull, Brett

    2016-03-01

    The potential of 3D selective laser melting (SLM) technology to produce compact, temperature and pressure stable titanium alloy chromatographic columns is explored. A micro bore channel (0.9 mm I.D. × 600 mm long) was produced within a 5 × 30 × 30 mm titanium alloy (Ti-6Al-4V) cuboid, in form of a double handed spiral. A poly(butyl methacrylate-co-ethyleneglycoldimethacrylate) (BuMA-co-EDMA) monolithic stationary phase was thermally polymerised within the channel for application in reversed-phase high-performance liquid chromatography. The prepared monolithic column was applied to the liquid chromatographic separation of intact proteins and peptides. Peak capacities of 69-76 (for 6-8 proteins respectively) were observed during isothermal separation of proteins at 44 °C which were further increased to 73-77 using a thermal step gradient with programmed temperature from 60 °C to 35 °C using an in-house built direct-contact heater/cooler platform based upon matching sized Peltier thermoelectric modules. Rapid temperature gradients were possible due to direct-contact between the planar metal column and the Peltier module, and the high thermal conductivity of the titanium column as compared to a similar stainless steel printed column. The separation of peptides released from a digestion of E.coli was also achieved in less than 35 min with ca. 40 distinguishable peaks at 210 nm.

  15. Single-Crystal to Single-Crystal Phase Transition and Segmented Thermochromic Luminescence in a Dynamic 3D Interpenetrated Ag(I) Coordination Network.

    PubMed

    Yan, Zhi-Hao; Li, Xiao-Yu; Liu, Li-Wei; Yu, Si-Qi; Wang, Xing-Po; Sun, Di

    2016-02-01

    A new 3D Ag(I)-based coordination network, [Ag2(pz)(bdc)·H2O]n (1; pz = pyrazine and H2bdc = benzene-1,3-dicarboxylic acid), was constructed by one-pot assembly and structurally established by single-crystal X-ray diffraction at different temperatures. Upon cooling from 298 to 93 K, 1 undergo an interesting single-crystal to single-crystal phase transition from orthorhombic Ibca (Z = 16) to Pccn (Z = 32) at around 148 K. Both phases show a rare 2-fold-interpenetrated 4-connected lvt network but incorporate different [Ag2(COO)2] dimeric secondary building units. It is worth mentioning that complex 1 shows red- and blue-shifted luminescences in the 290-170 and 140-80 K temperature ranges, respectively. The variable-temperature single-crystal X-ray crystallographic studies suggest that the argentophilic interactions and rigidity of the structure dominated the luminescence chromism trends at the respective temperature ranges. Upon being mechanically ground, 1 exhibits a slight mechanoluminescence red shift from 589 to 604 nm at 298 K.

  16. Porous Coordination Polymer Based on Bipyridinium Carboxylate Linkers with High and Reversible Ammonia Uptake.

    PubMed

    Leroux, Maxime; Mercier, Nicolas; Allain, Magali; Dul, Marie-Claire; Dittmer, Jens; Kassiba, Abdel Hadi; Bellat, Jean-Pierre; Weber, Guy; Bezverkhyy, Igor

    2016-09-01

    The zwitterionic bipyridinium carboxylate ligand 1,1'-bis(4-carboxyphenyl)-4,4'-bipyridinium (pc1) in the presence of cadmium chloride affords novel porous coordination polymers (PCPs): [Cd4(pc1)3Cl6]·CdCl4·guest (1) crystallizing in the P3̅1c space group. In the structure, [Cd4Cl6(CO2)6] building units are linked together by six pc1 ligands, leading to a 3D high-symmetrical network exhibiting hexagonal channels along the c axis. The walls of this PCP consist of cationic electron-acceptor bipyridinium units. The PCP 1 reversibly adsorbs H2O and CH3OH up to about 0.1 g/g at saturation showing the adsorption isotherms characteristic of a moderately hydrophilic sorbent. Adsorption of ammonia (NH3) follows a different pattern, reaching an exceptional uptake of 0.39 g/g (22.3 mmol/g) after the first adsorption cycle. Although the crystalline structure of 1 collapses after the first adsorption, the solid can be regenerated and maintains the capacity of 0.29 g/g (17 mmol/g) in the following cycles. We found that the high NH3 uptake is due to a combination of pore filling taking place below 150 h·Pa and chemisorption occurring at higher pressures. The latter process was shown to involve two phenomena: (i) coordination of NH3 molecules to Cd(2+) cations as follows from (113)Cd NMR and (ii) strong donor-acceptor interactions between NH3 molecules and pc1 ligands. PMID:27500980

  17. Metal-controlled assembly tuning the topology and dimensionality of coordination polymers of Ag(I), Cd(II) and Zn(II) with the flexible 2-(1 H-imidazole-1-yl)acetic acid (Hima)

    NASA Astrophysics Data System (ADS)

    Wang, Yong-Tao; Tang, Gui-Mei; Wu, Yue; Qin, Xu-Yan; Qin, Da-Wei

    2007-04-01

    Three new, inorganic-organic coordination polymers based on a versatile linking unit 2-(1 H-imidazole-1-yl)acetate (ima) and Ag I, Cd II and Zn II ions, exhibiting one to three dimensionalities and different topology structures, have been prepared in water medium and structurally characterized by single-crystal X-ray diffraction analysis. Reaction of AgNO 3 with Hima afforded a neutral one-dimensional (1-D) chains [Ag(ima)] n ( 1) which exhibits a pseudo two-dimensional (2-D) layered architecture through π-π stacking interaction between imidazole rings and intermolecular Ag⋯Ag interactions. Reaction of CdCl 2 with Hima yielded neutral 2-D coordination polymers [Cd(ima) 2] n ( 2) possessing (6, 3) topology structures, which further stack into 3-D supramolecular networks through C-H⋯O weak interactions. While Zn(NO 3) 2 was used, a non-centric 3-D coordination polymer [Zn(ima) 2] n ( 3) featuring a 3-fold interpenetrating diamondoid net was isolated. Among these polymers, the building block ima anion exhibits different coordination modes. These results indicate that the versatile nature of this flexible ligand, together with the coordination preferences of the metal ions, play a critical role in construction of these novel coordination polymers. The spectral, thermal and SHG (second-harmonic generation) properties of these new materials have also been investigated.

  18. Determination of tetracycline in milk by using nucleotide/lanthanide coordination polymer-based ternary complex.

    PubMed

    Tan, Hongliang; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2013-12-15

    The meta-organic coordination polymers have been emerged as fascinating nanomaterials because of their tunable nature. In this work, we employed lanthanide coordination polymer self-assembled from adenosine monophosphate (AMP) and europium ion (Eu(3+)) as receptor reagent and citrate (Cit) as ancillary ligand to construct a fluorescent sensor for the detection of tetracycline (Tc) in milk. The co-coordination of Cit and Tc with Eu(3+) on the surface of the coordination polymer AMP/Eu leads to the formation of ternary complex which emitted strong fluorescence due to the removal of coordinated water molecules and an intramolecular energy transfer from Tc to Eu(3+). The fluorescent intensity of Eu(3+) displayed a good linear response to Tc concentrations in the range of 0.1-20 μM with a detection limit of 60 nM. This method was successfully applied to determine the levels of Tc in milk, which is the first application of coordination polymer as a fluorescent sensor in real sample. Compared with other Eu(3+)-based fluorescent methods for Tc detection, the presented method allows simple, direct analysis of Tc without requiring special reaction media or complicated prepreparation processes. This straightforward strategy could be extended to the preparation of other lanthanide coordination polymer-based fluorescent probes for applications in biosensing, imaging, drug delivery, and so on.

  19. Synthesis, structures, luminescent and magnetic properties of four coordination polymers with the flexible 1,3-phenylenediacetate ligands

    NASA Astrophysics Data System (ADS)

    Gu, Jin-Zhong; Lv, Dong-Yu; Gao, Zhu-Qing; Liu, Jian-Zhao; Dou, Wei; Tang, Yu

    2011-03-01

    Four coordination polymers, [Zn(pda)(bpy)(H 2O)] n· nH 2O ( 1), [Cd(pda)(prz)(H 2O)] n ( 2), [Co 3( μ3-OH) 2(pda) 2(pyz)] n·2 nH 2O ( 3) and [Pr 2(pda) 3(H 2O) 2] n ( 4) (H 2pda=1,3-phenylendiacetic acid, bpy=4,4'-bipyridine, prz=piperazine and pyz=pyrazine) have been hydrothermally synthesized and characterized. Complex 1 is a 1D wheel-like chain structure, which is further extended into a 3D metal-organic supramolecular framework by H-bonds and π- π stacking interactions. Complex 2 is a 1D ladder-like chain structure, which is also further extended into a 3D metal-organic supramolecular framework by H-bonds. Complex 3 possess a 2D sheet structure with infrequent two pairs of double-helix chains. Complex 4 features a 3D structure. Both 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of complexes 3 and 4 exhibit antiferromagnetic interactions between the nearest metal ions, with C=9.99 and 3.43 cm 3 mol -1 K, and θ=-23.9 and -46.3 K, respectively.

  20. Indirect solid free form fabrication of local and global porous, biomimetic and composite 3D polymer-ceramic scaffolds.

    PubMed

    Taboas, J M; Maddox, R D; Krebsbach, P H; Hollister, S J

    2003-01-01

    Precise control over scaffold material, porosity, and internal pore architecture is essential for tissue engineering. By coupling solid free form (SFF) manufacturing with conventional sponge scaffold fabrication procedures, we have developed methods for casting scaffolds that contain designed and controlled locally porous and globally porous internal architectures. These methods are compatible with numerous bioresorbable and non-resorbable polymers, ceramics, and biologic materials. Phase separation, emulsion-solvent diffusion, and porogen leaching were used to create poly(L)lactide (PLA) scaffolds containing both computationally designed global pores (500, 600, or 800 microm wide channels) and solvent fashioned local pores (50-100 microm wide voids or 5-10 microm length plates). Globally porous PLA and polyglycolide/PLA discrete composites were made using melt processing. Biphasic scaffolds with mechanically interdigitated PLA and sintered hydroxyapatite regions were fabricated with 500 and 600 microm wide global pores. PLA scaffolds with complex internal architectures that mimicked human trabecular bone were produced. Our indirect fabrication using casting in SFF molds provided enhanced control over scaffold shape, material, porosity and pore architecture, including size, geometry, orientation, branching, and interconnectivity. These scaffolds that contain concurrent local and global pores, discrete material regions, and biomimetic internal architectures may prove valuable for multi-tissue and structural tissue interface engineering. PMID:12417192

  1. Two novel coordination polymers constructed by the same mixed ligands of 1,3-bip and H2bpdc: Syntheses, structures and catalytic properties

    NASA Astrophysics Data System (ADS)

    Lu, Jiu-Fu; Wang, Min-Zhen; Liu, Zhi-Hong

    2015-10-01

    Two novel coordination polymers, namely [Co(1,3-bip)(bpdc)·0.5H2bpdc]n (1), [Cu(1,3-bip)(bpdc)·3H2O]n (2), where 1,3-bip = 1,3-bis(imidazol-1-yl)propane, H2bpdc = biphenyl-4,4‧-dicarboxylic acid, were synthesized under solvothermal conditions and characterized by single crystal X-ray diffraction, powder XRD, FT-IR, TGA and elemental analysis techniques. Single crystal X-ray analysis revealed that complex 1 features a 3D3D fivefold interpenetrating framework. The structure of complex 2 displays a (4,4) grid layer which is further reinforced through strong H-bonding with lattice solvent molecules to form a 3D supramolecular framework. Furthermore, the complexes 1 and 2 exhibit catalytic properties on degradation of methyl orange in Fenton-like process.

  2. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions.

    PubMed

    Yan, Xuzhou; Cook, Timothy R; Pollock, J Bryant; Wei, Peifa; Zhang, Yanyan; Yu, Yihua; Huang, Feihe; Stang, Peter J

    2014-03-26

    An emerging strategy for the fabrication of advanced supramolecular materials is the use of hierarchical self-assembly techniques wherein multiple orthogonal interactions between molecular precursors can produce new species with attractive properties. Herein, we unify the spontaneous formation of metal-ligand bonds with the host/guest chemistry of crown ethers to deliver a 3D supramolecular polymer network (SPN). Specifically, we have prepared a highly directional dipyridyl donor decorated with a benzo-21-crown-7 moiety that undergoes coordination-driven self-assembly with a complementary organoplatinum acceptor to furnish hexagonal metallacycles. These hexagons subsequently polymerize into a supramolecular network upon the addition of a bisammonium salt due to the formation of [2]pseudorotaxane linkages between the crown ether and ammonium moieties. At high concentrations, the resulting 3D SPN becomes a gel comprising many cross-linked metallohexagons. Notably, thermo- and cation-induced gel-sol transitions are found to be completely reversible, reflecting the dynamic and tunable nature of such supramolecular materials. As such, these results demonstrate the structural complexity that can be obtained when carefully controlling multiple interactions in a hierarchical fashion, in this case coordination and host/guest chemistry, and the interesting dynamic properties associated with the materials thus obtained. PMID:24621148

  3. Responsive supramolecular polymer metallogel constructed by orthogonal coordination-driven self-assembly and host/guest interactions.

    PubMed

    Yan, Xuzhou; Cook, Timothy R; Pollock, J Bryant; Wei, Peifa; Zhang, Yanyan; Yu, Yihua; Huang, Feihe; Stang, Peter J

    2014-03-26

    An emerging strategy for the fabrication of advanced supramolecular materials is the use of hierarchical self-assembly techniques wherein multiple orthogonal interactions between molecular precursors can produce new species with attractive properties. Herein, we unify the spontaneous formation of metal-ligand bonds with the host/guest chemistry of crown ethers to deliver a 3D supramolecular polymer network (SPN). Specifically, we have prepared a highly directional dipyridyl donor decorated with a benzo-21-crown-7 moiety that undergoes coordination-driven self-assembly with a complementary organoplatinum acceptor to furnish hexagonal metallacycles. These hexagons subsequently polymerize into a supramolecular network upon the addition of a bisammonium salt due to the formation of [2]pseudorotaxane linkages between the crown ether and ammonium moieties. At high concentrations, the resulting 3D SPN becomes a gel comprising many cross-linked metallohexagons. Notably, thermo- and cation-induced gel-sol transitions are found to be completely reversible, reflecting the dynamic and tunable nature of such supramolecular materials. As such, these results demonstrate the structural complexity that can be obtained when carefully controlling multiple interactions in a hierarchical fashion, in this case coordination and host/guest chemistry, and the interesting dynamic properties associated with the materials thus obtained.

  4. Dimensional modulation and magnetic properties of triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates

    SciTech Connect

    Zhang, Ju-Wen; Zhao, Wei; Lu, Qi-Lin; Luan, Jian; Qu, Yun; Wang, Xiu-Li

    2014-04-01

    Five new metal–organic coordination polymers ([Cu{sub 3}(μ{sub 2}-OH){sub 2}(atrz){sub 2}(nph){sub 2}(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (1), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)]·2H{sub 2}O){sub n} (2), ([Cu{sub 2}(μ{sub 3}-OH)(atrz)(1,2,4-btc)(H{sub 2}O)]·H{sub 2}O){sub n} (3), [Cu(dth){sub 0.5}(nph)(H{sub 2}O)]{sub n} (4) and [Cu(dth)(Hnip){sub 2}]{sub n} (5) [atrz=4-amino-1,2,4-triazole, dth=N,N'-di(4H-1,2,4-triazole)hexanamide, H{sub 2}nph=3-nitrophthalic acid, 1,2,4-H{sub 3}btc=1,2,4-benzenetricarboxylic acid and H{sub 2}nip=5-nitroisophthalic acid] were hydrothermally synthesized and structurally characterized. Polymer 1 shows a one-dimensional (1D) chain. Polymers 2 and 3 exhibit similar tetranuclear Cu{sup II}{sub 4} cluster-based three-dimensional (3D) frameworks with the same components. Polymer 4 possesses a 3D framework with a 4{sup 12}·6{sup 3}-pcu topology. Polymer 5 displays a 3D framework with a 4{sup 4}·6{sup 10}·8-mab topology. The magnetic properties of 1–4 were investigated. - Graphical abstract: Five triazole-based copper(II) polymers modulated by polycarboxylates were synthesized. Bis-triazole-bis-amide ligand and polycarboxylates play important roles in tuning dimensionality of polymers. Magnetic properties of polymers were investigated. - Highlights: • Five triazole- and bis(triazole)-based copper(II) coordination polymers tuned by aromatic polycarboxylates were obtained. • The aromatic polycarboxylates have an important influence on the dimensionality of five polymers. • The magnetic properties of four polymers were investigated.

  5. Assembly of 4-, 6- and 8-connected Cd(II) pseudo-polymorphic coordination polymers: Synthesis, solvent-dependent structural variation and properties

    NASA Astrophysics Data System (ADS)

    Li, Zhao-Hao; Xue, Li-Ping; Miao, Shao-Bin; Zhao, Bang-Tun

    2016-08-01

    The reaction of Cd(NO3)2·4H2O, 2,5-thiophenedicarboxylic acid (H2tdc) and 1,2-bis(imidazol-1‧-yl)methane (bimm) by modulating solvent systems yielded three highly connected pseudo-polymorphic coordination polymers based on different dinuclear [Cd2(CO2)2] subunits bridged by carboxylate groups. Single crystal structural analyses reveal structural variation from 4-connected 2D sql layer, 6-connected 2-fold interpenetrated 3D pcu to 8-connected 3D bcu-type network in compounds 1-3. The structural dissimilarity in the structures dependent on the coordination environments of Cd(II) ions and linking modes of mixed ligand influenced by different solvent systems during the synthesis process. Moreover, thermogravimetric and photoluminescence behaviors of 1-3 were also investigated for the first time, and all the complexes emit blue luminescence in the solid state.

  6. First examples of ternary lanthanide 5-aminoisophthalate complexes: Hydrothermal syntheses and structures of lanthanide coordination polymers with 5-aminoisophthalate and oxalate

    NASA Astrophysics Data System (ADS)

    Liu, Chong-Bo; Wen, Hui-Liang; Tan, Sheng-Shui; Yi, Xiu-Guang

    2008-05-01

    Two new lanthanide coordination polymers with mixed-carboxylates, [Ln(OX)(HAPA)(H 2O)] n[Ln = Eu ( 1), Ho ( 2); H 2APA = 5-aminoisophthalic acid; OX = oxalate] were obtained by hydrothermal reactions, and characterized by single crystal X-ray diffraction, elemental analysis and IR spectra. Complexes 1 and 2 are both 3-D supramolecular structure, in which lanthanide ions are bridged by oxalate and 5-aminoisophthalate ligands forming 2-D metal-organic framework, and 2-D networks are further architectured to form 3-D supramolecular structures by hydrogen bonds. The two carboxylate groups of H 2APA ligand are all deprotonated and exhibit chelating and bridging bidentate coordination modes, respectively, and the amino group in HAPA presents - NH3+ in the titled complexes. The thermogravimetric analysis was carried out to examine the thermal stability of the titled complexes. And the photoluminescence property of 1 was investigated.

  7. Tuning the structure and magnetism of heterometallic sodium(1+)-cobalt(2+) formate coordination polymers by varying the metal ratio and solvents.

    PubMed

    Zhao, Jiong-Peng; Han, Song-De; Zhao, Ran; Yang, Qian; Chang, Ze; Bu, Xian-He

    2013-03-18

    Three new heterometallic formate coordination polymers formulated as [Na2Co(HCOO)4]∞ (1), [NaCo(HCOO)3]∞ (2), and [Na2Co7(HCOO)16]∞ (3) were obtained by adjusting the solvent and ratio of the reactants. In 1, a (4,4) cobalt formate layer is formed and the sodium ions connect the layers to form a three-dimensional (3D) framework. In 2, each formate ligand binds two Co(2+) and two Na(+) ions with a syn,syn,anti,anti coordination mode to form a chrial network with 4,6-connected topology. 3 is a Na(+)-ion-linked 3D framework based on the cobalt formate layer, which has a 10-membered metal ring. Magnetic studies indicate the existence of ferromagnetic interactions between adjacent Co(2+) ions in 1, while dominating antiferromagnetic couplings in 2 and 3.

  8. Coordinative nanoporous polymers synthesized with hydrogen-bonded columnar liquid crystals.

    PubMed

    Ishihara, Shinsuke; Furuki, Yusuke; Hill, Jonathan P; Ariga, Katsuhiko; Takeoka, Shinji

    2012-10-01

    In this paper, we report the development of nanoporous polymer which demonstrates the coordination property toward zinc porphyrin. A hydrogen-bonded columnar liquid crystalline precursor composed of a triphenylene template and three equivalent of the surrounding dendric amphiphile bearing a pyridyl head group and a polymerizable aliphatic chain, was covalently fixed by photopolymerization, and then the subsequent selective removal of the template successively resulted in a nanoporous polymer in which the pore wall is modified with pyridyl groups. The nanoporous polymer reflected the conformation of template, and displayed considerable coordination ability of the pyridyl groups towards zinc porphyrin. The coordinative nanoporous polymer is promising as a nano-scaled scaffold for the organization of dyes into functional supramolecular architectures.

  9. A series of Ti(IV)/Ti(III) coordination polymers: Structures and surface photoelectric properties

    NASA Astrophysics Data System (ADS)

    Li, Lei; Zhang, Li; Liu, Dong-Wei; Jin, Jing; Chi, Yu-Xian; Niu, Shu-Yun

    2012-02-01

    Three titanium coordination polymers, {[Ti(SO 4) 2(H 2O)]·0.5bipy·2H 2O} n1, {[Ti1(SO 4) 2(H 2O)]·[Ti2(SO 4) 2(H 2O)]·bipy·5H 2O} n2 and [Ti(tea)] n3 (bipy = 4,4'-bipyridine, H 3tea = triethanolamine) were synthesized and characterized by IR, UV-Vis absorption spectra, TG analysis, X-ray single crystal diffraction and surface photovoltage spectroscopy (SPS). The surface photoelectric properties of titanium coordination polymers were discussed emphatically by the SPS. The results of single crystal diffraction indicate that polymers 1 and 2 possess 1D infinite structure bridged by SO 42- groups and coordinated water molecules and further connected into supramolecular structures by hydrogen bonds. Polymer 3 possesses 2D infinite structure bridged by weak sub-coordinated Ti-O bonds. The results of SPS show that there are obvious photovoltage responses in the range of 300-500 nm, which indicates that they possess photoelectric conversion ability. The SPS of three titanium polymers were analyzed comparatively. It is found that the valence of central metal ions, coordination micro-environment and kinds of coordination atoms influence the results of the SPS. The SPS is associated with UV-Vis absorption spectra.

  10. A series of Ti(IV)/Ti(III) coordination polymers: structures and surface photoelectric properties.

    PubMed

    Li, Lei; Zhang, Li; Liu, Dong-Wei; Jin, Jing; Chi, Yu-Xian; Niu, Shu-Yun

    2012-02-01

    Three titanium coordination polymers, {[Ti(SO(4))(2)(H(2)O)]·0.5bipy·2H(2)O}(n)1, {[Ti1(SO(4))(2)(H(2)O)]·[Ti2(SO(4))(2)(H(2)O)]·bipy·5H(2)O}(n)2 and [Ti(tea)](n)3 (bipy=4,4'-bipyridine, H(3)tea=triethanolamine) were synthesized and characterized by IR, UV-Vis absorption spectra, TG analysis, X-ray single crystal diffraction and surface photovoltage spectroscopy (SPS). The surface photoelectric properties of titanium coordination polymers were discussed emphatically by the SPS. The results of single crystal diffraction indicate that polymers 1 and 2 possess 1D infinite structure bridged by SO(4)(2-) groups and coordinated water molecules and further connected into supramolecular structures by hydrogen bonds. Polymer 3 possesses 2D infinite structure bridged by weak sub-coordinated Ti-O bonds. The results of SPS show that there are obvious photovoltage responses in the range of 300-500 nm, which indicates that they possess photoelectric conversion ability. The SPS of three titanium polymers were analyzed comparatively. It is found that the valence of central metal ions, coordination micro-environment and kinds of coordination atoms influence the results of the SPS. The SPS is associated with UV-Vis absorption spectra.

  11. Copper(II)-lanthanide(III) coordination polymers constructed from pyridine-2,5-dicarboxylic acid: Preparation, crystal structure and photoluminescence

    SciTech Connect

    Xia Zhengqiang; Wei Qing; Chen Sanping; Feng Xinming; Xie Gang; Qiao Chengfang; Zhang Guochun; Gao Shengli

    2013-01-15

    A series of 3d-4f heterometallic coordination polymers, formulated as {l_brace} [Cu{sub 3}Ln{sub 2}(pydc){sub 6}(H{sub 2}O){sub 12}]{center_dot}4H{sub 2}O{r_brace} {sub n} [Ln=Tb (1), Eu (2), Dy (3), Ho (4), Lu (5)], {l_brace} [CuNd{sub 2}(pydc){sub 4}(H{sub 2}O){sub 3}]{center_dot}H{sub 2}O{r_brace} {sub n} (6) and {l_brace} [Cu{sub 3}Pr{sub 2}(pydc){sub 6}(H{sub 2}O){sub 13}]{center_dot}4H{sub 2}O{r_brace} {sub n} (7) (where H{sub 2}pydc=pyridine-2,5-dicarboxylic acid), have been hydrothermally prepared by reactions of H{sub 2}pydc ligand with lanthanide ions in the presence of Cu(II) ion. X-ray crystal structure analysis reveals that these compounds exhibit rich structural chemistry. 1-5 are isomorphous and present a two-dimensional network constructed from Ln{sub 2}Cu{sub 2}L{sub 2}(H{sub 2}O){sub 2} SBU rings and CuL{sub 2}(H{sub 2}O) building blocks. In 6, two-dimensional ladder-like layers based on Nd(III) belts and CuL{sub 2}O{sub 2} units are assembled by H{sub 2}pydc ligands into a three-dimensional open framework. Polymer 7 displays a two-dimensional wave-like layer structure containing two distinct ring units, in which a new coordination mode of the pydc{sup 2-} ligand is observed. The results indicate that the coordination flexibility of the pydc{sup 2-} ligand and lanthanide contraction effect play cooperative roles in the formation of coordination polymers with different polymeric architectures. Compounds 1-2 exhibit intense green and red luminescence emission characteristics of Tb(III) and Eu(III), respectively. Furthermore, elemental analyses (EA), infrared spectra (IR) and thermogravimetric analyses (TGA) of these compounds were also studied. - Graphical abstract: Seven 3d-4f heterometallic coordination polymers were synthesized by reactions of H{sub 2}pydc with lanthanide metal ions in the presence of Cu{sup 2+}, the effects of Cu{sup 2+} on the structures and photoluminescent properties of Ln-pydc{sup 2-} systems were investigated. Highlights

  12. Luminescent zinc terephthalate coordination polymers with pyridylnicotinamide ligands: Effect of added base and nitrogen donor disposition on topology

    NASA Astrophysics Data System (ADS)

    Goldsworthy, Jessica S.; Staples, Richard J.; LaDuca, Robert L.

    2014-03-01

    Hydrothermal reaction of zinc nitrate, potassium terephthalate (K2tere), and 3-pyridylnicotinamide (3-pna) or 4-pyridylnicotinamide (4-pna) afforded coordination polymers with different dimensionality depending on nitrogen donor disposition and the initial pH of the reaction mixture. {[Zn(tere)(3-pna)2(H2O)2]ṡ2H2O}n (1) was prepared in the presence of aqueous NaOH, and manifests 1-D coordination polymer chains with monodentate 3-pna ligands. A mixture of {[Zn(tere)(3-pna)]ṡ3H2O}n (2) and {[Zn4(tere)3(OH)2(3-pna)2]ṡ2H2O}n (3) was prepared by performing a similar reaction in the absence of extra base. Compound 2 shows a 2-D (6,3) hexagonal grid topology with very tight interdigitation, while 3 has a 2-fold interpenetrated 3-D pcu network built from {Zn4(OCO)2(OH)2} centrosymmetric tetrameric nodes. {[Zn(tere)(4-pna)]ṡH2O}n (4) has parallel 2-fold interpenetrated sawtooth layer motifs. Luminescent and thermal decomposition properties are also discussed.

  13. Syntheses, structure and properties of three-dimensional pillared-layer Ag(I)-Ln(III) heterometallic coordination polymers based on mixed isonicotinate and hemimellitate ligands

    SciTech Connect

    Li, Xinfa; Cao, Rong

    2012-12-15

    Three pillared-layer 4d-4f Ag(I)-Ln(III) heterometallic coordination polymers (HCPs), formulated as [Ln{sub 2}Ag(hma){sub 2}(ina)(H{sub 2}O){sub 2}]{sub n} nH{sub 2}O [Ln=La(1), Pr(2), Nd(3); Hina=isonicotinic acid, H{sub 3}hma=hemimellitic acid], have been synthesized under hydrothermal conditions. Single-crystal and powder X-ray diffractions confirm that they are isostructural, which features a three-dimensional (3D) pillared-layer heterometallic structure built upon the strictly alternate arrangement of lanthanide-organic layers and [Ag(ina)] pillars. The layers and pillars are connected to each other by Ln-O and Ag-O coordination bonds. The photoluminescent property of the Nd derivative (3) has also been investigated. - Graphical abstract: Three pillared-layer 4d-4f Ag(I)-Ln(III) heterometallic coordination polymers have been synthesized and structurally characterized. Highlights: Black-Right-Pointing-Pointer Three 3D pillared-layer 4d-4f HCPs were synthesized by hydrothermal reactions. Black-Right-Pointing-Pointer The synergistic coordination strategy was employed. Black-Right-Pointing-Pointer It opens new perspective for the construction of structurally diversified 4d-4f HCPs.

  14. A multi-functional coordination polymer coexisting spontaneous chirality resolution and weak ferromagnetism

    SciTech Connect

    Li, Xiu-Hua; Zhang, Qi; Hu, Ping

    2014-10-15

    A multifunctional homochiral coordination polymer, [Co(H{sub 2}O)(BDC)(4,4′-BPY)]∙3H{sub 2}O (1) (H{sub 2}BDC=1,2-benzenedicarboxylate and 4,4′-BPY=4,4′-bipyridine), has been successfully isolated from Co(II) ions and mixed ligands (1,2-benzenedicarboxylate and 4,4′-bipyridine). Complex 1, which exhibits spontaneous chirality resolution and weak ferromagnetism, is built by chiral helices interconnected via end-to-end 4,4′-BPY bridges into a two-dimensional (2D) layer structure. - Graphical abstract: A 2D cobalt coordination polymer compound showing spontaneous chirality resolution and weak ferromagnetism. - Highlights: • A new 2D cobalt mix-ligand coordination polymer complex has been synthesized. • The cobalt coordination polymer complex shows spontaneous chirality resolution in solid state. • The cobalt coordination polymer complex displays dominant and weak intrachain ferromagnetic interactions.

  15. Direct synthesis of nanoporous carbon nitride fibers using Al-based porous coordination polymers (Al-PCPs).

    PubMed

    Hu, Ming; Reboul, Julien; Furukawa, Shuhei; Radhakrishnan, Logudurai; Zhang, Yuanjian; Srinivasu, Pavuluri; Iwai, Hideo; Wang, Hongjing; Nemoto, Yoshihiro; Suzuki, Norihiro; Kitagawa, Susumu; Yamauchi, Yusuke

    2011-07-28

    We report a new synthetic route for preparation of nanoporous carbon nitride fibers with graphitic carbon nitride polymers, by calcination of Al-based porous coordination polymers (Al-PCPs) with dicyandiamide (DCDA) under a nitrogen atmosphere.

  16. Synthesis, structures, luminescent and magnetic properties of four coordination polymers with the flexible 1,3-phenylenediacetate ligands

    SciTech Connect

    Gu, Jin-Zhong; Lv, Dong-Yu; Gao, Zhu-Qing; Liu, Jian-Zhao; Dou, Wei; Tang, Yu

    2011-03-15

    Four coordination polymers, [Zn(pda)(bpy)(H{sub 2}O)]{sub n}.nH{sub 2}O (1), [Cd(pda)(prz)(H{sub 2}O)]{sub n} (2), [Co{sub 3}({mu}{sub 3}-OH){sub 2}(pda){sub 2}(pyz)]{sub n}.2nH{sub 2}O (3) and [Pr{sub 2}(pda){sub 3}(H{sub 2}O){sub 2}]{sub n} (4) (H{sub 2}pda=1,3-phenylendiacetic acid, bpy=4,4'-bipyridine, prz=piperazine and pyz=pyrazine) have been hydrothermally synthesized and characterized. Complex 1 is a 1D wheel-like chain structure, which is further extended into a 3D metal-organic supramolecular framework by H-bonds and {pi}-{pi} stacking interactions. Complex 2 is a 1D ladder-like chain structure, which is also further extended into a 3D metal-organic supramolecular framework by H-bonds. Complex 3 possess a 2D sheet structure with infrequent two pairs of double-helix chains. Complex 4 features a 3D structure. Both 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of complexes 3 and 4 exhibit antiferromagnetic interactions between the nearest metal ions, with C=9.99 and 3.43 cm{sup 3} mol{sup -1} K, and {theta}=-23.9 and -46.3 K, respectively. -- Graphical abstract: Four new coordination polymers with 1,3-phenylenediacetate ligands have been hydrothermally synthesized and characterized. Complexes 1 and 2 display strong blue fluorescent emission at room temperature. Magnetic susceptibility measurements of 3 and 4 exhibit antiferromagnetic interactions between the nearest metal centers. Display Omitted Research highlights: > Coordinative property of H{sub 2}pda ligand was shown when bonded by different block metals. > Careful selection of co-ligand and metals resulted in dramatic framework evolution. > (c) The compounds constructed with Zn{sup 2+} and Cd{sup 2+} exhibit strong blue fluorescent emission. > The magneto-structural correlation of the complexes constructed with Co{sup 2+} and Pr{sup 3+} was elucidated.

  17. Two novel metal–organic coordination polymers based on diphosphonate and oxalate: Synthesis, structures and properties

    SciTech Connect

    Niu, Qing-Jun; Zheng, Yue-Qing Zhou, Lin-Xia; Zhu, Hong-Lin

    2015-07-15

    Two 2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonato and oxalic acid bridged coordination polymers (H{sub 2}en)[Co{sub 3}(H{sub 2}zdn){sub 2}(ox)(H{sub 2}O){sub 2}] (1) and Cd{sub 2}(H{sub 2}zdn)(ox){sub 0.5}(H{sub 2}O) (2) (2-(1-imidazole)-1-hydroxyl-1,1'-ethylidenediphosphonic acid=H{sub 5}zdn; oxalic acid=H{sub 2}ox) were synthesized under hydrothermal conditions and characterized by the infrared (IR), thermogravimetric analyses (TGA), elemental analyses (EA) and X-ray diffraction (XRD). Compound 1 is bridged by phosphonate anions to 1D chain, and further linked by oxalate anions to 2D layer. Compound 2 is bridged by O–P–O units of H{sub 5}zdn to the layer, and then pillared by oxalate anions to generate 3D frameworks. Compound 1 shows anti-ferromagnetic behaviors analyzed with the temperature-dependent zero-field ac magnetic susceptibilities, while compound 2 exhibits an influence on the luminescent property. - Graphical abstract: Linked by oxalate, two zoledronate-based metal–organic frameworks are synthesized, which exhibits the different frameworks. Magnetism and luminescent properties have been studied. The weak antiferromagnetic coupling is conducted in 1. - Highlights: • Compound 1 and 2 are first linked by oxalate anion based on zoledronic acid. • Compound 1 generates a classic “dia Diamond” (6{sup 6}) topology. • Compound 2 exhibits a (4{sup 4}·6{sup 2})(4{sup 4}·6{sup 6}) topology. • Magnetism and luminescent properties of 1 and 2 have been studied, respectively.

  18. Synthesis of a 3D graphite microball using a microfluidic droplet generator and its polymer composite with core-shell structure.

    PubMed

    Han, Dong Ju; Jung, Jae Hwan; Choi, Jong Seob; Kim, Yong Tae; Seo, Tae Seok

    2013-10-21

    Spherical 3D graphite microballs (3D GMs) and their nanohybrids (3D GM-Fe3O4 nanoparticles) were synthesized by using a microfluidic droplet generator and a thermal evaporation-induced capillary compression method. Using the 3D GM-Fe3O4 nanoparticle as a support for polymerization, 3D GM-polypyrrole composites were produced with a unique core-shell structure. PMID:23921454

  19. Gas adsorption/separation properties of metal directed self-assembly of two coordination polymers with 5-nitroisophthalate

    SciTech Connect

    Arıcı, Mürsel; Yeşilel, Okan Zafer; Keskin, Seda; Şahin, Onur

    2014-02-15

    Two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Thermal properties of the complexes showed that both complexes were stable over 320 °C. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. - Graphical abstract: In this study, two new coordination polymers, namely, [Co(µ-nip)(µ-bpe)]{sub n} (1) and [Zn(µ-nip)(µ-bpe)]{sub n} (2) (nip: 5-nitroisophthalate, bpe: 1,2-bis(4-pyridyl)ethane) were hydrothermally synthesized and structurally characterized by single crystal X-ray diffraction, IR spectroscopy, elemental analysis and thermal analysis. Moreover, atomically detailed simulation studies of complex 2 for CO{sub 2}/CH{sub 4} adsorption and separation were performed. Complex 1 consists of two dimensional (2D) (4,4) grid networks with the point symbol of 4{sup 4}.6{sup 2}. Complex 2 exhibits a 3-fold interpenetrating 3D framework with 6{sup 5}.8-dmp topology. Simulation studies demonstrated that complex 2 can separate CO{sub 2} from CH{sub 4} at low pressures at 273 K. Display Omitted - Highlights: • Two new coordination polymers with 5-nitroisophthalate and 1,2-bis(4-pyridyl)ethane. • Atomically detailed simulation studies of the complexes. • Complex 2 can be proposed as molecular sieve to separate CO{sub 2} from CH{sub 4} at low pressures.

  20. Selective sorption of oxygen and nitric oxide by an electron-donating flexible porous coordination polymer.

    PubMed

    Shimomura, Satoru; Higuchi, Masakazu; Matsuda, Ryotaro; Yoneda, Ko; Hijikata, Yuh; Kubota, Yoshiki; Mita, Yoshimi; Kim, Jungeun; Takata, Masaki; Kitagawa, Susumu

    2010-08-01

    Porous coordination polymers are materials formed from metal ions that are bridged together by organic linkers and that can combine two seemingly contradictory properties-crystallinity and flexibility. Porous coordination polymers can therefore create highly regular yet dynamic nanoporous domains that are particularly promising for sorption applications. Here, we describe the effective selective sorption of dioxygen and nitric oxide by a structurally and electronically dynamic porous coordination polymer built from zinc centres and tetracyanoquinodimethane (TCNQ) as a linker. In contrast to a variety of other gas molecules (C(2)H(2), Ar, CO(2), N(2) and CO), O(2) and NO are accommodated in its pores. This unprecedented preference arises from the concerted effect of the charge-transfer interaction between TCNQ and these guests, and the switchable gate opening and closing of the pores of the framework. This system provides further insight into the efficient recognition of small gas molecules.

  1. Room temperature synthesis of a Zn(II) metal-organic coordination polymer for dye removal

    NASA Astrophysics Data System (ADS)

    Abbasi, Alireza; Gharib, Maniya; Najafi, Mahnaz; Janczak, Jan

    2016-03-01

    A new one-dimensional (1D) coordination polymer, [Zn(4,4‧-bpy)(H2O)4](ADC)·4H2O (1) (4,4‧-bpy=4,4‧-bipyridine and H2ADC=acetylenedicarboxylic acid), was synthesized at room temperature. The crystal structure of the coordination polymer was determined by single-crystal X-ray diffraction analysis. Compound 1 was also characterized by FT-IR, powder X-ray diffraction (PXRD) and thermogravimetric analysis (TGA). The catalytic activity of 1 was evaluated in the color removal of Bismarck brown as a representative of dye pollutant in water under mild conditions. Coordination polymer 1 exhibited good catalytic activity and stability in the decolorization of Bismarck brown and could be easily recovered and reused for at least three cycles.

  2. A series of M-M' heterometallic coordination polymers: syntheses, structures and surface photoelectric properties (M=Ni/Co, M'=Cd/Zn)

    SciTech Connect

    Li, Lei; Niu, Shu-Yun; Jin, Jing; Meng, Qin; Chi, Yu-Xian; Xing, Yong-Heng; Zhang, Guang-Ning

    2011-05-15

    Four new heterometallic polymers, [NiCd(mal){sub 2}(H{sub 2}O){sub 2}]n.2nH{sub 2}O 1, [NiZn{sub 2}(Hcit){sub 2}(H{sub 2}O){sub 2}]n 2, [CoCd{sub 2}(Hcit){sub 2}(H{sub 2}O){sub 2}]n 3, [CoZn{sub 2}(Hcit){sub 2}(H{sub 2}O){sub 2}]n 4 (H{sub 2}mal=malonic acid, H{sub 4}cit=citric acid) were synthesized and characterized. The photoelectric properties of the polymers were discussed by the surface photovoltage spectroscopy (SPS). The structural analyses indicate 1 is a Ni-Cd heterometallic polymer with 3D structure bridged by the mal{sup 2-} group. 2-4 are all heterometallic polymers with 2D structures bridged by the Hcit{sup 3-} group. The results of SPS for the four polymers reveal that there are wide photovoltage response bands in the range of 300-800 nm, which indicates that they all possess photoelectric conversion properties. By the introduction of the other metals, the SPS of heterometallic polymers are broadened obviously than the SPS of monometallic complexes. Moreover, the relationships between SPS and UV-Vis absorption spectra have been discussed. -- Graphical Abstract: Four heterometallic polymers, Ni-Cd, Ni-Zn, Co-Cd, Co-Zn, were synthesized and characterized. The photoelectric properties of heterometallic polymers were discussed by SPS. The introduction of heterometallic ions will broaden the SPS of corresponded monometallic complexes. Display Omitted highlights: > Four new heterometallic coordination polymers were reported. > The surface photoelectric properties of heterometallic polymers were studied by SPS. > They all possess photoelectric conversion properties. > The SPS of heterometallic polymers are broadened than that of monometallic complexes.

  3. Loading of a coordination polymer nanobelt on a functional carbon fiber: a feasible strategy for visible-light-active and highly efficient coordination-polymer-based photocatalysts.

    PubMed

    Xu, Xin-Xin; Yang, Hong-Yu; Li, Zhen-Yu; Liu, Xiao-Xia; Wang, Xiu-Li

    2015-02-23

    To improve the photocatalytic properties of coordination polymers under irradiation in the visible-light region, coordination polymer nanobelts (CPNB) were loaded on functional carbon fiber (FCF) through the use of a simple colloidal blending process. The resulting coordination polymer nanobelt loaded functional carbon fiber composite material (CPNB/FCF) exhibited dramatically improved photocatalytic activity for the degradation of rhodamine B (RhB) under visible-light irradiation. Optical and electrochemical methods illustrated the enhanced photocatalytic activity of CPNB/FCF originated from high separation efficiency of photogenerated electrons and holes on the interface of CPNB and FCF, which was produced by the synergy effect between them. In the composite material, the role of FCF could be described as photosensitizer and good electron transporter. For FCF, the number of functional groups on its surface has a significant influence on the photocatalytic performance of the resulting CPNB/FCF composite material, and an ideal FCF carrier was obtained as a highly efficient CPNB/FCF photocatalyst. CPNB/FCF showed outstanding stability during the degradation of rhodamine B (RhB); thus, the material is suitable for use as a photocatalyst in the treatment of organic dyes in water.

  4. Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials

    NASA Astrophysics Data System (ADS)

    Musumeci, Chiara; Osella, Silvio; Ferlauto, Laura; Niedzialek, Dorota; Grisanti, Luca; Bonacchi, Sara; Jouaiti, Abdelaziz; Milita, Silvia; Ciesielski, Artur; Beljonne, David; Hosseini, Mir Wais; Samorì, Paolo

    2016-01-01

    The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(ii) or Pd(ii) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(ii) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(ii) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices.The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(ii) or Pd(ii) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(ii) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(ii) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results

  5. Ferromagnetic ordering of -[Sm(iii)-radical]n- coordination polymers.

    PubMed

    Fatila, Elisabeth M; Maahs, Adam C; Mills, Michelle B; Rouzières, Mathieu; Soldatov, Dmitriy V; Clérac, Rodolphe; Preuss, Kathryn E

    2016-04-01

    [Sm(hfac)3(boaDTDA)]n is the first coordination compound of a thiazyl-based neutral radical ligand to exhibit ferromagnetic ordering; TC = 3 K. The [Sm(iii)-radical]n species is soluble in common organic solvents and can be sublimed quantitatively. A McConnell I mechanism is implicated in local exchange pathways that contribute to cooperative magnetic properties.

  6. Unprecedented layered coordination polymers of dithiolene group 10 metals: magnetic and electrical properties.

    PubMed

    Delgado, Esther; Gómez-García, Carlos J; Hernández, Diego; Hernández, Elisa; Martín, Avelino; Zamora, Félix

    2016-04-21

    One-pot reactions between Ni(ii), Pd(ii) or Pt(ii) salts and 3,6-dichloro-1,2-benzenedithiol (HSC6H2Cl2SH) in KOH medium under argon lead to a series of bis-dithiolene coordination polymers. X-ray analysis shows the presence of a common square planar complex [M(SC6H2Cl2S)2](2-) linked to potassium cations forming either a two-dimensional coordination polymer network for {[K2(μ-H2O)2(μ-thf)(thf)2][M(SC6H2Cl2S)2]}n [M = Ni () and Pd ()] or a one-dimensional coordination polymer for {[K2(μ-H2O)2(thf)6][Pt(SC6H2Cl2S)2]}n (). In the coordination environment of the potassium ions may slightly change leading to the two-dimensional coordination polymer {[K2(μ-H2O)(μ-thf)2][Pt(SC6H2Cl2S)2]}n () that crystallizes together with . The physical characterization of compounds show similar trends, they are diamagnetic and behave as semiconductors. PMID:26974399

  7. Amphiphilic nanocapsules entangled with organometallic coordination polymers for controlled cargo release.

    PubMed

    Liang, Guodong; Ni, Huan; Bao, Suping; Zhu, Fangming; Gao, Haiyang; Wu, Qing; Tang, Ben Zhong

    2014-06-01

    A class of new amphiphilic nanocapsules entangled with organometallic coordination polymers has been developed for the first time. Poly(2-(N,N-dimethyl amino)ethyl methacrylate)-b-polystyrene capped with β-cyclodextrin (β-CD) (CD-PDMAEMA-b-PS) is first synthesized using sequent RAFT polymerization of styrene and 2-(N,N-dimethyl amino)ethyl methacrylate with xanthate modified β-CD as chain transfer agent. The end group of β-CD is allowed to include 4,4'-bipyridine through host-guest inclusion to yield PDMAEMA-b-PS terminated with an inclusion complex of β-CD and bipyridine (bpy-PDMAEMA-b-PS), which is then used as surfactant to prepare emulsion droplets in toluene/water mixture. Upon addition of Ni(II), bipyridine coordinates with Ni(II) to form coordination polymers in the periphery of emulsion droplets, affording amphiphilic capsules entangled with organometallic coordination polymers, as confirmed by GPC, (1)H NMR, SEM, TEM, DLS, and so on. The organometallic coordination polymer capsules are capable of encapsulating organic cargoes. Interestingly, encapsulated cargoes can be extracted from the capsules without damaging the capsules. Such capsules are potential candidates for encapsulating and controlled release of organic cargoes. PMID:24828951

  8. Ferroelectric Coordination Polymers Self-Assembled from Mesogenic Zinc(II) Porphyrin and Dipolar Bridging Ligands.

    PubMed

    Hui, Joseph K-H; Kishida, Hiroyuki; Ishiba, Keita; Takemasu, Kenta; Morikawa, Masa-Aki; Kimizuka, Nobuo

    2016-09-26

    A new class of ferroelectric coordination-based polymers has been developed by the self-assembly of lipophilic zinc porphyrin (ZnP) and ditopic bridging ligands. The ligands contain dipolar benzothiadiazole or fluorobenzene units, which are axially coordinated to ZnP with the dipole moments oriented perpendicular to the coordination axes. The coordination-based polymers show ferroelectric characteristics in the liquid crystalline state, as revealed by distinctive hysteresis in the polarization-electric field (P-E) loops and inversion current peaks in current-voltage (I-V) loops. The observed ferroelectric properties are explainable by flip-flop rotation of the dipolar axle ligands induced by the applied electric field, as demonstrated by the positive-up-negative-down (PUND) measurements. The present system provides a new operating principle in supramolecular ferroelectrics.

  9. Ferroelectric Coordination Polymers Self-Assembled from Mesogenic Zinc(II) Porphyrin and Dipolar Bridging Ligands.

    PubMed

    Hui, Joseph K-H; Kishida, Hiroyuki; Ishiba, Keita; Takemasu, Kenta; Morikawa, Masa-Aki; Kimizuka, Nobuo

    2016-09-26

    A new class of ferroelectric coordination-based polymers has been developed by the self-assembly of lipophilic zinc porphyrin (ZnP) and ditopic bridging ligands. The ligands contain dipolar benzothiadiazole or fluorobenzene units, which are axially coordinated to ZnP with the dipole moments oriented perpendicular to the coordination axes. The coordination-based polymers show ferroelectric characteristics in the liquid crystalline state, as revealed by distinctive hysteresis in the polarization-electric field (P-E) loops and inversion current peaks in current-voltage (I-V) loops. The observed ferroelectric properties are explainable by flip-flop rotation of the dipolar axle ligands induced by the applied electric field, as demonstrated by the positive-up-negative-down (PUND) measurements. The present system provides a new operating principle in supramolecular ferroelectrics. PMID:27527513

  10. Tunable emission in lanthanide coordination polymer gels based on a rationally designed blue emissive gelator.

    PubMed

    Sutar, Papri; Suresh, Venkata M; Maji, Tapas Kumar

    2015-06-18

    Rational design and synthesis of a new low molecular weight gelator (LMWG) having 9,10-diphenylanthracene core and terminal terpyridine is reported. Tb(III) and Eu(III) ion coordination to a LMWG results in green and pink emissive coordination polymer gels, respectively, with coiled nanofiber morphology. Further, control over stoichiometry of LMWG:Tb(III):Eu(III) leads to yellow and white light emitting bimetallic gels. PMID:25995095

  11. Assembly of three new POM-based Ag(I) coordination polymers with antibacterial and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Lu, Xin-Xin; Luo, Yu-Hui; Lu, Chen; Chen, Xin; Zhang, Hong

    2015-12-01

    Three new silver coordination polymers, namely, {Ag3(bpy)6[PW12O40]} (1), {Ag5(H2biim)2(Hbiim-NO2)2[PW12O40]} (2), {Ag7(pytz)4[PW12O40]} (3) (bpy=2,2‧-bipyridine, H2biim=2,2‧-biimidazole, pytz=4-(1H-tetrazol-5-yl)pyridine), have been synthesized under hydrothermal condition. Compound 1 shows a 3D supramolecular framework based on 0D moieties. Compound 2 exhibits an attractive 2D biologic screw axis. Compound 3 displays a 3D structure, which consists of Ag(I)···π interactions, π···π stacking and weak Ag···Ag interactions. It is noteworthy that nitration happens to compound 2 during the hydrothermal condition, which is quite rare. Through contrasting the antibacterial activities of gram negative and gram positive bacteria, we find compounds 1-3 have better antibacterial property in gram negative bacteria than gram positive bacteria. In addition, compounds 1-3 also exhibit efficiency of photocatalytic decomposition of organic dyes. Those compounds may be used as potential multifunctional materials in wastewater treatment, because they not only can kill bacteria but also degrade organic pollutants.

  12. Novel electrochemical sensing platform based on a molecularly imprinted polymer decorated 3D nanoporous nickel skeleton for ultrasensitive and selective determination of metronidazole.

    PubMed

    Li, Yingchun; Liu, Yuan; Yang, Yang; Yu, Feng; Liu, Jie; Song, Han; Liu, Jiang; Tang, Hui; Ye, Bang-Ce; Sun, Zhipeng

    2015-07-22

    A novel electrochemical sensor has been developed by using a composite element of three-dimensional (3D) nanoporous nickel (NPNi) and molecularly imprinted polymer (MIP). NPNi is introduced in order to enhance the electron-transport ability and surface area of the sensor, while the electrosynthesized MIP layer affords simultaneous identification and quantification of the target molecule by employing Fe(CN)6(3-/4-) as the probe to indicate the current intensity. The morphology of the hybrid film was observed by scanning electron microscopy, and the properties of the sensor were examined by cyclic voltammetry and electrochemical impedance spectroscopy. By using metronidazole (MNZ) as a model analyte, the sensor based on the MIP/NPNi hybrid exhibits great features such as a remarkably low detection limit of 2 × 10(-14) M (S/N = 3), superb selectivity in discriminating MNZ from its structural analogues, and good antiinterference ability toward several coexisting substances. Moreover, the proposed method also demonstrates excellent repeatability and stability, with relative standard deviations of less than 1.12% and 1.4%, respectively. Analysis of MNZ in pharmaceutical dosage form and fish tissue is successfully carried out without assistance of complicated pretreatment. The MIP/NPNi composite presented here with admirable merits makes it a promising candidate for developing electrochemical sensor devices and plays a role in widespread fields.

  13. Control of hierarchical polymer mechanics with bioinspired metal-coordination dynamics

    NASA Astrophysics Data System (ADS)

    Grindy, Scott C.; Learsch, Robert; Mozhdehi, Davoud; Cheng, Jing; Barrett, Devin G.; Guan, Zhibin; Messersmith, Phillip B.; Holten-Andersen, Niels

    2015-12-01

    In conventional polymer materials, mechanical performance is traditionally engineered via material structure, using motifs such as polymer molecular weight, polymer branching, or block copolymer design. Here, by means of a model system of 4-arm poly(ethylene glycol) hydrogels crosslinked with multiple, kinetically distinct dynamic metal-ligand coordinate complexes, we show that polymer materials with decoupled spatial structure and mechanical performance can be designed. By tuning the relative concentration of two types of metal-ligand crosslinks, we demonstrate control over the material’s mechanical hierarchy of energy-dissipating modes under dynamic mechanical loading, and therefore the ability to engineer a priori the viscoelastic properties of these materials by controlling the types of crosslinks rather than by modifying the polymer itself. This strategy to decouple material mechanics from structure is general and may inform the design of soft materials for use in complex mechanical environments. Three examples that demonstrate this are provided.

  14. Two 2D Cd(II) coordination polymers based on asymmetrical Schiff-base ligand: Synthesis, crystal structures and luminescent properties

    NASA Astrophysics Data System (ADS)

    Dang, Dong-Bin; Li, Meng-Meng; Bai, Yan; Zhou, Rui-Min

    2013-02-01

    Two new two-dimensional coordination polymers [Cd3L2(SCN)6]n (1) and [CdLI2]n (2) have been synthesized and characterized by IR spectroscopy, elemental analysis, TG technique, XRPD and complete single crystal structure analysis, where L is 4-(pyridine-2-yl)methyleneamino-1,2,4-trizaole. Asymmetrical Schiff-base ligand L with five- and six-membered N-containing heterocyclic rings acts as a tridentate bridging ligand to bind two Cd(II) centers through one terminal Ntriazolyl and one pyridylimine chelate unit in 1 and 2. For polymer 1, tridentate bridging ligands link Cd-(1,3-μ-SCN-) 1D inorganic chains to form a 2D layer network. The existence of Csbnd H⋯π and πsbnd π stacking interactions between 2D hybrid layers further gives rise to a 3D supramolecular network. In comparison with 1, polymer 2 shows a 2D layer network containing hexanuclear macrometallacyclic units. The 2D layers are staggered together through the combination of Csbnd H⋯π and πsbnd π stacking interactions and forming a 3D supramolecular structure. The luminescent properties of the polymers 1 and 2 were investigated in the solid state at room temperature.

  15. Three polymorphic Cd(II) coordination polymers obtained from the solution and mechanochemical reactions of 3-cyanopentane-2,4-dione with Cd(II) acetate.

    PubMed

    Yoshida, Jun; Nishikiori, Shin-ichi; Kuroda, Reiko; Yuge, Hidetaka

    2013-03-01

    We previously reported that monomeric and polymeric metal complexes are obtained from solution and mechanochemical reactions of 3-cyano-pentane-2,4-dione (CNacacH) with 3d metal acetates (M = Mn(II), Fe(II), Co(II), Ni(II), Cu(II), and Zn(II)). A common feature found in all complexes was that their structural base is trans-[M(CNacac)(2)]. Here, we report that the reactions of CNacacH with Cd(II) acetate in the solution and solid states afford different coordination polymers composed of trans-[Cd(CNacac)(2)] and cis-[Cd(CNacac)(2)] units, respectively. From a methanol solution containing CNacacH (L) and Cd(OAc)(2)⋅2 H(2)O (M), a coordination polymer (Cd-1) in which trans-[Cd(CNacac)(2)] units are three-dimensionally linked was obtained. In contrast, two different coordination polymers, Cd-2 and Cd-3, were obtained from mechanochemical reactions of CNacacH with Cd(OAc)(2)⋅2 H(2)O at M/L ratios of 1:1 and 1:2, respectively. In Cd-2, cis-[Cd(CNacac)(2)] units are two-dimensionally linked, whereas the units are linked three-dimensionally in Cd-3. Furthermore, Cd-1 and Cd-2 converted to Cd-3 by applying an annealing treatment and grinding with a small amount of liquid, respectively, in spite of the polymeric structures. These phenomena, 1) different structures are formed from solution and mechanochemical reactions, 2) two polymorphs are formed depending on the M/L ratio, and 3) structural transformation of resulting polymeric structures, indicate the usability of mechanochemical method in the syntheses of coordination polymers as well as the peculiar structural flexibility of cadmium-CNacac polymers.

  16. Influence of the supramolecular order on the electrical properties of 1D coordination polymers based materials.

    PubMed

    Musumeci, Chiara; Osella, Silvio; Ferlauto, Laura; Niedzialek, Dorota; Grisanti, Luca; Bonacchi, Sara; Jouaiti, Abdelaziz; Milita, Silvia; Ciesielski, Artur; Beljonne, David; Hosseini, Mir Wais; Samorì, Paolo

    2016-01-28

    The generation, under self-assembly conditions, of coordination polymers on surface based combinations of a terpyridine-antracene-pyridine based tecton and Co(II) or Pd(II) cations is primarily governed by the coordination geometry of the metal center (octahedral and square planar respectively). While the octahedral Co(II) based polymer self-assembles in insulating films exhibiting randomly oriented crystalline domains, the planarity of Pd(II) based polymers leads to the formation of conductive π-π stacked fibrillar structures exhibiting anisotropically oriented domains. In the latter case, the favorable Pd-Pd and anthracene-anthracene wavefunction overlaps along the fiber direction are responsible for the large electronic couplings between adjacent chains, whereas small electronic couplings are instead found along individual polymer chains. These results provide important guidelines for the design of conductive metal coordination polymers, highlighting the fundamental role of both intra- as well as inter-chain interactions, thus opening up new perspectives towards their application in functional devices. PMID:26754960

  17. Synthesis and characterization of linear cerium(IV) Schiff-base coordination polymers

    SciTech Connect

    Chen, H.; Cronin, J.A.; Archer, R.D. . Dept. of Chemistry)

    1994-04-11

    The first soluble linear Schiff-base rare earth coordination polymer, catena-poly[cerium-(4)-[mu]-N,N[prime],N[double prime],N[prime][double prime]-tetrasalicylidene (3,3[prime]-diaminobenzidinato)-O,N,N[prime],O[prime],O[double prime],N[double prime],N[prime][double prime],O[prime][double prime

  18. A ladder type iron(II) coordination polymer with cooperative spin transition.

    PubMed

    Bauer, Wolfgang; Schlamp, Stephan; Weber, Birgit

    2012-10-21

    Ladder type 1D coordination polymers were synthesised with the aim to improve the spin crossover properties of the iron(II) complexes following the concepts of crystal engineering. A wide hysteresis loop (34 K) was observed if rigid linkers were used. The first X-ray structure for a 1D iron(II) ladder is reported.

  19. A barium based coordination polymer for the activity assay of deoxyribonuclease I.

    PubMed

    Song, Chan; Wang, Guan-Yao; Wang, Ya-Ling; Kong, De-Ming; Wang, Yong-Jian; Li, Yue; Ruan, Wen-Juan

    2014-10-01

    A new coordination polymer which shows an unusual 2D inorganic connectivity was constructed. This compound exhibits distinct fluorescence quenching ability to the dye-labeled single-stranded DNA probes with different lengths, based on which an analytical method was developed for the activity assay of deoxyribonuclease I.

  20. New Twists and Turns for Actinide Chemistry: Organometallic Infinite Coordination Polymers of Thorium Diazide.

    PubMed

    Monreal, Marisa J; Seaman, Lani A; Goff, George S; Michalczyk, Ryszard; Morris, David E; Scott, Brian L; Kiplinger, Jaqueline L

    2016-03-01

    Two organometallic 1D infinite coordination polymers and two organometallic monometallic complexes of thorium diazide have been synthesized and characterized. Steric control of these self-assembled arrays, which are dense in thorium and nitrogen, has also been demonstrated: infinite chains can be circumvented by using steric bulk either at the metallocene or with a donor ligand in the wedge. PMID:26865502

  1. Zn(II) coordination polymers with flexible V-shaped dicarboxylate ligand: Syntheses, helical structures and properties

    NASA Astrophysics Data System (ADS)

    Li, Lin; Liu, Chong-Bo; Yang, Gao-Shan; Xiong, Zhi-Qiang; Liu, Hong; Wen, Hui-Liang

    2015-11-01

    Hydrothermal reactions of 2,2‧-[hexafluoroisopropylidenebis(p-phenyleneoxy)]diacetic acid (H2L) and zinc ions in the presence of N-donor ancillary ligands afford four novel coordination polymers, namely, [Zn2(μ2-OH)(μ4-O)0.5(L)]·0.5H2O (1), [Zn(L)(2,2‧-bipy)(H2O)] (2), [Zn3(L)3(phen)2]·H2O (3) and [Zn2(L)2(4,4‧-bipy)] (4) (2,2‧-bipy=2,2‧-bipyridine; 4,4‧-bipy=4,4‧-bipyridine; phen=1,10-phenanthroline). Their structures have been determined by single-crystal X-ray diffraction analyses, elemental analyses, IR spectra, powder X-ray diffraction (PXRD), and thermogravimetric (TG) analyses. Complex 1 shows a 3-D clover framework consisting of [Zn4(μ4-O)(μ2-OH)2]4+ clusters, and exhibits a novel (3,8)-connected topological net with the Schläfli symbol of {3·4·5}2{34·44·52·66·710·82}, and contains double-stranded and two kinds of meso-helices. 2 displays a helical chain structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with meso-helix chains. 3 displays a 2-D {44·62} parallelogram structure, which is further extended via hydrogen bonds into a 3-D supramolecular structure with single-stranded helical chains. 4 shows a 2-D {44·62} square structure with left- and right-handed helical chains. Moreover, the luminescent properties of 1-4 have been investigated.

  2. Seawater-Assisted Self-Healing of Catechol Polymers via Hydrogen Bonding and Coordination Interactions.

    PubMed

    Li, Jincai; Ejima, Hirotaka; Yoshie, Naoko

    2016-07-27

    It is highly desirable to prevent crack formation in polymeric materials at an early stage and to extend their lifespan, particularly when repairs to these materials would be difficult for humans. Here, we designed and synthesized catechol-functionalized polymers that can self-heal in seawater through hydrogen bonding and coordination. These bioinspired acrylate polymers are originally viscous materials, but after coordination with environmentally safe, common metal cations in seawater, namely, Ca(2+) and Mg(2+), the mechanical properties of the polymers were greatly enhanced from viscous to tough, hard materials. Reduced swelling in seawater compared with deionized water owing to the higher osmotic pressure resulted in greater toughness (∼5 MPa) and self-healing efficiencies (∼80%). PMID:27377859

  3. Fabrication of a PANI/CPs composite material: a feasible method to enhance the photocatalytic activity of coordination polymers.

    PubMed

    Xu, Xin-Xin; Cui, Zhong-Ping; Qi, Ji; Liu, Xiao-Xia

    2013-03-21

    To improve the photocatalytic activity of a coordination polymer in the visible light region, polyaniline (PANI) was loaded onto its surface through a facile in situ chemical oxidation polymerization process. The resulting PANI loaded coordination polymer composite materials with excellent stability exhibit significantly higher photocatalytic activities than the pure coordination polymer photocatalyst on the degradation of methyl orange (MO) under visible light irradiation. This enhancement can be ascribed to the introduction of PANI on the surface of the coordination polymer, which leads to efficient separation of photogenerated electron-hole pairs as well as a significant expansion of the photoresponse region. Finally, we discussed the influence of acidity on the morphology and photocatalytic activity of the composite material. An optimal condition to obtain the PANI loaded coordination polymer composite material with excellent photocatalytic activity has been obtained.

  4. Synthesis and characterization of nanowire coils of organometallic coordination polymers for controlled cargo release.

    PubMed

    Liang, Guodong; Ni, Huan; Bao, Suping; Zhu, Fangming; Gao, Haiyang; Wu, Qing

    2014-06-12

    Nanowire coils of organometallic coordination polymers have been synthesized for the first time by using the emulsion periphery polymerization technique. An amphiphilic triblock copolymer terminated with inclusion complex of β-cyclodextrin and 4,4'-bipyridine self-assembles into oil-in-water emulsion in a toluene/water mixture. Subsequent coordination of bipyridine with Ni(II) in periphery of emulsions results in the formation of coordination polymer nanowire coils. The nanowire coils are composed of nanowires with diameter of 2 nm. Nanowire coils exhibit enhanced thermal stability in contrast to their parent triblock copolymer. Interestingly, nanowire coils are capable of encapsulating organic cargoes. Encapsulated cargoes can be selectively extracted from nanowire coils without damaging nanowire coils. Nanowire coils are potential candidates for encapsulating and controlled release of organic cargoes. PMID:24842771

  5. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    SciTech Connect

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao; Luan, Jian; Wang, Xiu-Li; Liu, Guocheng; Zhang, Juwen

    2015-03-15

    Three new cobalt(II) coordination polymers [Co{sub 2}(1,4-NDC){sub 2}(3-bpye)(H{sub 2}O)] (1), [Co(1,4-NDC)(3-bpfp)(H{sub 2}O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N′-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N′-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H{sub 2}NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1–3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8}) topology constructed from 3D [Co{sub 2}(1,4-NDC){sub 2}(H{sub 2}O)]{sub n} framework and bidentate 3-bpye ligands. Complex 2 shows 1D “cage+cage”-like chain formed by 1D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} ribbon chains and [Co{sub 2}(3-bpfp){sub 2}] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected (4{sup 12}.6{sup 3}) topology based on 2D [Co{sub 2}(1,4-NDC){sub 2}]{sub n} layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1–3 have been investigated. - Graphical abstract: Three multifunctional cobalt(II) complexes constructed from three bis-pyridyl-bis-amide and 1,4-naphthalenedicarboxylic acid have been hydrothermally synthesized and characterized. The fluorescent, electrochemical and magnetic properties of 1–3 have been investigated. - Highlights: • Three multifunctional cobalt(II) complexes based on various bis-pyridyl-bis-amide ligands. • Complex 1 is a 3D coordination structure with 8-connected (4{sup 20}.6{sup 8

  6. Synthesis of conjugated polymers containing gallium atoms and evaluation of conjugation through four-coordinate gallium atoms.

    PubMed

    Matsumoto, Takuya; Onishi, Yoshinobu; Tanaka, Kazuo; Fueno, Hiroyuki; Tanaka, Kazuyoshi; Chujo, Yoshiki

    2014-12-25

    The synthesis and analysis of the electronic states of the main-chain type-organogallium polymers are presented. We synthesized the polymers containing four-coordinate gallium atoms by organometal coupling reactions. The synthesized polymers showed good solubility in common organic solvents and enough stability for measuring a series of properties under ambient conditions. In the UV-vis absorption spectra, the electronic interaction through four-coordinate gallium atoms was suggested from the peak shifts of the polymer compared to the model compounds. Theoretical calculation of these molecules supports the extended electronic interaction through the polymer main-chain involving gallium atoms.

  7. Bio-Inspired Composite Interfaces: Controlling Hydrogel Mechanics via Polymer-Nanoparticle Coordination Bond Dynamics

    NASA Astrophysics Data System (ADS)

    Holten-Andersen, Niels

    2015-03-01

    In soft nanocomposite materials, the effective interaction between polymer molecules and inorganic nanoparticle surfaces plays a critical role in bulk mechanical properties. However, controlling these interfacial interactions remains a challenge. Inspired by the adhesive chemistry in mussel threads, we present a novel approach to control composite mechanics via polymer-particle interfacial dynamics; by incorporating iron oxide nanoparticles (Fe3O4 NPs) into a catechol-modified polymer network the resulting hydrogels are crosslinked via reversible coordination bonds at Fe3O4 NP surfaces thereby providing a dynamic gel network with robust self-healing properties. By studying the thermally activated composite network relaxation processes we have found that the polymer-NP binding energy can be controlled by engineering both the organic and inorganic side of the interface.

  8. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    PubMed

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  9. Multifunctionality of organometallic quinonoid metal complexes: surface chemistry, coordination polymers, and catalysts.

    PubMed

    Kim, Sang Bok; Pike, Robert D; Sweigart, Dwight A

    2013-11-19

    Quinonoid metal complexes have potential applications in surface chemistry, coordination polymers, and catalysts. Although quinonoid manganese tricarbonyl complexes have been used as secondary building units (SBUs) in the formation of novel metal-organometallic coordination networks and polymers, the potentially wider applications of these versatile linkers have not yet been recognized. In this Account, we focus on these diverse new applications of quinonoid metal complexes, and report on the variety of quinonoid metal complexes that we have synthesized. Through the use of [(η(6)-hydroquinone)Mn(CO)3](+), we are able to modify the surface of Fe3O4 and FePt nanoparticles (NPs). This process occurs either by the replacement of oleylamine with neutral [(η(5)-semiquinone)Mn(CO)3] at the NP surface, or by the binding of anionic [(η(4)-quinone)Mn(CO)3](-) upon further deprotonation of [(η(5)-semiquinone)Mn(CO)3] at the NP surface. We have demonstrated chemistry at the intersection of surface-modified NPs and coordination polymers through the growth of organometallic coordination polymers onto the surface modified Fe3O4 NPs. The resulting magnetic NP/organometallic coordination polymer hybrid material exhibited both the unique superparamagnetic behavior associated with Fe3O4 NPs and the paramagnetism attributable to the metal nodes, depending upon the magnetic range examined. By the use of functionalized [(η(5)-semiquinone)Mn(CO)3] complexes, we attained the formation of an organometallic monolayer on the surface of highly ordered pyrolitic graphite (HOPG). The resulting organometallic monolayer was not simply a random array of manganese atoms on the surface, but rather consisted of an alternating "up and down" spatial arrangement of Mn atoms extending from the HOPG surface due to hydrogen bonding of the quinonoid complexes. We also showed that the topology of metal atoms on the surface could be controlled through the use of quinonoid metal complexes. A quinonoid

  10. Three-dimensional conformal setup (3D-CSU) of patients using the coordinate system provided by three internal fiducial markers and two orthogonal diagnostic X-ray systems in the treatment room

    SciTech Connect

    Shirato, Hiroki . E-mail: hshirato@radi.med.hokudai.ac.jp; Oita, Masataka; Fujita, Katsuhisa; Shimizu, Shinichi; Onimaru, Rikiya; Uegaki, Shinji; Watanabe, Yoshiharu; Kato, Norio; Miyasaka, Kazuo

    2004-10-01

    Purpose: To test the accuracy of a system for correcting for the rotational error of the clinical target volume (CTV) without having to reposition the patient using three fiducial markers and two orthogonal fluoroscopic images. We call this system 'three-dimensional conformal setup' (3D-CSU). Methods and materials: Three 2.0-mm gold markers are inserted into or adjacent to the CTV. On the treatment couch, the actual positions of the three markers are calculated based on two orthogonal fluoroscopies crossing at the isocenter of the linear accelerator. Discrepancy of the actual coordinates of gravity center of three markers from its planned coordinates is calculated. Translational setup error is corrected by adjustment of the treatment couch. The rotation angles ({alpha}, {beta}, {gamma}) of the coordinates of the actual CTV relative to the planned CTV are calculated around the lateral (x), craniocaudal (y), and anteroposterior (z) axes of the planned CTV. The angles of the gantry head, collimator, and treatment couch of the linear accelerator are adjusted according to the rotation of the actual coordinates of the tumor in relation to the planned coordinates. We have measured the accuracy of 3D-CSU using a static cubic phantom. Results: The gravity center of the phantom was corrected within 0.9 {+-} 0.3 mm (mean {+-} SD), 0.4 {+-} 0.2 mm, and 0.6 {+-} 0.2 mm for the rotation of the phantom from 0-30 degrees around the x, y, and z axes, respectively, every 5 degrees. Dose distribution was shown to be consistent with the planned dose distribution every 10 degrees of the rotation from 0-30 degrees. The mean rotational error after 3D-CSU was -0.4 {+-} 0.4 (mean {+-} SD), -0.2 {+-} 0.4, and 0.0 {+-} 0.5 degrees around the x, y, and z axis, respectively, for the rotation from 0-90 degrees. Conclusions: Phantom studies showed that 3D-CSU is useful for performing rotational correction of the target volume without correcting the position of the patient on the treatment couch

  11. Nicotine molecularly imprinted polymer: synergy of coordination and hydrogen bonding.

    PubMed

    Huynh, Tan-Phat; B K C, Chandra; Sosnowska, Marta; Sobczak, Janusz W; Nesterov, Vladimir N; D'Souza, Francis; Kutner, Wlodzimierz

    2015-02-15

    Two new bis(2,2'-bithienyl)methane derivatives, one with the zinc phthalocyanine substituent (ZnPc-S16) and the other with the 2-hydroxyethyl substituent (EtOH-S4), were synthesized to serve as functional monomers for biomimetic recognition of nicotine (Nic) by molecular imprinting. Formation of a pre-polymerization complex of the Nic template with ZnPc-S16 and EtOH-S4 was confirmed by both the high negative Gibbs free energy gain, ΔG = -115.95 kJ/mol, calculated using the density functional theory at the B3LYP/3-21G* level, and the high stability constant, Ks = 4.67 × 10(5) M(-1), determined by UV-vis titration in chloroform. A solution of this complex was used to deposit a Nic-templated molecularly imprinted polymer (MIP-Nic) film on an Au electrode of a quartz crystal resonator of EQCM by potentiodynamic electropolymerization. The imprinting factor was as high as ~9.9. Complexation of the Nic molecules by the MIP cavities was monitored with X-ray photoelectron spectroscopy (XPS), as manifested by a negative shift of the binding energy of the Zn 2p3/2 electron of ZnPc-S16 after Nic templating. For sensing applications, simultaneous chronoamperometry (CA) and piezoelectric microgravimetry (PM) measurements were performed under flow-injection analysis conditions. The limit of detection of the CA and PM chemosensing was as low as 40 and 12 µM, respectively. Among them, the CA chemosensing was more selective to the cotinine and myosmine interferences due to the 1.10 V vs. Ag/AgCl discriminating potential of nicotine electro-oxidation applied. Differences in selectivity to the analyte and interferences were interpreted by modeling complexation of Nic and, separately, each of the interferences with a "frozen" MIP-Nic molecular cavity.

  12. Self assembly of sandwich-layered 2D silver(I) coordination polymers stabilized by argentophilic interactions: Synthesis, crystal structures and ab initio intramolecular energetics

    NASA Astrophysics Data System (ADS)

    Zorlu, Yunus; Can, Hatice

    2014-11-01

    Two different two-dimensional silver(I) coordination polymers, namely {[Ag2(dcpa)}n (1) and {[Ag2(ma)]}n (2), where dcpa = 4,5-dichlorophthalate; ma = maleate, were synthesized and structurally analyzed by single crystal X-ray diffraction technique. Complexes 1 and 2 represent 2D coordination polymer with metal-organic sandwich type. Two independent Ag(I) ions in both complexes are linked to constructed 2D layer by μ8-η3:η2:η2:η1 (for complex 1) and μ8-η3:η3:η2:η2 (for complex 2) carboxylate bridging fashions. The 2D layers of 1 are further extended into a three-dimensional (3D) supramolecular network by weak Cl⋯Cl interactions while 2D layers of 2 are linked by weak CH⋯O interactions into a 3D supramolecular framework. These two complexes exhibit considerable short Ag-Ag argentophilic interactions. The long-range corrected density functional theory (DFT) method was used to investigate intramolecular energetics, which are responsible for these 2D structures. Natural bond orbital (NBO) analysis with long-range corrected DFT method assists to understand these intramolecular interactions.

  13. Vapochromic Behaviour of M[Au(CN)2]2-Based Coordination Polymers (M = Co, Ni)

    PubMed Central

    Lefebvre, Julie; Korčok, Jasmine L.; Katz, Michael J.; Leznoff, Daniel B.

    2012-01-01

    A series of M[Au(CN)2]2(analyte)x coordination polymers (M = Co, Ni; analyte = dimethylsulfoxide (DMSO), N,N-dimethylformamide (DMF), pyridine; x = 2 or 4) was prepared and characterized. Addition of analyte vapours to solid M(μ-OH2)[Au(CN)2]2 yielded visible vapochromic responses for M = Co but not M = Ni; the IR νCN spectral region changed in every case. A single crystal structure of Zn[Au(CN)2]2(DMSO)2 revealed a corrugated 2-D layer structure with cis-DMSO units. Reacting a Ni(II) salt and K[Au(CN)2] in DMSO yielded the isostructural Ni[Au(CN)2]2(DMSO)2 product. Co[Au(CN)2]2(DMSO)2 and M[Au(CN)2]2(DMF)2 (M = Co, Ni) complexes have flat 2-D square-grid layer structures with trans-bound DMSO or DMF units; they are formed via vapour absorption by solid M(μ-OH2)[Au(CN)2]2 and from DMSO or DMF solution synthesis. Co[Au(CN)2]2(pyridine)4 is generated via vapour absorption by Co(μ-OH2)[Au(CN)2]2; the analogous Ni complex is synthesized by immersion of Ni(μ-OH2)[Au(CN)2]2 in 4% aqueous pyridine. Similar immersion of Co(μ-OH2)[Au(CN)2]2 yielded Co[Au(CN)2]2(pyridine)2, which has a flat 2-D square-grid structure with trans-pyridine units. Absorption of pyridine vapour by solid Ni(μ-OH2)[Au(CN)2]2 was incomplete, generating a mixture of pyridine-bound complexes. Analyte-free Co[Au(CN)2]2 was prepared by dehydration of Co(μ-OH2)[Au(CN)2]2 at 145 °C; it has a 3-D diamondoid-type structure and absorbs DMSO, DMF and pyridine to give the same materials as by vapour absorption from the hydrate. PMID:22737031

  14. Different aliphatic dicarboxylates affected assemble of new coordination polymers constructed from flexible-rigid mixed ligands

    SciTech Connect

    Xu Xinxin; Ma Ying; Wang Enbo

    2007-11-15

    In this article, seven coordination polymers: [Cd(C{sub 5}H{sub 6}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (1), [Zn(C{sub 5}H{sub 6}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (2), [Cd(C{sub 6}H{sub 8}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})]{sub n} (3), {l_brace}[Mn(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O){sub 4}] (C{sub 4}H{sub 4}O{sub 4}).4H{sub 2}O{r_brace}{sub n} (4), [Mn{sub 5}(C{sub 4}H{sub 4}O{sub 4}){sub 4}(O)]{sub n} (5), [Cd(C{sub 4}H{sub 4}O{sub 4})(C{sub 10}H{sub 8}N{sub 2})(H{sub 2}O)]{sub n} (6) and [Zn(C{sub 6}H{sub 6}O{sub 4})(C{sub 12}H{sub 8}N{sub 2})(H{sub 2}O)]{sub n} (7) were synthesized and characterized by single-crystallographic X-ray diffraction. Compounds 1 and 2 are two-dimensional layers connected by glutarate anions and 4,4'-bpy. Unlike compounds 1 and 2, compound 3 is a two-fold interpenetration network. Compound 4 is a one-dimensional chain-like structure, which is further extended to two-dimensional supramolecular layer structure with hydrogen bond. During the synthesis of compound 4, to our surprise, we got compound 5; compound 5 is an interesting three-dimensional network composed of pentanuclear Mn(II) building units and succinate anions. Compound 6 is also a two-dimensional supramolecular layer structure composed of one-dimensional chain-like structure with hydrogen bonds and {pi}-{pi} interactions. Compound 7 is also a one-dimensional chain-like structure, which is further connected with the same kind of interaction to generate two-dimensional supramolecular layer structure. Furthermore, compounds 1 and 2 both exhibit fluorescent property at room temperature. - Graphical abstract: Seven complexes composed by 3D metal ions, aliphatic acid ligand and rigid bidentate nitrogen ligands: 4,4'-bpy, 2,2'-bpy and 1,10'-phen. With the change of the carbon number of the backbone of aliphatic dicarboxylate ligand, we can synthesize different complexes with various structures.

  15. Effect of three bis-pyridyl-bis-amide ligands with various spacers on the structural diversity of new multifunctional cobalt(II) coordination polymers

    NASA Astrophysics Data System (ADS)

    Lin, Hong-Yan; Lu, Huizhe; Le, Mao; Luan, Jian; Wang, Xiu-Li; Liu, Guocheng; Zhang, Juwen

    2015-03-01

    Three new cobalt(II) coordination polymers [Co2(1,4-NDC)2(3-bpye)(H2O)] (1), [Co(1,4-NDC)(3-bpfp)(H2O)] (2) and [Co(1,4-NDC)(3-bpcb)] (3) [3-bpye=N,N‧-bis(3-pyridinecarboxamide)-1,2-ethane, 3-bpfp=bis(3-pyridylformyl)piperazine, 3-bpcb=N,N‧-bis(3-pyridinecarboxamide)-1,4-benzene, and 1,4-H2NDC=1,4-naphthalenedicarboxylic acid] have been hydrothermally synthesized. The structures of complexes 1-3 have been determined by X-ray single crystal diffraction analyses and further characterized by infrared spectroscopy (IR), powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Complex 1 is a 3D coordination structure with 8-connected {420.68} topology constructed from 3D [Co2(1,4-NDC)2(H2O)]n framework and bidentate 3-bpye ligands. Complex 2 shows 1D "cage+cage"-like chain formed by 1D [Co2(1,4-NDC)2]n ribbon chains and [Co2(3-bpfp)2] loops, which are further linked by hydrogen bonding interactions to form a 3D supramolecular network. Complex 3 displays a 3D coordination network with a 6-connected {412.63} topology based on 2D [Co2(1,4-NDC)2]n layers and bidentate 3-bpcb bridging ligands. The influences of different bis-pyridyl-bis-amide ligands with various spacers on the structures of title complexes are studied. Moreover, the fluorescent properties, electrochemical behaviors and magnetic properties of complexes 1-3 have been investigated.

  16. Five 8-hydroxyquinolinate-based coordination polymers with tunable structures and photoluminescent properties for sensing nitroaromatics.

    PubMed

    Zhang, Liyan; Sun, Liying; Li, Xinyuan; Tian, Yulan; Yuan, Guozan

    2015-01-01

    Using two 8-hydroxyquinolinate ligands (L1-MOM and L2-MOM) containing 3-pyridyl or 4-pyridyl groups, five novel coordination polymers, namely, [Zn3(L1)6] (1), [Zn(L1)2]·2MeOH (2), [Zn(L2)2] (3), [Cd(L2)2] (4), and [Cd4(L1)6]·13H2O (5), were synthesized and characterized by a variety of techniques. Single-crystal X-ray structures have revealed that these coordination polymers exhibit a structural diversification due to the different choices of metal salts and the effect of pyridyl nitrogen position. Compounds 1-5 exhibited different fluorescence emissions and lifetimes upon excitation in the solid state. The sensing behavior of these polymers was also investigated upon exposure to vapors of various nitroaromatic molecules (analytes). The results show that all five polymers are capable of sensing these nitroaromatic molecules in the vapor phase through fluorescence quenching. Interestingly, 3 exhibits superior sensitivity to the analytes in comparison with other polymers. 2-Nitrotoluene quenches the emission of 3 by as much as 96%.

  17. Synthesis, vibrational spectroscopy and crystal structure of zinc and sodium tricarboxylate coordination polymers with the flexible ligand tricarballylate anion (TCA 3-)

    NASA Astrophysics Data System (ADS)

    Williams, Patricia A. M.; Naso, Luciana G.; Echeverría, Gustavo A.; Ferrer, Evelina G.

    2010-08-01

    A new 3D coordination polymer of general formula [NaZn(C 6H 5O 6)(H 2O) 3] n has been hydrothermally synthesized and characterized by vibrational spectroscopy (Raman and Infrared), X-ray diffraction and thermal analysis. The compound crystallizes in the centrosymmetric monoclinic group C2/ c with a = 10.885(2), b = 13.219(3), c = 15.299(5) Å, β = 102.23(2)°, V = 2151(1) (Å 3), Z = 8. The crystal structure consists in an open framework where the arrangement of tetrahedral zinc and octahedral sodium cations, coordinated by water and carboxylate oxygens atoms, are linked by tricarballylate anions developing channels parallel to the [0 1-1] crystallographic direction. Thermogravimetric analysis indicates that the complex is thermally stable up to 200 °C.

  18. Syntheses, crystal structures and luminescent properties of two new 1D d {sup 1} coordination polymers constructed from 2,2'-bibenzimidazole and 1,4-benzenedicarboxylate

    SciTech Connect

    Wen Lili; Li Yizhi; Dang Dongbin; Tian Zhengfang; Ni Zhaoping; Meng Qingjin . E-mail: mengqj@nju.edu.cn

    2005-11-15

    Two novel interesting d {sup 1} metal coordination polymers, [Zn(H{sub 2}bibzim)(BDC)] {sub n} (1) and [Cd(H{sub 2}bibzim)(BDC)] {sub n} (2) [H{sub 2}bibzim=2,2'-bibenzimidazole, BDC=1,4-benzenedicarboxylate] have been synthesized under solvothermal conditions and structurally characterized. Both 1 and 2 are constructed from infinite neutral zigzag-like one-dimensional (1D) chains. The {pi}-{pi} interactions and interchain hydrogen-bonding interactions further extend the 1D arrangement to generate a 3D supramolecular architecture for 1 and 2. Both complexes have high thermal stability and display strong blue fluorescent emissions in the solid state upon photo-excitation at 365 nm at room temperature. They are the first two examples that 2,2'-bibenzimidazole has been introduced into the d {sup 1} coordination polymeric framework.

  19. Syntheses, structures and magnetic properties of four coordination polymers based on nitrobenzene dicarboxylate and various N-donor coligands

    SciTech Connect

    Li, Gui-Lian; Yin, Wei-Dong; Liu, Guang-Zhen; Ma, Lu-Fang; Wang, Li-Ya

    2014-12-15

    Four new coordination polymers ([Ni(4-Nbdc)(bpa)(H{sub 2}O)]){sub n} (1), ([Co(4-Nbdc)(bpp) (H{sub 2}O)]){sub n} (2), ([Ni(4-Nbdc)(bpp)(H{sub 2}O)]·H{sub 2}O){sub n} (3), and ([Mn{sub 2}(3-Nbdc){sub 2}(bib){sub 3}]·2H{sub 2}O){sub n} (4) (4-Nbdc=4-nitrobenzene-1,2-dicarboxylate, 3-Nbdc=3-nitrobenzene-1,2-dicarboxylate, bpa=1,2-bi(4-pyridyl)ethane, bpp=1,3-bis(4-pyridyl)propane, and bib=1,4-bis(1-imidazoly)benzene), were synthesized by hydrothermal reactions, and characterized by single-crystal X-ray diffractions, elemental analysis, FT-IR, PXRD, TGA and magnetic analysis. Complexes 1 and 2 display quasi-trapezoidal chain and brick-wall layer, and both of them contain metal–carboxylate binuclear units. Complexes 3 and 4 exhibit three-dimensional frameworks with the (6{sup 6}) dia topology and (4{sup 4}.6{sup 10}.8)(4{sup 4}.6{sup 2}) fsc topology, and both of them contain metal–carboxylate chains. The carboxyl groups with syn-anti coordination mode mediate effectively the weak ferromagnetic coupling interaction within Ni(II)–carboxylate binuclear in 1 (J=1.27 cm{sup −1}) and Ni(II)–carboxylate chain in 3 (J=1.44 cm{sup −1}), respectively, and the carboxyl groups with anti-anti coordination mode leads to the classic antiferromagnetic coupling interaction within Mn(II)–carboxylate chain in 4 (J=−0.77 cm{sup −1}). - Highlights: • Four novel coordination polymers were hydrothermally synthesized. • 1 is 1D quasi-trapezoidal chain and 2 is brick-wall layer both with dinuclear units. • 3 and 4 show 3D frameworks both with 1D metal–carboxylate chains. • 1 and 3 exhibit ferromagnetic coupling, while 4 shows antiferromagnetic coupling.

  20. Crystal structures and thermodynamics/kinetics of Zn(II) coordination polymers with helical chains

    NASA Astrophysics Data System (ADS)

    He, Tian; Yue, Ke-Fen; Zhao, Yi-xing; Chen, San-Ping; Zhou, Chun-sheng; Yan, Ni

    2016-07-01

    Solvothermal reactions of Zn(II) acetates and four V-shaped carboxylates ligands in the presence of 1,4-Bis(2-methyl-imidazol-1-yl)butane afforded four interesting Zn(II) coordination polymers with helical chains, namely, {[Zn(bib)(atibdc)]·2H2O}n (1), {[Zn(bib)(atbip)]·H2O}n (2), [Zn(bib)(2,2‧-tda)]}n (3) and {[Zn(bib)(5-tbipa)]·EtOH}n (4), (H2atibdc=5-amino-2,4,6-triiodoisophthalic acid, H2atbip=5-amino-2,4,6-tribromoisophthalic acid, 2,2‧-H2tad=2,2‧-thiodiacetic acid, 5-H2tbipa=5-tert-butyl-isophthalic acid). 1 reveals a 3D chiral framework with three kinds of helical chains along a, b and c axis. 2 shows a 2D step-type chiral framework with right-handed helical chains. 3 displays a wavelike 2D layer network possessing alternate left- and right-handed helical chains. 4 presents a four-connected 3D framework with zigzag and meso-helical chains. The different spacers and substituent group of carboxylic acid ligands may lead to the diverse network structures of 1-4. The fluorescent properties of complexes 1-4 were studied. In addition, the thermal decompositions properties of 1-4 were investigated by simultaneous TG/DTG-DSC technique. The apparent activation energy E and the pre-exponential factor (A) of skeleton collapse for the complexes 1-4 are calculated by the integral Kissinger's method and Ozawa-Doyle's method. The activation energy E (E1=209.658 kJ·mol-1, E2=250.037 kJ mol-1, E3=225.300 kJ mol-1, E4=186.529 kJ·mol-1) demonstrates that the reaction rate of the melting decomposition is slow. The thermodynamic parameters (ΔH‡, ΔG‡ and ΔS‡) at the peak temperatures of the DTG curves were also calculated. ΔG‡>0 indicates that the skeleton collapse is not spontaneous. ΔHd>0 suggests that the skeleton collapse is endothermic, corresponding to the intense endothermic peak of the DSC curve. The structural stability could be illustrated from the point of thermodynamics and kinetics. Their thermal decompositions properties of 1-4 were

  1. X-ray-absorption near-edge structure of 3d transition elements in tetrahedral coordination: The effect of bond-length variation

    NASA Astrophysics Data System (ADS)

    Bianconi, A.; Fritsch, E.; Calas, G.; Petiau, J.

    1985-09-01

    The x-ray-absorption near-edge structure (XANES) of transition elements in tetrahedral coordination in crystals and glasses has been studied. We have identified the XANES features in the continuum that can be assigned to multiple scattering within the first coordination shell. The energy positions Er of the XANES peaks in the continuum follow the rule (Er-Eb)d2= const, where Eb is the energy of the prepeak, defined as the first core excitation to the bound antibonding state of T2 symmetry, and d is the interatomic distance. This plot allows us to determine the tetrahedral coordination of a vanadium impurity in a SiO2 glass and to get an estimation of the vanadium-oxygen distance (1.77+/-0.05 Å).

  2. Soluble 1D coordination polymers based on dendron-functionalized bispyridine ligand for linking between immobilized molecules on substrates.

    PubMed

    Tokuhisa, Hideo; Kanesato, Masatoshi

    2005-10-11

    As a monomeric ligand for a soluble 1D coordination polymer, a benzyl-ether based dendrimer having a rigid 4,4'-bispyridine ligand at the focal point has been synthesized and the coordination chemistry with Pd(II) investigated by nuclear magnetic resonance, ultraviolet-visible and fluorescence spectroscopies, gel permeation chromatography measurement, and X-ray photoelectron spectroscopy. As a result, it was found that the synthesized dendrimer forms a stable, soluble Pd(II) coordination polymer with rough estimation of degree of polymerization of 10 in organic solvents. Furthermore, through the coordination polymer we attempted to link fourth-generation poly(amidoamine) dendrimers (PAMAM) individually immobilized on mica and confirmed the interconnection of the PAMAM through coordination polymers by atomic force microscopy.

  3. Design, synthesis, and optimization of nanostructured calcium phosphates (NanoCaPs) and natural polymer based 3-D non-viral gene delivery systems

    NASA Astrophysics Data System (ADS)

    Ko, Hsu-Feng

    Sustained delivery of therapeutic genes from a three-dimensional (3-D) scaffold and subsequent gene expression capable of triggering the regeneration of damaged tissues is a tissue engineering strategy that has been gaining increased attention. Nanostructured calcium phosphates (NanoCaPs) are biocompatible and non-toxic biomaterials. Furthermore, their efficient transfection in vitro have rendered them attractive gene delivery carriers compared to other viral- or lipid-based agents that tend to be immunogenic or cytotoxic, leading to undesirable responses when utilized above a critical threshold. However, NanoCaPs are typically characterized by variable transfection and short shelf life due to particle aggregation. A viable solution to this problem is the incorporation of NanoCaPs into 3-D scaffolds. The main objectives of this research are therefore two-fold: (1) Examination of the potential of achieving optimized transfection of NanoCaPs via anionic substitution and (2) high throughput synthesis and screening of non-viral gene delivery systems (GDS) comprised of naturally-derived polymers as scaffolds containing NanoCaPs gene carriers. Results indicated that in addition to the excellent transfection levels exhibited by NanoCaPs in vitro, an additional 20-30% increase was observed for NanoCaPs with 10-25 mol% anion substitution. In contrast, high anion substitution (>60%) yielded a drastic decline in transfection. Structural characterizations verified successful anion substitution with a noticeable increase in lattice parameters indicative of an expanded unit cell due to ionic substitution. All of the anion substituted calcium phosphates exhibited the primary phase of hydroxyapatite. For the first time, GDS composed of various concentrations of alginate (AA), fibronectin (FN), and NanoCaPs-DNA complexes were demonstrated. The presence of AA and FN was effective in immobilizing NanoCaPs and reducing the aggregation. High throughput synthesis and screening

  4. Application of a silver-olefin coordination polymer as a catalytic curing agent for self-healing epoxy polymers

    NASA Astrophysics Data System (ADS)

    Everitt, D. T.; Coope, T. S.; Trask, R. S.; Wass, D. F.; Bond, I. P.

    2015-05-01

    A silver-olefin based coordination polymer was prepared in a simple, one step process to act as an initiator to facilitate the ring-opening polymerization of epoxides. Thermal analysis found the complex to be capable of curing a range of commercially available epoxy resins used in the manufacture of conventional composite materials. Curing of the oligomeric diglycidyl ether bisphenol A resin, Epon 828, in combination with a non-toxic solvent, ethyl phenylacetate, was studied by differential scanning calorimetry. The mechanical characterization of the resultant cured polymers was conducted by single lap shear tests. Tapered double cantilever beam (TDCB) test specimens containing 2.5 pph of silver-olefin initiator, both with and without embedded microcapsules, were analyzed for their healing performance. Healing efficiency values were found to be strongly dependent on the applied healing temperature. A mean recovery of 74% fracture load was found in TDCB samples after being healed at 70 °C for 48 h.

  5. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  6. A series of divalent metal coordination polymers based on isomeric tetracarboxylic acids: synthesis, structures and magnetic properties.

    PubMed

    Han, Min-Le; Duan, Ya-Ping; Li, Dong-Sheng; Xu, Guo-Wang; Wu, Ya-Pan; Zhao, Jun

    2014-12-14

    Five new coordination polymers, namely, [Mn(2,2′-bipy)(H2O)2(H2L1)]n (1), {[Co(btb)(H2O)2(H2L1)]·0.5H2O}n (2), [Co(bib)(H2O)2(H2L1)]n (3), [Ni2(bpm)(H2O)3(L2)]n (4), and {[Co2(H2O)3(OH)(HL2)]·H2O}n (5), (H4L1 = 1,1′:2′,1′′-terphenyl-4,4′,4′′,5′-tetracarboxylic acid, H4L2 = 1,1′:2′,1′′-terphenyl-3,3′′,4′,5′-tetracarboxylic acid, 2,2′-bipy = 2,2′-bipyridine, btb = 1,4-bis(1,2,4-triazol-1-yl)butane, bib = 1,4-bis(imidazol-1-yl)butane, bpm = bis(4-pyridyl)amine), have been obtained under hydrothermal conditions. Complex 1 exhibits a 3D supramolecular framework based on 1D chains. Both complexes 2 and 3 are 3D supramolecular frameworks constructed from 1D zig-zag chains. Complex 4 features a 3D tetra-nodal (3,4,4,5)-connected architecture containing 1D μ-COO bridged chains with (5(2)·6(2)·7.9)(5(2)·6(4)·7(3)·8)2(5(2)·6)2(6(3)·7(2)·9) topology. Complex 5 shows a 3D penta-nodal (3,4,4,6,6)-connected net containing 1D μ-OH/μ-COO bridged chains and mononuclear Co(II) nodes with a (4(2)·6(3)·8)(4(3))2(4(4)·6(2))2(4(4)·6(6)·8(5))2(4(4)·6(7)·8(4)) topology. Variable-temperature magnetic susceptibility measurements reveal that complexes 2 and 3 show antiferromagnetic interactions between the adjacent Co(II) ions, whereas 4 is a ferromagnetic system. PMID:25347690

  7. Lateralized Effects of Categorical and Coordinate Spatial Processing of Component Parts on the Recognition of 3D Non-Nameable Objects

    ERIC Educational Resources Information Center

    Saneyoshi, Ayako; Michimata, Chikashi

    2009-01-01

    Participants performed two object-matching tasks for novel, non-nameable objects consisting of geons. For each original stimulus, two transformations were applied to create comparison stimuli. In the categorical transformation, a geon connected to geon A was moved to geon B. In the coordinate transformation, a geon connected to geon A was moved to…

  8. Metal Coordination Stoichiometry Controlled Formation of Linear and Hyperbranched Supramolecular Polymers.

    PubMed

    Lin, Cuiling; Xu, Luonan; Huang, Libo; Chen, Jia; Liu, Yuanyuan; Ma, Yifan; Ye, Feixiang; Qiu, Huayu; He, Tian; Yin, Shouchun

    2016-09-01

    Controlling the topologies of polymers is a hot topic in polymer chemistry because the physical and/or chemical properties of polymers are determined (at least partially) by their topologies. This study exploits the host-guest interactions between dibenzo-24-crown-8 and secondary ammonium salts and metal coordination interactions between 2,6-bis(benzimidazolyl)-pyridine units with metal ions (Zn(II) and/or Eu(III) ) as orthogonal non-covalent interactions to prepare supramolecular polymers. By changing the ratios of the metal ion additives (Zn(NO3 )2 and Eu(NO3 )3 ) linkers to join the host-guest dimeric complex, the linear supramolecular polymers (100 mol% Zn(NO3 )2 per ligand) and hyperbranched supramolecular polymers (97 mol% Zn(NO3 )2 and 3 mol% Eu(NO3 )3 per ligand) are separately and successfully constructed. This approach not only expands topological control over polymeric systems, but also paves the way for the functionalization of smart and adaptive materials. PMID:27377646

  9. Two three-dimensional coordination polymers of lead(II) with iminodiacetate and naphthalene-dicarboxylate anions: Synthesis, characterization and luminescence behavior

    SciTech Connect

    Hazari, Debdoot; Jana, Swapan Kumar; Fleck, Michel; Zangrando, Ennio; Dalai, Sudipta

    2014-11-15

    Two lead(II) compounds [Pb{sub 3}(idiac){sub 3}(phen){sub 2}(H{sub 2}O)]·2(H{sub 2}O) (1) and [Pb(ndc)]{sub n} (2), where H{sub 2}idiac=iminodiacetic acid, phen=1,10-phenanthroline and H{sub 2}ndc=naphthalene-2,6-dicarboxylic acid, have been synthesized and structurally characterized. Single crystal X-ray diffraction analysis showed that compound 1 is a discrete trinuclear complex (of two-fold symmetry) which evolves to a supramolecular 3D network via π–π interactions, while in compound 2 the naphthalene dicarboxylate anion act as a linker to form a three dimensional architecture, where the anion adopts a bis-(bidentate bridging) coordination mode connecting four Pb(II) centers. The photoluminescence property of the two complexes has been studied. - graphical abstract: Two new topologically different 1D coordination polymers formed by Pb{sub 4} clusters have been synthesized and characterized by x-ray analysis. The luminescence and thermal properties have been studied. - Highlights: • 1 is a trinuclear complex of Pb(II) growing to 3D network via weak interactions. • In 1, layers of (4,4) rhomboidal topology are identified. • In 2, the ndc anion adopts interesting bis-(bidentate bridging) coordination. • In 2, network is reinforced by C–H…π-ring interactions between the ndc rings.

  10. Single-crystal X-ray diffraction studies on structural transformations of porous coordination polymers.

    PubMed

    Zhang, Jie-Peng; Liao, Pei-Qin; Zhou, Hao-Long; Lin, Rui-Biao; Chen, Xiao-Ming

    2014-08-21

    X-Ray single-crystal diffraction has been the most straightforward and important technique in structural determination of crystalline materials for understanding their structure-property relationships. This powerful tool can be used to directly visualize the precise and detailed structural information of porous coordination polymers or metal-organic frameworks at different states, which are unique for their flexible host frameworks compared with conventional adsorbents. With a series of selected recent examples, this review gives a brief overview of single-crystal X-ray diffraction studies and single-crystal to single-crystal transformations of porous coordination polymers under various chemical and physical stimuli such as solvent and gas sorption/desorption/exchange, chemical reaction and temperature change.

  11. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  12. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  13. A Perylene-Based Microporous Coordination Polymer Interacts Selectively with Electron-Poor Aromatics.

    PubMed

    Tran, Ly D; Ma, Jialiu; Wong-Foy, Antek G; Matzger, Adam J

    2016-04-11

    The design, synthesis, and properties of the new microporous coordination polymer UMCM-310 are described. The unique electronic character of the perylene-based linker enables selective interaction with electron-poor aromatics leading to efficient separation of nitroaromatics. UMCM-310 possesses high surface area and large pore size and thus permits the separation of large organic molecules based on adsorption rather than size exclusion.

  14. Picogram sensing of trinitrophenol in aqueous medium through a water stable nanoscale coordination polymer.

    PubMed

    Asha, K S; Vaisakhan, G S; Mandal, Sukhendu

    2016-06-01

    A water stable nanoscale coordination polymer (CP) can detect trinitrophenol (TNP) in an aqueous medium at a record-picogram level (∼1.66 pg cm(-2)) with a detection limit of 1.66 ppb. This is a simple and low-cost method for the detection of TNP in aqueous media in contact mode, taking advantage of the unique structural arrangement of the as-synthesized CP and the associated photophysical properties.

  15. Terbium-based coordination polymer nanoparticles for detection of ciprofloxacin in tablets and biological fluids.

    PubMed

    Tan, Hongliang; Zhang, Li; Ma, Chanjiao; Song, Yonghai; Xu, Fugang; Chen, Shouhui; Wang, Li

    2013-11-27

    The metal-organic coordination polymers with tunable structures and properties have been rapidly emerging as very important functional materials. In this work, we prepared terbium (Tb(3+))-based coordination polymer nanoparticles (CPNPs) by employing adenine (Ad) as bridging ligands. The CPNPs was further used as a receptor reagent for ciprofloxacin (CF) detection in aqueous solution. Addition of CF induces a typical emission of Tb(3+) due to the formation of Ad/Tb-CF complex and the sensitization of CF. The fluorescent intensity of Tb(3+) was enhanced linearly with increasing the CF concentration from 60 nM to 14 μM. The detection limit for CF in aqueous solution is 60 nM. The Ad/Tb CPNPs was successfully applied to detect CF in tablet and urine samples and showed a satisfactory result. Compared with other methods, the proposed method is advantageous because that it provides a very simple strategy for CF detection, which does not require complicated sample pretreatment processes or special reaction media. The proposed strategy could be contributed to expand the potential applications of lanthanide coordination polymers in biological and environmental fields.

  16. In situ composition and luminescence of terbium coordination polymers/PEMA hybrid thick films

    NASA Astrophysics Data System (ADS)

    Yan, Bing; Wang, Qian-Ming

    2004-12-01

    Some terbium coordination polymers with infinite chain polymeric structures were in situ composed with ethyl methacrylate (EMA). With the polymerization of EMA monomer and the formation of terbium coordination polymers of methylbenzoic acid and 2-chloro benzoic acid, the transparent hybrid thick films composed by [Tb(OMBA)3]n ([Tb(MMBA)3]n, [Tb(OCBA)3]n) and poly ethyl methacrylate (PEMA) have been achieved. The luminescence properties and energy transfer for these polymeric composite films were studied with absorption spectra, fluorescent excitation and emission spectra in detail. All the hybrid thick films composed with terbium coordination polymers show the characteristic strong green emission of terbium ions, which implies the same energy transfer mechanism as the pure complex and the hybrid composite film is a suitable substrate for the luminescence of terbium ions. In the range of composing concentration of luminescent species (0.005, 0.01, 0.025, 0.05, 0.1 and 0.2 mmol/7.5 ml EMA), emission intensities increases with the increasing of corresponding composing concentration and concentration quenching effect has not taken place.

  17. Solvent induced synthesis, structure and properties of coordination polymers based on 5-hydroxyisophthalic acid as linker and 1,10-phenanthroline as auxiliary ligand

    NASA Astrophysics Data System (ADS)

    Kariem, Mukaddus; Yawer, Mohd; Sheikh, Haq Nawaz

    2015-11-01

    Three new coordination polymers [Mn(hip)(phen) (H2O)]n (1), [Co(hip)(phen) (H2O)]n (2), and [Cd(hip) (phen) (H2O)]n (3) (H2hip=5-hydroxyisophthalic acid; phen=1,10-phenanthroline) have been synthesized by solvo-hydrothermal method using diethyl formamide-water (DEF-H2O) as solvent system. Single-crystal X-ray diffraction analysis reveals that all three coordination polymers 1, 2 and 3 crystallize in monoclinic space group P2/n. Metal ions are inter-connected by hydroxyisophthalate anions forming zig-zag 1D chain. 1D chains are further inter-connected by hydrogen bonding and π-π stacking interactions leading to 3D supramolecular architecture. Hydrogen-bonding and π-π stacking provide thermal stability to polymers. Compounds 1 and 2 are paramagnetic at room temperature and variable temperature magnetic moment measurements revealed weak ferromagnetic interactions between metal ions at low temperature. Compound 3 exhibits excellent photoluminescence with large Stokes shift.

  18. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  19. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    SciTech Connect

    Lun, Huijie; Yang, Jinghe; Jin, Linyu; Cui, Sasa; Bai, Yanlong; Zhang, Xudong; Li, Yamin

    2015-05-15

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]{sub n} (1), [Ni(ca)(phdat).0.125H{sub 2}O]{sub n} (2) (H{sub 2}ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co{sub 2}(CO{sub 2}){sub 4}/Ni{sub 2}(CO{sub 2}){sub 4} SBUs by ca{sup 2−} ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1–2 exhibit antiferromagnetic behavior and compound 2 displays a good activity for methanol oxidation. - Graphical abstract: Two new coordination compounds 1–2 have been synthesized and characterized by single-crystal X-ray diffractions, IR spectra, elemental analyses, thermogravimetric analyses, magnetic and electrochemical measurement. - Highlights: • This paper reports two new coordination polymers based on D-camphoric acid. • Both the compounds feather two-dimensional layered networks built up from paddle-wheel SBUs. • The magnetism and electrochemical property are investigated.

  20. 3D printed high-throughput hydrothermal reactionware for discovery, optimization, and scale-up.

    PubMed

    Kitson, Philip J; Marshall, Ross J; Long, Deliang; Forgan, Ross S; Cronin, Leroy

    2014-11-17

    3D printing techniques allow the laboratory-scale design and production of reactionware tailored to specific experimental requirements. To increase the range and versatility of reactionware devices, sealed, monolithic reactors suitable for use in hydrothermal synthesis have been digitally designed and realized. The fabrication process allows the introduction of reaction mixtures directly into the reactors during the production, and also enables the manufacture of devices of varying scales and geometries unavailable in traditional equipment. The utility of these devices is shown by the use of 3D printed, high-throughput array reactors to discover two new coordination polymers, optimize the synthesis of one of these, and scale-up its synthesis using larger reactors produced on the same 3D printer. Reactors were also used to produce phase-pure samples of coordination polymers MIL-96 and HKUST-1, in yields comparable to synthesis in traditional apparatus. PMID:25079230

  1. A responsive supramolecular polymer formed by orthogonal metal-coordination and cryptand-based host-guest interaction.

    PubMed

    Wei, Peifa; Xia, Binyuan; Zhang, Yanyan; Yu, Yihua; Yan, Xuzhou

    2014-04-18

    Herein, a cation responsive linear supramolecular polymer was constructed in an orthogonal fashion by unifying the themes of coordination-driven self-assembly and cryptand-based host-guest interaction. PMID:24609282

  2. Micromolding of a Highly Fluorescent Reticular Coordination Polymer: Solvent-Mediated Reconfigurable Polymerization in a Soft Lithographic Mold

    SciTech Connect

    Y You; H Yang; J Chung; J Kim; Y Jung; S Park

    2011-12-31

    Coordination polymerization of pyridine-based ligands and zinc or silver ions was controlled by soft lithographic micromolding in capillaries. The polymer patterns that are produced are highly fluorescent and supramolecularly structured.

  3. Synthesis, crystal structures, luminescence and catalytic properties of two d10 metal coordination polymers constructed from mixed ligands

    NASA Astrophysics Data System (ADS)

    Wang, Xiao-xiao; Zhang, Ming-xi; Yu, Baoyi; Van Hecke, Kristof; Cui, Guang-hua

    2015-03-01

    Two new coordination polymers [Cd(bmb)(hmph)]n (1), {[Ag(bmb)]·H2btc}n (2) (bmb = 1,4-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2hmph = homophthalic acid, H3btc = 1,3,5-benzenetetracarboxylic acid) were synthesized under hydrothermal conditions and characterized by single-crystal X-ray diffraction methods, IR spectroscopy, TGA, XRPD and elemental analysis. Complex 1 features a 3D threefold interpenetrating dia array with a 4-connected 66 topology. Complex 2 shows a 1D helix chain structure connected by L1 ligands, which is finally extended into a rarely 2D 4L2 supramolecular network via C-H⋯O hydrogen bond interactions. In addition, the luminescence and catalytic properties of the two complexes for the degradation of the methyl orange azo dye in a Fenton-like process were presented. The degradation efficiency of the methyl orange azo dye for 1 and 2 are 56% and 96%, respectively.

  4. Design and synthesis of two luminescent Zn(II)-based coordination polymers with different structures regulated by different solvent system

    NASA Astrophysics Data System (ADS)

    Wu, Wei-Ping; Wen, Gui-Lin; Liao, Yi; Wang, Jun; Lu, Lu; Wu, Yu; Xie, Bin

    2016-08-01

    Two new coordination polymers (CPs) [Zn(HL)(H2O)]n (1) and [Zn3(L)2(H2O)2]n·(H2O)n (2), based on a multifunctional ligand combined carboxylate groups and a nitrogen donor group 5-(6-carboxypyridin-2-yl)isophthalic acid (H3L), have been synthesized under different solvent media and fully characterized by powder X-ray diffraction (PXRD), infrared (IR) spectra, elemental analyses (EA) and thermogravimetric analyses (TGA). Single-crystal X-ray diffraction analysis reveals that 1 shows 1D dimeric chain structure, while 2 gives a 3D dense packing framework. Topology analysis illustrates that 2 can be simplified as a 3-nodal net (4, 5, 6-connected net) with the point symbol of {44·62}{46·64}2{48·66·8}. In addition, solid state luminescent properties of two complexes have also been studied in detail, which may act as the potential optical materials.

  5. Syntheses, crystal structures, and water adsorption behaviors of jungle-gym-type porous coordination polymers containing nitro moieties

    NASA Astrophysics Data System (ADS)

    Uemura, Kazuhiro; Onishi, Fumiaki; Yamasaki, Yukari; Kita, Hidetoshi

    2009-10-01

    NO 2 containing dicarboxylate bridging ligands, nitroterephthalate (bdc-NO 2) and 2,5-dinitroterephthalate (bdc-(NO 2) 2), afford porous coordination polymers, {[Zn 2(bdc-NO 2) 2(dabco)]· solvents} n ( 2⊃ solvents) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]· solvents} n ( 3⊃ solvents). Both compounds form jungle-gym-type regularities, where a 2D square grid composed of dinuclear Zn 2 units and dicarboxylate ligands is bridged by dabco molecules to extend the 2D layers into a 3D structure. In 2⊃ solvents and 3⊃ solvents, a rectangle pore surrounded by eight Zn 2 corners contains two and four NO 2 moieties, respectively. Thermal gravimetry (TG) and X-ray powder diffraction (XRPD) measurements reveal that both compounds maintain the frameworks regularities without guest molecules and with solvents such as MeOH, EtOH, i-PrOH, and Me 2CO. Adsorption measurements reveal that dried 2 and 3 adsorb H 2O molecules to be {[Zn 2(bdc-NO 2) 2(dabco)]·4H 2O} n ( 2⊃4H 2O) and {[Zn 2(bdc-(NO 2) 2) 2(dabco)]·6H 2O} n ( 3⊃6H 2O), showing the pore hydrophilicity enhancement caused by NO 2 group introduction.

  6. Improved synthesis of 4,4'-bipyridine-2-carboxylic acid and its use in the construction of novel metal and mixed-metal coordination polymers

    NASA Astrophysics Data System (ADS)

    Ellsworth, Joseph M.; Smith, Mark D.; zur Loye, Hans-Conrad

    2008-12-01

    An improved synthesis of 4,4'-bipyridine-2-carboxylic acid (ppcaH) has significantly increased the yield and thus enabled the preparation of four new coordination compounds that contain copper, cobalt, and vanadium or molybdenum oxide. Each structure was synthesized solvothermally and characterized by both powder and single-crystal X-ray diffraction. Cu(ppca) 2 ( 1) is a discrete molecular complex that crystallizes in the P2 1/ c space group, a = 5.0749(4) Å, b = 25.442(2) Å, c = 7.2536(6) Å. Co(ppca)(SCN)(H 2O) ( 2) is a H-bonded 2D coordination polymer that crystallizes in the P2 1/ c space group, a = 11.0716(4) Å, b = 11.2327(4) Å, c = 10.2073(4) Å. [Cu(ppca)(Hppca)] 2[H 2Mo 4O 14] ( 3) and Co(ppca) 2(V 2O 6)(H 2O) ( 4) are mixed-metal coordination polymers that crystallize in the P1¯ and Pbca space groups, respectively. Complex ( 3) is a 2D framework that contains an H 2Mo 4O 142- anion, a = 8.4019(6) Å, b = 8.6990(6) Å, c = 16.8513(12) Å, while ( 4) is a highly ordered H-bonded 3D mixed-metal coordination polymer whose vanadate cluster species was generated in situ using a tetramethyl ammonium hydroxide and acetic acid buffer solution, a = 18.0118(8) Å, b = 11.2664(5) Å, c = 25.3385(11) Å.

  7. Two new pyridine-2,3-dicarboxylate coordination polymers prepared from zerovalent metal precursor: Syntheses, luminescent and magnetic properties

    SciTech Connect

    Semerci, Fatih; Yeşilel, Okan Zafer; Soylu, Mustafa Serkan; Yerli, Yusuf; Dal, Hakan

    2014-02-15

    Two new K{sup +}/Cu(II) and Zn(II) coordination polymers with pyridine-2,3-dicarboxylate (pydc), (K{sub 2}[Cu(μ-pydc){sub 2}]·3H{sub 2}O){sub n} (1) and ([Zn(µ-pydc)(H{sub 2}O)(4-mim)]·H{sub 2}O){sub n} (2) (4-mim=4-methylimidazole) have been synthesized from zerovalent metal and characterized by IR, EPR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. In the sandwiched 3D anionic framework of 1, pydc ligands exhibit hexadentate coordination; tridentate coordination bond with Cu(II) and tridentate ionic interaction with K{sup +} ions. (K{sub 2}[Cu(μ-pydc){sub 2}]·3H{sub 2}O){sub n} shows a rare topology consists of three dimensional (3,4,5)-connected network with the point symbol of (4{sup 2}.6){sub 2}(4{sup 2}.8{sup 4})(4{sup 3}.6.8{sup 6}){sub 2}. The distorted square pyramidal geometry of 2 is completed with an nitrogen atom from 4-mim and aqua ligand to form a 1D polynuclear structure. The hydrogen bonds link the 1D chains into 3D architecture. The temperature dependent magnetic property of complex 1 has been studied. Complex 2 exhibits unusual yellow luminescence in the solid state at room temperature. - Graphical abstract: Two new K{sup +}/Cu(II) and Zn(II) coordination polymers with pyridine-2,3-dicarboxylate (pydc), (K{sub 2}[Cu(μ-pydc){sub 2}]·3H{sub 2}O){sub n} (1) and ([Zn(µ-pydc)(H{sub 2}O)(4-mim)]·H{sub 2}O){sub n} (2) (4-mim=4-methylimidazole) have been synthesized from zerovalent metal and characterized by IR, EPR spectroscopy, thermal analysis and single crystal X-ray diffraction techniques. The water soluble (K{sub 2}[Cu(μ-pydc){sub 2}]·3H{sub 2}O){sub n} shows three dimensional a rare 3,4,5-connected network with the point symbol of (4{sup 2}.6){sub 2}(4{sup 2}.8{sup 4})(4{sup 3}.6.8{sup 6}){sub 2}. The temperature dependent magnetic property of complex 1 has been studied. Complex 2 exhibits unusual yellow luminescence in the solid state at room temperature. Display Omitted - Highlights: • Water

  8. Influence of the steric effect of flexible isomeric phenylenediacetic acids on the resultant lead(II) coordination polymers

    NASA Astrophysics Data System (ADS)

    Wu, Yunlong; Zhao, Yanqing; Yang, Guo-Ping; Guo, Yanjun; Wang, Yao-Yu; Shi, Qi-Zhen

    2015-03-01

    To study the steric effect of the flexible dicarboxylate ligands on the resultant formations of coordination polymers (CPs), four new PbII CPs [Pb(1,2-pda)(H2O)]n (1), [Pb(1,3-pda)]n·nH2O (2), [Pb2(1,4-pda)2(H2O)]n·2nH2O (3a and 3b) have been produced by the isomeric phenylenediacetic acids (H2pda). The X-ray crystallography study reveals that CP 1 is a two-dimensional (2D) 4-connected sql (44.62) network via the weak Pb···O interactions built on 1D chain-like structure. CP 2 crystallizes in orthorhombic system with chiral space group P212121, showing a 4-connected sra (42.63.8) framework where a left-handed helical motif is formed by PbII ions and trans-1,3-pda ligands. More interestingly, CPs 3a and 3b are two true 3D polymorphs and have the different morphology. Topologically, the framework of 3a exhibits a 4-connected lon 66 motif, while that of 3b is a (4,6)-connected fsh (43.63)2(46.66.83) net. It is found that the three isomeric pda anions display the various coordination fashions in four CPs. The different structural arrangements show that the steric effect of the isomeric H2pda tectons has a positive role in directing the final products of PbII CPs. Also, the fluorescent properties of the CPs were studied in the solid state at room temperature.

  9. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  10. Synthesis, structures and properties of a family of four two-dimensional coordination polymers constructed from 5-hydroxyisophthalate

    SciTech Connect

    Zhang, Kou-Lin; Zhang, Jing-Bo; Jing, Chu-Yue; Zhang, Lei; Walton, Richard I.; Zhu, Peizhi; Ng, Seik Weng

    2014-03-15

    Four 2D coordination polymers (CPs) with different structures containing the multifunctional ligand 5-hydroxyisophthalate (5-OH-BDC{sup 2−}), [Zn(5-OH-BDC)(btb)]·2H{sub 2}O (1), [Cd(5-OH-BDC)(btp)(H{sub 2}O)]·3H{sub 2}O (2), [Cd(5-OH-BDC)(bth){sub 2}(H{sub 2}O)]·H{sub 2}O (3) and [Pb(5-OH-BDC)]·H{sub 2}O (4) [btp=1, 3-bis(1,2,4-triazol-1-yl)propane, btb=1,4-bis(1,2,4-triazol-1-yl)butane, bth=1, 6-bis(1,2,4-triazol-1-yl)hexane] were obtained. 1–3 were synthesised hydrothermally, while 4 was obtained under ambient condition. The adjacent (2D→2D) polycatenated 2D layers of 1 polythread in a parallel manner to form an unusual 2D→3D polythreaded framework. 2 contains an undulated 2D (4, 4) network and further extends into an “embracing” double-layer structure through the C–H···π and π···π stacking interactions. 3 exhibits a non-interpenetrating 2D (4, 4)-network. 4 exhibits a 2D double-layered binodal (4, 4)-net containing oblong nanochannels with symbol (4{sup 3}6{sup 3}){sub 2}. Reversible dehydration–rehydration is observed in 1, 2 and 4, which fall within the category of “recoverable collapsing” and “guest-induced re-formation” frameworks, while 3 exhibits irreversible dehydration–rehydration behaviour. The solid state fluorescent properties of 1–4 have been investigated. -- Graphical abstract: Among four 2D CPs reported, 1 is an unusual 2D→3D polythreaded framework. 4 exhibits 2D double-layered binodal (4, 4)-net containing nanochannels. Reversible dehydration–rehydration is observed in 1, 2 and 4. Highlights: • Four 2D CPs based on 5-hydroxyisophthalate with d{sup 10} and Pb(II) ions were reported. • 1 is an unusual 2D→3D polythreaded framework. • 4 shows a binodal (4, 4)-connected 2D double-layer network with nanochannels. • The materials 1, 2 and 4 show reversible dehydration–rehydration behaviours. • Solid state fluorescent properties were investigated.

  11. Hierarchical effect behind the supramolecular chirality of silver(I)-cysteine coordination polymers.

    PubMed

    Randazzo, Rosalba; Di Mauro, Alessandro; D'Urso, Alessandro; Messina, Gabriele C; Compagnini, Giuseppe; Villari, Valentina; Micali, Norberto; Purrello, Roberto; Fragalà, Maria Elena

    2015-04-01

    Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. Recently, chiroptical activity of Ag(+)/cysteine coordination polymers has been widely studied, while, on the other hand, the appearance of a plasmon-enhanced circular dichroic signal (PECD) at the plasmonic spectral region (λ > 400 nm) has been observed for AgNPs capped with chiral sulfur-containing amino acids. These two events are both potentially exploited for sensing applications. However, the presence of Ag(+) ions in AgNP colloidal solution deals with the competition of cysteine grafting at the metal NP surface and/or metal ion coordination. Herein we demonstrate that the chiroptical activity observed by adding cysteine to AgNP colloids prepared by pulsed laser ablation in liquids (PLAL) is mainly related to the formation of CD-active Ag(+)/cysteine supramolecular polymers. The strict correlation between supramolecular chirality and hierarchical effects, driven by different chemical environments experienced by cysteine when different titration modalities are used, is pivotal to validate cysteine as a fast and reliable probe to characterize the surface oxidation of AgNPs prepared by pulsed laser ablation in liquids by varying the laser wavelengths.

  12. Coordination polymers assembled from semirigid fluorene-based ligand: A couple of enantiomers

    NASA Astrophysics Data System (ADS)

    Li, Liang; Wang, Zihao; Chen, Qiang; Zhou, Xinhui; yang, Tao; Zhao, Qiang; Huang, Wei

    2015-11-01

    A couple of Mg(II)-based coordination polymer enantiomers [MgL(DMF)(H2O)3]n (R-MgL and S-MgL), and a Zn(II)-based coordination polymer [ZnL(DMF)]n (ZnL) have been synthesized by the solvothermal reactions between the achiral ligand 4,4‧-(9,9-dimethyl-9H-fluorene-2,7-diyl)dibenzoic acid (H2L) and the corresponding metal salts. The MgL was obtained as the racemic conglomerate from the one pot reaction. The single crystal X-ray structural analyses reveal that MgL crystallize in the chiral space group P21 and possesses the right- or left-handed homochiral 1D Mg-O-C helical chain. The ZnL crystallize in the non-centrosymmetrical space group Aba2 and possesses the 2D network comprised of 1D Zn-O-C meso-helical chains and ligands. The MgL and ZnL complexes exhibit strong coordination-perturbed ligand-centered blue emissions when excited at 320 nm. Their second-order nonlinear optical effects and thermal properties have also been studied.

  13. Picogram sensing of trinitrophenol in aqueous medium through a water stable nanoscale coordination polymer

    NASA Astrophysics Data System (ADS)

    Asha, K. S.; Vaisakhan, G. S.; Mandal, Sukhendu

    2016-06-01

    A water stable nanoscale coordination polymer (CP) can detect trinitrophenol (TNP) in an aqueous medium at a record-picogram level (~1.66 pg cm-2) with a detection limit of 1.66 ppb. This is a simple and low-cost method for the detection of TNP in aqueous media in contact mode, taking advantage of the unique structural arrangement of the as-synthesized CP and the associated photophysical properties.A water stable nanoscale coordination polymer (CP) can detect trinitrophenol (TNP) in an aqueous medium at a record-picogram level (~1.66 pg cm-2) with a detection limit of 1.66 ppb. This is a simple and low-cost method for the detection of TNP in aqueous media in contact mode, taking advantage of the unique structural arrangement of the as-synthesized CP and the associated photophysical properties. Electronic supplementary information (ESI) available: Experimental section, a scheme for nano CP synthesis, a table for crystallographic data and selected bond lengths, figures of coordination modes of metal and ligand, IR, TGA, DLS and PXRD characterization of the micro/nano sample, SEM and TEM images, N2 adsorption-desorption plot, the optical properties of 1 in DMF and photophysical studies and NMR studies of the compound. See DOI: 10.1039/c5nr08159a

  14. Hierarchical effect behind the supramolecular chirality of silver(I)-cysteine coordination polymers.

    PubMed

    Randazzo, Rosalba; Di Mauro, Alessandro; D'Urso, Alessandro; Messina, Gabriele C; Compagnini, Giuseppe; Villari, Valentina; Micali, Norberto; Purrello, Roberto; Fragalà, Maria Elena

    2015-04-01

    Cysteine is a sulfur-containing amino acid that easily coordinates to soft metal ions and grafts to noble metal surfaces. Recently, chiroptical activity of Ag(+)/cysteine coordination polymers has been widely studied, while, on the other hand, the appearance of a plasmon-enhanced circular dichroic signal (PECD) at the plasmonic spectral region (λ > 400 nm) has been observed for AgNPs capped with chiral sulfur-containing amino acids. These two events are both potentially exploited for sensing applications. However, the presence of Ag(+) ions in AgNP colloidal solution deals with the competition of cysteine grafting at the metal NP surface and/or metal ion coordination. Herein we demonstrate that the chiroptical activity observed by adding cysteine to AgNP colloids prepared by pulsed laser ablation in liquids (PLAL) is mainly related to the formation of CD-active Ag(+)/cysteine supramolecular polymers. The strict correlation between supramolecular chirality and hierarchical effects, driven by different chemical environments experienced by cysteine when different titration modalities are used, is pivotal to validate cysteine as a fast and reliable probe to characterize the surface oxidation of AgNPs prepared by pulsed laser ablation in liquids by varying the laser wavelengths. PMID:25781213

  15. Four unexpected lanthanide coordination polymers involving in situ reaction of solvent N, N-Dimethylformamide

    SciTech Connect

    Jin, Jun-Cheng; Tong, Wen-Quan; Fu, Ai-Yun; Xie, Cheng-Gen; Chang, Wen-Gui; Wu, Ju; Xu, Guang-Nian; Zhang, Ya-Nan; Li, Jun; Li, Yong; Yang, Peng-Qi

    2015-05-15

    Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of DMF solvent under solvothermal conditions. The isostructural complexes 1–3 contain four types of 2{sub 1} helical chains. While the Nd(III) ions are bridged through μ{sub 2}-HIDC{sup 2−} and oxalate to form a 2D sheet along the bc plane without helical character in 4. Therefore, complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature. - Graphical abstract: Four unexpected 2D lanthanide coordination polymers have been synthesized through in situ reactions of solvent DMF to formate acid or oxalic acid under solvothermal conditions. The isostructural complexes 1–3 contain four types of different 2{sub 1} helical chains in the 2D layer and 1 exhibits bright red solid-state phosphorescence upon UV radiation. - Highlights: • Four unexpected 2D lanthanide coordination compounds have been synthesized through in situ reactions under solvothermal conditions. • The complexes 1–3 contain four types of 2{sub 1} helical chains in the layer. • Complex 1 exhibits bright red solid-state phosphorescence upon exposure to UV radiation at room temperature.

  16. Nickel(II) and copper(II) coordination polymers with 1,2-bis(tetrazol-1-yl)ethane and thiocyanate: Structure, supramolecular isomerism and magnetism

    NASA Astrophysics Data System (ADS)

    Liu, Pei-Pei; Wang, Yan-Qin; Tian, Chun-Yan; Peng, Hui-Qi; Gao, En-Qing

    2009-02-01

    Two heteroleptic coordination polymers with the flexible 1,2-bis(tetrazol-1-yl)ethane (btze) ligand, [Ni(btze) 2(SCN) 2] n ( 1) and [Cu(btze)(SCN) 2] n ( 2), have been synthesized in presence of thiocyanate. Compound 1 is composed of 1D chains with double btze bridges in the V-shaped gauche conformation, while 2 exhibits 2D coordination networks in which 1D chains with double N, S-thiocyanate bridges are cross-linked by btze bridges in the Z-shaped transoid conformation. In both compounds, the coordination motifs are stacked into 3D architectures through S···S and C-H···N interactions. The structures of 1 and a previously reported compound illustrate an interesting type of supramolecular isomerism. The two isomers exhibit almost identical 1D coordination structure and 2D hydrogen bonded superstructure, and the difference lies only in the interlayer packing associated with S···S contacts. Compound 2 exhibits weak antiferromagnetic interactions with J = 0.29 cm -1, consistent with the structural observation that the thiocyanate bridge adopts an equatorial-axial disposition between Cu(II) ions.

  17. Understanding the Structure of Reversible Coordination Polymers Based on Europium in Electrostatic Assemblies Using Time-Resolved Luminescence.

    PubMed

    Xu, Limin; Xie, Mengqi; Huang, Jianbin; Yan, Yun

    2016-06-14

    In situ characterization of the structure of reversible coordination polymers remains a challenge because of their dynamic and concentration-responsive nature. It is especially difficult to determine these structures in their self-assemblies where their degree of polymerization responds to the local concentration. In this paper, we report on the structure of reversible lanthanide coordination polymers in electrostatic assemblies using time-resolved luminescence (TRL) measurement. The reversible coordinating system is composed of the bifunctional ligand 1,11-bis(2,6-dicarboxypyridin-4-yloxy)-3,6,9-trioxaundecane (L2EO4) and europium ion Eu(3+). Upon mixing with the positively charged diblock copolymer poly(2-vinylpyridine)-b-poly(ethylene oxide) (P2VP41-b-PEO205), electrostatic polyion micelles are formed and the negatively charged L2EO4-Eu coordination complex simultaneously transforms into coordination "polymers" in the micellar core. By virtue of the water-sensitive luminescence of Eu(3+), we are able to obtain the structural information of the L2EO4-Eu coordination polymers before and after the formation of polyion micelles. Upon analyzing the fluorescence decay curves of Eu(3+) before and after micellization, the fraction of Eu(3+) fully coordinated with L2EO4 is found to increase from 32 to 83%, which verifies the occurrence of chain extension of the L2EO4-Eu coordination polymers in the micellar core. Our work provides a qualitative picture for the structure change of reversible coordination polymers, which allows us to look into these "invisible" structures.

  18. Understanding the Structure of Reversible Coordination Polymers Based on Europium in Electrostatic Assemblies Using Time-Resolved Luminescence.

    PubMed

    Xu, Limin; Xie, Mengqi; Huang, Jianbin; Yan, Yun

    2016-06-14

    In situ characterization of the structure of reversible coordination polymers remains a challenge because of their dynamic and concentration-responsive nature. It is especially difficult to determine these structures in their self-assemblies where their degree of polymerization responds to the local concentration. In this paper, we report on the structure of reversible lanthanide coordination polymers in electrostatic assemblies using time-resolved luminescence (TRL) measurement. The reversible coordinating system is composed of the bifunctional ligand 1,11-bis(2,6-dicarboxypyridin-4-yloxy)-3,6,9-trioxaundecane (L2EO4) and europium ion Eu(3+). Upon mixing with the positively charged diblock copolymer poly(2-vinylpyridine)-b-poly(ethylene oxide) (P2VP41-b-PEO205), electrostatic polyion micelles are formed and the negatively charged L2EO4-Eu coordination complex simultaneously transforms into coordination "polymers" in the micellar core. By virtue of the water-sensitive luminescence of Eu(3+), we are able to obtain the structural information of the L2EO4-Eu coordination polymers before and after the formation of polyion micelles. Upon analyzing the fluorescence decay curves of Eu(3+) before and after micellization, the fraction of Eu(3+) fully coordinated with L2EO4 is found to increase from 32 to 83%, which verifies the occurrence of chain extension of the L2EO4-Eu coordination polymers in the micellar core. Our work provides a qualitative picture for the structure change of reversible coordination polymers, which allows us to look into these "invisible" structures. PMID:27228142

  19. Syntheses, structures and luminescence of three copper(I) cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene ligand

    NASA Astrophysics Data System (ADS)

    Shao, Min; Li, Ming-Xing; Lu, Li-Ruo; Zhang, Heng-Hua

    2016-09-01

    Three Cu(I)-cyanide coordination polymers based on trigonal 1,3,5-tris(1H-imidazol-1-yl)benzene (tib) ligand, namely [Cu3(CN)3(tib)]n (1), [Cu4(CN)4(tib)]n (2), and [Cu2(CN)2(tib)]n (3), have been prepared and characterized by elemental analysis, IR, PXRD, thermogravimetry and single-crystal X-ray diffraction analysis. Complex 1 displays a 3D metal-organic framework with nanosized pores. Complex 2 is a 3D coordination polymer assembled by three μ2-cyanides and a μ3-cyanide with a very short Cu(I)···Cu(I) metal bond(2.5206 Å). Complex 3 is a 2D coordination polymer constructing from 1D Cu(I)-cyanide zigzag chain and bidentate tib spacer. Three Cu(I) complexes are thermally stable up to 250-350 °C. Complexes 1-3 show similar orange emission band at 602 nm originating from LMCT mechanism.

  20. Coordination polymers built from 1,4-bis(imidazol-1-ylmethyl)benzene: from crystalline to amorphous.

    PubMed

    Adarsh, N N; Novio, Fernando; Ruiz-Molina, Daniel

    2016-07-28

    The supramolecular chemistry of the bis-imidazole ligand 1,4-bis(imidazol-1-ylmethyl)benzene, popularly known as bix, has been explored by various researchers in order to synthesize functional coordination polymers (CPs). The flexibility of the bix ligand, its unpredictable conformation and its coordination behaviour with transition metal ions have resulted in a huge number of structurally diverse and functionally intriguing CPs. In this perspective review we discuss the progress in CPs of bix between 1997 and today. More precisely, this review emphasizes the developments in functional supramolecular coordination polymers built from the bix ligand, from crystalline materials to amorphous nanomaterials. PMID:27335273

  1. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    SciTech Connect

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E.; Chan, Benny C.; Lill, Daniel T. de

    2015-05-15

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C{sub 6}H{sub 2}O{sub 5})(C{sub 6}H{sub 3}O{sub 5})(H{sub 2}O)]{sub n} (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented. - Graphical abstract: A new two-dimensional coordination polymer derived from the in-situ hydrolysis of a furan dimethyl ester with lanthanide(III) ions was obtained in order to study its photophysical behavior when constructed from trivalent Eu and Tb. Quantum yields, lifetime measurements, and singlet/triplet state energies values were obtained. The nature of the material's excited state dynamics is examined and correlated to its structure in order to explain the overall luminescent efficiency of the system. - Highlights: • A new lanthanide–furandicarboxylate coordination polymer is presented. • Eu and Tb compounds display luminescent properties, albeit with low quantum yields. • Photophysical behavior explained through the compound's triplet state and structure. • Nonradiative deactivation of luminescence through high-energy oscillators was noted. • Molecular modeling of the organic moiety was conducted.

  2. Synthesis and characterization of 1D iron(II) spin crossover coordination polymers with hysteresis.

    PubMed

    Bauer, Wolfgang; Lochenie, Charles; Weber, Birgit

    2014-02-01

    Purposeful ligand design was used for the synthesis of eight new 1D iron(II) spin crossover coordination polymers aiming for cooperative spin transitions with hysteresis. The results from magnetic measurements and X-ray structure analysis show that the combination of rigid linkers and a hydrogen bond network between the 1D chains is a promising tool to reach this goal. Five of the eight new samples show a cooperative spin transition with hysteresis with up to 43 K wide hysteresis loops.

  3. Selective Adsorption of CO2 from Light Gas Mixtures Using a Structurally Dynamic Porous Coordination Polymer**

    SciTech Connect

    Kristi L. Kauffman, Jeffrey T. Culp, Andrew J. Allen, Laura Espinal, Winnie Wong-Ng, Thomas D. Brown, Angela Goodman, Mark P. Bernardo, Russel J. Pancoast, Danielle Chirdon, Christopher Matranga*

    2010-01-01

    The selective adsorption of CO{sub 2} from mixtures with N{sub 2}, CH{sub 4}, and N{sub 2}O in a dynamic porous coordination polymer (see monomer structure) was evaluated by ATR-FTIR spectroscopy, GC, and SANS. All three techniques indicate highly selective adsorption of CO{sub 2} from CO{sub 2}/CH{sub 4} and CO{sub 2}/N{sub 2} mixtures at 30 C, with no selectivity observed for the CO{sub 2}/N{sub 2}O system.

  4. A novel 2D porous indium coordination polymer with tunable luminescent property

    NASA Astrophysics Data System (ADS)

    Li, Xuejiao; Wang, Fangfang; Yang, He; Xu, Bo; Li, Cuncheng

    2016-08-01

    A new Indium coordination polymer [In(pda)1.5(phen)]n1 based on 1,4-phenylenediacetic acid (H2pda) and phen = 1,10-phenanthroline was obtained under hydrothermal condition and further characterized by single crystal X-ray analysis and other physicochemical studies such as infrared spectrum (IR), elemental analysis, thermogravimetric analysis (TGA) and powder X-ray diffraction (PXRD). Structure analysis reveals that complex 1 exhibits 2D porous (6,3) connected layer structure. Luminescent property of 1 was investigated both in the solid state and in different solvents and the results indicated that complex 1 demonstrates distinct solvent dependent luminescent property.

  5. Lattice architecture effect on the cooperativity of spin transition coordination polymers

    SciTech Connect

    Chiruta, Daniel; Jureschi, Catalin-Maricel; Rotaru, Aurelian E-mail: rotaru@eed.usv.ro; Linares, Jorge E-mail: rotaru@eed.usv.ro; Garcia, Yann

    2014-02-07

    We have investigated in the framework of the Ising-like model, by means of Monte Carlo Metropolis method with open boundary condition, the architecture effect on the cooperativity of spin transition coordination polymers. We have analyzed the influence of several physical parameters (size, pressure, and edge effects) on different lattice architectures which were in good agreement with reported experimental data. We show that the cooperativity of a spin crossover system, characterized by the same number of molecules and the same short- and long-range interaction parameters, is progressively enhanced when going from a 1D chain to a 1D ladder type lattice and to a 2D square lattice.

  6. Efficient fixation of CO2 by a zinc-coordinated conjugated microporous polymer.

    PubMed

    Xie, Yong; Wang, Ting-Ting; Yang, Rui-Xia; Huang, Nian-Yu; Zou, Kun; Deng, Wei-Qiao

    2014-08-01

    Zinc-coordinated conjugated microporous polymers (Zn-CMPs), prepared by linking salen zinc and 1,3,5-triethynylbenzene, exhibit extraordinary activities (turnover frequencies of up to 11600 h(-1) ), broad substrate scope, and group tolerance for the synthesis of functional organic carbonates by coupling epoxides with CO2 at 120 °C and 3.0 MPa without the use of additional solvents. The catalytic activity of Zn-CMP is comparable to those of homogeneous catalysts and superior to those of other heterogeneous catalysts. This catalyst could be reused more than ten times without a significant decrease in performance.

  7. Formation of Highly Thermostable Copper-Containing Energetic Coordination Polymers Based on Oxidized Triaminoguanidine.

    PubMed

    Yan, Qi-Long; Cohen, Adva; Petrutik, Natan; Shlomovich, Avital; Zhang, Jian-Guo; Gozin, Michael

    2016-08-24

    A series of novel highly thermostable energetic coordination polymers (ECPs), with promising mechanical sensitivity properties, were prepared by an in situ oxidation-coordination reaction of triaminoguanidine hydrochloride with copper nitrate in aqueous solution. The molecular structures and properties of these ECPs could be tuned, by varying the ratios and concentrations of the starting materials. Our ECPs exhibit remarkable thermostability (>390 °C) and very low sensitivity to impact (Im > 98 J). The best-performing material (ECP-5) has a calculated detonation velocity of 8969 m·s(-1) and a decomposition peak temperature of 396.9 °C, demonstrating an outstanding balance between two inherently contradicting properties: high detonation performance and very low sensitivity.

  8. Formation of Highly Thermostable Copper-Containing Energetic Coordination Polymers Based on Oxidized Triaminoguanidine.

    PubMed

    Yan, Qi-Long; Cohen, Adva; Petrutik, Natan; Shlomovich, Avital; Zhang, Jian-Guo; Gozin, Michael

    2016-08-24

    A series of novel highly thermostable energetic coordination polymers (ECPs), with promising mechanical sensitivity properties, were prepared by an in situ oxidation-coordination reaction of triaminoguanidine hydrochloride with copper nitrate in aqueous solution. The molecular structures and properties of these ECPs could be tuned, by varying the ratios and concentrations of the starting materials. Our ECPs exhibit remarkable thermostability (>390 °C) and very low sensitivity to impact (Im > 98 J). The best-performing material (ECP-5) has a calculated detonation velocity of 8969 m·s(-1) and a decomposition peak temperature of 396.9 °C, demonstrating an outstanding balance between two inherently contradicting properties: high detonation performance and very low sensitivity. PMID:27483139

  9. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  10. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  11. 1D coordination polymers with polychalcogenides as linkers between metal atoms

    SciTech Connect

    Kysliak, Oleksandr; Beck, Johannes

    2013-07-15

    The reactions of zinc metal with elemental selenium and selenium/sulfur mixtures in liquid ammonia or methylamine under solvothermal conditions in closed glass ampoules at 50 °C lead within some days specifically to [Zn(NH{sub 3}){sub 2}Se{sub 4}]{sub n} (1), [Zn(MeNH{sub 2}){sub 2}Se{sub 4}]{sub n} (2), [Zn(NH{sub 3}){sub 2}Se{sub 2.23}S{sub 1.77}]{sub n} (3). From MnCl{sub 2}, Rb{sub 2}Se and excess Se in n-butylamine [Mn({sup n}BuNH{sub 2}){sub 4}Se{sub 6}]{sub n} (4) is obtained after prolonged reaction time at ambient temperature. The compounds are sensitive towards air and loss of NH{sub 3} or the amine ligands. The crystal structures were determined by single crystal diffraction at low temperatures. As a common structural feature, all compounds represent 1D coordination polymers with polychalcogenide chains as linkers between the metal atoms and consist of infinite [M–Ch{sub m}–]{sub n} chains (M=Zn, Mn; Ch{sub m}=Se{sub 4}, (S/Se){sub 4}, Se{sub 6}). The Zn central atoms in 1–3 have tetrahedral coordination with two amine ligands, the Mn atoms in 4 have octahedral coordination with four amine ligands and cis position of the two Se atoms. Raman spectra of 1–3 show the stretching mode vibrations of the Ch{sub 4} groups. The observation of S–S, S–Se, and Se–Se vibration bands in the spectrum of 3 indicates the presence of mixed S/Se polyanions. An optical band gap of 1.86(5) eV was determined for 2 by diffuse reflectance spectroscopy. - Graphical abstract: The reaction of Zn and Se in liquid methylamine yields dark red [Zn(NH{sub 2}CH{sub 3})Se{sub 4}], a 1D coordination polymer consisting of helical Zn–Se{sub 4}–Zn– chains. - Highlights: • A series of 1D coordination polymers consisting of metal amine complexes concatenated by polychalcogenide ions is presented. • Syntheses were performed as solvothermal reactions in liquid ammonia, liquid methylamine and n-butylamine. • Crystal structures are dominated by helices [M–Ch{sub m

  12. Copper and cobalt coordination polymers based on isophthalate as bridging ligands and imidazole as capping ligands: Syntheses, crystal structures, spectroscopic characterization

    NASA Astrophysics Data System (ADS)

    Song, Jiang-Feng; Chen, Yan; Li, Zhi-Gang; Zhou, Rui-Sha; Xu, Xiao-Yu; Xu, Ji-Qing

    2007-10-01

    Two novel coordination polymers, {[Cu(ip)(Him) 2(DMF)]·H 2O} ( 1) and Co(ip)(Him) 2 ( 2), (ip = isophthalate, Him = imidazole) were prepared under hydrothermal conditions and their structures were determined by single-crystal X-ray diffraction. X-ray structural analysis reveals that 1-D zigzag metal-organic chains are connected to form a 3-D supramolecular framework in compounds 1 and 2 by hydrogen-bonding and π-π interaction or other intermolecular contacts. Infrared, UV-vis, and elemental analysis were performed to characterize the two compounds. The result of magnetic determination for compound 2 shows there exist antiferromagnetic interaction between magnetic centers.

  13. Syntheses, structures and properties of two new coordination polymers based on D-camphoric acid and 2-phenyl-4,6-diamino-1,3,5-triazine

    NASA Astrophysics Data System (ADS)

    Lun, Huijie; Yang, Jinghe; Jin, Linyu; Cui, Sasa; Bai, Yanlong; Zhang, Xudong; Li, Yamin

    2015-05-01

    By hydrothermal method, two new coordination polymers [Co(ca)(phdat)]n (1), [Ni(ca)(phdat).0.125H2O]n (2) (H2ca=D-camphoric acid, phdat=2-phenyl-4,6-diamino-1,3,5-triazine) have been achieved and structurally characterized by IR, elemental analyses, X-ray single-crystal diffraction and TGA. The X-ray single-crystal diffraction reveals that compounds 1 and 2 are isostructural, both of which exhibit two-dimensional layered network built up from paddle-wheel Co2(CO2)4/Ni2(CO2)4 SBUs by ca2- ligand. In the existence of π…π stacking interactions between triazine rings and phenyl rings, the 3D networks are constructed with the hanging phdat filled between the neighboring layers. Furthermore, compounds 1-2 exhibit antiferromagnetic behavior and compound 2 displays a good activity for methanol oxidation.

  14. Assembly, structures and properties of four Cu(II) coordination polymers based on a semi-rigid bis-pyridyl-bis-amide ligand and different polycarboxylates

    NASA Astrophysics Data System (ADS)

    Wang, Xiu-Li; Luan, Jian; Lin, Hong-Yan; Lu, Qi-Lin; Le, Mao; Liu, Guo-Cheng

    2014-09-01

    Four new Cu(II) coordination polymers, namely, [Cu(3-bpah)(1,4-NDC)(H2O)]·3H2O (1), [Cu2(3-bpah)(1,4-NDC)2]·(1,4-H2NDC)·3H2O (2), [Cu(3-bpah)(3-NIP)] (3), [Cu(3-bpah)(1,3,5-HBTC)]·2H2O (4), where 3-bpah = N,N‧-bis(3-pyridinecarboxamide)-1,2-cyclohexane, 1,4-H2NDC = 1,4-naphthalenedicarboxylic acid, 3-H2NIP = 3-nitrophthalic acid, 1,3,5-H3BTC = 1,3,5-benzenetricarboxylic acid, have been synthesized under hydrothermal conditions. The structures of 1-4 have been determined by single crystal X-ray diffraction and were further characterized by infrared spectroscopy (IR) and thermogravimetric analyses (TGA). Complex 1 displays a 1D double strand. Complex 2 shows a 3D α-Po framework with 1,4-H2NDC guest molecules inside the cages. Complex 3 reveals a 2D wave-like network. Complex 4 exhibits a 2D sql topology. The structural discrepancies of complexes 1-4 imply that the O-donor ancillary ligands play an important role in the formation of the resultant structures of the title coordination polymers. The fluorescent, electrochemical and photocatalytic properties of complexes 1-4 have been studied.

  15. Two interpenetrating Cu{sup II}/Ni{sup II}-coordinated polymers based on an unsymmetrical bifunctional N/O-tectonic: Syntheses, structures and magnetic properties

    SciTech Connect

    Liu, Yong-Liang; Wu, Ya-Pan; Li, Dong-Sheng; Dong, Wen-Wen; Zhou, Chun-Sheng

    2015-03-15

    Two new interpenetrating Cu{sup II}/Ni{sup II} coordination polymers, based on a unsymmetrical bifunctional N/O-tectonic 3-(pyrid-4′-yl)-5-(4″-carbonylphenyl)-1,2,4-triazolyl (H{sub 2}pycz), ([Cu-(Hpycz){sub 2}]·2H{sub 2}O){sub n} (1) and ([Ni(Hpycz){sub 2}]·H{sub 2}O){sub n} (2), have been solvothermally synthesized and structure characterization. Single crystal X-ray analysis indicates that compound 1 shows 2-fold parallel interpenetrated 4{sup 4}-sql layers with the same handedness. The overall structure of 1 is achiral—in each layer of doubly interpenetrating nets, the two individual nets have the opposite handedness to the corresponding nets in the adjoining layers—while 2 features a rare 8-fold interpenetrating 6{sup 6}-dia network that belongs to class IIIa interpenetration. In addition, compounds 1 and 2 both show similar paramagnetic characteristic properties. - Graphical abstract: Two new Cu(II)/Ni(II) coordination polymers present 2D parallel 2-fold interpenetrated 4{sup 4}-sql layers and a rare 3D 8-fold interpenetrating 6{sup 6}-dia network. In addition, magnetic susceptibility measurements show similar paramagnetic characteristic for two complexes. - Highlights: • A new unsymmetrical bifunctional N/O-tectonic as 4-connected spacer. • A 2-fold parallel interpenetrated sql layer with the same handedness. • A rare 8-fold interpenetrating dia network (class IIIa)

  16. Effect of substituent on structures and catalytic properties of cobalt(II) isophthalate coordination polymers with a semi-rigid bis(benzimidazole)

    NASA Astrophysics Data System (ADS)

    Zhang, Xu; Meng, Xiang-Li; Huang, Cui-Miao; Cui, Guang-Hua

    2015-11-01

    Three Co(II) coordination polymers based on flexible bis(2-dimethylbenzimidazole) and the derivatives of the familiar isophthalate co-ligands, namely [Co(L)(ip)]n (1), [Co2(L)2(nip)2]n (2) and [Co2(L)2(tbip)2·2H2O]n (3) (L = 1,2-bis(2-methylbenzimidazol-1-ylmethyl)benzene, H2ip = isophthalic acid, H2nip = 5-nitroisophthalic acid, H2tbip = 5-tert-butylisophthalic acid) have been synthesized by hydrothermal methods and characterized by elemental analyses, IR spectra, thermogravimetric analyses and single-crystal X-ray diffraction. Both complexes 1 and 2 exhibit a 2-fold interpenetrating 3D network with 66-dia topology, whereas complex 3 is bridged by the L and tbip2- ligands to form a rarely tri-nodal (3,3,5) layer with 3,3,5L18 topology. The results indicate that Co(II) mixed coordination polymers structurally modulated by the substituent effect of isophthalate-involved co-ligands. In addition, the fluorescence and catalytic activity of the complexes for the degradation of methyl orange by the sodium persulfate in a Fenton-like process have been investigated.

  17. The Enhancement on Proton Conductivity of Stable Polyoxometalate-Based Coordination Polymers by the Synergistic Effect of MultiProton Units.

    PubMed

    Li, Jing; Cao, Xue-Li; Wang, Yuan-Yuan; Zhang, Shu-Ran; Du, Dong-Ying; Qin, Jun-Sheng; Li, Shun-Li; Su, Zhong-Min; Lan, Ya-Qian

    2016-06-27

    Two novel polyoxometalate (POM)-based coordination polymers, namely, [Co(bpz)(Hbpz)][Co(SO4 )0.5 (H2 O)2 (bpz)]4 [PMo(VI) 8 Mo(V) 4 V(IV) 4 O42 ]⋅13 H2 O (NENU-530) and [Ni2 (bpz)(Hbpz)3 (H2 O)2 ][PMo(VI) 8 Mo(V) 4 V(IV) 4 O44 ]⋅8 H2 O (NENU-531) (H2 bpz=3,3',5,5'-tetramethyl-4,4'-bipyrazole), were isolated by hydrothermal methods, which represented 3D networks constructed by POM units, the protonated ligand and sulfate group. In contrast with most POM-based coordination polymers, these two compounds exhibit exceptional excellent chemical and thermal stability. More importantly, NENU-530 shows a high proton conductivity of 1.5×10(-3)  S cm(-1) at 75 °C and 98 % RH, which is one order of magnitude higher than that of NENU-531. Furthermore, structural analysis and functional measurement successfully demonstrated that the introduction of sulfate group is favorable for proton conductivity. Herein, the syntheses, crystal structures, proton conductivity, and the relationship between structure and property are presented.

  18. 3D dose verification with polymer gel detectors of brain-spine match line for proton pencil beam cranio-spinal: A preliminary study

    NASA Astrophysics Data System (ADS)

    Avery, S.; Cardin, A.; Lin, L.; Kirk, M.; Kassaee, A.; Maryanski, M. J.

    2015-01-01

    This paper is intended as a preliminary study to demonstrate the quality assurance benefits from polymer gel detectors for proton pencil beam cranio-spinal treatments. A stable gel type was selected for protons to suppress the LET dependence at the end of the Bragg peak. The depth dose distributions in the gels were examined with regard of its dose dependences and compared to baseline measurements. The preliminary experimental results indicate polymer gel detectors may be able to verify dose in three dimensions along match line for proton therapy treatments.

  19. Syntheses, crystal structures and properties of series of 4d–4f ln(III)–Ag(I) heterometallic coordination polymers

    SciTech Connect

    Ran, Xing-Rui; Wang, Ning; Xie, Wei-Ping; Xiong, Yan-Ju; Cheng, Qian; Long, Yi; Yue, Shan-Tang; Liu, Ying-Liang

    2015-05-15

    By control of the experimental parameters such as ligands, pH value and reacting temperature, series of three-dimensional (3D) 4d–4f Ln(III)–Ag(I) porous coordination polymers (PCPs) with interesting chain-layer construction, namely, ([Ln{sup III}Ag{sup I}(na)(ina)(ox)]·2(H{sub 2}O)){sub n} [Ln=Sm(1), Eu(2), Gd(3), Tb(4), Dy(5), Ho(6), Y(7), Yb(8)], have been successfully synthesized under hydrothermal conditions and structurally characterized. All the complexes are characterized by elemental analyses, FT-IR spectroscopy, Powder X-ray diffraction (PXRD) and thermogravimetric analyses (TGA). Furthermore, the luminescence properties of compounds 2 and 4 and the magsnetic properties of complexes 3 and 5 were also investigated in detail. - Graphical abstract: Series of three-dimensional (3D) 4d–4f Ln(III)–Ag(I) porous coordination polymers (PCPs) with interesting chain-layer construction which are featured by tetranuclear Ln{sub 2}Ag{sub 2} and ‘non-linear’ N–Ag–N linkages. - Highlights: • Complexes 1–8 are first built by three kinds of organic ligands based on nicotinic acid and isonicotinic acid. • PCPs 1–8 are featured by tetranuclear Ln{sub 2}Ag{sub 2} and ‘non-linear’ N–Ag–N linkages. • The total solvent-accessible volume of PCP 2 comprises 11.6% of the crystal volume after dislodging the free water molecules. • Complexes 2 and 4 exhibit characteristic lanthanide-centered luminescence, while compounds 3 and 5 show antiferromagnetic behaviors.

  20. Synthesis, Structure and Spectroscopy Study of a 1D Copper Coordination Polymer Based on a Carboxybenzyl Viologen Ligand and SCN-Anion.

    PubMed

    Qiu, Li-xia; Wan, Fang; Zhu, Bin-bin; Sun, Yan-qiong; You, Yi; Chen, Yi-ping

    2015-05-01

    A zwitterionic viologen derivative ligand, 1,1'-bis(4-carboxybenzyl)-4 4'-bipyridinium dichloride (H2BpybcCl2) as a multifunctional ligand, has been synthesized incorporating a 4,4'-bipyridine core with two carboxylate groups as a. building block, specifically designed for the rational construction of metal-organic frameworks. H2BpybcCl2 ligand is a multifunctional ligand that contains viologen's specific functions and carboxylate coordination groups. The coordination polymers of viologen carboxylate with copper thiocyanate are not reported to date. A novel copper coordination polymer, [Cu(SCN)2 (Bpybc)] (I) was by solution diffusion method and characterized by single-crystal X-ray diffraction, XRD, elemental analyses, IR spectroscopy, UV-Vis DRS, TG analysis and liquid-state luminescent properties. Compound I crystallized in the monoclinic system with C2/c space group. Crystal data for complex I is as follow: a=19. 508(4) A, b=9. 474(2) Å, c =16. 963(3) Å, α=90°, β=124. 92(3)°, γ=90°. Two SCN-anions were coordinated to the Cu2+ cation forming a [Cu(SCN)2] unit. Complex I was built up by [Cu(SCN)2] units bridged sequentially by ladder-shaped Bpybc ligands to form one-dimensional zigzag chains running along the [203] direction. The chains were held together by π-π interaction between the pyridine rings and phenyl rings, thus yielding a 3-D extended supramolecular network. The UV-Visible absorption spectra show the absorption bands of π-π* transitions of Bpybc ligands and d-->d transition of Cu2+. The liquid-state luminescent property of compound I was investigated at room temperature. Attractively, the complex exhibits strong blue emission peak at 533 nm (λEx=360 nn) that can be assigned to intraligand transition of Bpybc ligand when it was excited at 360 nm. PMID:26415457

  1. Facile fabrication of MIL-103(Eu) porous coordination polymer nanostructures and their sorption and sensing properties.

    PubMed

    Liu, Qing; Yang, Ji-Min; Guo, Fan; Jin, Li-Na; Sun, Wei-Yin

    2016-04-01

    Nano/microscale lanthanide porous coordination polymer MIL-103(Eu) [Eu(BTB)] (H3BTB = 4,4',4''-benzene-1,3,5-triyl-tribenzoic acid) crystals have been fabricated at room temperature by a facile, convenient and environmentally friendly method. The structures of the products were confirmed by powder X-ray diffraction, and the crystal morphologies, including microrods, nanorods and nanospheres, were characterized by scanning electron microscopy. It is found that the addition of sodium acetate and the concentration of the reactants have an important impact on the morphology and size of the MIL-103(Eu) crystals. Gas adsorption measurements reveal that the products show high specific surface areas among the rare earth based coordination polymers and the MIL-103(Eu) nanorods can selectively adsorb CO2 over N2 under ambient conditions. Furthermore, all the products exhibit red emission corresponding to the (5)D0→(7)F2 transition of the Eu(iii) ion, and MIL-103(Eu) nanorods display sensitive and selective sensing for Cu(ii) ions and acetone molecules in solution.

  2. Four coordination polymers derived from a one-pot reaction and their controlled synthesis.

    PubMed

    Yan, Wei; Hao, Han; Zheng, Hegen

    2016-04-21

    Four different Co(ii) coordination polymers have been built by two flexible ligands 4,4'-dicarboxydiphenyl sulfone (4,4'-sdb) and 1,4-bis((1H-imidazol-1-yl)methyl) benzene (BMB) in a one-pot solvothermal reaction. The structures of and are new, and and have been reported. The crystal structures of were obtained, namely [Co(4,4'-sdb)(BMB)]n (), {[Co2(4,4'-sdb)2(BMB)]·2H2O}n (), and [Co3(4,4'-sdb)2(DMF)(H2O)3]n (), but was confirmed by PXRD. Both and are 2D layered structures with sql topology and their point symbol is {4(4)·6(2)}. These complexes have been characterized by single crystal X-ray diffraction, infrared spectroscopy, thermogravimetry, elemental analysis, and powder X-ray diffraction measurements. By changing the synthesis conditions, four different Co(ii) coordination polymers can be obtained respectively. PMID:26948000

  3. A novel polythreading Ag(I) coordination polymer with blue photoluminescence

    SciTech Connect

    Duan, Xian-Ying; Yao, Jing; Lu, Chang-Sheng; Meng, Qing-Jin

    2013-04-15

    One new compound, [Ag(p-bix)]{sub 3}[Ag(Hbtc){sub 2}]·2H{sub 2}O (H{sub 3}btc=1,2,4-benzenetricarboxylate, p-bix=1,4-bis(imidazol-1-ylmethyl)-benzene), has been synthesized under hydrothermal conditions and characterized by elemental analysis, IR, PXRD, luminescent analysis, and single-crystal X-ray diffraction. X-ray structural analysis revealed that 0-D unit [Ag(Hbtc){sub 2}]{sup 3−} and two kinds of 1-D linear chain [Ag(p-bix)]{sub ∞}{sup +}, can be found within the crystal structure. The combination of 0-D [Ag(Hbtc){sub 2}]{sup 3−} unit and 1-D undulated chain [Ag1(p{sub 1}-bix)]{sub ∞}{sup +} through weak Ag–O bond gave rise to 2-D anionic supramolecular doublelayer. Then the grids of the 2-D layer are threaded by 1-D linear cationic chain [Ag2(p{sub 2}-bix)]{sub ∞}{sup +} to generate entangled 3-D architecture with unusual poly(pseudo-rotaxane)-type arrangements. Luminescent properties of the title complex were also studied in this paper. - Graphical abstract: Novel 3D polythreading supramolecular architecture was constructed, in which 1D linear cationic chains [Ag(p{sub 2}-bix)]{sub ∞}{sup +} threaded into the grid of weak Ag–O bonded anionic 2D sheet. Highlights: ► Novel 1D{sup +}+2D{sup −}→3D polythreading coordination complex was reported. ► Diverse conformations of p-bix result in different 1D [Ag(p-bix)]{sub ∞}{sup +} chains. ► The title complex displayed blue photoluminescence at room temperature.

  4. 3D graphene oxide-polymer hydrogel: near-infrared light-triggered active scaffold for reversible cell capture and on-demand release.

    PubMed

    Li, Wen; Wang, Jiasi; Ren, Jinsong; Qu, Xiaogang

    2013-12-10

    An active cell scaffold based on a graphene-polymer hydrogel has been successfully fabricated. The macroporous hydrogel can efficiently capture cells not only through the bioadhesive ligand RGD but also through on-demand release of cells with an NIR light stimulus. The latter process shows better dynamic control over cells than traditional passive-hydrogel-based cell depots.

  5. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  6. Temperature-dependent polymorphism and magnetic properties of three-dimensional copper pyromellitate coordination polymers containing 4,4′-dipyridylamine

    SciTech Connect

    Mizzi, Jessica E.; Staples, Richard J.; LaDuca, Robert L.

    2015-05-15

    A pair of three-dimensional divalent copper pyromellitate (1,2,4,5-benzene-tetracarboxylate, pyro) coordination polymers containing 4,4′-dipyridylamine (dpa) was hydrothermally prepared and structurally characterized by single-crystal X-ray diffraction. The higher-temperature phase ([H{sub 2}dpa][Cu{sub 3}(pyro){sub 2}(H{sub 2}O){sub 3}]·2.5H{sub 2}O){sub n} (1) displays an acentric 3-D 4,4,6-connected anionic network with (4{sup 4}5.6)(5{sup 4}8{sup 2})(4{sup 4}5{sup 4}6{sup 3}7{sup 4}) topology, featuring (Cu{sub 2}(OCO){sub 4}) paddlewheel dimers and isolated copper ions. Charge-balancing H{sub 2}dpa cations are embedded in incipient voids. Prepared at lower temperature, ([Cu{sub 3}(pyro){sub 2}(dpa){sub 2}(dpaH){sub 2}]·3H{sub 2}O){sub n} (2) manifests a 3-D 4,4,4-connected neutral network with uncommon (4{sup 2}6{sup 4}){sub 4}(6{sup 4}8{sup 2}) frl topology based on (Cu{sub 3}(OCO){sub 2}) linear trimers. Antiferromagnetic coupling (J=–82(5) cm{sup –1}) was observed within the (Cu{sub 2}(OCO){sub 4}) dimeric units in 1, while weak ferromagnetic coupling (J=1.0(4) cm{sup –1}) was evident for the (Cu{sub 3}(OCO){sub 2}) linear trimers in 2. Thermal degradation behavior of these new materials is also presented. - Graphical abstract: Two copper pyromellitate coordination polymers containing 4,4′-dipyridylamine were prepared. The higher-temperature phase ([H{sub 2}dpa][Cu{sub 3}(pyro){sub 2}(H{sub 2}O){sub 3}]∙2.5H{sub 2}O){sub n} displays an acentric 3-D trinodal anionic network with (4{sup 4}5.6)(5{sup 4}8{sup 2})(4{sup 4}5{sup 4}6{sup 3}7{sup 4}) topology, featuring antiferromagnetically coupled (Cu{sub 2}(OCO){sub 4}) paddlewheel dimers and isolated copper ions. - Highlights: • Copper pyromellitate (pyro) coordination polymers with 4,4′-dipyridylamine (dpa). • Higher-temperature phase 1 has 3-D anionic trinodal network with H{sub 2}dpa cations. • Lower-temperature phase 2 has rare 3-D frl network. • Dimers and chains in 1 show

  7. N-acyldithieno[3,2-b:2',3'-d]pyrrole-based low-band-gap conjugated polymer solar cells with amine-modified [6,6]-phenyl-C61-butyric acid ester cathode interlayers.

    PubMed

    Hong, Deng; Lv, Menglan; Lei, Ming; Chen, Yu; Lu, Ping; Wang, Yanguang; Zhu, Jin; Wang, Haiqiao; Gao, Mei; Watkins, Scott E; Chen, Xiwen

    2013-11-13

    Efficient low-band-gap polymers are one key component for constructing tandem solar cells with other higher-band-gap materials to harvest wide absorption of the solar spectrum. The N-acyldithieno[3,2-b:2',3'-d]pyrrole (DTP) building block is used for making low-band-gap polymers. It is attractive because of its strong donating ability and relatively low highest-occupied-molecular-orbital level in comparison with the N-alkyl DTP building block. However, additional solubilizing groups on the accepting units are needed for soluble donor-acceptor polymers based on the N-alkanoyl DTP building block. Combining N-benzoyl DTP with a 4,7-dithieno-2,1,3-benzothiadiazole building block, a polymer with a low band gap of 1.44 eV, delivers a high short-circuit current of 17.1 mA/cm(2) and a power conversion efficiency of 3.95%, which are the highest for the devices with DTP-containing materials. Herein, an alcohol-soluble diamine-modified fullerene cathode interfacial layer improved the device efficiency significantly more than the mono-amine analogue. PMID:24127828

  8. Software for 3D radiotherapy dosimetry. Validation

    NASA Astrophysics Data System (ADS)

    Kozicki, Marek; Maras, Piotr; Karwowski, Andrzej C.

    2014-08-01

    The subject of this work is polyGeVero® software (GeVero Co., Poland), which has been developed to fill the requirements of fast calculations of 3D dosimetry data with the emphasis on polymer gel dosimetry for radiotherapy. This software comprises four workspaces that have been prepared for: (i) calculating calibration curves and calibration equations, (ii) storing the calibration characteristics of the 3D dosimeters, (iii) calculating 3D dose distributions in irradiated 3D dosimeters, and (iv) comparing 3D dose distributions obtained from measurements with the aid of 3D dosimeters and calculated with the aid of treatment planning systems (TPSs). The main features and functions of the software are described in this work. Moreover, the core algorithms were validated and the results are presented. The validation was performed using the data of the new PABIGnx polymer gel dosimeter. The polyGeVero® software simplifies and greatly accelerates the calculations of raw 3D dosimetry data. It is an effective tool for fast verification of TPS-generated plans for tumor irradiation when combined with a 3D dosimeter. Consequently, the software may facilitate calculations by the 3D dosimetry community. In this work, the calibration characteristics of the PABIGnx obtained through four calibration methods: multi vial, cross beam, depth dose, and brachytherapy, are discussed as well.

  9. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  10. Syntheses, structures, molecular and cationic recognitions and catalytic properties of two lanthanide coordination polymers based on a flexible tricarboxylate

    SciTech Connect

    Zhu, Yu; Wang, Yan-Mei; Xu, Ji; Liu, Pan; Weththasinha, H.A.B.M.D.; Wu, Yun-Long; Lu, Xiao-Qing; Xie, Ji-Min

    2014-11-15

    Two lanthanide coordination polymers, namely, ([La(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (La-TTTA) and [Nd(TTTA)(H{sub 2}O){sub 2}]·2H{sub 2}O){sub n} (Nd-TTTA) have been hydrothermally synthesized through the reaction of lanthanide ions (La{sup 3+} and Nd{sup 3+}) with the flexible tripodal ligand 2,2′,2″-[1,3,5-triazine-2,4,6-triyltris(thio)]tris-acetic acid (H{sub 3}TTTA). La-TTTA and Nd-TTTA are isostructural and both show three dimensional structures. La-TTTA and Nd-TTTA show good recognition of amine molecules via quenching the luminescent intensities in amines emulsions. They can also recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions with the quenching the peak around 361 nm when the compounds immersed in ionic solutions. The two compounds act as efficient Lewis acid catalysts for the cyanosilylation of benzaldehyde and derivatives in high yields shortly due to the strong Lewis acidity and the possible open sites of the lanthanide ions. - Graphical abstract: We have synthesized two isostructural 3D compounds based on H{sub 3}TTTA. They are chemical sensor of amine solvents and cations. They have higher yields and TOFs to catalyze cyanosilylation reactions. - Highlights: • The compounds show recognition of amine molecules via quenching luminescent intensities. • The compounds recognize Fe{sup 3+}, Cu{sup 2+}, Mg{sup 2+}, Cr{sup 3+} and Co{sup 2+} ions via quenching the peak around 361 nm. • They act as efficient Lewis acid catalysts for the cyanosilylation reactions in high yields.

  11. Entangled coordination polymers with mixed N- and O-donor organic linkers: a case of module-matching priority.

    PubMed

    Han, Li-Wei; Gong, Yun; Lin, Zu-Jin; Lü, Jian; Cao, Rong

    2012-04-14

    A series of four coordination polymers showing entangled architectures based on cobalt and mixed N-donor/O-donor ligands, namely [Co(4,4'-BPIPA)(TP)]·2DMF (1), [Co(4,4'-BPIPA)(2,6-NDC)(DMF)]·DMF (2), [Co(4,4'-BPIPA)(2,6-NDC)]·2DMF (3) and [Co(4,4'-BPIPA)(4,4'-BPDC)]·2DMF (4) (4,4'-BPIPA = N,N'-bis-4-pyridinyl-isophthalamide, TP = terephthalic acid, 2,6-NDC = 2,6-naphthalenedicarboxylic acid, 4,4'-BPDC = 4,4'-biphenyldicarboxylic acid), have been synthesized under solvothermal conditions. Complex 1, containing 4,4'-BPIPA and relatively short dicarboxylate ligands (TP), exhibits two-dimensional (2D) two-fold interpenetration of double wavy 4(4)-sql nets. Complex 2 displays interesting 2D→3D parallel polycatenation of undulated 2D 4(4)-sql layers built by 4,4'-BPIPA and moderate dicarboxylate ligands (2,6-NDC). Complexes 3 and 4, although constructed of dicarboxylate ligands with different lengths (moderate 2,6-NDC and long 4,4'-BPDC), possess similar 3-fold interpenetration of identical self-catenated single nets with 6(5)·8-mok topologies. It has been found that the length of the dicarboxylate ligands plays a key role of module-matching in the self-assemblies of complexes 1-4. Moreover, the effect of the conformations of 4,4'-BPIPA, which can be controlled by tuning reaction temperatures, is also discussed.

  12. Transition metal coordination polymers based on tetrabromoterephthalic and bis(imidazole) ligands: Syntheses, structures, topological analysis and photoluminescence properties

    NASA Astrophysics Data System (ADS)

    Zhang, Xiaowei; Xing, Peiqi; Geng, Xiujuan; Sun, Daofeng; Xiao, Zhenyu; Wang, Lei

    2015-09-01

    Eight new coordination polymers (CPs), namely, [Zn(1,2-mbix)(tbtpa)]n (1), [Co(1,2-mbix)(tbtpa)]n (2), [CdCl(1,2-mbix)(tbtpa)0.5]n (3), {[Cd(1,2-bix)(tbtpa)]·H2O}n (4), {[Cd0.5(1,2-bix)(tbtpa)0.5]·H2O}n (5), {[Co0.5(1,2-bix)(tbtpa)0.5]·2H2O}n (6), {[Co(1,2-bix)(tbtpa)]·H2O}n (7) and {[Co(1,2-bix)(tbtpa)]·Diox·2H2O}n (8), were synthesized under solvothermal conditions based on mix-ligand strategy (H2tbtpa=tetrabromoterephthalic acid and 1,2-mbix=1,2-bis((2-methyl-1H-imidazol-1-yl)methyl)benzene, 1,2-bix=1,2-bis(imidazol-1-ylmethyl)benzene). All of the CPs have been structurally characterized by single-crystal X-ray diffraction analyses and further characterized by elemental analyses, IR spectroscopy, powder X-ray diffraction (PXRD), and thermogravimetric analyses (TGA). X-ray diffraction analyses show that 1 and 2 are isotypics which have 2D highly undulated networks with (4,4)-sql topology with the existence of C-H ⋯Br interactions; for 3, it has a 2D planar network with (4,4)-sql topology with the occurrence of C-H ⋯Cl interactions other than C-H ⋯Br interactions; 4 shows a 3D 2-fold interpenetrated nets with rare 65·8-mok topology which has a self-catention property. As the same case as 1 and 2, 5 and 6 are also isostructural with planar layers with 44-sql topology which further assembled into 3D supramolecular structure through the interdigitated stacking fashion and the C-Br ⋯Cph interactions. As for 7, it has a 2D slightly undulated networks with (4,4)-sql topology which has one dimension channel. While 8 has a 2-fold interpenetrated networks with (3,4)-connect jeb topology with point symbol {63}{65·8}. And their structures can be tuned by conformations of bis(imidazol) ligands and solvent mixture. Besides, the TGA properties for all compounds and the luminescent properties for 1, 3, 4, 5 are discussed in detail.

  13. Smart lanthanide coordination polymer fluorescence probe for mercury(II) determination.

    PubMed

    Liu, Baoxia; Huang, Yankai; Zhu, Xu; Hao, Yuanqiang; Ding, Yujie; Wei, Wei; Wang, Qi; Qu, Peng; Xu, Maotian

    2016-03-17

    Lanthanide coordination polymers (LCPs) have recently emerged as attractive biosensor materials due to their flexible components, high tailorable properties and unique luminescence features. In this work, we designed a smart LCP probe of Tb-CIP/AMP {(CIP, ciprofloxacin) (AMP, adenosine monophosphate)} for Hg(2+) detection by using lanthanide ions as metal nodes, CIP as ligand molecule, and AMP as bridging linker and recognition unit. Tb-CIP/AMP emits strong green luminescence due to the inclusion of AMP, which withdraws the coordinated water molecules and shields Tb(3+) from the quenching effect of O-H vibration in water molecules. The subsequent addition of Hg(2+) into Tb-CIP/AMP can strongly quench the fluorescence because of the specific coordination interaction between AMP and Hg(2+). As a kind of Hg(2+) nanosensor, the probe exhibited excellent selectivity for Hg(2+) and high sensitivity with detection limit of 0.16 nM. In addition, the probe has long fluorescence lifetime up to millisecond and has been applied to detect Hg(2+) in drinking water and human urine samples with satisfactory results. We envision that our strategy, in the future, could be extended to the designation of other LCP-based hypersensitive time-gated luminescence assays in biological media and biomedical imaging. PMID:26920783

  14. Electrochemical Li-Ion Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes.

    PubMed

    Long, Jérôme; Asakura, Daisuke; Okubo, Masashi; Yamada, Atsuo; Guari, Yannick; Larionova, Joulia

    2016-08-01

    Discovery of novel compounds capable of electrochemical ion intercalation is a primary step toward development of advanced electrochemical devices such as batteries. Although cyano-bridged coordination polymers including Prussian blue analogues have been intensively investigated as ion intercalation materials, the solid-state electrochemistry of the octacyanotungstate-bridged coordination polymer has not been investigated. Here, we demonstrate that an octacyanotungstate-bridged coordination polymer Tb(H2O)5[W(CN)8] operates as a Li(+)-ion intercalation electrode material. The detailed magnetic measurements reveal that the tunable amount of intercalated Li(+) ion in the solid-state redox reaction between paramagnetic [W(V)(CN)8](3-) and diamagnetic [W(IV)(CN)8](4-) in the framework enables the electrochemical control of different magnetic regimes. While the initial ferromagnetic long-range ordering is irreversibly lost upon lithium insertion, electrochemical switching between paramagnetic and short-range ordering regimes can be achieved. PMID:27420412

  15. A visual and reversible assay for temperature using thioflavin T-doped lanthanide/nucleotide coordination polymers.

    PubMed

    Li, Yan-Yun; Jiang, Xiao-Qin; Zhang, Min; Shi, Guoyue

    2016-04-21

    In this work, we prepared a type of thioflavin T (ThT)-doped lanthanide/nucleotide coordination polymer by the self-assembly of ThT, europium ions (Eu(3+)) and nucleotides (guanosine monophosphate, GMP) in aqueous solution (i.e. ThT/Eu/GMP). The Eu/GMP coordination polymers show excellent adaptive inclusion properties for ThT in a convenient one-step approach, which can readily enhance the fluorescence of ThT via the restricted effect. Moreover, the as-prepared hydrophilic ThT/Eu/GMP coordination polymers have the capability to act as a temperature-sensitive, visual and reversible sensor in aqueous solution under the irradiation of visible light. Our proposed design is cost-effective and simple to prepare without chemical modification or fluorescence labeling. PMID:27010102

  16. Electrochemical Li-Ion Intercalation in Octacyanotungstate-Bridged Coordination Polymer with Evidence of Three Magnetic Regimes.

    PubMed

    Long, Jérôme; Asakura, Daisuke; Okubo, Masashi; Yamada, Atsuo; Guari, Yannick; Larionova, Joulia

    2016-08-01

    Discovery of novel compounds capable of electrochemical ion intercalation is a primary step toward development of advanced electrochemical devices such as batteries. Although cyano-bridged coordination polymers including Prussian blue analogues have been intensively investigated as ion intercalation materials, the solid-state electrochemistry of the octacyanotungstate-bridged coordination polymer has not been investigated. Here, we demonstrate that an octacyanotungstate-bridged coordination polymer Tb(H2O)5[W(CN)8] operates as a Li(+)-ion intercalation electrode material. The detailed magnetic measurements reveal that the tunable amount of intercalated Li(+) ion in the solid-state redox reaction between paramagnetic [W(V)(CN)8](3-) and diamagnetic [W(IV)(CN)8](4-) in the framework enables the electrochemical control of different magnetic regimes. While the initial ferromagnetic long-range ordering is irreversibly lost upon lithium insertion, electrochemical switching between paramagnetic and short-range ordering regimes can be achieved.

  17. In-syringe extraction using dissolvable layered double hydroxide-polymer sponges templated from hierarchically porous coordination polymers.

    PubMed

    Ghani, Milad; Frizzarin, Rejane M; Maya, Fernando; Cerdà, Víctor

    2016-07-01

    Herein we report the use of cobalt porous coordination polymers (PCP) as intermediates to prepare advanced extraction media based on layered double hydroxides (LDH) supported on melamine polymer foam. The obtained dissolvable Ni-Co LDH composite sponges can be molded and used as sorbent for the in-syringe solid-phase extraction (SPE) of phenolic acids from fruit juices. The proposed sorbent is obtained due to the surfactant-assisted self-assembly of Co(II)/imidazolate PCPs on commercially available melamine foam, followed by the in situ conversion of the PCP into the final dissolvable LDH coating. Advantageous features for SPE are obtained by using PCPs with hierarchical porosity (HPCPs). The LDH-sponge prepared using intermediate HPCPs (HLDH-sponge) is placed in the headspace of a glass syringe, enabling flow-through extraction followed by analyte elution by the dissolution of the LDH coating in acidic conditions. Three phenolic acids (gallic acid, p-hydroxybenzoic acid and caffeic acid) were extracted and quantified using high performance liquid chromatography. Using a 5mL sample volume, the obtained detection limits were 0.15-0.35μgL(-1). The proposed method for the preparation of HLDH-sponges showed a good reproducibility as observed from the intra- and inter-day RSD's, which were <10% for all analytes. The batch-to-batch reproducibility for three different batches of HLDH-sponges was 10.6-11.2%. Enrichment factors of 15-21 were obtained. The HLDH-sponges were applied satisfactorily to the determination of phenolic acids in natural and commercial fruit juices, obtaining relative recoveries among 89.7-95.3%.

  18. Synthesis and crystal structure of new lanthanide coordination polymers with Pyridine-2, 6-dicarboxylic acid

    NASA Astrophysics Data System (ADS)

    Du, Rui-Zhi; Wang, Yan-Yan; Xie, Yu-Yu; Li, Hao-Tian; Liu, Tian-Fu

    2016-03-01

    Reactions between Ln(NO3)3 aq (Ln = La (1), Ce (2), Pr (3) and Nd(4)), pyridine-2, 6-dicarboxylic acid (2, 6-pdc), and sodium nitroprusside Na2[Fe(CN)5NO] lead to three-dimensional network structures: {[Ln2(2, 6-pdc)2(H2O)8][Fe(CN)5NO]·4H2O}n (Ln = La (1), Ce (2), Pr (3) and Nd(4)). The complexes 1 and 2 crystallize in the monoclinic space group Cc while complexes 3 and 4 crystallize in the monoclinic space group I2. The Ln(III) ion is nine-coordinate by four oxygen atoms of three 2, 6-pdc ligands, four oxygen of water and one nitrogen atom of 2, 6-pdc. Ln(III) ions are bridged by 2, 6-pdc ligands via bridging/chelating-bridging pentadentate coordination to form 3-D framework structures. Hydrogen bonds provide additional stabilization of the crystal structures. The magnetic properties of 2-4 have been investigated.

  19. Assembling supramolecular networks by halogen bonding in coordination polymers driven by 5-bromonicotinic acid

    SciTech Connect

    Gu, Jin-Zhong; Wu, Jiang; Kirillov, Alexander M.; Lv, Dong-Yu; Tang, Yu; Wu, Jin-Cai

    2014-05-01

    A series of six coordination compounds ([Zn(5-Brnic){sub 2}]·1.5H{sub 2}O){sub n} (1), [Cd(5-Brnic){sub 2}]{sub n} (2), [Co(5-Brnic){sub 2}(H{sub 2}O){sub 2}]{sub n} (3), [Zn(5-Brnic){sub 2}(H{sub 2}biim)]{sub n} (4), ([Cd(5-Brnic){sub 2}(phen)]·H{sub 2}O){sub n} (5), and [Pb(5-Brnic){sub 2}(phen)] (6) have been generated by the hydrothermal method from the metal(II) nitrates, 5-bromonicotinic acid (5-BrnicH), and an optional ancillary 1,10-phenanthroline (phen) or 2,2′-biimidazole (H{sub 2}biim) ligand. All the products 1–6 have been characterized by IR spectroscopy, elemental, thermal, powder and single-crystal X-ray diffraction analyses. Their 5-bromonicotinate-driven structures vary from the 3D metal-organic framework with the seh-3,5-P21/c topology (in 2) and the 2D interdigitated layers with the sql topology (in 1 and 3), to the 1D chains (in 4 and 5) and the 0D discrete monomers (in 6). The 5-bromonicotinate moiety acts as a versatile building block and its tethered bromine atom plays a key role in reinforcing and extending the structures into diverse 3D supramolecular networks via the various halogen bonding Br⋯O, Br⋯Br, and Br⋯π interactions, as well as the N–H⋯O and C–H⋯O hydrogen bonds. The obtained results demonstrate a useful guideline toward engineering the supramolecular architectures in the coordination network assembly under the influence of various halogen bonding interactions. The luminescent (for 1, 2, 4, 5, and 6) and magnetic (for 3) properties have also been studied and discussed in detail. - Graphical abstract: Six coordination compounds driven by 5-bromonicotinic acid have been generated and structurally characterized, revealing diverse metal-organic networks that are further reinforced and extended via various halogen bonding interactions. - Highlights: • 5-Bromonicotinic acid is a versatile ligand for Zn, Cd, Co and Pb derivatives. • Careful selection of co-ligands and metals resulted in different network

  20. Crystal structures, fluorescent and magnetic properties of five new coordination polymers based on biphenyl-3,4 Prime ,5-tricarboxylic acid

    SciTech Connect

    Lu Yingli; Zhao Wenjie; Liu Yu; Liu Bin; Feng Xing; Tan Jinting; Li Xia; Yang Xuwu

    2012-08-15

    Five new coordination polymers, {l_brace}[Cd{sub 3}(bpt){sub 2}(DMF){sub 2}]{center_dot}(H{sub 2}O){sub 2}{r_brace}{sub n} (1), [Cd(Hbpt)(bipy){sub 0.5}(H{sub 2}O)]{sub n} (2), [Cd{sub 2}(bpt)(phen){sub 2}Cl]{sub n} (3), {l_brace}[Cu{sub 2}(bpt)(phen)({mu}{sub 2}-OH)(H{sub 2}O)]{center_dot}(H{sub 2}O){sub 2}{r_brace}{sub n} (4) and {l_brace}[Mn{sub 5}(Hbpt){sub 4}(phen){sub 4}({mu}{sub 2}-OH){sub 2}(H{sub 2}O){sub 2}]{center_dot}(H{sub 2}O){sub 2}(CH{sub 3}CN){sub 2}{r_brace}{sub n} (5) have been prepared through hydro(solvo)thermal reactions of H{sub 3}bpt (H{sub 3}bpt=biphenyl-3,4 Prime ,5-tricarboxylic acid) with different pyridyl-containing auxiliary ligands (bipy=4,4 Prime -bipyridine and phen=1,10-phenanthroline). Compound 1 represents a 3D ladder-like framework composed of rod-shaped infinite chains. In 2, the bridging ligand bipy links binuclear cadmium ions to generate a 2D layer. Compound 3 features a 1D ladder structure and further linked by {pi}-{pi} stacking interaction to form a 3D supramolecular network. Compound 4 exhibits a binodal 3-connected net which features the Schlafli symbol of (4{center_dot}8{sup 2}). Compound 5 contains trimetallic cluster and binuclear unite which are further linked by Hbpt ligand to form a 2D layer. Moreover, photoluminescent properties of compounds 1-3 were studied in the solid state. Magnetic susceptibility measurements indicate that compound 4 exhibits ferromagnetic exchange interactions, whereas compound 5 displays antiferromagnetic exchange interactions. - Graphical abstract: Five new coordination polymers have been prepared through reactions of H{sub 3}bpt with different pyridyl-containing auxiliary ligands. The bpt exhibits four new kinds of coordination modes with 'V or Y shape'. Highlights: Black-Right-Pointing-Pointer 1 represents a unique (4{center_dot}8)-connected network with a Schlafli symbol (4{sup 6})(4{sup 12}{center_dot}6{sup 12}{center_dot}8{sup 4}). Black-Right-Pointing-Pointer Compound 4 shows

  1. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  2. Secondary ligand-directed assembly of Co(II) coordination polymers based on a pyridine carboxylate ligand

    SciTech Connect

    Cao, Ke-Li; Zhang, Yi-Ping; Cai, Yi-Ni; Xu, Xiao-Wei; Feng, Yun-Long

    2014-07-01

    To investigate the influence of hydrogen bonds and secondary ligands on the structures and properties of the resulting frameworks, five new Co(II) compounds have been synthesized by the reactions of Co(II) salts and 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL) with four rationally selected dicarboxylic acid ligands. Without secondary ligand, we got one compound [CoL{sub 2}(H{sub 2}O){sub 2}]{sub n}·2nH{sub 2}O (1), which possesses a 1D chain structure. In the presence of ancillary ligands, namely, 1,3-adamantanedicarboxylic acid (H{sub 2}adbc), terephthalic acid (H{sub 2}tpa), thiophene-2,5-dicarboxylic acid (H{sub 2}tdc) and 1,4-benzenedithioacetic acid (H{sub 2}bdtc), four 3D structures [Co{sub 2}L{sub 2}(adbc)]{sub n}·nH{sub 2}O (2), [Co{sub 2}L{sub 2}(tpa)]{sub n} (3), [Co{sub 2}L{sub 2}(tdc)]{sub n} (4), [Co{sub 2}L{sub 2}(bdtc)(H{sub 2}O)]{sub n} (5) were obtained, respectively. It can be observed from the architectures of 1–5 that hydrogen bonds and secondary ligands both have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. The XRPD, TGA data of title polymers and the magnetic properties for 2 and 5 have also been investigated. - Graphical abstract: The structural differences show that the ancillary ligands have great effects on the spatial connective fashions, resulting in the formation of various dimensional compounds. - Highlights: • Five new Co(II) coordination polymers have been synthesized by solvothermal reactions based on 3,5-bis(pyridin-4-ylmethoxy)benzoic acid (HL). • The long-flexible ligand (HL) is a good candidate to produce interpenetrating architectures. • The secondary dicarboxylic acid ligands play important roles in the spatial connective fashions and the formation of various dimensional compounds. • The magnetism studies show that both 2 and 5 exhibit antiferromagnetic interactions.

  3. Geometric accuracy of 3D coordinates of the Leksell stereotactic skull frame in 1.5 Tesla- and 3.0 Tesla-magnetic resonance imaging: a comparison of three different fixation screw materials.

    PubMed

    Nakazawa, Hisato; Mori, Yoshimasa; Yamamuro, Osamu; Komori, Masataka; Shibamoto, Yuta; Uchiyama, Yukio; Tsugawa, Takahiko; Hagiwara, Masahiro

    2014-11-01

    We assessed the geometric distortion of 1.5-Tesla (T) and 3.0-T magnetic resonance (MR) images with the Leksell skull frame system using three types of cranial quick fixation screws (QFSs) of different materials-aluminum, aluminum with tungsten tip, and titanium-for skull frame fixation. Two kinds of acrylic phantoms were placed on a Leksell skull frame using the three types of screws, and were scanned with computed tomography (CT), 1.5-T MR imaging and 3.0-T MR imaging. The 3D coordinates for both strengths of MR imaging were compared with those for CT. The deviations of the measured coordinates at selected points (x = 50, 100 and 150; y = 50, 100 and 150) were indicated on different axial planes (z = 50, 75, 100, 125 and 150). The errors of coordinates with QFSs of aluminum, tungsten-tipped aluminum, and titanium were <1.0, 1.0 and 2.0 mm in the entire treatable area, respectively, with 1.5 T. In the 3.0-T field, the errors with aluminum QFSs were <1.0 mm only around the center, while the errors with tungsten-tipped aluminum and titanium were >2.0 mm in most positions. The geometric accuracy of the Leksell skull frame system with 1.5-T MR imaging was high and valid for clinical use. However, the geometric errors with 3.0-T MR imaging were larger than those of 1.5-T MR imaging and were acceptable only with aluminum QFSs, and then only around the central region.

  4. Anion effect on the topological frameworks of a series of manganese coordination polymers based on 1,4-bis(imidazol-1-yl)-benzene: Syntheses, crystal structures and magnetic properties

    NASA Astrophysics Data System (ADS)

    Ye, Gan; Zou, Kang-Yu; Yang, Ying; Wang, Jun-Jie; Gou, Xiao-Feng; Li, Zuo-Xi

    2015-05-01

    In this work, the rod-like ligand 1,4-bis(imidazol-1-yl)-benzene (bib) has been utilized as a building block to perform counterion researches on the structural diversities of coordination polymers. A series of new manganese compounds, {[Mn(bib)3(ClO4)2](CHCl3)2}n (1), [Mn(bib)2(N3)2]n (2), [Mn(bib)2(HCO2)2]n (3), [Mn(bib)2(Ac)2]n (4), {[Mn(bib)2(CF3SO3)2](CH2Cl2)4}n (5), and [Mn(bib)2(SO4)]n (6) have been successfully synthesized. Compound 1 shows a 3D interpenetrating α-Po network only based on the bib linker. Compounds 2 and 3 exhibit a 2D (4,4) layer with parallel and incline interpenetration, respectively. Compounds 4 and 5 display a parallel-packing 2D (4,4) layer with the porosity of 23.4% and 61.4%, respectively. Compound 6 furnishes a 3D α-Po framework with a 2D (4,4) layer pillared by the μ2-SO42- ion. The structural diversities among 1-6 have been carefully discussed, and the roles of counterions (from coordination affinity and molecular size) in the self-assembly of coordination polymers have also been well documented. Furthermore, magnetic properties of 6 have been carefully studied.

  5. Anion-dependent construction of a series of fluorescent coordination polymers based on 1D zinc∩4,4‧-bis(imidazol-1-yl)-biphenyl substrates

    NASA Astrophysics Data System (ADS)

    Zou, Kang-Yu; Zou, Qian; Han, Tong; Liu, Yi-Chen; Wang, Jun-Jie; Zhang, Xue; Li, Zuo-Xi

    2016-03-01

    In this work, the rod-like ligand 4,4‧-bis(imidazol-1-yl)-biphenyl (bibp) has been utilized as a building block to carry out counterion effects on the structural diversities of coordination polymers. A series of new zinc complexes, [Zn(trans-bibp)Cl2]∞ (1), [Zn(trans-bibp)Br2]∞ (2), {[Zn(cis-bibp)(Ac)2]·(H2O)}∞ (3), [Zn(trans-bibp)SO4]∞ (4), {[Zn2(cis-bibp)2(ipa)2]·(H2O)}∞ (5, H2ipa=isophthalic acid) and {[Zn(trans-bibp)(cis-bibp)]·(ClO4)2(CHCl3)2(CH3OH)}∞ (6) have been successfully synthesized. Complexes 1 and 2 are iso-structural, which show a 1D W-type chain [Zn(trans-bibp)]∞. Complex 3 exhibits a 2D wave-like layer formed by the hydrogen bond among the 1D linear chain [Zn(cis-bibp)]∞. Complex 4 displays a 2D fish-bone lattice, which is generated from connecting the 1D W-type chain [Zn(trans-bibp)]∞ by the μ2-SO42- . Complex 5 presents an interesting 2D-3D 65·8 architecture, including two 1D chains [Zn(ipa)]∞ and [Zn(cis-bibp)]∞. Complex 6 demonstrates a 2D wave-like layer [Zn(trans-bibp)(cis-bibp)]∞. The structural diversities among 1-6 have been carefully discussed, and the role of counterion in the self-assembly of coordination polymer have also been well documented from the coordination affinity and bridging mode. Furthermore, the solid-state fluorescence properties of 1-6 at room temperature have been studied.

  6. Influence of the steric effect of flexible isomeric phenylenediacetic acids on the resultant lead(II) coordination polymers

    SciTech Connect

    Wu, Yunlong; Zhao, Yanqing; Yang, Guo-Ping Guo, Yanjun; Wang, Yao-Yu Shi, Qi-Zhen

    2015-03-15

    To study the steric effect of the flexible dicarboxylate ligands on the resultant formations of coordination polymers (CPs), four new Pb{sup II} CPs [Pb(1,2-pda)(H{sub 2}O)]{sub n} (1), [Pb(1,3-pda)]{sub n}·nH{sub 2}O (2), [Pb{sub 2}(1,4-pda){sub 2}(H{sub 2}O)]{sub n}·2nH{sub 2}O (3a and 3b) have been produced by the isomeric phenylenediacetic acids (H{sub 2}pda). The X-ray crystallography study reveals that CP 1 is a two-dimensional (2D) 4-connected sql (4{sup 4}.6{sup 2}) network via the weak Pb···O interactions built on 1D chain-like structure. CP 2 crystallizes in orthorhombic system with chiral space group P2{sub 1}2{sub 1}2{sub 1}, showing a 4-connected sra (4{sup 2}.6{sup 3}.8) framework where a left-handed helical motif is formed by Pb{sup II} ions and trans-1,3-pda ligands. More interestingly, CPs 3a and 3b are two true 3D polymorphs and have the different morphology. Topologically, the framework of 3a exhibits a 4-connected lon 6{sup 6} motif, while that of 3b is a (4,6)-connected fsh (4{sup 3}.6{sup 3}){sub 2}(4{sup 6}.6{sup 6}.8{sup 3}) net. It is found that the three isomeric pda anions display the various coordination fashions in four CPs. The different structural arrangements show that the steric effect of the isomeric H{sub 2}pda tectons has a positive role in directing the final products of Pb{sup II} CPs. Also, the fluorescent properties of the CPs were studied in the solid state at room temperature. - Graphical abstract: Four new Pb{sup II}-based CPs have been produced by the isomeric phenylenediacetic acids (H{sub 2}pda). The different structural arrangements show that the steric effect of the isomeric H{sub 2}pda tectons has a positive role in directing the final products of Pb{sup II} CPs. Also, the fluorescent properties of the CPs were studied in the solid state at room temperature. - Highlights: • Four Pb{sup II}-based coordination polymers were produced by phenylenediacetic acids. • The crystal and topological structures of the

  7. The Marine Sponge-Derived Inorganic Polymers, Biosilica and Polyphosphate, as Morphogenetically Active Matrices/Scaffolds for the Differentiation of Human Multipotent Stromal Cells: Potential Application in 3D Printing and Distraction Osteogenesis

    PubMed Central

    Wang, Xiaohong; Schröder, Heinz C.; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E. G.

    2014-01-01

    , supplemented with polyP and/or biosilica, is a suitable biomaterial that promotes the growth and differentiation of hMSCs and might be beneficial for application in 3D tissue printing of hMSCs and for the delivery of hMSCs in fractures, surgically created during distraction osteogenesis. PMID:24566262

  8. The marine sponge-derived inorganic polymers, biosilica and polyphosphate, as morphogenetically active matrices/scaffolds for the differentiation of human multipotent stromal cells: potential application in 3D printing and distraction osteogenesis.

    PubMed

    Wang, Xiaohong; Schröder, Heinz C; Grebenjuk, Vladislav; Diehl-Seifert, Bärbel; Mailänder, Volker; Steffen, Renate; Schloßmacher, Ute; Müller, Werner E G

    2014-02-01

    , supplemented with polyP and/or biosilica, is a suitable biomaterial that promotes the growth and differentiation of hMSCs and might be beneficial for application in 3D tissue printing of hMSCs and for the delivery of hMSCs in fractures, surgically created during distraction osteogenesis.

  9. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    PubMed Central

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  10. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation

    NASA Astrophysics Data System (ADS)

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-04-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors’ knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  11. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability.

  12. A multiple-shape memory polymer-metal composite actuator capable of programmable control, creating complex 3D motion of bending, twisting, and oscillation.

    PubMed

    Shen, Qi; Trabia, Sarah; Stalbaum, Tyler; Palmre, Viljar; Kim, Kwang; Oh, Il-Kwon

    2016-01-01

    Development of biomimetic actuators has been an essential motivation in the study of smart materials. However, few materials are capable of controlling complex twisting and bending deformations simultaneously or separately using a dynamic control system. Here, we report an ionic polymer-metal composite actuator having multiple-shape memory effect, and is able to perform complex motion by two external inputs, electrical and thermal. Prior to the development of this type of actuator, this capability only could be realized with existing actuator technologies by using multiple actuators or another robotic system. This paper introduces a soft multiple-shape-memory polymer-metal composite (MSMPMC) actuator having multiple degrees-of-freedom that demonstrates high maneuverability when controlled by two external inputs, electrical and thermal. These multiple inputs allow for complex motions that are routine in nature, but that would be otherwise difficult to obtain with a single actuator. To the best of the authors' knowledge, this MSMPMC actuator is the first solitary actuator capable of multiple-input control and the resulting deformability and maneuverability. PMID:27080134

  13. Two new Zn(II) coordination polymers based on mixed pipemidic acid and flexible aromatic dicarboxylic acid ligands: Syntheses, crystal structures and luminescent properties

    NASA Astrophysics Data System (ADS)

    Jia, Yanxia; Zhou, Pingping

    2016-09-01

    Two new Zn(II) coordination polymers, namely [Zn(4,4‧-sdb) (HPPA)]n (1) and [Zn(2,2‧-bpdc)0.5(PPA)]n (2) (4,4‧-H2sdb = 4,4‧-sulfonyldibenzoate, 2,2‧-H2bpdc = 2,2‧-biphenyldicarboxylic acid, HPPA = pipemidic acid) were successfully obtained under hydrothermal conditions. These two compounds were further characterized by single-crystal X-ray diffraction analyses, elemental analyses, powder X-ray diffraction (PXRD) analyses and IR spectra. Compound 1 features a 1D chain structure, which further extended into a 3D supramolecular framework via intermolecular hydrogen bonds and weak van der Waals interactions, and compound 2 features a 3D framework with 6-connected α-Po-type topology. The structural regulation for these two compounds was successfully achieved by changing the flexible aromatic dicarboxylic acid ligand. Moreover, the thermal stabilities and luminescent properties for these two compounds were also investigated.

  14. Carboxylate ligands induced structural diversity of zinc(II) coordination polymers based on 3,6-bis(imidazol-1-yl)carbazole: Syntheses, structures and photocatalytic properties

    NASA Astrophysics Data System (ADS)

    Cheng, Hong-Jian; Tang, Hui-Xiang; Shen, Ya-Li; Xia, Nan-Nan; Yin, Wen-Yu; Zhu, Wei; Tang, Xiao-Yan; Ma, Yun-Sheng; Yuan, Rong-Xin

    2015-12-01

    Solvothermal reactions of Zn(NO3)2·6H2O with 3,6-bis(1-imidazolyl)carbazole (3,6-bmcz) and 1,4-benzenedicarboxylic acid (1,4-H2bdc), p-phenylenediacetic acid (p-H2pda), benzophenone-4,4-dicarboxylic acid (H2bpda) afforded three coordination polymers [Zn(1,4-bdc)(3,6-bmcz)]n (1), {[Zn(p-pda)(3,6-bmcz)]·1.5H2O}n (2) and {[Zn(bpda)(3,6-bmcz)]·0.25H2O}n (3). Complexes 1-3 were characterized by elemental analysis, IR, powder X-ray diffraction, and single-crystal X-ray diffraction. Complex 1 shows 3D structure with 2D nets inclined polycatenation. Complexes 2 and 3 possess an extended 3D supramolecular architecture based on their respective 2D layers through hydrogen-bonding interactions and the π···π stacking interactions. The solid state luminescent and optical properties of 1-3 at ambient temperature were also investigated. A comparative study on their photocatalytic activity toward the degradation of methylene blue in polluted water was explored.

  15. pH-Dependent two novel heteronuclear Cu(II)/Sr(II) coordination polymers constructed from 1,3,5-benzenetricarboxylic acid: Synthesis, crystal structures and properties

    NASA Astrophysics Data System (ADS)

    Sun, Qiao-Zhen; Yin, Yi-Biao; Pan, Jun-Qiao; Chai, Li-Yuan; Su, Nan; Liu, Hui; Zhao, Yi-Lin; Liu, Xing-Tao

    2016-02-01

    Two novel heteronuclear coordination polymers, namely, [CuSr2(BTC)2]·10H2O (1) and [Cu2Sr(H4TMA)2]·4H2O (2) (H3BTC = 1,3,5-benzenetricarboxylic acid, H4TMA = 2-hydroxytrimesic acid) were hydrothermally synthesized as pH-dependent products and characterized by elemental analysis (EA), infrared spectroscopy (IR) and single crystal X-ray diffraction. For compound 1, it displays a 3D structure with (2,5,6)-connected net topology. For 2, the H3BTC ligand is oxidized into H4TMA and compound 2 features a 2D layer structure, which is further linked by Cu⋯Cu and Cu⋯O supramolecular interactions into a 3D structure. The results show that the pH plays a crucial role in determining the structure of the compounds. In addition, thermalgravimetric analysis of compounds 1-2 and luminescence property of 1 are also investigated.

  16. Two new luminescent Zn(II) coordination polymers with different interpenetrated motifs

    NASA Astrophysics Data System (ADS)

    Song, Changying; Liu, Qifeng; Liu, Wei; Cao, Ziqing; Ren, Yuanyuan; Zhou, Qichao; Zhang, Li

    2015-11-01

    Solvothermal reactions of Zn(NO3)2, H2tdc and bib in the presence of different solvents (DMF = N,N'- dimethylformamide or DMA = N,N'- dimethylacetamide) have given rise to two new coordination polymers, namely [Zn2(tdc)2(bib)2]n·2n(H2O) (1) and [Zn(tdc)(bib)0.5(H2O)]n (2) (H2tdc = 2,5-thiophenedicarboxylic acid, bib = 1, 4-bis(imidazolyl)butane). The structures were determined by single crystal X-ray diffraction and characterized by elemental analysis, powder X-ray diffraction and infrared spectroscopy. Compound 1 exhibits a 4-fold interpenetrated dia topological network, and compound 2 features a 8-fold interpenetrated ths topological network. In addition, thermal stabilities and solid state luminescent properties of these two compounds were also investigated.

  17. A Highly Water-Tolerant Magnesium(II) Coordination Polymer Derived from a Flexible Layered Structure.

    PubMed

    Ochi, Rika; Noro, Shin-Ichiro; Kamiya, Yuichi; Kubo, Kazuya; Nakamura, Takayoshi

    2016-07-25

    A two-dimensional (2D) layered Mg(II) coordination polymer (CP) with a high tolerance for H2 O was designed, synthesised, and crystallographically characterised. The synthesis was achieved by the introduction of a flexible 2D layered structure composed of Mg(II) ions and isonicotinate N-oxide ligands. Owing to its high H2 O tolerance, the obtained 2D layered structure has the flexibility to repeatedly adsorb a large amount of H2 O associated with interlayer expansion and enable the removal of H2 O from a H2 O/2-propanol mixed vapour. These results indicate that the CP could be an excellent dehydrating agent. PMID:27373696

  18. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence.

    PubMed

    Li, Bingmei; Xu, Hualan; Xiao, Chen; Shuai, Min; Chen, Weimin; Zhong, Shengliang

    2016-10-01

    Coordination polymer (CP) core-shell nanoparticles with Gd-based CP (GdCP) as core and Eu-based CP (EuCP) as shell have been successfully prepared. Allantoin was employed as the organic building block without the assistance of any template. The composition, size and structure of the core-shell nanospheres were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TG). Results show that the resultant cores are uniform nanospheres with diameter of approximately 45nm, while the diameters of the core-shell nanospheres are increased to approximately 60nm. The core-shell products show enhanced luminescence efficiency than the core under 980nm laser excitation and decreased down-conversion luminescence when excited at 394nm.

  19. Catalytic glucose isomerization by porous coordination polymers with open metal sites.

    PubMed

    Akiyama, George; Matsuda, Ryotaro; Sato, Hiroshi; Kitagawa, Susumu

    2014-10-01

    Highly efficient catalytic isomerization reactions from glucose to fructose in aqueous media using porous coordination polymers (PCPs) or metal-organic frameworks (MOFs) is reported for the first time. The catalytic activity of PCPs functionalized with -NH2, -(CH3)2, -NO2, and -SO3H groups on the pore surface is systematically tested. The catalytic activity can be tuned by the acidity of open metal sites (OMSs) by modifying the organic linkers with the functional groups. As a result, it is demonstrated that MIL-101 functionalized with -SO3H not only shows high conversion of glucose but also selectively produces fructose. Further, catalytic one-pot conversion of amylose to fructose is achieved, thanks to the high stability of the framework in an acidic solution. These results show that MOF/PCP compounds having OMSs are promising materials for various useful heterogeneous catalytic reactions, in particular in the biomass field. PMID:25080129

  20. Pressure Sensor via Optical Detection Based on a 1D Spin Transition Coordination Polymer

    PubMed Central

    Jureschi, Cătălin M.; Linares, Jorge; Rotaru, Aurelian; Ritti, Marie Hélène; Parlier, Michel; Dîrtu, Marinela M.; Wolff, Mariusz; Garcia, Yann

    2015-01-01

    We have investigated the suitability of using the 1D spin crossover coordination polymer [Fe(4-(2′-hydroxyethyl)-1,2,4-triazole)3]I2·H2O, known to crossover around room temperature, as a pressure sensor via optical detection using various contact pressures up to 250 MPa. A dramatic persistent colour change is observed. The experimental data, obtained by calorimetric and Mössbauer measurements, have been used for a theoretical analysis, in the framework of the Ising-like model, of the thermal and pressure induced spin state switching. The pressure (P)-temperature (T) phase diagram calculated for this compound has been used to obtain the P-T bistability region. PMID:25621610

  1. A systematic study on the stability of porous coordination polymers against ammonia.

    PubMed

    Kajiwara, Takashi; Higuchi, Masakazu; Watanabe, Daisuke; Higashimura, Hideyuki; Yamada, Teppei; Kitagawa, Hiroshi

    2014-11-17

    To establish a strategy for designing porous coordination polymers (PCPs) for ammonia capture, the first systematic study on the stability of PCPs against ammonia was conducted. Various types of PCPs were investigated by comparing their powder XRD patterns before and after treatment with ammonia. Among the PCPs tested, ZIF-8, MIL-53(Al), Al-BTB, MOF-76(M) (M=Y or Yb), MIL-101(Cr), and MOF-74(Mg) were stable up to 350 °C under an ammonia atmosphere at ambient pressure. The origin of the stability of PCPs is discussed from the viewpoint of their components, metal cations, and organic linkers. Furthermore, adsorption isotherm measurements show that the adsorptive behavior of PCPs is independent of their stability.

  2. Luminescent lanthanide coordination polymers synthesized via in-situ hydrolysis of dimethyl-3,4-furandicarboxylate

    NASA Astrophysics Data System (ADS)

    Greig, Natalie E.; Einkauf, Jeffrey D.; Clark, Jessica M.; Corcoran, Eric J.; Karram, Joseph P.; Kent, Charles A.; Eugene, Vadine E.; Chan, Benny C.; de Lill, Daniel T.

    2015-05-01

    Dimethyl-3,4-furandicarboxylate undergoes hydrolysis under hydrothermal conditions with lanthanide (Ln) ions to form two-dimensional coordination polymers, [Ln(C6H2O5)(C6H3O5)(H2O)]n (Ln=Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb, Lu). The resulting materials exhibit luminescent properties with quantum yields and lifetimes for the Eu(III) and Tb(III) compounds of 1.1±0.3% and 0.387±0.0001 ms, and 3.3±0.8% and 0.769±0.006 ms, respectively. Energy values for the singlet and triplet states were determined for dimethyl-3,4-furandicarboxylate and 3,4-furandicarboxylic acid. Excited state dynamics and structural features are examined to explicate the reported quantum yields. A series of other FDC structures is briefly presented.

  3. Coordination polymer core/shell structures: Preparation and up/down-conversion luminescence.

    PubMed

    Li, Bingmei; Xu, Hualan; Xiao, Chen; Shuai, Min; Chen, Weimin; Zhong, Shengliang

    2016-10-01

    Coordination polymer (CP) core-shell nanoparticles with Gd-based CP (GdCP) as core and Eu-based CP (EuCP) as shell have been successfully prepared. Allantoin was employed as the organic building block without the assistance of any template. The composition, size and structure of the core-shell nanospheres were well characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM), energy dispersive X-ray (EDX), powder X-ray diffraction (PXRD), Fourier transform infrared spectroscopy (FT-IR), thermo-gravimetric analysis (TG). Results show that the resultant cores are uniform nanospheres with diameter of approximately 45nm, while the diameters of the core-shell nanospheres are increased to approximately 60nm. The core-shell products show enhanced luminescence efficiency than the core under 980nm laser excitation and decreased down-conversion luminescence when excited at 394nm. PMID:27344485

  4. Flexible Two-Dimensional Square-Grid Coordination Polymers: Structures and Functions

    PubMed Central

    Kajiro, Hiroshi; Kondo, Atsushi; Kaneko, Katsumi; Kanoh, Hirofumi

    2010-01-01

    Coordination polymers (CPs) or metal-organic frameworks (MOFs) have attracted considerable attention because of the tunable diversity of structures and functions. A 4,4′-bipyridine molecule, which is a simple, linear, exobidentate, and rigid ligand molecule, can construct two-dimensional (2D) square grid type CPs. Only the 2D-CPs with appropriate metal cations and counter anions exhibit flexibility and adsorb gas with a gate mechanism and these 2D-CPs are called elastic layer-structured metal-organic frameworks (ELMs). Such a unique property can make it possible to overcome the dilemma of strong adsorption and easy desorption, which is one of the ideal properties for practical adsorbents. PMID:21152303

  5. Trapping of a spatial transient state during the framework transformation of a porous coordination polymer.

    PubMed

    Kondo, Mio; Furukawa, Shuhei; Hirai, Kenji; Tsuruoka, Takaaki; Reboul, Julien; Uehara, Hiromitsu; Diring, Stéphane; Sakata, Yoko; Sakata, Osami; Kitagawa, Susumu

    2014-04-01

    Structural transformability accompanied by molecular accommodation is a distinguished feature of porous coordination polymers (PCPs) among porous materials. Conventional X-ray crystallography allows for the determination of each structural phase emerged during transformation. However, the propagation mechanism of transformation through an entire crystal still remains in question. Here we elucidate the structural nature of the spatial transient state, in which two different but correlated framework structures, an original phase and a deformed phase, simultaneously exist in one crystal. The deformed phase is distinctively generated only at the crystal surface region by introducing large guest molecules, while the remaining part of crystal containing small molecules maintains the original phase. By means of grazing incidence diffraction techniques we determine that the framework is sheared with sharing one edge of the original primitive cubic structure, leading to the formation of crystal domains with four mirror image relationships.

  6. Structural optimization of interpenetrated pillared-layer coordination polymers for ethylene/ethane separation.

    PubMed

    Kishida, Keisuke; Horike, Satoshi; Watanabe, Yoshihiro; Tahara, Mina; Inubushi, Yasutaka; Kitagawa, Susumu

    2014-06-01

    With the goal of achieving effective ethylene/ethane separation, we evaluated the gas sorption properties of four pillared-layer-type porous coordination polymers with double interpenetration, [Zn2(tp)2(bpy)]n (1), [Zn2(fm)2(bpe)]n (2), [Zn2(fm)2(bpa)]n (3), and [Zn2(fm)2(bpy)]n (4) (tp = terephthalate, bpy = 4,4'-bipyridyl, fm = fumarate, bpe = 1,2-di(4-pyridyl)ethylene and bpa = 1,2-di(4-pyridyl)ethane). It was found that 4, which contains the narrowest pores of all of these compounds, exhibited ethylene-selective sorption profiles. The ethylene selectivity of 4 was estimated to be 4.6 at 298 K based on breakthrough experiments using ethylene/ethane gas mixtures. In addition, 4 exhibited a good regeneration ability compared with a conventional porous material.

  7. Pressure-induced amorphization of a dense coordination polymer and its impact on proton conductivity

    SciTech Connect

    Umeyama, Daiki; Hagi, Keisuke; Ogiwara, Naoki; Horike, Satoshi E-mail: kitagawa@icems.kyoto-u.ac.jp; Tassel, Cedric; Kageyama, Hiroshi; Higo, Yuji; Kitagawa, Susumu E-mail: kitagawa@icems.kyoto-u.ac.jp

    2014-12-01

    The proton conductivity of a dense coordination polymer (CP) was investigated under high-pressure conditions. Impedance measurements under high pressures revealed that the proton conductivity of the CP decreased more than 1000-fold at pressures of 3–7 GPa and that the activation energy for proton conduction almost doubled compared with that at ambient pressure. A synchrotron X-ray study under high pressure identified the amorphization process of the CP during compression, which rationally explains the decrease in conductivity and increase in activation energy. This phenomenon is categorized as reversible pressure-induced amorphization of a dense CP and is regarded as a demonstration of the coupling of the mechanical and electrical properties of a CP.

  8. Synthesis of Biocompatible Nanoparticulate Coordination Polymers for Diagnostic and Therapeutic Applications

    NASA Astrophysics Data System (ADS)

    Kandanapitiye, Murthi S.

    The combination of nanotechnology with medicinal chemistry has developed into a burgeoning research area. Nanomaterials (NMs) could be seamlessly interfaced with various facets in biology, biochemistry, medicinal chemistry and environmental chemistry that may not be available to the same material in the bulk scale. This dissertation research has focused on the development of nanoparticulate coordination polymers for diagnostic and therapeutic applications. Modern imaging techniques include X-ray computed tomography (CT), magnetic resonance imaging (MRI), single photon emission computed tomography (SPECT) and positron emission tomography (PET). We have successfully developed several types of nanoparticulate diagnostics and therapeutics that have some potential usefulness in biomedicine. Synthesis and characterization of nanoparticulate based PET (Positron emission tomography)/SPECT (Single photon emission computed tomography) are discussed in chapter 3. In chapter 4, preparation and potential utility of non-gadolinium based MRI contrast agent are reported for T1-weighted application. As far as the solely effectiveness of relaxation is concerned, Gd-based T 1-weighted MRI contrast agents have excellent enhancement of image contrast but they have risks of biological toxicity. Consequently, the search for T 1-weighted CAs with high efficacy and low toxicity has gained attention toward the Mn(II) and Fe(III). Fe(III) is considered to be more toxic to cells because free ferric or ferrous ions can catalyze the production of reactive oxygen species via the Fenton reactions. Paramagnetic chelates of Mn(II) could be employed as T1-weighted CAs. However, it is challenging to design and synthesize highly stable Mn(II) complexes that could maintain the integrity when administered to living system. Chapter 4 describes the synthesis and utility of nanoparticulate Mn analogue of Prussian blue (K2Mn 3[FeII(CN)6]2) as an effective T1 MRI contrast agent for cellular imaging X

  9. Lanthanide Coordination Polymer Nanoparticles as an Excellent Artificial Peroxidase for Hydrogen Peroxide Detection.

    PubMed

    Zeng, Hui-Hui; Qiu, Wei-Bin; Zhang, Li; Liang, Ru-Ping; Qiu, Jian-Ding

    2016-06-21

    Lanthanide coordination polymer nanoparticles (Ln-CPNs) have been recently demonstrated as excellent platforms for biomolecule detection. In this work, we synthesized novel cerium coordination polymer nanoparticles ATP-Ce-Tris CPNs in a simple and quick way using ATP molecules as the biocompatible ligands to Ce(3+) ions in tris(hydroxymethyl)aminomethane hydrochloric (Tris-HCl) solution. In view of the excellent free radical scavenging property of cerium compounds, which is ascribed to the mixed valence state (Ce(3+), Ce(4+)) and the reversible switch from Ce(3+) to Ce(4+), the synthesized ATP-Ce-Tris CPNs was used as artificial peroxidase to selectively and sensitively detect H2O2. The sensing mechanism depends on the oxidation of the fluorescent ATP-Ce(III)-Tris CPNs to nonfluorescent ATP-Ce(IV)-Tris CPNs by H2O2. Compared with those inorganic cerium oxide sensors, this kind of fluoresence ATP-Ce-Tris CPNs sensor needs no additional organic redox dye, such as ABTS (2,20-azino-bis(3-ethylbenzthiazoline-6-sulfonic acid), TMB (3,3,5,5-tetramethylbenzidine), or fluorescein as signal molecules. Moreover, such ATP-Ce-Tris CPNs sensor exhibited a more sensitive response to H2O2 with a detection limit down to 0.6 nM, which is 2 orders of magnitude lower than those of cerium oxide sensors. This sensing platform was further extended to the detection of glucose in combination with the specific catalytic effect of glucose oxidase (GOx) for the oxidation of glucose and formation of H2O2. PMID:27220993

  10. Controllable synthesis of Zn/Cd(ii) coordination polymers: dual-emissive luminescent properties, and tailoring emission tendency under varying excitation energies.

    PubMed

    Xing, Kai; Fan, Ruiqing; Gao, Song; Wang, Xinming; Du, Xi; Wang, Ping; Fang, Ru; Yang, Yulin

    2016-03-21

    Based on a new asymmetric semi-rigid V-shaped tricarboxylate ligand 3-(2',3'-dicarboxylphenoxy)benzoic acid (H3dpob), a series of zinc/cadmium(ii) coordination polymers, {[Cd(Hdpob)(H2O)3]·H2O}n (1), [Cd(Hdpob)(bib)]n (2), [Zn(Hdpob)(bib)0.5]n (3), {[Cd1.5(dpob)(2,2'-bipy)]·0.5H2O}2n (4) and {[Cd3(dpob)2(4,4'-bipy)2]·3H2O}n (5) [bib = 1,4-bis(1-imidazolyl)benzene; 2,2'-bipy = 2,2'-bipyridine; 4,4'-bipy = 4,4'-bipyridine], have been successfully synthesized via hydro(solvo)thermal reactions. 1 forms a three dimensional (3D) supramolecular structure linked by two types of intermolecular hydrogen bonds based on zig-zag 1D chains, whereas 2 and 3 are obtained with a similar 2D layer structure by the same ligands and further connected into a 3D structure through hydrogen bonds. 4 displays a homochiral 2D structure though two achiral ligands 2,2'-bipy and H3dpob, which contains right-handed helical infinite chains. 5 is a 3D structure containing 2D metal-pyridine layer motifs, which are further pillared by beaded dpob(3-) ligands to complete the structure and form a 6-connected pcu (primitive cubic) net. In DMSO solvent, 1-5 illustrate dual-emission properties but have different low-energy emission (LE) intensities relatively. Extraordinarily, the difference resulting from central metals between 2 and 3 makes the intensity of LE dramatically enhanced and quenched. In this regard, the luminescence of 2 and 3 can be tuned between blue and green regions by varying the excitation light, and the tuning tendency can be tailored with inverse directions. Comparing their tunable-sensitivity to energy quantitatively, the theoretical calculation displays that 3 (4.29%) is little higher than 2 (3.59%) in a relative lower excitation wavelength zone. Meanwhile, five coordination polymers show distinct luminescence thermochromism in the solid state. When the temperature decreases from 298 K to 77 K, the red-shift from blue/green to the pure yellow light region is highlighted. The

  11. Controllable synthesis of Zn/Cd(ii) coordination polymers: dual-emissive luminescent properties, and tailoring emission tendency under varying excitation energies.

    PubMed

    Xing, Kai; Fan, Ruiqing; Gao, Song; Wang, Xinming; Du, Xi; Wang, Ping; Fang, Ru; Yang, Yulin

    2016-03-21

    Based on a new asymmetric semi-rigid V-shaped tricarboxylate ligand 3-(2',3'-dicarboxylphenoxy)benzoic acid (H3dpob), a series of zinc/cadmium(ii) coordination polymers, {[Cd(Hdpob)(H2O)3]·H2O}n (1), [Cd(Hdpob)(bib)]n (2), [Zn(Hdpob)(bib)0.5]n (3), {[Cd1.5(dpob)(2,2'-bipy)]·0.5H2O}2n (4) and {[Cd3(dpob)2(4,4'-bipy)2]·3H2O}n (5) [bib = 1,4-bis(1-imidazolyl)benzene; 2,2'-bipy = 2,2'-bipyridine; 4,4'-bipy = 4,4'-bipyridine], have been successfully synthesized via hydro(solvo)thermal reactions. 1 forms a three dimensional (3D) supramolecular structure linked by two types of intermolecular hydrogen bonds based on zig-zag 1D chains, whereas 2 and 3 are obtained with a similar 2D layer structure by the same ligands and further connected into a 3D structure through hydrogen bonds. 4 displays a homochiral 2D structure though two achiral ligands 2,2'-bipy and H3dpob, which contains right-handed helical infinite chains. 5 is a 3D structure containing 2D metal-pyridine layer motifs, which are further pillared by beaded dpob(3-) ligands to complete the structure and form a 6-connected pcu (primitive cubic) net. In DMSO solvent, 1-5 illustrate dual-emission properties but have different low-energy emission (LE) intensities relatively. Extraordinarily, the difference resulting from central metals between 2 and 3 makes the intensity of LE dramatically enhanced and quenched. In this regard, the luminescence of 2 and 3 can be tuned between blue and green regions by varying the excitation light, and the tuning tendency can be tailored with inverse directions. Comparing their tunable-sensitivity to energy quantitatively, the theoretical calculation displays that 3 (4.29%) is little higher than 2 (3.59%) in a relative lower excitation wavelength zone. Meanwhile, five coordination polymers show distinct luminescence thermochromism in the solid state. When the temperature decreases from 298 K to 77 K, the red-shift from blue/green to the pure yellow light region is highlighted. The

  12. Carboxyl group (-CO2 H) functionalized coordination polymer nanoparticles as efficient platforms for drug delivery.

    PubMed

    Novio, Fernando; Lorenzo, Julia; Nador, Fabiana; Wnuk, Karolina; Ruiz-Molina, Daniel

    2014-11-17

    Functionalization of nanoparticles can significantly influence their properties and potential applications. Although researchers can now functionalize metal, metal oxide, and organic polymer nanoparticles with a high degree of precision, controlled surface functionalization of nanoscale coordination polymer particles (CPPs) has remained a significant challenge. The lack of methodology is perhaps one of the greatest roadblocks to the advancement of CPPs into high added-value drug delivery applications. Here, we report having achieved this goal through a stepwise formation and functionalization protocol. We fabricated robust nanoparticles with enhanced thermal and colloidal stabilities by incorporation of carboxyl groups and these surface carboxyl groups could be subsequently functionalized through well-known peptide coupling reactions. The set of chemistries that we employed as proof-of-concept enabled a plethora of new functional improvements for the application of CPPs as drug delivery carriers, including enhanced colloidal stabilities and the incorporation of additional functional groups such as polyethylene glycol (PEG) or fluorescent dyes that enabled tracking of their cellular uptake. Finally, we ascertained the cytotoxicity of the new CPP nanoparticles loaded with camptothecin to human breast adenocarcinoma (MCF-7). Efflux measurements show that the encapsulation of camptothecin enhances the potency of the drug 6.5-fold and increases the drug retention within the cell. PMID:25284328

  13. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide

    NASA Astrophysics Data System (ADS)

    Tran, Phong D.; Tran, Thu V.; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2016-06-01

    Molybdenum sulfides are very attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) from water. The atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx), which exhibits significantly higher HER activity compared to its crystalline counterpart. Here we show that HER-active a-MoSx, prepared either as nanoparticles or as films, is a molecular-based coordination polymer consisting of discrete [Mo3S13]2- building blocks. Of the three terminal disulfide (S22-) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimization of this HER electrocatalyst as an alternative to platinum.

  14. Carboxyl group (-CO2 H) functionalized coordination polymer nanoparticles as efficient platforms for drug delivery.

    PubMed

    Novio, Fernando; Lorenzo, Julia; Nador, Fabiana; Wnuk, Karolina; Ruiz-Molina, Daniel

    2014-11-17

    Functionalization of nanoparticles can significantly influence their properties and potential applications. Although researchers can now functionalize metal, metal oxide, and organic polymer nanoparticles with a high degree of precision, controlled surface functionalization of nanoscale coordination polymer particles (CPPs) has remained a significant challenge. The lack of methodology is perhaps one of the greatest roadblocks to the advancement of CPPs into high added-value drug delivery applications. Here, we report having achieved this goal through a stepwise formation and functionalization protocol. We fabricated robust nanoparticles with enhanced thermal and colloidal stabilities by incorporation of carboxyl groups and these surface carboxyl groups could be subsequently functionalized through well-known peptide coupling reactions. The set of chemistries that we employed as proof-of-concept enabled a plethora of new functional improvements for the application of CPPs as drug delivery carriers, including enhanced colloidal stabilities and the incorporation of additional functional groups such as polyethylene glycol (PEG) or fluorescent dyes that enabled tracking of their cellular uptake. Finally, we ascertained the cytotoxicity of the new CPP nanoparticles loaded with camptothecin to human breast adenocarcinoma (MCF-7). Efflux measurements show that the encapsulation of camptothecin enhances the potency of the drug 6.5-fold and increases the drug retention within the cell.

  15. Coordination polymer structure and revisited hydrogen evolution catalytic mechanism for amorphous molybdenum sulfide.

    PubMed

    Tran, Phong D; Tran, Thu V; Orio, Maylis; Torelli, Stephane; Truong, Quang Duc; Nayuki, Keiichiro; Sasaki, Yoshikazu; Chiam, Sing Yang; Yi, Ren; Honma, Itaru; Barber, James; Artero, Vincent

    2016-06-01

    Molybdenum sulfides are very attractive noble-metal-free electrocatalysts for the hydrogen evolution reaction (HER) from water. The atomic structure and identity of the catalytically active sites have been well established for crystalline molybdenum disulfide (c-MoS2) but not for amorphous molybdenum sulfide (a-MoSx), which exhibits significantly higher HER activity compared to its crystalline counterpart. Here we show that HER-active a-MoSx, prepared either as nanoparticles or as films, is a molecular-based coordination polymer consisting of discrete [Mo3S13](2-) building blocks. Of the three terminal disulfide (S2(2-)) ligands within these clusters, two are shared to form the polymer chain. The third one remains free and generates molybdenum hydride moieties as the active site under H2 evolution conditions. Such a molecular structure therefore provides a basis for revisiting the mechanism of a-MoSx catalytic activity, as well as explaining some of its special properties such as reductive activation and corrosion. Our findings open up new avenues for the rational optimization of this HER electrocatalyst as an alternative to platinum. PMID:26974410

  16. Validation of high-resolution 3D patient QA for proton PBS and IMPT using laser CT of improved polymer gel dosimeters

    NASA Astrophysics Data System (ADS)

    Cardin, A.; Ding, X.; Kassaee, A.; Lin, L.; Maryanski, M. J.; Avery, S.

    2015-01-01

    Laser CT scanning of LET-independent BANG3-Pro2® polymer gel dosimeters has recently shown potential in proton dosimetry. However, raw materials' impurities impart some variability. This study aimed to validate a new method of compensating for this variability, and to validate the suitability of the improved dosimeter for patient-specific QA in pencil beam scanning (PBS) and IMPT. Six modifications of the BANG3-Pro2® gel dosimeter were analysed for their sensitivity to proton dose and to LET. One formulation was selected for a clinical QA feasibility study, in which one composite IMPT plan, two single-field IMPT plans, and one SFUD plan were delivered to identical gel phantoms. New commercial VOLQATM software (beta version) was used for data analysis. Both validations were successful.

  17. Calculations of the integral invariant coordinates I and L* in the magnetosphere and mapping of the regions where I is conserved, using a particle tracer (ptr3D v2.0), LANL*, SPENVIS, and IRBEM

    NASA Astrophysics Data System (ADS)

    Konstantinidis, K.; Sarris, T.

    2015-09-01

    The integral invariant coordinate I and Roederer's L or L* are proxies for the second and third adiabatic invariants, respectively, that characterize charged particle motion in a magnetic field. Their usefulness lies in the fact that they are expressed in more instructive ways than their counterparts: I is equivalent to the path length of the particle motion between two mirror points, whereas L*, although dimensionless, is equivalent to the distance from the center of the Earth to the equatorial point of a given field line, in units of Earth radii, in the simplified case of a dipole magnetic field. However, care should be taken when calculating the above invariants, as the assumption of their conservation is not valid everywhere in the Earth's magnetosphere. This is not clearly stated in state-of-the-art models that are widely used for the calculation of these invariants. The purpose of this work is thus to investigate where in the near-Earth magnetosphere we can safely calculate I and L* with tools with widespread use in the field of space physics, for various magnetospheric conditions and particle initial conditions. More particularly, in this paper we compare the values of I and L* as calculated using LANL*, an artificial neural network developed at the Los Alamos National Laboratory, SPENVIS, a space environment online tool, IRBEM, a software library dedicated to radiation belt modeling, and ptr3D, a 3-D particle tracing code that was developed for this study. We then attempt to quantify the variations between the calculations of I and L* of those models. The deviation between the results given by the models depends on particle initial position, pitch angle and magnetospheric conditions. Using the ptr3D v2.0 particle tracer we map the areas in the Earth's magnetosphere where I and L* can be assumed to be conserved by monitoring the constancy of I for energetic protons propagating forwards and backwards in time. These areas are found to be centered on the noon

  18. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications

    PubMed Central

    Liu, Fuyao; He, Xiuxia; Chen, Hongda; Zhang, Junping; Zhang, Huimao; Wang, Zhenxin

    2015-01-01

    An ultrasmall hydrodynamic diameter is a critical factor for the renal clearance of nanoparticles from the body within a reasonable timescale. However, the integration of diagnostic and therapeutic components into a single ultrasmall nanoparticle remains challenging. In this study, pH-activated nanodots (termed Fe-CPNDs) composed of coordination polymers were synthesized via a simple and scalable method based on coordination reactions among Fe3+, gallic acid and poly(vinylpyrrolidone) at ambient conditions. The Fe-CPNDs exhibited ultrasmall (5.3 nm) hydrodynamic diameters and electrically neutral surfaces. The Fe-CPNDs also exhibited pH-activatable magnetic resonance imaging contrast and outstanding photothermal performance. The features of Fe-CPNDs greatly increased the tumour-imaging sensitivity and facilitated renal clearance after injection in animal models in vivo. Magnetic resonance imaging-guided photothermal therapy using Fe-CPNDs completely suppressed tumour growth. These findings demonstrate that Fe-CPNDs constitute a new class of renal clearable nanomedicine for photothermal therapy and molecular imaging. PMID:26245151

  19. Divergent layer topologies in divalent metal aliphatic dicarboxylate coordination polymers containing 3-pyridylmethylnicotinamide

    NASA Astrophysics Data System (ADS)

    White, Charmaine L.; Torres Salgado, Maria D.; Mizzi, Jessica E.; LaDuca, Robert L.

    2015-12-01

    Hydrothermal reaction of the requisite metal salt, an aliphatic dicarboxylic acid, and the hydrogen-bonding capable dipyridylamide ligand 3-pyridylmethylnicotinamide (3-pmna) resulted in four coordination polymers whose connectedness and layer topology depend on the metal coordination environment and dicarboxylate binding mode. These new crystalline phases were characterized by single crystal X-ray diffraction. [Cu(ox)(3-pmna)]n (1, ox = oxalate) manifests stacked 3-connected (6,3) herringbone layer motifs. {[Cd(mal)(3-pmna)(H2O)]·3H2O}n (2, mal = malonate) shows a 4-connected (4,4) grid topology with entrained water molecule trimeric chains in the interlamellar regions. {[Cd2(suc)2(3-pmna)(H2O)2]·3H2O}n (3, suc = succinate) possesses {Cd2O2} dimer-based [Cd(suc)]n layers pillared by 3-pmna ligands into a 5-connected sandwich motif with 4862 topology. {[Cd(glu)(3-pmna)(H2O)]·3H2O}n (4, glu = glutarate) manifests a rippled (4,4) grid topology. Luminescent behavior in the cadmium complexes is ascribed to intra-ligand molecular orbital transitions. Thermal decomposition behavior is also discussed herein.

  20. Gram-scale synthesis of coordination polymer nanodots with renal clearance properties for cancer theranostic applications

    NASA Astrophysics Data System (ADS)

    Liu, Fuyao; He, Xiuxia; Chen, Hongda; Zhang, Junping; Zhang, Huimao; Wang, Zhenxin

    2015-08-01

    An ultrasmall hydrodynamic diameter is a critical factor for the renal clearance of nanoparticles from the body within a reasonable timescale. However, the integration of diagnostic and therapeutic components into a single ultrasmall nanoparticle remains challenging. In this study, pH-activated nanodots (termed Fe-CPNDs) composed of coordination polymers were synthesized via a simple and scalable method based on coordination reactions among Fe3+, gallic acid and poly(vinylpyrrolidone) at ambient conditions. The Fe-CPNDs exhibited ultrasmall (5.3 nm) hydrodynamic diameters and electrically neutral surfaces. The Fe-CPNDs also exhibited pH-activatable magnetic resonance imaging contrast and outstanding photothermal performance. The features of Fe-CPNDs greatly increased the tumour-imaging sensitivity and facilitated renal clearance after injection in animal models in vivo. Magnetic resonance imaging-guided photothermal therapy using Fe-CPNDs completely suppressed tumour growth. These findings demonstrate that Fe-CPNDs constitute a new class of renal clearable nanomedicine for photothermal therapy and molecular imaging.

  1. Multi-dimensional transition-metal coordination polymers of 4,4'-bipyridine-N,N'-dioxide: 1D chains and 2D sheets.

    PubMed

    Jia, Junhua; Blake, Alexander J; Champness, Neil R; Hubberstey, Peter; Wilson, Claire; Schröder, Martin

    2008-10-01

    Reaction of 4,4'-bipyridine -N, N' -dioxide (L) with a variety of transition-metal salts in MeOH affords a range of coordination polymer products. For the complexes [FeCl 3(mu-L)] infinity, 1, and ([Cu(L) 2(OHMe) 2(mu-L)].2PF 6. n(solv)) infinity, 2, 1D chain structures are observed, whereas ([Mn(mu-L) 3].2ClO 4) infinity, 3, and ([Cu(mu-L) 3].2BF 4) infinity, 4, both show 2D sheet architectures incorporating an unusual 3 (6)- hxl topology. The more common 4 (4)- sql topology is observed in [Cd(ONO 2) 2(mu-L) 2] infinity, 5, ([Cu(OHMe) 2(mu-L) 2].2ZrF 5) infinity, 6, ([Cu(L) 2(mu-L) 2].2EF 6) infinity ( 7 E = P; 8 E = Sb), and ([Et 4N][Cu(OHMe) 0.5(mu-L) 2(mu-FSiF 4F) 0.5].2SbF 6. n(solv)) infinity, 9. In 6, the [ZrF 5] (-) anion, formed in situ from [ZrF 6] (2-), forms 1D anionic chains ([ZrF 5] (-)) infinity of vertex-linked octahedra, and these chains thread through a pair of inclined polycatenated ([Cu(OHMe) 2(mu-L) 2] (2+)) infinity 4 (4)- sql grids to give a rare example of a triply intertwined coordination polymer. 9 also shows a 3D matrix structure with 4 (4)- sql sheets of stoichiometry ([Cu(L) 2] (2+)) infinity coordinatively linked by bridging [SiF 6] (2-) anions to give a structure of 5-c 4 (4).6 (6)- sqp topology. The mononuclear [Cu(L) 6].2BF 4 ( 10) and [Cd(L) 6].2NO 3 ( 11) and binuclear complexes [(Cu(L)(OH 2)) 2(mu-L) 2)].2SiF 6. n(solv), 12, are also reported. The majority of the coordination polymers are free of solvent and are nonporous. Thermal treatment of materials that do contain solvent results in structural disintegration of the complex structures giving no permanent porosity.

  2. Coordination polymers with the chiral ligand N-p-tolylsulfonyl-L-glutamic acid: Influence of metal ions and different bipyridine ligands on structural chirality

    SciTech Connect

    He Rong; Song Huihua; Wei Zhen; Zhang Jianjun; Gao Yuanzhe

    2010-09-15

    Four new polymers, namely [Ni(-tsgluO)(2,4'-bipy){sub 2}(H{sub 2}O){sub 2}]{sub n}.5nH{sub 2}O (1), [Co(-tsgluO)(2,4'-bipy){sub 2}(H{sub 2}O){sub 2}]{sub n}.5nH{sub 2}O (2), [Ni(-tsgluO)(4,4'-bipy)]{sub n}.0.5nH{sub 2}O (3), and [Co(-tsgluO)(4,4'-bipy)]{sub n}.0.5nH{sub 2}O (4), where tsgluO{sup 2-}=(+)-N-p-tolylsulfonyl-L-glutamate dianion, 2,4'-bipy=2,4'-bipyridine, and 4,4'-bipy=4,4'-bipyridine, have been prepared and structurally characterized. Compounds 1 and 2 are isostructural and mononuclear, and crystallize in the acentric monoclinic space group Cc, forming 1D chain structures. Compound 3 is also mononuclear, but crystallizes in the chiral space group P2{sub 1}, forming a homochiral 2D architecture. In contrast to the other complexes, compound 4 crystallizes in the space group P-1 and is composed of binuclear [Co{sub 2}O{sub 6}N{sub 2}]{sub n}{sup 4-} units, which give rise to a 2D bilayer framework. Moreover, compounds 1, 2, and 4 self-assemble to form 3D supramolecular structures through {pi}-{pi} stacking and hydrogen-bonding interactions, while compound 3 is further hydrogen-bonded to form 3D frameworks. We have demonstrated the influence of the central metal and bipyridine ligands on the framework chirality of the coordination complexes. - Graphical abstract: Four novel polymers based on a chiral ligand were prepared and structurally characterized; it represents the first series of investigations about the effect of central metals and bipyridine ligands on framework chirality.

  3. Enantioselective recognition and separation of racemic 1-phenylethanol by a pair of 2D chiral coordination polymers.

    PubMed

    Li, Zi-Jian; Yao, Jia; Tao, Qian; Jiang, Long; Lu, Tong-Bu

    2013-10-21

    A pair of 2D chiral coordination polymers were constructed through the self-assembly of a chiral metal-camphor-10-sulfonate salt and a bidentate linker, which show selective inclusion of S and R enantiomers of 1-phenylethanol respectively with an enantioselectivity of 9:1. PMID:24083956

  4. A 2D cobalt based coordination polymer constructed from benzimidazole and acetate ion exhibiting spin-canted antiferromagnetism.

    PubMed

    Arai, Leo; Nadeem, Muhammad Arif; Bhadbhade, Mohan; Stride, John Arron

    2010-04-14

    A coordination polymer, [Co(II)(bIM)(acetate)] (bIM = benzimidazole) was synthesized using a solvothermal method; the complex has a two dimensional non-interpenetrated network structure and exhibits a spin-canted antiferromagnetic behaviour at low temperature and a high coercive field.

  5. Nucleotide/Tb³⁺ coordination polymer nanoparticles as luminescent sensor and scavenger for nitrite ion.

    PubMed

    Qi, Zewan; You, Qi; Chen, Yang

    2016-01-01

    Newly emerged metal organic coordination polymers have aroused the great interest in designing tailored functional materials. In this study, multiple functional components, luminescent Tb(3+) ion, nucleobase and antenna molecule, were integrated in a single material and prepared into a responsive nanoparticle for nitrite. The terbium coordination polymer nanoparticles made of this kind of material have the dual functions of recognition and transduction and obey a preset sensing mechanism without a post-functionalization of common materials. As the result of the tailored, the terbium coordination polymer nanoparticles are highly sensitive and selective to nitrite by means of Dexter energy transfer between Tb(3+) ion and nitrite, and can be used for the scavenger for nitrite in aqueous solution. The detection limit, dynamic range and removal capacity of U-Tb-OBBA CPNPs for nitrite are 0.3 µM, 0.3-470 µM and 4.44 mg per gram of particles, respectively. Metal organic coordination polymers show an attractive potential in constructing smart sensing materials.

  6. Ion conductivity and transport by porous coordination polymers and metal-organic frameworks.

    PubMed

    Horike, Satoshi; Umeyama, Daiki; Kitagawa, Susumu

    2013-11-19

    Ion conduction and transport in solids are both interesting and useful and are found in widely distinct materials, from those in battery-related technologies to those in biological systems. Scientists have approached the synthesis of ion-conductive compounds in a variety of ways, in the areas of organic and inorganic chemistry. Recently, based on their ion-conducting behavior, porous coordination polymers (PCPs) and metal-organic frameworks (MOFs) have been recognized for their easy design and the dynamic behavior of the ionic components in the structures. These PCP/MOFs consist of metal ions (or clusters) and organic ligands structured via coordination bonds. They could have highly concentrated mobile ions with dynamic behavior, and their characteristics have inspired the design of a new class of ion conductors and transporters. In this Account, we describe the state-of-the-art of studies of ion conductivity by PCP/MOFs and nonporous coordination polymers (CPs) and offer future perspectives. PCP/MOF structures tend to have high hydrophilicity and guest-accessible voids, and scientists have reported many water-mediated proton (H(+)) conductivities. Chemical modification of organic ligands can change the hydrated H(+) conductivity over a wide range. On the other hand, the designable structures also permit water-free (anhydrous) H(+) conductivity. The incorporation of protic guests such as imidazole and 1,2,4-triazole into the microchannels of PCP/MOFs promotes the dynamic motion of guest molecules, resulting in high H(+) conduction without water. Not only the host-guest systems, but the embedding of protic organic groups on CPs also results in inherent H(+) conductivity. We have observed high H(+) conductivities under anhydrous conditions and in the intermediate temperature region of organic and inorganic conductors. The keys to successful construction are highly mobile ionic species and appropriate intervals of ion-hopping sites in the structures. Lithium (Li

  7. Redox-active porous coordination polymer based on trinuclear pivalate: Temperature-dependent crystal rearrangement and redox-behavior

    SciTech Connect

    Lytvynenko, Anton S.; Kiskin, Mikhail A.; Dorofeeva, Victoria N.; Mishura, Andrey M.; Titov, Vladimir E.; Kolotilov, Sergey V.; Eremenko, Igor L.; Novotortsev, Vladimir M.

    2015-03-15

    Linking of trinuclear pivalate Fe{sub 2}NiO(Piv){sub 6} (Piv=O{sub 2}CC(CH{sub 3}){sub 3}) by 2,6-bis(4-pyridyl)-4-(1-naphthyl)pyridine (L) resulted in formation of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)·Solv, which was characterized in two forms: DMSO solvate Fe{sub 2}NiO(Piv){sub 6}(L)(DMSO)·2.5DMSO (1) or water solvate Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) (2). X-ray structure of 1 was determined. Crystal lattice of 1 at 160 K contained open channels, filled by captured solvent, while temperature growth to 296 K led to the crystal lattice rearrangement and formation of closed voids. Redox-behavior of 2 was studied by cyclic voltammetry for a solid compound, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. The presence of pores in desolvated sample Fe{sub 2}NiO(Piv){sub 6}(L) was confirmed by the measurements of N{sub 2} and H{sub 2} adsorption at 77 K. Potential barriers of the different molecules diffusion through pores were estimated by the means of molecular mechanics. - Graphical abstract: Redox-behavior of 1D-porous coordination polymer Fe{sub 2}NiO(Piv){sub 6}(L)(H{sub 2}O) was studied by cyclic voltammetry in thin film, deposited on glassy-carbon electrode. Redox-activity of L preserved upon incorporation in the coordination polymer. Potential barriers of different molecules diffusion through pores were estimated by the means of molecular mechanics. - Highlights: • Porous 1D coordination polymer was synthesized. • Temperature growth led to pores closing due to crystal lattice rearrangement. • Redox-activity of ligand preserved upon incorporation into coordination polymer. • Redox-properties of solid coordination polymer were studied in thin film. • Diffusion barriers were evaluated by molecular mechanics.

  8. Complementary in situ reactivity of isomeric dipyridylamide precursors and its effect on dimensionality of cadmium 5-nitroisophthalate coordination polymers

    NASA Astrophysics Data System (ADS)

    O'Donovan, Megan E.; LaDuca, Robert L.

    2014-07-01

    Hydrothermal treatment of cadmium nitrate, 5-nitroisophthalic acid (H2nip) and one of two isomeric dipyridylamides resulted in coordination polymer crystalline solids that manifested different in situ reactivity and dimensionality, as ascertained by single crystal X-ray diffraction. Hydrolysis of 3-pyridylisonicotinamide (3-pina) afforded the 3-aminopyridine (3-ampyr) ligands observed in the 1-D ladder polymer {[Cd(nip)(3-ampyr)(H2O)]ṡ2H2O}n (1). Conversely, hydrolysis of the isomeric precursor 3-pyridylnicotinamide (3-pna) generated the monoanionic nicotinate ligands in the 2-D coordination polymer [Cd2(nip)(nic)2(H2O)2]n (2). Compound 2 displays {Cd2(OCO)2} eight-membered ring dimeric units linked into (6,3) graphite-type slab motifs. Luminescent properties of these two new materials are also presented.

  9. Performance evaluation of an improved optical computed tomography polymer gel dosimeter system for 3D dose verification of static and dynamic phantom deliveries

    SciTech Connect

    Lopatiuk-Tirpak, O.; Langen, K. M.; Meeks, S. L.; Kupelian, P. A.; Zeidan, O. A.; Maryanski, M. J.

    2008-09-15

    The performance of a next-generation optical computed tomography scanner (OCTOPUS-5X) is characterized in the context of three-dimensional gel dosimetry. Large-volume (2.2 L), muscle-equivalent, radiation-sensitive polymer gel dosimeters (BANG-3) were used. Improvements in scanner design leading to shorter acquisition times are discussed. The spatial resolution, detectable absorbance range, and reproducibility are assessed. An efficient method for calibrating gel dosimeters using the depth-dose relationship is applied, with photon- and electron-based deliveries yielding equivalent results. A procedure involving a preirradiation scan was used to reduce the edge artifacts in reconstructed images, thereby increasing the useful cross-sectional area of the dosimeter by nearly a factor of 2. Dose distributions derived from optical density measurements using the calibration coefficient show good agreement with the treatm