Science.gov

Sample records for 3d culture conditions

  1. In Vitro Differentiation of Pluripotent Stem Cells into Functional β Islets Under 2D and 3D Culture Conditions and In Vivo Preclinical Validation of 3D Islets.

    PubMed

    Bose, Bipasha; Sudheer, P Shenoy

    2016-01-01

    Since the advent of pluripotent stem cells, (embryonic and induced pluripotent stem cells), applications of such pluripotent stem cells are of prime importance. Indeed, scientists are involved in studying the basic biology of pluripotent stem cells, but equal impetus is there to direct the pluripotent stem cells into multiple lineages for cell therapy applications. Scientists across the globe have been successful, to a certain extent, in obtaining cells of definitive endoderm and also pancreatic β islets by differentiating human pluripotent stem cells. Pluripotent stem cell differentiation protocols aim at mimicking in vivo embryonic development. As in vivo embryonic development is a complex process and involves interplay of multiple cytokines, the differentiation protocols also involve a stepwise use of multiple cytokines. Indeed the novel markers for pancreas organogenesis serve as the roadmaps to develop new protocols for pancreatic differentiation from pluripotent stem cells. Earliest developed protocols for pancreas differentiation involved "Nestin selection pathway," a pathway common for both neuronal and pancreatic differentiation lead to the generation of cells that were a combination of cells from neuronal lineage. Eventually with the discovery of hierarchy of β cell transcription factors like Pdx1, Pax4, and Nkx2.2, forced expression of such transcription factors proved successful in converting a pluripotent stem cell into a β cell. Protocols developed almost half a decade ago to the recent ones rather involve stepwise differentiations involving various cytokines and could generate as high as 25 % functional insulin-positive cells in vitro. Most advanced protocols for β islet differentiations from human pluripotent stem cells focused on 3D culture conditions, which reportedly produced 60-65 % functional β islet cells. Here, we describe the protocol for differentiation of human pluripotent stem cells into functional β cells under both 2D and 3D

  2. Increased extracellular matrix density decreases MCF10A breast cell acinus formation in 3D culture conditions.

    PubMed

    Lance, Amanda; Yang, Chih-Chao; Swamydas, Muthulekha; Dean, Delphine; Deitch, Sandy; Burg, Karen J L; Dréau, Didier

    2016-01-01

    The extracellular matrix (ECM) contributes to the generation and dynamic of normal breast tissue, in particular to the generation of polarized acinar and ductal structures. In vitro 3D culture conditions, including variations in the composition of the ECM, have been shown to directly influence the formation and organization of acinus-like and duct-like structures. Furthermore, the density of the ECM appears to also play a role in the normal mammary tissue and tumour formation. Here we show that the density of the ECM directly influences the number, organization and function of breast acini. Briefly, non-malignant human breast MCF10A cells were incubated in increasing densities of a Matrigel®-collagen I matrix. Elastic moduli near and distant to the acinus structures were measured by atomic force microscopy, and the number of acinus structures was determined. Immunochemistry was used to investigate the expression levels of E-cadherin, laminin, matrix metalloproteinase-14 and ß-casein in MCF10A cells. The modulus of the ECM was significantly increased near the acinus structures and the number of acinus structures decreased with the increase in Matrigel-collagen I density. As evaluated by the expression of laminin, the organization of the acinus structures present was altered as the density of the ECM increased. Increases in both E-cadherin and MMP14 expression by MCF10A cells as ECM density increased were also observed. In contrast, MCF10A cells expressed lower ß-casein levels as the ECM density increased. Taken together, these observations highlight the key role of ECM density in modulating the number, organization and function of breast acini.

  3. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition

    PubMed Central

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  4. Osteoinduction and survival of osteoblasts and bone-marrow stromal cells in 3D biphasic calcium phosphate scaffolds under static and dynamic culture conditions.

    PubMed

    Rath, Subha N; Strobel, Leonie A; Arkudas, Andreas; Beier, Justus P; Maier, Anne-Kathrin; Greil, Peter; Horch, Raymund E; Kneser, Ulrich

    2012-10-01

    In many tissue engineering approaches, the basic difference between in vitro and in vivo conditions for cells within three-dimensional (3D) constructs is the nutrition flow dynamics. To achieve comparable results in vitro, bioreactors are advised for improved cell survival, as they are able to provide a controlled flow through the scaffold. We hypothesize that a bioreactor would enhance long-term differentiation conditions of osteogenic cells in 3D scaffolds. To achieve this either primary rat osteoblasts or bone marrow stromal cells (BMSC) were implanted on uniform-sized biphasic calcium phosphate (BCP) scaffolds produced by a 3D printing method. Three types of culture conditions were applied: static culture without osteoinduction (Group A); static culture with osteoinduction (Group B); dynamic culture with osteoinduction (Group C). After 3 and 6 weeks, the scaffolds were analysed by alkaline phosphatase (ALP), dsDNA amount, SEM, fluorescent labelled live-dead assay, and real-time RT-PCR in addition to weekly alamarBlue assays. With osteoinduction, increased ALP values and calcium deposition are observed; however, under static conditions, a significant decrease in the cell number on the biomaterial is observed. Interestingly, the bioreactor system not only reversed the decreased cell numbers but also increased their differentiation potential. We conclude from this study that a continuous flow bioreactor not only preserves the number of osteogenic cells but also keeps their differentiation ability in balance providing a suitable cell-seeded scaffold product for applications in regenerative medicine.

  5. Oxygen Partial Pressure Is a Rate-Limiting Parameter for Cell Proliferation in 3D Spheroids Grown in Physioxic Culture Condition.

    PubMed

    Gomes, Aurélie; Guillaume, Ludivine; Grimes, David Robert; Fehrenbach, Jérôme; Lobjois, Valérie; Ducommun, Bernard

    2016-01-01

    The in situ oxygen partial pressure in normal and tumor tissues is in the range of a few percent. Therefore, when studying cell growth in 3D culture systems, it is essential to consider how the physiological oxygen concentration, rather than the one in the ambient air, influences the proliferation parameters. Here, we investigated the effect of reducing oxygen partial pressure from 21% to 5% on cell proliferation rate and regionalization in a 3D tumor spheroid model. We found that 5% oxygen concentration strongly inhibited spheroid growth, changed the proliferation gradient and reduced the 50% In Depth Proliferation index (IDP50), compared with culture at 21% oxygen. We then modeled the oxygen partial pressure profiles using the experimental data generated by culturing spheroids in physioxic and normoxic conditions. Although hypoxia occurred at similar depth in spheroids grown in the two conditions, oxygen partial pressure was a major rate-limiting factor with a critical effect on cell proliferation rate and regionalization only in spheroids grown in physioxic condition and not in spheroids grown at atmospheric normoxia. Our findings strengthen the need to consider conducting experiment in physioxic conditions (i.e., tissue normoxia) for proper understanding of cancer cell biology and the evaluation of anticancer drugs in 3D culture systems. PMID:27575790

  6. Keratinocyte-releasable factors increased the expression of MMP1 and MMP3 in co-cultured fibroblasts under both 2D and 3D culture conditions.

    PubMed

    Li, Min; Moeen Rezakhanlou, Alireza; Chavez-Munoz, Claudia; Lai, Amy; Ghahary, Aziz

    2009-12-01

    Matrix metalloproteinases (MMPs) are key elements in extracellular matrix (ECM) degradation and scar remodeling during the wound-healing process. Our previous data revealed that keratinocyte-releasable factors significantly increased the expression of fibroblast MMPs in monolayer-cultured fibroblasts. In this study, we analyzed the differences in the MMP expressions of fibroblasts in a three-dimensional fibroblast-populated collagen gel (3D FPCG) from that in a two-dimensional monolayer-cultured fibroblasts when both co-cultured with keratinocytes. Differential mRNA and protein expression of fibroblasts were examined by microarray, RT-PCR, and western blot. Our results showed that fibroblasts co-cultured with keratinocytes in a 3D FPCG expressed significantly higher MMP1 and MMP3 at the gene and protein levels. Due to the physiological advantages of a 3D FPCG model to a 2D system, we concluded that the 3D FPCG model may provide a better means of understanding the fibroblast-keratinocyte cross-talk during the wound-healing process. PMID:19521668

  7. 3D culture for cardiac cells.

    PubMed

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  8. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue. PMID:27600217

  9. 3D Cell Culture in Alginate Hydrogels

    PubMed Central

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-01-01

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell–matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  10. 3D Cell Culture in Alginate Hydrogels.

    PubMed

    Andersen, Therese; Auk-Emblem, Pia; Dornish, Michael

    2015-03-24

    This review compiles information regarding the use of alginate, and in particular alginate hydrogels, in culturing cells in 3D. Knowledge of alginate chemical structure and functionality are shown to be important parameters in design of alginate-based matrices for cell culture. Gel elasticity as well as hydrogel stability can be impacted by the type of alginate used, its concentration, the choice of gelation technique (ionic or covalent), and divalent cation chosen as the gel inducing ion. The use of peptide-coupled alginate can control cell-matrix interactions. Gelation of alginate with concomitant immobilization of cells can take various forms. Droplets or beads have been utilized since the 1980s for immobilizing cells. Newer matrices such as macroporous scaffolds are now entering the 3D cell culture product market. Finally, delayed gelling, injectable, alginate systems show utility in the translation of in vitro cell culture to in vivo tissue engineering applications. Alginate has a history and a future in 3D cell culture. Historically, cells were encapsulated in alginate droplets cross-linked with calcium for the development of artificial organs. Now, several commercial products based on alginate are being used as 3D cell culture systems that also demonstrate the possibility of replacing or regenerating tissue.

  11. Interactions between mesenchymal stem cells, adipocytes, and osteoblasts in a 3D tri-culture model of hyperglycemic conditions in the bone marrow microenvironment.

    PubMed

    Rinker, Torri E; Hammoudi, Taymour M; Kemp, Melissa L; Lu, Hang; Temenoff, Johnna S

    2014-03-01

    Recent studies have found that uncontrolled diabetes and consequential hyperglycemic conditions can lead to an increased incidence of osteoporosis. Osteoblasts, adipocytes, and mesenchymal stem cells (MSCs) are all components of the bone marrow microenvironment and thus may have an effect on diabetes-related osteoporosis. However, few studies have investigated the influence of these three cell types on each other, especially in the context of hyperglycemia. Thus, we developed a hydrogel-based 3D culture platform engineered to allow live-cell retrieval in order to investigate the interactions between MSCs, osteoblasts, and adipocytes in mono-, co-, and tri-culture configurations under hyperglycemic conditions for 7 days of culture. Gene expression, histochemical analysis of differentiation markers, and cell viability were measured for all cell types, and MSC-laden hydrogels were degraded to retrieve cells to assess their colony-forming capacity. Multivariate models of gene expression data indicated that primary discrimination was dependent on the neighboring cell type, validating the need for co-culture configurations to study conditions modeling this disease state. MSC viability and clonogenicity were reduced when mono- and co-cultured with osteoblasts at high glucose levels. In contrast, MSCs showed no reduction of viability or clonogenicity when cultured with adipocytes under high glucose conditions, and the adipogenic gene expression indicates that cross-talk between MSCs and adipocytes may occur. Thus, our unique culture platform combined with post-culture multivariate analysis provided a novel insight into cellular interactions within the MSC microenvironment and highlights the necessity of multi-cellular culture systems for further investigation of complex pathologies such as diabetes and osteoporosis.

  12. Interactions between Mesenchymal Stem Cells, Adipocytes, and Osteoblasts in a 3D Tri-Culture Model of Hyperglycemic Conditions in the Bone Marrow Microenvironment

    PubMed Central

    Rinker, Torri E.; Hammoudi, Taymour M.; Kemp, Melissa L.; Lu, Hang; Temenoff, Johnna S.

    2014-01-01

    Recent studies have found that uncontrolled diabetes and consequential hyperglycemic conditions can lead to increased incidence of osteoporosis. Osteoblasts, adipocytes, and mesenchymal stem cells (MSCs) are all components of the bone marrow microenvironment and thus may have an effect on diabetes-related osteoporosis. However, few studies have investigated the influence of these three cell types on each other, especially in the context of hyperglycemia. Thus, we developed a hydrogel-based 3D culture platform engineered to allow live-cell retrieval in order to investigate the interactions between MSCs, osteoblasts, and adipocytes in mono-, co-, and tri-culture configurations under hyperglycemic conditions for 7 days of culture. Gene expression, histochemical analysis of differentiation markers, and cell viability were measured for all cell types, and MSC-laden hydrogels were degraded to retrieve cells to assess colony-forming capacity. Multivariate models of gene expression data indicated that primary discrimination was dependent on neighboring cell type, validating the need for co-culture configurations to study conditions modeling this disease state. MSC viability and clonogenicity were reduced when mono- and co-cultured with osteoblasts in high glucose levels. In contrast, MSCs had no reduction of viability or clonogenicity when cultured with adipocytes in high glucose conditions and adipogenic gene expression indicated that cross-talk between MSCs and adipocytes may occur. Thus, our unique culture platform combined with post-culture multivariate analysis provided novel insight into cellular interactions within the MSC microenvironment and highlights the necessity of multi-cellular culture systems for further investigation of complex pathologies such as diabetes and osteoporosis. PMID:24463781

  13. Filling gaps in cultural heritage documentation by 3D photography

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.

    2015-08-01

    This contribution promotes 3D photography as an important tool to obtain objective object information. Keeping mainly in mind World Heritage documentation as well as Heritage protection, it is another intention of this paper, to stimulate the interest in applications of 3D photography for professionals as well as for amateurs. In addition this is also an activity report of the international CIPA task group 3. The main part of this paper starts with "Digging the treasure of existing international 3D photography". This does not only belong to tangible but also to intangible Cultural Heritage. 3D photography clearly supports the recording, the visualization, the preservation and the restoration of architectural and archaeological objects. Therefore the use of 3D photography in C.H. should increase on an international level. The presented samples in 3D represent a voluminous, almost partly "forgotten treasure" of international archives for 3D photography. The next chapter is on "Promoting new 3D photography in Cultural Heritage". Though 3D photographs are a well-established basic photographic and photogrammetric tool, even suited to provide "near real" documentation, they are still a matter of research and improvement. Beside the use of 3D cameras even single lenses cameras are very much suited for photographic 3D documentation purposes in Cultural Heritage. Currently at the Faculty of Civil Engineering of the University of Applied Sciences Magdeburg-Stendal, low altitude aerial photography is exposed from a maximum height of 13m, using a hand hold carbon telescope rod. The use of this "huge selfie stick" is also an (international) recommendation, to expose high resolution 3D photography of monuments under expedition conditions. In addition to the carbon rod recently a captive balloon and a hexacopter UAV- platform is in use, mainly to take better synoptically (extremely low altitude, ground truth) aerial photography. Additional experiments with respect to "easy

  14. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor.

    PubMed

    Lee, Sun-Mi; Han, Nalae; Lee, Rimi; Choi, In-Hong; Park, Yong-Beom; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2016-03-15

    Three-dimensional (3D) cell cultures have recently received attention because they represent a more physiologically relevant environment compared to conventional two-dimensional (2D) cell cultures. However, 2D-based imaging techniques or cell sensors are insufficient for real-time monitoring of cellular behavior in 3D cell culture. Here, we report investigations conducted with a 3D capacitance cell sensor consisting of vertically aligned pairs of electrodes. When GFP-expressing human breast cancer cells (GFP-MCF-7) encapsulated in alginate hydrogel were cultured in a 3D cell culture system, cellular activities, such as cell proliferation and apoptosis at different heights, could be monitored non-invasively and in real-time by measuring the change in capacitance with the 3D capacitance sensor. Moreover, we were able to monitor cell migration of human mesenchymal stem cells (hMSCs) with our 3D capacitance sensor.

  15. Real-time monitoring of 3D cell culture using a 3D capacitance biosensor.

    PubMed

    Lee, Sun-Mi; Han, Nalae; Lee, Rimi; Choi, In-Hong; Park, Yong-Beom; Shin, Jeon-Soo; Yoo, Kyung-Hwa

    2016-03-15

    Three-dimensional (3D) cell cultures have recently received attention because they represent a more physiologically relevant environment compared to conventional two-dimensional (2D) cell cultures. However, 2D-based imaging techniques or cell sensors are insufficient for real-time monitoring of cellular behavior in 3D cell culture. Here, we report investigations conducted with a 3D capacitance cell sensor consisting of vertically aligned pairs of electrodes. When GFP-expressing human breast cancer cells (GFP-MCF-7) encapsulated in alginate hydrogel were cultured in a 3D cell culture system, cellular activities, such as cell proliferation and apoptosis at different heights, could be monitored non-invasively and in real-time by measuring the change in capacitance with the 3D capacitance sensor. Moreover, we were able to monitor cell migration of human mesenchymal stem cells (hMSCs) with our 3D capacitance sensor. PMID:26386332

  16. Culturing Cells in 3D Ordered Cellular Solids

    NASA Astrophysics Data System (ADS)

    Lin, Keng-Hui; Lin, Wang-Jung; Lin, Jing-Ying

    2011-03-01

    Constructing a well-defined 3D microenvironment for cell growth is a key step for tissue engineering and mechanobiology. We demonstrate high-throughput fabrication of gelatin-based ordered cellular solids with tunable pore size and solid fraction. This process involves generating monodisperse liquid foam with a cross-flow microfluidic device. The monodisperse liquid foam was further processed into open-cell solid foam, which was used as scaffolds for 3D cell culture. Three distinct cell types were cultured under these conditions and displayed appropriate physiological, morphological, and functional characteristics. Epithelial cells formed cyst-like structures and were polarized inside pores, myoblasts adopted a tubular structure and fused into myotubes, and fibroblasts exhibited wide varieties of morphologies depending on their location inside the scaffolds. These ordered cellular solids therefore make possible the study of pore-size effects on cells.

  17. Modeling human development in 3D culture.

    PubMed

    Ader, Marius; Tanaka, Elly M

    2014-12-01

    Recently human embryonic stem cell research has taken on a new dimension - the third dimension. Capitalizing on increasing knowledge on directing pluripotent cells along different lineages, combined with ECM supported three-dimensional culture conditions, it has become possible to generate highly organized tissues of the central nervous system, gut, liver and kidney. Each system has been used to study different aspects of organogenesis and function including physical forces underlying optic cup morphogenesis, the function of disease related genes in progenitor cell control, as well as interaction of the generated tissues with host tissue upon transplantation. Pluripotent stem cell derived organoids represent powerful systems for the study of how cells self-organize to generate tissues with a given shape, pattern and form. PMID:25033469

  18. Multizone Paper Platform for 3D Cell Cultures

    PubMed Central

    Derda, Ratmir; Hong, Estrella; Mwangi, Martin; Mammoto, Akiko; Ingber, Donald E.; Whitesides, George M.

    2011-01-01

    In vitro 3D culture is an important model for tissues in vivo. Cells in different locations of 3D tissues are physiologically different, because they are exposed to different concentrations of oxygen, nutrients, and signaling molecules, and to other environmental factors (temperature, mechanical stress, etc). The majority of high-throughput assays based on 3D cultures, however, can only detect the average behavior of cells in the whole 3D construct. Isolation of cells from specific regions of 3D cultures is possible, but relies on low-throughput techniques such as tissue sectioning and micromanipulation. Based on a procedure reported previously (“cells-in-gels-in-paper” or CiGiP), this paper describes a simple method for culture of arrays of thin planar sections of tissues, either alone or stacked to create more complex 3D tissue structures. This procedure starts with sheets of paper patterned with hydrophobic regions that form 96 hydrophilic zones. Serial spotting of cells suspended in extracellular matrix (ECM) gel onto the patterned paper creates an array of 200 micron-thick slabs of ECM gel (supported mechanically by cellulose fibers) containing cells. Stacking the sheets with zones aligned on top of one another assembles 96 3D multilayer constructs. De-stacking the layers of the 3D culture, by peeling apart the sheets of paper, “sections” all 96 cultures at once. It is, thus, simple to isolate 200-micron-thick cell-containing slabs from each 3D culture in the 96-zone array. Because the 3D cultures are assembled from multiple layers, the number of cells plated initially in each layer determines the spatial distribution of cells in the stacked 3D cultures. This capability made it possible to compare the growth of 3D tumor models of different spatial composition, and to examine the migration of cells in these structures. PMID:21573103

  19. Beyond 3D culture models of cancer

    PubMed Central

    Tanner, Kandice; Gottesman, Michael M.

    2016-01-01

    The mechanisms underlying the spatiotemporal evolution of tumor ecosystems present a challenge in evaluating drug efficacy. In this Perspective, we address the use of three-dimensional in vitro culture models to delineate the dynamic interplay between the tumor and the host microenvironment in an effort to attain realistic platforms for assessing pharmaceutical efficacy in patients. PMID:25877888

  20. Microfabricated polymeric vessel mimetics for 3-D cancer cell culture

    PubMed Central

    Jaeger, Ashley A.; Das, Chandan K.; Morgan, Nicole Y.; Pursley, Randall H.; McQueen, Philip G.; Hall, Matthew D.; Pohida, Thomas J.; Gottesman, Michael M.

    2013-01-01

    Modeling tumor growth in vitro is essential for cost-effective testing of hypotheses in preclinical cancer research. 3-D cell culture offers an improvement over monolayer culture for studying cellular processes in cancer biology because of the preservation of cell-cell and cell-ECM interactions. Oxygen transport poses a major barrier to mimicking in vivo environments and is not replicated in conventional cell culture systems. We hypothesized that we can better mimic the tumor microenvironment using a bioreactor system for controlling gas exchange in cancer cell cultures with silicone hydrogel synthetic vessels. Soft-lithography techniques were used to fabricate oxygen-permeable silicone hydrogel membranes containing arrays of micropillars. These membranes were inserted into a bioreactor and surrounded by basement membrane extract (BME) within which fluorescent ovarian cancer (OVCAR8) cells were cultured. Cell clusters oxygenated by synthetic vessels showed a ∼100um drop-off to anoxia, consistent with in vivo studies of tumor nodules fed by the microvasculature. We showed oxygen tension gradients inside the clusters oxygenated by synthetic vessels had a ∼100 µm drop-off to anoxia, which is consistent with in vivo studies. Oxygen transport in the bioreactor system was characterized by experimental testing with a dissolved oxygen probe and finite element modeling of convective flow. Our study demonstrates differing growth patterns associated with controlling gas distributions to better mimic in vivo conditions. PMID:23911071

  1. Automation of 3D cell culture using chemically defined hydrogels.

    PubMed

    Rimann, Markus; Angres, Brigitte; Patocchi-Tenzer, Isabel; Braum, Susanne; Graf-Hausner, Ursula

    2014-04-01

    Drug development relies on high-throughput screening involving cell-based assays. Most of the assays are still based on cells grown in monolayer rather than in three-dimensional (3D) formats, although cells behave more in vivo-like in 3D. To exemplify the adoption of 3D techniques in drug development, this project investigated the automation of a hydrogel-based 3D cell culture system using a liquid-handling robot. The hydrogel technology used offers high flexibility of gel design due to a modular composition of a polymer network and bioactive components. The cell inert degradation of the gel at the end of the culture period guaranteed the harmless isolation of live cells for further downstream processing. Human colon carcinoma cells HCT-116 were encapsulated and grown in these dextran-based hydrogels, thereby forming 3D multicellular spheroids. Viability and DNA content of the cells were shown to be similar in automated and manually produced hydrogels. Furthermore, cell treatment with toxic Taxol concentrations (100 nM) had the same effect on HCT-116 cell viability in manually and automated hydrogel preparations. Finally, a fully automated dose-response curve with the reference compound Taxol showed the potential of this hydrogel-based 3D cell culture system in advanced drug development.

  2. Nanomagnetic Levitation 3-D Cultures of Breast and Colorectal Cancers

    PubMed Central

    Bumpers, Harvey L.; Janagama, Dasharatham G.; Manne, Upender; Basson, Marc D.; Katkoori, Venkat

    2014-01-01

    Background Innovative technologies for drug discovery and development, cancer models, stem cell research, tissue engineering, and drug testing in various cell-based platforms require an application similar to the in vivo system. Materials and Methods We developed for the first time nanomagnetically levitated three dimensional (3-D) cultures of breast cancer (BC) and colorectal cancer (CRC) cells using carbon encapsulated cobalt magnetic nanoparticles. BC and CRC xenografts grown in severe combined immunodeficient (SCID) mice were evaluated for N-cadherin and Epidermal growth factor receptor (EGFR) expressions. These phenotypes were compared with 2-D cultures and 3-D cultures grown in a gel matrix. Results The BC and CRC cells grown by magnetic levitation formed microtissues. The levitated cultures had high viability and were maintained in culture for long periods of time. It has been observed that N-cadherin and EGFR activities were highly expressed in the levitated 3-D tumor spheres and xenografts of CRC and BC cells. Conclusions Nanomagnetically levitated 3-D cultures tend to form stable microtissues of BC and CRC and may be more feasible for a range of applications in drug discovery or regenerative medicine. PMID:25617973

  3. Apple Derived Cellulose Scaffolds for 3D Mammalian Cell Culture

    PubMed Central

    Modulevsky, Daniel J.; Lefebvre, Cory; Haase, Kristina; Al-Rekabi, Zeinab; Pelling, Andrew E.

    2014-01-01

    There are numerous approaches for producing natural and synthetic 3D scaffolds that support the proliferation of mammalian cells. 3D scaffolds better represent the natural cellular microenvironment and have many potential applications in vitro and in vivo. Here, we demonstrate that 3D cellulose scaffolds produced by decellularizing apple hypanthium tissue can be employed for in vitro 3D culture of NIH3T3 fibroblasts, mouse C2C12 muscle myoblasts and human HeLa epithelial cells. We show that these cells can adhere, invade and proliferate in the cellulose scaffolds. In addition, biochemical functionalization or chemical cross-linking can be employed to control the surface biochemistry and/or mechanical properties of the scaffold. The cells retain high viability even after 12 continuous weeks of culture and can achieve cell densities comparable with other natural and synthetic scaffold materials. Apple derived cellulose scaffolds are easily produced, inexpensive and originate from a renewable source. Taken together, these results demonstrate that naturally derived cellulose scaffolds offer a complementary approach to existing techniques for the in vitro culture of mammalian cells in a 3D environment. PMID:24842603

  4. 3D spheroid cultures improve the metabolic gene expression profiles of HepaRG cells

    PubMed Central

    Takahashi, Yu; Hori, Yuji; Yamamoto, Tomohisa; Urashima, Toshiki; Ohara, Yasunori; Tanaka, Hideo

    2015-01-01

    3D (three-dimensional) cultures are considered to be an effective method for toxicological studies; however, little evidence has been reported whether 3D cultures have an impact on hepatocellular physiology regarding lipid or glucose metabolism. In the present study, we conducted physiological characterization of hepatoma cell lines HepG2 and HepaRG cells cultured in 3D conditions using a hanging drop method to verify the effect of culture environment on cellular responses. Apo (Apolipoprotein)B as well as albumin secretion was augmented by 3D cultures. Expression of genes related to not only drug, but also glucose and lipid metabolism were significantly enhanced in 3D cultured HepaRG spheroids. Furthermore, mRNA levels of CYP (cytochrome P450) enzymes following exposure to corresponding inducers increased under the 3D condition. These data suggest that this simple 3D culture system without any special biomaterials can improve liver-specific characteristics including lipid metabolism. Considering that the system enables high-throughput assay, it may become a powerful tool for compound screening concerning hepatocellular responses in order to identify potential drugs. PMID:26182370

  5. Metabolic alteration of HepG2 in scaffold-based 3-D culture: proteomic approach.

    PubMed

    Pruksakorn, Dumnoensun; Lirdprapamongkol, Kriengsak; Chokchaichamnankit, Daranee; Subhasitanont, Pantipa; Chiablaem, Khajeelak; Svasti, Jisnuson; Srisomsap, Chantragan

    2010-11-01

    3-D cell culture models are important in cancer biology since they provide improved understanding of tumor microenvironment. We have established a 3-D culture model using HepG2 in natural collagen-based scaffold to mimic the development of small avascular tumor in vivo. Morphological characterization showed that HepG2 colonies grew within the interior of the scaffold and showed enhanced extracellular matrix deposition. High levels of cell proliferation in the outermost regions of the scaffold created a hypoxic microenvironment in the 3-D culture system, as indicated by hypoxia-inducible factor-1α stabilization, detectable by Western blotting and immunohistochemistry. Proteomic studies showed decreased expression of several mitochondrial proteins and increased expression of proteins in anaerobic glycolysis under 3-D culture compared to monolayer culture. Creatine kinase was also upregulated in 3-D culture, indicating its possible role as an important energy buffer system under hypoxic microenvironment. Increased levels of proteins in nucleotide metabolism may relate to cellular energy. Thus, our results suggest that HepG2 cells under 3-D culture adapt their energy metabolism in response to hypoxic conditions. Metabolic alterations in the 3-D culture model may relate to physiological changes relevant to development of small avascular tumor in vivo and their study may improve future therapeutic strategies.

  6. Polarimetric 3D integral imaging in photon-starved conditions.

    PubMed

    Carnicer, Artur; Javidi, Bahram

    2015-03-01

    We develop a method for obtaining 3D polarimetric integral images from elemental images recorded in low light illumination conditions. Since photon-counting images are very sparse, calculation of the Stokes parameters and the degree of polarization should be handled carefully. In our approach, polarimetric 3D integral images are generated using the Maximum Likelihood Estimation and subsequently reconstructed by means of a Total Variation Denoising filter. In this way, polarimetric results are comparable to those obtained in conventional illumination conditions. We also show that polarimetric information retrieved from photon starved images can be used in 3D object recognition problems. To the best of our knowledge, this is the first report on 3D polarimetric photon counting integral imaging. PMID:25836861

  7. Alzheimer’s in 3D culture: Challenges and perspectives

    PubMed Central

    D'Avanzo, Carla; Aronson, Jenna; Kim, Young Hye; Choi, Se Hoon; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Summary Alzheimer’s disease (AD) is the most common cause of dementia, and there is currently no cure. The “β-amyloid cascade hypothesis” of AD is the basis of current understanding of AD pathogenesis and drug discovery. However, no AD models have fully validated this hypothesis. We recently developed a human stem cell culture model of AD by cultivating genetically modified human neural stem cells in a three-dimensional (3D) cell culture system. These cells were able to recapitulate key events of AD pathology including β-amyloid plaques and neurofibrillary tangles. In this review, we will discuss the progress and current limitations of AD mouse models and human stem cell models as well as explore the breakthroughs of 3D cell culture systems. We will also share our perspective on the potential of dish models of neurodegenerative diseases for studying pathogenic cascades and therapeutic drug discovery. PMID:26252541

  8. Fabricating gradient hydrogel scaffolds for 3D cell culture.

    PubMed

    Chatterjee, Kaushik; Young, Marian F; Simon, Carl G

    2011-05-01

    Optimizing cell-material interactions is critical for maximizing regeneration in tissue engineering. Combinatorial and high-throughput (CHT) methods can be used to systematically screen tissue scaffolds to identify optimal biomaterial properties. Previous CHT platforms in tissue engineering have involved a two-dimensional (2D) cell culture format where cells were cultured on material surfaces. However, these platforms are inadequate to predict cellular response in a three-dimensional (3D) tissue scaffold. We have developed a simple CHT platform to screen cell-material interactions in 3D culture format that can be applied to screen hydrogel scaffolds. Herein we provide detailed instructions on a method to prepare gradients in elastic modulus of photopolymerizable hydrogels.

  9. Microfluidic titer plate for stratified 3D cell culture.

    PubMed

    Trietsch, Sebastiaan J; Israëls, Guido D; Joore, Jos; Hankemeier, Thomas; Vulto, Paul

    2013-09-21

    Human tissues and organs are inherently heterogeneous. Their functionality is determined by the interplay between different cell types, their secondary architecture, vascular system and gradients of signaling molecules and metabolites. Here we propose a stratified 3D cell culture platform, in which adjacent lanes of gels and liquids are patterned by phaseguides to capture this tissue heterogeneity. We demonstrate 3D cell culture of HepG2 hepatocytes under continuous perfusion, a rifampicin toxicity assay and co-culture with fibroblasts. 4T1 breast cancer cells are used to demonstrate invasion and aggregation models. The platform is incorporated in a microtiter plate format that renders it fully compatible with automation and high-content screening equipment. The extended functionality, ease of handling and full compatibility to standard equipment is an important step towards adoption of Organ-on-a-Chip technology for screening in an industrial setting.

  10. Exploring Cultural Heritage Resources in a 3d Collaborative Environment

    NASA Astrophysics Data System (ADS)

    Respaldiza, A.; Wachowicz, M.; Vázquez Hoehne, A.

    2012-06-01

    Cultural heritage is a complex and diverse concept, which brings together a wide domain of information. Resources linked to a cultural heritage site may consist of physical artefacts, books, works of art, pictures, historical maps, aerial photographs, archaeological surveys and 3D models. Moreover, all these resources are listed and described by a set of a variety of metadata specifications that allow their online search and consultation on the most basic characteristics of them. Some examples include Norma ISO 19115, Dublin Core, AAT, CDWA, CCO, DACS, MARC, MoReq, MODS, MuseumDat, TGN, SPECTRUM, VRA Core and Z39.50. Gateways are in place to fit in these metadata standards into those used in a SDI (ISO 19115 or INSPIRE), but substantial work still remains to be done for the complete incorporation of cultural heritage information. Therefore, the aim of this paper is to demonstrate how the complexity of cultural heritage resources can be dealt with by a visual exploration of their metadata within a 3D collaborative environment. The 3D collaborative environments are promising tools that represent the new frontier of our capacity of learning, understanding, communicating and transmitting culture.

  11. Combining 3D technologies for cultural heritage interpretation and entertainment

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Picard, Michel; El-Hakim, Sabry F.; Godin, Guy; Valzano, Virginia; Bandiera, Adriana

    2004-12-01

    This paper presents a summary of the 3D modeling work that was accomplished in preparing multimedia products for cultural heritage interpretation and entertainment. The three cases presented are the Byzantine Crypt of Santa Cristina, Apulia, temple C of Selinunte, Sicily, and a bronze sculpture from the 6th century BC found in Ugento, Apulia. The core of the approach is based upon high-resolution photo-realistic texture mapping onto 3D models generated from range images. It is shown that three-dimensional modeling from range imaging is an effective way to present the spatial information for environments and artifacts. Spatial sampling and range measurement uncertainty considerations are addressed by giving the results of a number of tests on different range cameras. The integration of both photogrammetric and CAD modeling complements this approach. Results on a CDROM, a DVD, virtual 3D theatre, holograms, video animations and web pages have been prepared for these projects.

  12. Combining 3D technologies for cultural heritage interpretation and entertainment

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Picard, Michel; El-Hakim, Sabry F.; Godin, Guy; Valzano, Virginia; Bandiera, Adriana

    2005-01-01

    This paper presents a summary of the 3D modeling work that was accomplished in preparing multimedia products for cultural heritage interpretation and entertainment. The three cases presented are the Byzantine Crypt of Santa Cristina, Apulia, temple C of Selinunte, Sicily, and a bronze sculpture from the 6th century BC found in Ugento, Apulia. The core of the approach is based upon high-resolution photo-realistic texture mapping onto 3D models generated from range images. It is shown that three-dimensional modeling from range imaging is an effective way to present the spatial information for environments and artifacts. Spatial sampling and range measurement uncertainty considerations are addressed by giving the results of a number of tests on different range cameras. The integration of both photogrammetric and CAD modeling complements this approach. Results on a CDROM, a DVD, virtual 3D theatre, holograms, video animations and web pages have been prepared for these projects.

  13. A study of electrochemical biosensor for analysis of three-dimensional (3D) cell culture.

    PubMed

    Jeong, Se Hoon; Lee, Dong Woo; Kim, Sanghyo; Kim, Jhingook; Ku, Bosung

    2012-05-15

    Cell culture has a fundamental role not only in regenerative medicine but also in biotechnology, pharmacology, impacting both drug discovery and manufacturing. Although cell culture has been generally developed for only two-dimensional (2D) culture systems, three-dimensional (3D) culture is being spotlighted as the means to mimic in vivo cellular conditions. In this study, a method for cytotoxicity assay using an electrochemical biosensor applying 3D cell culture is presented. In order to strengthen the advantage of a 3D cell culture, the experimental condition of gelation between several types of sol-gels (alginate, collagen, matrigel) and cancer cells can be optimized to make a 3D cell structure on the electrode, which will show the reproducibility of electrical measurement for long-term monitoring. Moreover, cytotoxicity test results applying this method showed IC(50) value of A549 lung cancer cells to erlotinib. Thus, this study evaluates the feasibility of application of the electrochemical biosensor for 3D cell culture to cytotoxicity assay for investigation of 3D cell response to drug compounds. PMID:22410483

  14. 3D Tissue Culturing: Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations (Adv. Healthcare Mater. 13/2016).

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented by M. Hagiwara and co-workers on page 1566. 3D recognition of a sample structure can be achieved by facilitating multi-directional views using a standard microscope without a laser system. The cubic platform has the potential to promote 3D culture studies, offering easy handling and compatibility with commercial culture plates at a low price tag. PMID:27384934

  15. 3D Tissue Culturing: Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations (Adv. Healthcare Mater. 13/2016).

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented by M. Hagiwara and co-workers on page 1566. 3D recognition of a sample structure can be achieved by facilitating multi-directional views using a standard microscope without a laser system. The cubic platform has the potential to promote 3D culture studies, offering easy handling and compatibility with commercial culture plates at a low price tag.

  16. Molecular Predictors of 3D Morphogenesis by Breast Cancer Cell Lines in 3D Culture

    SciTech Connect

    Han, Ju; Chang, Hang; Giricz, Orsi; Lee, Genee; Baehner, Frederick; Gray, Joe; Bissell, Mina; Kenny, Paraic; Parvin, Bahram

    2010-02-01

    Correlative analysis of molecular markers with phenotypic signatures is the simplest model for hypothesis generation. In this paper, a panel of 24 breast cell lines was grown in 3D culture, their morphology was imaged through phase contrast microscopy, and computational methods were developed to segment and represent each colony at multiple dimensions. Subsequently, subpopulations from these morphological responses were identified through consensus clustering to reveal three clusters of round, grape-like, and stellate phenotypes. In some cases, cell lines with particular pathobiological phenotypes clustered together (e.g., ERBB2 amplified cell lines sharing the same morphometric properties as the grape-like phenotype). Next, associations with molecular features were realized through (i) differential analysis within each morphological cluster, and (ii) regression analysis across the entire panel of cell lines. In both cases, the dominant genes that are predictive of the morphological signatures were identified. Specifically, PPAR? has been associated with the invasive stellate morphological phenotype, which corresponds to triple-negative pathobiology. PPAR? has been validated through two supporting biological assays.

  17. Ideal Positions: 3D Sonography, Medical Visuality, Popular Culture.

    PubMed

    Seiber, Tim

    2016-03-01

    As digital technologies are integrated into medical environments, they continue to transform the experience of contemporary health care. Importantly, medicine is increasingly visual. In the history of sonography, visibility has played an important role in accessing fetal bodies for diagnostic and entertainment purposes. With the advent of three-dimensional (3D) rendering, sonography presents the fetus visually as already a child. The aesthetics of this process and the resulting imagery, made possible in digital networks, discloses important changes in the relationship between technology and biology, reproductive health and political debates, and biotechnology and culture.

  18. Surface modified alginate microcapsules for 3D cell culture

    NASA Astrophysics Data System (ADS)

    Chen, Yi-Wen; Kuo, Chiung Wen; Chueh, Di-Yen; Chen, Peilin

    2016-06-01

    Culture as three dimensional cell aggregates or spheroids can offer an ideal platform for tissue engineering applications and for pharmaceutical screening. Such 3D culture models, however, may suffer from the problems such as immune response and ineffective and cumbersome culture. This paper describes a simple method for producing microcapsules with alginate cores and a thin shell of poly(L-lysine)-graft-poly(ethylene glycol) (PLL-g-PEG) to encapsulate mouse induced pluripotent stem (miPS) cells, generating a non-fouling surface as an effective immunoisolation barrier. We demonstrated the trapping of the alginate microcapsules in a microwell array for the continuous observation and culture of a large number of encapsulated miPS cells in parallel. miPS cells cultured in the microcapsules survived well and proliferated to form a single cell aggregate. Droplet formation of monodisperse microcapsules with controlled size combined with flow cytometry provided an efficient way to quantitatively analyze the growth of encapsulated cells in a high-throughput manner. The simple and cost-effective coating technique employed to produce the core-shell microcapsules could be used in the emerging field of cell therapy. The microwell array would provide a convenient, user friendly and high-throughput platform for long-term cell culture and monitoring.

  19. Peptide Hydrogels – Versatile Matrices for 3D Cell Culture in Cancer Medicine

    PubMed Central

    Worthington, Peter; Pochan, Darrin J.; Langhans, Sigrid A.

    2015-01-01

    Traditional two-dimensional (2D) cell culture systems have contributed tremendously to our understanding of cancer biology but have significant limitations in mimicking in vivo conditions such as the tumor microenvironment. In vitro, three-dimensional (3D) cell culture models represent a more accurate, intermediate platform between simplified 2D culture models and complex and expensive in vivo models. 3D in vitro models can overcome 2D in vitro limitations caused by the oversupply of nutrients, and unphysiological cell–cell and cell–material interactions, and allow for dynamic interactions between cells, stroma, and extracellular matrix. In addition, 3D cultures allow for the development of concentration gradients, including oxygen, metabolites, and growth factors, with chemical gradients playing an integral role in many cellular functions ranging from development to signaling in normal epithelia and cancer environments in vivo. Currently, the most common matrices used for 3D culture are biologically derived materials such as matrigel and collagen. However, in recent years, more defined, synthetic materials have become available as scaffolds for 3D culture with the advantage of forming well-defined, designed, tunable materials to control matrix charge, stiffness, porosity, nanostructure, degradability, and adhesion properties, in addition to other material and biological properties. One important area of synthetic materials currently available for 3D cell culture is short sequence, self-assembling peptide hydrogels. In addition to the review of recent work toward the control of material, structure, and mechanical properties, we will also discuss the biochemical functionalization of peptide hydrogels and how this functionalization, coupled with desired hydrogel material characteristics, affects tumor cell behavior in 3D culture. PMID:25941663

  20. Peptide Hydrogelation and Cell Encapsulation for 3D Culture of MCF-7 Breast Cancer Cells

    PubMed Central

    Sun, Xiuzhi S.; Nguyen, Thu A.

    2013-01-01

    Three-dimensional (3D) cell culture plays an invaluable role in tumor biology by providing in vivo like microenviroment and responses to therapeutic agents. Among many established 3D scaffolds, hydrogels demonstrate a distinct property as matrics for 3D cell culture. Most of the existing pre-gel solutions are limited under physiological conditions such as undesirable pH or temperature. Here, we report a peptide hydrogel that shows superior physiological properties as an in vitro matrix for 3D cell culture. The 3D matrix can be accomplished by mixing a self-assembling peptide directly with a cell culture medium without any pH or temperature adjustment. Results of dynamic rheological studies showed that this hydrogel can be delivered multiple times via pipetting without permanently destroying the hydrogel architecture, indicating the deformability and remodeling ability of the hydrogel. Human epithelial cancer cells, MCF-7, are encapsulated homogeneously in the hydrogel matrix during hydrogelation. Compared with two-dimensional (2D) monolayer culture, cells residing in the hydrogel matrix grow as tumor-like clusters in 3D formation. Relevant parameters related to cell morphology, survival, proliferation, and apoptosis were analyzed using MCF-7 cells in 3D hydrogels. Interestingly, treatment of cisplatin, an anti-cancer drug, can cause a significant decrease of cell viability of MCF-7 clusters in hydrogels. The responses to cisplatin were dose- and time-dependent, indicating the potential usage of hydrogels for drug testing. Results of confocal microscopy and Western blotting showed that cells isolated from hydrogels are suitable for downstream proteomic analysis. The results provided evidence that this peptide hydrogel is a promising 3D cell culture material for drug testing. PMID:23527204

  1. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways

    PubMed Central

    DelNero, Peter; Lane, Maureen; Verbridge, Scott S.; Kwee, Brian; Kermani, Pouneh; Hempstead, Barbara; Stroock, Abraham; Fischbach, Claudia

    2015-01-01

    Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation. PMID:25934456

  2. 3D culture broadly regulates tumor cell hypoxia response and angiogenesis via pro-inflammatory pathways.

    PubMed

    DelNero, Peter; Lane, Maureen; Verbridge, Scott S; Kwee, Brian; Kermani, Pouneh; Hempstead, Barbara; Stroock, Abraham; Fischbach, Claudia

    2015-07-01

    Oxygen status and tissue dimensionality are critical determinants of tumor angiogenesis, a hallmark of cancer and an enduring target for therapeutic intervention. However, it is unclear how these microenvironmental conditions interact to promote neovascularization, due in part to a lack of comprehensive, unbiased data sets describing tumor cell gene expression as a function of oxygen levels within three-dimensional (3D) culture. Here, we utilized alginate-based, oxygen-controlled 3D tumor models to study the interdependence of culture context and the hypoxia response. Microarray gene expression analysis of tumor cells cultured in 2D versus 3D under ambient or hypoxic conditions revealed striking interdependence between culture dimensionality and hypoxia response, which was mediated in part by pro-inflammatory signaling pathways. In particular, interleukin-8 (IL-8) emerged as a major player in the microenvironmental regulation of the hypoxia program. Notably, this interaction between dimensionality and oxygen status via IL-8 increased angiogenic sprouting in a 3D endothelial invasion assay. Taken together, our data suggest that pro-inflammatory pathways are critical regulators of tumor hypoxia response within 3D environments that ultimately impact tumor angiogenesis, potentially providing important therapeutic targets. Furthermore, these results highlight the importance of pathologically relevant tissue culture models to study the complex physical and chemical processes by which the cancer microenvironment mediates new vessel formation.

  3. DYNA3D Non-reflecting Boundary Conditions - Test Problems

    SciTech Connect

    Zywicz, E

    2006-09-28

    Two verification problems were developed to test non-reflecting boundary segments in DYNA3D (Whirley and Engelmann, 1993). The problems simulate 1-D wave propagation in a semi-infinite rod using a finite length rod and non-reflecting boundary conditions. One problem examines pure pressure wave propagation, and the other problem explores pure shear wave propagation. In both problems the non-reflecting boundary segments yield results that differ only slightly (less than 6%) during a short duration from their corresponding theoretical solutions. The errors appear to be due to the inability to generate a true step-function compressive wave in the pressure wave propagation problem and due to segment integration inaccuracies in the shear wave propagation problem. These problems serve as verification problems and as regression test problems for DYNA3D.

  4. Embedding Knowledge in 3D Data Frameworks in Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Coughenour, C. M.; Vincent, M. L.; de Kramer, M.; Senecal, S.; Fritsch, D.; Flores Gutirrez, M.; Lopez-Menchero Bendicho, V. M.; Ioannides, M.

    2015-08-01

    At present, where 3D modeling and visualisation in cultural heritage are concerned, an object's documentation lacks its interconnected memory provided by multidisciplinary examination and linked data. As the layers of paint, wood, and brick recount a structure's physical properties, the intangible, such as the forms of worship through song, dance, burning incense, and oral traditions, contributes to the greater story of its cultural heritage import. Furthermore, as an object or structure evolves through time, external political, religious, or environmental forces can affect it as well. As tangible and intangible entities associated with the structure transform, its narrative becomes dynamic and difficult to easily record. The Initial Training Network for Digital Cultural Heritage (ITN-DCH), a Marie Curie Actions project under the EU 7th Framework Programme, seeks to challenge this complexity by developing a novel methodology capable of offering such a holistic framework. With the integration of digitisation, conservation, linked data, and retrieval systems for DCH, the nature of investigation and dissemination will be augmented significantly. Examples of utilisating and evaluating this framework will range from a UNESCOWorld Heritage site, the Byzantine church of Panagia Forviotissa Asinou in the Troodos Mountains of Cyprus, to various religious icons and a monument located at the Monastery of Saint Neophytos. The application of this effort to the Asinou church, representing the first case study of the ITN-DCH project, is used as a template example in order to assess the technical challenges involved in the creation of such a framework.

  5. Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations.

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented. The 3D structure of biosamples can be recognized without fluorescence. The cubic platform employs two types of hydrogels that are compatible with conventional culture dishes or well plates, facilitating growth in culture, ease of handling, and viewing at multiple angles. PMID:27128576

  6. Tissue in Cube: In Vitro 3D Culturing Platform with Hybrid Gel Cubes for Multidirectional Observations.

    PubMed

    Hagiwara, Masaya; Kawahara, Tomohiro; Nobata, Rina

    2016-07-01

    An in vitro 3D culturing platform enabling multidirectional observations of 3D biosamples is presented. The 3D structure of biosamples can be recognized without fluorescence. The cubic platform employs two types of hydrogels that are compatible with conventional culture dishes or well plates, facilitating growth in culture, ease of handling, and viewing at multiple angles.

  7. A 3D modeling and measurement system for cultural heritage preservation

    NASA Astrophysics Data System (ADS)

    Du, Guoguang; Zhou, Mingquan; Ren, Pu; Shui, Wuyang; Zhou, Pengbo; Wu, Zhongke

    2015-07-01

    Cultural Heritage reflects the human production, life style and environmental conditions of various historical periods. It exists as one of the major national carriers of national history and culture. In order to do better protection and utilization for these cultural heritages, a system of three-dimensional (3D) reconstruction and statistical measurement is proposed in this paper. The system solves the problems of cultural heritage's data storage, measurement and analysis. Firstly, for the high precision modeling and measurement problems, range data registration and integration algorithm used to achieve high precision 3D reconstruction. Secondly, multi-view stereo reconstruction method is used to solve the problem of rapid reconstruction by procedures such as the original image data pre-processing, camera calibration, point cloud modeling. At last, the artifacts' measure underlying database is established by calculating the measurements of the 3D model's surface. These measurements contain Euclidean distance between the points on the surface, geodesic distance between the points, normal and curvature in each point, superficial area of a region, volume of model's part and some other measurements. These measurements provide a basis for carrying out information mining of cultural heritage. The system has been applied to the applications of 3D modeling, data measurement of the Terracotta Warriors relics, Tibetan architecture and some other relics.

  8. A 3-D organoid kidney culture model engineered for high-throughput nephrotoxicity assays.

    PubMed

    Astashkina, Anna I; Mann, Brenda K; Prestwich, Glenn D; Grainger, David W

    2012-06-01

    Cell-cell and cell-matrix interactions control cell phenotypes and functions in vivo. Maintaining these interactions in vitro is essential to both produce and retain cultured cell fidelity to normal phenotype and function in the context of drug efficacy and toxicity screening. Two-dimensional (2-D) cultures on culture plastics rarely recapitulate any of these desired conditions. Three dimensional (3-D) culture systems provide a critical junction between traditional, yet often irrelevant, in vitro cell cultures and more accurate, yet costly, in vivo models. This study describes development of an organoid-derived 3-D culture of kidney proximal tubules (PTs) that maintains native cellular interactions in tissue context, regulating phenotypic stability of primary cells in vitro for up to 6 weeks. Furthermore, unlike immortalized cells on plastic, these 3-D organoid kidney cultures provide a more physiologically-relevant response to nephrotoxic agent exposure, with production of toxicity biomarkers found in vivo. This biomimetic primary kidney model has broad applicability to high-throughput drug and biomarker nephrotoxicity screening, as well as more mechanistic drug toxicology, pharmacology, and metabolism studies.

  9. Optimization of liquid overlay technique to formulate heterogenic 3D co-cultures models.

    PubMed

    Costa, Elisabete C; Gaspar, Vítor M; Coutinho, Paula; Correia, Ilídio J

    2014-08-01

    Three-dimensional (3D) cell culture models of solid tumors are currently having a tremendous impact in the in vitro screening of candidate anti-tumoral therapies. These 3D models provide more reliable results than those provided by standard 2D in vitro cell cultures. However, 3D manufacturing techniques need to be further optimized in order to increase the robustness of these models and provide data that can be properly correlated with the in vivo situation. Therefore, in the present study the parameters used for producing multicellular tumor spheroids (MCTS) by liquid overlay technique (LOT) were optimized in order to produce heterogeneous cellular agglomerates comprised of cancer cells and stromal cells, during long periods. Spheroids were produced under highly controlled conditions, namely: (i) agarose coatings; (ii) horizontal stirring, and (iii) a known initial cell number. The simultaneous optimization of these parameters promoted the assembly of 3D characteristic cellular organization similar to that found in the in vivo solid tumors. Such improvements in the LOT technique promoted the assembly of highly reproducible, individual 3D spheroids, with a low cost of production and that can be used for future in vitro drug screening assays.

  10. Thermally induced apoptosis, necrosis, and heat shock protein expression in 3D culture.

    PubMed

    Song, Alfred S; Najjar, Amer M; Diller, Kenneth R

    2014-07-01

    This study was conducted to compare the heat shock responses of cells grown in 2D and 3D culture environments as indicated by the level of heat shock protein 70 expression and the incidence of apoptosis and necrosis of prostate cancer cell lines in response to graded hyperthermia. PC3 cells were stably transduced with a dual reporter system composed of two tandem expression cassettes-a conditional heat shock protein promoter driving the expression of green fluorescent protein (HSPp-GFP) and a cytomegalovirus (CMV) promoter controlling the constitutive expression of a "beacon" red fluorescent protein (CMVp-RFP). Two-dimensional and three-dimensional cultures of PC3 prostate cancer cells were grown in 96-well plates for evaluation of their time-dependent response to supraphysiological temperature. To induce controlled hyperthermia, culture plates were placed on a flat copper surface of a circulating water manifold that maintained the specimens within ±0.1°C of a target temperature. Hyperthermia protocols included various combinations of temperature, ranging from 37°C to 57°C, and exposure times of up to 2 h. The majority of protocols were focused on temperature and time permutations, where the response gradient was greatest. Post-treatment analysis by flow cytometry analysis was used to measure the incidences of apoptosis (annexin V-FITC stain), necrosis (propidium iodide (PI) stain), and HSP70 transcription (GFP expression). Cells grown in 3D compared with 2D culture showed reduced incidence of apoptosis and necrosis and a higher level of HSP70 expression in response to heat shock at the temperatures tested. Cells responded differently to hyperthermia when grown in 2D and 3D cultures. Three-dimensional culture appears to enhance survival plausibly by activating protective processes related to enhanced-HSP70 expression. These differences highlight the importance of selecting physiologically relevant 3D models in assessing cellular responses to hyperthermia in

  11. 3D Microperiodic Hydrogel Scaffolds for Robust Neuronal Cultures

    PubMed Central

    Hanson Shepherd, Jennifer N.; Parker, Sara T.; Shepherd, Robert F.; Gillette, Martha U.; Lewis, Jennifer A.; Nuzzo, Ralph G.

    2011-01-01

    Three-dimensional (3D) microperiodic scaffolds of poly(2-hydroxyethyl methacrylate) (pHEMA) have been fabricated by direct-write assembly of a photopolymerizable hydrogel ink. The ink is initially composed of physically entangled pHEMA chains dissolved in a solution of HEMA monomer, comonomer, photoinitiator and water. Upon printing 3D scaffolds of varying architecture, the ink filaments are exposed to UV light, where they are transformed into an interpenetrating hydrogel network of chemically cross-linked and physically entangled pHEMA chains. These 3D microperiodic scaffolds are rendered growth compliant for primary rat hippocampal neurons by absorption of polylysine. Neuronal cells thrive on these scaffolds, forming differentiated, intricately branched networks. Confocal laser scanning microscopy reveals that both cell distribution and extent of neuronal process alignment depend upon scaffold architecture. This work provides an important step forward in the creation of suitable platforms for in vitro study of sensitive cell types. PMID:21709750

  12. Lensfree diffractive tomography for the imaging of 3D cell cultures

    PubMed Central

    Momey, F.; Berdeu, A.; Bordy, T.; Dinten, J.-M.; Marcel, F. Kermarrec; Picollet-D’hahan, N.; Gidrol, X.; Allier, C.

    2016-01-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm3 of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  13. Lensfree diffractive tomography for the imaging of 3D cell cultures.

    PubMed

    Momey, F; Berdeu, A; Bordy, T; Dinten, J-M; Marcel, F Kermarrec; Picollet-D'hahan, N; Gidrol, X; Allier, C

    2016-03-01

    New microscopes are needed to help realize the full potential of 3D organoid culture studies. In order to image large volumes of 3D organoid cultures while preserving the ability to catch every single cell, we propose a new imaging platform based on lensfree microscopy. We have built a lensfree diffractive tomography setup performing multi-angle acquisitions of 3D organoid culture embedded in Matrigel and developed a dedicated 3D holographic reconstruction algorithm based on the Fourier diffraction theorem. With this new imaging platform, we have been able to reconstruct a 3D volume as large as 21.5 mm (3) of a 3D organoid culture of prostatic RWPE1 cells showing the ability of these cells to assemble in 3D intricate cellular network at the mesoscopic scale. Importantly, comparisons with 2D images show that it is possible to resolve single cells isolated from the main cellular structure with our lensfree diffractive tomography setup. PMID:27231600

  14. Culturing and Applications of Rotating Wall Vessel Bioreactor Derived 3D Epithelial Cell Models

    PubMed Central

    Radtke, Andrea L.; Herbst-Kralovetz, Melissa M.

    2012-01-01

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues 1-6. The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties. The

  15. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    PubMed

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-04-03

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties

  16. Culturing and applications of rotating wall vessel bioreactor derived 3D epithelial cell models.

    PubMed

    Radtke, Andrea L; Herbst-Kralovetz, Melissa M

    2012-01-01

    Cells and tissues in the body experience environmental conditions that influence their architecture, intercellular communications, and overall functions. For in vitro cell culture models to accurately mimic the tissue of interest, the growth environment of the culture is a critical aspect to consider. Commonly used conventional cell culture systems propagate epithelial cells on flat two-dimensional (2-D) impermeable surfaces. Although much has been learned from conventional cell culture systems, many findings are not reproducible in human clinical trials or tissue explants, potentially as a result of the lack of a physiologically relevant microenvironment. Here, we describe a culture system that overcomes many of the culture condition boundaries of 2-D cell cultures, by using the innovative rotating wall vessel (RWV) bioreactor technology. We and others have shown that organotypic RWV-derived models can recapitulate structure, function, and authentic human responses to external stimuli similarly to human explant tissues (1-6). The RWV bioreactor is a suspension culture system that allows for the growth of epithelial cells under low physiological fluid shear conditions. The bioreactors come in two different formats, a high-aspect rotating vessel (HARV) or a slow-turning lateral vessel (STLV), in which they differ by their aeration source. Epithelial cells are added to the bioreactor of choice in combination with porous, collagen-coated microcarrier beads (Figure 1A). The cells utilize the beads as a growth scaffold during the constant free fall in the bioreactor (Figure 1B). The microenvironment provided by the bioreactor allows the cells to form three-dimensional (3-D) aggregates displaying in vivo-like characteristics often not observed under standard 2-D culture conditions (Figure 1D). These characteristics include tight junctions, mucus production, apical/basal orientation, in vivo protein localization, and additional epithelial cell-type specific properties

  17. Phenomenological modelling and simulation of cell clusters in 3D cultures.

    PubMed

    González-Valverde, I; Semino, C; García-Aznar, J M

    2016-10-01

    Cell clustering and aggregation are fundamental processes in the development of several tissues and the progression of many diseases. The formation of these aggregates also has a direct impact on the oxygen concentration in their surroundings due to cellular respiration and poor oxygen diffusion through clusters. In this work, we propose a mathematical model that is capable of simulating cell cluster formation in 3D cultures through combining a particle-based and a finite element approach to recreate complex experimental conditions. Cells are modelled considering cell proliferation, cell death and cell-cell mechanical interactions. Additionally, the oxygen concentration profile is calculated through finite element analysis using a reaction-diffusion model that considers cell oxygen consumption and diffusion through the extracellular matrix and the cell clusters. In our model, the local oxygen concentration in the medium determines both cell proliferation and cell death. Numerical predictions are also compared with experimental data from the literature. The simulation results indicate that our model can predict cell clustering, cluster growth and oxygen distribution in 3D cultures. We conclude that the initial cell distribution, cell death and cell proliferation dynamics determine the size and density of clusters. Moreover, these phenomena are directly affected by the oxygen transport in the 3D culture. PMID:27615191

  18. 3D in vitro cell culture models of tube formation.

    PubMed

    Zegers, Mirjam M

    2014-07-01

    Building the complex architecture of tubular organs is a highly dynamic process that involves cell migration, polarization, shape changes, adhesion to neighboring cells and the extracellular matrix, physicochemical characteristics of the extracellular matrix and reciprocal signaling with the mesenchyme. Understanding these processes in vivo has been challenging as they take place over extended time periods deep within the developing organism. Here, I will discuss 3D in vitro models that have been crucial to understand many of the molecular and cellular mechanisms and key concepts underlying branching morphogenesis in vivo. PMID:24613912

  19. Culture phases, cytotoxicity and protein expressions of agarose hydrogel induced Sp2/0, A549, MCF-7 cell line 3D cultures.

    PubMed

    Ravi, Maddaly; Kaviya, S R; Paramesh, V

    2016-05-01

    Advancements in cell cultures are occurring at a rapid pace, an important direction is culturing cells in 3D conditions. We demonstrate the usefulness of agarose hydrogels in obtaining 3 dimensional aggregates of three cell lines, A549, MCF-7 and Sp2/0. The differences in culture phases, susceptibility to cisplatin-induced cytotoxicity are studied. Also, the 3D aggregates of the three cell lines were reverted into 2D cultures and the protein profile differences among the 2D, 3D and revert cultures were studied. The analysis of protein profile differences using UniProt data base further augment the usefulness of agarose hydrogels for obtaining 3D cell cultures.

  20. High-throughput screening with nanoimprinting 3D culture for efficient drug development by mimicking the tumor environment.

    PubMed

    Yoshii, Yukie; Furukawa, Takako; Waki, Atsuo; Okuyama, Hiroaki; Inoue, Masahiro; Itoh, Manabu; Zhang, Ming-Rong; Wakizaka, Hidekatsu; Sogawa, Chizuru; Kiyono, Yasushi; Yoshii, Hiroshi; Fujibayashi, Yasuhisa; Saga, Tsuneo

    2015-05-01

    Anti-cancer drug development typically utilizes high-throughput screening with two-dimensional (2D) cell culture. However, 2D culture induces cellular characteristics different from tumors in vivo, resulting in inefficient drug development. Here, we report an innovative high-throughput screening system using nanoimprinting 3D culture to simulate in vivo conditions, thereby facilitating efficient drug development. We demonstrated that cell line-based nanoimprinting 3D screening can more efficiently select drugs that effectively inhibit cancer growth in vivo as compared to 2D culture. Metabolic responses after treatment were assessed using positron emission tomography (PET) probes, and revealed similar characteristics between the 3D spheroids and in vivo tumors. Further, we developed an advanced method to adopt cancer cells from patient tumor tissues for high-throughput drug screening with nanoimprinting 3D culture, which we termed Cancer tissue-Originated Uniformed Spheroid Assay (COUSA). This system identified drugs that were effective in xenografts of the original patient tumors. Nanoimprinting 3D spheroids showed low permeability and formation of hypoxic regions inside, similar to in vivo tumors. Collectively, the nanoimprinting 3D culture provides easy-handling high-throughput drug screening system, which allows for efficient drug development by mimicking the tumor environment. The COUSA system could be a useful platform for drug development with patient cancer cells.

  1. Transcriptional profiles of valvular interstitial cells cultured on tissue culture polystyrene, on 2D hydrogels, or within 3D hydrogels

    PubMed Central

    Mabry, Kelly M.; Payne, Samuel Z.; Anseth, Kristi S.

    2015-01-01

    Valvular interstitial cells (VICs) actively maintain and repair heart valve tissue; however, persistent activation of VICs to a myofibroblast phenotype can lead to aortic stenosis (Chen and Simmons, 2011) [1]. To better understand and quantify how microenvironmental cues influence VIC phenotype, we compared expression profiles of VICs cultured on/in poly(ethylene glycol) (PEG) gels to those cultured on tissue culture polystyrene (TCPS), as well as fresh isolates. Here, we present both the raw and processed microarray data from these culture conditions. Interpretation of this data can be found in a research article entitled “Microarray analyses to quantify advantages of 2D and 3D hydrogel culture systems in maintaining the native valvular interstitial cell phenotype” (Mabry et al., 2015) [2]. PMID:26702427

  2. A Simple Hanging Drop Cell Culture Protocol for Generation of 3D Spheroids

    PubMed Central

    Foty, Ramsey

    2011-01-01

    Studies of cell-cell cohesion and cell-substratum adhesion have historically been performed on monolayer cultures adherent to rigid substrates. Cells within a tissue, however, are typically encased within a closely packed tissue mass in which cells establish intimate connections with many near-neighbors and with extracellular matrix components. Accordingly, the chemical milieu and physical forces experienced by cells within a 3D tissue are fundamentally different than those experienced by cells grown in monolayer culture. This has been shown to markedly impact cellular morphology and signaling. Several methods have been devised to generate 3D cell cultures including encapsulation of cells in collagen gels1or in biomaterial scaffolds2. Such methods, while useful, do not recapitulate the intimate direct cell-cell adhesion architecture found in normal tissues. Rather, they more closely approximate culture systems in which single cells are loosely dispersed within a 3D meshwork of ECM products. Here, we describe a simple method in which cells are placed in hanging drop culture and incubated under physiological conditions until they form true 3D spheroids in which cells are in direct contact with each other and with extracellular matrix components. The method requires no specialized equipment and can be adapted to include addition of any biological agent in very small quantities that may be of interest in elucidating effects on cell-cell or cell-ECM interaction. The method can also be used to co-culture two (or more) different cell populations so as to elucidate the role of cell-cell or cell-ECM interactions in specifying spatial relationships between cells. Cell-cell cohesion and cell-ECM adhesion are the cornerstones of studies of embryonic development, tumor-stromal cell interaction in malignant invasion, wound healing, and for applications to tissue engineering. This simple method will provide a means of generating tissue-like cellular aggregates for measurement of

  3. Differences in growth properties of endometrial cancer in three dimensional (3D) culture and 2D cell monolayer

    SciTech Connect

    Chitcholtan, Kenny; Asselin, Eric; Parent, Sophie; Sykes, Peter H.; Evans, John J.

    2013-01-01

    Three-dimensional (3D) in vitro models have an invaluable role in understanding the behaviour of tumour cells in a well defined microenvironment. This is because some aspects of tumour characteristics cannot be fully recapitulated in a cell monolayer (2D). In the present study, we compared growth patterns, expression of signalling molecules, and metabolism-associated proteins of endometrial cancer cell lines in 3D and 2D cell cultures. Cancer cells formed spherical structures in 3D reconstituted basement membrane (3D rBM), and the morphological appearance was cell line dependent. Cell differentiation was observed after 8 days in the 3D rBM. There was reduced proliferation, detected by less expression of PCNA in 3D rBM than in 2D cell monolayers. The addition of exogenous epidermal growth factor (EGF) to cancer cells induced phosphorylation of EGFR and Akt in both cell culture conditions. The uptake of glucose was selectively altered in the 3D rBM, but there was a lack of association with Glut-1 expression. The secretion of vascular endothelial growth factor (VEGF) and prostaglandin E{sub 2} (PGE{sub 2}) was selectively altered in 3D rBM, and it was cell line dependent. Our data demonstrated that 3D rBM as an in vitro model can influence proliferation and metabolism of endometrial cancer cell behaviour compared to 2D cell monolayer. Changes are specific to individual cell types. The use of 3D rBM is, therefore, important in the in vitro study of targeted anticancer therapies.

  4. 3d Modeling of cultural heritage objects with a structured light system.

    NASA Astrophysics Data System (ADS)

    Akca, Devrim

    3D modeling of cultural heritage objects is an expanding application area. The selection of the right technology is very important and strictly related to the project requirements, budget and user's experience. The triangulation based active sensors, e.g. structured light systems are used for many kinds of 3D object reconstruction tasks and in particular for 3D recording of cultural heritage objects. This study presents the experiences in the results of two such projects in which a close-range structured light system is used for the 3D digitization. The paper includes the essential steps of the 3D object modeling pipeline, i.e. digitization, registration, surface triangulation, editing, texture mapping and visualization. The capabilities of the used hardware and software are addressed. Particular emphasis is given to a coded structured light system as an option for data acquisition.

  5. Photo-crosslinkable hydrogel-based 3D microfluidic culture device.

    PubMed

    Lee, Youlee; Lee, Jong Min; Bae, Pan-Kee; Chung, Il Yup; Chung, Bong Hyun; Chung, Bong Geun

    2015-04-01

    We developed the photo-crosslinkable hydrogel-based 3D microfluidic device to culture neural stem cells (NSCs) and tumors. The photo-crosslinkable gelatin methacrylate (GelMA) polymer was used as a physical barrier in the microfluidic device and collagen type I gel was employed to culture NSCs in a 3D manner. We demonstrated that the pore size was inversely proportional to concentrations of GelMA hydrogels, showing the pore sizes of 5 and 25 w/v% GelMA hydrogels were 34 and 4 μm, respectively. It also revealed that the morphology of pores in 5 w/v% GelMA hydrogels was elliptical shape, whereas we observed circular-shaped pores in 25 w/v% GelMA hydrogels. To culture NSCs and tumors in the 3D microfluidic device, we investigated the molecular diffusion properties across GelMA hydrogels, indicating that 25 w/v% GelMA hydrogels inhibited the molecular diffusion for 6 days in the 3D microfluidic device. In contrast, the chemicals were diffused in 5 w/v% GelMA hydrogels. Finally, we cultured NSCs and tumors in the hydrogel-based 3D microfluidic device, showing that 53-75% NSCs differentiated into neurons, while tumors were cultured in the collagen gels. Therefore, this photo-crosslinkable hydrogel-based 3D microfluidic culture device could be a potentially powerful tool for regenerative tissue engineering applications.

  6. Microscale 3D collagen cell culture assays in conventional flat-bottom 384-well plates.

    PubMed

    Leung, Brendan M; Moraes, Christopher; Cavnar, Stephen P; Luker, Kathryn E; Luker, Gary D; Takayama, Shuichi

    2015-04-01

    Three-dimensional (3D) culture systems such as cell-laden hydrogels are superior to standard two-dimensional (2D) monolayer cultures for many drug-screening applications. However, their adoption into high-throughput screening (HTS) has been lagging, in part because of the difficulty of incorporating these culture formats into existing robotic liquid handling and imaging infrastructures. Dispensing cell-laden prepolymer solutions into 2D well plates is a potential solution but typically requires large volumes of reagents to avoid evaporation during polymerization, which (1) increases costs, (2) makes drug penetration variable and (3) complicates imaging. Here we describe a technique to efficiently produce 3D microgels using automated liquid-handling systems and standard, nonpatterned, flat-bottomed, 384-well plates. Sub-millimeter-diameter, cell-laden collagen gels are deposited on the bottom of a ~2.5 mm diameter microwell with no concerns about evaporation or meniscus effects at the edges of wells, using aqueous two-phase system patterning. The microscale cell-laden collagen-gel constructs are readily imaged and readily penetrated by drugs. The cytotoxicity of chemotherapeutics was monitored by bioluminescence and demonstrated that 3D cultures confer chemoresistance as compared with similar 2D cultures. Hence, these data demonstrate the importance of culturing cells in 3D to obtain realistic cellular responses. Overall, this system provides a simple and inexpensive method for integrating 3D culture capability into existing HTS infrastructure. PMID:25510473

  7. 3D Culture Assays of Murine Mammary Branching Morphogenesis and Epithelial Invasion

    PubMed Central

    Nguyen-Ngoc, Kim-Vy; Shamir, Eliah R.; Huebner, Robert J.; Beck, Jennifer N.; Cheung, Kevin J.; Ewald, Andrew J.

    2016-01-01

    Epithelia are fundamental tissues that line cavities, glands, and outer body surfaces. We use three-dimensional (3D) embedded culture of primary murine mammary epithelial ducts, called “organoids,” to recapitulate in days in culture epithelial programs that occur over weeks deep within the body. Modulating the composition of the extracellular matrix (ECM) allows us to model cell- and tissue-level behaviors observed in normal development, such as branching morphogenesis, and in cancer, such as invasion and dissemination. Here, we describe a collection of protocols for 3D culture of mammary organoids in different ECMs and for immunofluorescence staining of 3D culture samples and mammary gland tissue sections. We illustrate expected phenotypic outcomes of each assay and provide troubleshooting tips for commonly encountered technical problems. PMID:25245692

  8. Fluorescence in situ hybridization on 3D cultures of tumor cells.

    PubMed

    Meaburn, Karen J

    2010-01-01

    Genomes are spatially highly organized within interphase nuclei. Spatial genome organization is increasingly linked to genome function. Fluorescence in situ hybridization (FISH) allows the visualization of specific regions of the genome for spatial mapping. While most gene localization studies have been performed on cultured cells, genome organization is likely to be different in the context of tissues. Three-dimensional (3D) culture model systems provide a powerful tool to study the contribution of tissue organization to gene expression and organization. However, FISH on 3D cultures is technically more challenging than on monocultures. Here, we describe an optimized protocol for interphase DNA FISH on 3D cultures of the breast epithelial cell line MCF-10A.B2, which forms breast acini and can be used as a model for early breast cancer. PMID:20809324

  9. In vivo biomarker expression patterns are preserved in 3D cultures of Prostate Cancer

    SciTech Connect

    Windus, Louisa C.E.; Kiss, Debra L.; Glover, Tristan; Avery, Vicky M.

    2012-11-15

    Here we report that Prostate Cancer (PCa) cell-lines DU145, PC3, LNCaP and RWPE-1 grown in 3D matrices in contrast to conventional 2D monolayers, display distinct differences in cell morphology, proliferation and expression of important biomarker proteins associated with cancer progression. Consistent with in vivo growth rates, in 3D cultures, all PCa cell-lines were found to proliferate at significantly lower rates in comparison to their 2D counterparts. Moreover, when grown in a 3D matrix, metastatic PC3 cell-lines were found to mimic more precisely protein expression patterns of metastatic tumour formation as found in vivo. In comparison to the prostate epithelial cell-line RWPE-1, metastatic PC3 cell-lines exhibited a down-regulation of E-cadherin and {alpha}6 integrin expression and an up-regulation of N-cadherin, Vimentin and {beta}1 integrin expression and re-expressed non-transcriptionally active AR. In comparison to the non-invasive LNCaP cell-lines, PC3 cells were found to have an up-regulation of chemokine receptor CXCR4, consistent with a metastatic phenotype. In 2D cultures, there was little distinction in protein expression between metastatic, non-invasive and epithelial cells. These results suggest that 3D cultures are more representative of in vivo morphology and may serve as a more biologically relevant model in the drug discovery pipeline. -- Highlights: Black-Right-Pointing-Pointer We developed and optimised 3D culturing techniques for Prostate Cancer cell-lines. Black-Right-Pointing-Pointer We investigated biomarker expression in 2D versus 3D culture techniques. Black-Right-Pointing-Pointer Metastatic PC3 cells re-expressed non-transcriptionally active androgen receptor. Black-Right-Pointing-Pointer Metastatic PCa cell lines retain in vivo-like antigenic profiles in 3D cultures.

  10. 3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand

    NASA Astrophysics Data System (ADS)

    Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.

    2015-08-01

    In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.

  11. Controlled 3D culture in Matrigel microbeads to analyze clonal acinar development.

    PubMed

    Dolega, Monika E; Abeille, Fabien; Picollet-D'hahan, Nathalie; Gidrol, Xavier

    2015-06-01

    3D culture systems are a valuable tool for modeling morphogenesis and carcinogenesis of epithelial tissue in a structurally appropriate context. We present a novel approach for 3D cell culture based on a flow-focusing microfluidic system that encapsulates epithelial cells in Matrigel beads. As a model we use prostatic and breast cells and assay for development of acini, polarized cellular spheres enclosing lumen. Each individual bead on average acts as a single 3D cell culture compartment generating one acinus per bead. Compared to standard protocols microfluidics provides increased control over the environment leading to more a uniform acini population. The increased facility of bead manipulation allowed us to isolate single cells which are self-sufficient to fully develop into acini in presence of Matrigel. Furthermore, combination of our microfluidic approach with large particle FACS opens new avenues in high throughput screening on single acini or spheroids.

  12. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM.

    PubMed

    Chennell, George; Willows, Robin J W; Warren, Sean C; Carling, David; French, Paul M W; Dunsby, Chris; Sardini, Alessandro

    2016-01-01

    We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR), for fluorescence lifetime imaging (FLIM) readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP), in the original FRET biosensor, AMPK activity reporter (AMPKAR), with mTurquoise2 (mTq2FP), increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation. PMID:27548185

  13. Imaging of Metabolic Status in 3D Cultures with an Improved AMPK FRET Biosensor for FLIM

    PubMed Central

    Chennell, George; Willows, Robin J. W.; Warren, Sean C.; Carling, David; French, Paul M. W.; Dunsby, Chris; Sardini, Alessandro

    2016-01-01

    We describe an approach to non-invasively map spatiotemporal biochemical and physiological changes in 3D cell culture using Forster Resonance Energy Transfer (FRET) biosensors expressed in tumour spheroids. In particular, we present an improved Adenosine Monophosphate (AMP) Activated Protein Kinase (AMPK) FRET biosensor, mTurquoise2 AMPK Activity Reporter (T2AMPKAR), for fluorescence lifetime imaging (FLIM) readouts that we have evaluated in 2D and 3D cultures. Our results in 2D cell culture indicate that replacing the FRET donor, enhanced Cyan Fluorescent Protein (ECFP), in the original FRET biosensor, AMPK activity reporter (AMPKAR), with mTurquoise2 (mTq2FP), increases the dynamic range of the response to activation of AMPK, as demonstrated using the direct AMPK activator, 991. We demonstrated 3D FLIM of this T2AMPKAR FRET biosensor expressed in tumour spheroids using two-photon excitation. PMID:27548185

  14. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  15. 3D culture model of fibroblast-mediated collagen creep to identify abnormal cell behaviour.

    PubMed

    Kureshi, A K; Afoke, A; Wohlert, S; Barker, S; Brown, R A

    2015-11-01

    Native collagen gels are important biomimetic cell support scaffolds, and a plastic compression process can now be used to rapidly remove fluid to any required collagen density, producing strong 3D tissue-like models. This study aimed to measure the mechanical creep properties of such scaffolds and to quantify any enhanced creep occurring in the presence of cells (cell-mediated creep). The test rig developed applies constant creep tension during culture and measures real-time extension due to cell action. This was used to model extracellular matrix creep, implicated in the transversalis fascia (TF) in inguinal hernia. Experiments showed that at an applied tension equivalent to 15% break strength, cell-mediated creep over 24-h culture periods was identified at creep rates of 0.46 and 0.38%/h for normal TF and human dermal fibroblasts, respectively. However, hernia TF fibroblasts produced negligible cell-mediated creep levels under the same conditions. Raising the cell culture temperature from 4 to 37 °C was used to demonstrate live cell dependence of this creep. This represents the first in vitro demonstration of TF cell-mediated collagen creep and to our knowledge the first demonstration of a functional, hernia-related cell abnormality. PMID:25862069

  16. High Content Imaging (HCI) on Miniaturized Three-Dimensional (3D) Cell Cultures

    PubMed Central

    Joshi, Pranav; Lee, Moo-Yeal

    2015-01-01

    High content imaging (HCI) is a multiplexed cell staining assay developed for better understanding of complex biological functions and mechanisms of drug action, and it has become an important tool for toxicity and efficacy screening of drug candidates. Conventional HCI assays have been carried out on two-dimensional (2D) cell monolayer cultures, which in turn limit predictability of drug toxicity/efficacy in vivo; thus, there has been an urgent need to perform HCI assays on three-dimensional (3D) cell cultures. Although 3D cell cultures better mimic in vivo microenvironments of human tissues and provide an in-depth understanding of the morphological and functional features of tissues, they are also limited by having relatively low throughput and thus are not amenable to high-throughput screening (HTS). One attempt of making 3D cell culture amenable for HTS is to utilize miniaturized cell culture platforms. This review aims to highlight miniaturized 3D cell culture platforms compatible with current HCI technology. PMID:26694477

  17. Application of 3D hydrodynamic and particle tracking models for better environmental management of finfish culture

    NASA Astrophysics Data System (ADS)

    Moreno Navas, Juan; Telfer, Trevor C.; Ross, Lindsay G.

    2011-04-01

    Hydrographic conditions, and particularly current speeds, have a strong influence on the management of fish cage culture. These hydrodynamic conditions can be used to predict particle movement within the water column and the results used to optimise environmental conditions for effective site selection, setting of environmental quality standards, waste dispersion, and potential disease transfer. To this end, a 3D hydrodynamic model, MOHID, has been coupled to a particle tracking model to study the effects of mean current speed, quiescent water periods and bulk water circulation in Mulroy Bay, Co. Donegal Ireland, an Irish fjard (shallow fjordic system) important to the aquaculture industry. A Lagangrian method simulated the instantaneous release of "particles" emulating discharge from finfish cages to show the behaviour of waste in terms of water circulation and water exchange. The 3D spatial models were used to identify areas of mixed and stratified water using a version of the Simpson-Hunter criteria, and to use this in conjunction with models of current flow for appropriate site selection for salmon aquaculture. The modelled outcomes for stratification were in good agreement with the direct measurements of water column stratification based on observed density profiles. Calculations of the Simpson-Hunter tidal parameter indicated that most of Mulroy Bay was potentially stratified with a well mixed region over the shallow channels where the water is faster flowing. The fjard was characterised by areas of both very low and high mean current speeds, with some areas having long periods of quiescent water. The residual current and the particle tracking animations created through the models revealed an anticlockwise eddy that may influence waste dispersion and potential for disease transfer, among salmon cages and which ensures that the retention time of waste substances from cages is extended. The hydrodynamic model results were incorporated into the ArcView TM GIS

  18. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models

    PubMed Central

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation. PMID:26978075

  19. BioSig3D: High Content Screening of Three-Dimensional Cell Culture Models.

    PubMed

    Bilgin, Cemal Cagatay; Fontenay, Gerald; Cheng, Qingsu; Chang, Hang; Han, Ju; Parvin, Bahram

    2016-01-01

    BioSig3D is a computational platform for high-content screening of three-dimensional (3D) cell culture models that are imaged in full 3D volume. It provides an end-to-end solution for designing high content screening assays, based on colony organization that is derived from segmentation of nuclei in each colony. BioSig3D also enables visualization of raw and processed 3D volumetric data for quality control, and integrates advanced bioinformatics analysis. The system consists of multiple computational and annotation modules that are coupled together with a strong use of controlled vocabularies to reduce ambiguities between different users. It is a web-based system that allows users to: design an experiment by defining experimental variables, upload a large set of volumetric images into the system, analyze and visualize the dataset, and either display computed indices as a heatmap, or phenotypic subtypes for heterogeneity analysis, or download computed indices for statistical analysis or integrative biology. BioSig3D has been used to profile baseline colony formations with two experiments: (i) morphogenesis of a panel of human mammary epithelial cell lines (HMEC), and (ii) heterogeneity in colony formation using an immortalized non-transformed cell line. These experiments reveal intrinsic growth properties of well-characterized cell lines that are routinely used for biological studies. BioSig3D is being released with seed datasets and video-based documentation.

  20. 3D culture of murine neural stem cells on decellularized mouse brain sections.

    PubMed

    De Waele, Jorrit; Reekmans, Kristien; Daans, Jasmijn; Goossens, Herman; Berneman, Zwi; Ponsaerts, Peter

    2015-02-01

    Transplantation of neural stem cells (NSC) in diseased or injured brain tissue is widely studied as a potential treatment for various neurological pathologies. However, effective cell replacement therapy relies on the intrinsic capacity of cellular grafts to overcome hypoxic and/or immunological barriers after transplantation. In this context, it is hypothesized that structural support for grafted NSC will be of utmost importance. With this study, we present a novel decellularization protocol for 1.5 mm thick mouse brain sections, resulting in the generation of acellular three-dimensional (3D) brain sections. Next, the obtained 3D brain sections were seeded with murine NSC expressing both the eGFP and luciferase reporter proteins (NSC-eGFP/Luc). Using real-time bioluminescence imaging, the survival and growth of seeded NSC-eGFP/Luc cells was longitudinally monitored for 1-7 weeks in culture, indicating the ability of the acellular brain sections to support sustained ex vivo growth of NSC. Next, the organization of a 3D maze-like cellular structure was examined using confocal microscopy. Moreover, under mitogenic stimuli (EGF and hFGF-2), most cells in this 3D culture retained their NSC phenotype. Concluding, we here present a novel protocol for decellularization of mouse brain sections, which subsequently support long-term 3D culture of undifferentiated NSC.

  1. Epithelial-to-mesenchymal transition in pancreatic ductal adenocarcinoma: Characterization in a 3D-cell culture model

    PubMed Central

    Gagliano, Nicoletta; Celesti, Giuseppe; Tacchini, Lorenza; Pluchino, Stefano; Sforza, Chiarella; Rasile, Marco; Valerio, Vincenza; Laghi, Luigi; Conte, Vincenzo; Procacci, Patrizia

    2016-01-01

    AIM: To analyze the effect of three-dimensional (3D)-arrangement on the expression of epithelial-to-mesenchymal transition markers in pancreatic adenocarcinoma (PDAC) cells. METHODS: HPAF-II, HPAC, and PL45 PDAC cells were cultured in either 2D-monolayers or 3D-spheroids. Ultrastructure was analyzed by transmission electron microscopy. The expression of E-cadherin, β-catenin, N-cadherin, collagen type I (COL-I), vimentin, α-smooth muscle actin (αSMA), and podoplanin was assayed by confocal microscopy in cells cultured on 12-mm diameter round coverslips and in 3D-spheroids. Gene expression for E-cadherin, Snail, Slug, Twist, Zeb1, and Zeb2 was quantified by real-time PCR. E-cadherin protein level and its electrophoretic pattern were studied by Western blot in cell lysates obtained from cells grown in 2D-monolayers and 3D-spheroids. RESULTS: The E-cadherin/β-catenin complex was expressed in a similar way in plasma membrane cell boundaries in both 2D-monolayers and 3D-spheroids. E-cadherin increased in lysates obtained from 3D-spheroids, while cleavage fragments were more evident in 2D-monolayers. N-cadherin expression was observed in very few PDAC cells grown in 2D-monolayers, but was more evident in 3D-spheroids. Some cells expressing COL-I were observed in 3D-spheroids. Podoplanin, expressed in collectively migrating cells, and αSMA were similarly expressed in both experimental conditions. The concomitant maintenance of the E-cadherin/β-catenin complex at cell boundaries supports the hypothesis of a collective migration for these cells, which is consistent with podoplanin expression. CONCLUSION: We show that a 3D-cell culture model could provide deeper insight into understanding the biology of PDAC and allow for the detection of marked differences in the phenotype of PDAC cells grown in 3D-spheroids. PMID:27182158

  2. Planar arrangement of eukaryotic cells in merged hydrogels combines the advantages of 3-D and 2-D cultures.

    PubMed

    Gordeev, Alexander A; Chetverina, Helena V; Chetverin, Alexander B

    2012-05-01

    We report an unordered 2-D array of eukaryotic cells completely embedded in a 3-D matrix. Every cell is located at the same distance from the gel surface, which ensures uniformity of growth conditions and ease of observation characteristic of a 2-D culture. Each cell is firmly immobilized, and each has a unique address in the array. The cells can be rapidly screened, individually monitored during extended time periods, and cultured with the formation of spheroid microcolonies characteristic of a 3-D culture. Individual microcolonies can be extracted from the gel and further propagated, thus enabling isolation of pure cell clones from rather dense cell populations and rapid drug-free generation of stable cell lines.

  3. 5D Modelling: An Efficient Approach for Creating Spatiotemporal Predictive 3D Maps of Large-Scale Cultural Resources

    NASA Astrophysics Data System (ADS)

    Doulamis, A.; Doulamis, N.; Ioannidis, C.; Chrysouli, C.; Grammalidis, N.; Dimitropoulos, K.; Potsiou, C.; Stathopoulou, E.-K.; Ioannides, M.

    2015-08-01

    Outdoor large-scale cultural sites are mostly sensitive to environmental, natural and human made factors, implying an imminent need for a spatio-temporal assessment to identify regions of potential cultural interest (material degradation, structuring, conservation). On the other hand, in Cultural Heritage research quite different actors are involved (archaeologists, curators, conservators, simple users) each of diverse needs. All these statements advocate that a 5D modelling (3D geometry plus time plus levels of details) is ideally required for preservation and assessment of outdoor large scale cultural sites, which is currently implemented as a simple aggregation of 3D digital models at different time and levels of details. The main bottleneck of such an approach is its complexity, making 5D modelling impossible to be validated in real life conditions. In this paper, a cost effective and affordable framework for 5D modelling is proposed based on a spatial-temporal dependent aggregation of 3D digital models, by incorporating a predictive assessment procedure to indicate which regions (surfaces) of an object should be reconstructed at higher levels of details at next time instances and which at lower ones. In this way, dynamic change history maps are created, indicating spatial probabilities of regions needed further 3D modelling at forthcoming instances. Using these maps, predictive assessment can be made, that is, to localize surfaces within the objects where a high accuracy reconstruction process needs to be activated at the forthcoming time instances. The proposed 5D Digital Cultural Heritage Model (5D-DCHM) is implemented using open interoperable standards based on the CityGML framework, which also allows the description of additional semantic metadata information. Visualization aspects are also supported to allow easy manipulation, interaction and representation of the 5D-DCHM geometry and the respective semantic information. The open source 3DCity

  4. Nuclear Factor-kappaB controls the reaggregation of 3D neurosphere cultures in vitro.

    PubMed

    Widera, D; Mikenberg, I; Kaus, A; Kaltschmidt, C; Kaltschmidt, B

    2006-01-01

    The approach of reaggregation involves the regeneration and self-renewal of histotypical 3D spheres from isolated tissue kept in suspension culture. Reaggregated spheres can be used as tumour, genetic, biohybrid and neurosphere models. In addition the functional superiority of 3D aggregates over conventional 2D cultures developed the use of neurospheres for brain engineering of CNS diseases. Thus 3D aggregate cultures created enormous interest in mechanisms that regulate the formation of multicellular aggregates in vitro. Here we analyzed mechanisms guiding the development of 3D neurosphere cultures. Adult neural stem cells can be cultured as self-adherent clusters, called neurospheres. Neurospheres are characterised as heterogeneous clusters containing unequal stem cell sub-types. Tumour necrosis factor-alpha (TNF-alpha is one of the crucial inflammatory cytokines with multiple actions on several cell types. TNF-alpha strongly activates the canonical Nuclear Factor Kappa-B (NF- kappaB) pathway. In order to investigate further functions of TNF in neural stem cells (NSCs) we tested the hypothesis that TNF is able to modulate the motility and/or migratory behaviour of SVZ derived adult neural stem cells. We observed a significantly faster sphere formation in TNF treated cultures than in untreated controls. The very fast aggregation of isolated NSCs (<2h) is a commonly observed phenomenon, though the mechanisms of 3D neurosphere formation remain largely unclear. Here we demonstrate for the first time, increased aggregation and enhanced motility of isolated NSCs in response to the TNF-stimulus. Moreover, this phenomenon is largely dependent on activated transcription factor NF-kappaB. Both, the pharmacological blockade of NF-kappaB pathway by pyrrolidine dithiocarbamate (PDTC) or Bay11-7082 and genetic blockade by expression of a transdominant-negative super-repressor IkappaB-AA1 led to decreased aggregation.

  5. Additively Manufactured Device for Dynamic Culture of Large Arrays of 3D Tissue Engineered Constructs.

    PubMed

    Costa, Pedro F; Hutmacher, Dietmar W; Theodoropoulos, Christina; Gomes, Manuela E; Reis, Rui L; Vaquette, Cédryck

    2015-04-22

    The ability to test large arrays of cell and biomaterial combinations in 3D environments is still rather limited in the context of tissue engineering and regenerative medicine. This limitation can be generally addressed by employing highly automated and reproducible methodologies. This study reports on the development of a highly versatile and upscalable method based on additive manufacturing for the fabrication of arrays of scaffolds, which are enclosed into individualized perfusion chambers. Devices containing eight scaffolds and their corresponding bioreactor chambers are simultaneously fabricated utilizing a dual extrusion additive manufacturing system. To demonstrate the versatility of the concept, the scaffolds, while enclosed into the device, are subsequently surface-coated with a biomimetic calcium phosphate layer by perfusion with simulated body fluid solution. 96 scaffolds are simultaneously seeded and cultured with human osteoblasts under highly controlled bidirectional perfusion dynamic conditions over 4 weeks. Both coated and noncoated resulting scaffolds show homogeneous cell distribution and high cell viability throughout the 4 weeks culture period and CaP-coated scaffolds result in a significantly increased cell number. The methodology developed in this work exemplifies the applicability of additive manufacturing as a tool for further automation of studies in the field of tissue engineering and regenerative medicine.

  6. BIOCOMPATIBILITY OF A SYNTHETIC EXTRACELLULAR MATRIX ON IMMORTALIZED VOCAL FOLD FIBROBLASTS IN 3D CULTURE

    PubMed Central

    Chen, Xia

    2010-01-01

    In order to promote wound repair and induce tissue regeneration, an engineered hyaluronan (HA) hydrogel – Carbylan GSX, which contains di(thiopropionyl) bishydrazide-modified hyaluronic acid (HA-DTPH), di(thiopropionyl) bishydrazide-modified gelatin (Gtn-DTPH) and polyethylene glycol diacrylate (PEGDA), has been developed for extracellular matrix (ECM) defects of the superficial and middle layers of the lamina propria. The purpose of this study was to evaluate the biocompatibility of Carbylan GSX in a previously established immortalized human vocal fold fibroblast (hVFF) cell line prior to human clinical trials. Immortalized hVFF proliferation, viability, apoptosis and transcript analysis for both ECM constituents and inflammatory markers were measured for two-dimensional and three-dimensional culture conditions. There were no significant differences in morphology, cell marker protein expression, proliferation, viability and apoptosis of hVFF cultured with Carbylan GSX compared to Matrigel, a commercial 3D control, after one week. Gene expression levels for fibromodulin, TGF-β1, and TNF-α were similar between Carbylan GSX and Matrigel. Fibronectin, hyaluronidase 1 and COX2 expression levels were induced by Carbylan GSX; whereas IL6, IL8. COL1 and hyaluronic acid synthase 3 expression levels were decreased by Carbylan GSX. This investigation demonstrates that Carbylan GSX may serve as a natural biomaterial for tissue engineering of human vocal folds. PMID:20109588

  7. 3D matrix-based cell cultures: Automated analysis of tumor cell survival and proliferation

    PubMed Central

    EKE, IRIS; HEHLGANS, STEPHANIE; SANDFORT, VEIT; CORDES, NILS

    2016-01-01

    Three-dimensional ex vivo cell cultures mimic physiological in vivo growth conditions thereby significantly contributing to our understanding of tumor cell growth and survival, therapy resistance and identification of novel potent cancer targets. In the present study, we describe advanced three-dimensional cell culture methodology for investigating cellular survival and proliferation in human carcinoma cells after cancer therapy including molecular therapeutics. Single cells are embedded into laminin-rich extracellular matrix and can be treated with cytotoxic drugs, ionizing or UV radiation or any other substance of interest when consolidated and approximating in vivo morphology. Subsequently, cells are allowed to grow for automated determination of clonogenic survival (colony number) or proliferation (colony size). The entire protocol of 3D cell plating takes ~1 h working time and pursues for ~7 days before evaluation. This newly developed method broadens the spectrum of exploration of malignant tumors and other diseases and enables the obtainment of more reliable data on cancer treatment efficacy. PMID:26549537

  8. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  9. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  10. Polymer-Based Mesh as Supports for Multi-layered 3D Cell Culture and Assays

    PubMed Central

    Simon, Karen A.; Park, Kyeng Min; Mosadegh, Bobak; Subramaniam, Anand Bala; Mazzeo, Aaron; Ngo, Phil M.; Whitesides, George M.

    2013-01-01

    Three-dimensional (3D) culture systems can mimic certain aspects of the cellular microenvironment found in vivo, but generation, analysis and imaging of current model systems for 3D cellular constructs and tissues remain challenging. This work demonstrates a 3D culture system – Cells-in-Gels-in-Mesh (CiGiM) – that uses stacked sheets of polymer-based mesh to support cells embedded in gels to form tissue-like constructs; the stacked sheets can be disassembled by peeling the sheets apart to analyze cultured cells—layer-by-layer—within the construct. The mesh sheets leave openings large enough for light to pass through with minimal scattering, and thus allowing multiple options for analysis—(i) using straightforward analysis by optical light microscopy, (ii) by high-resolution analysis with fluorescence microscopy, or (iii) with a fluorescence gel scanner. The sheets can be patterned into separate zones with paraffin film-based decals, in order to conduct multiple experiments in parallel; the paraffin-based decal films also block lateral diffusion of oxygen effectively. CiGiM simplifies the generation and analysis of 3D culture without compromising throughput, and quality of the data collected: it is especially useful in experiments that require control of oxygen levels, and isolation of adjacent wells in a multi-zone format. PMID:24095253

  11. 3D rotating wall vessel and 2D cell culture of four veterinary virus pathogens: A comparison of virus yields, portions of infectious particles and virus growth curves.

    PubMed

    Malenovská, Hana

    2016-02-01

    Only very few comparative studies have been performed that evaluate general trends of virus growth under 3D in comparison with 2D cell culture conditions. The aim of this study was to investigate differences when four animal viruses are cultured in 2D and 3D. Suid herpesvirus 1 (SuHV-1), Vesicular stomatitis virus (VSIV), Bovine adenovirus (BAdV) and Bovine parainfluenza 3 virus (BPIV-3) were cultivated in 3D rotating wall vessels (RWVs) and conventional 2D cultures. The production of virus particles, the portion of infectious particles, and the infectious growth curves were compared. For all viruses, the production of virus particles (related to cell density), including the non-infectious ones, was lower in 3D than in 2D culture. The production of only infectious particles was significantly lower in BAdV and BPIV-3 in 3D cultures in relation to cell density. The two cultivation approaches resulted in significantly different virus particle-to-TCID50 ratios in three of the four viruses: lower in SuHV-1 and BPIV-3 and higher in BAdV in 3D culture. The infectious virus growth rates were not significantly different in all viruses. Although 3D RWV culture resulted in lower production of virus particles compared to 2D systems, the portion of infectious particles was higher for some viruses.

  12. Navier-Stokes equations in 3D thin domains with Navier friction boundary condition

    NASA Astrophysics Data System (ADS)

    Hu, Changbing

    In this article we study the 3D Navier-Stokes equations with Navier friction boundary condition in thin domains. We prove the global existence of strong solutions to the 3D Navier-Stokes equations when the initial data and external forces are in large sets as the thickness of the domain is small. We generalize the techniques developed to study the 3D Navier-Stokes equations in thin domains, see [G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains I: Global attractors and global regularity of solutions, J. Amer. Math. Soc. 6 (1993) 503-568; G. Raugel, G. Sell, Navier-Stokes equations on thin 3D domains II: Global regularity of spatially periodic conditions, in: Nonlinear Partial Differential Equations and Their Application, College de France Seminar, vol. XI, Longman, Harlow, 1994, pp. 205-247; R. Temam, M. Ziane, Navier-Stokes equations in three-dimensional thin domains with various boundary conditions, Adv. Differential Equations 1 (1996) 499-546; R. Temam, M. Ziane, Navier-Stokes equations in thin spherical shells, in: Optimization Methods in Partial Differential Equations, in: Contemp. Math., vol. 209, Amer. Math. Soc., Providence, RI, 1996, pp. 281-314], to the Navier friction boundary condition by introducing a new average operator M in the thin direction according to the spectral decomposition of the Stokes operator A. Our analysis hinges on the refined investigation of the eigenvalue problem corresponding to the Stokes operator A with Navier friction boundary condition.

  13. A 3D human neural cell culture system for modeling Alzheimer’s disease

    PubMed Central

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  14. Localizing Protein in 3D Neural Stem Cell Culture: a Hybrid Visualization Methodology

    PubMed Central

    Fai, Stephen; Bennett, Steffany A.L.

    2010-01-01

    The importance of 3-dimensional (3D) topography in influencing neural stem and progenitor cell (NPC) phenotype is widely acknowledged yet challenging to study. When dissociated from embryonic or post-natal brain, single NPCs will proliferate in suspension to form neurospheres. Daughter cells within these cultures spontaneously adopt distinct developmental lineages (neurons, oligodendrocytes, and astrocytes) over the course of expansion despite being exposed to the same extracellular milieu. This progression recapitulates many of the stages observed over the course of neurogenesis and gliogenesis in post-natal brain and is often used to study basic NPC biology within a controlled environment. Assessing the full impact of 3D topography and cellular positioning within these cultures on NPC fate is, however, difficult. To localize target proteins and identify NPC lineages by immunocytochemistry, free-floating neurospheres must be plated on a substrate or serially sectioned. This processing is required to ensure equivalent cell permeabilization and antibody access throughout the sphere. As a result, 2D epifluorescent images of cryosections or confocal reconstructions of 3D Z-stacks can only provide spatial information about cell position within discrete physical or digital 3D slices and do not visualize cellular position in the intact sphere. Here, to reiterate the topography of the neurosphere culture and permit spatial analysis of protein expression throughout the entire culture, we present a protocol for isolation, expansion, and serial sectioning of post-natal hippocampal neurospheres suitable for epifluorescent or confocal immunodetection of target proteins. Connexin29 (Cx29) is analyzed as an example. Next, using a hybrid of graphic editing and 3D modelling softwares rigorously applied to maintain biological detail, we describe how to re-assemble the 3D structural positioning of these images and digitally map labelled cells within the complete neurosphere. This

  15. Registration of 3D and multispectral data for the study of cultural heritage surfaces.

    PubMed

    Chane, Camille Simon; Schütze, Rainer; Boochs, Frank; Marzani, Franck S

    2013-01-01

    We present a technique for the multi-sensor registration of featureless datasets based on the photogrammetric tracking of the acquisition systems in use. This method is developed for the in situ study of cultural heritage objects and is tested by digitizing a small canvas successively with a 3D digitization system and a multispectral camera while simultaneously tracking the acquisition systems with four cameras and using a cubic target frame with a side length of 500 mm. The achieved tracking accuracy is better than 0.03 mm spatially and 0.150 mrad angularly. This allows us to seamlessly register the 3D acquisitions and to project the multispectral acquisitions on the 3D model. PMID:23322103

  16. Spheroid culture as a tool for creating 3D complex tissues.

    PubMed

    Fennema, Eelco; Rivron, Nicolas; Rouwkema, Jeroen; van Blitterswijk, Clemens; de Boer, Jan

    2013-02-01

    3D cell culture methods confer a high degree of clinical and biological relevance to in vitro models. This is specifically the case with the spheroid culture, where a small aggregate of cells grows free of foreign materials. In spheroid cultures, cells secrete the extracellular matrix (ECM) in which they reside, and they can interact with cells from their original microenvironment. The value of spheroid cultures is increasing quickly due to novel microfabricated platforms amenable to high-throughput screening (HTS) and advances in cell culture. Here, we review new possibilities that combine the strengths of spheroid culture with new microenvironment fabrication methods that allow for the creation of large numbers of highly reproducible, complex tissues.

  17. 3D Hydrogel Scaffolds for Articular Chondrocyte Culture and Cartilage Generation

    PubMed Central

    Yang, Fan; Bhutani, Nidhi

    2015-01-01

    Human articular cartilage is highly susceptible to damage and has limited self-repair and regeneration potential. Cell-based strategies to engineer cartilage tissue offer a promising solution to repair articular cartilage. To select the optimal cell source for tissue repair, it is important to develop an appropriate culture platform to systematically examine the biological and biomechanical differences in the tissue-engineered cartilage by different cell sources. Here we applied a three-dimensional (3D) biomimetic hydrogel culture platform to systematically examine cartilage regeneration potential of juvenile, adult, and osteoarthritic (OA) chondrocytes. The 3D biomimetic hydrogel consisted of synthetic component poly(ethylene glycol) and bioactive component chondroitin sulfate, which provides a physiologically relevant microenvironment for in vitro culture of chondrocytes. In addition, the scaffold may be potentially used for cell delivery for cartilage repair in vivo. Cartilage tissue engineered in the scaffold can be evaluated using quantitative gene expression, immunofluorescence staining, biochemical assays, and mechanical testing. Utilizing these outcomes, we were able to characterize the differential regenerative potential of chondrocytes of varying age, both at the gene expression level and in the biochemical and biomechanical properties of the engineered cartilage tissue. The 3D culture model could be applied to investigate the molecular and functional differences among chondrocytes and progenitor cells from different stages of normal or aberrant development. PMID:26484414

  18. 3D cultured immortalized human hepatocytes useful to develop drugs for blood-borne HCV

    SciTech Connect

    Aly, Hussein Hassan; Shimotohno, Kunitada; Hijikata, Makoto

    2009-02-06

    Due to the high polymorphism of natural hepatitis C virus (HCV) variants, existing recombinant HCV replication models have failed to be effective in developing effective anti-HCV agents. In the current study, we describe an in vitro system that supports the infection and replication of natural HCV from patient blood using an immortalized primary human hepatocyte cell line cultured in a three-dimensional (3D) culture system. Comparison of the gene expression profile of cells cultured in the 3D system to those cultured in the existing 2D system demonstrated an up-regulation of several genes activated by peroxisome proliferator-activated receptor alpha (PPAR{alpha}) signaling. Furthermore, using PPAR{alpha} agonists and antagonists, we also analyzed the effect of PPAR{alpha} signaling on the modulation of HCV replication using this system. The 3D in vitro system described in this study provides significant insight into the search for novel anti-HCV strategies that are specific to various strains of HCV.

  19. New 3D-Culture Approaches to Study Interactions of Bone Marrow Adipocytes with Metastatic Prostate Cancer Cells

    PubMed Central

    Herroon, Mackenzie Katheryn; Diedrich, Jonathan Driscoll; Podgorski, Izabela

    2016-01-01

    Adipocytes are a major component of the bone marrow that can critically affect metastatic progression in bone. Understanding how the marrow fat cells influence growth, behavior, and survival of tumor cells requires utilization of in vitro cell systems that can closely mimic the physiological microenvironment. Herein, we present two new three-dimensional (3D) culture approaches to study adipocyte–tumor cell interactions in vitro. The first is a transwell-based system composed of the marrow-derived adipocytes in 3D collagen I gels and reconstituted basement membrane-overlayed prostate tumor cell spheroids. Tumor cells cultured under these 3D conditions are continuously exposed to adipocyte-derived factors, and their response can be evaluated by morphological and immunohistochemical analyses. We show via immunofluorescence analysis of metabolism-associated proteins that under 3D conditions tumor cells have significantly different metabolic response to adipocytes than tumor cells grown in 2D culture. We also demonstrate that this model allows for incorporation of other cell types, such as bone marrow macrophages, and utilization of dye-quenched collagen substrates for examination of proteolysis-driven responses to adipocyte- and macrophage-derived factors. Our second 3D culture system is designed to study tumor cell invasion toward the adipocytes and the consequent interaction between the two cell types. In this model, marrow adipocytes are separated from the fluorescently labeled tumor cells by a layer of collagen I. At designated time points, adipocytes are stained with BODIPY and confocal z-stacks are taken through the depth of the entire culture to determine the distance traveled between the two cell types over time. We demonstrate that this system can be utilized to study effects of candidate factors on tumor invasion toward the adipocytes. We also show that immunohistochemical analyses can be performed to evaluate the impact of direct interaction of prostate

  20. Mackay campus of environmental education and digital cultural construction: the application of 3D virtual reality

    NASA Astrophysics Data System (ADS)

    Chien, Shao-Chi; Chung, Yu-Wei; Lin, Yi-Hsuan; Huang, Jun-Yi; Chang, Jhih-Ting; He, Cai-Ying; Cheng, Yi-Wen

    2012-04-01

    This study uses 3D virtual reality technology to create the "Mackay campus of the environmental education and digital cultural 3D navigation system" for local historical sites in the Tamsui (Hoba) area, in hopes of providing tourism information and navigation through historical sites using a 3D navigation system. We used Auto CAD, Sketch Up, and SpaceEyes 3D software to construct the virtual reality scenes and create the school's historical sites, such as the House of Reverends, the House of Maidens, the Residence of Mackay, and the Education Hall. We used this technology to complete the environmental education and digital cultural Mackay campus . The platform we established can indeed achieve the desired function of providing tourism information and historical site navigation. The interactive multimedia style and the presentation of the information will allow users to obtain a direct information response. In addition to showing the external appearances of buildings, the navigation platform can also allow users to enter the buildings to view lifelike scenes and textual information related to the historical sites. The historical sites are designed according to their actual size, which gives users a more realistic feel. In terms of the navigation route, the navigation system does not force users along a fixed route, but instead allows users to freely control the route they would like to take to view the historical sites on the platform.

  1. Genetically Encoded Sender–Receiver System in 3D Mammalian Cell Culture

    PubMed Central

    2013-01-01

    Engineering spatial patterning in mammalian cells, employing entirely genetically encoded components, requires solving several problems. These include how to code secreted activator or inhibitor molecules and how to send concentration-dependent signals to neighboring cells, to control gene expression. The Madin–Darby Canine Kidney (MDCK) cell line is a potential engineering scaffold as it forms hollow spheres (cysts) in 3D culture and tubulates in response to extracellular hepatocyte growth factor (HGF). We first aimed to graft a synthetic patterning system onto single developing MDCK cysts. We therefore developed a new localized transfection method to engineer distinct sender and receiver regions. A stable reporter line enabled reversible EGFP activation by HGF and modulation by a secreted repressor (a truncated HGF variant, NK4). By expanding the scale to wide fields of cysts, we generated morphogen diffusion gradients, controlling reporter gene expression. Together, these components provide a toolkit for engineering cell–cell communication networks in 3D cell culture. PMID:24313393

  2. 3D Cultures of prostate cancer cells cultured in a novel high-throughput culture platform are more resistant to chemotherapeutics compared to cells cultured in monolayer.

    PubMed

    Chambers, Karen F; Mosaad, Eman M O; Russell, Pamela J; Clements, Judith A; Doran, Michael R

    2014-01-01

    Despite monolayer cultures being widely used for cancer drug development and testing, 2D cultures tend to be hypersensitive to chemotherapy and are relatively poor predictors of whether a drug will provide clinical benefit. Whilst generally more complicated, three dimensional (3D) culture systems often better recapitulate true cancer architecture and provide a more accurate drug response. As a step towards making 3D cancer cultures more accessible, we have developed a microwell platform and surface modification protocol to enable high throughput manufacture of 3D cancer aggregates. Herein we use this novel system to characterize prostate cancer cell microaggregates, including growth kinetics and drug sensitivity. Our results indicate that prostate cancer cells are viable in this system, however some non-cancerous prostate cell lines are not. This system allows us to consistently control for the presence or absence of an apoptotic core in the 3D cancer microaggregates. Similar to tumor tissues, the 3D microaggregates display poor polarity. Critically the response of 3D microaggregates to the chemotherapeutic drug, docetaxel, is more consistent with in vivo results than the equivalent 2D controls. Cumulatively, our results demonstrate that these prostate cancer microaggregates better recapitulate the morphology of prostate tumors compared to 2D and can be used for high-throughput drug testing. PMID:25380249

  3. Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition

    NASA Astrophysics Data System (ADS)

    Mei, Qing; Gao, Jian; Lin, Hui; Chen, Yun; Yunbo, He; Wang, Wei; Zhang, Guanjin; Chen, Xin

    2016-11-01

    We designed a new three-dimensional (3D) measurement system for micro components: a structure light telecentric stereoscopic vision 3D measurement system based on the Scheimpflug condition. This system creatively combines the telecentric imaging model and the Scheimpflug condition on the basis of structure light stereoscopic vision, having benefits of a wide measurement range, high accuracy, fast speed, and low price. The system measurement range is 20 mm×13 mm×6 mm, the lateral resolution is 20 μm, and the practical vertical resolution reaches 2.6 μm, which is close to the theoretical value of 2 μm and well satisfies the 3D measurement needs of micro components such as semiconductor devices, photoelectron elements, and micro-electromechanical systems. In this paper, we first introduce the principle and structure of the system and then present the system calibration and 3D reconstruction. We then present an experiment that was performed for the 3D reconstruction of the surface topography of a wafer, followed by a discussion. Finally, the conclusions are presented.

  4. Preparation of 3D fibrin scaffolds for stem cell culture applications.

    PubMed

    Kolehmainen, Kathleen; Willerth, Stephanie M

    2012-01-01

    Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue. A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis step for the

  5. Preparation of 3D Fibrin Scaffolds for Stem Cell Culture Applications

    PubMed Central

    Kolehmainen, Kathleen; Willerth, Stephanie M.

    2012-01-01

    Stem cells are found in naturally occurring 3D microenvironments in vivo, which are often referred to as the stem cell niche 1. Culturing stem cells inside of 3D biomaterial scaffolds provides a way to accurately mimic these microenvironments, providing an advantage over traditional 2D culture methods using polystyrene as well as a method for engineering replacement tissues 2. While 2D tissue culture polystrene has been used for the majority of cell culture experiments, 3D biomaterial scaffolds can more closely replicate the microenvironments found in vivo by enabling more accurate establishment of cell polarity in the environment and possessing biochemical and mechanical properties similar to soft tissue.3 A variety of naturally derived and synthetic biomaterial scaffolds have been investigated as 3D environments for supporting stem cell growth. While synthetic scaffolds can be synthesized to have a greater range of mechanical and chemical properties and often have greater reproducibility, natural biomaterials are often composed of proteins and polysaccharides found in the extracelluar matrix and as a result contain binding sites for cell adhesion and readily support cell culture. Fibrin scaffolds, produced by polymerizing the protein fibrinogen obtained from plasma, have been widely investigated for a variety of tissue engineering applications both in vitro and in vivo4. Such scaffolds can be modified using a variety of methods to incorporate controlled release systems for delivering therapeutic factors 5. Previous work has shown that such scaffolds can be used to successfully culture embryonic stem cells and this scaffold-based culture system can be used to screen the effects of various growth factors on the differentiation of the stem cells seeded inside 6,7. This protocol details the process of polymerizing fibrin scaffolds from fibrinogen solutions using the enzymatic activity of thrombin. The process takes 2 days to complete, including an overnight dialysis

  6. Universal lab-on-a-chip platform for complex, perfused 3D cell cultures

    NASA Astrophysics Data System (ADS)

    Sonntag, F.; Schmieder, F.; Ströbel, J.; Grünzner, S.; Busek, M.; Günther, K.; Steege, T.; Polk, C.; Klotzbach, U.

    2016-03-01

    The miniaturization, rapid prototyping and automation of lab-on-a-chip technology play nowadays a very important role. Lab-on-a-chip technology is successfully implemented not only for environmental analysis and medical diagnostics, but also as replacement of animals used for the testing of substances in the pharmaceutical and cosmetics industries. For that purpose the Fraunhofer IWS and partners developed a lab-on-a-chip platform for perfused cell-based assays in the last years, which includes different micropumps, valves, channels, reservoirs and customized cell culture modules. This technology is already implemented for the characterization of different human cell cultures and organoids, like skin, liver, endothelium, hair follicle and nephron. The advanced universal lab-on-a-chip platform for complex, perfused 3D cell cultures is divided into a multilayer basic chip with integrated micropump and application-specific 3D printed cell culture modules. Moreover a technology for surface modification of the printed cell culture modules by laser micro structuring and a complex and flexibly programmable controlling device based on an embedded Linux system was developed. A universal lab-on-a-chip platform with an optional oxygenator and a cell culture module for cubic scaffolds as well as first cell culture experiments within the cell culture device will be presented. The module is designed for direct interaction with robotic dispenser systems. This offers the opportunity to combine direct organ printing of cells and scaffolds with the microfluidic cell culture module. The characterization of the developed system was done by means of Micro-Particle Image Velocimetry (μPIV) and an optical oxygen measuring system.

  7. MAPLE deposition of 3D micropatterned polymeric substrates for cell culture

    NASA Astrophysics Data System (ADS)

    Paun, Irina Alexandra; Mihailescu, Mona; Calenic, Bogdan; Luculescu, Catalin Romeo; Greabu, Maria; Dinescu, Maria

    2013-08-01

    3D micropatterned poly(lactide-co-glycolide)/polyurethane (PLGA/PU) substrates were produced by MAPLE deposition through masks and used for regulating the behavior of oral keratinocyte stem cells in response to topography. Flat PLGA/PU substrates were produced for comparison. 3D imaging of the PLGA/PU substrates and of the cultured cells was performed by Digital Holographic Microscopy. The micropatterns were in the shape of squares of 50 × 50 and 80 × 80 μm2 areas, ~1.8 μm in height and separated by 20 μm wide channels. It was found that substrate topography guided the adhesion of the cultured cells: on the smooth substrates the cells adhered randomly and showed no preferred orientation; in contrast, on the micropatterned substrates the cells adhered preferentially onto the squares and not in the separating channels. Furthermore, key properties of the cells (size, viability, proliferation rate and stem cell marker expression) did not show any dependence on substrate topography. The size of the cultured cells, their viability, the proportions of actively/slow proliferating cells, as well as the stem cell markers expressions, were similar for both flat and micropatterned substrates. Finally, it was found that the cells cultured on the PLGA/PU substrates deposited by MAPLE exhibited similar properties as the controls (i.e. cells cultured on glass slides), indicating the capability of the former to preserve the properties of the keratinocyte stem cells.

  8. Validation of the BacT/ALERT®3D automated culture system for the detection of microbial contamination of epithelial cell culture medium.

    PubMed

    Plantamura, E; Huyghe, G; Panterne, B; Delesalle, N; Thépot, A; Reverdy, M E; Damour, O; Auxenfans, Céline

    2012-08-01

    Living tissue engineering for regenerative therapy cannot withstand the usual pharmacopoeia methods of purification and terminal sterilization. Consequently, these products must be manufactured under aseptic conditions at microbiologically controlled environment facilities. This study was proposed to validate BacT/ALERT(®)3D automated culture system for microbiological control of epithelial cell culture medium (ECCM). Suspensions of the nine microorganisms recommended by the European Pharmacopoeia (Chap. 2.6.27: "Microbiological control of cellular products"), plus one species from oral mucosa and two negative controls with no microorganisms were prepared in ECCM. They were inoculated in FA (anaerobic) and SN (aerobic) culture bottles (Biomérieux, Lyon, France) and incubated in a BacT/ALERT(®)3D automated culture system. For each species, five sets of bottles were inoculated for reproducibility testing: one sample was incubated at the French Health Products Agency laboratory (reference) and the four others at Cell and Tissue Bank of Lyon, France. The specificity of the positive culture bottles was verified by Gram staining and then subcultured to identify the microorganism grown. The BacT/ALERT(®)3D system detected all the inoculated microorganisms in less than 2 days except Propionibacterium acnes which was detected in 3 days. In conclusion, this study demonstrates that the BacT/ALERT(®)3D system can detect both aerobic and anaerobic bacterial and fungal contamination of an epithelial cell culture medium consistent with the European Pharmacopoeia chapter 2.6.27 recommendations. It showed the specificity, sensitivity, and precision of the BacT/ALERT(®)3D method, since all the microorganisms seeded were detected in both sites and the uncontaminated medium ECCM remained negative at 7 days. PMID:22160810

  9. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures.

    PubMed

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-01-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells. PMID:26153550

  10. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    NASA Astrophysics Data System (ADS)

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-07-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells.

  11. High-Throughput Cancer Cell Sphere Formation for Characterizing the Efficacy of Photo Dynamic Therapy in 3D Cell Cultures

    PubMed Central

    Chen, Yu-Chih; Lou, Xia; Zhang, Zhixiong; Ingram, Patrick; Yoon, Euisik

    2015-01-01

    Photodynamic therapy (PDT), wherein light sensitive non-toxic agents are locally and selectively activated using light, has emerged as an appealing alternative to traditional cancer chemotherapy. Yet to date, PDT efficacy has been mostly characterized using 2D cultures. Compared to 2D cultures, 3D sphere culture generates unique spatial distributions of nutrients and oxygen for the cells that better mimics the in-vivo conditions. Using a novel polyHEMA (non-adherent polymer) fabrication process, we developed a microfluidic sphere formation platform that can (1) generate 1,024 uniform (size variation <10%) cancer spheres within a 2 cm by 2 cm core area, (2) culture spheres for more than 2 weeks, and (3) allow the retrieval of spheres. Using the presented platform, we have successfully characterized the different responses in 2D and 3D cell culture to PDT. Furthermore, we investigated the treatment resistance effect in cancer cells induced by tumor associated fibroblasts (CAF). Although the CAFs can enhance the resistance to traditional chemotherapy agents, no significant difference in PDT was observed. The preliminary results suggest that the PDT can be an attractive alternative cancer therapy, which is less affected by the therapeutic resistance induced by cancer associated cells. PMID:26153550

  12. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    PubMed

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  13. Inspection, 3D modelling, and rapid prototyping of cultural heritage by means of a 3D optical digitiser

    NASA Astrophysics Data System (ADS)

    Docchio, F.; Sansoni, G.; Trebeschi, M.

    2005-06-01

    This paper presents the activity carried out to perform the three-dimensional acquisition of the "Vittoria Alata", a 2m-high, bronze statue, symbol of our City, located at the Civici Musei di Arte e Storia (S. Giulia) of Brescia. The acquisition of the statue has been performed by using a three-dimensional vision system based on active triangulation and on the projection of non-coherent light. This system, called OPL-3D, represents one of the research products of our Laboratory, which has been active for years in the development of techniques and systems for the contactless acquisition of free-form, complex shapes. The study, originally motivated by the need to explore a new hypothesis on the origin of the "Vittoria Alata", led to its complete digitization and description in terms of both polygonal and NURBS-based models. A suite of copies of the whole statue has been obtained in the framework of the collaboration between the City Museum and the EOS Electro Optical Systems GmbH, located in Munich, Germany. As a first step, one 30 cm-high replica of the whole statue has been produced using a low-resolution triangle model of the statue (3.5 millions of triangles). As a second step, two 1:1 scale copies of the statue have been produced. For them, the Laboratory has provided the high resolution STL file (16 millions of triangles). The paper discusses in detail the hardware and the software facilities used to implement the whole process, and gives a comprehensive description of the results.

  14. Human Lung Cancer Cells Grown in an Ex Vivo 3D Lung Model Produce Matrix Metalloproteinases Not Produced in 2D Culture

    PubMed Central

    Mishra, Dhruva K.; Sakamoto, Jason H.; Thrall, Michael J.; Baird, Brandi N.; Blackmon, Shanda H.; Ferrari, Mauro; Kurie, Jonathan M.; Kim, Min P.

    2012-01-01

    We compared the growth of human lung cancer cells in an ex vivo three-dimensional (3D) lung model and 2D culture to determine which better mimics lung cancer growth in patients. A549 cells were grown in an ex vivo 3D lung model and in 2D culture for 15 days. We measured the size and formation of tumor nodules and counted the cells after 15 days. We also stained the tissue/cells for Ki-67, and Caspase-3. We measured matrix metalloproteinase (MMP) levels in the conditioned media and in blood plasma from patients with adenocarcinoma of the lung. Organized tumor nodules with intact vascular space formed in the ex vivo 3D lung model but not in 2D culture. Proliferation and apoptosis were greater in the ex vivo 3D lung model compared to the 2D culture. After 15 days, there were significantly more cells in the 2D culture than the 3D model. MMP-1, MMP-9, and MMP-10 production were significantly greater in the ex vivo 3D lung model. There was no production of MMP-9 in the 2D culture. The patient samples contained MMP-1, MMP-2, MMP-9, and MMP-10. The human lung cancer cells grown on ex vivo 3D model form perfusable nodules that grow over time. It also produced MMPs that were not produced in 2D culture but seen in human lung cancer patients. The ex vivo 3D lung model may more closely mimic the biology of human lung cancer development than the 2D culture. PMID:23028922

  15. Video lensfree microscopy of 2D and 3D culture of cells

    NASA Astrophysics Data System (ADS)

    Allier, C. P.; Vinjimore Kesavan, S.; Coutard, J.-G.; Cioni, O.; Momey, F.; Navarro, F.; Menneteau, M.; Chalmond, B.; Obeid, P.; Haguet, V.; David-Watine, B.; Dubrulle, N.; Shorte, S.; van der Sanden, B.; Di Natale, C.; Hamard, L.; Wion, D.; Dolega, M. E.; Picollet-D'hahan, N.; Gidrol, X.; Dinten, J.-M.

    2014-03-01

    Innovative imaging methods are continuously developed to investigate the function of biological systems at the microscopic scale. As an alternative to advanced cell microscopy techniques, we are developing lensfree video microscopy that opens new ranges of capabilities, in particular at the mesoscopic level. Lensfree video microscopy allows the observation of a cell culture in an incubator over a very large field of view (24 mm2) for extended periods of time. As a result, a large set of comprehensive data can be gathered with strong statistics, both in space and time. Video lensfree microscopy can capture images of cells cultured in various physical environments. We emphasize on two different case studies: the quantitative analysis of the spontaneous network formation of HUVEC endothelial cells, and by coupling lensfree microscopy with 3D cell culture in the study of epithelial tissue morphogenesis. In summary, we demonstrate that lensfree video microscopy is a powerful tool to conduct cell assays in 2D and 3D culture experiments. The applications are in the realms of fundamental biology, tissue regeneration, drug development and toxicology studies.

  16. Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model.

    PubMed

    Majety, Meher; Pradel, Leon P; Gies, Manuela; Ries, Carola H

    2015-01-01

    In recent years, evidence has indicated that the tumor microenvironment (TME) plays a significant role in tumor progression. Fibroblasts represent an abundant cell population in the TME and produce several growth factors and cytokines. Fibroblasts generate a suitable niche for tumor cell survival and metastasis under the influence of interactions between fibroblasts and tumor cells. Investigating these interactions requires suitable experimental systems to understand the cross-talk involved. Most in vitro experimental systems use 2D cell culture and trans-well assays to study these interactions even though these paradigms poorly represent the tumor, in which direct cell-cell contacts in 3D spaces naturally occur. Investigating these interactions in vivo is of limited value due to problems regarding the challenges caused by the species-specificity of many molecules. Thus, it is essential to use in vitro models in which human fibroblasts are co-cultured with tumor cells to understand their interactions. Here, we developed a 3D co-culture model that enables direct cell-cell contacts between pancreatic, breast and or lung tumor cells and human fibroblasts/ or tumor-associated fibroblasts (TAFs). We found that co-culturing with fibroblasts/TAFs increases the proliferation in of several types of cancer cells. We also observed that co-culture induces differential expression of soluble factors in a cancer type-specific manner. Treatment with blocking antibodies against selected factors or their receptors resulted in the inhibition of cancer cell proliferation in the co-cultures. Using our co-culture model, we further revealed that TAFs can influence the response to therapeutic agents in vitro. We suggest that this model can be reliably used as a tool to investigate the interactions between a tumor and the TME.

  17. Articular chondrocyte redifferentiation in 3D co-cultures with mesenchymal stem cells.

    PubMed

    Meretoja, Ville V; Dahlin, Rebecca L; Wright, Sarah; Kasper, F Kurtis; Mikos, Antonios G

    2014-06-01

    In this work, we evaluated the ability of 3D co-cultures with mesenchymal stem cells (MSCs) to redifferentiate monolayer expanded articular chondrocytes (ACs) and produce cartilaginous extracellular matrix at varying stages of the dedifferentiation process and further examined the dependency of this effect on the culture medium composition. Primary bovine ACs were expanded in monolayers for up to nine population doublings to obtain seven cell stocks with gradually increasing levels of dedifferentiation. Culture expanded ACs were then seeded as monocultures and co-cultures with rabbit bone marrow-derived MSCs (30:70 ratio of ACs-to-MSCs) on porous scaffolds. Parallel cultures were established for each cell population in serum-containing growth medium and serum-free induction medium supplemented with dexamethasone and TGF-β3. After 3 weeks, all groups were analyzed for DNA content, glycosaminoglycan (GAG) and hydroxyproline (HYP) production, and chondrogenic gene expression. Significant enhancements in cellularity, GAG content and GAG/HYP ratio, and chondrogenic phenotype were observed in the induction medium compared to growth medium at all levels of AC expansion. Furthermore, primary co-cultures showed similarly enhanced chondrogenesis compared to monocultures in both culture media, whereas passaged ACs benefitted from co-culturing only in the induction medium. We conclude that co-cultures of ACs and MSCs can produce superior in vitro engineered cartilage in comparison to pure AC cultures, due to both heterotypic cellular interactions and decreased need for monolayer expansion of biopsied chondrocytes. While the initial level of AC dedifferentiation affected the quality of the engineered constructs, co-culture benefits were realized at all stages of AC expansion when suitable chondroinductive culture medium was used.

  18. Quantification of Dynamic Morphological Drug Responses in 3D Organotypic Cell Cultures by Automated Image Analysis

    PubMed Central

    Härmä, Ville; Schukov, Hannu-Pekka; Happonen, Antti; Ahonen, Ilmari; Virtanen, Johannes; Siitari, Harri; Åkerfelt, Malin; Lötjönen, Jyrki; Nees, Matthias

    2014-01-01

    Glandular epithelial cells differentiate into complex multicellular or acinar structures, when embedded in three-dimensional (3D) extracellular matrix. The spectrum of different multicellular morphologies formed in 3D is a sensitive indicator for the differentiation potential of normal, non-transformed cells compared to different stages of malignant progression. In addition, single cells or cell aggregates may actively invade the matrix, utilizing epithelial, mesenchymal or mixed modes of motility. Dynamic phenotypic changes involved in 3D tumor cell invasion are sensitive to specific small-molecule inhibitors that target the actin cytoskeleton. We have used a panel of inhibitors to demonstrate the power of automated image analysis as a phenotypic or morphometric readout in cell-based assays. We introduce a streamlined stand-alone software solution that supports large-scale high-content screens, based on complex and organotypic cultures. AMIDA (Automated Morphometric Image Data Analysis) allows quantitative measurements of large numbers of images and structures, with a multitude of different spheroid shapes, sizes, and textures. AMIDA supports an automated workflow, and can be combined with quality control and statistical tools for data interpretation and visualization. We have used a representative panel of 12 prostate and breast cancer lines that display a broad spectrum of different spheroid morphologies and modes of invasion, challenged by a library of 19 direct or indirect modulators of the actin cytoskeleton which induce systematic changes in spheroid morphology and differentiation versus invasion. These results were independently validated by 2D proliferation, apoptosis and cell motility assays. We identified three drugs that primarily attenuated the invasion and formation of invasive processes in 3D, without affecting proliferation or apoptosis. Two of these compounds block Rac signalling, one affects cellular cAMP/cGMP accumulation. Our approach supports

  19. Minimal camera networks for 3D image based modeling of cultural heritage objects.

    PubMed

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-03-25

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue "Lamassu". Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883-859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm.

  20. Minimal Camera Networks for 3D Image Based Modeling of Cultural Heritage Objects

    PubMed Central

    Alsadik, Bashar; Gerke, Markus; Vosselman, George; Daham, Afrah; Jasim, Luma

    2014-01-01

    3D modeling of cultural heritage objects like artifacts, statues and buildings is nowadays an important tool for virtual museums, preservation and restoration. In this paper, we introduce a method to automatically design a minimal imaging network for the 3D modeling of cultural heritage objects. This becomes important for reducing the image capture time and processing when documenting large and complex sites. Moreover, such a minimal camera network design is desirable for imaging non-digitally documented artifacts in museums and other archeological sites to avoid disturbing the visitors for a long time and/or moving delicate precious objects to complete the documentation task. The developed method is tested on the Iraqi famous statue “Lamassu”. Lamassu is a human-headed winged bull of over 4.25 m in height from the era of Ashurnasirpal II (883–859 BC). Close-range photogrammetry is used for the 3D modeling task where a dense ordered imaging network of 45 high resolution images were captured around Lamassu with an object sample distance of 1 mm. These images constitute a dense network and the aim of our study was to apply our method to reduce the number of images for the 3D modeling and at the same time preserve pre-defined point accuracy. Temporary control points were fixed evenly on the body of Lamassu and measured by using a total station for the external validation and scaling purpose. Two network filtering methods are implemented and three different software packages are used to investigate the efficiency of the image orientation and modeling of the statue in the filtered (reduced) image networks. Internal and external validation results prove that minimal image networks can provide highly accurate records and efficiency in terms of visualization, completeness, processing time (>60% reduction) and the final accuracy of 1 mm. PMID:24670718

  1. Ionic osmolytes and intracellular calcium regulate tissue production in chondrocytes cultured in a 3D charged hydrogel.

    PubMed

    Farnsworth, Nikki L; Mead, Benjamin E; Antunez, Lorena R; Palmer, Amy E; Bryant, Stephanie J

    2014-11-01

    The goal of this study was to investigate the role of fixed negative charges in regulating cartilage-like tissue production by chondrocytes under static and dynamic three-dimensional culture, and to determine whether intracellular calcium ([Ca(2+)]i) is involved in mediating this response. Initial experiments using the 3D neutral hydrogel were conducted in static isotonic culture with ionic and non-ionic osmolytes added to the culture medium. Tissue production by bovine chondrocytes with non-ionic osmolytes was 1.9-fold greater than with ionic osmolytes, suggesting that the ionic nature of the osmolyte is an important regulator of tissue production. To investigate fixed negative charges, a 3D culture system containing encapsulated chondrocytes was employed based on a synthetic and neutral hydrogel platform within which negatively charged chondroitin sulfate was incorporated in a controlled manner. Incorporation of negative charges did not affect the mechanical properties of the hydrogel; however, intracellular ion concentration was elevated from the culture medium (330 mOsm) and estimated to be similar to that in ~400 mOsm culture medium. With dynamic loading, GAG synthesis decreased by 26% in neutral hydrogels cultured in 400mOsm medium, and increased by 26% in charged gels cultured in 330 mOsm. Treatment of chondrocyte-seeded hydrogels with the Ca(2+) chelator BAPTA-AM decreased GAG synthesis by 32-46% and was similar among all conditions, suggesting multiple roles for Ca(2+) mediated tissue production including with ionic osmolytes. In conclusion, findings from this study suggest that a dynamic ionic environment regulates tissue synthesis and points to [Ca(2+)]i signaling as a potential mediator. PMID:25128592

  2. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features

    PubMed Central

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T.

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer’s disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may

  3. Validation of an in vitro 3D bone culture model with perfused and mechanically stressed ceramic scaffold.

    PubMed

    Bouet, G; Cruel, M; Laurent, C; Vico, L; Malaval, L; Marchat, D

    2015-01-01

    An engineered three dimensional (3D) in vitro cell culture system was designed with the goal of inducing and controlling in vitro osteogenesis in a reproducible manner under conditions more similar to the in vivo bone microenvironment than traditional two-dimensional (2D) models. This bioreactor allows efficient mechanical loading and perfusion of an original cubic calcium phosphate bioceramic of highly controlled composition and structure. This bioceramic comprises an internal portion containing homogeneously interconnected macropores surrounded by a dense layer, which minimises fluid flow bypass around the scaffold. This dense and flat layer permits the application of a homogeneous loading on the bioceramic while also enhancing its mechanical strength. Numerical modelling of constraints shows that the system provides direct mechanical stimulation of cells within the scaffold. Experimental results establish that under perfusion at a steady flow of 2 µL/min, corresponding to 3 ≤ Medium velocity ≤ 23 µm/s, mouse calvarial cells grow and differentiate as osteoblasts in a reproducible manner, and lay down a mineralised matrix. Moreover, cells respond to mechanical loading by increasing C-fos expression, which demonstrates the effective mechanical stimulation of the culture within the scaffold. In summary, we provide a "proof-of-concept" for osteoblastic cell culture in a controlled 3D culture system under perfusion and mechanical loading. This model will be a tool to analyse bone cell functions in vivo, and will provide a bench testing system for the clinical assessment of bioactive bone-targeting molecules under load.

  4. Presenting Cultural Heritage Landscapes - from GIS via 3d Models to Interactive Presentation Frameworks

    NASA Astrophysics Data System (ADS)

    Prechtel, N.; Münster, S.; Kröber, C.; Schubert, C.; Schietzold, S.

    2013-07-01

    Two current projects of the authors try to approach cultural heritage landscapes from both cultural sciences and geography through a combination of customised geo-information (GIS) and visualisation/presentation technology. In excess of a mere academic use, easyto- handle virtual 3D web presentations may contribute to knowledge, esteem, commemoration and preservation. The examples relate to pre-historic Scythian burial sites in the South-Siberian Altay Mountains ("Uch Enmek") as well as to a "virtual memorial" of contemporary history ("GEPAM"), a chapter of Jewish prosecution in the "Third Reich", which historically connects the town of Dresden with the Czech Terezin (Theresienstadt). It is common knowledge that a profound understanding of (pre-)historic artefacts and places may reflect a larger environment as well as an individual geographic setting. Coming from this background, the presented projects try to find technical solutions. They start from GIS models and aim at customised interactive presentations of 3D models. In using the latter a widely-spanned public is invited to a land- or townscape of specific cultural importance. The geographic space is thought to work as a door to a repository of educational exhibits under the umbrella of a web application. Within this concept a landscape/townscape also accounts for the time dimension in different scales (time of construction/operation versus actual state, and in sense of a season and time of the day as a principal modulator of visual perception of space).

  5. Development and characterization of a 3D multicell microtissue culture model of airway smooth muscle

    PubMed Central

    Zaman, Nishat; Cole, Darren J.; Walker, Matthew J.; Legant, Wesley R.; Boudou, Thomas; Chen, Christopher S.; Favreau, John T.; Gaudette, Glenn R.; Cowley, Elizabeth A.; Maksym, Geoffrey N.

    2013-01-01

    Airway smooth muscle (ASM) cellular and molecular biology is typically studied with single-cell cultures grown on flat 2D substrates. However, cells in vivo exist as part of complex 3D structures, and it is well established in other cell types that altering substrate geometry exerts potent effects on phenotype and function. These factors may be especially relevant to asthma, a disease characterized by structural remodeling of the airway wall, and highlights a need for more physiologically relevant models of ASM function. We utilized a tissue engineering platform known as microfabricated tissue gauges to develop a 3D culture model of ASM featuring arrays of ∼0.4 mm long, ∼350 cell “microtissues” capable of simultaneous contractile force measurement and cell-level microscopy. ASM-only microtissues generated baseline tension, exhibited strong cellular organization, and developed actin stress fibers, but lost structural integrity and dissociated from the cantilevers within 3 days. Addition of 3T3-fibroblasts dramatically improved survival times without affecting tension development or morphology. ASM-3T3 microtissues contracted similarly to ex vivo ASM, exhibiting reproducible responses to a range of contractile and relaxant agents. Compared with 2D cultures, microtissues demonstrated identical responses to acetylcholine and KCl, but not histamine, forskolin, or cytochalasin D, suggesting that contractility is regulated by substrate geometry. Microtissues represent a novel model for studying ASM, incorporating a physiological 3D structure, realistic mechanical environment, coculture of multiple cells types, and comparable contractile properties to existing models. This new model allows for rapid screening of biochemical and mechanical factors to provide insight into ASM dysfunction in asthma. PMID:23125251

  6. Advanced quadratures and periodic boundary conditions in parallel 3D S{sub n} transport

    SciTech Connect

    Manalo, K.; Yi, C.; Huang, M.; Sjoden, G.

    2013-07-01

    Significant updates in numerical quadratures have warranted investigation with 3D Sn discrete ordinates transport. We show new applications of quadrature departing from level symmetric (S{sub 2}o). investigating 3 recently developed quadratures: Even-Odd (EO), Linear-Discontinuous Finite Element - Surface Area (LDFE-SA), and the non-symmetric Icosahedral Quadrature (IC). We discuss implementation changes to 3D Sn codes (applied to Hybrid MOC-Sn TITAN and 3D parallel PENTRAN) that can be performed to accommodate Icosahedral Quadrature, as this quadrature is not 90-degree rotation invariant. In particular, as demonstrated using PENTRAN, the properties of Icosahedral Quadrature are suitable for trivial application using periodic BCs versus that of reflective BCs. In addition to implementing periodic BCs for 3D Sn PENTRAN, we implemented a technique termed 'angular re-sweep' which properly conditions periodic BCs for outer eigenvalue iterative loop convergence. As demonstrated by two simple transport problems (3-group fixed source and 3-group reflected/periodic eigenvalue pin cell), we remark that all of the quadratures we investigated are generally superior to level symmetric quadrature, with Icosahedral Quadrature performing the most efficiently for problems tested. (authors)

  7. Optimal 3-D culture of primary articular chondrocytes for use in the Rotating Wall Vessel Bioreactor

    PubMed Central

    Mellor, Liliana F.; Baker, Travis L.; Brown, Raquel J.; Catlin, Lindsey W.; Oxford, Julia Thom

    2014-01-01

    INTRODUCTION Reliable culturing methods for primary articular chondrocytes are essential to study the effects of loading and unloading on joint tissue at the cellular level. Due to the limited proliferation capacity of primary chondrocytes and their tendency to dedifferentiate in conventional culture conditions, long-term culturing conditions of primary chondrocytes can be challenging. The goal of this study was to develop a suspension culturing technique that not only would retain the cellular morphology but also maintain gene expression characteristics of primary articular chondrocytes. METHODS Three-dimensional culturing methods were compared and optimized for primary articular chondrocytes in the rotating wall vessel bioreactor, which changes the mechanical culture conditions to provide a form of suspension culture optimized for low shear and turbulence. We performed gene expression analysis and morphological characterization of cells cultured in alginate beads, Cytopore-2 microcarriers, primary monolayer culture, and passaged monolayer cultures using reverse transcription-PCR and laser scanning confocal microscopy. RESULTS Primary chondrocytes grown on Cytopore-2 microcarriers maintained the phenotypical morphology and gene expression pattern observed in primary bovine articular chondrocytes, and retained these characteristics for up to 9 days. DISCUSSION Our results provide a novel and alternative culturing technique for primary chondrocytes suitable for studies that require suspension such as those using the rotating wall vessel bioreactor. In addition, we provide an alternative culturing technique for primary chondrocytes that can impact future mechanistic studies of osteoarthritis progression, treatments for cartilage damage and repair, and cartilage tissue engineering. PMID:25199120

  8. Biodynamic Doppler imaging of subcellular motion inside 3D living tissue culture and biopsies (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Nolte, David D.

    2016-03-01

    Biodynamic imaging is an emerging 3D optical imaging technology that probes up to 1 mm deep inside three-dimensional living tissue using short-coherence dynamic light scattering to measure the intracellular motions of cells inside their natural microenvironments. Biodynamic imaging is label-free and non-invasive. The information content of biodynamic imaging is captured through tissue dynamics spectroscopy that displays the changes in the Doppler signatures from intracellular constituents in response to applied compounds. The affected dynamic intracellular mechanisms include organelle transport, membrane undulations, cytoskeletal restructuring, strain at cellular adhesions, cytokinesis, mitosis, exo- and endo-cytosis among others. The development of 3D high-content assays such as biodynamic profiling can become a critical new tool for assessing efficacy of drugs and the suitability of specific types of tissue growth for drug discovery and development. The use of biodynamic profiling to predict clinical outcome of living biopsies to cancer therapeutics can be developed into a phenotypic companion diagnostic, as well as a new tool for therapy selection in personalized medicine. This invited talk will present an overview of the optical, physical and physiological processes involved in biodynamic imaging. Several different biodynamic imaging modalities include motility contrast imaging (MCI), tissue-dynamics spectroscopy (TDS) and tissue-dynamics imaging (TDI). A wide range of potential applications will be described that include process monitoring for 3D tissue culture, drug discovery and development, cancer therapy selection, embryo assessment for in-vitro fertilization and artificial reproductive technologies, among others.

  9. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    PubMed

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models.

  10. Inflow/Outflow Boundary Conditions with Application to FUN3D

    NASA Technical Reports Server (NTRS)

    Carlson, Jan-Renee

    2011-01-01

    Several boundary conditions that allow subsonic and supersonic flow into and out of the computational domain are discussed. These boundary conditions are demonstrated in the FUN3D computational fluid dynamics (CFD) code which solves the three-dimensional Navier-Stokes equations on unstructured computational meshes. The boundary conditions are enforced through determination of the flux contribution at the boundary to the solution residual. The boundary conditions are implemented in an implicit form where the Jacobian contribution of the boundary condition is included and is exact. All of the flows are governed by the calorically perfect gas thermodynamic equations. Three problems are used to assess these boundary conditions. Solution residual convergence to machine zero precision occurred for all cases. The converged solution boundary state is compared with the requested boundary state for several levels of mesh densities. The boundary values converged to the requested boundary condition with approximately second-order accuracy for all of the cases.

  11. Decoupling diffusional from dimensional control of signaling in 3D culture reveals a role for myosin in tubulogenesis

    PubMed Central

    Raghavan, Srivatsan; Shen, Colette J.; Desai, Ravi A.; Sniadecki, Nathan J.; Nelson, Celeste M.; Chen, Christopher S.

    2010-01-01

    We present a novel microfabricated platform to culture cells within arrays of micrometer-scale three-dimensional (3D) extracellular matrix scaffolds (microgels). These microscale cultures eliminate diffusion barriers that are intrinsic to traditional 3D culture systems (macrogels) and enable uniform cytokine stimulation of the entire culture population, as well as allow immunolabeling, imaging and population-based biochemical assays across the relatively coplanar microgels. Examining early signaling associated with hepatocyte growth factor (HGF)-mediated scattering and tubulogenesis of MDCK cells revealed that 3D culture modulates cellular responses both through dimensionality and altered stimulation rates. Comparing responses in 2D culture, microgels and macrogels demonstrated that HGF-induced ERK signaling was driven by the dynamics of stimulation and not by whether cells were in a 2D or 3D environment, and that this ERK signaling was equally important for HGF-induced cell scattering on 2D substrates and tubulogenesis in 3D. By contrast, we discovered a specific HGF-induced increase in myosin expression leading to sustained downregulation of myosin activity that occurred only within 3D contexts and was required for 3D tubulogenesis but not 2D scattering. Interestingly, although absent in cells on collagen-coated plates, downregulation of myosin activity also occurred for cells on collagen gels, but was transient and mediated by a combination of myosin dephosphorylation and enhanced myosin expression. Furthermore, upregulating myosin activity via siRNA targeted to a myosin phosphatase did not attenuate scattering in 2D but did inhibit tubulogenesis in 3D. Together, these results demonstrate that cellular responses to soluble cues in 3D culture are regulated by both rates of stimulation and by matrix dimensionality, and highlight the importance of decoupling these effects to identify early signals relevant to cellular function in 3D environments. PMID:20682635

  12. Micro 3D cell culture systems for cellular behavior studies: Culture matrices, devices, substrates, and in-situ sensing methods.

    PubMed

    Choi, Jonghoon; Lee, Eun Kyu; Choo, Jaebum; Yuh, Junhan; Hong, Jong Wook

    2015-09-01

    Microfabricated systems equipped with 3D cell culture devices and in-situ cellular biosensing tools can be a powerful bionanotechnology platform to investigate a variety of biomedical applications. Various construction substrates such as plastics, glass, and paper are used for microstructures. When selecting a construction substrate, a key consideration is a porous microenvironment that allows for spheroid growth and mimics the extracellular matrix (ECM) of cell aggregates. Various bio-functionalized hydrogels are ideal candidates that mimic the natural ECM for 3D cell culture. When selecting an optimal and appropriate microfabrication method, both the intended use of the system and the characteristics and restrictions of the target cells should be carefully considered. For highly sensitive and near-cell surface detection of excreted cellular compounds, SERS-based microsystems capable of dual modal imaging have the potential to be powerful tools; however, the development of optical reporters and nanoprobes remains a key challenge. We expect that the microsystems capable of both 3D cell culture and cellular response monitoring would serve as excellent tools to provide fundamental cellular behavior information for various biomedical applications such as metastasis, wound healing, high throughput screening, tissue engineering, regenerative medicine, and drug discovery and development. PMID:26358782

  13. Individual versus Collective Fibroblast Spreading and Migration: Regulation by Matrix Composition in 3-D Culture

    PubMed Central

    Miron-Mendoza, Miguel; Lin, Xihui; Ma, Lisha; Ririe, Peter; Petroll, W. Matthew

    2012-01-01

    Extracellular matrix (ECM) supplies both physical and chemical signals to cells and provides a substrate through which fibroblasts migrate during wound repair. To directly assess how ECM composition regulates this process, we used a nested 3D matrix model in which cell-populated collagen buttons were embedded in cell-free collagen or fibrin matrices. Time-lapse microscopy was used to record the dynamic pattern of cell migration into the outer matrices, and 3-D confocal imaging was used to assess cell connectivity and cytoskeletal organization. Corneal fibroblasts stimulated with PDGF migrated more rapidly into collagen as compared to fibrin. In addition, the pattern of fibroblast migration into fibrin and collagen ECMs was strikingly different. Corneal fibroblasts migrating into collagen matrices developed dendritic processes and moved independently, whereas cells migrating into fibrin matrices had a more fusiform morphology and formed an interconnected meshwork. A similar pattern was observed when using dermal fibroblasts, suggesting that this response in not unique to corneal cells. We next cultured corneal fibroblasts within and on top of standard collagen and fibrin matrices to assess the impact of ECM composition on the cell spreading response. Similar differences in cell morphology and connectivity were observed – cells remained separated on collagen but coalesced into clusters on fibrin. Cadherin was localized to junctions between interconnected cells, whereas fibronectin was present both between cells and at the tips of extending cell processes. Cells on fibrin matrices also developed more prominent stress fibers than those on collagen matrices. Importantly, these spreading and migration patterns were consistently observed on both rigid and compliant substrates, thus differences in ECM mechanical stiffness were not the underlying cause. Overall, these results demonstrate for the first time that ECM protein composition alone (collagen vs. fibrin) can

  14. Efficient Use of Video for 3d Modelling of Cultural Heritage Objects

    NASA Astrophysics Data System (ADS)

    Alsadik, B.; Gerke, M.; Vosselman, G.

    2015-03-01

    Currently, there is a rapid development in the techniques of the automated image based modelling (IBM), especially in advanced structure-from-motion (SFM) and dense image matching methods, and camera technology. One possibility is to use video imaging to create 3D reality based models of cultural heritage architectures and monuments. Practically, video imaging is much easier to apply when compared to still image shooting in IBM techniques because the latter needs a thorough planning and proficiency. However, one is faced with mainly three problems when video image sequences are used for highly detailed modelling and dimensional survey of cultural heritage objects. These problems are: the low resolution of video images, the need to process a large number of short baseline video images and blur effects due to camera shake on a significant number of images. In this research, the feasibility of using video images for efficient 3D modelling is investigated. A method is developed to find the minimal significant number of video images in terms of object coverage and blur effect. This reduction in video images is convenient to decrease the processing time and to create a reliable textured 3D model compared with models produced by still imaging. Two experiments for modelling a building and a monument are tested using a video image resolution of 1920×1080 pixels. Internal and external validations of the produced models are applied to find out the final predicted accuracy and the model level of details. Related to the object complexity and video imaging resolution, the tests show an achievable average accuracy between 1 - 5 cm when using video imaging, which is suitable for visualization, virtual museums and low detailed documentation.

  15. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures.

    PubMed

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G

    2016-06-14

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models.

  16. Calcium signaling in response to fluid flow by chondrocytes in 3D alginate culture.

    PubMed

    Degala, Satish; Williams, Rebecca; Zipfel, Warren; Bonassar, Lawrence J

    2012-05-01

    Quantifying the effects of mechanical loading on the metabolic response of chondrocytes is difficult due to complicated structure of cartilage ECM and the coupled nature of the mechanical stimuli presented to the cells. In this study we describe the effects of fluid flow, particularly hydrostatic pressure and wall shear stress, on the Ca(2+) signaling response of bovine articular chondrocytes in 3D culture. Using well-established alginate hydrogel system to maintain spherical chondrocyte morphology, we altered solid volume fraction to change scaffold mechanics. Fluid velocities in the bulk of the scaffolds were directly measured via an optical technique and scaffold permeability and aggregate modulus was characterized to quantify the mechanical stimuli presented to cells. Ca(2+) signaling response to direct perfusion of chondrocyte-seeded scaffolds increased monotonically with flow rate and was found more directly dependent on fluid velocity rather than shear stress or hydrostatic pressure. Chondrocytes in alginate scaffolds responded to fluid flow at velocities and shear stresses 2-3 orders of magnitude lower than seen in previous monolayer studies. Our data suggest that flow-induced Ca(2+) signaling response of chondrocytes in alginate culture may be due to mechanical signaling pathways, which is influenced by the 3D nature of cell shape.

  17. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures

    PubMed Central

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G.

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  18. a Semi-Automated Point Cloud Processing Methodology for 3d Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Kıvılcım, C. Ö.; Duran, Z.

    2016-06-01

    The preliminary phase in any architectural heritage project is to obtain metric measurements and documentation of the building and its individual elements. On the other hand, conventional measurement techniques require tremendous resources and lengthy project completion times for architectural surveys and 3D model production. Over the past two decades, the widespread use of laser scanning and digital photogrammetry have significantly altered the heritage documentation process. Furthermore, advances in these technologies have enabled robust data collection and reduced user workload for generating various levels of products, from single buildings to expansive cityscapes. More recently, the use of procedural modelling methods and BIM relevant applications for historic building documentation purposes has become an active area of research, however fully automated systems in cultural heritage documentation still remains open. In this paper, we present a semi-automated methodology, for 3D façade modelling of cultural heritage assets based on parametric and procedural modelling techniques and using airborne and terrestrial laser scanning data. We present the contribution of our methodology, which we implemented in an open source software environment using the example project of a 16th century early classical era Ottoman structure, Sinan the Architect's Şehzade Mosque in Istanbul, Turkey.

  19. Intracellular ROS mediates gas plasma-facilitated cellular transfection in 2D and 3D cultures.

    PubMed

    Xu, Dehui; Wang, Biqing; Xu, Yujing; Chen, Zeyu; Cui, Qinjie; Yang, Yanjie; Chen, Hailan; Kong, Michael G

    2016-01-01

    This study reports the potential of cold atmospheric plasma (CAP) as a versatile tool for delivering oligonucleotides into mammalian cells. Compared to lipofection and electroporation methods, plasma transfection showed a better uptake efficiency and less cell death in the transfection of oligonucleotides. We demonstrated that the level of extracellular aqueous reactive oxygen species (ROS) produced by gas plasma is correlated with the uptake efficiency and that this is achieved through an increase of intracellular ROS levels and the resulting increase in cell membrane permeability. This finding was supported by the use of ROS scavengers, which reduced CAP-based uptake efficiency. In addition, we found that cold atmospheric plasma could transfer oligonucleotides such as siRNA and miRNA into cells even in 3D cultures, thus suggesting the potential for unique applications of CAP beyond those provided by standard transfection techniques. Together, our results suggest that cold plasma might provide an efficient technique for the delivery of siRNA and miRNA in 2D and 3D culture models. PMID:27296089

  20. The Niha Sites (lebanon) Cultural Landscape: a 3d Model of Sanctuaries and Their Context

    NASA Astrophysics Data System (ADS)

    Yasmine, J.

    2013-07-01

    The paper aims at presenting the historical sites of Niha (Beqaa valley, Lebanon), their cultural values, and the methodology applied in the assessment of these values through the use of 3D modelling. The whole cultural landscape comprises the current village of Niha (altitude 1100 m), the archaeological site of Hosn-Niha (altitude 1350m), and the area located between these two sites. Two rural sanctuaries constitute the major archaeological remains present in the landscape: the first, located in the village of Niha, is composed of two roman temples with various archaeological structures; the second is located at the top of an antique settlement 2,5 km above the village of Niha. This second sanctuary Hosn-Niha, includes two temples, one church, remnants of numerous structures, and remains of an antique village. The cultural and religious values of both these sites are clear. However, questions arise regarding the choice for establishing the sanctuaries in these locations. The aim of the research is to try to understand the reasons for the various settlements in relationship with the topography and the landscape. The methodology applied in the research addresses two levels: a - The landscape level, and b - the built-up archaeology level. The global 3D models of both the landscape and the sanctuaries allow us to understand the various relations between the landscape, the sanctuaries and the various archaeological structures. An assessment of the various cultural resources found around the sanctuaries, while considering the reasons for their specific placement in the landscape can shed light on the reasons of these choices.

  1. Influence of camera calibration conditions on the accuracy of 3D reconstruction.

    PubMed

    Poulin-Girard, Anne-Sophie; Thibault, Simon; Laurendeau, Denis

    2016-02-01

    For stereoscopic systems designed for metrology applications, the accuracy of camera calibration dictates the precision of the 3D reconstruction. In this paper, the impact of various calibration conditions on the reconstruction quality is studied using a virtual camera calibration technique and the design file of a commercially available lens. This technique enables the study of the statistical behavior of the reconstruction task in selected calibration conditions. The data show that the mean reprojection error should not always be used to evaluate the performance of the calibration process and that a low quality of feature detection does not always lead to a high mean reconstruction error.

  2. A Simplified Method for Three-Dimensional (3-D) Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice.

    PubMed

    Higuchi, Carolyn M; Maeda, Yuuki; Horiuchi, Toshitaka; Yamazaki, Yukiko

    2015-01-01

    In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART). Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture) for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture). We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-), A (Membrane/activin+), M (Matrigel/activin-), and M+A (Matrigel/activin+). We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A). Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM) and in vitro fertilization (IVF). Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A) than with those grown in membrane culture (C, A). In particular, activin A treatment further improved 3-D culture (M+A) success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian culture

  3. A Simplified Method for Three-Dimensional (3-D) Ovarian Tissue Culture Yielding Oocytes Competent to Produce Full-Term Offspring in Mice

    PubMed Central

    Higuchi, Carolyn M.; Maeda, Yuuki; Horiuchi, Toshitaka; Yamazaki, Yukiko

    2015-01-01

    In vitro growth of follicles is a promising technology to generate large quantities of competent oocytes from immature follicles and could expand the potential of assisted reproductive technologies (ART). Isolated follicle culture is currently the primary method used to develop and mature follicles in vitro. However, this procedure typically requires complicated, time-consuming procedures, as well as destruction of the normal ovarian microenvironment. Here we describe a simplified 3-D ovarian culture system that can be used to mature multilayered secondary follicles into antral follicles, generating developmentally competent oocytes in vitro. Ovaries recovered from mice at 14 days of age were cut into 8 pieces and placed onto a thick Matrigel drop (3-D culture) for 10 days of culture. As a control, ovarian pieces were cultured on a membrane filter without any Matrigel drop (Membrane culture). We also evaluated the effect of activin A treatment on follicle growth within the ovarian pieces with or without Matrigel support. Thus we tested four different culture conditions: C (Membrane/activin-), A (Membrane/activin+), M (Matrigel/activin-), and M+A (Matrigel/activin+). We found that the cultured follicles and oocytes steadily increased in size regardless of the culture condition used. However, antral cavity formation occurred only in the follicles grown in the 3-D culture system (M, M+A). Following ovarian tissue culture, full-grown GV oocytes were isolated from the larger follicles to evaluate their developmental competence by subjecting them to in vitro maturation (IVM) and in vitro fertilization (IVF). Maturation and fertilization rates were higher using oocytes grown in 3-D culture (M, M+A) than with those grown in membrane culture (C, A). In particular, activin A treatment further improved 3-D culture (M+A) success. Following IVF, two-cell embryos were transferred to recipients to generate full-term offspring. In summary, this simple and easy 3-D ovarian culture

  4. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells

    PubMed Central

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K.; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O.; Wagner, Mary B.; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  5. Simulated Microgravity and 3D Culture Enhance Induction, Viability, Proliferation and Differentiation of Cardiac Progenitors from Human Pluripotent Stem Cells.

    PubMed

    Jha, Rajneesh; Wu, Qingling; Singh, Monalisa; Preininger, Marcela K; Han, Pengcheng; Ding, Gouliang; Cho, Hee Cheol; Jo, Hanjoong; Maher, Kevin O; Wagner, Mary B; Xu, Chunhui

    2016-01-01

    Efficient generation of cardiomyocytes from human pluripotent stem cells is critical for their regenerative applications. Microgravity and 3D culture can profoundly modulate cell proliferation and survival. Here, we engineered microscale progenitor cardiac spheres from human pluripotent stem cells and exposed the spheres to simulated microgravity using a random positioning machine for 3 days during their differentiation to cardiomyocytes. This process resulted in the production of highly enriched cardiomyocytes (99% purity) with high viability (90%) and expected functional properties, with a 1.5 to 4-fold higher yield of cardiomyocytes from each undifferentiated stem cell as compared with 3D-standard gravity culture. Increased induction, proliferation and viability of cardiac progenitors as well as up-regulation of genes associated with proliferation and survival at the early stage of differentiation were observed in the 3D culture under simulated microgravity. Therefore, a combination of 3D culture and simulated microgravity can be used to efficiently generate highly enriched cardiomyocytes. PMID:27492371

  6. Dynamic Assessment of Fibroblast Mechanical Activity during Rac-induced Cell Spreading in 3-D Culture

    PubMed Central

    Petroll, W. Matthew; Ma, Lisha; Kim, Areum; Ly, Linda; Vishwanath, Mridula

    2009-01-01

    The goal of this study was to determine the morphological and sub-cellular mechanical effects of Rac activation on fibroblasts within 3-D collagen matrices. Corneal fibroblasts were plated at low density inside 100 μm thick fibrillar collagen matrices and cultured for 1 to 2 days in serum-free media. Time-lapse imaging was then performed using Nomarski DIC. After an acclimation period, perfusion was switched to media containing PDGF. In some experiments, Y-27632 or blebbistatin were used to inhibit Rho-kinase (ROCK) or myosin II, respectively. PDGF activated Rac and induced cell spreading, which resulted in an increase in cell length, cell area, and the number of pseudopodial processes. Tractional forces were generated by extending pseudopodia, as indicated by centripetal displacement and realignment of collagen fibrils. Interestingly, the pattern of pseudopodial extension and local collagen fibril realignment was highly dependent upon the initial orientation of fibrils at the leading edge. Following ROCK or myosin II inhibition, significant ECM relaxation was observed, but small displacements of collagen fibrils continued to be detected at the tips of pseudopodia. Taken together, the data suggests that during Rac-induced cell spreading within 3-D matrices, there is a shift in the distribution of forces from the center to the periphery of corneal fibroblasts. ROCK mediates the generation of large myosin II-based tractional forces during cell spreading within 3-D collagen matrices, however residual forces can be generated at the tips of extending pseudopodia that are both ROCK and myosin II-independent. PMID:18452153

  7. Defining an optimal surface chemistry for pluripotent stem cell culture in 2D and 3D

    NASA Astrophysics Data System (ADS)

    Zonca, Michael R., Jr.

    Surface chemistry is critical for growing pluripotent stem cells in an undifferentiated state. There is great potential to engineer the surface chemistry at the nanoscale level to regulate stem cell adhesion. However, the challenge is to identify the optimal surface chemistry of the substrata for ES cell attachment and maintenance. Using a high-throughput polymerization and screening platform, a chemically defined, synthetic polymer grafted coating that supports strong attachment and high expansion capacity of pluripotent stem cells has been discovered using mouse embryonic stem (ES) cells as a model system. This optimal substrate, N-[3-(Dimethylamino)propyl] methacrylamide (DMAPMA) that is grafted on 2D synthetic poly(ether sulfone) (PES) membrane, sustains the self-renewal of ES cells (up to 7 passages). DMAPMA supports cell attachment of ES cells through integrin beta1 in a RGD-independent manner and is similar to another recently reported polymer surface. Next, DMAPMA has been able to be transferred to 3D by grafting to synthetic, polymeric, PES fibrous matrices through both photo-induced and plasma-induced polymerization. These 3D modified fibers exhibited higher cell proliferation and greater expression of pluripotency markers of mouse ES cells than 2D PES membranes. Our results indicated that desirable surfaces in 2D can be scaled to 3D and that both surface chemistry and structural dimension strongly influence the growth and differentiation of pluripotent stem cells. Lastly, the feasibility of incorporating DMAPMA into a widely used natural polymer, alginate, has been tested. Novel adhesive alginate hydrogels have been successfully synthesized by either direct polymerization of DMAPMA and methacrylic acid blended with alginate, or photo-induced DMAPMA polymerization on alginate nanofibrous hydrogels. In particular, DMAPMA-coated alginate hydrogels support strong ES cell attachment, exhibiting a concentration dependency of DMAPMA. This research provides a

  8. A 3D DEM-LBM approach for the assessment of the quick condition for sands

    NASA Astrophysics Data System (ADS)

    Mansouri, M.; Delenne, J.-Y.; El Youssoufi, M. S.; Seridi, A.

    2009-09-01

    We present a 3D numerical model to assess the quick condition (the onset of the boiling phenomenon) in a saturated polydisperse granular material. We use the Discrete Element Method (DEM) to study the evolution of the vertical intergranular stress in a granular sample subjected to an increasing hydraulic gradient. The hydrodynamic forces on the grains of the sample are computed using the Lattice Boltzmann Method (LBM). The principal assumption used is that grains remain at rest until the boiling onset. We show that the obtained critical hydraulic gradient is close to that defined in classical soil mechanics. To cite this article: M. Mansouri et al., C. R. Mecanique 337 (2009).

  9. A biofidelic 3D culture model to study the development of brain cellular systems

    PubMed Central

    Ren, M.; Du, C.; Herrero Acero, E.; Tang-Schomer, M. D.; Özkucur, N.

    2016-01-01

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667

  10. Endodermal differentiation of human pluripotent stem cells to insulin-producing cells in 3D culture.

    PubMed

    Takeuchi, Hiroki; Nakatsuji, Norio; Suemori, Hirofumi

    2014-03-27

    Insulin-producing cells (IPCs) derived from human pluripotent stem cells (hPSCs) may be useful in cell therapy and drug discovery for diabetes. Here, we examined various growth factors and small molecules including those previously reported to develop a robust differentiation method for induction of mature IPCs from hPSCs. We established a protocol that induced PDX1-positive pancreatic progenitor cells at high efficiency, and further induced mature IPCs by treatment with forskolin, dexamethasone, Alk5 inhibitor II and nicotinamide in 3D culture. The cells that differentiated into INSULIN-positive and C-PEPTIDE-positive cells secreted insulin in response to glucose stimulation, indicating a functional IPC phenotype. We also found that this method was applicable to different types of hPSCs.

  11. Accuracy of typical photogrammetric networks in cultural heritage 3D modeling projects

    NASA Astrophysics Data System (ADS)

    Nocerino, E.; Menna, F.; Remondino, F.

    2014-06-01

    The easy generation of 3D geometries (point clouds or polygonal models) with fully automated image-based methods poses nontrivial problems on how to check a posteriori the quality of the achieved results. Clear statements and procedures on how to plan the camera network, execute the survey and use automatic tools to achieve the prefixed requirements are still an open issue. Although such issues had been discussed and solved some years ago, the importance of camera network geometry is today often underestimated or neglected in the cultural heritage field. In this paper different camera network geometries, with normal and convergent images, are analyzed and the accuracy of the produced results are compared to ground truth measurements.

  12. Photopatterning of hydrogel scaffolds coupled to filter materials using stereolithography for perfused 3D culture of hepatocytes.

    PubMed

    Neiman, Jaclyn A Shepard; Raman, Ritu; Chan, Vincent; Rhoads, Mary G; Raredon, Micha Sam B; Velazquez, Jeremy J; Dyer, Rachel L; Bashir, Rashid; Hammond, Paula T; Griffith, Linda G

    2015-04-01

    In vitro models that recapitulate the liver's structural and functional complexity could prolong hepatocellular viability and function to improve platforms for drug toxicity studies and understanding liver pathophysiology. Here, stereolithography (SLA) was employed to fabricate hydrogel scaffolds with open channels designed for post-seeding and perfused culture of primary hepatocytes that form 3D structures in a bioreactor. Photopolymerizable polyethylene glycol-based hydrogels were fabricated coupled to chemically activated, commercially available filters (polycarbonate and polyvinylidene fluoride) using a chemistry that permitted cell viability, and was robust enough to withstand perfused culture of up to 1 µL/s for at least 7 days. SLA energy dose, photoinitiator concentrations, and pretreatment conditions were screened to determine conditions that maximized cell viability and hydrogel bonding to the filter. Multiple open channel geometries were readily achieved, and included ellipses and rectangles. Rectangular open channels employed for subsequent studies had final dimensions on the order of 350 µm by 850 µm. Cell seeding densities and flow rates that promoted cell viability were determined. Perfused culture of primary hepatocytes in hydrogel scaffolds in the presence of soluble epidermal growth factor (EGF) prolonged the maintenance of albumin production throughout the 7-day culture relative to 2D controls. This technique of bonding hydrogel scaffolds can be employed to fabricate soft scaffolds for a number of bioreactor configurations and applications.

  13. A Novel Core-Shell Microcapsule for Encapsulation and 3D Culture of Embryonic Stem Cells.

    PubMed

    Zhang, Wujie; Zhao, Shuting; Rao, Wei; Snyder, Jedidiah; Choi, Jung K; Wang, Jifu; Khan, Iftheker A; Saleh, Navid B; Mohler, Peter J; Yu, Jianhua; Hund, Thomas J; Tang, Chuanbing; He, Xiaoming

    2013-01-01

    In this study, we report the preparation of a novel microcapsule of ~ 100 μm with a liquid (as compared to solid-like alginate hydrogel) core and an alginate-chitosan-alginate (ACA) shell for encapsulation and culture of embryonic stem (ES) cells in the miniaturized 3D space of the liquid core. Murine R1 ES cells cultured in the microcapsules were found to survive (> 90%) well and proliferate to form either a single aggregate of pluripotent cells or embryoid body (EB) of more differentiated cells in each microcapsule within 7 days, dependent on the culture medium used. This novel microcapsule technology allows massive production of the cell aggregates or EBs of uniform size and controllable pluripotency, which is important for the practical application of stem cell based therapy. Moreover, the semipermeable ACA shell was found to significantly reduce immunoglobulin G (IgG) binding to the encapsulated cells by up to 8.2 times, compared to non-encapsulated cardiac fibroblasts, mesenchymal stem cells, and ES cells. This reduction should minimize inflammatory and immune responses induced damage to the cells implanted in vivo becasue IgG binding is an important first step of the undesired host responses. Therefore, the ACA microcapsule with selective shell permeability should be of importance to advance the emerging cell-based medicine. PMID:23505611

  14. Anisotropic Regularity Conditions for the Suitable Weak Solutions to the 3D Navier-Stokes Equations

    NASA Astrophysics Data System (ADS)

    Wang, Yanqing; Wu, Gang

    2016-07-01

    We are concerned with the problem, originated from Seregin (159-200, 2007), Seregin (J. Math. Sci. 143: 2961-2968, 2007), Seregin (Russ. Math. Surv. 62:149-168, 2007), what are minimal sufficiently conditions for the regularity of suitable weak solutions to the 3D Navier-Stokes equations. We prove some interior regularity criteria, in terms of either one component of the velocity with sufficiently small local scaled norm and the rest part with bounded local scaled norm, or horizontal part of the vorticity with sufficiently small local scaled norm and the vertical part with bounded local scaled norm. It is also shown that only the smallness on the local scaled L 2 norm of horizontal gradient without any other condition on the vertical gradient can still ensure the regularity of suitable weak solutions. All these conclusions improve pervious results on the local scaled norm type regularity conditions.

  15. Coaxial electrospray of liquid core-hydrogel shell microcapsules for encapsulation and miniaturized 3D culture of pluripotent stem cells

    PubMed Central

    Zhao, Shuting; Agarwal, Pranay; Rao, Wei; Huang, Haishui; Zhang, Renliang; Liu, Zhenguo; Yu, Jianhua; Weisleder, Noah; Zhang, Wujie; He, Xiaoming

    2014-01-01

    A novel coaxial electrospray technology is developed to generate microcapsules with a hydrogel shell of alginate and an aqueous liquid core of living cells using two aqueous fluids in one step. Approximately 50 murine embryonic stem (ES) cells encapsulated in the core with high viability (92.3 ± 2.9%) can proliferate to form a single ES cell aggregate of 128.9 ± 17.4 μm in each microcapsule within 7 days. Quantitative analyses of gene and protein expression indicate that ES cells cultured in the miniaturized 3D liquid core of the core-shell microcapsules have significantly higher pluripotency on average than the cells cultured on 2D substrate or in the conventional 3D alginate hydrogel microbeads without a core-shell architecture. The higher pluripotency is further suggested by their significantly higher capability of differentiation into beating cardiomyocytes and higher expression of cardiomyocyte specific gene markers on average after directed differentiation under the same conditions. Considering its wide availability, easiness to set up and operate, reusability, and high production rate, the novel coaxial electrospray technology together with the microcapsule system is of importance for mass production of ES cells with high pluripotency to facilitate translation of the emerging pluripotent stem cell-based regenerative medicine into the clinic. PMID:25036382

  16. Assessing Drug Efficacy in a Miniaturized Pancreatic Cancer In Vitro 3D Cell Culture Model.

    PubMed

    Shelper, Todd B; Lovitt, Carrie J; Avery, Vicky M

    2016-09-01

    Pancreatic cancer continues to have one of the poorest prognoses among all cancers. The drug discovery efforts for this disease have largely failed, with no significant improvement in survival outcomes for advanced pancreatic cancer patients over the past 20 years. Traditional in vitro cell culture techniques have been used extensively in both basic and early drug discovery; however, these systems offer poor models to assess emerging therapeutics. More predictive cell-based models, which better capture the cellular heterogeneity and complexities of solid pancreatic tumors, are urgently needed not only to improve drug discovery success but also to provide insight into the tumor biology. Pancreatic tumors are characterized by a unique micro-environment that is surrounded by a dense stroma. A complex network of interactions between extracellular matrix (ECM) components and the effects of cell-to-cell contacts may enhance survival pathways within in vivo tumors. This biological and physical complexity is lost in traditional cell monolayer models. To explore the predictive potential of a more complex cellular system, a three-dimensional (3D) micro-tumor assay was evaluated. Efficacy of six current chemotherapeutics was determined against a panel of primary and metastatic pancreatic tumor cell lines in a miniaturized ECM-based 3D cell culture system. Suitability for potential use in high-throughput screening applications was assessed, including ascertaining the effects that miniaturization and automation had on assay robustness. Cellular health was determined by utilizing an indirect population-based metabolic activity assay and a direct imaging-based cell viability assay. PMID:27552143

  17. Drug penetration and metabolism in 3D cell cultures treated in a 3D printed fluidic device: assessment of irinotecan via MALDI imaging mass spectrometry.

    PubMed

    LaBonia, Gabriel J; Lockwood, Sarah Y; Heller, Andrew A; Spence, Dana M; Hummon, Amanda B

    2016-06-01

    Realistic in vitro models are critical in the drug development process. In this study, a novel in vitro platform is employed to assess drug penetration and metabolism. This platform, which utilizes a 3D printed fluidic device, allows for dynamic dosing of three dimensional cell cultures, also known as spheroids. The penetration of the chemotherapeutic irinotecan into HCT 116 colon cancer spheroids was examined with MALDI imaging mass spectrometry (IMS). The active metabolite of irinotecan, SN-38, was also detected. After twenty-four hours of treatment, SN-38 was concentrated to the outside of the spheroid, a region of actively dividing cells. The irinotecan prodrug localization contrasted with SN-38 and was concentrated to the necrotic core of the spheroids, a region containing mostly dead and dying cells. These results demonstrate that this unique in vitro platform is an effective means to assess drug penetration and metabolism in 3D cell cultures. This innovative system can have a transformative impact on the preclinical evaluation of drug candidates due to its cost effectiveness and high throughput. PMID:27198560

  18. Interactions among Lung Cancer Cells, Fibroblasts, and Macrophages in 3D Co-Cultures and the Impact on MMP-1 and VEGF Expression.

    PubMed

    Liu, Xiao-Qing; Kiefl, Rosemarie; Roskopf, Claudia; Tian, Fei; Huber, Rudolf M

    2016-01-01

    In vitro cell-based models of lung cancer are frequently employed to study invasion and the mechanisms behind metastasis. However, these models often study only one cell type with two-dimensional (2D) monolayer cell cultures, which do not accurately reflect the complexity of inflammation in vivo. Here, a three-dimensional (3D) cell co-culture collagen gel model was employed, containing human lung adenocarcinoma cells (HCC), human lung fibroblast cells (MRC-5), and macrophages. Cell culture media and cell images were collected, and matrix metalloproteinase-1 (MMP-1) and vascular endothelial growth factor (VEGF) production was monitored under different cell culture conditions. We found that simulating hypoxia and/or serum starvation conditions induced elevated secretion of VEGF in the 3D co-culture model in vitro, but not MMP-1; the morphology of HCC in the 2D versus the 3D co-culture system was extremely different. MMP-1 and VEGF were secreted at higher levels in mixed cell groups rather than mono-culture groups. Therefore, incorporating lung cancer cells, fibroblasts, and macrophages may better reflect physiological metastasis mechanisms compared to mono-culture systems. Tumour stromal cells, macrophages, and fibroblast cells may promote invasion and metastasis, which also provides a new direction for the design of therapies targeted at destroying the stroma of tumor tissues.

  19. Internal structures of scaffold-free 3D cell cultures visualized by synchrotron radiation-based micro-computed tomography

    NASA Astrophysics Data System (ADS)

    Saldamli, Belma; Herzen, Julia; Beckmann, Felix; Tübel, Jutta; Schauwecker, Johannes; Burgkart, Rainer; Jürgens, Philipp; Zeilhofer, Hans-Florian; Sader, Robert; Müller, Bert

    2008-08-01

    Recently the importance of the third dimension in cell biology has been better understood, resulting in a re-orientation towards three-dimensional (3D) cultivation. Yet adequate tools for their morphological characterization have to be established. Synchrotron radiation-based micro computed tomography (SRμCT) allows visualizing such biological systems with almost isotropic micrometer resolution, non-destructively. We have applied SRμCT for studying the internal morphology of human osteoblast-derived, scaffold-free 3D cultures, termed histoids. Primary human osteoblasts, isolated from femoral neck spongy bone, were grown as 2D culture in non-mineralizing osteogenic medium until a rather thick, multi-cellular membrane was formed. This delicate system was intentionally released to randomly fold itself. The folded cell cultures were grown to histoids of cubic milli- or centimeter size in various combinations of mineralizing and non-mineralizing osteogenic medium for a total period of minimum 56 weeks. The SRμCT-measurements were performed in the absorption contrast mode at the beamlines BW 2 and W 2 (HASYLAB at DESY, Hamburg, Germany), operated by the GKSS-Research Center. To investigate the entire volume of interest several scans were performed under identical conditions and registered to obtain one single dataset of each sample. The histoids grown under different conditions exhibit similar external morphology of globular or ovoid shape. The SRμCT-examination revealed the distinctly different morphological structures inside the histoids. One obtains details of the histoids that permit to identify and select the most promising slices for subsequent histological characterization.

  20. Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture.

    PubMed

    DeJonge, Rachel E; Liu, Xiao-Ping; Deig, Christopher R; Heller, Stefan; Koehler, Karl R; Hashino, Eri

    2016-01-01

    Stem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles-a process that was previously self-organized by unknown mechanisms. The resulting otic-like vesicles have a larger lumen size and contain a greater number of Pax8/Pax2-positive otic progenitor cells than organoids derived without the Wnt agonist. Additionally, these otic-like vesicles give rise to large inner ear organoids with hair cells whose morphological, biochemical and functional properties are indistinguishable from those of vestibular hair cells in the postnatal mouse inner ear. We conclude that Wnt signaling plays a similar role during inner ear organoid formation as it does during inner ear development in the embryo. PMID:27607106

  1. Modulation of Wnt Signaling Enhances Inner Ear Organoid Development in 3D Culture

    PubMed Central

    DeJonge, Rachel E.; Liu, Xiao-Ping; Deig, Christopher R.; Heller, Stefan; Koehler, Karl R.; Hashino, Eri

    2016-01-01

    Stem cell-derived inner ear sensory epithelia are a promising source of tissues for treating patients with hearing loss and dizziness. We recently demonstrated how to generate inner ear sensory epithelia, designated as inner ear organoids, from mouse embryonic stem cells (ESCs) in a self-organizing 3D culture. Here we improve the efficiency of this culture system by elucidating how Wnt signaling activity can drive the induction of otic tissue. We found that a carefully timed treatment with the potent Wnt agonist CHIR99021 promotes induction of otic vesicles—a process that was previously self-organized by unknown mechanisms. The resulting otic-like vesicles have a larger lumen size and contain a greater number of Pax8/Pax2-positive otic progenitor cells than organoids derived without the Wnt agonist. Additionally, these otic-like vesicles give rise to large inner ear organoids with hair cells whose morphological, biochemical and functional properties are indistinguishable from those of vestibular hair cells in the postnatal mouse inner ear. We conclude that Wnt signaling plays a similar role during inner ear organoid formation as it does during inner ear development in the embryo. PMID:27607106

  2. Engineering a 3D microfluidic culture platform for tumor-treating field application

    NASA Astrophysics Data System (ADS)

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-05-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy.

  3. Engineering a 3D microfluidic culture platform for tumor-treating field application

    PubMed Central

    Pavesi, Andrea; Adriani, Giulia; Tay, Andy; Warkiani, Majid Ebrahimi; Yeap, Wei Hseun; Wong, Siew Cheng; Kamm, Roger D.

    2016-01-01

    The limitations of current cancer therapies highlight the urgent need for a more effective therapeutic strategy. One promising approach uses an alternating electric field; however, the mechanisms involved in the disruption of the cancer cell cycle as well as the potential adverse effects on non-cancerous cells must be clarified. In this study, we present a novel microfluidic device with embedded electrodes that enables the application of an alternating electric field therapy to cancer cells in a 3D extracellular matrix. To demonstrate the potential of our system to aid in designing and testing new therapeutic approaches, cancer cells and cancer cell aggregates were cultured individually or co-cultured with endothelial cells. The metastatic potential of the cancer cells was reduced after electric field treatment. Moreover, the proliferation rate of the treated cancer cells was lower compared with that of the untreated cells, whereas the morphologies and proliferative capacities of the endothelial cells were not significantly affected. These results demonstrate that our novel system can be used to rapidly screen the effect of an alternating electric field on cancer and normal cells within an in vivo-like microenvironment with the potential to optimize treatment protocols and evaluate synergies between tumor-treating field treatment and chemotherapy. PMID:27215466

  4. The Cultural Divide: Exponential Growth in Classical 2D and Metabolic Equilibrium in 3D Environments

    PubMed Central

    Kanlaya, Rattiyaporn; Borkowski, Kamil; Schwämmle, Veit; Dai, Jie; Joensen, Kira Eyd; Wojdyla, Katarzyna; Carvalho, Vasco Botelho; Fey, Stephen J.

    2014-01-01

    Introduction Cellular metabolism can be considered to have two extremes: one is characterized by exponential growth (in 2D cultures) and the other by a dynamic equilibrium (in 3D cultures). We have analyzed the proteome and cellular architecture at these two extremes and found that they are dramatically different. Results Structurally, actin organization is changed, microtubules are increased and keratins 8 and 18 decreased. Metabolically, glycolysis, fatty acid metabolism and the pentose phosphate shunt are increased while TCA cycle and oxidative phosphorylation is unchanged. Enzymes involved in cholesterol and urea synthesis are increased consistent with the attainment of cholesterol and urea production rates seen in vivo. DNA repair enzymes are increased even though cells are predominantly in Go. Transport around the cell – along the microtubules, through the nuclear pore and in various types of vesicles has been prioritized. There are numerous coherent changes in transcription, splicing, translation, protein folding and degradation. The amount of individual proteins within complexes is shown to be highly coordinated. Typically subunits which initiate a particular function are present in increased amounts compared to other subunits of the same complex. Summary We have previously demonstrated that cells at dynamic equilibrium can match the physiological performance of cells in tissues in vivo. Here we describe the multitude of protein changes necessary to achieve this performance. PMID:25222612

  5. A Platform for High-Throughput Testing of the Effect of Soluble Compounds on 3D Cell Cultures

    PubMed Central

    Deiss, Frédérique; Mazzeo, Aaron; Hong, Estrella; Ingber, Donald E.; Derda, Ratmir; Whitesides, George M.

    2013-01-01

    In vitro 3D culture could provide an important model of tissues in vivo, but assessing the effects of chemical compounds on cells in specific regions of 3D culture requires physical isolation of cells, and thus currently relies mostly on delicate and low-throughput methods. This paper describes a technique (“cells-in-gels-in-paper” CiGiP) that permits rapid assembly of arrays of 3D cell cultures, and convenient isolation of cells from specific regions of these cultures. The 3D cultures were generated by stacking sheets of 200-μm-thick paper, each sheet supporting 96 individual “spots” (thin circular slabs) of hydrogels containing cells, separated by hydrophobic material (wax, PDMS) impermeable to aqueous solutions, and hydrophilic and most hydrophobic solutes. A custom-made 96-well holder isolated the cell-containing zones from each other. Each well contained media to which a different compound could be added. After culture, and disassembly of the holder, peeling the layers apart ‘sectioned’ the individual 3D cultures into 200-μm-thick sections which were easy to analyze using 2D imaging (e.g., with a commercial gel scanner). This 96-well holder brings new utilities to high-throughput, cell-based screening, by combining the simplicity of CiGiP with the convenience of a microtiter plate. This work demonstrated the potential of this type of assays by examining the cytotoxic effects of phenylarsine oxide (PAO) and cyclophosphamide (CPA) on human breast cancer cells positioned at different separations from culture media in 3D cultures. PMID:23952342

  6. 3D cultures of human neural progenitor cells: dopaminergic differentiation and genetic modification. [corrected].

    PubMed

    Brito, Catarina; Simão, Daniel; Costa, Inês; Malpique, Rita; Pereira, Cristina I; Fernandes, Paulo; Serra, Margarida; Schwarz, Sigrid C; Schwarz, Johannes; Kremer, Eric J; Alves, Paula M

    2012-03-01

    Central nervous system (CNS) disorders remain a formidable challenge for the development of efficient therapies. Cell and gene therapy approaches are promising alternatives that can have a tremendous impact by treating the causes of the disease rather than the symptoms, providing specific targeting and prolonged duration of action. Hampering translation of gene-based therapeutic treatments of neurodegenerative diseases from experimental to clinical gene therapy is the lack of valid and reliable pre-clinical models that can contribute to evaluate feasibility and safety. Herein we describe a robust and reproducible methodology for the generation of 3D in vitro models of the human CNS following a systematic technological approach based on stirred culture systems. We took advantage of human midbrain-derived neural progenitor cells (hmNPCs) capability to differentiate into the various neural phenotypes and of their commitment to the dopaminergic lineage to generate differentiated neurospheres enriched in dopaminergic neurons. Furthermore, we describe a protocol for efficient gene transfer into differentiated neurospheres using CAV-2 viral vectors and stable expression of the transgene for at least 10 days. CAV-2 vectors, derived from canine adenovirus type 2, are promising tools to understand and treat neurodegenerative diseases, in particular Parkinson's disease. CAV-2 vectors preferentially transduce neurons and have an impressive level of axonal retrograde transport in vivo. Our model provides a practical and versatile in vitro approach to study the CNS in a 3D cellular context. With the successful differentiation and subsequent genetic modification of neurospheres we are increasing the collection of tools available for neuroscience research and contributing for the implementation and widespread utilization of 3D cellular CNS models. These can be applied to study neurodegenerative diseases such as Parkinson's disease; to study the interaction of viral vectors of

  7. 3D cultures of human neural progenitor cells: dopaminergic differentiation and genetic modification. [corrected].

    PubMed

    Brito, Catarina; Simão, Daniel; Costa, Inês; Malpique, Rita; Pereira, Cristina I; Fernandes, Paulo; Serra, Margarida; Schwarz, Sigrid C; Schwarz, Johannes; Kremer, Eric J; Alves, Paula M

    2012-03-01

    Central nervous system (CNS) disorders remain a formidable challenge for the development of efficient therapies. Cell and gene therapy approaches are promising alternatives that can have a tremendous impact by treating the causes of the disease rather than the symptoms, providing specific targeting and prolonged duration of action. Hampering translation of gene-based therapeutic treatments of neurodegenerative diseases from experimental to clinical gene therapy is the lack of valid and reliable pre-clinical models that can contribute to evaluate feasibility and safety. Herein we describe a robust and reproducible methodology for the generation of 3D in vitro models of the human CNS following a systematic technological approach based on stirred culture systems. We took advantage of human midbrain-derived neural progenitor cells (hmNPCs) capability to differentiate into the various neural phenotypes and of their commitment to the dopaminergic lineage to generate differentiated neurospheres enriched in dopaminergic neurons. Furthermore, we describe a protocol for efficient gene transfer into differentiated neurospheres using CAV-2 viral vectors and stable expression of the transgene for at least 10 days. CAV-2 vectors, derived from canine adenovirus type 2, are promising tools to understand and treat neurodegenerative diseases, in particular Parkinson's disease. CAV-2 vectors preferentially transduce neurons and have an impressive level of axonal retrograde transport in vivo. Our model provides a practical and versatile in vitro approach to study the CNS in a 3D cellular context. With the successful differentiation and subsequent genetic modification of neurospheres we are increasing the collection of tools available for neuroscience research and contributing for the implementation and widespread utilization of 3D cellular CNS models. These can be applied to study neurodegenerative diseases such as Parkinson's disease; to study the interaction of viral vectors of

  8. Genotoxic Effects of Low- and High-LET Radiation on Human Epithelial Cells Grown in 2-D Versus 3-D Culture

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Cucinotta, F. A.; Huff, J. L.

    2011-01-01

    Risk estimation for radiation-induced cancer relies heavily on human epidemiology data obtained from terrestrial irradiation incidents from sources such as medical and occupational exposures as well as from the atomic bomb survivors. No such data exists for exposures to the types and doses of high-LET radiation that will be encountered during space travel; therefore, risk assessment for space radiation requires the use of data derived from cell culture and animal models. The use of experimental models that most accurately replicate the response of human tissues is critical for precision in risk projections. This work compares the genotoxic effects of radiation on normal human epithelial cells grown in standard 2-D monolayer culture compared to 3-D organotypic co-culture conditions. These 3-D organotypic models mimic the morphological features, differentiation markers, and growth characteristics of fully-differentiated normal human tissue and are reproducible using defined components. Cultures were irradiated with 2 Gy low-LET gamma rays or varying doses of high-LET particle radiation and genotoxic damage was measured using a modified cytokinesis block micronucleus assay. Our results revealed a 2-fold increase in residual damage in 2 Gy gamma irradiated cells grown under organotypic culture conditions compared to monolayer culture. Irradiation with high-LET particle radiation gave similar results, while background levels of damage were comparable under both scenarios. These observations may be related to the phenomenon of "multicellular resistance" where cancer cells grown as 3-D spheroids or in vivo exhibit an increased resistance to killing by chemotherapeutic agents compared to the same cells grown in 2-D culture. A variety of factors are likely involved in mediating this process, including increased cell-cell communication, microenvironment influences, and changes in cell cycle kinetics that may promote survival of damaged cells in 3-D culture that would

  9. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system).

    PubMed

    Leme, Daniela Morais; Primo, Fernando Lucas; Gobo, Graciely Gomides; da Costa, Cleber Rafael Vieira; Tedesco, Antonio Claudio; de Oliveira, Danielle Palma

    2015-01-01

    Thousands of dyes are marketed daily for different purposes, including textile dyeing. However, there are several studies reporting attributing to dyes deleterious human effects such as DNA damage. Humans may be exposed to toxic dyes through either ingestion of contaminated waters or dermal contact with colored garments. With respect to dermal exposure, human skin equivalents are promising tools to assess in vitro genotoxicity of dermally applied chemicals using a three-dimensional (3D) model to mimic tissue behavior. This study investigated the sensitivity of an in-house human dermal equivalent (DE) for detecting genotoxicity of textile dyes. Two azo (reactive green 19 [RG19] and disperse red 1[DR1]) dyes and one anthraquinone (reactive blue 2 [RB2]) dye were analyzed. RG19 was genotoxic for DE in a dose-responsive manner, whereas RB2 and DR1 were nongenotoxic under the conditions tested. These findings are not in agreement with previous genotoxicological assessment of these dyes carried out using two-dimensional (2D) cell cultures, which showed that DR1 was genotoxic in human hepatoma cells (HepG2) and RG19 was nongenotoxic for normal human dermal fibroblasts (NHDF). These discrepant results probably may be due to differences between metabolic activities of each cell type (organ-specific genotoxicity, HepG2 and fibroblasts) and the test setup systems used in each study (fibroblasts cultured at 2D and three-dimensional [3D] culture systems). Genotoxicological assessment of textile dyes in context of organ-specific genotoxicity and using in vitro models that more closely resemble in vivo tissue architecture and physiology may provide more reliable estimates of genotoxic potential of these chemicals. PMID:25785560

  10. Genotoxicity assessment of reactive and disperse textile dyes using human dermal equivalent (3D cell culture system).

    PubMed

    Leme, Daniela Morais; Primo, Fernando Lucas; Gobo, Graciely Gomides; da Costa, Cleber Rafael Vieira; Tedesco, Antonio Claudio; de Oliveira, Danielle Palma

    2015-01-01

    Thousands of dyes are marketed daily for different purposes, including textile dyeing. However, there are several studies reporting attributing to dyes deleterious human effects such as DNA damage. Humans may be exposed to toxic dyes through either ingestion of contaminated waters or dermal contact with colored garments. With respect to dermal exposure, human skin equivalents are promising tools to assess in vitro genotoxicity of dermally applied chemicals using a three-dimensional (3D) model to mimic tissue behavior. This study investigated the sensitivity of an in-house human dermal equivalent (DE) for detecting genotoxicity of textile dyes. Two azo (reactive green 19 [RG19] and disperse red 1[DR1]) dyes and one anthraquinone (reactive blue 2 [RB2]) dye were analyzed. RG19 was genotoxic for DE in a dose-responsive manner, whereas RB2 and DR1 were nongenotoxic under the conditions tested. These findings are not in agreement with previous genotoxicological assessment of these dyes carried out using two-dimensional (2D) cell cultures, which showed that DR1 was genotoxic in human hepatoma cells (HepG2) and RG19 was nongenotoxic for normal human dermal fibroblasts (NHDF). These discrepant results probably may be due to differences between metabolic activities of each cell type (organ-specific genotoxicity, HepG2 and fibroblasts) and the test setup systems used in each study (fibroblasts cultured at 2D and three-dimensional [3D] culture systems). Genotoxicological assessment of textile dyes in context of organ-specific genotoxicity and using in vitro models that more closely resemble in vivo tissue architecture and physiology may provide more reliable estimates of genotoxic potential of these chemicals.

  11. Radiation Quality Effects on Transcriptome Profiles in 3-d Cultures After Particle Irradiation

    NASA Technical Reports Server (NTRS)

    Patel, Z. S.; Kidane, Y. H.; Huff, J. L.

    2014-01-01

    In this work, we evaluate the differential effects of low- and high-LET radiation on 3-D organotypic cultures in order to investigate radiation quality impacts on gene expression and cellular responses. Reducing uncertainties in current risk models requires new knowledge on the fundamental differences in biological responses (the so-called radiation quality effects) triggered by heavy ion particle radiation versus low-LET radiation associated with Earth-based exposures. We are utilizing novel 3-D organotypic human tissue models that provide a format for study of human cells within a realistic tissue framework, thereby bridging the gap between 2-D monolayer culture and animal models for risk extrapolation to humans. To identify biological pathway signatures unique to heavy ion particle exposure, functional gene set enrichment analysis (GSEA) was used with whole transcriptome profiling. GSEA has been used extensively as a method to garner biological information in a variety of model systems but has not been commonly used to analyze radiation effects. It is a powerful approach for assessing the functional significance of radiation quality-dependent changes from datasets where the changes are subtle but broad, and where single gene based analysis using rankings of fold-change may not reveal important biological information. We identified 45 statistically significant gene sets at 0.05 q-value cutoff, including 14 gene sets common to gamma and titanium irradiation, 19 gene sets specific to gamma irradiation, and 12 titanium-specific gene sets. Common gene sets largely align with DNA damage, cell cycle, early immune response, and inflammatory cytokine pathway activation. The top gene set enriched for the gamma- and titanium-irradiated samples involved KRAS pathway activation and genes activated in TNF-treated cells, respectively. Another difference noted for the high-LET samples was an apparent enrichment in gene sets involved in cycle cycle/mitotic control. It is

  12. Investigation of Adaptive Responses in Bystander Cells in 3D Cultures Containing Tritium-Labeled and Unlabeled Normal Human Fibroblasts

    PubMed Central

    Pinto, Massimo; Azzam, Edouard I.; Howell, Roger W.

    2010-01-01

    The study of radiation-induced bystander effects in normal human cells maintained in three-dimensional (3D) architecture provides more in vivo-like conditions and is relevant to human risk assessment. Linear energy transfer, dose and dose rate have been considered as critical factors in propagating radiation-induced effects. This investigation uses an in vitro 3D tissue culture model in which normal AG1522 human fibroblasts are grown in a carbon scaffold to investigate induction of a G1 arrest in bystander cells that neighbor radiolabeled cells. Cell cultures were co-pulse-labeled with [3H]deoxycytidine (3HdC) to selectively irradiate a minor fraction of cells with 1–5 keV/μm β particles and bromodeoxyuridine (BrdU) to identify the radiolabeled cells using immunofluorescence. The induction of a G1 arrest was measured specifically in unlabeled cells (i.e. bystander cells) using a flow cytometry-based version of the cumulative labeling index assay. To investigate the relationship between bystander effects and adaptive responses, cells were challenged with an acute 4 Gy γ-radiation dose after they had been kept under the bystander conditions described above for several hours, and the regulation of the radiation-induced G1 arrest was measured selectively in bystander cells. When the average dose rate in 3HdC-labeled cells (<16% of population) was 0.04–0.37 Gy/h (average accumulated dose 0.14–10 Gy), no statistically significant stressful bystander effects or adaptive bystander effects were observed as measured by magnitude of the G1 arrest, micronucleus formation, or changes in mitochondrial membrane potential. Higher dose rates and/or higher LET may be required to observe stressful bystander effects in this experimental system, whereas lower dose rates and challenge doses may be required to detect adaptive bystander responses. PMID:20681788

  13. Chemotherapeutic efficiency of drugs in vitro: Comparison of doxorubicin exposure in 3D and 2D culture matrices.

    PubMed

    Casey, A; Gargotti, M; Bonnier, F; Byrne, H J

    2016-06-01

    The interest in the use of 3D matrices for in vitro analysis, with a view to increasing the relevance of in vitro studies and reducing the dependence on in vivo studies, has been growing in recent years. Cells grown in a 3D in vitro matrix environment have been reported to exhibit significantly different properties to those in a conventional 2D culture environment. However, comparison of 2D and 3D cell culture models have recently been noted to result in differing responses of cytotoxic assays, without any associated change in viability. The effect was attributed to differing conversion rates and effective concentrations of the resazurin assay in 2D and 3D environments, rather than differences in cellular metabolism. In this study, the efficacy of a chemotherapeutic agent, doxorubicin, is monitored and compared in conventional 2D and 3D collagen gel exposures of immortalized human cervical cells. Viability was monitored with the aid of the Alamar Blue assay and drug internalisation was verified using confocal microscopy. Drug uptake and retention within the collagen matrix was monitored by absorption spectroscopy. The viability studies showed apparent differences between the 2D and 3D culture systems, the differences attributed in part to the physical transition from 2D to a 3D environment causing alterations to dye resazurin uptake and conversion rates. The use of 3D culture matrices has widely been interpreted to result in "reduced" toxicity or cellular "resistance" to the chemotherapeutic agent. The results of this study show that the reduced efficiency of the drug to cells grown in the 3D environment can be accounted for by a sequential reduction of the effective concentration of the test compound and assay. This is due to absorption within the collagen gel inducing a higher uptake of both drug and assay thereby influencing the toxic impact of the drug and conversion rate of resazurin, and. The increased effective surface area of the cell exposed to the drug

  14. The famous versus the inconvenient - or the dawn and the rise of 3D-culture systems

    PubMed Central

    Altmann, Brigitte; Welle, Alexander; Giselbrecht, Stefan; Truckenmüller, Roman; Gottwald, Eric

    2009-01-01

    One of the greatest impacts on in vitro cell biology was the introduction of three-dimensional (3D) culture systems more than six decades ago and this era may be called the dawn of 3D-tissue culture. Although the advantages were obvious, this field of research was a “sleeping beauty” until the 1970s when multicellular spheroids were discovered as ideal tumor models. With this rebirth, organotypical culture systems became valuable tools and this trend continues to increase. While in the beginning, simple approaches, such as aggregation culture techniques, were favored due to their simplicity and convenience, now more sophisticated systems are used and are still being developed. One of the boosts in the development of new culture techniques arises from elaborate manufacturing and surface modification techniques, especially micro and nano system technologies that have either improved dramatically or have evolved very recently. With the help of these tools, it will soon be possible to generate even more sophisticated and more organotypic-like culture systems. Since 3D perfused or superfused systems are much more complex to set up and maintain compared to use of petri dishes and culture flasks, the added value of 3D approaches still needs to be demonstrated. PMID:21607106

  15. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation

    NASA Astrophysics Data System (ADS)

    Lei, Yuguo; Schaffer, David V.

    2013-12-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage, for a 1072-fold expansion over 280 d), yield (∼2.0 × 107 cells per mL of hydrogel), and purity (∼95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.

  16. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation.

    PubMed

    Lei, Yuguo; Schaffer, David V

    2013-12-24

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (~20-fold per 5-d passage, for a 10(72)-fold expansion over 280 d), yield (~2.0 × 10(7) cells per mL of hydrogel), and purity (~95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ~8 × 10(7) dopaminergic progenitors per mL of hydrogel and ~80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development. PMID:24248365

  17. Analysis of Wnt signalling dynamics during colon crypt development in 3D culture

    PubMed Central

    Tan, Chin Wee; Hirokawa, Yumiko; Burgess, Antony W.

    2015-01-01

    Many systems biology studies lack context-relevant data and as a consequence the predictive capabilities can be limited in developing targeted cancer therapeutics. Production of colon crypt in vitro is ideal for studying colon systems biology. This report presents the first production of, to our knowledge, physiologically-shaped, functional colon crypts in vitro (i.e. single crypts with cells expressing Mucin 2 and Chromogranin A). Time-lapsed monitoring of crypt formation revealed an increased frequency of single-crypt formation in the absence of noggin. Using quantitative 3D immunofluorescence of β-catenin and E-cadherin, spatial-temporal dynamics of these proteins in normal colon crypt cells stimulated with Wnt3A or inhibited by cycloheximide has been measured. Colon adenoma cultures established from APCmin/+ mouse have developmental differences and β-catenin spatial localization compared to normal crypts. Quantitative data describing the effects of signalling pathways and proteins dynamics for both normal and adenomatous colon crypts is now within reach to inform a systems approach to colon crypt biology. PMID:26087250

  18. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells.

    PubMed

    Muguruma, Keiko; Nishiyama, Ayaka; Kawakami, Hideshi; Hashimoto, Kouichi; Sasai, Yoshiki

    2015-02-01

    During cerebellar development, the main portion of the cerebellar plate neuroepithelium gives birth to Purkinje cells and interneurons, whereas the rhombic lip, the germinal zone at its dorsal edge, generates granule cells and cerebellar nuclei neurons. However, it remains elusive how these components cooperate to form the intricate cerebellar structure. Here, we found that a polarized cerebellar structure self-organizes in 3D human embryonic stem cell (ESC) culture. The self-organized neuroepithelium differentiates into electrophysiologically functional Purkinje cells. The addition of fibroblast growth factor 19 (FGF19) promotes spontaneous generation of dorsoventrally polarized neural-tube-like structures at the level of the cerebellum. Furthermore, addition of SDF1 and FGF19 promotes the generation of a continuous cerebellar plate neuroepithelium with rhombic-lip-like structure at one end and a three-layer cytoarchitecture similar to the embryonic cerebellum. Thus, human-ESC-derived cerebellar progenitors exhibit substantial self-organizing potential for generating a polarized structure reminiscent of the early human cerebellum at the first trimester. PMID:25640179

  19. Accuracy of cultural heritage 3D models by RPAS and terrestrial photogrammetry

    NASA Astrophysics Data System (ADS)

    Bolognesi, M.; Furini, A.; Russo, V.; Pellegrinelli, A.; Russo, P.

    2014-06-01

    The combined use of high-resolution digital images taken from ground as well as from RPAS (Remotely Piloted Aircraft Systems) have significantly increased the potential of close range digital photogrammetry applications in Cultural Heritage surveying and modeling. It is in fact possible, thanks to SfM (Structure from Motion), to simultaneously process great numbers of aerial and terrestrial images for the production of a dense point cloud of an object. In order to analyze the accuracy of results, we started numerous tests based on the comparison between 3D digital models of a monumental complex realized by the integration of aerial and terrestrial photogrammetry and an accurate TLS (Terrestrial Laser Scanner) reference model of the same object. A lot of digital images of a renaissance castle, assumed as test site, have been taken both by ground level and by RPAS at different distances and flight altitudes and with different flight patterns. As first step of the experimentation, the images were previously processed with Agisoft PhotoScan, one of the most popular photogrammetric software. The comparison between the photogrammetric DSM of the monument and a TLS reference one was carried out by evaluating the average deviation between the points belonging to the two entities, both globally and locally, on individual façades and architectural elements (sections and particular). In this paper the results of the first test are presented. A good agreement between photogrammetric and TLS digital models of the castle is pointed out.

  20. Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture

    NASA Astrophysics Data System (ADS)

    Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon

    2015-03-01

    Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel.

  1. Bioinspired Tuning of Hydrogel Permeability-Rigidity Dependency for 3D Cell Culture

    PubMed Central

    Lee, Min Kyung; Rich, Max H.; Baek, Kwanghyun; Lee, Jonghwi; Kong, Hyunjoon

    2015-01-01

    Hydrogels are being extensively used for three-dimensional immobilization and culture of cells in fundamental biological studies, biochemical processes, and clinical treatments. However, it is still a challenge to support viability and regulate phenotypic activities of cells in a structurally stable gel, because the gel becomes less permeable with increasing rigidity. To resolve this challenge, this study demonstrates a unique method to enhance the permeability of a cell-laden hydrogel while avoiding a significant change in rigidity of the gel. Inspired by the grooved skin textures of marine organisms, a hydrogel is assembled to present computationally optimized micro-sized grooves on the surface. Separately, a gel is engineered to preset aligned microchannels similar to a plant's vascular bundles through a uniaxial freeze-drying process. The resulting gel displays significantly increased water diffusivity with reduced changes of gel stiffness, exclusively when the microgrooves and microchannels are aligned together. No significant enhancement of rehydration is achieved when the microgrooves and microchannels are not aligned. Such material design greatly enhances viability and neural differentiation of stem cells and 3D neural network formation within the gel. PMID:25752700

  2. Impact of helical boundary conditions on nonlinear 3D magnetohydrodynamic simulations of reversed-field pinch

    NASA Astrophysics Data System (ADS)

    Veranda, M.; Bonfiglio, D.; Cappello, S.; Chacón, L.; Escande, D. F.

    2013-07-01

    Helical self-organized reversed-field pinch (RFP) regimes emerge both numerically—in 3D visco-resistive magnetohydrodynamic (MHD) simulations—and experimentally, as in the RFX-mod device at high current (IP above 1 MA). These states, called quasi-single helicity (QSH) states, are characterized by the action of a MHD mode that impresses a quasi-helical symmetry to the system, thus allowing a high degree of magnetic chaos healing. This is in contrast with the multiple helicity (MH) states, where magnetic fluctuations create a chaotic magnetic field degrading the confinement properties of the RFP. This paper reports an extensive numerical study performed in the frame of 3D visco-resistive MHD which considers the effect of helical magnetic boundary conditions, i.e. of a finite value of the radial magnetic field at the edge (magnetic perturbation, MP). We show that the system can be driven to a selected QSH state starting from both spontaneous QSH and MH regimes. In particular, a high enough MP can force a QSH helical self-organization with a helicity different from the spontaneous one. Moreover, MH states can be turned into QSH states with a selected helicity. A threshold in the amplitude of MP is observed above which is able to influence the system. Analysis of the magnetic topology of these simulations indicates that the dominant helical mode is able to temporarily sustain conserved magnetic structures in the core of the plasma. The region occupied by conserved magnetic surfaces increases reducing secondary modes' amplitude to experimental-like values.

  3. Fluid flow increases mineralized matrix deposition in 3D perfusion culture of marrow stromal osteoblasts in a dose-dependent manner

    NASA Technical Reports Server (NTRS)

    Bancroft, Gregory N.; Sikavitsas, Vassilios I.; van den Dolder, Juliette; Sheffield, Tiffany L.; Ambrose, Catherine G.; Jansen, John A.; Mikos, Antonios G.; McIntire, L. V. (Principal Investigator)

    2002-01-01

    Bone is a complex highly structured mechanically active 3D tissue composed of cellular and matrix elements. The true biological environment of a bone cell is thus derived from a dynamic interaction between responsively active cells experiencing mechanical forces and a continuously changing 3D matrix architecture. To investigate this phenomenon in vitro, marrow stromal osteoblasts were cultured on 3D scaffolds under flow perfusion with different rates of flow for an extended period to permit osteoblast differentiation and significant matrix production and mineralization. With all flow conditions, mineralized matrix production was dramatically increased over statically cultured constructs with the total calcium content of the cultured scaffolds increasing with increasing flow rate. Flow perfusion induced de novo tissue modeling with the formation of pore-like structures in the scaffolds and enhanced the distribution of cells and matrix throughout the scaffolds. These results represent reporting of the long-term effects of fluid flow on primary differentiating osteoblasts and indicate that fluid flow has far-reaching effects on osteoblast differentiation and phenotypic expression in vitro. Flow perfusion culture permits the generation and study of a 3D, actively modeled, mineralized matrix and can therefore be a valuable tool for both bone biology and tissue engineering.

  4. 3D Cell Culture in a Self-Assembled Nanofiber Environment.

    PubMed

    Chai, Yi Wen; Lee, Eu Han; Gubbe, John D; Brekke, John H

    2016-01-01

    The development and utilization of three-dimensional cell culture platforms has been gaining more traction. Three-dimensional culture platforms are capable of mimicking in vivo microenvironments, which provide greater physiological relevance in comparison to conventional two-dimensional cultures. The majority of three-dimensional culture platforms are challenged by the lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. In this study, we review the use of a highly defined material composed of naturally occurring compounds, hyaluronic acid and chitosan, known as Cell-Mate3DTM. Moreover, we provide an original measurement of Young's modulus using a uniaxial unconfined compression method to elucidate the difference in microenvironment rigidity for acellular and cellular conditions. When hydrated into a tissue-like hybrid hydrocolloid/hydrogel, Cell-Mate3DTM is a highly versatile three-dimensional culture platform that enables downstream applications such as flow cytometry, immunostaining, histological staining, and functional studies to be applied with relative ease.

  5. 3D Cell Culture in a Self-Assembled Nanofiber Environment.

    PubMed

    Chai, Yi Wen; Lee, Eu Han; Gubbe, John D; Brekke, John H

    2016-01-01

    The development and utilization of three-dimensional cell culture platforms has been gaining more traction. Three-dimensional culture platforms are capable of mimicking in vivo microenvironments, which provide greater physiological relevance in comparison to conventional two-dimensional cultures. The majority of three-dimensional culture platforms are challenged by the lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. In this study, we review the use of a highly defined material composed of naturally occurring compounds, hyaluronic acid and chitosan, known as Cell-Mate3DTM. Moreover, we provide an original measurement of Young's modulus using a uniaxial unconfined compression method to elucidate the difference in microenvironment rigidity for acellular and cellular conditions. When hydrated into a tissue-like hybrid hydrocolloid/hydrogel, Cell-Mate3DTM is a highly versatile three-dimensional culture platform that enables downstream applications such as flow cytometry, immunostaining, histological staining, and functional studies to be applied with relative ease. PMID:27632425

  6. 3D Cell Culture in a Self-Assembled Nanofiber Environment

    PubMed Central

    Gubbe, John D.; Brekke, John H.

    2016-01-01

    The development and utilization of three-dimensional cell culture platforms has been gaining more traction. Three-dimensional culture platforms are capable of mimicking in vivo microenvironments, which provide greater physiological relevance in comparison to conventional two-dimensional cultures. The majority of three-dimensional culture platforms are challenged by the lack of cell attachment, long polymerization times, and inclusion of undefined xenobiotics, and cytotoxic cross-linkers. In this study, we review the use of a highly defined material composed of naturally occurring compounds, hyaluronic acid and chitosan, known as Cell-Mate3DTM. Moreover, we provide an original measurement of Young’s modulus using a uniaxial unconfined compression method to elucidate the difference in microenvironment rigidity for acellular and cellular conditions. When hydrated into a tissue-like hybrid hydrocolloid/hydrogel, Cell-Mate3DTM is a highly versatile three-dimensional culture platform that enables downstream applications such as flow cytometry, immunostaining, histological staining, and functional studies to be applied with relative ease. PMID:27632425

  7. Comparison of 3d Reconstruction Services and Terrestrial Laser Scanning for Cultural Heritage Documentation

    NASA Astrophysics Data System (ADS)

    Rasztovits, S.; Dorninger, P.

    2013-07-01

    Terrestrial Laser Scanning (TLS) is an established method to reconstruct the geometrical surface of given objects. Current systems allow for fast and efficient determination of 3D models with high accuracy and richness in detail. Alternatively, 3D reconstruction services are using images to reconstruct the surface of an object. While the instrumental expenses for laser scanning systems are high, upcoming free software services as well as open source software packages enable the generation of 3D models using digital consumer cameras. In addition, processing TLS data still requires an experienced user while recent web-services operate completely automatically. An indisputable advantage of image based 3D modeling is its implicit capability for model texturing. However, the achievable accuracy and resolution of the 3D models is lower than those of laser scanning data. Within this contribution, we investigate the results of automated web-services for image based 3D model generation with respect to a TLS reference model. For this, a copper sculpture was acquired using a laser scanner and using image series of different digital cameras. Two different webservices, namely Arc3D and AutoDesk 123D Catch were used to process the image data. The geometric accuracy was compared for the entire model and for some highly structured details. The results are presented and interpreted based on difference models. Finally, an economical comparison of the generation of the models is given considering the interactive and processing time costs.

  8. A 3D Sphere Culture System Containing Functional Polymers for Large-Scale Human Pluripotent Stem Cell Production

    PubMed Central

    Otsuji, Tomomi G.; Bin, Jiang; Yoshimura, Azumi; Tomura, Misayo; Tateyama, Daiki; Minami, Itsunari; Yoshikawa, Yoshihiro; Aiba, Kazuhiro; Heuser, John E.; Nishino, Taito; Hasegawa, Kouichi; Nakatsuji, Norio

    2014-01-01

    Summary Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production. PMID:24936458

  9. 3-D simulation of gases transport under condition of inert gas injection into goaf

    NASA Astrophysics Data System (ADS)

    Liu, Mao-Xi; Shi, Guo-Qing; Guo, Zhixiong; Wang, Yan-Ming; Ma, Li-Yang

    2016-02-01

    To prevent coal spontaneous combustion in mines, it is paramount to understand O2 gas distribution under condition of inert gas injection into goaf. In this study, the goaf was modeled as a 3-D porous medium based on stress distribution. The variation of O2 distribution influenced by CO2 or N2 injection was simulated based on the multi-component gases transport and the Navier-Stokes equations using Fluent. The numerical results without inert gas injection were compared with field measurements to validate the simulation model. Simulations with inert gas injection show that CO2 gas mainly accumulates at the goaf floor level; however, a notable portion of N2 gas moves upward. The evolution of the spontaneous combustion risky zone with continuous inert gas injection can be classified into three phases: slow inerting phase, rapid accelerating inerting phase, and stable inerting phase. The asphyxia zone with CO2 injection is about 1.25-2.4 times larger than that with N2 injection. The efficacy of preventing and putting out mine fires is strongly related with the inert gas injecting position. Ideal injections are located in the oxidation zone or the transitional zone between oxidation zone and heat dissipation zone.

  10. 3D Documentation and BIM Modeling of Cultural Heritage Structures Using UAVs: The Case of the Foinikaria Church

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Agapiou, A.; Hadjimitsis, D.

    2016-10-01

    The documentation of architectural cultural heritage sites has traditionally been expensive and labor-intensive. New innovative technologies, such as Unmanned Aerial Vehicles (UAVs), provide an affordable, reliable and straightforward method of capturing cultural heritage sites, thereby providing a more efficient and sustainable approach to documentation of cultural heritage structures. In this study, hundreds of images of the Panagia Chryseleousa church in Foinikaria, Cyprus were taken using a UAV with an attached high resolution camera. The images were processed to generate an accurate digital 3D model by using Structure in Motion techniques. Building Information Model (BIM) was then used to generate drawings of the church. The methodology described in the paper provides an accurate, simple and cost-effective method of documenting cultural heritage sites and generating digital 3D models using novel techniques and innovative methods.

  11. Differential effects of MAPK pathway inhibitors on migration and invasiveness of BRAF(V600E) mutant thyroid cancer cells in 2D and 3D culture.

    PubMed

    Ingeson-Carlsson, Camilla; Martinez-Monleon, Angela; Nilsson, Mikael

    2015-11-01

    Tumor microenvironment influences targeted drug therapy. In this study we compared drug responses to RAF and MEK inhibitors on tumor cell migration in 2D and 3D culture of BRAF(V600E) mutant cell lines derived from human papillary (BCPAP) and anaplastic (SW1736) thyroid carcinomas. Scratch wounding was compared to a double-layered collagen gel model developed for analysis of directed tumor cell invasion during prolonged culture. In BCPAP both PLX4720 and U0126 inhibited growth and migration in 2D and decreased tumor cell survival in 3D. In SW1736 drugs had no effect on migration in 2D but decreased invasion in 3D, however this related to reduced growth. Dual inhibition of BRAF(V600E) and MEK reduced but did not prevent SW1736 invasion although rebound phosphorylation of ERK in response to PLX4720 was blocked by U0126. These findings indicate that anti-tumor drug effects in vitro differ depending on culture conditions (2D vs. 3D) and that the invasive features of anaplastic thyroid cancer depend on non-MEK mechanism(s).

  12. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures

    PubMed Central

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-01-01

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose–response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  13. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    PubMed

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-01-01

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  14. Surface Acoustic Waves (SAW)-Based Biosensing for Quantification of Cell Growth in 2D and 3D Cultures.

    PubMed

    Wang, Tao; Green, Ryan; Nair, Rajesh Ramakrishnan; Howell, Mark; Mohapatra, Subhra; Guldiken, Rasim; Mohapatra, Shyam Sundar

    2015-12-19

    Detection and quantification of cell viability and growth in two-dimensional (2D) and three-dimensional (3D) cell cultures commonly involve harvesting of cells and therefore requires a parallel set-up of several replicates for time-lapse or dose-response studies. Thus, developing a non-invasive and touch-free detection of cell growth in longitudinal studies of 3D tumor spheroid cultures or of stem cell regeneration remains a major unmet need. Since surface acoustic waves (SAWs) permit mass loading-based biosensing and have been touted due to their many advantages including low cost, small size and ease of assembly, we examined the potential of SAW-biosensing to detect and quantify cell growth. Herein, we demonstrate that a shear horizontal-surface acoustic waves (SH-SAW) device comprising two pairs of resonators consisting of interdigital transducers and reflecting fingers can be used to quantify mass loading by the cells in suspension as well as within a 3D cell culture platform. A 3D COMSOL model was built to simulate the mass loading response of increasing concentrations of cells in suspension in the polydimethylsiloxane (PDMS) well in order to predict the characteristics and optimize the design of the SH-SAW biosensor. The simulated relative frequency shift from the two oscillatory circuit systems (one of which functions as control) were found to be concordant to experimental data generated with RAW264.7 macrophage and A549 cancer cells. In addition, results showed that SAW measurements per se did not affect viability of cells. Further, SH-SAW biosensing was applied to A549 cells cultured on a 3D electrospun nanofiber scaffold that generate tumor spheroids (tumoroids) and the results showed the device's ability to detect changes in tumor spheroid growth over the course of eight days. Taken together, these results demonstrate the use of SH-SAW device for detection and quantification of cell growth changes over time in 2D suspension cultures and in 3D cell

  15. Possible use of a 3-D clinostat to analyze plant growth processes under microgravity conditions.

    PubMed

    Hoson, T; Kamisaka, S; Buchen, B; Sievers, A; Yamashita, M; Masuda, Y

    1996-01-01

    A three-dimensional (3-D) clinostat equipped with two rotation axes placed at right angles was constructed, and various growth processes of higher plants grown on this clinostat were compared with ground controls, with plants grown on the conventional horizontal clinostat, and with those under real microgravity in space. On the 3-D clinostat, cress roots developed a normal root cap and the statocytes showed the typical polar organization except a random distribution of statoliths. The structural features of clinostatted statocytes were fundamentally similar to those observed under real microgravity. The graviresponse of cress roots grown on the 3-D clinostat was the same as the control roots. On the 3-D clinostat, shoots and roots exhibited a spontaneous curvature as well as an altered growth direction. Such an automorphogenesis was sometimes exaggerated when plants were subjected to the horizontal rotation, whereas the curvature was suppressed on the vertical rotation. These discrepancies in curvature between the 3-D clinostat and the conventional ones appear to be brought about by the centrifugal force produced. Thus, the 3-D clinostat was proven as a useful device to simulate microgravity. PMID:11538636

  16. A spheroid-based 3-D culture model for pancreatic cancer drug testing, using the acid phosphatase assay.

    PubMed

    Wen, Z; Liao, Q; Hu, Y; You, L; Zhou, L; Zhao, Y

    2013-07-01

    Current therapy for pancreatic cancer is multimodal, involving surgery and chemotherapy. However, development of pancreatic cancer therapies requires a thorough evaluation of drug efficacy in vitro before animal testing and subsequent clinical trials. Compared to two-dimensional culture of cell monolayer, three-dimensional (3-D) models more closely mimic native tissues, since the tumor microenvironment established in 3-D models often plays a significant role in cancer progression and cellular responses to the drugs. Accumulating evidence has highlighted the benefits of 3-D in vitro models of various cancers. In the present study, we have developed a spheroid-based, 3-D culture of pancreatic cancer cell lines MIAPaCa-2 and PANC-1 for pancreatic drug testing, using the acid phosphatase assay. Drug efficacy testing showed that spheroids had much higher drug resistance than monolayers. This model, which is characteristically reproducible and easy and offers rapid handling, is the preferred choice for filling the gap between monolayer cell cultures and in vivo models in the process of drug development and testing for pancreatic cancer.

  17. State-of-the-art of 3D cultures (organs-on-a-chip) in safety testing and pathophysiology.

    PubMed

    Alépée, Natalie; Bahinski, Anthony; Daneshian, Mardas; De Wever, Bart; Fritsche, Ellen; Goldberg, Alan; Hansmann, Jan; Hartung, Thomas; Haycock, John; Hogberg, Helena; Hoelting, Lisa; Kelm, Jens M; Kadereit, Suzanne; McVey, Emily; Landsiedel, Robert; Leist, Marcel; Lübberstedt, Marc; Noor, Fozia; Pellevoisin, Christian; Petersohn, Dirk; Pfannenbecker, Uwe; Reisinger, Kerstin; Ramirez, Tzutzuy; Rothen-Rutishauser, Barbara; Schäfer-Korting, Monika; Zeilinger, Katrin; Zurich, Marie-Gabriele

    2014-01-01

    Integrated approaches using different in vitro methods in combination with bioinformatics can (i) increase the success rate and speed of drug development; (ii) improve the accuracy of toxicological risk assessment; and (iii) increase our understanding of disease. Three-dimensional (3D) cell culture models are important building blocks of this strategy which has emerged during the last years. The majority of these models are organotypic, i.e., they aim to reproduce major functions of an organ or organ system. This implies in many cases that more than one cell type forms the 3D structure, and often matrix elements play an important role. This review summarizes the state of the art concerning commonalities of the different models. For instance, the theory of mass transport/metabolite exchange in 3D systems and the special analytical requirements for test endpoints in organotypic cultures are discussed in detail. In the next part, 3D model systems for selected organs--liver, lung, skin, brain--are presented and characterized in dedicated chapters. Also, 3D approaches to the modeling of tumors are presented and discussed. All chapters give a historical background, illustrate the large variety of approaches, and highlight up- and downsides as well as specific requirements. Moreover, they refer to the application in disease modeling, drug discovery and safety assessment. Finally, consensus recommendations indicate a roadmap for the successful implementation of 3D models in routine screening. It is expected that the use of such models will accelerate progress by reducing error rates and wrong predictions from compound testing. PMID:25027500

  18. 3D Visualization of Cultural Heritage Artefacts with Virtual Reality devices

    NASA Astrophysics Data System (ADS)

    Gonizzi Barsanti, S.; Caruso, G.; Micoli, L. L.; Covarrubias Rodriguez, M.; Guidi, G.

    2015-08-01

    Although 3D models are useful to preserve the information about historical artefacts, the potential of these digital contents are not fully accomplished until they are not used to interactively communicate their significance to non-specialists. Starting from this consideration, a new way to provide museum visitors with more information was investigated. The research is aimed at valorising and making more accessible the Egyptian funeral objects exhibited in the Sforza Castle in Milan. The results of the research will be used for the renewal of the current exhibition, at the Archaeological Museum in Milan, by making it more attractive. A 3D virtual interactive scenario regarding the "path of the dead", an important ritual in ancient Egypt, was realized to augment the experience and the comprehension of the public through interactivity. Four important artefacts were considered for this scope: two ushabty, a wooden sarcophagus and a heart scarab. The scenario was realized by integrating low-cost Virtual Reality technologies, as the Oculus Rift DK2 and the Leap Motion controller, and implementing a specific software by using Unity. The 3D models were implemented by adding responsive points of interest in relation to important symbols or features of the artefact. This allows highlighting single parts of the artefact in order to better identify the hieroglyphs and provide their translation. The paper describes the process for optimizing the 3D models, the implementation of the interactive scenario and the results of some test that have been carried out in the lab.

  19. Development of a Novel 3D Culture System for Screening Features of a Complex Implantable Device for CNS Repair

    PubMed Central

    2013-01-01

    Tubular scaffolds which incorporate a variety of micro- and nanotopographies have a wide application potential in tissue engineering especially for the repair of spinal cord injury (SCI). We aim to produce metabolically active differentiated tissues within such tubes, as it is crucially important to evaluate the biological performance of the three-dimensional (3D) scaffold and optimize the bioprocesses for tissue culture. Because of the complex 3D configuration and the presence of various topographies, it is rarely possible to observe and analyze cells within such scaffolds in situ. Thus, we aim to develop scaled down mini-chambers as simplified in vitro simulation systems, to bridge the gap between two-dimensional (2D) cell cultures on structured substrates and three-dimensional (3D) tissue culture. The mini-chambers were manipulated to systematically simulate and evaluate the influences of gravity, topography, fluid flow, and scaffold dimension on three exemplary cell models that play a role in CNS repair (i.e., cortical astrocytes, fibroblasts, and myelinating cultures) within a tubular scaffold created by rolling up a microstructured membrane. Since we use CNS myelinating cultures, we can confirm that the scaffold does not affect neural cell differentiation. It was found that heterogeneous cell distribution within the tubular constructs was caused by a combination of gravity, fluid flow, topography, and scaffold configuration, while cell survival was influenced by scaffold length, porosity, and thickness. This research demonstrates that the mini-chambers represent a viable, novel, scale down approach for the evaluation of complex 3D scaffolds as well as providing a microbioprocessing strategy for tissue engineering and the potential repair of SCI. PMID:24279373

  20. Implementation of wall boundary conditions for transpiration in F3D thin-layer Navier-Stokes code

    NASA Technical Reports Server (NTRS)

    Kandula, M.; Martin, F. W., Jr.

    1991-01-01

    Numerical boundary conditions for mass injection/suction at the wall are incorporated in the thin-layer Navier-Stokes code, F3D. The accuracy of the boundary conditions and the code is assessed by a detailed comparison of the predictions of velocity distributions and skin-friction coefficients with exact similarity solutions for laminar flow over a flat plate with variable blowing/suction, and measurements for turbulent flow past a flat plate with uniform blowing. In laminar flow, F3D predictions for friction coefficient compare well with exact similarity solution with and without suction, but produces large errors at moderate-to-large values of blowing. A slight Mach number dependence of skin-friction coefficient due to blowing in turbulent flow is computed by F3D code. Predicted surface pressures for turbulent flow past an airfoil with mass injection are in qualitative agreement with measurements for a flat plate.

  1. A microfabricated magnetic actuation device for mechanical conditioning of arrays of 3D microtissues.

    PubMed

    Xu, Fan; Zhao, Ruogang; Liu, Alan S; Metz, Tristin; Shi, Yu; Bose, Prasenjit; Reich, Daniel H

    2015-06-01

    This paper describes an approach to actuate magnetically arrays of microtissue constructs for long-term mechanical conditioning and subsequent biomechanical measurements. Each construct consists of cell/matrix material self-assembled around a pair of flexible poly(dimethylsiloxane) (PDMS) pillars. The deflection of the pillars reports the tissues' contractility. Magnetic stretching of individual microtissues via magnetic microspheres mounted on the cantilevers has been used to elucidate the tissues' elastic modulus and response to varying mechanical boundary conditions. This paper describes the fabrication of arrays of micromagnetic structures that can transduce an externally applied uniform magnetic field to actuate simultaneously multiple microtissues. These structures are fabricated on silicon-nitride coated Si wafers and contain electrodeposited Ni bars. Through-etched holes provide optical and culture media access when the devices are mounted on the PDMS microtissue scaffold devices. Both static and AC forces (up to 20 μN on each microtissue) at physiological frequencies are readily generated in external fields of 40 mT. Operation of the magnetic arrays was demonstrated via measurements of elastic modulus and dynamic stiffening in response to AC actuation of fibroblast populated collagen microtissues.

  2. An appropriate selection of a 3D alginate culture model for hepatic Huh-7 cell line encapsulation intended for viral studies.

    PubMed

    Tran, Nhu Mai; Dufresne, Murielle; Duverlie, Gilles; Castelain, Sandrine; Défarge, Christian; Paullier, Patrick; Legallais, Cecile

    2013-01-01

    Three-dimensional (3D) culture systems have been introduced to provide cells with a biomimetic environment that is similar to in vivo conditions. Among the polymeric molecules available, sodium-alginate (Na-alg) salt is a material that is currently employed in different areas of drug delivery and tissue engineering, because it offers biocompatibility and optimal chemical properties, and its gelation with calcium chloride provides calcium-alginate (Ca-alg) scaffolds with mechanical stability and relative permeability. In this work, four different preparations of Ca-alg beads with varying Na-alg viscosity and concentration were used for a human hepatoma cell line (Huh-7) encapsulation. The effects of Ca-alg bead preparation on structural cell organization, liver-specific functions, and the expression of specific receptors implicated in hepatotropic virus permissivity were evaluated. Hepatic cells were cultured in 500 μm diameter Ca-alg beads for 7 days under dynamic conditions. For all culture systems, cell viability reached almost 100% at day 7. Cell proliferation was concomitantly followed by hepatocyte organization in aggregates, which adopted two different morphologies (spheroid aggregates or multicellular channel-like structures), depending on Ca-alg bead preparation. These cellular organizations established a real 3D hepatocyte architecture with cell polarity, cell junctions, and abundant bile canaliculi possessing microvillus-lined channels. The functionality of these 3D cultures was confirmed by the production of albumin and the exhibition of CYP1A activity over culture time, which were variable, according to Ca-alg bead condition. The expression of specific receptors of hepatitis C virus by Huh-7 cells suggests encouraging data for the further development of a new viral culture system in Ca-alg beads. In summary, this 3D hepatic cell culture represents a promising physiologically relevant system for further in vitro studies and demonstrates that an

  3. High-accuracy 3-D modeling of cultural heritage: the digitizing of Donatello's "Maddalena".

    PubMed

    Guidi, Gabriele; Beraldin, J Angelo; Atzeni, Carlo

    2004-03-01

    Three-dimensional digital modeling of Heritage works of art through optical scanners, has been demonstrated in recent years with results of exceptional interest. However, the routine application of three-dimensional (3-D) modeling to Heritage conservation still requires the systematic investigation of a number of technical problems. In this paper, the acquisition process of the 3-D digital model of the Maddalena by Donatello, a wooden statue representing one of the major masterpieces of the Italian Renaissance which was swept away by the Florence flood of 1966 and successively restored, is described. The paper reports all the steps of the acquisition procedure, from the project planning to the solution of the various problems due to range camera calibration and to material non optically cooperative. Since the scientific focus is centered on the 3-D model overall dimensional accuracy, a methodology for its quality control is described. Such control has demonstrated how, in some situations, the ICP-based alignment can lead to incorrect results. To circumvent this difficulty we propose an alignment technique based on the fusion of ICP with close-range digital photogrammetry and a non-invasive procedure in order to generate a final accurate model. In the end detailed results are presented, demonstrating the improvement of the final model, and how the proposed sensor fusion ensure a pre-specified level of accuracy.

  4. Mechanisms of DNA damage response to targeted irradiation in organotypic 3D skin cultures.

    PubMed

    Acheva, Anna; Ghita, Mihaela; Patel, Gaurang; Prise, Kevin M; Schettino, Giuseppe

    2014-01-01

    DNA damage (caused by direct cellular exposure and bystander signaling) and the complex pathways involved in its repair are critical events underpinning cellular and tissue response following radiation exposures. There are limited data addressing the dynamics of DNA damage induction and repair in the skin particularly in areas not directly exposed. Here we investigate the mechanisms regulating DNA damage, repair, intracellular signalling and their impact on premature differentiation and development of inflammatory-like response in the irradiated and surrounding areas of a 3D organotypic skin model. Following localized low-LET irradiation (225 kVp X-rays), low levels of 53BP1 foci were observed in the 3D model (3.8±0.28 foci/Gy/cell) with foci persisting and increasing in size up to 48 h post irradiation. In contrast, in cell monolayers 14.2±0.6 foci/Gy/cell and biphasic repair kinetics with repair completed before 24 h was observed. These differences are linked to differences in cellular status with variable level of p21 driving apoptotic signalling in 2D and accelerated differentiation in both the directly irradiated and bystander areas of the 3D model. The signalling pathways utilized by irradiated keratinocytes to induce DNA damage in non-exposed areas of the skin involved the NF-κB transcription factor and its downstream target COX-2. PMID:24505255

  5. Adaptation of the three-dimensional wisdom scale (3D-WS) for the Korean cultural context.

    PubMed

    Kim, Seungyoun; Knight, Bob G

    2014-10-23

    ABSTRACT Background: Previous research on wisdom has suggested that wisdom is comprised of cognitive, reflective, and affective components and has developed and validated wisdom measures based on samples from Western countries. To apply the measurement to Eastern cultures, the present study revised an existing wisdom scale, the three-dimensional wisdom scale (3D-WS, Ardelt, 2003) for the Korean cultural context. Methods: Participants included 189 Korean heritage adults (age range 19-96) living in Los Angeles. We added a culturally specific factor of wisdom to the 3D-WS: Modesty and Unobtrusiveness (Yang, 2001), which captures an Eastern aspect of wisdom. The structure and psychometrics of the scale were tested. By latent cluster analysis, we determined acculturation subgroups and examined group differences in the means of factors in the revised wisdom scale (3D-WS-K). Results: Three factors, Cognitive Flexibility, Viewpoint Relativism, and Empathic Modesty were found using confirmatory factor analysis. Respondents with high biculturalism were higher on Viewpoint Relativism and lower on Empathic Modesty. Conclusion: This study discovered that a revised wisdom scale had a distinct factor structure and item content in a Korean heritage sample. We also found acculturation influences on the meaning of wisdom.

  6. Hydrogel Based 3-Dimensional (3D) System for Toxicity and High-Throughput (HTP) Analysis for Cultured Murine Ovarian Follicles.

    PubMed

    Zhou, Hong; Malik, Malika Amattullah; Arab, Aarthi; Hill, Matthew Thomas; Shikanov, Ariella

    2015-01-01

    Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in

  7. Hydrogel Based 3-Dimensional (3D) System for Toxicity and High-Throughput (HTP) Analysis for Cultured Murine Ovarian Follicles

    PubMed Central

    Zhou, Hong; Malik, Malika Amattullah; Arab, Aarthi; Hill, Matthew Thomas; Shikanov, Ariella

    2015-01-01

    Various toxicants, drugs and their metabolites carry potential ovarian toxicity. Ovarian follicles, the functional unit of the ovary, are susceptible to this type of damage at all stages of their development. However, despite of the large scale of potential negative impacts, assays that study ovarian toxicity are limited. Exposure of cultured ovarian follicles to toxicants of interest served as an important tool for evaluation of toxic effects for decades. Mouse follicles cultured on the bottom of a culture dish continue to serve an important approach for mechanistic studies. In this paper, we demonstrated the usefulness of a hydrogel based 3-dimensional (3D) mouse ovarian follicle culture as a tool to study ovarian toxicity in a different setup. The 3D in vitro culture, based on fibrin alginate interpenetrating network (FA-IPN), preserves the architecture of the ovarian follicle and physiological structure-function relationship. We applied the novel 3D high-throughput (HTP) in vitro ovarian follicle culture system to study the ovotoxic effects of an anti-cancer drug, Doxorobucin (DXR). The fibrin component in the system is degraded by plasmin and appears as a clear circle around the encapsulated follicle. The degradation area of the follicle is strongly correlated with follicle survival and growth. To analyze fibrin degradation in a high throughput manner, we created a custom MATLAB® code that converts brightfield micrographs of follicles encapsulated in FA-IPN to binary images, followed by image analysis. We did not observe any significant difference between manually processed images to the automated MATLAB® method, thereby confirming that the automated program is suitable to measure fibrin degradation to evaluate follicle health. The cultured follicles were treated with DXR at concentrations ranging from 0.005 nM to 200 nM, corresponding to the therapeutic plasma levels of DXR in patients. Follicles treated with DXR demonstrated decreased survival rate in

  8. 3D mouse embryonic stem cell culture for generating inner ear organoids.

    PubMed

    Koehler, Karl R; Hashino, Eri

    2014-01-01

    This protocol describes a culture system in which inner-ear sensory tissue is produced from mouse embryonic stem (ES) cells under chemically defined conditions. This model is amenable to basic and translational investigations into inner ear biology and regeneration. In this protocol, mouse ES cells are aggregated in 96-well plates in medium containing extracellular matrix proteins to promote epithelialization. During the first 14 d, a series of precisely timed protein and small-molecule treatments sequentially induce epithelia that represent the mouse embryonic non-neural ectoderm, preplacodal ectoderm and otic vesicle epithelia. Ultimately, these tissues develop into cysts with a pseudostratified epithelium containing inner ear hair cells and supporting cells after 16-20 d. Concurrently, sensory-like neurons generate synapse-like structures with the derived hair cells. We have designated the stem cell-derived epithelia harboring hair cells, supporting cells and sensory-like neurons as inner ear organoids. This method provides a reproducible and scalable means to generate inner ear sensory tissue in vitro.

  9. Error analysis and system implementation for structured light stereo vision 3D geometric detection in large scale condition

    NASA Astrophysics Data System (ADS)

    Qi, Li; Zhang, Xuping; Wang, Jiaqi; Zhang, Yixin; Wang, Shun; Zhu, Fan

    2012-11-01

    Stereo vision based 3D metrology technique is an effective approach for relatively large scale object's 3D geometric detection. In this paper, we present a specified image capture system, which implements LVDS interface embedded CMOS sensor and CAN bus to ensure synchronous trigger and exposure. We made an error analysis for structured light vision measurement in large scale condition, based on which we built and tested the system prototype both indoor and outfield. The result shows that the system is very suitable for large scale metrology applications.

  10. Recapitulating the Tumor Ecosystem Along the Metastatic Cascade Using 3D Culture Models

    PubMed Central

    Kim, Jiyun; Tanner, Kandice

    2015-01-01

    Advances in cancer research have shown that a tumor can be likened to a foreign species that disrupts delicately balanced ecological interactions, compromising the survival of normal tissue ecosystems. In efforts to mitigate tumor expansion and metastasis, experimental approaches from ecology are becoming more frequently and successfully applied by researchers from diverse disciplines to reverse engineer and re-engineer biological systems in order to normalize the tumor ecosystem. We present a review on the use of 3D biomimetic platforms to recapitulate biotic and abiotic components of the tumor ecosystem, in efforts to delineate the underlying mechanisms that drive evolution of tumor heterogeneity, tumor dissemination, and acquisition of drug resistance. PMID:26284194

  11. Network dynamics of 3D engineered neuronal cultures: a new experimental model for in-vitro electrophysiology

    PubMed Central

    Frega, Monica; Tedesco, Mariateresa; Massobrio, Paolo; Pesce, Mattia; Martinoia, Sergio

    2014-01-01

    Despite the extensive use of in-vitro models for neuroscientific investigations and notwithstanding the growing field of network electrophysiology, all studies on cultured cells devoted to elucidate neurophysiological mechanisms and computational properties, are based on 2D neuronal networks. These networks are usually grown onto specific rigid substrates (also with embedded electrodes) and lack of most of the constituents of the in-vivo like environment: cell morphology, cell-to-cell interaction and neuritic outgrowth in all directions. Cells in a brain region develop in a 3D space and interact with a complex multi-cellular environment and extracellular matrix. Under this perspective, 3D networks coupled to micro-transducer arrays, represent a new and powerful in-vitro model capable of better emulating in-vivo physiology. In this work, we present a new experimental paradigm constituted by 3D hippocampal networks coupled to Micro-Electrode-Arrays (MEAs) and we show how the features of the recorded network dynamics differ from the corresponding 2D network model. Further development of the proposed 3D in-vitro model by adding embedded functionalized scaffolds might open new prospects for manipulating, stimulating and recording the neuronal activity to elucidate neurophysiological mechanisms and to design bio-hybrid microsystems. PMID:24976386

  12. Spinal cord organotypic slice cultures for the study of regenerating motor axon interactions with 3D scaffolds.

    PubMed

    Gerardo-Nava, Jose; Hodde, Dorothee; Katona, Istvan; Bozkurt, Ahmet; Grehl, Torsten; Steinbusch, Harry W M; Weis, Joachim; Brook, Gary A

    2014-05-01

    Numerous in-vitro techniques exist for investigating the influence of 3D substrate topography on sensory axon growth. However, simple and cost-effective methods for studying post-natal motor axon interactions with such substrates are lacking. Here, spinal cord organotypic slice cultures (OSC) from post-natal day 7-9 rat pups were presented with spinal nerve roots, or blocks of fibrin hydrogel or 3D microporous collagen scaffolds to investigate motor axon-substrate interactions. By 7-14 days, axons from motor neuronal pools extended into the explanted nerve roots, growing along Schwann cell processes and demonstrating a full range of axon-Schwann cell interactions, from simple ensheathment to concentric wrapping by Schwann cell processes and the formation of compact myelin within a basal lamina sheath. Extensive motor axon regeneration and all stages of axon-Schwann interactions were also supported within the longitudinally orientated microporous framework of the 3D collagen scaffold. In stark contrast, the simple fibrin hydrogel only supported axon growth and cell migration over its surface. The relative ease of demonstrating such motor axon regeneration through the microporous 3D framework by immunofluorescence, two-photon microscopy and transmission electron microscopy strongly supports the adoption of this technique for assaying the influence of substrate topography and functionalization in regenerative bioengineering.

  13. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems

    SciTech Connect

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-07

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells. - Highlights: • We changed the collagen charge profile to a net positive charge by esterification. • Islets cultured on esterified collagen improved survival in both 2D and 3D culture. • Islets cultured on esterified collagen enhanced glucose-stimulated insulin release. • High levels of glucokinase mRNA may be associated with increased insulin release.

  14. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression.

    PubMed

    Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind

    2016-01-01

    To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis. PMID:27501241

  15. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression.

    PubMed

    Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind

    2016-01-01

    To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis.

  16. Establishment of 3D Co-Culture Models from Different Stages of Human Tongue Tumorigenesis: Utility in Understanding Neoplastic Progression

    PubMed Central

    Sawant, Sharada; Dongre, Harsh; Singh, Archana Kumari; Joshi, Shriya; Costea, Daniela Elena; Mahadik, Snehal; Ahire, Chetan; Makani, Vidhi; Dange, Prerana; Sharma, Shilpi; Chaukar, Devendra; Vaidya, Milind

    2016-01-01

    To study multistep tumorigenesis process, there is a need of in-vitro 3D model simulating in-vivo tissue. Present study aimed to reconstitute in-vitro tissue models comprising various stages of neoplastic progression of tongue tumorigenesis and to evaluate the utility of these models to investigate the role of stromal fibroblasts in maintenance of desmosomal anchoring junctions using transmission electron microscopy. We reconstituted in-vitro models representing normal, dysplastic, and malignant tissues by seeding primary keratinocytes on either fibroblast embedded in collagen matrix or plain collagen matrix in growth factor-free medium. The findings of histomorphometry, immunohistochemistry, and electron microscopy analyses of the three types of 3D cultures showed that the stratified growth, cell proliferation, and differentiation were comparable between co-cultures and their respective native tissues; however, they largely differed in cultures grown without fibroblasts. The immunostaining intensity of proteins, viz., desmoplakin, desmoglein, and plakoglobin, was reduced as the disease stage increased in all co-cultures as observed in respective native tissues. Desmosome-like structures were identified using immunogold labeling in these cultures. Moreover, electron microscopic observations revealed that the desmosome number and their length were significantly reduced and intercellular spaces were increased in cultures grown without fibroblasts when compared with their co-culture counterparts. Our results showed that the major steps of tongue tumorigenesis can be reproduced in-vitro. Stromal fibroblasts play a role in regulation of epithelial thickness, cell proliferation, differentiation, and maintenance of desmosomalanchoring junctions in in-vitro grown tissues. The reconstituted co-culture models could help to answer various biological questions especially related to tongue tumorigenesis. PMID:27501241

  17. Digital Inventory and Documentation of Korea's Important Cultural Properties Using 3D Laser Scanning

    NASA Astrophysics Data System (ADS)

    Dongseok, K.; Gyesoo, K.; Siro, K.; Eunhwa, K.

    2015-08-01

    As a country with 11 properties included on the World Heritage List and approximately 12,000 important cultural properties, Korea has been continuously carrying out the inventory and documentation of cultural properties to conserve and manage them since the 1960s. The inventory of cultural properties had been carried out by making and managing a register which recorded basic information mainly on state-designated cultural properties such as their size, quantity, and location. The documentation of cultural properties was also carried out by making measured drawings. However, the inventory and documentation done under the previous analog method had a limit to the information it could provide for the effective conservation and management of cultural properties. Moreover, in recent times important cultural properties have frequently been damaged by man-made and natural disasters such as arson, forest fires, and floods, so an alternative was required. Accordingly, Korea actively introduced digital techniques led by the government for the inventory and documentation of important cultural properties. In this process, the government established the concept of a digital set, built a more efficie nt integrated data management system, and created standardized guidelines to maximize the effectiveness of data acquisition, management, and utilization that greatly increased the level of digital inventory, documentation, and archiving.

  18. Does spatial variation in environmental conditions affect recruitment? A study using a 3-D model of Peruvian anchovy

    NASA Astrophysics Data System (ADS)

    Xu, Yi; Rose, Kenneth A.; Chai, Fei; Chavez, Francisco P.; Ayón, Patricia

    2015-11-01

    We used a 3-dimensional individual-based model (3-D IBM) of Peruvian anchovy to examine how spatial variation in environmental conditions affects larval and juvenile growth and survival, and recruitment. Temperature, velocity, and phytoplankton and zooplankton concentrations generated from a coupled hydrodynamic Nutrients-Phytoplankton-Zooplankton-Detritus (NPZD) model, mapped to a three dimensional rectangular grid, were used to simulate anchovy populations. The IBM simulated individuals as they progressed from eggs to recruitment at 10 cm. Eggs and yolk-sac larvae were followed hourly through the processes of development, mortality, and movement (advection), and larvae and juveniles were followed daily through the processes of growth, mortality, and movement (advection plus behavior). A bioenergetics model was used to grow larvae and juveniles. The NPZD model provided prey fields which influence both food consumption rate as well as behavior mediated movement with individuals going to grids cells having optimal growth conditions. We compared predicted recruitment for monthly cohorts for 1990 through 2004 between the full 3-D IBM and a point (0-D) model that used spatially-averaged environmental conditions. The 3-D and 0-D versions generated similar interannual patterns in monthly recruitment for 1991-2004, with the 3-D results yielding consistently higher survivorship. Both versions successfully captured the very poor recruitment during the 1997-1998 El Niño event. Higher recruitment in the 3-D simulations was due to higher survival during the larval stage resulting from individuals searching for more favorable temperatures that lead to faster growth rates. The strong effect of temperature was because both model versions provided saturating food conditions for larval and juvenile anchovies. We conclude with a discussion of how explicit treatment of spatial variation affected simulated recruitment, other examples of fisheries modeling analyses that have used a

  19. Recording, Visualization and Documentation of 3D Spatial Data for Monitoring Topography in Areas of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Maravelakis, Emmanouel; Konstantaras, Antonios; Axaridou, Anastasia; Chrysakis, Ioannis; Xinogalos, Michalis

    2014-05-01

    This research investigates the application of new system for 3D documentation of land degradation and its effect [1,2] on areas of cultural heritage via complete 3D data acquisition, 3D modeling and metadata recording using terrestrial laser scanners (TLS) [3,4,5]. As land degradation progresses through time it is important to be able to map and exactly replicate with great precision the entire 3D shape of the physical objects of interest, such as landslides, ground erosion, river boundaries, mad accumulation, etc. [1,2] TLS enables the extraction and recording of a very large number of points in space with great precision and without the need for any physical contact with the object of interest. Field specialists can then examine the produced models and comment on them both on the overall object of interest and on specific features of it by inserting annotations on certain parts of the model [6]. This process could be proven to be very cost effective as it can be repeated as often as necessary and produce a well catalogued documentation of the progress of land degradation at particular areas. The problem with repeating TLS models lies on the various types of hardware equipment and software systems that might be used for the extraction of point clouds, and the different people that might be called to analyze the findings. These often result in a large volume of interim and final products with little if no standardization, multiple different metadata and vague documentation [7], which makes metadata recordings [8] crucial both for one scientist to be able to follow upon the work of the other as well as being able to repeat the same work when deemed necessary. This makes the need for a repository tool proposed by the authors essential in order to record all work that is done in every TLS scanning, and makes the technology accessible to scientists of various different fields [9,10], eg. geologists, physicists, topographers, remote sensing engineers, archaeologists etc

  20. Nonlinear 3D Projection Printing of Concave Hydrogel Microstructures for Long-Term Multicellular Spheroid and Embryoid Body Culture

    PubMed Central

    Hribar, K.C; Finlay, D.; Ma, X.; Qu, X.; Ondeck, M. G.; Chung, P. H.; Zanella, F.; Engler, A. J.; Sheikh, F.; Vuori, K.; Chen, S.

    2015-01-01

    Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propogation. Here, we used a continuous 3D projection printing approach – with an important modification of nonlinear exposure — to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs. PMID:25900329

  1. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture.

    PubMed

    Hribar, K C; Finlay, D; Ma, X; Qu, X; Ondeck, M G; Chung, P H; Zanella, F; Engler, A J; Sheikh, F; Vuori, K; Chen, S C

    2015-06-01

    Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propagation. Here, we used a continuous 3D projection printing approach - with an important modification of nonlinear exposure - to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs. PMID:25900329

  2. Nonlinear 3D projection printing of concave hydrogel microstructures for long-term multicellular spheroid and embryoid body culture.

    PubMed

    Hribar, K C; Finlay, D; Ma, X; Qu, X; Ondeck, M G; Chung, P H; Zanella, F; Engler, A J; Sheikh, F; Vuori, K; Chen, S C

    2015-06-01

    Long-term culture and monitoring of individual multicellular spheroids and embryoid bodies (EBs) remains a challenge for in vitro cell propagation. Here, we used a continuous 3D projection printing approach - with an important modification of nonlinear exposure - to generate concave hydrogel microstructures that permit spheroid growth and long-term maintenance, without the need for spheroid transfer. Breast cancer spheroids grown to 10 d in the concave structures showed hypoxic cores and signs of necrosis using immunofluorescent and histochemical staining, key features of the tumor microenvironment in vivo. EBs consisting of induced pluripotent stem cells (iPSCs) grown on the hydrogels demonstrated narrow size distribution and undifferentiated markers at 3 d, followed by signs of differentiation by the presence of cavities and staining of the three germ layers at 10 d. These findings demonstrate a new method for long-term (e.g. beyond spheroid formation at day 2, and with media exchange) 3D cell culture that should be able to assist in cancer spheroid studies as well as embryogenesis and patient-derived disease modeling with iPSC EBs.

  3. Effect of Aflatoxin B1 on Growth of Bovine Mammary Epithelial Cells in 3D and Monolayer Culture System

    PubMed Central

    Forouharmehr, Ali; Harkinezhad, Taher; Qasemi-Panahi, Babak

    2013-01-01

    Purpose: Many studies have been showed transfer of aflatoxins, toxins produced by Aspergillus flvaus and Aspergillus parasiticus fungi, into milk. These toxins are transferred into the milk through digestive system by eating contaminated food. Due to the toxicity of these materials, it seems that it has side effects on the growth of mammary cells. Therefore, the present work aimed to investigate possible toxic effects of aflatoxin B1 (AFB1) on bovine mammary epithelial cells in monolayer and three-dimensional cultures. Methods: Specimens of the mammary tissue of bovine were sized out in size 2×2 cm in slaughterhouse. After disinfection and washing in sterile PBS, primary cell culture was performed by enzymatic digestion of tissue with collagenase. When proper numbers of cells were achieved in monolayer culture, cells were seeded in a 24-well culture plate for three-dimensional (3D) culture in Matrigel matrix. After 21 days of 3D culture and reaching the required number of cells, the concentrations of 15, 25 and 35 µL of AFB1 were added to the culture in quadruplicate and incubated for 8 hours. Cellular cytotoxicity was examined using standard colorimetric assay and finally, any change in the morphology of the cells was studied by microscopic technique. Results: Microscopic investigations showed necrosis of the AFB1-exposed cells compared to the control cells. Also, bovine mammary epithelial cells were significantly affected by AFB1 in dose and time dependent manner in cell viability assays. Conclusion: According to the results, it seems that AFB1 can induce cytotoxicity and necrosis in bovine mammary epithelial cells. PMID:24312827

  4. Co-culture of 3D tumor spheroids with fibroblasts as a model for epithelial–mesenchymal transition in vitro

    SciTech Connect

    Kim, Sun-Ah; Lee, Eun Kyung; Kuh, Hyo-Jeong

    2015-07-15

    Epithelial–mesenchymal transition (EMT) acts as a facilitator of metastatic dissemination in the invasive margin of malignant tumors where active tumor–stromal crosstalks take place. Co-cultures of cancer cells with cancer-associated fibroblasts (CAFs) are often used as in vitro models of EMT. We established a tumor–fibroblast proximity co-culture using HT-29 tumor spheroids (TSs) with CCD-18co fibroblasts. When co-cultured with TSs, CCD-18co appeared activated, and proliferative activity as well as cell migration increased. Expression of fibronectin increased whereas laminin and type I collagen decreased in TSs co-cultured with fibroblasts compared to TSs alone, closely resembling the margin of in vivo xenograft tissue. Active TGFβ1 in culture media significantly increased in TS co-cultures but not in 2D co-cultures of cancer cells–fibroblasts, indicating that 3D context-associated factors from TSs may be crucial to crosstalks between cancer cells and fibroblasts. We also observed in TSs co-cultured with fibroblasts increased expression of α-SMA, EGFR and CTGF; reduced expression of membranous β-catenin and E-cadherin, together suggesting an EMT-like changes similar to a marginal region of xenograft tissue in vivo. Overall, our in vitro TS–fibroblast proximity co-culture mimics the EMT-state of the invasive margin of in vivo tumors in early metastasis. - Highlights: • An adjacent co-culture of tumor spheroids and fibroblasts is presented as EMT model. • Activation of fibroblasts and increased cell migration were shown in co-culture. • Expression of EMT-related factors in co-culture was similar to that in tumor tissue. • Crosstalk between spheroids and fibroblasts was demonstrated by secretome analysis.

  5. Time-Dependent Effects of Pre-Aging 3D Polymer Scaffolds in Cell Culture Medium on Cell Proliferation.

    PubMed

    Chatterjee, Kaushik; Hung, Stevephen; Kumar, Girish; Simon, Carl G

    2012-01-01

    Protein adsorption is known to direct biological response to biomaterials and is important in determining cellular response in tissue scaffolds. In this study we investigated the effect of the duration of protein adsorption to 3D polymer scaffolds on cell attachment and proliferation. 3D macro-porous polymer scaffolds were pre-aged in serum-containing culture medium for 5 min, 1 d or 7 d prior to seeding osteoblasts. The total amount of protein adsorbed was found to increase with pre-ageing time. Cell attachment and proliferation were measured 1 d and 14 d, respectively, after cell seeding. Osteoblast proliferation, but not attachment, increased with scaffold pre-ageing time and amount of adsorbed serum protein. These results demonstrate that the amount of time that scaffolds are exposed to serum-containing medium can affect cell proliferation and suggest that these effects are mediated by differences in the amount of protein adsorption.

  6. Cyclic Strain Anisotropy Regulates Valvular Interstitial Cell Phenotype and Tissue Remodeling in 3D Culture

    PubMed Central

    Gould, Russell A.; Chin, Karen; Santisakultarm, Thom P.; Dropkin, Amanda; Richards, Jennifer M.; Schaffer, Chris B.; Butcher, Jonathan T.

    2013-01-01

    Many planar connective tissues exhibit complex anisotropic matrix fiber arrangements that are critical to their biomechanical function. This organized structure is created and modified by resident fibroblasts in response to mechanical forces in their environment. The directionality of applied strain fields change dramatically during development, aging, and disease, but the specific effect of strain direction on matrix remodeling is less clear. Current mechanobiological inquiry of planar tissues is limited to equibiaxial or uniaxial stretch, which inadequately simulate many in vivo environments. In this study, we implement a novel bioreactor system to demonstrate the unique effect of controlled anisotropic strain on fibroblast behavior in 3D engineered tissue environments, using aortic valve interstitial fibroblast cells (VIC) as a model system. Cell seeded 3D collagen hydrogels were subjected to cyclic anisotropic strain profiles maintained at constant areal strain magnitude for up to 96 hours at 1Hz. Increasing anisotropy of biaxial strain resulted in increased cellular orientation and collagen fiber alignment along the principal directions of strain and cell orientation was found to precede fiber reorganization. Cellular proliferation and apoptosis were both significantly enhanced under increasing biaxial strain anisotropy (P < 0.05). While cyclic strain reduced both vimentin and alpha-smooth muscle actin compared to unstrained controls, vimentin and alpha-smooth muscle actin expression increased with strain anisotropy and correlated with direction (P < 0.05). Collectively, these results suggest that strain field anisotropy is an independent regulator of fibroblast cell phenotype, turnover, and matrix reorganization, which may inform normal and pathological remodeling in soft tissues. PMID:22281945

  7. Web-based Visualization and Query of semantically segmented multiresolution 3D Models in the Field of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Auer, M.; Agugiaro, G.; Billen, N.; Loos, L.; Zipf, A.

    2014-05-01

    Many important Cultural Heritage sites have been studied over long periods of time by different means of technical equipment, methods and intentions by different researchers. This has led to huge amounts of heterogeneous "traditional" datasets and formats. The rising popularity of 3D models in the field of Cultural Heritage in recent years has brought additional data formats and makes it even more necessary to find solutions to manage, publish and study these data in an integrated way. The MayaArch3D project aims to realize such an integrative approach by establishing a web-based research platform bringing spatial and non-spatial databases together and providing visualization and analysis tools. Especially the 3D components of the platform use hierarchical segmentation concepts to structure the data and to perform queries on semantic entities. This paper presents a database schema to organize not only segmented models but also different Levels-of-Details and other representations of the same entity. It is further implemented in a spatial database which allows the storing of georeferenced 3D data. This enables organization and queries by semantic, geometric and spatial properties. As service for the delivery of the segmented models a standardization candidate of the OpenGeospatialConsortium (OGC), the Web3DService (W3DS) has been extended to cope with the new database schema and deliver a web friendly format for WebGL rendering. Finally a generic user interface is presented which uses the segments as navigation metaphor to browse and query the semantic segmentation levels and retrieve information from an external database of the German Archaeological Institute (DAI).

  8. Estimation of bisphenol A-Human toxicity by 3D cell culture arrays, high throughput alternatives to animal tests.

    PubMed

    Lee, Dong Woo; Oh, Woo-Yeon; Yi, Sang Hyun; Ku, Bosung; Lee, Moo-Yeal; Cho, Yoon Hee; Yang, Mihi

    2016-09-30

    Bisphenol A (BPA) has been widely used for manufacturing polycarbonate plastics and epoxy resins and has been extensively tested in animals to predict human toxicity. In order to reduce the use of animals for toxicity assessment and provide further accurate information on BPA toxicity in humans, we encapsulated Hep3B human hepatoma cells in alginate and cultured them in three dimensions (3D) on a micropillar chip coupled to a panel of metabolic enzymes on a microwell chip. As a result, we were able to assess the toxicity of BPA under various metabolic enzyme conditions using a high-throughput and micro assay; sample volumes were nearly 2,000 times less than that required for a 96-well plate. We applied a total of 28 different enzymes to each chip, including 10 cytochrome P450s (CYP450s), 10 UDP-glycosyltransferases (UGTs), 3 sulfotransferases (SULTs), alcohol dehydrogenase (ADH), and aldehyde dehydrogenase 2 (ALDH2). Phase I enzyme mixtures, phase II enzyme mixtures, and a combination of phase I and phase II enzymes were also applied to the chip. BPA toxicity was higher in samples containing CYP2E1 than controls, which contained no enzymes (IC50, 184±16μM and 270±25.8μM, respectively, p<0.01). However, BPA-induced toxicity was alleviated in the presence of ADH (IC50, 337±17.9μM), ALDH2 (335±13.9μM), and SULT1E1 (318±17.7μM) (p<0.05). CYP2E1-mediated cytotoxicity was confirmed by quantifying unmetabolized BPA using HPLC/FD. Therefore, we suggest the present micropillar/microwell chip platform as an effective alternative to animal testing for estimating BPA toxicity via human metabolic systems. PMID:27491884

  9. Controllable Production of Transplantable Adult Human High-Passage Dermal Papilla Spheroids Using 3D Matrigel Culture

    PubMed Central

    Miao, Yong; Sun, Ya Bin; Liu, Bing Cheng; Jiang, Jin Dou

    2014-01-01

    We have succeeded in culturing human dermal papilla (DP) cell spheroids and developed a three-dimensional (3D) Matrigel (basement membrane matrix) culture technique that can enhance and restore DP cells unique characteristics in vitro. When 1×104 DP cells were cultured on the 96-well plates precoated with Matrigel for 5 days, both passage 2 and passage 8 DP cells formed spheroidal microtissues with a diameter of 150–250 μm in an aggregative and proliferative manner. We transferred and recultured these DP spheroids onto commercial plates. Cells within DP spheres could disaggregate and migrate out, which was similar to primary DP. Moreover, we examined the expression of several genes and proteins associated with hair follicle inductivity of DP cells, such as NCAM, Versican, and α-smooth muscle actin, and confirmed that their expression level was elevated in the spheres compared with the dissociated DP cells. To examine the hair-inducing ability of DP spheres, hair germinal matrix cells (HGMCs) and DP spheres were mixed and cultured on Matrigel. Unlike the dissociated DP cells and HGMCs cocultured in two dimensions, HGMCs can differentiate into hair-like fibers under the induction of the DP spheres made from the high-passage cells (passage 8) in vitro. We are the first to show that passage 3 human HGMCs differentiate into hair-like fibers in the presence of human DP spheroids. These results suggest that the 3D Matrigel culture technique is an ideal culture model for forming DP spheroids and that sphere formation partially models the intact DP, resulting in hair induction, even by high-passage DP cells. PMID:24528213

  10. An Efficient 3D Cell Culture Method on Biomimetic Nanostructured Grids

    PubMed Central

    Wolun-Cholewa, Maria; Langer, Krzysztof; Szymanowski, Krzysztof; Glodek, Aleksandra; Jankowska, Anna; Warchol, Wojciech; Langer, Jerzy

    2013-01-01

    Current techniques of in vitro cell cultures are able to mimic the in vivo environment only to a limited extent, as they enable cells to grow only in two dimensions. Therefore cell culture approaches should rely on scaffolds that provide support comparable to the extracellular matrix. Here we demonstrate the advantages of novel nanostructured three-dimensional grids fabricated using electro-spinning technique, as scaffolds for cultures of neoplastic cells. The results of the study show that the fibers allow for a dynamic growth of HeLa cells, which form multi-layer structures of symmetrical and spherical character. This indicates that the applied scaffolds are nontoxic and allow proper flow of oxygen, nutrients, and growth factors. In addition, grids have been proven to be useful in in situ examination of cells ultrastructure. PMID:24023793

  11. High-Throughput Microfluidic Platform for 3D Cultures of Mesenchymal Stem Cells, Towards Engineering Developmental Processes

    PubMed Central

    Occhetta, Paola; Centola, Matteo; Tonnarelli, Beatrice; Redaelli, Alberto; Martin, Ivan; Rasponi, Marco

    2015-01-01

    The development of in vitro models to screen the effect of different concentrations, combinations and temporal sequences of morpho-regulatory factors on stem/progenitor cells is crucial to investigate and possibly recapitulate developmental processes with adult cells. Here, we designed and validated a microfluidic platform to (i) allow cellular condensation, (ii) culture 3D micromasses of human bone marrow-derived mesenchymal stromal cells (hBM-MSCs) under continuous flow perfusion, and (ii) deliver defined concentrations of morphogens to specific culture units. Condensation of hBM-MSCs was obtained within 3 hours, generating micromasses in uniform sizes (56.2 ± 3.9 μm). As compared to traditional macromass pellet cultures, exposure to morphogens involved in the first phases of embryonic limb development (i.e. Wnt and FGF pathways) yielded more uniform cell response throughout the 3D structures of perfused micromasses (PMMs), and a 34-fold higher percentage of proliferating cells at day 7. The use of a logarithmic serial dilution generator allowed to identify an unexpected concentration of TGFβ3 (0.1 ng/ml) permissive to hBM-MSCs proliferation and inductive to chondrogenesis. This proof-of-principle study supports the described microfluidic system as a tool to investigate processes involved in mesenchymal progenitor cells differentiation, towards a ‘developmental engineering’ approach for skeletal tissue regeneration. PMID:25983217

  12. A genetically modified protein-based hydrogel for 3D culture of AD293 cells.

    PubMed

    Du, Xiao; Wang, Jingyu; Diao, Wentao; Wang, Ling; Long, Jiafu; Zhou, Hao

    2014-01-01

    Hydrogels have strong application prospects for drug delivery, tissue engineering and cell therapy because of their excellent biocompatibility and abundant availability as scaffolds for drugs and cells. In this study, we created hybrid hydrogels based on a genetically modified tax interactive protein-1 (TIP1) by introducing two or four cysteine residues in the primary structure of TIP1. The introduced cysteine residues were crosslinked with a four-armed poly (ethylene glycol) having their arm ends capped with maleimide residues (4-armed-PEG-Mal) to form hydrogels. In one form of the genetically modification, we incorporated a peptide sequence 'GRGDSP' to introduce bioactivity to the protein, and the resultant hydrogel could provide an excellent environment for a three dimensional cell culture of AD293 cells. The AD293 cells continued to divide and displayed a polyhedron or spindle-shape during the 3-day culture period. Besides, AD293 cells could be easily separated from the cell-gel constructs for future large-scale culture after being cultured for 3 days and treating hydrogel with trypsinase. This work significantly expands the toolbox of recombinant proteins for hydrogel formation, and we believe that our hydrogel will be of considerable interest to those working in cell therapy and controlled drug delivery. PMID:25233088

  13. The Representation of Cultural Heritage from Traditional Drawing to 3d Survey: the Case Study of Casamary's Abbey

    NASA Astrophysics Data System (ADS)

    Canciani, M.; Saccone, M.

    2016-06-01

    In 3D survey the aspects most discussed in the scientific community are those related to the acquisition of data from integrated survey (laser scanner, photogrammetric, topographic and traditional direct), rather than those relating to the interpretation of the data. Yet in the methods of traditional representation, the data interpretation, such as that of the philological reconstruction, constitutes the most important aspect. It is therefore essential in modern systems of survey and representation, filter the information acquired. In the system, based on the integrated survey that we have adopted, the 3D object, characterized by a cloud of georeferenced points, defined but their color values, defines the core of the elaboration. It allows to carry out targeted analysis, using section planes as a tool of selection and filtering data, comparable with those of traditional drawings. In the case study of the Abbey of Casamari (Veroli), one of the most important Cistercian Settlement in Italy, the survey made for an Agreement with the Ministry of Cultural Heritage and Activities and Tourism (MiBACT) and University of RomaTre, within the project "Accessment of the sismic safety of the state museum", the reference 3D model, consisting of the superposition and geo-references data from various surveys, is the tool with which yo develop representative models comparable to traditional ones. It provides the necessary spatial environment for drawing up plans and sections with a definition such as to develop thematic analysis related to phases of construction, state of deterioration and structural features.

  14. Recording, Visualization and Documentation of 3D Spatial Data for Monitoring Topography in Areas of Cultural Heritage

    NASA Astrophysics Data System (ADS)

    Maravelakis, Emmanouel; Konstantaras, Antonios; Axaridou, Anastasia; Chrysakis, Ioannis; Xinogalos, Michalis

    2014-05-01

    This research investigates the application of new system for 3D documentation of land degradation and its effect [1,2] on areas of cultural heritage via complete 3D data acquisition, 3D modeling and metadata recording using terrestrial laser scanners (TLS) [3,4,5]. As land degradation progresses through time it is important to be able to map and exactly replicate with great precision the entire 3D shape of the physical objects of interest, such as landslides, ground erosion, river boundaries, mad accumulation, etc. [1,2] TLS enables the extraction and recording of a very large number of points in space with great precision and without the need for any physical contact with the object of interest. Field specialists can then examine the produced models and comment on them both on the overall object of interest and on specific features of it by inserting annotations on certain parts of the model [6]. This process could be proven to be very cost effective as it can be repeated as often as necessary and produce a well catalogued documentation of the progress of land degradation at particular areas. The problem with repeating TLS models lies on the various types of hardware equipment and software systems that might be used for the extraction of point clouds, and the different people that might be called to analyze the findings. These often result in a large volume of interim and final products with little if no standardization, multiple different metadata and vague documentation [7], which makes metadata recordings [8] crucial both for one scientist to be able to follow upon the work of the other as well as being able to repeat the same work when deemed necessary. This makes the need for a repository tool proposed by the authors essential in order to record all work that is done in every TLS scanning, and makes the technology accessible to scientists of various different fields [9,10], eg. geologists, physicists, topographers, remote sensing engineers, archaeologists etc

  15. Prognostic breast cancer signature identified from 3D culture model accurately predicts clinical outcome across independent datasets

    SciTech Connect

    Martin, Katherine J.; Patrick, Denis R.; Bissell, Mina J.; Fournier, Marcia V.

    2008-10-20

    One of the major tenets in breast cancer research is that early detection is vital for patient survival by increasing treatment options. To that end, we have previously used a novel unsupervised approach to identify a set of genes whose expression predicts prognosis of breast cancer patients. The predictive genes were selected in a well-defined three dimensional (3D) cell culture model of non-malignant human mammary epithelial cell morphogenesis as down-regulated during breast epithelial cell acinar formation and cell cycle arrest. Here we examine the ability of this gene signature (3D-signature) to predict prognosis in three independent breast cancer microarray datasets having 295, 286, and 118 samples, respectively. Our results show that the 3D-signature accurately predicts prognosis in three unrelated patient datasets. At 10 years, the probability of positive outcome was 52, 51, and 47 percent in the group with a poor-prognosis signature and 91, 75, and 71 percent in the group with a good-prognosis signature for the three datasets, respectively (Kaplan-Meier survival analysis, p<0.05). Hazard ratios for poor outcome were 5.5 (95% CI 3.0 to 12.2, p<0.0001), 2.4 (95% CI 1.6 to 3.6, p<0.0001) and 1.9 (95% CI 1.1 to 3.2, p = 0.016) and remained significant for the two larger datasets when corrected for estrogen receptor (ER) status. Hence the 3D-signature accurately predicts breast cancer outcome in both ER-positive and ER-negative tumors, though individual genes differed in their prognostic ability in the two subtypes. Genes that were prognostic in ER+ patients are AURKA, CEP55, RRM2, EPHA2, FGFBP1, and VRK1, while genes prognostic in ER patients include ACTB, FOXM1 and SERPINE2 (Kaplan-Meier p<0.05). Multivariable Cox regression analysis in the largest dataset showed that the 3D-signature was a strong independent factor in predicting breast cancer outcome. The 3D-signature accurately predicts breast cancer outcome across multiple datasets and holds prognostic

  16. Assessment of different 3D culture systems to study tumor phenotype and chemosensitivity in pancreatic ductal adenocarcinoma.

    PubMed

    Zeeberg, Katrine; Cardone, Rosa Angela; Greco, Maria Raffaella; Saccomano, Mara; Nøhr-Nielsen, Asbjørn; Alves, Frauke; Pedersen, Stine Falsig; Reshkin, Stephan Joel

    2016-07-01

    Pancreatic ductal adenocarcinoma (PDAC) is a highly malignant disease with a very poor prognosis, due to the influence of the tumor stroma, which promotes tumor growth, early invasion and chemoradiation resistance. Efforts to develop models for identifying novel anticancer therapeutic compounds have been hampered by the limited ability of in vitro models to mimic these in vivo tumor-stroma interactions. This has led to the development of various three-dimensional (3D) culture platforms recapitulating the in vivo tumor-stroma crosstalk and designed to better understand basic cancer processes and screen drug action. However, a consensus for different experimental 3D platforms is still missing in PDAC. We compared four PDAC cell lines of different malignancy grown in 2D monolayers to three of the more commonly used 3D techniques (ultralow adhesion concave microwells, Matrigel inclusion and organotypic systems) and to tumors derived from their orthotopic implantation in mice. In these 3D platforms, we observed that cells grow with very different tumor morphologies and the organotypic setting most closely resembles the tumor cytoarchitecture obtained by orthotopically implanting the four cell lines in mice. We then analyzed the molecular and cellular responses of one of these cell lines to epidermal growth factor receptor (EGFR) stimulation with EGF and inhibition with erlotinib and found that only in the 3D platforms, and especially the organotypic, cells: i) responded to EGF by changing the expression of signalling components underlying cell-stroma crosstalk and tissue architecture, growth, invasion and drug resistance (E-cadherin, EGFR, ezrin, β1 integrin, NHERF1 and HIF-1α) similar to those reported in vivo; ii) had stimulated growth and increased erlotinib sensitivity in response to EGF, more faithfully mimicking their known in vivo behaviour. Altogether, these results, indicate the organotypic as the most relevant physiological 3D system to study the

  17. Reduced contraction of skin equivalent engineered using cell sheets cultured in 3D matrices.

    PubMed

    Ng, Kee Woei; Hutmacher, Dietmar Werner

    2006-09-01

    In order to alleviate their extensive contraction, human fibroblast sheets were cultured in combination with three-dimensional matrices (knitted poly(lactic-co-glycolic acid) (PLGA) mesh and collagen-hyaluronic acid (CHA) sponge) to form contiguous dermal constructs for tissue engineering a bilayered skin equivalent. The resulting constructs were viable, and supported the development of bilayered skin equivalents which did not contract over the 4-week culture period. When implanted into full-thickness wounds in nude rats, cultured skin equivalents based on PLGA meshes registered a take rate of 100% and showed an extent of wound contraction that was statistically similar to autografts, while wounds grafted with PLGA meshes without cell sheets contracted more than autografts. On the other hand, skin equivalents based on CHA sponges were all sloughed off within 2 weeks of transplantation. In all cell sheet-incorporated specimens, cells from the constructs infiltrated and produced extracellular matrix within the neo-dermis, shown by positive human leukocyte antigen and collagen I expression. This technique offers an alternative approach for scaffold-based tissue engineering to produce mechanically stable grafts with matured neo-tissue.

  18. The use of flow perfusion culture and subcutaneous implantation with fibroblast-seeded PLLA-collagen 3D scaffolds for abdominal wall repair.

    PubMed

    Pu, Fanrong; Rhodes, Nicholas P; Bayon, Yves; Chen, Rui; Brans, Gerben; Benne, Remco; Hunt, John A

    2010-05-01

    Highly cellularised 3D-tissue constructs designed to repair large, complex abdominal wall defects were prepared using poly (lactic acid) (PLLA)-collagen scaffolds in vitro using a flow perfusion bioreactor. The PLLA-collagen scaffolds had a unique structure consisting of a collagen sponge formed within the pores of a mechanically stable knitted mesh of PLLA. The effect of the flow perfusion bioreactor culturing conditions was investigated in vitro for 0, 7, 14 and 28 days on scaffolds seeded with dermal fibroblasts. The cultured constructs were subsequently studied subcutaneously (SC) in an in vivo animal model. The results of in vitro studies demonstrated that the perfusion system facilitated increased cell proliferation and homogenous distribution in the PLLA-collagen scaffolds compared to static conditions. A highly cellularised 3D-tissue construct was formed by 7 days incubation under perfusion conditions, with increased cellularity by the 28 day time point. The in vivo model demonstrated that implanting constructs with high cellularity resulted in exceptional cell stabilisation, with the survival of implanted cells and expression of the phenotypically-relevant extracellular matrix proteins collagen types I and III, studied by fluorescence in situ hybridisation (FISH) and immunohistochemistry. The implantation of this porous PPLA-collagen scaffold seeded with dermal fibroblasts following in vitro maturation using a flow perfusion bioreactor system suggests a significant advance over current state-of-the-art procedures for the reconstruction of large, complex abdominal wall tissue defects. PMID:20219244

  19. Low cost production of 3D-printed devices and electrostimulation chambers for the culture of primary neurons

    PubMed Central

    Wardyn, Joanna D.; Sanderson, Chris; Swan, Laura E.; Stagi, Massimiliano

    2015-01-01

    The analysis of primary neurons is a basic requirement for many areas of neurobiology. However, the range of commercial systems available for culturing primary neurons is functionally limiting, and the expense of these devices is a barrier to both exploratory and large-scale studies. This is especially relevant as primary neurons often require unusual geometries and specialised coatings for optimum growth. Fortunately, the recent revolution in 3D printing offers the possibility to generate customised devices, which can support neuronal growth and constrain neurons in defined paths, thereby enabling many aspects of neuronal physiology to be studied with relative ease. In this article, we provide a detailed description of the system hardware and software required to produce affordable 3D-printed culture devices, which are also compatible with live-cell imaging. In addition, we also describe how to use these devices to grow and stimulate neurons within geometrically constrained compartments and provide examples to illustrate the practical utility and potential that these protocols offer for many aspects of experimental neurobiology. PMID:25962333

  20. Low cost production of 3D-printed devices and electrostimulation chambers for the culture of primary neurons.

    PubMed

    Wardyn, Joanna D; Sanderson, Chris; Swan, Laura E; Stagi, Massimiliano

    2015-08-15

    The analysis of primary neurons is a basic requirement for many areas of neurobiology. However, the range of commercial systems available for culturing primary neurons is functionally limiting, and the expense of these devices is a barrier to both exploratory and large-scale studies. This is especially relevant as primary neurons often require unusual geometries and specialised coatings for optimum growth. Fortunately, the recent revolution in 3D printing offers the possibility to generate customised devices, which can support neuronal growth and constrain neurons in defined paths, thereby enabling many aspects of neuronal physiology to be studied with relative ease. In this article, we provide a detailed description of the system hardware and software required to produce affordable 3D-printed culture devices, which are also compatible with live-cell imaging. In addition, we also describe how to use these devices to grow and stimulate neurons within geometrically constrained compartments and provide examples to illustrate the practical utility and potential that these protocols offer for many aspects of experimental neurobiology. PMID:25962333

  1. Low cost production of 3D-printed devices and electrostimulation chambers for the culture of primary neurons.

    PubMed

    Wardyn, Joanna D; Sanderson, Chris; Swan, Laura E; Stagi, Massimiliano

    2015-08-15

    The analysis of primary neurons is a basic requirement for many areas of neurobiology. However, the range of commercial systems available for culturing primary neurons is functionally limiting, and the expense of these devices is a barrier to both exploratory and large-scale studies. This is especially relevant as primary neurons often require unusual geometries and specialised coatings for optimum growth. Fortunately, the recent revolution in 3D printing offers the possibility to generate customised devices, which can support neuronal growth and constrain neurons in defined paths, thereby enabling many aspects of neuronal physiology to be studied with relative ease. In this article, we provide a detailed description of the system hardware and software required to produce affordable 3D-printed culture devices, which are also compatible with live-cell imaging. In addition, we also describe how to use these devices to grow and stimulate neurons within geometrically constrained compartments and provide examples to illustrate the practical utility and potential that these protocols offer for many aspects of experimental neurobiology.

  2. Development of a Bioreactor to Culture Tissue Engineered Ureters Based on the Application of Tubular OPTIMAIX 3D Scaffolds.

    PubMed

    Seifarth, Volker; Gossmann, Matthias; Janke, Heinz Peter; Grosse, Joachim O; Becker, Christoph; Heschel, Ingo; Artmann, Gerhard M; Temiz Artmann, Aysegül

    2015-01-01

    Regenerative medicine, tissue engineering and biomedical research give hope to many patients who need bio-implants. Tissue engineering applications have already been developed based on bioreactors. Physiological ureter implants, however, do not still function sufficiently, as they represent tubular hollow structures with very specific cellular structures and alignments consisting of several cell types. The aim of this study was to a develop a new bioreactor system based on seamless, collagenous, tubular OPTIMAIX 3D prototype sponge as scaffold material for ex-vivo culturing of a tissue engineered ureter replacement for future urological applications. Particular emphasis was given to a great extent to mimic the physiological environment similar to the in vivo situation of a ureter. NIH-3T3 fibroblasts, C2C12, Urotsa and primary genitourinary tract cells were applied as co-cultures on the scaffold and the penetration of cells into the collagenous material was followed. By the end of this study, the bioreactor was functioning, physiological parameter as temperature and pH and the newly developed BIOREACTOR system is applicable to tubular scaffold materials with different lengths and diameters. The automatized incubation system worked reliably. The tubular OPTIMAIX 3D sponge was a suitable scaffold material for tissue engineering purposes and co-cultivation procedures.

  3. [Novel methods for studies of testicular development and spermatogenesis: From 2D to 3D culture].

    PubMed

    Zhang, Lian-dong; Li, He-cheng; Zhang, Tong-dian; Wang, Zi-ming

    2016-03-01

    The two-dimensional model of cell culture is an important method in the study of testicular development and spermatogenesis but can not effectively mimic and regulate the testicular microenvironment and the whole process of spermatogenesis due to the lack of relevant cell factors and the disruption of a three-dimensional spatial structure. In the past 20 years, the development and optimization of the in vitro model such as testis organotypic culture and in vivo model such as testis transplantation achieved a transformation from two- to three-dimension. The maintenance and optimization of the testicular niche structure could mimic the testicular microenvironment and cell types including Leydig, Sertoli and germ cells, which showed similar biological behaviors to those in vivo. Besides, the cell suspension or tissue fragment floats in the gas-liquid interface so that the development of somatic and germ cells is well maintained in vitro whilst the feedback linkage between grafted testis tissue and hypothalamus-pituitary of the host rebuilt in the in vitro model provides an endocrinological basis for spermatogenesis, which serves as an effective methodology to better understand the organogenesis and development of the testis as well as testicular function regulation, advancing the concept of treatment of male infertility. Al- though each of the methods may have its limitations, the progress in the processing, freezing, thawing, and transplantation of cells and tissues will surely promote their clinical application and present their value in translational medicine. PMID:27172668

  4. Fibroblast alignment under interstitial fluid flow using a novel 3-D tissue culture model.

    PubMed

    Ng, Chee Ping; Swartz, Melody A

    2003-05-01

    Interstitial flow is an important component of the microcirculation and interstitial environment, yet its effects on cell organization and tissue architecture are poorly understood, in part due to the lack of in vitro models. To examine the effects of interstitial flow on cell morphology and matrix remodeling, we developed a tissue culture model that physically supports soft tissue cultures and allows microscopic visualization of cells within the three-dimensional matrix. In addition, pressure-flow relationships can be continuously monitored to evaluate the bulk hydraulic resistance as an indicator of changes in the overall matrix integrity. We observed that cells such as human dermal fibroblasts aligned perpendicular to the direction of interstitial flow. In contrast, fibroblasts in static three-dimensional controls remained randomly oriented, whereas cells subjected to fluid shear as a two-dimensional monolayer regressed. Also, the dynamic measurements of hydraulic conductivity suggest reorganization toward a steady state. These primary findings help establish the importance of interstitial flow on the biology of tissue organization and interstitial fluid balance. PMID:12531726

  5. A comparison between Dirichlet and Neumann boundary conditions for 0D/3D coupling in cardiovascular simulations

    NASA Astrophysics Data System (ADS)

    Esmaily Moghadam, Mahdi; Hsia, Tain-Yen; Marsden, Alison

    2011-11-01

    Implementation of boundary conditions (BCs) in cardiovascular simulations poses numerical challenges due to the complex dynamic behavior of the circulatory system. A closed-loop lumped parameter network (LPN) coupled to a 3D domain is a powerful tool that can be used to model the global dynamics of the circulatory system and its response to local changes in surgery design. In this study, the essential formulations for coupling a 0D model using both Dirichlet and Neumann BCs to a discretized 3D finite element domain are discussed. Using a closed loop LPN with a heart model and pure Dirichlet or Neumann BCs, the limitations of these two approaches are studied and stability, accuracy, and computational cost are compared. Results show that the Dirichlet BC is more accurate for the tested mesh sizes with better stability characteristic at larger time step sizes, although this method requires additional velocity profile information. Application to patient specific models is also presented and discussed.

  6. Testing the Low-Cost Rpas Potential in 3d Cultural Heritage Reconstruction

    NASA Astrophysics Data System (ADS)

    Bolognesi, M.; Furini, A.; Russo, V.; Pellegrinelli, A.; Russo, P.

    2015-02-01

    In order to analyze the potential as well as the limitations of low-cost RPAS photogrammetric systems for architectural cultural heritage reconstruction, some tests were performed by a small RPAS equipped with an ultralight camera. The tests were carried out in a site of remarkable historical interest. A great amount of images were taken with camera's optical axis in vertical and oblique position. Images were processed by the commercial software PhotoScan of Agisoft and numerous models were realized, each of them was compared with an accurate TLS model used as a reference. The test, despite some problems found, has provided good results in terms of accuracy (average error <2cm) and reliability.

  7. Generation of inner ear sensory epithelia from pluripotent stem cells in 3D culture.

    PubMed

    Koehler, Karl R; Mikosz, Andrew M; Molosh, Andrei I; Patel, Dharmeshkumar; Hashino, Eri

    2013-08-01

    The inner ear contains sensory epithelia that detect head movements, gravity and sound. It is unclear how to develop these sensory epithelia from pluripotent stem cells, a process that will be critical for modelling inner ear disorders or developing cell-based therapies for profound hearing loss and balance disorders. So far, attempts to derive inner ear mechanosensitive hair cells and sensory neurons have resulted in inefficient or incomplete phenotypic conversion of stem cells into inner-ear-like cells. A key insight lacking from these previous studies is the importance of the non-neural and preplacodal ectoderm, two critical precursors during inner ear development. Here we report the stepwise differentiation of inner ear sensory epithelia from mouse embryonic stem cells (ESCs) in three-dimensional culture. We show that by recapitulating in vivo development with precise temporal control of signalling pathways, ESC aggregates transform sequentially into non-neural, preplacodal and otic-placode-like epithelia. Notably, in a self-organized process that mimics normal development, vesicles containing prosensory cells emerge from the presumptive otic placodes and give rise to hair cells bearing stereocilia bundles and a kinocilium. Moreover, these stem-cell-derived hair cells exhibit functional properties of native mechanosensitive hair cells and form specialized synapses with sensory neurons that have also arisen from ESCs in the culture. Finally, we demonstrate how these vesicles are structurally and biochemically comparable to developing vestibular end organs. Our data thus establish a new in vitro model of inner ear differentiation that can be used to gain deeper insight into inner ear development and disorder. PMID:23842490

  8. Bile canaliculi formation and biliary transport in 3D sandwich-cultured hepatocytes in dependence of the extracellular matrix composition.

    PubMed

    Deharde, Daniela; Schneider, Christin; Hiller, Thomas; Fischer, Nicolas; Kegel, Victoria; Lübberstedt, Marc; Freyer, Nora; Hengstler, Jan G; Andersson, Tommy B; Seehofer, Daniel; Pratschke, Johann; Zeilinger, Katrin; Damm, Georg

    2016-10-01

    Primary human hepatocytes (PHH) are still considered as gold standard for investigation of in vitro metabolism and hepatotoxicity in pharmaceutical research. It has been shown that the three-dimensional (3D) cultivation of PHH in a sandwich configuration between two layers of extracellular matrix (ECM) enables the hepatocytes to adhere three dimensionally leading to formation of in vivo like cell-cell contacts and cell-matrix interactions. The aim of the present study was to investigate the influence of different ECM compositions on morphology, cellular arrangement and bile canaliculi formation as well as bile excretion processes in PHH sandwich cultures systematically. Freshly isolated PHH were cultured for 6 days between two ECM layers made of collagen and/or Matrigel in four different combinations. The cultures were investigated by phase contrast microscopy and immunofluorescence analysis with respect to cell-cell connections, repolarization as well as bile canaliculi formation. The influence of the ECM composition on cell activity and viability was measured using the XTT assay and a fluorescent dead or alive assay. Finally, the bile canalicular transport was analyzed by live cell imaging to monitor the secretion and accumulation of the fluorescent substance CDF in bile canaliculi. Using collagen and Matrigel in different compositions in sandwich cultures of hepatocytes, we observed differences in morphology, cellular arrangement and cell activity of PHH in dependence of the ECM composition. Sandwich-cultured hepatocytes with an underlay of collagen seem to represent the best in vivo tissue architecture in terms of formation of trabecular cell arrangement. Cultures overlaid with collagen were characterized by the formation of abundant bile canaliculi, while the bile canaliculi network in hepatocytes cultured on a layer of Matrigel and overlaid with collagen showed the most branched and stable canalicular network. All cultures showed a time-dependent leakage of

  9. Impact Assessment of Repeated Exposure of Organotypic 3D Bronchial and Nasal Tissue Culture Models to Whole Cigarette Smoke

    PubMed Central

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V.; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C.

    2015-01-01

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers. PMID:25741927

  10. Impact assessment of repeated exposure of organotypic 3D bronchial and nasal tissue culture models to whole cigarette smoke.

    PubMed

    Kuehn, Diana; Majeed, Shoaib; Guedj, Emmanuel; Dulize, Remi; Baumer, Karine; Iskandar, Anita; Boue, Stephanie; Martin, Florian; Kostadinova, Radina; Mathis, Carole; Ivanov, Nikolai V; Frentzel, Stefan; Hoeng, Julia; Peitsch, Manuel C

    2015-01-01

    Cigarette smoke (CS) has a major impact on lung biology and may result in the development of lung diseases such as chronic obstructive pulmonary disease or lung cancer. To understand the underlying mechanisms of disease development, it would be important to examine the impact of CS exposure directly on lung tissues. However, this approach is difficult to implement in epidemiological studies because lung tissue sampling is complex and invasive. Alternatively, tissue culture models can facilitate the assessment of exposure impacts on the lung tissue. Submerged 2D cell cultures, such as normal human bronchial epithelial (NHBE) cell cultures, have traditionally been used for this purpose. However, they cannot be exposed directly to smoke in a similar manner to the in vivo exposure situation. Recently developed 3D tissue culture models better reflect the in vivo situation because they can be cultured at the air-liquid interface (ALI). Their basal sides are immersed in the culture medium; whereas, their apical sides are exposed to air. Moreover, organotypic tissue cultures that contain different type of cells, better represent the physiology of the tissue in vivo. In this work, the utilization of an in vitro exposure system to expose human organotypic bronchial and nasal tissue models to mainstream CS is demonstrated. Ciliary beating frequency and the activity of cytochrome P450s (CYP) 1A1/1B1 were measured to assess functional impacts of CS on the tissues. Furthermore, to examine CS-induced alterations at the molecular level, gene expression profiles were generated from the tissues following exposure. A slight increase in CYP1A1/1B1 activity was observed in CS-exposed tissues compared with air-exposed tissues. A network-and transcriptomics-based systems biology approach was sufficiently robust to demonstrate CS-induced alterations of xenobiotic metabolism that were similar to those observed in the bronchial and nasal epithelial cells obtained from smokers. PMID:25741927

  11. 3-D simulations to investigate initial condition effects on the growth of Rayleigh-Taylor mixing

    SciTech Connect

    Andrews, Malcolm J

    2008-01-01

    The effect of initial conditions on the growth rate of turbulent Rayleigh-Taylor (RT) mixing has been studied using carefully formulated numerical simulations. An integrated large-eddy simulation (ILES) that uses a finite-volume technique was employed to solve the three-dimensional incompressible Euler equations with numerical dissipation. The initial conditions were chosen to test the dependence of the RT growth parameters ({alpha}{sub b}, {alpha}{sub s}) on variations in (a) the spectral bandwidth, (b) the spectral shape, and (c) discrete banded spectra. Our findings support the notion that the overall growth of the RT mixing is strongly dependent on initial conditions. Variation in spectral shapes and bandwidths are found to have a complex effect of the late time development of the RT mixing layer, and raise the question of whether we can design RT transition and turbulence based on our choice of initial conditions. In addition, our results provide a useful database for the initialization and development of closures describing RT transition and turbulence.

  12. Type conversion of secretomes in a 3D TAM2 and HCC cell co-culture system and functional importance of CXCL2 in HCC

    PubMed Central

    Lu, Yu; Li, Shan; Ma, Liping; Li, Yan; Zhang, Xiaolian; Peng, Qiliu; Mo, Cuiju; Huang, Li; Qin, Xue; Liu, Yinkun

    2016-01-01

    Macrophages play important roles in the tumor microenvironment, driving cancer progression and metastasis, particularly in hepatocellular carcinoma (HCC). However, few studies have assessed the exact secretome composition in HCC. In the present study, the impact of different phenotype of macrophages on HCC cells was investigated. Alternatively activated macrophages (M2) were found to significantly increase the proliferation, migration, and invasion abilities of SMMC7721 cells (all P < 0.05). M2 were then co-cultured with SMMC7721 cells to reconstruct the tumor microenvironment. Conditioned medium from 3D single cultures of M2, SMMC7721 cells, and their co-culture system were analyzed using quantitative proteomics via iTRAQ labeling combined with mass spectrometric analysis. Secretome analysis revealed a total of 159 differential secreted proteins in the co-culture system compared to the single culture systems, with 63 being up-regulated (>1.3-fold) and 96 down-regulated (<0.7-fold). CXCL2 was confirmed to have higher expression in the co-culture system and HCC tissues, and was selected for further investigation. Functional effects data suggested that recombinant human CXCL2 significantly enhanced the migration, invasion ability of SMMC7721 cells, and weakened adhesion ability. While CXCL2 neutralization and CXCR2 blockage significantly inhibited the effects of CXCL2 on SMMC7721 cells, indicating that CXCL2 may play pivotal role in HCC metastasis. PMID:27117207

  13. Time lapse investigation of antibiotic susceptibility using a microfluidic linear gradient 3D culture device.

    PubMed

    Hou, Zining; An, Yu; Hjort, Karin; Hjort, Klas; Sandegren, Linus; Wu, Zhigang

    2014-09-01

    This study reports a novel approach to quantitatively investigate the antibacterial effect of antibiotics on bacteria using a three-dimensional microfluidic culture device. In particular, our approach is suitable for studying the pharmacodynamics effects of antibiotics on bacterial cells temporally and with a continuous range of concentrations in a single experiment. The responses of bacterial cells to a linear concentration gradient of antibiotics were observed using time-lapse photography, by encapsulating bacterial cells in an agarose-based gel located in a commercially available microfluidics chamber. This approach generates dynamic information with high resolution, in a single operation, e.g., growth curves and antibiotic pharmacodynamics, in a well-controlled environment. No pre-labelling of the cells is needed and therefore any bacterial sample can be tested in this setup. It also provides static information comparable to that of standard techniques for measuring minimum inhibitory concentration (MIC). Five antibiotics with different mechanisms were analysed against wild-type Escherichia coli, Staphylococcus aureus and Salmonella Typhimurium. The entire process, including data analysis, took 2.5-4 h and from the same analysis, high-resolution growth curves were obtained. As a proof of principle, a pharmacodynamic model of streptomycin against Salmonella Typhimurium was built based on the maximal effect model, which agreed well with the experimental results. Our approach has the potential to be a simple and flexible solution to study responding behaviours of microbial cells under different selection pressures both temporally and in a range of concentrations.

  14. Multiplex profiling of cellular invasion in 3D cell culture models.

    PubMed

    Burgstaller, Gerald; Oehrle, Bettina; Koch, Ina; Lindner, Michael; Eickelberg, Oliver

    2013-01-01

    To-date, most invasion or migration assays use a modified Boyden chamber-like design to assess migration as single-cell or scratch assays on coated or uncoated planar plastic surfaces. Here, we describe a 96-well microplate-based, high-content, three-dimensional cell culture assay capable of assessing invasion dynamics and molecular signatures thereof. On applying our invasion assay, we were able to demonstrate significant effects on the invasion capacity of fibroblast cell lines, as well as primary lung fibroblasts. Administration of epidermal growth factor resulted in a substantial increase of cellular invasion, thus making this technique suitable for high-throughput pharmacological screening of novel compounds regulating invasive and migratory pathways of primary cells. Our assay also correlates cellular invasiveness to molecular events. Thus, we argue of having developed a powerful and versatile toolbox for an extensive profiling of invasive cells in a 96-well format. This will have a major impact on research in disease areas like fibrosis, metastatic cancers, or chronic inflammatory states. PMID:23671660

  15. Cell therapy, 3D culture systems and tissue engineering for cardiac regeneration.

    PubMed

    Emmert, Maximilian Y; Hitchcock, Robert W; Hoerstrup, Simon P

    2014-04-01

    Ischemic Heart Disease (IHD) still represents the "Number One Killer" worldwide accounting for the death of numerous patients. However the capacity for self-regeneration of the adult heart is very limited and the loss of cardiomyocytes in the infarcted heart leads to continuous adverse cardiac-remodeling which often leads to heart-failure (HF). The concept of regenerative medicine comprising cell-based therapies, bio-engineering technologies and hybrid solutions has been proposed as a promising next-generation approach to address IHD and HF. Numerous strategies are under investigation evaluating the potential of regenerative medicine on the failing myocardium including classical cell-therapy concepts, three-dimensional culture techniques and tissue-engineering approaches. While most of these regenerative strategies have shown great potential in experimental studies, the translation into a clinical setting has either been limited or too rapid leaving many key questions unanswered. This review summarizes the current state-of-the-art, important challenges and future research directions as to regenerative approaches addressing IHD and resulting HF.

  16. Three-dimensional Culture Conditions Lead to Decreased Radiation Induced Crytoxicity in Human Mammary Epithelial Cells

    SciTech Connect

    Sowa, Marianne B.; Chrisler, William B.; Zens, Kyra D.; Ashjian, Emily J.; Opresko, Lee K.

    2010-05-01

    For both targeted and non-targeted exposures, the cellular responses to ionizing radiation have predominantly been measured in two dimensional monolayer cultures. Although convenient for biochemical analysis, the true interactions in vivo depend upon complex interactions between cells themselves and the surrounding extra cellular matrix. This study directly compares the influence of culture conditions on radiation induced cytotoxicity following exposure to low-LET ionizing radiation. Using a three dimensional (3D) human mammary epithelial tissue model, we have found a protective effect of 3D cell culture on cell survival after irradiation. The initial state of the cells (i.e., 2D vs. 3D culture) at the time of irradiation does not alter survival, nor does the presence of extracellular matrix during and after exposure to dose, but long term culture in 3D which offers significant reduction in cytotoxicity at a given dose (e.g. ~4 fold increased survival at 5 Gy). The cell cycle delay induced following exposure to 2 and 5 Gy was almost identical between 2D and 3D culture conditions and cannot account for the observed differences in radiation responses. However the amount of apoptosis following radiation exposure is significantly decreased in 3D culture relative to the 2D monolayer after the same dose. A likely mechanism of the cytoprotective effect afforded by 3D culture conditions is the down regulation of radiation induced apoptosis in 3D structures

  17. Transition to Turbulence and Effect of Initial Conditions on 3D Compressible Mixing in Planar Blast-wave-driven Systems

    SciTech Connect

    Miles, A R; Edwards, M J; Greenough, J A

    2004-11-08

    Perturbations on an interface driven by a strong blast wave grow in time due to a combination of Rayleigh-Taylor, Richtmyer-Meshkov, and decompression effects. In this paper, results from three-dimensional numerical simulations of such a system under drive conditions to be attainable on the National Ignition Facility [E. M. Campbell, Laser Part. Beams, 9(2), 209 (1991)] are presented. Using the multi-physics, adaptive mesh refinement, higher order Godunov Eulerian hydrocode, Raptor [L. H. Howell and J.A. Greenough, J. Comp. Phys. 184, 53 (2003)], the late nonlinear instability evolution, including transition to turbulence, is considered for various multimode perturbation spectra. The 3D post-transition state differs from the 2D result, but the process of transition proceeds similarly in both 2D and 3D. The turbulent mixing transition results in a reduction in the growth rate of the mixing layer relative to its pre-transition value and, in the case of the bubble front, relative to the 2D result. The post-transition spike front velocity is approximately the same in 2D and 3D. Implications for hydrodynamic mixing in core-collapse supernova are discussed.

  18. 3D shoulder kinematics for static vs dynamic and passive vs active testing conditions.

    PubMed

    Robert-Lachaine, Xavier; Allard, Paul; Godbout, Véronique; Begon, Mickael

    2015-09-18

    Shoulder motion analysis provides clinicians with references of normal joint rotations. Shoulder joints orientations assessment is often based on series of static positions, while clinicians perform either passive or active tests and exercises mostly in dynamic. These conditions of motion could modify joint coordination and lead to discrepancies with the established references. Hence, the objective was to evaluate the influence of static vs dynamic and passive vs active testing conditions on shoulder joints orientations. Twenty asymptomatic subjects setup with 45 markers on the upper limb and trunk were tracked by an optoelectronic system. Static positions (30°, 60°, 90° and 120° of thoracohumeral elevation) and dynamic motion both in active condition and passively mobilised by an examiner were executed. Three-dimensional sternoclavicular, acromioclavicular, scapulothoracic and glenohumeral joint angles (12 in total) representing the distal segment orientation relative to the proximal segment orientation were estimated using a shoulder kinematical chain model. Separate four-way repeated measures ANOVA were applied on the 12 joint angles with factors of static vs dynamic, passive vs active, thoracohumeral elevation angle (30°, 60°, 90° and 120°) and plane of elevation (frontal and sagittal). Scapulothoracic lateral rotation progressed more during arm elevation in static than in dynamic gaining 4.2° more, and also in passive than in active by 6.6°. Glenohumeral elevation increased more during arm elevation in active than in passive by 4.4°. Shoulder joints orientations are affected by the testing conditions, which should be taken into consideration for data acquisition, inter-study comparison or clinical applications.

  19. The role of 3D microenvironmental organization in MCF-7 epithelial–mesenchymal transition after 7 culture days

    SciTech Connect

    Foroni, Laura; Vasuri, Francesco; Valente, Sabrina; Gualandi, Chiara; Focarete, Maria Letizia; Caprara, Giacomo; Scandola, Mariastella; D'Errico-Grigioni, Antonia; Pasquinelli, Gianandrea

    2013-06-10

    We present a multi-technique study on in vitro epithelial–mesenchymal transition (EMT) in human MCF-7 cells cultured on electrospun scaffolds of poly(L-lactic acid) (PLA), with random and aligned fiber orientations. Our aim is to investigate the morphological and genetic characteristics induced by extracellular matrix in tumor cells cultured in different 3D environments, and at different time points. Cell vitality was assessed with AlamarBlue at days 1, 3, 5 and 7. Scanning electron microscopy was performed at culture days 3 and 7. Immunohistochemistry (for E-cadherin, β-catenin, cytokeratins, nucleophosmin, tubulin, Ki-67 and vimentin), immunofluorescence (for F-actin) western blot (for E-cadherin, β-catenin and vimentin) and transmission electron microscopy were carried out at day 7. An EMT gene array followed by PCR analysis confirmed the regulation of selected genes. At day 7, scanning electron microscopy on aligned-PLA revealed spindle-shaped cells gathered in buds and ribbon-like structures, with a higher nucleolar/nuclear ratio and a loss in E-cadherin and β-catenin at immunohistochemistry and western blot. An up-regulation of SMAD2, TGF-β2, TFPI2 and SOX10 was found in aligned-PLA compared to random-PLA cultured cells. The topography of the extracellular matrix has a role in tumor EMT, and a more aggressive phenotype characterizes MCF-7 cells cultured on aligned-PLA scaffold. -- Highlights: • After 7 culture days an aligned-PLA scaffold induces a spindle shape to MCF-7 cells. • Despite these changes, the aligned MCF-7 cells keep an epithelial phenotype. • The extracellular environment alone influences the E-cadherin/β-catenin axis. • The extracellular environment can promote the epithelial–mesenchymal transition.

  20. Development of nanocellulose scaffolds with tunable structures to support 3D cell culture.

    PubMed

    Liu, Jun; Cheng, Fang; Grénman, Henrik; Spoljaric, Steven; Seppälä, Jukka; E Eriksson, John; Willför, Stefan; Xu, Chunlin

    2016-09-01

    Swollen three-dimensional nanocellulose films and their resultant aerogels were prepared as scaffolds towards tissue engineering application. The nanocellulose hydrogels with various swelling degree (up to 500 times) and the resultant aerogels with desired porosity (porosity up to 99.7% and specific surface area up to 308m(2)/g) were prepared by tuning the nanocellulose charge density, the swelling media conditions, and the material processing approach. Representative cell-based assays were applied to assess the material biocompatibility and efficacy of the human extracellular matrix (ECM)-mimicking nanocellulose scaffolds. The effects of charge density and porosity of the scaffolds on the biological tests were investigated for the first time. The results reveal that the nanocellulose scaffolds could promote the survival and proliferation of tumor cells, and enhance the transfection of exogenous DNA into the cells. These results suggest the usefulness of the nanocellulose-based matrices in supporting crucial cellular processes during cell growth and proliferation. PMID:27185139

  1. See-Through Imaging of Laser-Scanned 3d Cultural Heritage Objects Based on Stochastic Rendering of Large-Scale Point Clouds

    NASA Astrophysics Data System (ADS)

    Tanaka, S.; Hasegawa, K.; Okamoto, N.; Umegaki, R.; Wang, S.; Uemura, M.; Okamoto, A.; Koyamada, K.

    2016-06-01

    We propose a method for the precise 3D see-through imaging, or transparent visualization, of the large-scale and complex point clouds acquired via the laser scanning of 3D cultural heritage objects. Our method is based on a stochastic algorithm and directly uses the 3D points, which are acquired using a laser scanner, as the rendering primitives. This method achieves the correct depth feel without requiring depth sorting of the rendering primitives along the line of sight. Eliminating this need allows us to avoid long computation times when creating natural and precise 3D see-through views of laser-scanned cultural heritage objects. The opacity of each laser-scanned object is also flexibly controllable. For a laser-scanned point cloud consisting of more than 107 or 108 3D points, the pre-processing requires only a few minutes, and the rendering can be executed at interactive frame rates. Our method enables the creation of cumulative 3D see-through images of time-series laser-scanned data. It also offers the possibility of fused visualization for observing a laser-scanned object behind a transparent high-quality photographic image placed in the 3D scene. We demonstrate the effectiveness of our method by applying it to festival floats of high cultural value. These festival floats have complex outer and inner 3D structures and are suitable for see-through imaging.

  2. 3-D geoelectrical modelling using finite-difference: a new boundary conditions improvement

    NASA Astrophysics Data System (ADS)

    Maineult, A.; Schott, J.-J.; Ardiot, A.

    2003-04-01

    Geoelectrical prospecting is a well-known and frequently used method for quantitative and non-destructive subsurface exploration until depths of a few hundreds metres. Thus archeological objects can be efficiently detected as their resistivities often contrast with those of the surrounding media. Nevertheless using the geoelectrical prospecting method has long been restricted due to inhability to model correctly arbitrarily-shaped structures. The one-dimensional modelling and inversion have long been classical, but are of no interest for the majority of field data, since the natural distribution of resistivity is rarely homogeneous or tabular. Since the 1970's some authors developed discrete methods in order to solve the two and three-dimensional problem, using mathematical tools such as finite-element or finite-difference. The finite-difference approach is quite simple, easily understandable and programmable. Since the work of Dey and Morrison (1979), this approach has become quite popular. Nevertheless, one of its major drawbacks is the difficulty to establish satisfying boundary conditions. Recently Lowry et al. (1989) and Zhao and Yedlin (1996) suggested some refinements on the improvement of the boundary problem. We propose a new betterment, based on the splitting of the potential into two terms, the potential due to a reference tabular medium and a secondary potential caused by a disturbance of this medium. The surface response of a tabular medium has long been known (see for example Koefoed 1979). Here we developed the analytical solution for the electrical tabular potential everywhere in the medium, in order to establish more satisfying boundary conditions. The response of the perturbation, that is to say the object of interest, is then solved using volume-difference and preconditioned conjugate gradient. Finally the grid is refined one or more times in the perturbed domain in order to ameliorate the precision. This method of modelling is easy to implement

  3. Metabolic response of lung cancer cells to radiation in a paper-based 3D cell culture system.

    PubMed

    Simon, Karen A; Mosadegh, Bobak; Minn, Kyaw Thu; Lockett, Matthew R; Mohammady, Marym R; Boucher, Diane M; Hall, Amy B; Hillier, Shawn M; Udagawa, Taturo; Eustace, Brenda K; Whitesides, George M

    2016-07-01

    This work demonstrates the application of a 3D culture system-Cells-in-Gels-in-Paper (CiGiP)-in evaluating the metabolic response of lung cancer cells to ionizing radiation. The 3D tissue-like construct-prepared by stacking multiple sheets of paper containing cell-embedded hydrogels-generates a gradient of oxygen and nutrients that decreases monotonically in the stack. Separating the layers of the stack after exposure enabled analysis of the cellular response to radiation as a function of oxygen and nutrient availability; this availability is dictated by the distance between the cells and the source of oxygenated medium. As the distance between the cells and source of oxygenated media increased, cells show increased levels of hypoxia-inducible factor 1-alpha, decreased proliferation, and reduced sensitivity to ionizing radiation. Each of these cellular responses are characteristic of cancer cells observed in solid tumors. With this setup we were able to differentiate three isogenic variants of A549 cells based on their metabolic radiosensitivity; these three variants have known differences in their metastatic behavior in vivo. This system can, therefore, capture some aspects of radiosensitivity of populations of cancer cells related to mass-transport phenomenon, carry out systematic studies of radiation response in vitro that decouple effects from migration and proliferation of cells, and regulate the exposure of oxygen to subpopulations of cells in a tissue-like construct either before or after irradiation. PMID:27116031

  4. A 3D ex vivo mandible slice system for longitudinal culturing of transplanted dental pulp progenitor cells.

    PubMed

    Colombo, John S; Howard-Jones, Rachel A; Young, Fraser I; Waddington, Rachel J; Errington, Rachel J; Sloan, Alastair J

    2015-10-01

    Harnessing mesenchymal stem cells for tissue repair underpins regenerative medicine. However, how the 3D tissue matrix maintains such cells in a quiescent state whilst at the same time primed to respond to tissue damage remains relatively unknown. Developing more physiologically relevant 3D models would allow us to better understand the matrix drivers and influence on cell-lineage differentiation in situ. In this study, we have developed an ex vivo organotypic rat mandible slice model; a technically defined platform for the culture and characterization of dental pulp progenitor cells expressing GFP driven by the β-actin promoter (cGFP DPPCs). Using confocal microscopy we have characterized how the native environment influences the progenitor cells transplanted into the dental pulp. Injected cGFP-DPPCs were highly viable and furthermore differentially proliferated in unique regions of the mandible slice; in the dentine region, cGFP-DPPCs showed a columnar morphology indicative of expansion and lineage differentiation. Hence, we demonstrated the systematic capacity for establishing a dental pulp cell-micro-community, phenotypically modified in the tooth (the "biology"); and at the same time addressed technical challenges enabling the mandible slice to be accessible on platforms for high-content imaging (the biology in a "multiplex" format). PMID:25963448

  5. Development of a 3D Tissue Culture-Based High-Content Screening Platform That Uses Phenotypic Profiling to Discriminate Selective Inhibitors of Receptor Tyrosine Kinases.

    PubMed

    Booij, Tijmen H; Klop, Maarten J D; Yan, Kuan; Szántai-Kis, Csaba; Szokol, Balint; Orfi, Laszlo; van de Water, Bob; Keri, Gyorgy; Price, Leo S

    2016-10-01

    3D tissue cultures provide a more physiologically relevant context for the screening of compounds, compared with 2D cell cultures. Cells cultured in 3D hydrogels also show complex phenotypes, increasing the scope for phenotypic profiling. Here we describe a high-content screening platform that uses invasive human prostate cancer cells cultured in 3D in standard 384-well assay plates to study the activity of potential therapeutic small molecules and antibody biologics. Image analysis tools were developed to process 3D image data to measure over 800 phenotypic parameters. Multiparametric analysis was used to evaluate the effect of compounds on tissue morphology. We applied this screening platform to measure the activity and selectivity of inhibitors of the c-Met and epidermal growth factor (EGF) receptor (EGFR) tyrosine kinases in 3D cultured prostate carcinoma cells. c-Met and EGFR activity was quantified based on the phenotypic profiles induced by their respective ligands, hepatocyte growth factor and EGF. The screening method was applied to a novel collection of 80 putative inhibitors of c-Met and EGFR. Compounds were identified that induced phenotypic profiles indicative of selective inhibition of c-Met, EGFR, or bispecific inhibition of both targets. In conclusion, we describe a fully scalable high-content screening platform that uses phenotypic profiling to discriminate selective and nonselective (off-target) inhibitors in a physiologically relevant 3D cell culture setting.

  6. Electrosensitization assists cell ablation by nanosecond pulsed electric field in 3D cultures

    PubMed Central

    Muratori, Claudia; Pakhomov, Andrei G.; Xiao, Shu; Pakhomova, Olga N.

    2016-01-01

    Previous studies reported a delayed increase of sensitivity to electroporation (termed “electrosensitization”) in mammalian cells that had been subjected to electroporation. Electrosensitization facilitated membrane permeabilization and reduced survival in cell suspensions when the electric pulse treatments were split in fractions. The present study was aimed to visualize the effect of sensitization and establish its utility for cell ablation. We used KLN 205 squamous carcinoma cells embedded in an agarose gel and cell spheroids in Matrigel. A local ablation was created by a train of 200 to 600 of 300-ns pulses (50 Hz, 300–600 V) delivered by a two-needle probe with 1-mm inter-electrode distance. In order to facilitate ablation by engaging electrosensitization, the train was split in two identical fractions applied with a 2- to 480-s interval. At 400–600 V (2.9–4.3 kV/cm), the split-dose treatments increased the ablation volume and cell death up to 2–3-fold compared to single-train treatments. Under the conditions tested, the maximum enhancement of ablation was achieved when two fractions were separated by 100 s. The results suggest that engaging electrosensitization may assist in vivo cancer ablation by reducing the voltage or number of pulses required, or by enabling larger inter-electrode distances without losing the ablation efficiency. PMID:26987779

  7. Paracrine interactions between LNCaP prostate cancer cells and bioengineered bone in 3D in vitro culture reflect molecular changes during bone metastasis.

    PubMed

    Sieh, Shirly; Taubenberger, Anna V; Lehman, Melanie L; Clements, Judith A; Nelson, Colleen C; Hutmacher, Dietmar W

    2014-06-01

    As microenvironmental factors such as three-dimensionality and cell-matrix interactions are increasingly being acknowledged by cancer biologists, more complex 3D in vitro models are being developed to study tumorigenesis and cancer progression. To better understand the pathophysiology of bone metastasis, we have established and validated a 3D indirect co-culture model to investigate the paracrine interactions between prostate cancer (PCa) cells and human osteoblasts. Co-culture of the human PCa, LNCaP cells embedded within polyethylene glycol hydrogels with human osteoblasts in the form of a tissue engineered bone construct (TEB), resulted in reduced proliferation of LNCaP cells. LNCaP cells in both monoculture and co-culture were responsive to the androgen analog, R1881, as indicated by an increase in the expression (mRNA and/or protein induction) of androgen-regulated genes including prostate specific antigen and fatty acid synthase. Microarray gene expression analysis further revealed an up-regulation of bone markers and other genes associated with skeletal and vasculature development and a significant activation of transforming growth factor β1 downstream genes in LNCaP cells after co-culture with TEB. LNCaP cells co-cultured with TEB also unexpectedly showed similar changes in classical androgen-responsive genes under androgen-deprived conditions not seen in LNCaP monocultures. The molecular changes of LNCaP cells after co-culturing with TEBs suggest that osteoblasts exert a paracrine effect that may promote osteomimicry and modulate the expression of androgen-responsive genes in LNCaP cells. Taken together, we have presented a novel 3D in vitro model that allows the study of cellular and molecular changes occurring in PCa cells and osteoblasts that are relevant to metastatic colonization of bone. This unique in vitro model could also facilitate cancer biologists to dissect specific biological hypotheses via extensive genomic or proteomic assessments to

  8. Automated torso organ segmentation from 3D CT images using conditional random field

    NASA Astrophysics Data System (ADS)

    Nimura, Yukitaka; Hayashi, Yuichiro; Kitasaka, Takayuki; Misawa, Kazunari; Mori, Kensaku

    2016-03-01

    This paper presents a segmentation method for torso organs using conditional random field (CRF) from medical images. A lot of methods have been proposed to enable automated extraction of organ regions from volumetric medical images. However, it is necessary to adjust empirical parameters of them to obtain precise organ regions. In this paper, we propose an organ segmentation method using structured output learning which is based on probabilistic graphical model. The proposed method utilizes CRF on three-dimensional grids as probabilistic graphical model and binary features which represent the relationship between voxel intensities and organ labels. Also we optimize the weight parameters of the CRF using stochastic gradient descent algorithm and estimate organ labels for a given image by maximum a posteriori (MAP) estimation. The experimental result revealed that the proposed method can extract organ regions automatically using structured output learning. The error of organ label estimation was 6.6%. The DICE coefficients of right lung, left lung, heart, liver, spleen, right kidney, and left kidney are 0.94, 0.92, 0.65, 0.67, 0.36, 0.38, and 0.37, respectively.

  9. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines

    PubMed Central

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-01-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  10. Treatment Paradigms for Retinal and Macular Diseases Using 3-D Retina Cultures Derived From Human Reporter Pluripotent Stem Cell Lines.

    PubMed

    Kaewkhaw, Rossukon; Swaroop, Manju; Homma, Kohei; Nakamura, Jutaro; Brooks, Matthew; Kaya, Koray Dogan; Chaitankar, Vijender; Michael, Sam; Tawa, Gregory; Zou, Jizhong; Rao, Mahendra; Zheng, Wei; Cogliati, Tiziana; Swaroop, Anand

    2016-04-01

    We discuss the use of pluripotent stem cell lines carrying fluorescent reporters driven by retinal promoters to derive three-dimensional (3-D) retina in culture and how this system can be exploited for elucidating human retinal biology, creating disease models in a dish, and designing targeted drug screens for retinal and macular degeneration. Furthermore, we realize that stem cell investigations are labor-intensive and require extensive resources. To expedite scientific discovery by sharing of resources and to avoid duplication of efforts, we propose the formation of a Retinal Stem Cell Consortium. In the field of vision, such collaborative approaches have been enormously successful in elucidating genetic susceptibility associated with age-related macular degeneration. PMID:27116668

  11. Optimization and comparison of two different 3D culture methods to prepare cell aggregates as a bioink for organ printing.

    PubMed

    Imani, Rana; Hojjati Emami, Shahriar; Fakhrzadeh, Hossein; Baheiraei, Nafiseh; Sharifi, Ali M

    2012-04-01

    The ultimate goal of tissue engineering is to design and fabricate functional human tissues that are similar to natural cells and are capable of regeneration. Preparation of cell aggregates is one of the important steps in 3D tissue engineering technology, particularly in organ printing. Two simple methods, hanging drop (HD) and conical tube (CT) were utilized to prepare cell aggregates. The size and viability of the aggregates obtained at different initial cell densities and pre-culture duration were compared. The proliferative ability of the cell aggregates and their ability to spread in culture plates were also investigated. In both methods, the optimum average size of the aggregates was less than 500 microm. CT aggregates were smaller than HD aggregates. 5,000 cells per drop HD aggregates showed a marked ability to attach and spread on the culture surface. The proliferative ability reduced when the initial cell density was increased. Comparing these methods, we found that the HD method having better size controlling ability as well as enhanced ability to maintain higher rates of viability, spreading, and proliferation. In conclusion, smaller HD aggregates might be a suitable choice as building blocks for making bioink particles in bioprinting technique.

  12. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    PubMed

    Broutier, Laura; Andersson-Rolf, Amanda; Hindley, Christopher J; Boj, Sylvia F; Clevers, Hans; Koo, Bon-Kyoung; Huch, Meritxell

    2016-09-01

    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol. PMID:27560176

  13. Culture and establishment of self-renewing human and mouse adult liver and pancreas 3D organoids and their genetic manipulation.

    PubMed

    Broutier, Laura; Andersson-Rolf, Amanda; Hindley, Christopher J; Boj, Sylvia F; Clevers, Hans; Koo, Bon-Kyoung; Huch, Meritxell

    2016-09-01

    Adult somatic tissues have proven difficult to expand in vitro, largely because of the complexity of recreating appropriate environmental signals in culture. We have overcome this problem recently and developed culture conditions for adult stem cells that allow the long-term expansion of adult primary tissues from small intestine, stomach, liver and pancreas into self-assembling 3D structures that we have termed 'organoids'. We provide a detailed protocol that describes how to grow adult mouse and human liver and pancreas organoids, from cell isolation and long-term expansion to genetic manipulation in vitro. Liver and pancreas cells grow in a gel-based extracellular matrix (ECM) and a defined medium. The cells can self-organize into organoids that self-renew in vitro while retaining their tissue-of-origin commitment, genetic stability and potential to differentiate into functional cells in vitro (hepatocytes) and in vivo (hepatocytes and endocrine cells). Genetic modification of these organoids opens up avenues for the manipulation of adult stem cells in vitro, which could facilitate the study of human biology and allow gene correction for regenerative medicine purposes. The complete protocol takes 1-4 weeks to generate self-renewing 3D organoids and to perform genetic manipulation experiments. Personnel with basic scientific training can conduct this protocol.

  14. Collagen esterification enhances the function and survival of pancreatic β cells in 2D and 3D culture systems.

    PubMed

    Ko, Jae Hyung; Kim, Yang Hee; Jeong, Seong Hee; Lee, Song; Park, Si-Nae; Shim, In Kyong; Kim, Song Cheol

    2015-08-01

    Collagen, one of the most important components of the extracellular matrix (ECM), may play a role in the survival of pancreatic islet cells. In addition, chemical modifications that change the collagen charge profile to a net positive charge by esterification have been shown to increase the adhesion and proliferation of various cell types. The purpose of this study was to characterize and compare the effects of native collagen (NC) and esterified collagen (EC) on β cell function and survival. After isolation by the collagenase digestion technique, rat islets were cultured with NC and EC in 2 dimensional (2D) and 3 dimensional (3D) environments for a long-term duration in vitro. The cells were assessed for islet adhesion, morphology, viability, glucose-induced insulin secretion, and mRNA expression of glucose metabolism-related genes, and visualized by scanning electron microscopy (SEM). Islet cells attached tightly in the NC group, but islet cell viability was similar in both the NC and EC groups. Glucose-stimulated insulin secretion was higher in the EC group than in the NC group in both 2D and 3D culture. Furthermore, the mRNA expression levels of glucokinase in the EC group were higher than those in the NC group and were associated with glucose metabolism and insulin secretion. Finally, SEM observation confirmed that islets had more intact component cells on EC sponges than on NC sponges. These results indicate that modification of collagen may offer opportunities to improve function and viability of islet cells.

  15. Differentiation capacity and maintenance of differentiated phenotypes of human mesenchymal stromal cells cultured on two distinct types of 3D polymeric scaffolds.

    PubMed

    Leferink, A M; Santos, D; Karperien, M; Truckenmüller, R K; van Blitterswijk, C A; Moroni, L

    2015-12-01

    Many studies have shown the influence of soluble factors and material properties on the differentiation capacity of mesenchymal stromal cells (MSCs) cultured as monolayers. These types of two-dimensional (2D) studies can be used as simplified models to understand cell processes related to stem cell sensing and mechano-transduction in a three-dimensional (3D) context. For several other mechanisms such as cell-cell signaling, cell proliferation and cell morphology, it is well-known that cells behave differently on a planar surface compared to cells in 3D environments. In classical tissue engineering approaches, a combination of cells, 3D scaffolds and soluble factors are considered as the key ingredients for the generation of mechanically stable 3D tissue constructs. However, when MSCs are used for tissue engineering strategies, little is known about the maintenance of their differentiation potential in 3D scaffolds after the removal of differentiation soluble factors. In this study, the differentiation potential of human MSCs (hMSCs) into the chondrogenic and osteogenic lineages on two distinct 3D scaffolds, additive manufactured electrospun scaffolds, was assessed and compared to conventional 2D culture. Human MSCs cultured in the presence of soluble factors in 3D showed to differentiate to the same extent as hMSCs cultured as 2D monolayers or as scaffold-free pellets, indicating that the two scaffolds do not play a consistent role in the differentiation process. In the case of phenotypic changes, the achieved differentiated phenotype was not maintained after the removal of soluble factors, suggesting that the plasticity of hMSCs is retained in 3D cell culture systems. This finding can have implications for future tissue engineering approaches in which the validation of hMSC differentiation on 3D scaffolds will not be sufficient to ensure the maintenance of the functionality of the cells in the absence of appropriate differentiation signals. PMID:26566169

  16. A 3D Alzheimer's disease culture model and the induction of P21-activated kinase mediated sensing in iPSC derived neurons.

    PubMed

    Zhang, Dawei; Pekkanen-Mattila, Mari; Shahsavani, Mansoureh; Falk, Anna; Teixeira, Ana I; Herland, Anna

    2014-02-01

    The recent progress in stem cell techniques has broadened the horizon for in vitro disease modeling. For desired in vivo like phenotypes, not only correct cell type specification will be critical, the microenvironmental context will be essential to achieve relevant responses. We demonstrate how a three dimensional (3D) culture of stem cell derived neurons can induce in vivo like responses related to Alzheimer's disease, not recapitulated with conventional 2D cultures. To acquire a neural population of cells we differentiated neurons from neuroepithelial stem cells, derived from induced pluripotent stem cells. p21-activated kinase mediated sensing of Aβ oligomers was only possible in the 3D environment. Further, the 3D phenotype showed clear effects on F-actin associated proteins, connected to the disease processes. We propose that the 3D in vitro model has higher resemblance to the AD pathology than conventional 2D cultures and could be used in further studies of the disease. PMID:24290439

  17. The methodology of documenting cultural heritage sites using photogrammetry, UAV, and 3D printing techniques: the case study of Asinou Church in Cyprus

    NASA Astrophysics Data System (ADS)

    Themistocleous, K.; Ioannides, M.; Agapiou, A.; Hadjimitsis, D. G.

    2015-06-01

    As the affordability, reliability and ease-of-use of Unmanned Aerial Vehicles (UAV) advances, the use of aerial surveying for cultural heritage purposes becomes a popular choice, yielding an unprecedented volume of high-resolution, geo-tagged image-sets of historical sites from above. As well, recent developments in photogrammetry technology provide a simple and cost-effective method of generating relatively accurate 3D models from 2D images. These techniques provide a set of new tools for archaeologists and cultural heritage experts to capture, store, process, share, visualise and annotate 3D models in the field. This paper focuses on the methodology used to document the cultural heritage site of Asinou Church in Cyprus using various state of the art techniques, such as UAV, photogrammetry and 3D printing. Hundreds of images of the Asinou Church were taken by a UAV with an attached high resolution, low cost camera. These photographic images were then used to create a digital 3D model and a 3D printer was used to create a physical model of the church. Such a methodology provides archaeologists and cultural heritage experts a simple and cost-effective method of generating relatively accurate 3D models from 2D images of cultural heritage sites.

  18. Formulation and stability evaluation of 3D alginate beads potentially useful for cumulus-oocyte complexes culture.

    PubMed

    Dorati, Rossella; Genta, Ida; Ferrari, Michela; Vigone, Giulia; Merico, Valeria; Garagna, Silvia; Zuccotti, Maurizio; Conti, Bice

    2016-01-01

    Ovarian follicle encapsulation in synthetic or natural matrixes based on biopolymers is potentially a promising approach to in vitro maturation (IVM) process, since it maintains follicle 3D organisation by preventing its flattening and consequent disruption of gap junctions, preserving the functional relationship between oocyte and companion follicle cells. The aim of the work was to optimise physico-chemical parameters of alginate microcapsules for perspective IVM under 3D environments. On this purpose alginate and cross-linking agent concentrations were investigated. Alginate concentration between 0.75% and 0.125% w/w and Mg(2+), Ba(2+), Ca(2+ )at concentration between 100 and 20 mM were tested. Follicle encapsulation was obtained by on purpose modified diffusion setting gelation technique, and evaluated together with beads, chemical and mechanical stability in standard and stressing conditions. Beads permeability was tested towards albumin, fetuin, pyruvate, glucose, pullulan. Results demonstrated that 0.25% alginate cross-linked in 100 mM CaCl2 beads is suitable to follicle encapsulation. PMID:26791322

  19. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins

    PubMed Central

    Edmondson, Rasheena; Adcock, Audrey F.; Yang, Liju

    2016-01-01

    This study investigated the effects of matrix on the behaviors of 3D-cultured cells of two prostate cancer cell lines, LNCaP and DU145. Two biologically-derived matrices, Matrigel and Cultrex BME, and one synthetic matrix, the Alvetex scaffold, were used to culture the cells. The cell proliferation rate, cellular response to anti-cancer drugs, and expression levels of proteins associated with drug sensitivity/resistance were examined and compared amongst the 3D-cultured cells on the three matrices and 2D-cultured cells. The cellular responses upon treatment with two common anti-cancer drugs, Docetaxel and Rapamycin, were examined. The expressions of epidermal growth factor receptor (EGFR) and β-III tubulin in DU145 cells and p53 in LNCaP cells were examined. The results showed that the proliferation rates of cells cultured on the three matrices varied, especially between the synthetic matrix and the biologically-derived matrices. The drug responses and the expressions of drug sensitivity-associated proteins differed between cells on various matrices as well. Among the 3D cultures on the three matrices, increased expression of β-III tubulin in DU145 cells was correlated with increased resistance to Docetaxel, and decreased expression of EGFR in DU145 cells was correlated with increased sensitivity to Rapamycin. Increased expression of a p53 dimer in 3D-cultured LNCaP cells was correlated with increased resistance to Docetaxel. Collectively, the results showed that the matrix of 3D cell culture models strongly influences cellular behaviors, which highlights the imperative need to achieve standardization of 3D cell culture technology in order to be used in drug screening and cell biology studies. PMID:27352049

  20. Influence of Matrices on 3D-Cultured Prostate Cancer Cells' Drug Response and Expression of Drug-Action Associated Proteins.

    PubMed

    Edmondson, Rasheena; Adcock, Audrey F; Yang, Liju

    2016-01-01

    This study investigated the effects of matrix on the behaviors of 3D-cultured cells of two prostate cancer cell lines, LNCaP and DU145. Two biologically-derived matrices, Matrigel and Cultrex BME, and one synthetic matrix, the Alvetex scaffold, were used to culture the cells. The cell proliferation rate, cellular response to anti-cancer drugs, and expression levels of proteins associated with drug sensitivity/resistance were examined and compared amongst the 3D-cultured cells on the three matrices and 2D-cultured cells. The cellular responses upon treatment with two common anti-cancer drugs, Docetaxel and Rapamycin, were examined. The expressions of epidermal growth factor receptor (EGFR) and β-III tubulin in DU145 cells and p53 in LNCaP cells were examined. The results showed that the proliferation rates of cells cultured on the three matrices varied, especially between the synthetic matrix and the biologically-derived matrices. The drug responses and the expressions of drug sensitivity-associated proteins differed between cells on various matrices as well. Among the 3D cultures on the three matrices, increased expression of β-III tubulin in DU145 cells was correlated with increased resistance to Docetaxel, and decreased expression of EGFR in DU145 cells was correlated with increased sensitivity to Rapamycin. Increased expression of a p53 dimer in 3D-cultured LNCaP cells was correlated with increased resistance to Docetaxel. Collectively, the results showed that the matrix of 3D cell culture models strongly influences cellular behaviors, which highlights the imperative need to achieve standardization of 3D cell culture technology in order to be used in drug screening and cell biology studies. PMID:27352049

  1. Coupling curvature-dependent and shear stress-stimulated neotissue growth in dynamic bioreactor cultures: a 3D computational model of a complete scaffold.

    PubMed

    Guyot, Y; Papantoniou, I; Luyten, F P; Geris, L

    2016-02-01

    The main challenge in tissue engineering consists in understanding and controlling the growth process of in vitro cultured neotissues toward obtaining functional tissues. Computational models can provide crucial information on appropriate bioreactor and scaffold design but also on the bioprocess environment and culture conditions. In this study, the development of a 3D model using the level set method to capture the growth of a microporous neotissue domain in a dynamic culture environment (perfusion bioreactor) was pursued. In our model, neotissue growth velocity was influenced by scaffold geometry as well as by flow- induced shear stresses. The neotissue was modeled as a homogenous porous medium with a given permeability, and the Brinkman equation was used to calculate the flow profile in both neotissue and void space. Neotissue growth was modeled until the scaffold void volume was filled, thus capturing already established experimental observations, in particular the differences between scaffold filling under different flow regimes. This tool is envisaged as a scaffold shape and bioprocess optimization tool with predictive capacities. It will allow controlling fluid flow during long-term culture, whereby neotissue growth alters flow patterns, in order to provide shear stress profiles and magnitudes across the whole scaffold volume influencing, in turn, the neotissue growth. PMID:26758425

  2. 75 FR 13238 - Special Conditions: McCauley Propeller Systems, Model Propeller 3D15C1401/C80MWX-X

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-03-19

    ...-SC, for McCauley Propeller Systems for model propeller 3D15C1401/C80MWX-X (71 FR 43674). On November... Federal Aviation Administration 14 CFR Part 35 Special Conditions: McCauley Propeller Systems, Model Propeller 3D15C1401/C80MWX-X AGENCY: Federal Aviation Administration (FAA), DOT. ACTION: Notice of...

  3. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions.

    PubMed

    Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua

    2016-08-22

    Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar.

  4. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions.

    PubMed

    Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua

    2016-01-01

    Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar. PMID:27556469

  5. A Dielectric-Filled Waveguide Antenna Element for 3D Imaging Radar in High Temperature and Excessive Dust Conditions

    PubMed Central

    Xu, Ding; Li, Zhiping; Chen, Xianzhong; Wang, Zhengpeng; Wu, Jianhua

    2016-01-01

    Three-dimensional information of the burden surface in high temperature and excessive dust industrial conditions has been previously hard to obtain. This paper presents a novel microstrip-fed dielectric-filled waveguide antenna element which is resistant to dust and high temperatures. A novel microstrip-to-dielectric-loaded waveguide transition was developed. A cylinder and cuboid composite structure was employed at the terminal of the antenna element, which improved the return loss performance and reduced the size. The proposed antenna element was easily integrated into a T-shape multiple-input multiple-output (MIMO) imaging radar system and tested in both the laboratory environment and real blast furnace environment. The measurement results show that the proposed antenna element works very well in industrial 3D imaging radar. PMID:27556469

  6. Conference Report The State of the Art of 3D Cell Cultures DECHEMA Conference in Freiburg on April 19-21, 2016.

    PubMed

    Heinzelmann, Elsbeth

    2016-01-01

    Where are we today with 3D cell cultures as predictive, physiologically relevant model systems? Are there any successful applications, innovative developments or yawning gaps? The DECHEMA April conference assembled international experts to take a look behind the scenes and reveal relevant disease models, applications of 3D models in clinical practice and industry, predictive cell models for compound characterization and enabling technologies. PMID:27363380

  7. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro. PMID:24734552

  8. Decrease of reactive oxygen species-related biomarkers in the tissue-mimic 3D spheroid culture of human lung cells exposed to zinc oxide nanoparticles.

    PubMed

    Kim, Eunjoo; Jeon, Won Bae; Kim, Soonhyun; Lee, Soo-Keun

    2014-05-01

    Common 2-dimensional (2D) cell cultures do not adequately represent cell-cell and cell-matrix signaling and substantially different diffusion/transport pathways. To obtain tissue-mimic information on nanoparticle toxicity from in vitro cell tests, we used a 3-dimensional (3D) culture of human lung cells (A549) prepared with elastin-like peptides modified with an arginine-glycine-aspartate motif. The 3D cells showed different cellular phenotypes, gene expression profiles, and functionalities compared to the 2D cultured cells. In gene array analysis, 3D cells displayed the induced extracellular matrix (ECM)-related biological functions such as cell-to-cell signaling and interaction, cellular function and maintenance, connective tissue development and function, molecular transport, and tissue morphology. Additionally, the expression of ECM-related molecules, such as laminin, fibronectin, and insulin-like growth factor binding protein 3 (IGFBP3), was simultaneously induced at both mRNA and protein levels. When 0.08-50 microg/ml zinc oxide nanoparticles (ZnO-NPs) were administered to 2D and 3D cells, the cell proliferation was not significantly changed. The level of molecular markers for oxidative stress, such as superoxide dismutase (SOD), Bcl-2, ATP synthase, and Complex IV (cytochrome C oxidase), was significantly reduced in 2D culture when exposed to 10 microg/ml ZnO-NPs, but no significant decrease was detected in 3D culture when exposed to the same concentration of ZnO-NPs. In conclusion, the tissue-mimic phenotype and functionality of 3D cells could be achieved through the elevated expression of ECM components. The 3D cells were expected to help to better predict the nanotoxicity of ZnO-NPs at tissue-level by increased cell-cell and cell-ECM adhesion and signaling. The tissue-mimic morphology would also be useful to simulate the diffusion/transport of the nanoparticles in vitro.

  9. 3D simulation as a tool for improving the safety culture during remediation work at Andreeva Bay.

    PubMed

    Chizhov, K; Sneve, M K; Szőke, I; Mazur, I; Mark, N K; Kudrin, I; Shandala, N; Simakov, A; Smith, G M; Krasnoschekov, A; Kosnikov, A; Kemsky, I; Kryuchkov, V

    2014-12-01

    Andreeva Bay in northwest Russia hosts one of the former coastal technical bases of the Northern Fleet. Currently, this base is designated as the Andreeva Bay branch of Northwest Center for Radioactive Waste Management (SevRAO) and is a site of temporary storage (STS) for spent nuclear fuel (SNF) and other radiological waste generated during the operation and decommissioning of nuclear submarines and ships. According to an integrated expert evaluation, this site is the most dangerous nuclear facility in northwest Russia. Environmental rehabilitation of the site is currently in progress and is supported by strong international collaboration. This paper describes how the optimization principle (ALARA) has been adopted during the planning of remediation work at the Andreeva Bay STS and how Russian-Norwegian collaboration greatly contributed to ensuring the development and maintenance of a high level safety culture during this process. More specifically, this paper describes how integration of a system, specifically designed for improving the radiological safety of workers during the remediation work at Andreeva Bay, was developed in Russia. It also outlines the 3D radiological simulation and virtual reality based systems developed in Norway that have greatly facilitated effective implementation of the ALARA principle, through supporting radiological characterisation, work planning and optimization, decision making, communication between teams and with the authorities and training of field operators. PMID:25254659

  10. 3D simulation as a tool for improving the safety culture during remediation work at Andreeva Bay.

    PubMed

    Chizhov, K; Sneve, M K; Szőke, I; Mazur, I; Mark, N K; Kudrin, I; Shandala, N; Simakov, A; Smith, G M; Krasnoschekov, A; Kosnikov, A; Kemsky, I; Kryuchkov, V

    2014-12-01

    Andreeva Bay in northwest Russia hosts one of the former coastal technical bases of the Northern Fleet. Currently, this base is designated as the Andreeva Bay branch of Northwest Center for Radioactive Waste Management (SevRAO) and is a site of temporary storage (STS) for spent nuclear fuel (SNF) and other radiological waste generated during the operation and decommissioning of nuclear submarines and ships. According to an integrated expert evaluation, this site is the most dangerous nuclear facility in northwest Russia. Environmental rehabilitation of the site is currently in progress and is supported by strong international collaboration. This paper describes how the optimization principle (ALARA) has been adopted during the planning of remediation work at the Andreeva Bay STS and how Russian-Norwegian collaboration greatly contributed to ensuring the development and maintenance of a high level safety culture during this process. More specifically, this paper describes how integration of a system, specifically designed for improving the radiological safety of workers during the remediation work at Andreeva Bay, was developed in Russia. It also outlines the 3D radiological simulation and virtual reality based systems developed in Norway that have greatly facilitated effective implementation of the ALARA principle, through supporting radiological characterisation, work planning and optimization, decision making, communication between teams and with the authorities and training of field operators.

  11. Drug-releasing nano-engineered titanium implants: therapeutic efficacy in 3D cell culture model, controlled release and stability.

    PubMed

    Gulati, Karan; Kogawa, Masakazu; Prideaux, Matthew; Findlay, David M; Atkins, Gerald J; Losic, Dusan

    2016-12-01

    There is an ongoing demand for new approaches for treating localized bone pathologies. Here we propose a new strategy for treatment of such conditions, via local delivery of hormones/drugs to the trauma site using drug releasing nano-engineered implants. The proposed implants were prepared in the form of small Ti wires/needles with a nano-engineered oxide layer composed of array of titania nanotubes (TNTs). TNTs implants were inserted into a 3D collagen gel matrix containing human osteoblast-like, and the results confirmed cell migration onto the implants and their attachment and spread. To investigate therapeutic efficacy, TNTs/Ti wires loaded with parathyroid hormone (PTH), an approved anabolic therapeutic for the treatment of severe bone fractures, were inserted into 3D gels containing osteoblast-like cells. Gene expression studies revealed a suppression of SOST (sclerostin) and an increase in RANKL (receptor activator of nuclear factor kappa-B ligand) mRNA expression, confirming the release of PTH from TNTs at concentrations sufficient to alter cell function. The performance of the TNTs wire implants using an example of a drug needed at relatively higher concentrations, the anti-inflammatory drug indomethacin, is also demonstrated. Finally, the mechanical stability of the prepared implants was tested by their insertion into bovine trabecular bone cores ex vivo followed by retrieval, which confirmed the robustness of the TNT structures. This study provides proof of principle for the suitability of the TNT/Ti wire implants for localized bone therapy, which can be customized to cater for specific therapeutic requirements. PMID:27612777

  12. Optimization of Aqueous Biphasic Tumor Spheroid Microtechnology for Anti-Cancer Drug Testing in 3D Culture

    PubMed Central

    Lemmo, Stephanie; Atefi, Ehsan; Luker, Gary D.; Tavana, Hossein

    2014-01-01

    Tumor spheroids are three-dimensional clusters of cancer cells that exhibit characteristics of poorly perfused tumors and hence present a relevant model for testing the efficacy of anti-cancer compounds. The use of spheroids for drug screening is hindered by technological complexities for high throughput generation of consistent size spheroids individually addressable by drug compounds. Here we present and optimize a simple spheroid technology based on the use of an aqueous two-phase system. Cancer cells confined in a drop of the denser aqueous dextran phase are robotically dispensed into a microwell containing the immersion aqueous polyethylene glycol phase. Cells remain within the drop and form a viable spheroid, without a need for any external stimuli. The size of resulting spheroids is sensitive to volume variations of dispensed drops from the air displacement pipetting head of a commercial liquid handling robot. Therefore, we parametrically optimize the process of dispensing of dextran phase drops. For a given cell density, this optimization reproducibly generates consistent size spheroids in standard 96-well plates. In addition, we evaluate the use of a commercial biochemical assay to examine cellular viability of cancer cell spheroids. Spheroids show a dose-dependent response to cisplatin similar to a monolayer culture. However unlike their two-dimensional counterpart, spheroids exhibit resistance to paclitaxel treatment. This technology, which uses only commercially-available reagents and equipment, can potentially expedite anti-cancer drug discovery. Although the use of robotics makes the ATPS spheroid technology particularly useful for drug screening applications, this approach is compatible with simpler liquid handling techniques such as manual micropipetting and offers a straightforward method of 3D cell culture in research laboratories. PMID:25221631

  13. 2D and 3D Numerical Experiments Assessing the Necessary Conditions for a Plume-fed Asthenosphere

    NASA Astrophysics Data System (ADS)

    Shi, C.; Phipps Morgan, J.; Hasenclever, J.

    2008-12-01

    -fed asthenosphere. We find that in order to create a global sub-oceanic plume-fed asthenosphere: 1) the plume-flux should be more than about 1.2 times the slab-flux; 2) the asthenosphere should be at least 0.5 percent more buoyant than underlying mantle when its viscosity is ~ 10e19 Pa-S. We also vary the location of the plume top from near-ridge to near-trench using dilation elements, the observation is that a counter flow will always form and therefore make a persistent plume-fed asthenosphere when these conditions are satisfied. For the 3D experiments, we choose a different approach than our 2D experiments. This time we allow a real plume form within our domain. For our initial experiments, we place a ridge-centered plume at one corner of the computational region to take advantage of the two resulting symmetry planes that allow us to model the plume with only one fourth the nodes needed for similar resolution for a plume within the interior of the 3D computational region. We use an unstructured grid with high grid resolution within the plume conduit and slab entrainment regions of the box. We will discuss the flow pattern and assess the necessary conditions for a plume-fed asthenosphere in these 3D runs.

  14. Leishmania amazonensis promastigotes in 3D Collagen I culture: an in vitro physiological environment for the study of extracellular matrix and host cell interactions

    PubMed Central

    Rodrigues, Juliany C.F.; Viana, Nathan B.; Pontes, Bruno; Pereira, Camila F.A.; Silva-Filho, Fernando C.

    2014-01-01

    Leishmania amazonensis is the causative agent of American cutaneous leishmaniasis, an important neglected tropical disease. Once Leishmania amazonensis is inoculated into the human host, promastigotes are exposed to the extracellular matrix (ECM) of the dermis. However, little is known about the interaction between the ECM and Leishmania promastigotes. In this study we established L. amazonensis promastigote culture in a three-dimensional (3D) environment mainly composed of Collagen I (COL I). This 3D culture recreates in vitro some aspects of the human host infection site, enabling the study of the interaction mechanisms of L. amazonensis with the host ECM. Promastigotes exhibited “freeze and run” migration in the 3D COL I matrix, which is completely different from the conventional in vitro swimming mode of migration. Moreover, L. amazonensis promastigotes were able to invade, migrate inside, and remodel the 3D COL I matrix. Promastigote trans-matrix invasion and the freeze and run migration mode were also observed when macrophages were present in the matrix. At least two classes of proteases, metallo- and cysteine proteases, are involved in the 3D COL I matrix degradation caused by Leishmania. Treatment with a mixture of protease inhibitors significantly reduced promastigote invasion and migration through this matrix. Together our results demonstrate that L. amazonensis promastigotes release proteases and actively remodel their 3D environment, facilitating their migration. This raises the possibility that promastigotes actively interact with their 3D environment during the search for their cellular “home”—macrophages. Supporting this hypothesis, promastigotes migrated faster than macrophages in a novel 3D co-culture model. PMID:24765565

  15. Novel MAPK-dependent and -independent tubulogenes identified via microarray analysis of 3D-cultured Madin-Darby canine kidney cells.

    PubMed

    Chacon-Heszele, Maria F; Zuo, Xiaofeng; Hellman, Nathan E; McKenna, Sarah; Choi, Soo Young; Huang, Liwei; Tobias, John W; Park, Kwon Moo; Lipschutz, Joshua H

    2014-05-01

    Cystogenesis and tubulogenesis are basic building blocks for many epithelial organs, including the kidney. Most researchers have used two-dimensional (2D) cell culture to investigate signaling pathways downstream of hepatocyte growth factor (HGF). We hypothesize that three-dimensional (3D) collagen-grown Madin-Darby canine kidney (MDCK) cells, which form cysts and then tubulate in response to HGF, are a much more in vivo-like system for the identification of novel tubulogenes. With the use of a canine microarray containing over 20,000 genes, 2,417 genes were identified as potential tubulogenes that were differentially regulated, exclusively in 3D-grown MDCK cells. Among these, 840 were dependent on MAPK signaling. Importantly, this work shows that many putative tubulogenes, previously identified via microarray analysis of 2D cultures, including by us, do not change in 3D culture and vice versa. The use of a 3D-culture system allowed for the identification of novel MAPK-dependent and -independent genes that regulate early renal tubulogenesis in vitro, e.g., matrix metalloproteinase 1 (MMP1). Knockdown of MMP1 led to defects in cystogenesis and tubulogenesis in 3D-grown MDCK cells, most likely due to problems establishing normal polarity. We suggest that data obtained from 2D cultures, even those using MDCK cells treated with HGF, should not be automatically extrapolated to factors important for cystogenesis and tubulogenesis. Instead, 3D culture, which more closely replicates the biological environment and is therefore a more accurate model for identifying tubulogenes, is preferred. Results from the present analysis will be used to build a more accurate model of the signaling pathways that control cystogenesis and tubulogenesis.

  16. Novel MAPK-dependent and -independent tubulogenes identified via microarray analysis of 3D-cultured Madin-Darby canine kidney cells

    PubMed Central

    Chacon-Heszele, Maria F.; Zuo, Xiaofeng; Hellman, Nathan E.; McKenna, Sarah; Choi, Soo Young; Huang, Liwei; Tobias, John W.; Park, Kwon Moo

    2014-01-01

    Cystogenesis and tubulogenesis are basic building blocks for many epithelial organs, including the kidney. Most researchers have used two-dimensional (2D) cell culture to investigate signaling pathways downstream of hepatocyte growth factor (HGF). We hypothesize that three-dimensional (3D) collagen-grown Madin-Darby canine kidney (MDCK) cells, which form cysts and then tubulate in response to HGF, are a much more in vivo-like system for the identification of novel tubulogenes. With the use of a canine microarray containing over 20,000 genes, 2,417 genes were identified as potential tubulogenes that were differentially regulated, exclusively in 3D-grown MDCK cells. Among these, 840 were dependent on MAPK signaling. Importantly, this work shows that many putative tubulogenes, previously identified via microarray analysis of 2D cultures, including by us, do not change in 3D culture and vice versa. The use of a 3D-culture system allowed for the identification of novel MAPK-dependent and -independent genes that regulate early renal tubulogenesis in vitro, e.g., matrix metalloproteinase 1 (MMP1). Knockdown of MMP1 led to defects in cystogenesis and tubulogenesis in 3D-grown MDCK cells, most likely due to problems establishing normal polarity. We suggest that data obtained from 2D cultures, even those using MDCK cells treated with HGF, should not be automatically extrapolated to factors important for cystogenesis and tubulogenesis. Instead, 3D culture, which more closely replicates the biological environment and is therefore a more accurate model for identifying tubulogenes, is preferred. Results from the present analysis will be used to build a more accurate model of the signaling pathways that control cystogenesis and tubulogenesis. PMID:24573390

  17. An Application for Cultural Heritage in Erasmus Placement. Surveys and 3d Cataloging Archaeological Finds in MÉRIDA (spain)

    NASA Astrophysics Data System (ADS)

    Barba, S.; Fiorillo, F.; Ortiz Coder, P.; D'Auria, S.; De Feo, E.

    2011-09-01

    Man has always had the need to live with his past, with its places and its artefacts. The reconstructions, the economical changes, the urbanization and its speculations have devastated whole cities, changed the faces of their historical centers, changed the relationship between the new and the old. Also the millenarian 'rest' of the archaeological findings, and therefore the respect towards those ancient civilizations, has been troubled. Our continent is rich in masterpieces that the modern man are not able to protect and pass on to the future, it is commonplace to observe that the modern `civilization' has cemented and suffocated the ancient city of Pompeii, or even worse, failed to protected it. Walking in the archaeological area of Paestum it can be noticed how just sixty years ago, no one had the slightest concern of fencing the amphitheatre and the Roman forum, or entire houses and shops, to lay a carpet of tar or simple to build constructions completely inferior compared to those majestic Greek temples. The engineers and the architects should be held responsible for this as based on their scientific and humanistic sensibility; they should bring together the man with his surroundings in the complete respects of the historical heritage. The interest in ancient began to change nearly three decades ago since it was realized that the "Cultural Heritage" is a major tourist attraction and, if properly managed and used, it can be an economical cornerstone. Today, thanks to survey and the 3D graphics, which provide powerful new tools, we are witnessing a new and real need for the conservation, cataloguing and enhancement as a way to revive our archaeological sites. As part of a major laboratory project, artefacts from the Roman period (I and II century b.C.), found in the Spanish city of Mérida, declared World Heritage by UNESCO in 1993, were acquired with a 3D laser scanner VIVID 910, and then catalogued. Based on these brief comments we wanted to direct the work

  18. In situ-forming click-crosslinked gelatin based hydrogels for 3D culture of thymic epithelial cells.

    PubMed

    Truong, Vinh X; Hun, Michael L; Li, Fanyi; Chidgey, Ann P; Forsythe, John S

    2016-07-21

    Hydrogels prepared from naturally derived gelatin can provide a suitable environment for cell attachment and growth, making them favourable materials in tissue engineering. However, physically crosslinked gelatin hydrogels are not stable under physiological conditions while chemical crosslinking of gelatin by radical polymerization may be harmful to cells. In this study, we attached the norbornene functional group to gelatin, which was subsequently crosslinked with a polyethylene glycol (PEG) linker via the nitrile oxide-norbornene click reaction. The rapid crosslinking process allows the hydrogel to be formed within minutes of mixing the polymer solutions under physiological conditions, allowing the gels to be used as injectable materials. The hydrogels properties including mechanical strength, swelling and degradation, can be tuned by changing either the ratio of the reacting groups or the total concentration of the polymer precursors. Murine embryonic fibroblastic cells cultured in soft gels (2 wt% of gelatin and 1 wt% of PEG linker) demonstrated high cell viability as well as similar phenotypic profiles (PDGFRα and MTS15) to Matrigel cultures over 5 days. Thymic epithelial cell and fibroblast co-cultures produced epithelial colonies in these gels following 7 days incubation. These studies demonstrate that gelatin based hydrogels, prepared using "click" crosslinking, provide a robust cell culture platform with retained benefits of the gelatin material, and are therefore suitable for use in various tissue engineering applications. PMID:27217071

  19. RCCS Bioreactor-Based Modelled Microgravity Induces Significant Changes on In Vitro 3D Neuroglial Cell Cultures

    PubMed Central

    Mazzoleni, Giovanna; Fanò-Illic, Giorgio; Mariggiò, Maria A.

    2015-01-01

    We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions. PMID:25654124

  20. RCCS bioreactor-based modelled microgravity induces significant changes on in vitro 3D neuroglial cell cultures.

    PubMed

    Morabito, Caterina; Steimberg, Nathalie; Mazzoleni, Giovanna; Guarnieri, Simone; Fanò-Illic, Giorgio; Mariggiò, Maria A

    2015-01-01

    We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions. PMID:25654124

  1. RCCS bioreactor-based modelled microgravity induces significant changes on in vitro 3D neuroglial cell cultures.

    PubMed

    Morabito, Caterina; Steimberg, Nathalie; Mazzoleni, Giovanna; Guarnieri, Simone; Fanò-Illic, Giorgio; Mariggiò, Maria A

    2015-01-01

    We propose a human-derived neuro-/glial cell three-dimensional in vitro model to investigate the effects of microgravity on cell-cell interactions. A rotary cell-culture system (RCCS) bioreactor was used to generate a modelled microgravity environment, and morphofunctional features of glial-like GL15 and neuronal-like SH-SY5Y cells in three-dimensional individual cultures (monotypic aggregates) and cocultures (heterotypic aggregates) were analysed. Cell survival was maintained within all cell aggregates over 2 weeks of culture. Moreover, compared to cells as traditional static monolayers, cell aggregates cultured under modelled microgravity showed increased expression of specific differentiation markers (e.g., GL15 cells: GFAP, S100B; SH-SY5Y cells: GAP43) and modulation of functional cell-cell interactions (e.g., N-CAM and Cx43 expression and localisation). In conclusion, this culture model opens a wide range of specific investigations at the molecular, biochemical, and morphological levels, and it represents an important tool for in vitro studies into dynamic interactions and responses of nervous system cell components to microgravity environmental conditions.

  2. Characterization of water content dynamics and tracer breakthrough by 3-D electrical resistivity tomography (ERT) under transient unsaturated conditions

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee D.

    2015-01-01

    Characterization of preferential flow and transport is still a major challenge but may be improved employing noninvasive, tomographic methods. In this study, 3-D time lapse electrical resistivity tomography (ERT) was employed during infiltration on an undisturbed, unsaturated soil core in a laboratory lysimeter. A tracer breakthrough was conducted during transient conditions by applying a series of short-term infiltrations, simulating natural precipitation events. The electrical response was quantitatively validated using data from a multicompartment suction sampler. Water content probes were also installed for ground-truthing of ERT responses. Water content variations associated with an infiltration front dominated the electrical response observed during individual short-term infiltration events, permitting analysis of water content dynamics from ERT data. We found that, instead of the application of an uncertain petrophysical function, shape measures of the electrical conductivity response might be used for constraining hydrological models. Considering tracer breakthroughs, the ERT observed voxel responses from time lapse tomograms at constant water contents in between infiltration events were used to quantitatively characterize the breakthrough curve. Shape parameters of the breakthrough derived from ERT, such as average velocity, were highly correlated with the shape parameters derived from local tracer breakthrough curves observed in the compartments of the suction plate. The study demonstrates that ERT can provide reliable quantitative information on both, tracer breakthroughs and water content variations under the challenging conditions of variable background electrical conductivity of the pore solution and non steady-state infiltration.

  3. Nanoparticle-mediated siRNA delivery assessed in a 3D co-culture model simulating prostate cancer bone metastasis.

    PubMed

    Fitzgerald, Kathleen A; Guo, Jianfeng; Raftery, Rosanne M; Castaño, Irene Mencía; Curtin, Caroline M; Gooding, Matt; Darcy, Raphael; O' Brien, Fergal J; O' Driscoll, Caitriona M

    2016-09-25

    siRNA has emerged as a potential therapeutic for the treatment of prostate cancer but effective delivery remains a major barrier to its clinical application. This study aimed to develop and characterise a 3D in vitro co-culture model to simulate prostate cancer bone metastasis and to assess the ability of the model to investigate nanoparticle-mediated siRNA delivery and gene knockdown. PC3 or LNCaP prostate cancer cells were co-cultured with hFOB 1.19 osteoblast cells in 2D on plastic tissue culture plates and in 3D on collagen scaffolds mimicking the bone microenvironment. To characterise the co-culture model, cell proliferation, enzyme secretion and the utility of two different gene delivery vectors to mediate siRNA uptake and gene knockdown were assessed. Cell proliferation was reduced by∼50% by day 7 in the co-culture system relative to monoculture (PC3 and LNCaP co-cultures, in 2D and 3D) and an enhanced level of MMP9 (a marker of bone metastasis) was secreted into the media (1.2-4-fold increase depending on the co-culture system). A cationic cyclodextrin gene delivery vector proved significantly less toxic in the co-culture system relative to the commercially available vector Lipofectamine 2000(®). In addition, knockdown of both the GAPDH gene (minimum 15%) and RelA subunit of the NF-κB transcription factor (minimum 20%) was achieved in 2D and 3D cell co-cultures. Results indicate that the prostate cancer-osteoblast in vitro co-culture model was more physiologically relevant vs the monoculture. This model has the potential to help improve the design and efficacy of gene delivery formulations, to more accurately predict in vivo performance and, therefore, to reduce the risk of product failure in late-stage clinical development. PMID:27492023

  4. High-Throughput 3D Screening Reveals Differences in Drug Sensitivities between Culture Models of JIMT1 Breast Cancer Cells

    PubMed Central

    Fey, Vidal; Mpindi, John-Patrick; Kleivi Sahlberg, Kristine; Kallioniemi, Olli; Perälä, Merja

    2013-01-01

    The traditional method for studying cancer in vitro is to grow immortalized cancer cells in two-dimensional monolayers on plastic. However, many cellular features are impaired in these artificial conditions, and large changes in gene expression compared to tumors have been reported. Three-dimensional cell culture models have become increasingly popular and are suggested to be better models than two-dimensional monolayers due to improved cell-to-cell contact and structures that resemble in vivo architecture. The aim of this study was to develop a simple high-throughput three-dimensional drug screening method and to compare drug responses in JIMT1 breast cancer cells when grown in two dimensions, in poly(2-hydroxyethyl methacrylate) induced anchorage-independent three-dimensional models, and in Matrigel three-dimensional cell culture models. We screened 102 compounds with multiple concentrations and biological replicates for their effects on cell proliferation. The cells were either treated immediately upon plating, or they were allowed to grow in three-dimensional cultures for 4 days before the drug treatment. Large variations in drug responses were observed between the models indicating that comparisons of culture model-influenced drug sensitivities cannot be made based on the effects of a single drug. However, we show with the 63 most prominent drugs that, in general, JIMT1 cells grown on Matrigel were significantly more sensitive to drugs than cells grown in two-dimensional cultures, while the responses of cells grown in poly(2-hydroxyethyl methacrylate) resembled those of the two-dimensional cultures. Furthermore, comparing the gene expression profiles of the cell culture models to xenograft tumors indicated that cells cultured in Matrigel and as xenografts most closely resembled each other. In this study, we also suggest that three-dimensional cultures can provide a platform for systematic experimentation of larger compound collections in a high-throughput mode

  5. 3D analytical investigation of melting at lower mantle conditions in the laser-heated diamond anvil cel

    NASA Astrophysics Data System (ADS)

    Nabiei, F.; Cantoni, M.; Badro, J.; Dorfman, S. M.; Gaal, R.; Piet, H.; Gillet, P.

    2015-12-01

    The diamond anvil cell is a unique tool to study materials under static pressures up to several hundreds of GPa. It is possible to generate temperatures as high as several thousand degrees in the diamond anvil cell by laser heating. This allows us to achieve deep mantle conditions in the laser-heated diamond anvil cell (LHDAC). The small heated volume is surrounded by thermally conductive diamond anvils results in high temperature gradients which affect phase transformation and chemical distribution in the LH-DAC. Analytical characterization of samples in three dimensions is essential to fully understand phase assemblages and equilibrium in LHDAC. In this study we used San Carlos olivine as a starting material as a simple proxy to deep mantle composition. Three samples were melted at ~3000 K and at ~45 GPa for three different durations ranging from 1 to 6 minutes; two other samples were melted at 30 GPa and 70 GPa. All samples were then sliced by focused ion beam (FIB). From each slice, an electron image and energy dispersive X-ray (EDX) map were acquired by scanning electron microscope (SEM) in the dual beam FIB instrument. These slices were collected on one half of the heated area in each sample, from which we obtained 3D elemental and phase distribution. The other half of the heated area was used to extract a 100 nm thick section for subsequent analysis by analytical transmission electron microscopy (TEM) to obtain diffraction patterns and high resolution EDX maps. 3D reconstruction of SEM EDX results shows at least four differentiated regions in the heated area for all samples. The exact Fe and Mg compositions mentioned below are an example of the sample melted at 45 GPa for 6 minutes. The bulk of the heated are is surrounded by ferropericlase (Mg0.92, Fe0.08)O shell (Fp). Inside this shell we find a thick region of (Mg,Fe)SiO3 perovskite-structured bridgmanite (Brg) coexisting with Fp. In the center lies a Fe-rich core which is surrounded by magnesiow

  6. PCaAnalyser: a 2D-image analysis based module for effective determination of prostate cancer progression in 3D culture.

    PubMed

    Hoque, Md Tamjidul; Windus, Louisa C E; Lovitt, Carrie J; Avery, Vicky M

    2013-01-01

    Three-dimensional (3D) in vitro cell based assays for Prostate Cancer (PCa) research are rapidly becoming the preferred alternative to that of conventional 2D monolayer cultures. 3D assays more precisely mimic the microenvironment found in vivo, and thus are ideally suited to evaluate compounds and their suitability for progression in the drug discovery pipeline. To achieve the desired high throughput needed for most screening programs, automated quantification of 3D cultures is required. Towards this end, this paper reports on the development of a prototype analysis module for an automated high-content-analysis (HCA) system, which allows for accurate and fast investigation of in vitro 3D cell culture models for PCa. The Java based program, which we have named PCaAnalyser, uses novel algorithms that allow accurate and rapid quantitation of protein expression in 3D cell culture. As currently configured, the PCaAnalyser can quantify a range of biological parameters including: nuclei-count, nuclei-spheroid membership prediction, various function based classification of peripheral and non-peripheral areas to measure expression of biomarkers and protein constituents known to be associated with PCa progression, as well as defining segregate cellular-objects effectively for a range of signal-to-noise ratios. In addition, PCaAnalyser architecture is highly flexible, operating as a single independent analysis, as well as in batch mode; essential for High-Throughput-Screening (HTS). Utilising the PCaAnalyser, accurate and rapid analysis in an automated high throughput manner is provided, and reproducible analysis of the distribution and intensity of well-established markers associated with PCa progression in a range of metastatic PCa cell-lines (DU145 and PC3) in a 3D model demonstrated.

  7. State-of-The-Art and Applications of 3D Imaging Sensors in Industry, Cultural Heritage, Medicine, and Criminal Investigation

    PubMed Central

    Sansoni, Giovanna; Trebeschi, Marco; Docchio, Franco

    2009-01-01

    3D imaging sensors for the acquisition of three dimensional (3D) shapes have created, in recent years, a considerable degree of interest for a number of applications. The miniaturization and integration of the optical and electronic components used to build them have played a crucial role in the achievement of compactness, robustness and flexibility of the sensors. Today, several 3D sensors are available on the market, even in combination with other sensors in a “sensor fusion” approach. An importance equal to that of physical miniaturization has the portability of the measurements, via suitable interfaces, into software environments designed for their elaboration, e.g., CAD-CAM systems, virtual renders, and rapid prototyping tools. In this paper, following an overview of the state-of-art of 3D imaging sensors, a number of significant examples of their use are presented, with particular reference to industry, heritage, medicine, and criminal investigation applications. PMID:22389618

  8. 3D finite element analysis of a metallic sphere scatterer comparison of first and second order vector absorbing boundary conditions

    NASA Astrophysics Data System (ADS)

    Kanellopoulos, V. N.; Webb, J. P.

    1993-03-01

    A 3D vector analysis of plane wave scattering by a metallic sphere using finite elements and Absorbing Boundary Conditions (ABCs) is presented. The ABCs are applied on the outer surface that truncates the infinitely extending domain. Mixed order curvilinear covariantprojection elements are used to avoid spurious corruptions. The second order ABC is superior to the first at no extra computational cost. The errors due to incomplete absorption decrease as the outer surface is moved further away from the scatterer. An error of about 1% in near-field values was obtained with the second order ABC, when the outer surface was less than half a wavelength from the scatterer. Une analyse tridimensionnelle vectorielle de la diffusion d'onde plane sur une sphère métallique utilisant des éléments finis et des Conditions aux Limites Absorbantes (CLA) est présentée. Les CLA sont appliquées sur la surface exteme tronquant le domaine s'étendant à l'infini. Des éléments curvilignes mixtes utilisant des projections covariantes sont utilisés pour éviter des solutions parasites. La CLA de second ordre est supérieure à celle de premier ordre sans effort de calcul additionnel. Les erreurs dues à l'absorption incomplète décroissent à mesure que l'on déplace la surface externe à une distance croissante du diffuseur. Un taux d'erreur d'environ 1 % dans les valeurs du champ proche a été obtenu avec les CLA de second ordre lorsque la surface externe était placée à une distance inférieure à une demi-longueur de la source de diffusion.

  9. 3-D laser confocal microscopy study of the oxidation of NdFeB magnets in atmospheric conditions

    NASA Astrophysics Data System (ADS)

    Meakin, J. P.; Speight, J. D.; Sheridan, R. S.; Bradshaw, A.; Harris, I. R.; Williams, A. J.; Walton, A.

    2016-08-01

    Neodymium iron boron (NdFeB) magnets are used in a number of important applications, such as generators in gearless wind turbines, motors in electric vehicles and electronic goods (e.g.- computer hard disk drives, HDD). Hydrogen can be used as a processing gas to separate and recycle scrap sintered Nd-Fe-B magnets from end-of-life products to form a powder suitable for recycling. However, the magnets are likely to have been exposed to atmospheric conditions prior to processing, and any oxidation could lead to activation problems for the hydrogen decrepitation reaction. Many previous studies on the oxidation of NdFeB magnets have been performed at elevated temperatures; however, few studies have been formed under atmospheric conditions. In this paper a combination of 3-D laser confocal microscopy and Raman spectroscopy have been used to assess the composition, morphology and rate of oxidation/corrosion on scrap sintered NdFeB magnets. Confocal microscopy has been employed to measure the growth of surface reaction products at room temperature, immediately after exposure to air. The results showed that there was a significant height increase at the triple junctions of the Nd-rich grain boundaries. Using Raman spectroscopy, the product was shown to consist of Nd2O3 and formed only on the Nd-rich triple junctions. The diffusion coefficient of the triple junction reaction product growth at 20 °C was determined to be approximately 4 × 10-13 cm2/sec. This value is several orders of magnitude larger than values derived from the diffusion controlled oxide growth observations at elevated temperatures in the literature. This indicates that the growth of the room temperature oxidation products are likely defect enhanced processes at the NdFeB triple junctions.

  10. Printing thermoresponsive reverse molds for the creation of patterned two-component hydrogels for 3D cell culture.

    PubMed

    Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; Zenobi-Wong, Marcy

    2013-01-01

    Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting(1-4) (extrusion, dip pen and soft lithography), contactless bioprinting(5-7) (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization(8). It can be used for many applications such as tissue engineering(9-13), biosensor microfabrication(14-16) and as a tool to answer basic biological questions such as influences of co-culturing of different cell types(17). Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions(18). This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an

  11. Printing Thermoresponsive Reverse Molds for the Creation of Patterned Two-component Hydrogels for 3D Cell Culture

    PubMed Central

    Müller, Michael; Becher, Jana; Schnabelrauch, Matthias; Zenobi-Wong, Marcy

    2013-01-01

    Bioprinting is an emerging technology that has its origins in the rapid prototyping industry. The different printing processes can be divided into contact bioprinting1-4 (extrusion, dip pen and soft lithography), contactless bioprinting5-7 (laser forward transfer, ink-jet deposition) and laser based techniques such as two photon photopolymerization8. It can be used for many applications such as tissue engineering9-13, biosensor microfabrication14-16 and as a tool to answer basic biological questions such as influences of co-culturing of different cell types17. Unlike common photolithographic or soft-lithographic methods, extrusion bioprinting has the advantage that it does not require a separate mask or stamp. Using CAD software, the design of the structure can quickly be changed and adjusted according to the requirements of the operator. This makes bioprinting more flexible than lithography-based approaches. Here we demonstrate the printing of a sacrificial mold to create a multi-material 3D structure using an array of pillars within a hydrogel as an example. These pillars could represent hollow structures for a vascular network or the tubes within a nerve guide conduit. The material chosen for the sacrificial mold was poloxamer 407, a thermoresponsive polymer with excellent printing properties which is liquid at 4 °C and a solid above its gelation temperature ~20 °C for 24.5% w/v solutions18. This property allows the poloxamer-based sacrificial mold to be eluted on demand and has advantages over the slow dissolution of a solid material especially for narrow geometries. Poloxamer was printed on microscope glass slides to create the sacrificial mold. Agarose was pipetted into the mold and cooled until gelation. After elution of the poloxamer in ice cold water, the voids in the agarose mold were filled with alginate methacrylate spiked with FITC labeled fibrinogen. The filled voids were then cross-linked with UV and the construct was imaged with an epi

  12. Heterogeneous reactive transport under unsaturated transient conditions characterized by 3D electrical resistivity tomography and advanced lysimeter methods

    NASA Astrophysics Data System (ADS)

    Wehrer, Markus; Slater, Lee

    2015-04-01

    flow fraction was observed to be independent of precipitation rate. This suggests the presence of a fingering process driven by textural heterogeneities. As a consequence, preferential transport of the conservative and the reactive tracer also occurred. We found that 3D ERT can serve to quantitatively characterize shape measures of both tracer breakthroughs and water content dynamics. In particular, shape measures influenced by the advective propagation of the tracer peak, like mean velocity and normalized first central moment, are highly correlated between ERT data and validation data (consisting of tracer measurements in seepage water samples). Using shape measures proved to be advantageous over interpretation of ERT data with spatially uncertain petrophysical functions for the characterization of heterogeneous flow and transport. Consequently, for future applications of ERT in soil hydrological modeling, the use of temporal moments is recommended.

  13. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities

    SciTech Connect

    Lan, Shih-Feng; Starly, Binil

    2011-10-01

    Prediction of human response to potential therapeutic drugs is through conventional methods of in vitro cell culture assays and expensive in vivo animal testing. Alternatives to animal testing require sophisticated in vitro model systems that must replicate in vivo like function for reliable testing applications. Advancements in biomaterials have enabled the development of three-dimensional (3D) cell encapsulated hydrogels as in vitro drug screening tissue model systems. In this study, we have developed an in vitro platform to enable high density 3D culture of liver cells combined with a monolayer growth of target breast cancer cell line (MCF-7) in a static environment as a representative example of screening drug compounds for hepatotoxicity and drug efficacy. Alginate hydrogels encapsulated with serial cell densities of HepG2 cells (10{sup 5}-10{sup 8} cells/ml) are supported by a porous poly-carbonate disc platform and co-cultured with MCF-7 cells within standard cell culture plates during a 3 day study period. The clearance rates of drug transformation by HepG2 cells are measured using a coumarin based pro-drug. The platform was used to test for HepG2 cytotoxicity 50% (CT{sub 50}) using commercially available drugs which further correlated well with published in vivo LD{sub 50} values. The developed test platform allowed us to evaluate drug dose concentrations to predict hepatotoxicity and its effect on the target cells. The in vitro 3D co-culture platform provides a scalable and flexible approach to test multiple-cell types in a hybrid setting within standard cell culture plates which may open up novel 3D in vitro culture techniques to screen new chemical entity compounds. - Graphical abstract: Display Omitted Highlights: > A porous support disc design to support the culture of desired cells in 3D hydrogels. > Demonstrated the co-culture of two cell types within standard cell-culture plates. > A scalable, low cost approach to toxicity screening involving

  14. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture.

    PubMed

    Gu, Angel; Tsark, Walter; Holmes, Kathryn V; Shively, John E

    2009-06-10

    CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (-8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as -5 to -3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased

  15. Role of Ceacam1 in VEGF induced vasculogenesis of murine embryonic stem cell-derived embryoid bodies in 3D culture

    SciTech Connect

    Gu, Angel; Tsark, Walter; Holmes, Kathryn V.; Shively, John E.

    2009-06-10

    CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1), a type I transmembrane glycoprotein involved in cell-cell adhesion has been shown to act as an angiogenic factor for mouse and human endothelial cells. Based on the ability of CEACAM1 to initiate lumen formation in human mammary epithelial cells grown in 3D culture (Matrigel), we hypothesized that murine CEACAM1 may play a similar role in vasculogenesis. In order to test this hypothesis, murine embryonic stem (ES) cells stimulated with VEGF were differentiated into embryoid bodies (EB) for 8 days (- 8-0 d) and transferred to Matrigel in the presence or absence of anti-CEACAM1 antibody for an additional 12 days (0-12 d). In the absence of anti-CEACAM1 antibody or in the presence of an isotype control antibody, the EB in Matrigel underwent extensive sprouting, generating lengthy vascular structures with well-defined lumina as demonstrated by confocal microscopy, electron microscopy, and immunohistochemical analysis. Both the length and architecture of the vascular tubes were inhibited by anti-CEACAM1 mAb CC1, a mAb that blocks the cell-cell adhesion functions of CEACAM1, thus demonstrating a critical role for this cell-cell adhesion molecule in generating and maintaining vasculogenesis. QRT-PCR analysis of the VEGF treated ES cells grown under conditions that convert them to EB revealed expression of Ceacam1 as early as - 5 to - 3 d reaching a maximum at day 0 at which time EBs were transferred to Matrigel, thereafter levels at first declined and then increased over time. Other markers of vasculogenesis including Pecam1, VE-Cad, and Tie-1 were not detected until day 0 when EBs were transferred to Matrigel followed by a steady increase in levels, indicating later roles in vasculogenesis. In contrast, Tie-2 and Flk-1 (VEGFR2) were detected on day five of EB formation reaching a maximum at day 0 on transfer to Matrigel, similar to Ceacam1, but after which Tie-2 declined over time, while Flk-1 increased

  16. Functional stability of 3D8 scFv, a nucleic acid-hydrolyzing single chain antibody, under different biochemical and physical conditions.

    PubMed

    Lee, Joungmin; Park, Hyunjoon; Kim, Minjae; Seo, Youngsil; Lee, Yeonjin; Byun, Sung June; Lee, Sukchan; Kwon, Myung-Hee

    2015-12-30

    3D8 single-chain Fv (scFv) is a catalytic nucleic acid antibody with anti-viral activity against a broad spectrum of viruses. Here we investigated the functional stability of 3D8 scFv to provide a basis for engineering a 3D8 scFv derivative and for developing stable formulations with improved stability and potential use as an anti-viral agent. The stability of 3D8 scFv was assessed by measuring its DNA-hydrolyzing activity under different biochemical and physical conditions using a fluorescence resonance energy transfer (FRET)-based method. In addition, the anti-influenza (H9N2) effect of 3D8 scFv was evaluated in A549 cells. 3D8 scFv was stable at 50°C for 6h at pH 7.2, for 3 days at pH 4-10 at 37°C and 30 days at pH 4-8 at 37°C. The stability was not affected by a reducing condition, freeze-thawing for up to 30 cycles, or lyophilization. Evaluation of the anti-virus effect showed that cells treated with 32-128 units of 3D8 scFv showed a 50% decrease in influenza replication compared to untreated cells. Based on its enzymatic stability in various biochemical and physical environments, 3D8 scFv holds good potential for development as an anti-viral therapeutic. PMID:26536531

  17. Mechanism for generating stagnant slabs in 3-D spherical mantle convection models at Earth-like conditions

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Takatoshi; Yamagishi, Yasuko; Hamano, Yozo; Stegman, Dave R.; Suetsugu, Daisuke; Bina, Craig; Inoue, Toru; Wiens, Douglas; Jellinek, Mark

    2010-11-01

    Seismic tomography reveals the natural mode of convection in the Earth is whole mantle with subducted slabs clearly seen as continuous features into the lower mantle. However, simultaneously existing alongside these deep slabs are stagnant slabs which are, if only temporarily, trapped in the upper mantle. Previous numerical models of mantle convection have observed a range of behavior for slabs in the transition zone depending on viscosity stratification and mineral phase transitions, but typically only exhibit flat-lying slabs when mantle convection is layered or trench migration is imposed. We use 3-D spherical models of mantle convection which range up to Earth-like conditions in Rayleigh number to systematically investigate three effects on mantle dynamics: (1) the mineral phase transitions, (2) a strongly temperature-dependent viscosity with plastic yielding at shallow depth, and (3) a viscosity increase in the lower mantle. First a regime diagram is constructed for isoviscous models over a wide range of Rayleigh number and Clapeyron slope for which the convective mode is determined. It agrees very well with previous results from 2-D simulations by Christensen and Yuen (1985), suggesting present-day Earth is in the intermittent convection mode rather than layered or strictly whole mantle. Two calculations at Earth-like conditions (Ra and RaH = 2 í 107 and 5 í 108, respectively) which include effects (2) and (3) are produced with and without the effect of the mineral phase transitions. The first calculation (without the phase transition) successfully produces plate-like behavior with a long wavelength structure and surface heat flow similar to Earth's value. While the observed convective flow pattern in the lower mantle is broader compared to isoviscous models, it basically shows the behavior of whole mantle convection, and does not exhibit any slab flattening at the viscosity increase at 660 km depth. The second calculation which includes the phase

  18. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant. PMID:26774799

  19. Osteogenic potential of human adipose-tissue-derived mesenchymal stromal cells cultured on 3D-printed porous structured titanium.

    PubMed

    Lewallen, Eric A; Jones, Dakota L; Dudakovic, Amel; Thaler, Roman; Paradise, Christopher R; Kremers, Hilal M; Abdel, Matthew P; Kakar, Sanjeev; Dietz, Allan B; Cohen, Robert C; Lewallen, David G; van Wijnen, Andre J

    2016-05-01

    Integration of porous metal prosthetics, which restore form and function of irreversibly damaged joints, into remaining healthy bone is critical for implant success. We investigated the biological properties of adipose-tissue-derived mesenchymal stromal/stem cells (AMSCs) and addressed their potential to alter the in vitro microenvironment of implants. We employed human AMSCs as a practical source for musculoskeletal applications because these cells can be obtained in large quantities, are multipotent, and have trophic paracrine functions. AMSCs were cultured on surgical-grade porous titanium disks as a model for orthopedic implants. We monitored cell/substrate attachment, cell proliferation, multipotency, and differentiation phenotypes of AMSCs upon osteogenic induction. High-resolution scanning electron microscopy and histology revealed that AMSCs adhere to the porous metallic surface. Compared to standard tissue culture plastic, AMSCs grown in the porous titanium microenvironment showed differences in temporal expression for genes involved in cell cycle progression (CCNB2, HIST2H4), extracellular matrix production (COL1A1, COL3A1), mesenchymal lineage identity (ACTA2, CD248, CD44), osteoblastic transcription factors (DLX3, DLX5, ID3), and epigenetic regulators (EZH1, EZH2). We conclude that metal orthopedic implants can be effectively seeded with clinical-grade stem/stromal cells to create a pre-conditioned implant.

  20. Correlation between lack of norovirus replication and histo-blood group antigen expression in 3D-intestinal epithelial cultures

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Noroviruses (NoV) are a leading cause of gastroenteritis worldwide. An in vitro model for NoV replication remains elusive, making study of the virus difficult. One publication utilizing a 3-dimensional (3D) intestinal model derived from Int407 cells reported NoV replication and extensive cytopathi...

  1. Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo - Implications for Tissue Engineering and Clinical Applications.

    PubMed

    Szabó, Dóra Júlia; Noer, Agate; Nagymihály, Richárd; Josifovska, Natasha; Andjelic, Sofija; Veréb, Zoltán; Facskó, Andrea; Moe, Morten C; Petrovski, Goran

    2015-01-01

    Long-term cultures of cornea limbal epithelial stem cells (LESCs) were developed and characterized for future tissue engineering and clinical applications. The limbal tissue explants were cultivated and expanded for more than 3 months in medium containing serum as the only growth supplement and without use of scaffolds. Viable 3D cell outgrowth from the explants was observed within 4 weeks of cultivation. The outgrowing cells were examined by immunofluorescent staining for putative markers of stemness (ABCG2, CK15, CK19 and Vimentin), proliferation (p63α, Ki-67), limbal basal epithelial cells (CK8/18) and differentiated cornea epithelial cells (CK3 and CK12). Morphological and immunostaining analyses revealed that long-term culturing can form stratified 3D tissue layers with a clear extracellular matrix deposition and organization (collagen I, IV and V). The LESCs showed robust expression of p63α, ABCG2, and their surface marker fingerprint (CD117/c-kit, CXCR4, CD146/MCAM, CD166/ALCAM) changed over time compared to short-term LESC cultures. Overall, we provide a model for generating stem cell-rich, long-standing 3D cultures from LESCs which can be used for further research purposes and clinical transplantation.

  2. Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo – Implications for Tissue Engineering and Clinical Applications

    PubMed Central

    Nagymihály, Richárd; Josifovska, Natasha; Andjelic, Sofija; Veréb, Zoltán; Facskó, Andrea; Moe, Morten C.; Petrovski, Goran

    2015-01-01

    Long-term cultures of cornea limbal epithelial stem cells (LESCs) were developed and characterized for future tissue engineering and clinical applications. The limbal tissue explants were cultivated and expanded for more than 3 months in medium containing serum as the only growth supplement and without use of scaffolds. Viable 3D cell outgrowth from the explants was observed within 4 weeks of cultivation. The outgrowing cells were examined by immunofluorescent staining for putative markers of stemness (ABCG2, CK15, CK19 and Vimentin), proliferation (p63α, Ki-67), limbal basal epithelial cells (CK8/18) and differentiated cornea epithelial cells (CK3 and CK12). Morphological and immunostaining analyses revealed that long-term culturing can form stratified 3D tissue layers with a clear extracellular matrix deposition and organization (collagen I, IV and V). The LESCs showed robust expression of p63α, ABCG2, and their surface marker fingerprint (CD117/c-kit, CXCR4, CD146/MCAM, CD166/ALCAM) changed over time compared to short-term LESC cultures. Overall, we provide a model for generating stem cell-rich, long-standing 3D cultures from LESCs which can be used for further research purposes and clinical transplantation. PMID:26580800

  3. Long-Term Cultures of Human Cornea Limbal Explants Form 3D Structures Ex Vivo - Implications for Tissue Engineering and Clinical Applications.

    PubMed

    Szabó, Dóra Júlia; Noer, Agate; Nagymihály, Richárd; Josifovska, Natasha; Andjelic, Sofija; Veréb, Zoltán; Facskó, Andrea; Moe, Morten C; Petrovski, Goran

    2015-01-01

    Long-term cultures of cornea limbal epithelial stem cells (LESCs) were developed and characterized for future tissue engineering and clinical applications. The limbal tissue explants were cultivated and expanded for more than 3 months in medium containing serum as the only growth supplement and without use of scaffolds. Viable 3D cell outgrowth from the explants was observed within 4 weeks of cultivation. The outgrowing cells were examined by immunofluorescent staining for putative markers of stemness (ABCG2, CK15, CK19 and Vimentin), proliferation (p63α, Ki-67), limbal basal epithelial cells (CK8/18) and differentiated cornea epithelial cells (CK3 and CK12). Morphological and immunostaining analyses revealed that long-term culturing can form stratified 3D tissue layers with a clear extracellular matrix deposition and organization (collagen I, IV and V). The LESCs showed robust expression of p63α, ABCG2, and their surface marker fingerprint (CD117/c-kit, CXCR4, CD146/MCAM, CD166/ALCAM) changed over time compared to short-term LESC cultures. Overall, we provide a model for generating stem cell-rich, long-standing 3D cultures from LESCs which can be used for further research purposes and clinical transplantation. PMID:26580800

  4. A 3D printed microfluidic device for production of functionalized hydrogel microcapsules for culture and differentiation of human Neuronal Stem Cells (hNSC).

    PubMed

    Alessandri, Kevin; Feyeux, Maxime; Gurchenkov, Basile; Delgado, Christophe; Trushko, Anastasiya; Krause, Karl-Heinz; Vignjević, Daniela; Nassoy, Pierre; Roux, Aurélien

    2016-04-26

    We present here a microfluidic device that generates sub-millimetric hollow hydrogel spheres, encapsulating cells and coated internally with a layer of reconstituted extracellular matrix (ECM) of a few microns thick. The spherical capsules, composed of alginate hydrogel, originate from the spontaneous instability of a multi-layered jet formed by co-extrusion using a coaxial flow device. We provide a simple design to manufacture this device using a DLP (digital light processing) 3D printer. Then, we demonstrate how the inner wall of the capsules can be decorated with a continuous ECM layer that is anchored to the alginate gel and mimics the basal membrane of a cellular niche. Finally, we used this approach to encapsulate human Neural Stem Cells (hNSC) derived from human Induced Pluripotent Stem Cells (hIPSC), which were further differentiated into neurons within the capsules with negligible loss of viability. Altogether, we show that these capsules may serve as cell micro-containers compatible with complex cell culture conditions and applications. These developments widen the field of research and biomedical applications of the cell encapsulation technology. PMID:27025278

  5. Inhibition of specific cellular antioxidant pathways increases the sensitivity of neurons to meta-tetrahydroxyphenyl chlorin-mediated photodynamic therapy in a 3D co-culture model.

    PubMed

    Wright, Kathleen E; MacRobert, Alexander J; Phillips, James B

    2012-01-01

    The effect of photodynamic therapy (PDT) on neurons is of critical importance when treating cancers within or adjacent to the nervous system. Neurons show reduced sensitivity to meta-tetrahydroxyphenyl chlorin (mTHPC) mediated PDT, so the aim of this study was to investigate whether neuron sparing is due to endogenous cellular antioxidant activity. Dorsal root ganglion (DRG) neurons and their associated satellite glia were subjected to mTHPC-PDT in a 3D co-culture system following incubation with antioxidant inhibitors: diethyl dithiocarbamate (DDC, SOD-1 inhibitor), 2-methoxyestradiol (2-MeOH(2), SOD-2 inhibitor) and L-buthionine sulfoximine (L-BSO, glutathione synthase inhibitor). Sensitivity of each cell type was assessed using a combination of live/dead staining and immunofluorescence. Pretreatment with DDC and with L-BSO significantly increased the sensitivity of neurons to mTHPC-PDT and also affected satellite glial cell viability, whereas 2-MeOE(2) caused only a small increase in neuron sensitivity (not significant). Pretreatment using a combination of DDC and L-BSO caused a near total loss of neuron and glial cell viability in treatment and control conditions. These findings suggest that the SOD-1 and glutathione pathways are likely to be involved in the neuronal sparing associated with mTHPC-PDT.

  6. 3D micro-XRF for cultural heritage objects: new analysis strategies for the investigation of the Dead Sea Scrolls.

    PubMed

    Mantouvalou, Ioanna; Wolff, Timo; Hahn, Oliver; Rabin, Ira; Lühl, Lars; Pagels, Marcel; Malzer, Wolfgang; Kanngiesser, Birgit

    2011-08-15

    A combination of 3D micro X-ray fluorescence spectroscopy (3D micro-XRF) and micro-XRF was utilized for the investigation of a small collection of highly heterogeneous, partly degraded Dead Sea Scroll parchment samples from known excavation sites. The quantitative combination of the two techniques proves to be suitable for the identification of reliable marker elements which may be used for classification and provenance studies. With 3D micro-XRF, the three-dimensional nature, i.e. the depth-resolved elemental composition as well as density variations, of the samples was investigated and bromine could be identified as a suitable marker element. It is shown through a comparison of quantitative and semiquantitative values for the bromine content derived using both techniques that, for elements which are homogeneously distributed in the sample matrix, quantification with micro-XRF using a one-layer model is feasible. Thus, the possibility for routine provenance studies using portable micro-XRF instrumentation on a vast amount of samples, even on site, is obtained through this work.

  7. Generation of Microtumors Using 3D Human Biogel Culture System and Patient-derived Glioblastoma Cells for Kinomic Profiling and Drug Response Testing.

    PubMed

    Gilbert, Ashley N; Shevin, Rachael S; Anderson, Joshua C; Langford, Catherine P; Eustace, Nicholas; Gillespie, G Yancey; Singh, Raj; Willey, Christopher D

    2016-01-01

    The use of patient-derived xenografts for modeling cancers has provided important insight into cancer biology and drug responsiveness. However, they are time consuming, expensive, and labor intensive. To overcome these obstacles, many research groups have turned to spheroid cultures of cancer cells. While useful, tumor spheroids or aggregates do not replicate cell-matrix interactions as found in vivo. As such, three-dimensional (3D) culture approaches utilizing an extracellular matrix scaffold provide a more realistic model system for investigation. Starting from subcutaneous or intracranial xenografts, tumor tissue is dissociated into a single cell suspension akin to cancer stem cell neurospheres. These cells are then embedded into a human-derived extracellular matrix, 3D human biogel, to generate a large number of microtumors. Interestingly, microtumors can be cultured for about a month with high viability and can be used for drug response testing using standard cytotoxicity assays such as 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and live cell imaging using Calcein-AM. Moreover, they can be analyzed via immunohistochemistry or harvested for molecular profiling, such as array-based high-throughput kinomic profiling, which is detailed here as well. 3D microtumors, thus, represent a versatile high-throughput model system that can more closely replicate in vivo tumor biology than traditional approaches. PMID:27341166

  8. Audio-Visual Perception of 3D Cinematography: An fMRI Study Using Condition-Based and Computation-Based Analyses

    PubMed Central

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard “condition-based” designs, as well as “computational” methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli

  9. Audio-visual perception of 3D cinematography: an fMRI study using condition-based and computation-based analyses.

    PubMed

    Ogawa, Akitoshi; Bordier, Cecile; Macaluso, Emiliano

    2013-01-01

    The use of naturalistic stimuli to probe sensory functions in the human brain is gaining increasing interest. Previous imaging studies examined brain activity associated with the processing of cinematographic material using both standard "condition-based" designs, as well as "computational" methods based on the extraction of time-varying features of the stimuli (e.g. motion). Here, we exploited both approaches to investigate the neural correlates of complex visual and auditory spatial signals in cinematography. In the first experiment, the participants watched a piece of a commercial movie presented in four blocked conditions: 3D vision with surround sounds (3D-Surround), 3D with monaural sound (3D-Mono), 2D-Surround, and 2D-Mono. In the second experiment, they watched two different segments of the movie both presented continuously in 3D-Surround. The blocked presentation served for standard condition-based analyses, while all datasets were submitted to computation-based analyses. The latter assessed where activity co-varied with visual disparity signals and the complexity of auditory multi-sources signals. The blocked analyses associated 3D viewing with the activation of the dorsal and lateral occipital cortex and superior parietal lobule, while the surround sounds activated the superior and middle temporal gyri (S/MTG). The computation-based analyses revealed the effects of absolute disparity in dorsal occipital and posterior parietal cortices and of disparity gradients in the posterior middle temporal gyrus plus the inferior frontal gyrus. The complexity of the surround sounds was associated with activity in specific sub-regions of S/MTG, even after accounting for changes of sound intensity. These results demonstrate that the processing of naturalistic audio-visual signals entails an extensive set of visual and auditory areas, and that computation-based analyses can track the contribution of complex spatial aspects characterizing such life-like stimuli. PMID

  10. Smad signal pathway regulates angiogenesis via endothelial cell in an adipose-derived stromal cell/endothelial cell co-culture, 3D gel model.

    PubMed

    Lin, Shiyu; Xie, Jing; Gong, Tao; Shi, Sirong; Zhang, Tao; Fu, Na; Lin, Yunfeng

    2016-01-01

    Co-implantation of adipose-derived stromal cells (ASCs) and endothelial cells (ECs) can markedly expedite the formation of functional microvascular beds and provides possible methods for cell-based revascularization therapies to treat various diseases. Furthermore, we investigated the role of TGFβ/Smad signaling pathway for angiogenesis in a three-dimensional (3D) collagen gel model established in vitro with co-culture between ASCs and ECs. We found that angiogenesis was attenuated in the co-culture gels after inhibition of ALK5/Smad2/3 with SB431542. Genes coding for VEGF-A, VEGF-B, VE-ca, FGF-1, PDGF, BMP-4, and BMP-7 were significantly reduced in both mono-cultured and co-cultured ECs. Furthermore, the decrease in co-cultured ECs was prominent relative to mono-cultured ECs. Taken together, these findings suggest that in the co-culture between ASCs and ECs, TGFβ/Smad signal pathway regulates angiogenesis via ECs; moreover, the findings that the co-cultured ECs were regulated more significantly than mono-cultured ECs suggest that suppression of Smad signal pathway may regulate the paracrine secretion of ASCs to further modulate angiogenesis of ECs. PMID:26694166

  11. One-Step Microfluidic Generation of Pre-Hatching Embryo-Like Core-Shell Microcapsules for Miniaturized 3D Culture of Pluripotent Stem Cells

    PubMed Central

    Agarwal, Pranay; Zhao, Shuting; Bielecki, Peter; Rao, Wei; Choi, Jung K.; Zhao, Yi; Yu, Jianhua; Zhang, Wujie; He, Xiaoming

    2013-01-01

    A novel core-shell microcapsule system is developed in this study to mimic the miniaturized 3D architecture of pre-hatching embryos with an aqueous liquid core of embryonic cells and a hydrogel-shell of zona pellucida. This is done by microfabricating a non-planar microfluidic flow-focusing device that enables one-step generation of microcapsules with an alginate hydrogel shell and an aqueous liquid core of cells from two aqueous fluids. Mouse embryonic stem (ES) cells encapsulated in the liquid core are found to survive well (> 92 %). Moreover, ~ 20 ES cells in the core can proliferate to form a single ES cell aggregate in each microcapsule within 7 days while at least a few hundred cells are usually needed by the commonly used hanging-drop method to form an embryoid body (EB) in each hanging drop. Quantitative RT-PCR analyses show significantly higher expression of pluripotency marker genes in the 3D aggregated ES cells compared to the cells under 2D culture. The aggregated ES cells can be efficiently differentiated into beating cardiomyocytes using a small molecule (cardiogenol C) without complex combination of multiple growth factors. Taken together, the novel 3D microfluidic and pre-hatching embryo-like microcapsule systems are of importance to facilitate in vitro culture of pluripotent stem cells for their ever-increasing use in modern cell-based medicine. PMID:24113543

  12. 3D cell culture and osteogenic differentiation of human bone marrow stromal cells plated onto jet-sprayed or electrospun micro-fiber scaffolds.

    PubMed

    Brennan, Meadhbh Á; Renaud, Audrey; Gamblin, Anne-Laure; D'Arros, Cyril; Nedellec, Steven; Trichet, Valerie; Layrolle, Pierre

    2015-08-01

    A major limitation of the 2D culture systems is that they fail to recapitulate the in vivo 3D cellular microenvironment whereby cell-cell and cell-extracellular matrix (ECM) interactions occur. In this paper, a biomaterial scaffold that mimics the structure of collagen fibers was produced by jet-spraying. This micro-fiber polycaprolactone (PCL) scaffold was evaluated for 3D culture of human bone marrow mesenchymal stromal cells (MSCs) in comparison with a commercially available electrospun scaffold. The jet-sprayed scaffolds had larger pore diameters, greater porosity, smaller diameter fibers, and more heterogeneous fiber diameter size distribution compared to the electrospun scaffolds. Cells on jet-sprayed constructs exhibited spread morphology with abundant cytoskeleton staining, whereas MSCs on electrospun scaffolds appeared less extended with fewer actin filaments. MSC proliferation and cell infiltration occurred at a faster rate on jet-sprayed compared to electrospun scaffolds. Osteogenic differentiation of MSCs and ECM production as measured by ALP, collagen and calcium deposition was superior on jet-sprayed compared to electrospun scaffolds. The jet-sprayed scaffold which mimics the native ECM and permits homogeneous cell infiltration is important for 3D in vitro applications such as bone cellular interaction studies or drug testing, as well as bone tissue engineering strategies. PMID:26238732

  13. Differential Radiosensitizing Effect of Valproic Acid in Differentiation Versus Self-Renewal Promoting Culture Conditions

    SciTech Connect

    Debeb, Bisrat G.; Xu Wei; Mok, Henry; Li Li; Robertson, Fredika; Ueno, Naoto T.; Reuben, Jim; Lucci, Anthony; Cristofanilli, Massimo; Woodward, Wendy A.

    2010-03-01

    Purpose: It has been shown that valproic acid (VA) enhances the proliferation and self-renewal of normal hematopoietic stem cells and that breast cancer stem/progenitor cells can be resistant to radiation. From these data, we hypothesized that VA would fail to radiosensitize breast cancer stem/progenitor cells grown to three-dimensional (3D) mammospheres. Methods and Materials: We used the MCF7 breast cancer cell line grown under stem cell-promoting culture conditions (3D mammosphere) and standard nonstem cell monolayer culture conditions (two-dimensional) to examine the effect of pretreatment with VA on radiation sensitivity in clonogenic survival assays and on the expression of embryonic stem cell transcription factors. Results: 3D-cultured MCF-7 cells expressed higher levels of Oct4, Nanog, and Sox2. The 3D passage enriched self-renewal and increased radioresistance in the 3D mammosphere formation assays. VA radiosensitized adherent cells but radioprotected 3D cells in single-fraction clonogenic assays. Moreover, fractionated radiation sensitized VA-treated adherent MCF7 cells but did not have a significant effect on VA-treated single cells grown to mammospheres. Conclusion: We have concluded that VA might preferentially radiosensitize differentiated cells compared with those expressing stem cell surrogates and that stem cell-promoting culture is a useful tool for in vitro evaluation of novel cancer therapeutic agents and radiosensitizers.

  14. 3D Dynamic Culture of Rabbit Articular Chondrocytes Encapsulated in Alginate Gel Beads Using Spinner Flasks for Cartilage Tissue Regeneration

    PubMed Central

    Xu, Feiyue; Xu, Lei; Wang, Qi; Ye, Zhaoyang; Zhou, Yan; Tan, Wen-Song

    2014-01-01

    Cell-based therapy using chondrocytes for cartilage repair suffers from chondrocyte dedifferentiation. In the present study, the effects of an integrated three-dimensional and dynamic culture on rabbit articular chondrocytes were investigated. Cells (passages 1 and 4) were encapsulated in alginate gel beads and cultured in spinner flasks in chondrogenic and chondrocyte growth media. Subcutaneous implantation of the cell-laden beads was performed to evaluate the ectopic chondrogenesis. It was found that cells remained viable after 35 days in the three-dimensional dynamic culture. Passage 1 cells demonstrated a proliferative growth in both media. Passage 4 cells showed a gradual reduction in DNA content in growth medium, which was attenuated in chondrogenic medium. Deposition of glycosaminoglycans (GAG) was found in all cultures. While passage 1 cells generally produced higher amounts of GAG than passage 4 cells, GAG/DNA became similar on day 35 for both cells in growth media. Interestingly, GAG/DNA in growth medium was greater than that in chondrogenic medium for both cells. Based on GAG quantification and gene expression analysis, encapsulated passage 1 cells cultured in growth medium displayed the best ectopic chondrogenesis. Taken together, the three-dimensional and dynamic culture for chondrocytes holds great potential in cartilage regeneration. PMID:25506593

  15. Human in vitro 3D co-culture model to engineer vascularized bone-mimicking tissues combining computational tools and statistical experimental approach.

    PubMed

    Bersini, Simone; Gilardi, Mara; Arrigoni, Chiara; Talò, Giuseppe; Zamai, Moreno; Zagra, Luigi; Caiolfa, Valeria; Moretti, Matteo

    2016-01-01

    The generation of functional, vascularized tissues is a key challenge for both tissue engineering applications and the development of advanced in vitro models analyzing interactions among circulating cells, endothelium and organ-specific microenvironments. Since vascularization is a complex process guided by multiple synergic factors, it is critical to analyze the specific role that different experimental parameters play in the generation of physiological tissues. Our goals were to design a novel meso-scale model bridging the gap between microfluidic and macro-scale studies, and high-throughput screen the effects of multiple variables on the vascularization of bone-mimicking tissues. We investigated the influence of endothelial cell (EC) density (3-5 Mcells/ml), cell ratio among ECs, mesenchymal stem cells (MSCs) and osteo-differentiated MSCs (1:1:0, 10:1:0, 10:1:1), culture medium (endothelial, endothelial + angiopoietin-1, 1:1 endothelial/osteo), hydrogel type (100%fibrin, 60%fibrin+40%collagen), tissue geometry (2 × 2 × 2, 2 × 2 × 5 mm(3)). We optimized the geometry and oxygen gradient inside hydrogels through computational simulations and we analyzed microvascular network features including total network length/area and vascular branch number/length. Particularly, we employed the "Design of Experiment" statistical approach to identify key differences among experimental conditions. We combined the generation of 3D functional tissue units with the fine control over the local microenvironment (e.g. oxygen gradients), and developed an effective strategy to enable the high-throughput screening of multiple experimental parameters. Our approach allowed to identify synergic correlations among critical parameters driving microvascular network development within a bone-mimicking environment and could be translated to any vascularized tissue.

  16. Effects of initial boost with TGF-beta 1 and grade of intervertebral disc degeneration on 3D culture of human annulus fibrosus cells

    PubMed Central

    2014-01-01

    Background Three-dimensional (3D) culture in porous biomaterials as well as stimulation with growth factors are known to be supportive for intervertebral disc cell differentiation and tissue formation. Unless sophisticated releasing systems are used, however, effective concentrations of growth factors are maintained only for a very limited amount of time in in vivo applications. Therefore, we investigated, if an initial boost with transforming growth factor-beta 1 (TGF-beta 1) is capable to induce a lasting effect of superior cartilaginous differentiation in slightly and severely degenerated human annulus fibrosus (AF) cells. Methods Human AF tissue was harvested during surgical treatment of six adult patients with lumbar spinal diseases. Grading of disc degeneration was performed with magnet resonance imaging. AF cells were isolated and expanded in monolayer culture and rearranged three-dimensionally in a porous biomaterial consisting of stepwise absorbable poly-glycolic acid and poly-(lactic-co-glycolic) acid and a supportive fine net of non-absorbable polyvinylidene fluoride. An initial boost of TGF-beta 1 or TGF-beta 1 and hyaluronan was applied and compared with controls. Matrix formation was assessed at days 7 and 21 by (1) histological staining of the typical extracellular matrix molecules proteoglycan and type I and type II collagens and by (2) real-time gene expression analysis of aggrecan, decorin, biglycan, type I, II, III, and X collagens as well as of catabolic matrix metalloproteinases MMP-2 and MMP-13. Results An initial boost with TGF-beta 1 or TGF-beta 1 and hyaluronan did not enhance the expression of characteristic AF matrix molecules in our 3D culture system. AF cells showed high viability in the progressively degrading biomaterial. Stratification by grade of intervertebral disc degeneration showed that AF cells from both, slightly degenerated, or severely degenerated tissue are capable of significant up-regulations of characteristic matrix

  17. Wnt5a-mediating neurogenesis of human adipose tissue-derived stem cells in a 3D microfluidic cell culture system.

    PubMed

    Choi, Jeein; Kim, Sohyeun; Jung, Jinsun; Lim, Youngbin; Kang, Kyungsun; Park, Seungsu; Kang, Sookyung

    2011-10-01

    In stem cell biology, cell plasticity refers to the ability of stem cells to differentiate into a variety of cell lineages. Recently, cell plasticity has been used to refer to the ability of a given cell type to reversibly de-differentiate, re-differentiate, or transdifferentiate in response to specific stimuli. These processes are regulated by multiple intracellular and extracellular growth and differentiation factors, including low oxygen. Our recent study showed that 3D microfluidic cell culture induces activation of the Wnt5A/β-catenin signaling pathway in hATSCs (human Adipose Tissue-derived Stem Cells). This resulted in self renewal and transdifferentiation of hATSCs into neurons. To improve neurogenic potency of hATSCs in response to low oxygen and other unknown physical factors, we developed a gel-free 3D microfluidic cell culture system (3D-μFCCS). The functional structure was developed for the immobilization of 3D multi-cellular aggregates in a microfluidic channel without the use of a matrix on the chip. Growth of hATSCs neurosphere grown on a chip was higher than the growth of control cells grown in a culture dish. Induction of differentiation in the Chip system resulted in a significant increase in the induction of neuronal-like cell structures and the presentation of TuJ or NF160 positive long neuritis compared to control cells after active migration from the center of the microfluidic channel layer to the outside of the microfluidic channel layer. We also observed that the chip neurogenesis system induced a significantly higher level of GABA secreting neurons and, in addition, almost 60% of cells were GABA + cells. Finally, we observed that 1 month of after the transplantation of each cell type in a mouse SCI lesion, chip cultured and neuronal differentiated hATSCs exhibited the ability to effectively transdifferentiate into NF160 + motor neurons at a high ratio. Interestingly, our CHIP/PCR analysis revealed that HIF1α-induced hATSCs neurogenesis

  18. Establishment of a heterotypic 3D culture system to evaluate the interaction of TREG lymphocytes and NK cells with breast cancer.

    PubMed

    Augustine, Tanya N; Dix-Peek, Thérèse; Duarte, Raquel; Candy, Geoffrey P

    2015-11-01

    Three-dimensional (3D) culture approaches to investigate breast tumour progression are yielding information more reminiscent of the in vivo microenvironment. We have established a 3D Matrigel system to determine the interactions of luminal phenotype MCF-7 cells and basal phenotype MDA-MB-231 cells with regulatory T lymphocytes and Natural Killer cells. Immune cells were isolated from peripheral blood using magnetic cell sorting and their phenotype validated using flow cytometry both before and after activation with IL-2 and phytohaemagglutinin. Following the establishment of the heterotypic culture system, tumour cells displayed morphologies and cell-cell associations distinct to that observed in 2D monolayer cultures, and associated with tissue remodelling and invasion processes. We found that the level of CCL4 secretion was influenced by breast cancer phenotype and immune stimulation. We further established that for RNA extraction, the use of proteinase K in conjunction with the Qiagen RNeasy Mini Kit and only off-column DNA digestion gave the best RNA yield, purity and integrity. We also investigated the efficacy of the culture system for immunolocalisation of the biomarkers oestrogen receptor-α and the glycoprotein mucin 1 in luminal phenotype breast cancer cells; and epidermal growth factor receptor in basal phenotype breast cancer cells, in formalin-fixed, paraffin-wax embedded cultures. The expression of these markers was shown to vary under immune mediation. We thus demonstrate the feasibility of using this co-culture system for downstream applications including cytokine analysis, immunolocalisation of tumour biomarkers on serial sections and RNA extraction in accordance with MIQE guidelines. PMID:26215372

  19. Establishment of a heterotypic 3D culture system to evaluate the interaction of TREG lymphocytes and NK cells with breast cancer.

    PubMed

    Augustine, Tanya N; Dix-Peek, Thérèse; Duarte, Raquel; Candy, Geoffrey P

    2015-11-01

    Three-dimensional (3D) culture approaches to investigate breast tumour progression are yielding information more reminiscent of the in vivo microenvironment. We have established a 3D Matrigel system to determine the interactions of luminal phenotype MCF-7 cells and basal phenotype MDA-MB-231 cells with regulatory T lymphocytes and Natural Killer cells. Immune cells were isolated from peripheral blood using magnetic cell sorting and their phenotype validated using flow cytometry both before and after activation with IL-2 and phytohaemagglutinin. Following the establishment of the heterotypic culture system, tumour cells displayed morphologies and cell-cell associations distinct to that observed in 2D monolayer cultures, and associated with tissue remodelling and invasion processes. We found that the level of CCL4 secretion was influenced by breast cancer phenotype and immune stimulation. We further established that for RNA extraction, the use of proteinase K in conjunction with the Qiagen RNeasy Mini Kit and only off-column DNA digestion gave the best RNA yield, purity and integrity. We also investigated the efficacy of the culture system for immunolocalisation of the biomarkers oestrogen receptor-α and the glycoprotein mucin 1 in luminal phenotype breast cancer cells; and epidermal growth factor receptor in basal phenotype breast cancer cells, in formalin-fixed, paraffin-wax embedded cultures. The expression of these markers was shown to vary under immune mediation. We thus demonstrate the feasibility of using this co-culture system for downstream applications including cytokine analysis, immunolocalisation of tumour biomarkers on serial sections and RNA extraction in accordance with MIQE guidelines.

  20. Capturing 3D resistivity of semi-arid karstic subsurface in varying moisture conditions using a wireless sensor network

    NASA Astrophysics Data System (ADS)

    Barnhart, K.; Oden, C. P.

    2012-12-01

    The dissolution of soluble bedrock results in surface and subterranean karst channels, which comprise 7-10% of the dry earth's surface. Karst serves as a preferential conduit to focus surface and subsurface water but it is difficult to exploit as a water resource or protect from pollution because of irregular structure and nonlinear hydrodynamic behavior. Geophysical characterization of karst commonly employs resistivity and seismic methods, but difficulties arise due to low resistivity contrast in arid environments and insufficient resolution of complex heterogeneous structures. To help reduce these difficulties, we employ a state-of-the-art wireless geophysical sensor array, which combines low-power radio telemetry and solar energy harvesting to enable long-term in-situ monitoring. The wireless aspect removes topological constraints common with standard wired resistivity equipment, which facilitates better coverage and/or sensor density to help improve aspect ratio and resolution. Continuous in-situ deployment allows data to be recorded according to nature's time scale; measurements are made during infrequent precipitation events which can increase resistivity contrast. The array is coordinated by a smart wireless bridge that continuously monitors local soil moisture content to detect when precipitation occurs, schedules resistivity surveys, and periodically relays data to the cloud via 3G cellular service. Traditional 2/3D gravity and seismic reflection surveys have also been conducted to clarify and corroborate results.

  1. Multifunctional bioscaffolds for 3D culture of melanoma cells reveal increased MMP activity and migration with BRAF kinase inhibition.

    PubMed

    Leight, Jennifer L; Tokuda, Emi Y; Jones, Caitlin E; Lin, Austin J; Anseth, Kristi S

    2015-04-28

    Matrix metalloproteinases (MMPs) are important for many different types of cancer-related processes, including metastasis. Understanding the functional impact of changes in MMP activity during cancer treatment is an important facet not typically evaluated as part of preclinical research. With MMP activity being a critical component of the metastatic cascade, we designed a 3D hydrogel system to probe whether pharmacological inhibition affected human melanoma cell proteolytic activity; metastatic melanoma is a highly aggressive and drug-resistant form of skin cancer. The relationship between MMP activity and drug treatment is unknown, and therefore we used an in situ fluorogenic MMP sensor peptide to determine how drug treatment affects melanoma cell MMP activity in three dimensions. We encapsulated melanoma cells from varying stages of progression within PEG-based hydrogels to examine the relationship between drug treatment and MMP activity. From these results, a metastatic melanoma cell line (A375) and two inhibitors that inhibit RAF (PLX4032 and sorafenib) were studied further to determine whether changes in MMP activity led to a functional change in cell behavior. A375 cells exhibited increased MMP activity despite an overall decrease in metabolic activity with PLX4032 treatment. The changes in proteolytic activity correlated with increased cell elongation and increased single-cell migration. In contrast, sorafenib did not alter MMP activity or cell motility, showing that the changes induced by PLX4032 were not a universal response to small-molecule inhibition. Therefore, we argue the importance of studying MMP activity with drug treatment and its possible implications for unwanted side effects. PMID:25870264

  2. Enhanced Metabolizing Activity of Human ES Cell-Derived Hepatocytes Using a 3D Culture System with Repeated Exposures to Xenobiotics.

    PubMed

    Kim, Jong Hyun; Jang, Yu Jin; An, Su Yeon; Son, Jeongsang; Lee, Jaehun; Lee, Gyunggyu; Park, Ji Young; Park, Han-Jin; Hwang, Dong-Youn; Kim, Jong-Hoon; Han, Jiyou

    2015-09-01

    Highly homogeneous and functional stem cell-derived hepatocyte-like cells (HLCs) are considered a promising option in the cell-based therapy of liver disease and the development of effective in vitro toxicity screening tools. However, the purity of cells and expression and/or activity of drug metabolizing enzymes in stem cell-derived HLCs are usually too low to be useful for clinical or in vitro applications. Here, we describe a highly optimized hepatic differentiation protocol, which produces >90% (BGO1 and CHA15) albumin-positive HLCs with no purification process from human embryonic stem cell lines. In addition, we show that hepatic enzyme gene expressions and activities were significantly improved by generating 3D spheroidal aggregate of HLCs, compared with 2D HLCs. The 3D differentiation method increased expression of nuclear receptors (NRs) that regulate the proper expression of key hepatic enzymes. Furthermore, significantly increased hepatic functions such as albumin and urea secretion were observed in 3D hepatic spheroids, compared with 2D HLCs. HLCs in the spheroid exhibited morphological and ultrastructural features of normal hepatocytes. Importantly, we show that repeated exposures to xenobiotics facilitated further functional maturation of HLC, as confirmed by increased expression of genes for drug metabolizing enzymes and transcription factors. In conclusion, the 3D culture system with repeated exposures to xenobiotics may be a new strategy for enhancing hepatic metabolizing ability of stem cell-derived HLCs as a cell source for in vitro high-throughput hepatotoxicity models. PMID:26089346

  3. Inverse-power-law behavior of cellular motility reveals stromal–epithelial cell interactions in 3D co-culture by OCT fluctuation spectroscopy

    PubMed Central

    Oldenburg, Amy L.; Yu, Xiao; Gilliss, Thomas; Alabi, Oluwafemi; Taylor, Russell M.; Troester, Melissa A.

    2015-01-01

    The progression of breast cancer is known to be affected by stromal cells within the local microenvironment. Here we study the effect of stromal fibroblasts on the in-place motions (motility) of mammary epithelial cells within organoids in 3D co-culture, inferred from the speckle fluctuation spectrum using optical coherence tomography (OCT). In contrast to Brownian motion, mammary cell motions exhibit an inverse power-law fluctuation spectrum. We introduce two complementary metrics for quantifying fluctuation spectra: the power-law exponent and a novel definition of the motility amplitude, both of which are signal- and position-independent. We find that the power-law exponent and motility amplitude are positively (p<0.001) and negatively (p<0.01) correlated with the density of stromal cells in 3D co-culture, respectively. We also show how the hyperspectral data can be visualized using these metrics to observe heterogeneity within organoids. This constitutes a simple and powerful tool for detecting and imaging cellular functional changes with OCT. PMID:26973862

  4. 3D Porous Calcium-Alginate Scaffolds Cell Culture System Improved Human Osteoblast Cell Clusters for Cell Therapy

    PubMed Central

    Chen, Ching-Yun; Ke, Cherng-Jyh; Yen, Ko-Chung; Hsieh, Hui-Chen; Sun, Jui-Sheng; Lin, Feng-Huei

    2015-01-01

    Age-related orthopedic disorders and bone defects have become a critical public health issue, and cell-based therapy is potentially a novel solution for issues surrounding bone tissue engineering and regenerative medicine. Long-term cultures of primary bone cells exhibit phenotypic and functional degeneration; therefore, culturing cells or tissues suitable for clinical use remain a challenge. A platform consisting of human osteoblasts (hOBs), calcium-alginate (Ca-Alginate) scaffolds, and a self-made bioreactor system was established for autologous transplantation of human osteoblast cell clusters. The Ca-Alginate scaffold facilitated the growth and differentiation of human bone cell clusters, and the functionally-closed process bioreactor system supplied the soluble nutrients and osteogenic signals required to maintain the cell viability. This system preserved the proliferative ability of cells and cell viability and up-regulated bone-related gene expression and biological apatite crystals formation. The bone-like tissue generated could be extracted by removal of calcium ions via ethylenediaminetetraacetic acid (EDTA) chelation, and exhibited a size suitable for injection. The described strategy could be used in therapeutic application and opens new avenues for surgical interventions to correct skeletal defects. PMID:25825603

  5. Future Research Challenges for a Computer-Based Interpretative 3D Reconstruction of Cultural Heritage - A German Community's View

    NASA Astrophysics Data System (ADS)

    Münster, S.; Kuroczyński, P.; Pfarr-Harfst, M.; Grellert, M.; Lengyel, D.

    2015-08-01

    The workgroup for Digital Reconstruction of the Digital Humanities in the German-speaking area association (Digital Humanities im deutschsprachigen Raum e.V.) was founded in 2014 as cross-disciplinary scientific society dealing with all aspects of digital reconstruction of cultural heritage and currently involves more than 40 German researchers. Moreover, the workgroup is dedicated to synchronise and foster methodological research for these topics. As one preliminary result a memorandum was created to name urgent research challenges and prospects in a condensed way and assemble a research agenda which could propose demands for further research and development activities within the next years. The version presented within this paper was originally created as a contribution to the so-called agenda development process initiated by the German Federal Ministry of Education and Research (BMBF) in 2014 and has been amended during a joint meeting of the digital reconstruction workgroup in November 2014.

  6. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions

    NASA Astrophysics Data System (ADS)

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-01

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution.

  7. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions.

    PubMed

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-30

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution. PMID:27662260

  8. Freezing and Melting of 3D Complex Plasma Structures under Microgravity Conditions Driven by Neutral Gas Pressure Manipulation

    SciTech Connect

    Khrapak, S. A.; Klumov, B. A.; Huber, P.; Thomas, H. M.; Ivlev, A. V.; Morfill, G. E.; Molotkov, V. I.; Lipaev, A. M.; Naumkin, V. N.; Petrov, O. F.; Fortov, V. E.; Malentschenko, Yu.; Volkov, S.

    2011-05-20

    Freezing and melting of large three-dimensional complex plasmas under microgravity conditions is investigated. The neutral gas pressure is used as a control parameter to trigger the phase changes: Complex plasma freezes (melts) by decreasing (increasing) the pressure. The evolution of complex plasma structural properties upon pressure variation is studied. Theoretical estimates allow us to identify the main factors responsible for the observed behavior.

  9. Comparison of uncultured marrow mononuclear cells and culture-expanded mesenchymal stem cells in 3D collagen-chitosan microbeads for orthopedic tissue engineering.

    PubMed

    Wise, Joel K; Alford, Andrea I; Goldstein, Steven A; Stegemann, Jan P

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25 × 10(6) cells/mL, containing an estimated 5 × 10(4) MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2 × 10(5) cells/mL) were added to a 65-35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the

  10. Comparison of Uncultured Marrow Mononuclear Cells and Culture-Expanded Mesenchymal Stem Cells in 3D Collagen-Chitosan Microbeads for Orthopedic Tissue Engineering

    PubMed Central

    Wise, Joel K.; Alford, Andrea I.; Goldstein, Steven A.

    2014-01-01

    Stem cell-based therapies have shown promise in enhancing repair of bone and cartilage. Marrow-derived mesenchymal stem cells (MSC) are typically expanded in vitro to increase cell number, but this process is lengthy, costly, and there is a risk of contamination and altered cellular properties. Potential advantages of using fresh uncultured bone marrow mononuclear cells (BMMC) include heterotypic cell and paracrine interactions between MSC and other marrow-derived cells including hematopoietic, endothelial, and other progenitor cells. In the present study, we compared the osteogenic and chondrogenic potential of freshly isolated BMMC to that of cultured-expanded MSC, when encapsulated in three-dimensional (3D) collagen-chitosan microbeads. The effect of low and high oxygen tension on cell function and differentiation into orthopedic lineages was also examined. Freshly isolated rat BMMC (25×106 cells/mL, containing an estimated 5×104 MSC/mL) or purified and culture-expanded rat bone marrow-derived MSC (2×105 cells/mL) were added to a 65–35 wt% collagen-chitosan hydrogel mixture and fabricated into 3D microbeads by emulsification and thermal gelation. Microbeads were cultured in control MSC growth media in either 20% O2 (normoxia) or 5% O2 (hypoxia) for an initial 3 days, and then in control, osteogenic, or chondrogenic media for an additional 21 days. Microbead preparations were evaluated for viability, total DNA content, calcium deposition, and osteocalcin and sulfated glycosaminoglycan expression, and they were examined histologically. Hypoxia enhanced initial progenitor cell survival in fresh BMMC-microbeads, but it did not enhance osteogenic potential. Fresh uncultured BMMC-microbeads showed a similar degree of osteogenesis as culture-expanded MSC-microbeads, even though they initially contained only 1/10th the number of MSC. Chondrogenic differentiation was not strongly supported in any of the microbead formulations. This study demonstrates the microbead

  11. 3-D Time-Accurate CFD Simulations of a Multi-Megawatt Slender Bladed HAWT under Yawed Inflow Conditions

    NASA Astrophysics Data System (ADS)

    Sayed, M.; Lutz, Th.; Krämer, E.

    2016-09-01

    In the present study numerical investigations of a generic Multi-Megawatt slender bladed Horizontal-Axis Wind Turbine (HAWT) under yawed inflow conditions were conducted. A three-dimensional URANS flow solver based on structured overlapping meshes was used. The simulations were conducted at wind speeds of 7m/sec, 11 m/sec and 15 m/sec for different yaw angles ranging from +60° to -60°. It was concluded that, for below rated wind speeds, under small yaw angles (below ±15°) the magnitudes of the blade forces are slightly increased, while under high yaw angles (above ±15°) there is a significant decrease. Moreover, the load fluctuations, for the different yaw angles, have the same frequency but different amplitude and oscillation shape. It was concluded that at the above rated wind speed of 15 m/sec, the blade aerodynamic loads are significantly affected by the yaw inflow conditions and the magnitude values of the loads are decreased with increasing yaw angle. It can be concluded that the angle of attack and the tower interference are the utmost variables affecting the yawed turbines.

  12. Novel method to dynamically load cells in 3D-gel culture for primary blast injury studies

    NASA Astrophysics Data System (ADS)

    Sory, David; Cepa-Areias, Anabela; Overby, Darryl; Proud, William; Institute of Shock Physics, Department of Bioengineering; Royal British Legion CentreBlast I Collaboration

    2015-06-01

    For at least a century explosive devices have been reported as one of the most important causes of injuries on battlefield in military conflicts as well as in terrorist attacks. Although significant experimental and modelling efforts have been focussed on blast injury at the organ or tissue level, few studies have investigated the mechanism of blast injury at the cellular level. This paper introduces an in vitro method compatible with living cells to examine the effects of high stress and short-duration pulses similar to those observed in blast waves. The experimental phase involved high strain rate axial compression of biological cylindrical specimens within a hermetically sealed sample holder made of a biocompatible polymer. Numerical simulations were performed in order to characterize the loading path within the sample and assess the loading conditions. A proof of concept is presented so as to establish a new window to address fundamental questions regarding primary blast injury at the cellular level. The Institute of Shock Physics acknowledges the support of AWE, Aldermaston, UK and Imperial College London. The Centre for Blast Injury Studies acknowledges the support of the Royal British Legion and Imperial College London.

  13. Combination of 12-O-tetradecanoylphorbol-13-acetate with diethyldithiocarbamate markedly inhibits pancreatic cancer cell growth in 3D culture and in immunodeficient mice

    PubMed Central

    HUANG, HUARONG; CAO, KAJIA; MALIK, SAQUIB; ZHANG, QIUYAN; LI, DONGLI; CHANG, RICHARD; WANG, HUAQIAN; LIN, WEIPING; VAN DOREN, JEREMIAH; ZHANG, KUN; DU, ZHIYUN; ZHENG, XI

    2015-01-01

    The aim of the present study was to determine the effects of 12-O-tetradecanoylphorbol-13-acetate (TPA) and diethyldithiocarbamate (DDTC) alone or in combination on human pancreatic cancer cells cultured in vitro and grown as xenograft tumors in nude mice. Pancreatic cancer cells were treated with either DDTC or TPA alone, or in combination and the number of viable cells was then determined by trypan blue ecxlusion assay and the number of apoptotic cells was determined by morphological assessment by staining the cells with propidium idiode and examining them under a fluorescence microscope. Treatment with DDTC or TPA alone inhibited the growth and promoted the apoptosis of pancreatic cancer cells in a concentration-dependent manner. These effects were more prominent following treatment with TPA in combination with DDTC than following treatment with either agent alone in PANC-1 cells in monolayer cultures and in 3 dimensional (3D) cultures. The potent effects of the combination treatment on PANC-1 cells were associated with the inhibition of nuclear factor-κB (NF-κB) activation and the decreased expression of Bcl-2 induced by DDTC, as shown by NF-κB-dependent reporter gene expression assay and western blot analysis. Furthermore, treatment of nude mice with DDTC + TPA strongly inhibited the growth of PANC-1 xenograft tumors. The results of the present study indicate that the administration of TPA and DDTC in combination may be an effective strategy for inhibiting the growth of pancreatic cancer. PMID:25847449

  14. Naturally Derived Iron Oxide Nanowires from Bacteria for Magnetically Triggered Drug Release and Cancer Hyperthermia in 2D and 3D Culture Environments: Bacteria Biofilm to Potent Cancer Therapeutic.

    PubMed

    Kumeria, Tushar; Maher, Shaheer; Wang, Ye; Kaur, Gagandeep; Wang, Luoshan; Erkelens, Mason; Forward, Peter; Lambert, Martin F; Evdokiou, Andreas; Losic, Dusan

    2016-08-01

    Iron oxide nanowires produced by bacteria (Mariprofundus ferrooxydans) are demonstrated as new multifunctional drug carriers for triggered therapeutics release and cancer hyperthmia applications. Iron oxide nanowires are obtained from biofilm waste in the bore system used to pump saline groundwater into the River Murray, South Australia (Australia) and processed into individual nanowires with extensive magnetic properties. The drug carrier capabilities of these iron oxide nanowires (Bac-FeOxNWs) are assessed by loading anticancer drug (doxorubicin, Dox) followed by measuring its elution under sustained and triggered release conditions using alternating magnetic field (AMF). The cytotoxicity of Bac-FeOxNWs assessed in 2D (96 well plate) and 3D (Matrigel) cell cultures using MDA-MB231-TXSA human breast cancer cells and mouse RAW 264.7 macrophage cells shows that these Bac-FeOxNWs are biocompatible even at concentrations as high as 250 μg/mL after 24 h of incubation. Finally, we demonstrate the capabilities of Bac-FeOxNWs as potential hyperthermia agent in 3D culture setup. Application of AMF increased the local temperature by 14 °C resulting in approximately 34% decrease in cell viability. Our results demonstrate that these naturally produced nanowires in the form of biofilm can efficiently act as drug carriers with triggered payload release and magnetothermal heating features for potential anticancer therapeutics applications. PMID:27428076

  15. Automatic generation of boundary conditions using Demons non-rigid image registration for use in 3D modality-independent elastography

    NASA Astrophysics Data System (ADS)

    Pheiffer, Thomas S.; Ou, Jao J.; Miga, Michael I.

    2010-02-01

    Modality-independent elastography (MIE) is a method of elastography that reconstructs the elastic properties of tissue using images acquired under different loading conditions and a biomechanical model. Boundary conditions are a critical input to the algorithm, and are often determined by time-consuming point correspondence methods requiring manual user input. Unfortunately, generation of accurate boundary conditions for the biomechanical model is often difficult due to the challenge of accurately matching points between the source and target surfaces and consequently necessitates the use of large numbers of fiducial markers. This study presents a novel method of automatically generating boundary conditions by non-rigidly registering two image sets with a Demons diffusion-based registration algorithm. The use of this method was successfully performed in silico using magnetic resonance and X-ray computed tomography image data with known boundary conditions. These preliminary results have produced boundary conditions with accuracy of up to 80% compared to the known conditions. Finally, these boundary conditions were utilized within a 3D MIE reconstruction to determine an elasticity contrast ratio between tumor and normal tissue. Preliminary results show a reasonable characterization of the material properties on this first attempt and a significant improvement in the automation level and viability of the method.

  16. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  17. Ontology analysis of global gene expression differences of human bone marrow stromal cells cultured on 3D scaffolds or 2D films.

    PubMed

    Baker, Bryan A; Pine, P Scott; Chatterjee, Kaushik; Kumar, Girish; Lin, Nancy J; McDaniel, Jennifer H; Salit, Marc L; Simon, Carl G

    2014-08-01

    Differences in gene expression of human bone marrow stromal cells (hBMSCs) during culture in three-dimensional (3D) nanofiber scaffolds or on two-dimensional (2D) films were investigated via pathway analysis of microarray mRNA expression profiles. Previous work has shown that hBMSC culture in nanofiber scaffolds can induce osteogenic differentiation in the absence of osteogenic supplements (OS). Analysis using ontology databases revealed that nanofibers and OS regulated similar pathways and that both were enriched for TGF-β and cell-adhesion/ECM-receptor pathways. The most notable difference between the two was that nanofibers had stronger enrichment for cell-adhesion/ECM-receptor pathways. Comparison of nanofibers scaffolds with flat films yielded stronger differences in gene expression than comparison of nanofibers made from different polymers, suggesting that substrate structure had stronger effects on cell function than substrate polymer composition. These results demonstrate that physical (nanofibers) and biochemical (OS) signals regulate similar ontological pathways, suggesting that these cues use similar molecular mechanisms to control hBMSC differentiation. PMID:24840613

  18. Probing tumor-stroma interactions and response to photodynamic therapy in a 3D pancreatic cancer-fibroblast co-culture model

    NASA Astrophysics Data System (ADS)

    Glidden, Michael D.; Massodi, Iqbal; Rizvi, Imran; Celli, Jonathan P.; Hasan, Tayyaba

    2012-02-01

    Pancreatic ductal adenocarcinoma is a lethal disease that is often unresectable by the time of diagnosis and is typically non-responsive to chemo- and radiotherapy, resulting in a five year survival of only 3%. Tumors of the pancreas are characterized by a dense fibrous stroma rich in extracellular matrix proteins, which is implicated in poor therapeutic response, though its precise roles remain poorly understood. Indeed, while the use of therapeutics that target the stroma is an emerging paradigm in the clinical management of this disease, the primary focus of such efforts is to enhance drug penetration through dense fibrous stroma and it is unclear to what extent the characteristically rigid stroma of pancreatic tumors imparts drug resistance by acting as a complex signaling partner, or merely as a physical barrier for drug delivery. Here we use 3D in vitro co-cultures of pancreatic cancer cells and normal human fibroblasts as a model system to study heterotypic interactions between these populations. Leveraging this in vitro model along with image-based methods for quantification of growth and therapeutic endpoints, we characterize these co-cultures and examine the role of verteporfin-based photodynamic therapy (PDT) for targeting tumor-fibroblast interactions in pancreatic tumors.

  19. Predictions of the cycle-to-cycle aerodynamic loads on a yawed wind turbine blade under stalled conditions using a 3D empirical stochastic model

    NASA Astrophysics Data System (ADS)

    ELGAMMI, MOUTAZ; SANT, TONIO

    2016-09-01

    This paper investigates a new approach to model the stochastic variations in the aerodynamic loads on yawed wind turbines experienced at high angles of attack. The method applies the one-dimensional Langevin equation in conjunction with known mean and standard deviation values for the lift and drag data. The method is validated using the experimental data from the NREL Phase VI rotor in which the mean and standard deviation values for the lift and drag are derived through the combined use of blade pressure measurements and a free-wake vortex model. Given that direct blade pressure measurements are used, 3D flow effects arising from the co-existence of dynamic stall and stall delay are taken into account. The model is an important step towards verification of several assumptions characterized as the estimated standard deviation, Gaussian white noise of the data and the estimated drift and diffusion coefficients of the Langevin equation. The results using the proposed assumptions lead to a good agreement with measurements over a wide range of operating conditions. This provides motivation to implement a general fully independent theoretical stochastic model within a rotor aerodynamics model, such as the free-wake vortex or blade-element momentum code, whereby the mean lift and drag coefficients can be estimated using 2D aerofoil data with correction models for 3D dynamic stall and stall delay phenomena, while the corresponding standard derivations are estimated through CFD.

  20. Self-Supported Cedarlike Semimetallic Cu3P Nanoarrays as a 3D High-Performance Janus Electrode for Both Oxygen and Hydrogen Evolution under Basic Conditions.

    PubMed

    Hou, Chun-Chao; Chen, Qian-Qian; Wang, Chuan-Jun; Liang, Fei; Lin, Zheshuai; Fu, Wen-Fu; Chen, Yong

    2016-09-01

    There has been strong and growing interest in the development of cost-effective and highly active oxygen evolution reaction (OER) electrocatalysts for alternative fuels utilization and conversion devices. We report herein that semimetallic Cu3P nanoarrays directly grown on 3D copper foam (CF) substrate can function as effective electrocatalysts for water oxidation. Specifically, the surface oxidation-activated Cu3P only required a relatively low overpotential of 412 mV to achieve a current density of 50 mA cm(-2) and displayed a small Tafel slope of 63 mV dec(-1) in 0.1 M KOH solution, on account of the collaborative effect of large roughness factor (RF) and semimetallic character. Following that, investigations into the mechanism revealed the formation of a unique active phase during the water oxidation process in which conductive Cu3P was the core covered with a thin copper oxide/hydroxide layer. Moreover, this Cu3P 3D electrode was also applied to the hydrogen evolution reaction (HER) and showed good catalytic performance and stability under the same basic conditions. PMID:27559613

  1. Evaluation of the 3D BacT/ALERT automated culture system for the detection of microbial contamination of platelet concentrates.

    PubMed

    McDonald, C P; Rogers, A; Cox, M; Smith, R; Roy, A; Robbins, S; Hartley, S; Barbara, J A J; Rothenberg, S; Stutzman, L; Widders, G

    2002-10-01

    Bacterial transmission remains the major component of morbidity and mortality associated with transfusion-transmitted infections. Platelet concentrates are the most common cause of bacterial transmission. The BacT/ALERT 3D automated blood culture system has the potential to screen platelet concentrates for the presence of bacteria. Evaluation of this system was performed by spiking day 2 apheresis platelet units with individual bacterial isolates at final concentrations of 10 and 100 colony-forming units (cfu) mL-1. Fifteen organisms were used which had been cited in platelet transmission and monitoring studies. BacT/ALERT times to detection were compared with thioglycollate broth cultures, and the performance of five types of BacT/ALERT culture bottles was evaluated. Sampling was performed immediately after the inoculation of the units, and 10 replicates were performed per organism concentration for each of the five types of BacT/ALERT bottles. The mean times for the detection of these 15 organisms by BacT/ALERT, with the exception of Propionibacterium acnes, ranged from 9.1 to 48.1 h (all 10 replicates were positive). In comparison, the time range found using thioglycollate was 12.0-32.3 h (all 10 replicates were positive). P. acnes' BacT/ALERT mean detection times ranged from 89.0 to 177.6 h compared with 75.6-86.4 h for the thioglycollate broth. BacT/ALERT, with the exception of P. acnes, which has dubious clinical significance, gave equivalent or shorter detection times when compared with the thioglycollate broth system. The BacT/ALERT system detected a range of organisms at levels of 10 and 100 cfu mL-1. This study validates the BacT/ALERT microbial detection system for screening platelets. Currently, the system is the only practically viable option available for routinely screening platelet concentrates to prevent bacterial transmission.

  2. Evaluation of the 3D BacT/ALERT automated culture system for the detection of microbial contamination of platelet concentrates.

    PubMed

    McDonald, C P; Rogers, A; Cox, M; Smith, R; Roy, A; Robbins, S; Hartley, S; Barbara, J A J; Rothenberg, S; Stutzman, L; Widders, G

    2002-10-01

    Bacterial transmission remains the major component of morbidity and mortality associated with transfusion-transmitted infections. Platelet concentrates are the most common cause of bacterial transmission. The BacT/ALERT 3D automated blood culture system has the potential to screen platelet concentrates for the presence of bacteria. Evaluation of this system was performed by spiking day 2 apheresis platelet units with individual bacterial isolates at final concentrations of 10 and 100 colony-forming units (cfu) mL-1. Fifteen organisms were used which had been cited in platelet transmission and monitoring studies. BacT/ALERT times to detection were compared with thioglycollate broth cultures, and the performance of five types of BacT/ALERT culture bottles was evaluated. Sampling was performed immediately after the inoculation of the units, and 10 replicates were performed per organism concentration for each of the five types of BacT/ALERT bottles. The mean times for the detection of these 15 organisms by BacT/ALERT, with the exception of Propionibacterium acnes, ranged from 9.1 to 48.1 h (all 10 replicates were positive). In comparison, the time range found using thioglycollate was 12.0-32.3 h (all 10 replicates were positive). P. acnes' BacT/ALERT mean detection times ranged from 89.0 to 177.6 h compared with 75.6-86.4 h for the thioglycollate broth. BacT/ALERT, with the exception of P. acnes, which has dubious clinical significance, gave equivalent or shorter detection times when compared with the thioglycollate broth system. The BacT/ALERT system detected a range of organisms at levels of 10 and 100 cfu mL-1. This study validates the BacT/ALERT microbial detection system for screening platelets. Currently, the system is the only practically viable option available for routinely screening platelet concentrates to prevent bacterial transmission. PMID:12383336

  3. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  4. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  5. System for measuring oxygen consumption rates of mammalian cells in static culture under hypoxic conditions.

    PubMed

    Kagawa, Yuki; Miyahara, Hirotaka; Ota, Yuri; Tsuneda, Satoshi

    2016-01-01

    Estimating the oxygen consumption rates (OCRs) of mammalian cells in hypoxic environments is essential for designing and developing a three-dimensional (3-D) cell culture system. However, OCR measurements under hypoxic conditions are infrequently reported in the literature. Here, we developed a system for measuring OCRs at low oxygen levels. The system injects nitrogen gas into the environment and measures the oxygen concentration by an optical oxygen microsensor that consumes no oxygen. The developed system was applied to HepG2 cells in static culture. Specifically, we measured the spatial profiles of the local dissolved oxygen concentration in the medium, then estimated the OCRs of the cells. The OCRs, and also the pericellular oxygen concentrations, decreased nonlinearly as the oxygen partial pressure in the environment decreased from 19% to 1%. The OCRs also depended on the culture period and the matrix used for coating the dish surface. Using this system, we can precisely estimate the OCRs of various cell types under environments that mimic 3-D culture conditions, contributing crucial data for an efficient 3-D culture system design. PMID:26558344

  6. Differential osteogenicity of multiple donor-derived human mesenchymal stem cells and osteoblasts in monolayer, scaffold-based 3D culture and in vivo.

    PubMed

    Quent, Verena M C; Theodoropoulos, Christina; Hutmacher, Dietmar W; Reichert, Johannes C

    2016-06-01

    We set out to compare the osteogenicity of human mesenchymal stem (hMSCs) and osteoblasts (hOBs). Upon osteogenic induction in monolayer, hMSCs showed superior matrix mineralization expressing characteristic bone-related genes. For scaffold cultures, both cell types presented spindle-shaped, osteoblast-like morphologies forming a dense, interconnected network of high viability. On the scaffolds, hOBs proliferated faster. A general upregulation of parathyroid hormone-related protein (PTHrP), osteoprotegrin (OPG), receptor activator of NF-κB ligand (RANKL), sclerostin (SOST), and dentin matrix protein 1 (DMP1) was observed for both cell types. Simultaneously, PTHrP, RANKL and DMP-1 expression decreased under osteogenic stimulation, while OPG and SOST increased significantly. Following transplantation into NOD/SCID mice, μCT and histology showed increased bone deposition with hOBs. The bone was vascularized, and amounts further increased for both cell types after recombinant human bone morphogenic protein 7 (rhBMP-7) addition also stimulating osteoclastogenesis. Complete bone organogenesis was evidenced by the presence of osteocytes and hematopoietic precursors. Our study results support the asking to develop 3D cellular models closely mimicking the functions of living tissues suitable for in vivo translation.

  7. Expression of transcription factors after short-term exposure of Arabidopsis thaliana cell cultures to hypergravity and simulated microgravity (2-D/3-D clinorotation, magnetic levitation)

    NASA Astrophysics Data System (ADS)

    Babbick, M.; Dijkstra, C.; Larkin, O. J.; Anthony, P.; Davey, M. R.; Power, J. B.; Lowe, K. C.; Cogoli-Greuter, M.; Hampp, R.

    Gravity is an important environmental factor that controls plant growth and development. Studies have shown that the perception of gravity is not only a property of specialized cells, but can also be performed by undifferentiated cultured cells. In this investigation, callus of Arabidopsis thaliana cv. Columbia was used to investigate the initial steps of gravity-related signalling cascades, through altered expression of transcription factors (TFs). TFs are families of small proteins that regulate gene expression by binding to specific promoter sequences. Based on microarray studies, members of the gene families WRKY, MADS-box, MYB, and AP2/EREBP were selected for investigation, as well as members of signalling chains, namely IAA 19 and phosphoinositol-4-kinase. Using qRT-PCR, transcripts were quantified within a period of 30 min in response to hypergravity (8 g), clinorotation [2-D clinostat and 3-D random positioning machine (RPM)] and magnetic levitation (ML). The data indicated that (1) changes in gravity induced stress-related signalling, and (2) exposure in the RPM induced changes in gene expression which resemble those of magnetic levitation. Two dimensional clinorotation resulted in responses similar to those caused by hypergravity. It is suggested that RPM and ML are preferable to simulate microgravity than clinorotation.

  8. Novel in vitro culture condition improves the stemness of human dermal stem/progenitor cells.

    PubMed

    Shim, Joong Hyun; Lee, Tae Ryong; Shin, Dong Wook

    2013-12-01

    Cell therapy using adult stem cells has emerged as a potentially new approach for the treatment of various diseases. Therefore, it is an essential procedure to maintain the stemness of adult stem cells for clinical treatment. We previously reported that human dermal stem/progenitor cells (hDSPCs) can be enriched using collagen type IV. However, hDSPCs gradually lose their stem cell properties as in vitro passages continue. In the present study, we developed optimized in vitro culture condition to improve the stemness of these hDSPCs. To evaluate whether the stemness of hDSPCs is well sustained in various culture conditions, we measured the expression levels of SOX2, NANOG, and S100B, which are well-known representative dermal progenitor markers. We observed that hDSPCs grown in three-dimensional (3D) culture condition had higher expression levels of those markers compared with hDSPCs grown in two-dimensional (2D) culture condition. Under the 3D culture condition, we further demonstrated that a high glucose (4.5 g/L) concentration enhanced the expression levels of the dermal progenitor markers, whereas O(2) concentration did not affect. We also found that skin-derived precursor (SKP) culture medium was the most effective, among various culture media, in increasing the dermal progenitor marker expression. We finally demonstrated that this optimized culture condition enhanced the expression level of human telomerase reverse transcriptase (hTERT), the proliferation, and the multipotency of hDSPCs, an important characteristic of stem cells. Taken together, these results suggested that this novel in vitro culture condition improves the stemness of hDSPCs.

  9. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  10. Imaging a Sustainable Future in 3D

    NASA Astrophysics Data System (ADS)

    Schuhr, W.; Lee, J. D.; Kanngieser, E.

    2012-07-01

    It is the intention of this paper, to contribute to a sustainable future by providing objective object information based on 3D photography as well as promoting 3D photography not only for scientists, but also for amateurs. Due to the presentation of this article by CIPA Task Group 3 on "3D Photographs in Cultural Heritage", the presented samples are masterpieces of historic as well as of current 3D photography concentrating on cultural heritage. In addition to a report on exemplarily access to international archives of 3D photographs, samples for new 3D photographs taken with modern 3D cameras, as well as by means of a ground based high resolution XLITE staff camera and also 3D photographs taken from a captive balloon and the use of civil drone platforms are dealt with. To advise on optimum suited 3D methodology, as well as to catch new trends in 3D, an updated synoptic overview of the 3D visualization technology, even claiming completeness, has been carried out as a result of a systematic survey. In this respect, e.g., today's lasered crystals might be "early bird" products in 3D, which, due to lack in resolution, contrast and color, remember to the stage of the invention of photography.

  11. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates.

    PubMed

    Amer, Luke D; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J; Bryant, Stephanie J

    2015-08-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15)μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced under both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (∼ 2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1(+)/Nkx6.1(+) cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates.

  12. Enzymatically degradable poly(ethylene glycol) hydrogels for the 3D culture and release of human embryonic stem cell derived pancreatic precursor cell aggregates

    PubMed Central

    Amer, Luke D.; Holtzinger, Audrey; Keller, Gordon; Mahoney, Melissa J.; Bryant, Stephanie J.

    2015-01-01

    This study aimed to develop a three dimensional culture platform for aggregates of human embryonic stem cell (hESC)-derived pancreatic progenitors that enables long-term culture, maintains aggregate size and morphology, does not adversely affect differentiation and provides a means for aggregate recovery. A platform was developed with poly(ethylene glycol) hydrogels containing collagen type I, for cell-matrix interactions, and peptide crosslinkers, for facile recovery of aggregates. The platform was first demonstrated with RIN-m5F cells, showing encapsulation and subsequent release of single cells and aggregates without adversely affecting viability. Aggregates of hESC-derived pancreatic progenitors with an effective diameter of 82 (15) μm were either encapsulated in hydrogels or cultured in suspension for 28 days. At day 14, aggregate viability was maintained in the hydrogels, but significantly reduced (88%) in suspension culture. However by day 28, viability was reduced in both culture conditions. Aggregate size was maintained in the hydrogels, but in suspension was significantly higher (~2-fold) by day 28. The ability to release aggregates followed by a second enzyme treatment to achieve single cells enabled assessment by flow cytometry. Prior to encapsulation, there were 39% Pdx1+/Nkx6.1+ cells, key endocrine markers required for β-cell maturation. The fraction of doubly positive cells was not affected in hydrogels but was slightly and significantly lower in suspension culture by 28 days. In conclusion, we demonstrate that a MMP-sensitive PEG hydrogel containing collagen type I is a promising platform for hESC-derived pancreatic progenitors that maintains viable aggregates, aggregate size, and progenitor state and offers facile recovery of aggregates. PMID:25913222

  13. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  14. CEACAM1-4S, a cell-cell adhesion molecule, mediates apoptosis and reverts mammary carcinoma cells to a normal morphogenic phenotype in a 3D culture.

    PubMed

    Kirshner, Julia; Chen, Charng-Jui; Liu, Pingfang; Huang, Jie; Shively, John E

    2003-01-21

    In a 3D model of breast morphogenesis, CEACAM1 (carcinoembryonic antigen-related cell adhesion molecule 1) plays an essential role in lumen formation in a subline of the nonmalignant human breast cell line (MCF10A). We show that mammary carcinoma cells (MCF7), which do not express CEACAM1 or form lumena when grown in Matrigel, are restored to a normal morphogenic program when transfected with CEACAM1-4S, the short cytoplasmic isoform of CEACAM1 that predominates in breast epithelia. During the time course of lumen formation, CEACAM1-4S was found initially between the cells, and in mature acini, it was found exclusively in an apical location, identical to its expression pattern in normal breast. Lumena were formed by apoptosis as opposed to necrosis of the central cells within the alveolar structures, and apoptotic cells within the lumena expressed CEACAM1-4S. Dying cells exhibited classical hallmarks of apoptosis, including nuclear condensation, membrane blebbing, caspase activation, and DNA laddering. Apoptosis was mediated by Bax translocation to the mitochondria and release of cytochrome c into the cytoplasm, and was partially inhibited by culturing cells with caspase inhibitors. The dynamic changes in CEACAM1 expression during morphogenesis, together with studies implicating extracellular matrix and integrin signaling, suggest that a morphogenic program integrates cell-cell and cell-extracellular matrix signaling to produce the lumena in mammary glands. This report reveals a function of CEACAM1-4S relevant to cellular physiology that distinguishes it from its related long cytoplasmic domain isoform.

  15. Cell culture and characterization of cross-linked poly(vinyl alcohol)-g-starch 3D scaffold for tissue engineering.

    PubMed

    Hsieh, Wen-Chuan; Liau, Jiun-Jia

    2013-10-15

    The research goal of this experiment is chemically to cross-link poly(vinyl alcohol) (PVA) and starch to form a 3D scaffold that is effective water absorbent, has a stable structure, and supports cell growth. PVA and starch can be chemically cross-linked to form a PVA-g-starch 3D scaffold polymer, as observed by Fourier transform infrared spectroscopy (FTIR), with an absorbency of up to 800%. Tensile testing reveals that, as the amount of starch increases, the strength of the 3D scaffold strength reaches 4×10(-2) MPa. Scanning electron microscope (SEM) observations of the material reveal that the 3D scaffold is highly porous formed using a homogenizer at 500 rpm. In an enzymatic degradation, the 3D scaffold was degraded by various enzymes at a rate of up to approximately 30-60% in 28 days. In vitro tests revealed that cells proliferate and grow in the 3D scaffold material. Energy dispersive spectrometer (EDS) analysis further verified that the bio-compatibility of this scaffold. PMID:23987384

  16. Experiments performed with bubbly flow in vertical pipes at different flow conditions covering the transition region: simulation by coupling Eulerian, Lagrangian and 3D random walks models

    NASA Astrophysics Data System (ADS)

    Muñoz-Cobo, José; Chiva, Sergio; El Aziz Essa, Mohamed; Mendes, Santos

    2012-08-01

    Two phase flow experiments with different superficial velocities of gas and water were performed in a vertical upward isothermal cocurrent air-water flow column with conditions ranging from bubbly flow, with very low void fraction, to transition flow with some cap and slug bubbles and void fractions around 25%. The superficial velocities of the liquid and the gas phases were varied from 0.5 to 3 m/s and from 0 to 0.6 m/s, respectively. Also to check the effect of changing the surface tension on the previous experiments small amounts of 1-butanol were added to the water. These amounts range from 9 to 75 ppm and change the surface tension. This study is interesting because in real cases the surface tension of the water diminishes with temperature, and with this kind of experiments we can study indirectly the effect of changing the temperature on the void fraction distribution. The following axial and radial distributions were measured in all these experiments: void fraction, interfacial area concentration, interfacial velocity, Sauter mean diameter and turbulence intensity. The range of values of the gas superficial velocities in these experiments covered the range from bubbly flow to the transition to cap/slug flow. Also with transition flow conditions we distinguish two groups of bubbles in the experiments, the small spherical bubbles and the cap/slug bubbles. Special interest was devoted to the transition region from bubbly to cap/slug flow; the goal was to understand the physical phenomena that take place during this transition A set of numerical simulations of some of these experiments for bubbly flow conditions has been performed by coupling a Lagrangian code, that tracks the three dimensional motion of the individual bubbles in cylindrical coordinates inside the field of the carrier liquid, to an Eulerian model that computes the magnitudes of continuous phase and to a 3D random walk model that takes on account the fluctuation in the velocity field of the

  17. A study of the variation of physical conditions in the cometary coma based on a 3D multi-fluid model

    NASA Astrophysics Data System (ADS)

    Shou, Y.; Combi, M. R.; Fougere, N.; Tenishev, V.; Toth, G.; Gombosi, T. I.; Huang, Z.; Jia, X.; Bieler, A. M.; Hansen, K. C.

    2015-12-01

    Physics-based numerical coma models are desirable whether to interpret the spacecraft observations of the inner coma or to compare with the ground-based observations of the outer coma. One example is Direct Simulation Monte Carlo (DSMC) method, which has been successfully adopted to simulate the coma under various complex conditions. However, for bright comets with large production rates, the time step in DSMC model has to be tiny to accommodate the small mean free path and the high collision frequency. In addition a truly time-variable 3D DSMC model would still be computationally difficult or even impossible under most circumstances. In this work, we develop a multi-neutral-fluid model based on BATS-R-US in the University of Michigan's SWMF (Space Weather Modeling Framework), which can serve as a useful alternative to DSMC methods to compute both the inner and the outer coma and to treat time-variable phenomena. This model treats H2O, OH, H2, O, H and CO2 as separate fluids and each fluid has its own velocity and temperature. But collisional interactions can also couple all fluids together. Collisional interactions tend to decrease the velocity differences and are also able to re-distribute the excess energy deposited by chemical reactions among all species. To compute the momentum and energy transfer caused by such interactions self-consistently, collisions between fluids, whose efficiency is proportional to the densities, are included as well as heating from various chemical reactions. By applying the model to comets with different production rates (i.e. 67P/Churyumov-Gerasimenko, 1P/Halley, etc.), we are able to study how the heating efficiency varies with cometocentric distances and production rates. The preliminary results and comparison are presented and discussed. This work has been partially supported by grant NNX14AG84G from the NASA Planetary Atmospheres Program, and US Rosetta contracts JPL #1266313, JPL #1266314 and JPL #1286489.

  18. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  19. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria

    PubMed Central

    Maia, Margarida R. G.; Marques, Sara; Cabrita, Ana R. J.; Wallace, R. John; Thompson, Gertrude; Fonseca, António J. M.; Oliveira, Hugo M.

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  20. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria.

    PubMed

    Maia, Margarida R G; Marques, Sara; Cabrita, Ana R J; Wallace, R John; Thompson, Gertrude; Fonseca, António J M; Oliveira, Hugo M

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells.

  1. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria.

    PubMed

    Maia, Margarida R G; Marques, Sara; Cabrita, Ana R J; Wallace, R John; Thompson, Gertrude; Fonseca, António J M; Oliveira, Hugo M

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells. PMID:27630632

  2. Simple and Versatile Turbidimetric Monitoring of Bacterial Growth in Liquid Cultures Using a Customized 3D Printed Culture Tube Holder and a Miniaturized Spectrophotometer: Application to Facultative and Strictly Anaerobic Bacteria

    PubMed Central

    Maia, Margarida R. G.; Marques, Sara; Cabrita, Ana R. J.; Wallace, R. John; Thompson, Gertrude; Fonseca, António J. M.; Oliveira, Hugo M.

    2016-01-01

    Here we introduce a novel strategy for turbidimetric monitoring of bacterial growth in liquid culture. The instrumentation comprises a light source, a customized 3D printed culture tube holder and a miniaturized spectrophotometer, connected through optical cables. Due to its small footprint and the possibility to operate with external light, bacterial growth was directly monitored from culture tubes in a simple and versatile fashion. This new portable measurement technique was used to monitor the growth of facultative (Escherichia coli ATCC/25922, and Staphylococcus aureus ATCC/29213) and strictly (Butyrivibrio fibrisolvens JW11, Butyrivibrio proteoclasticus P18, and Propionibacterium acnes DSMZ 1897) anaerobic bacteria. For E. coli and S. aureus, the growth rates calculated from normalized optical density values were compared with those ones obtained using a benchtop spectrophotometer without significant differences (P = 0.256). For the strictly anaerobic species, a high precision (relative standard deviation < 3.5%) was observed between replicates up to 48 h. Regarding its potential for customization, this manifold could accommodate further developments for customized turbidimetric monitoring, such as the use of light-emitting diodes as a light source or flow cells. PMID:27630632

  3. Co-stimulation of HaCaT keratinization with mechanical stress and air-exposure using a novel 3D culture device

    PubMed Central

    Jung, Moon Hee; Jung, Sang-Myung; Shin, Hwa Sung

    2016-01-01

    Artificial skin or skin equivalents have been used for clinical purpose to skin graft and as substitutes for animal experiments. The culture of cell lines such as HaCaT has the potential to produce large amounts of artificial skin at a low cost. However, there is a limit to keratinization due to the restriction of differentiation in HaCaT. In this study, a culture device that mimics the in vivo keratinization mechanism, co-stimulated by air-exposure and mechanical stimulation, was developed to construct skin equivalents. The device can reconstruct the epidermal morphology, including the cornified layer, similar to its formation in vivo. Under the condition, epidermis was differentiated in the spinous and granular layers. Formation of the stratum corneum is consistent with the mRNA and protein expressions of differentiation markers. The device is the first of its kind to combine air-exposure with mechanical stress to co-stimulate keratinization, which can facilitate the economically viable production of HaCaT-based artificial skin substitutes. PMID:27670754

  4. Changes in gene expression, protein content and morphology of chondrocytes cultured on a 3D Random Positioning Machine and 2D rotating clinostat

    NASA Astrophysics Data System (ADS)

    Aleshcheva, Ganna; Hauslage, Jens; Hemmersbach, Ruth; Infanger, Manfred; Bauer, Johann; Grimm, Daniela; Sahana, Jayashree

    Chondrocytes are the only cell type found in human cartilage consisting of proteoglycans and type II collagen. Several studies on chondrocytes cultured either in Space or on a ground-based facility for simulation of microgravity revealed that these cells are very resistant to adverse effects and stress induced by altered gravity. Tissue engineering of chondrocytes is a new strategy for cartilage regeneration. Using a three-dimensional Random Positioning Machine and a 2D rotating clinostat, devices designed to simulate microgravity on Earth, we investigated the early effects of microgravity exposure on human chondrocytes of six different donors after 30 min, 2 h, 4 h, 16 h, and 24 h and compared the results with the corresponding static controls cultured under normal gravity conditions. As little as 30 min of exposure resulted in increased expression of several genes responsible for cell motility, structure and integrity (beta-actin); control of cell growth, cell proliferation, cell differentiation and apoptosis; and cytoskeletal components such as microtubules (beta-tubulin) and intermediate filaments (vimentin). After 4 hours disruptions in the vimentin network were detected. These changes were less dramatic after 16 hours, when human chondrocytes appeared to reorganize their cytoskeleton. However, the gene expression and protein content of TGF-β1 was enhanced for 24 h. Based on the results achieved, we suggest that chondrocytes exposed to simulated microgravity seem to change their extracellular matrix production behavior while they rearrange their cytoskeletal proteins prior to forming three-dimensional aggregates.

  5. Cross-Cultural Discussions in a 3D Virtual Environment and Their Affordances for Learners' Motivation and Foreign Language Discussion Skills

    ERIC Educational Resources Information Center

    Jauregi, Kristi; Kuure, Leena; Bastian, Pim; Reinhardt, Dennis; Koivisto, Tuomo

    2015-01-01

    Within the European TILA project a case study was carried out where pupils from schools in Finland and the Netherlands engaged in debating sessions using the 3D virtual world of OpenSim once a week for a period of 5 weeks. The case study had two main objectives: (1) to study the impact that the discussion tasks undertaken in a virtual environment…

  6. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  7. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  8. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  9. Conditioning Factors of an Organizational Learning Culture

    ERIC Educational Resources Information Center

    Rebelo, Teresa Manuela; Gomes, Adelino Duarte

    2011-01-01

    Purpose: The aim of this study is to assess the relationship between some variables (organizational structure, organizational dimension and age, human resource characteristics, the external environment, strategy and quality) and organizational learning culture and evaluate the way they interact with this kind of culture.…

  10. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  11. Type VII collagen regulates expression of OATP1B3, promotes front-to-rear polarity and increases structural organisation in 3D spheroid cultures of RDEB tumour keratinocytes.

    PubMed

    Dayal, Jasbani H S; Cole, Clare L; Pourreyron, Celine; Watt, Stephen A; Lim, Yok Zuan; Salas-Alanis, Julio C; Murrell, Dedee F; McGrath, John A; Stieger, Bruno; Jahoda, Colin; Leigh, Irene M; South, Andrew P

    2014-02-15

    Type VII collagen is the main component of anchoring fibrils, structures that are integral to basement membrane homeostasis in skin. Mutations in the gene encoding type VII collagen COL7A1 cause recessive dystrophic epidermolysis bullosa (RDEB) an inherited skin blistering condition complicated by frequent aggressive cutaneous squamous cell carcinoma (cSCC). OATP1B3, which is encoded by the gene SLCO1B3, is a member of the OATP (organic anion transporting polypeptide) superfamily responsible for transporting a wide range of endogenous and xenobiotic compounds. OATP1B3 expression is limited to the liver in healthy tissues, but is frequently detected in multiple cancer types and is reported to be associated with differing clinical outcome. The mechanism and functional significance of tumour-specific expression of OATP1B3 has yet to be determined. Here, we identify SLCO1B3 expression in tumour keratinocytes isolated from RDEB and UV-induced cSCC and demonstrate that SLCO1B3 expression and promoter activity are modulated by type VII collagen. We show that reduction of SLCO1B3 expression upon expression of full-length type VII collagen in RDEB cSCC coincides with acquisition of front-to-rear polarity and increased organisation of 3D spheroid cultures. In addition, we show that type VII collagen positively regulates the abundance of markers implicated in cellular polarity, namely ELMO2, PAR3, E-cadherin, B-catenin, ITGA6 and Ln332. PMID:24357722

  12. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  13. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  14. Stiffness of the microenvironment upregulates ERBB2 expression in 3D cultures of MCF10A within the range of mammographic density

    PubMed Central

    Cheng, Qingsu; Bilgin, Cemal Cagatay; Fonteney, Gerald; Chang, Hang; Henderson, Matthew; Han, Ju; Parvin, Bahram

    2016-01-01

    The effects of the stiffness of the microenvironment on the molecular response of 3D colony organization, at the maximum level of mammographic density (MD), are investigated. Phenotypic profiling reveals that 3D colony formation is heterogeneous and increased stiffness of the microenvironment, within the range of the MD, correlates with the increased frequency of aberrant 3D colony formation. Further integrative analysis of the genome-wide transcriptome and phenotypic profiling hypothesizes overexpression of ERBB2 in the premalignant MCF10A cell lines at a stiffness value that corresponds to the collagen component at high mammographic density. Subsequently, ERBB2 overexpression has been validated in the same cell line. Similar experiments with a more genetically stable cell line of 184A1 also revealed an increased frequency of aberrant colony formation with the increased stiffness; however, 184A1 did not demonstrate overexpression of ERBB2 at the same stiffness value of the high MD. These results suggest that stiffness exacerbates premalignant cell line of MCF10A. PMID:27383056

  15. Optimization for enhancement of signal effectiveness in three-dimensional (3D) cell based electrochemical biosensor.

    PubMed

    Jeong, Se Hoon; Ku, Bosung; Yi, Sang Hyun; Lee, Dong Woo; Lee, Hye Seon; Kim, Jhingook

    2011-01-01

    This study addresses the optimization for enhancement of signal effectiveness in 3D cell based electrochemical biosensor. While 2D culture has a structural limitation to mimic an in vivo, 3D culture can provide more similar cell responses. In addition, although 3D cultured cells have been applied to measure electrically, the intensity of electrical signal from cells on the electrode was extremely low. Thus, we have optimized and evaluated the condition of gelation between several types of sol-gel and cancer cells using the electrical measurement to make fine 3D cell structure on the electrode. These results show that our work can be an useful method for monitoring cell activity by compensating a limitation of 2D culture in real time. PMID:22256300

  16. Optimization of culture conditions for Gardnerella vaginalis biofilm formation.

    PubMed

    Machado, Daniela; Palmeira-de-Oliveira, Ana; Cerca, Nuno

    2015-11-01

    Bacterial vaginosis is the leading vaginal disorder in women in reproductive age. Although bacterial vaginosis is related with presence of a biofilm composed predominantly by Gardnerella vaginalis, there has not been a detailed information addressing the environmental conditions that influence the biofilm formation of this bacterial species. Here, we evaluated the influence of some common culture conditions on G. vaginalis biofilm formation, namely inoculum concentration, incubation period, feeding conditions and culture medium composition. Our results showed that culture conditions strongly influenced G. vaginalis biofilm formation and that biofilm formation was enhanced when starting the culture with a higher inoculum, using a fed-batch system and supplementing the growth medium with maltose.

  17. Potential effect of matrix stiffness on the enrichment of tumor initiating cells under three-dimensional culture conditions.

    PubMed

    Liu, Chang; Liu, Yang; Xu, Xiao-xi; Wu, Hao; Xie, Hong-guo; Chen, Li; Lu, Ting; Yang, Li; Guo, Xin; Sun, Guang-wei; Wang, Wei; Ma, Xiao-jun; He, Xin

    2015-01-01

    Cancer stem cell (CSC) or tumor initiating cell (TIC) plays an important role in tumor progression and metastasis. Biophysical forces in tumor microenvironment have an important effect on tumor formation and development. In this study, the potential effect of matrix stiffness on the biological characteristics of human head and neck squamous cell carcinoma (HNSCC) TICs, especially the enrichment of HNSCC TICs, was investigated under three-dimensional (3D) culture conditions by means of alginate gel (ALG) beads with different matrix stiffnesses. ALG beads with soft (21 kPa), moderate (70 kPa) and hard (105 kPa) stiffness were generated by changing alginate concentration. It was found that significant HNSCC TIC enrichment was achieved in the ALG beads with moderate matrix stiffness (70 kPa). The gene expression of stemness markers Oct3/4 and Nanog, TIC markers CD44 and ABCG2 was enhanced in cells under this moderate (70 kPa) stiffness. HNSCC TIC proportion was also highly enriched under moderate matrix stiffness, accompanying with higher tumorigenicity, metastatic ability and drug resistance. And it was also found that the possible molecular mechanism underlying the regulated TIC properties by matrix stiffness under 3D culture conditions was significantly different from 2D culture condition. Therefore, the results achieved in this study indicated that 3D biophysical microenvironment had an important effect on TIC characteristics and alginate-based biomimetic scaffolds could be utilized as a proper platform to investigate the interaction between tumor cells and 3D microenvironment.

  18. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  19. Tooteko: a Case Study of Augmented Reality for AN Accessible Cultural Heritage. Digitization, 3d Printing and Sensors for AN Audio-Tactile Experience

    NASA Astrophysics Data System (ADS)

    D'Agnano, F.; Balletti, C.; Guerra, F.; Vernier, P.

    2015-02-01

    Tooteko is a smart ring that allows to navigate any 3D surface with your finger tips and get in return an audio content that is relevant in relation to the part of the surface you are touching in that moment. Tooteko can be applied to any tactile surface, object or sheet. However, in a more specific domain, it wants to make traditional art venues accessible to the blind, while providing support to the reading of the work for all through the recovery of the tactile dimension in order to facilitate the experience of contact with art that is not only "under glass." The system is made of three elements: a high-tech ring, a tactile surface tagged with NFC sensors, and an app for tablet or smartphone. The ring detects and reads the NFC tags and, thanks to the Tooteko app, communicates in wireless mode with the smart device. During the tactile navigation of the surface, when the finger reaches a hotspot, the ring identifies the NFC tag and activates, through the app, the audio track that is related to that specific hotspot. Thus a relevant audio content relates to each hotspot. The production process of the tactile surfaces involves scanning, digitization of data and 3D printing. The first experiment was modelled on the facade of the church of San Michele in Isola, made by Mauro Codussi in the late fifteenth century, and which marks the beginning of the Renaissance in Venice. Due to the absence of recent documentation on the church, the Correr Museum asked the Laboratorio di Fotogrammetria to provide it with the aim of setting up an exhibition about the order of the Camaldolesi, owners of the San Michele island and church. The Laboratorio has made the survey of the facade through laser scanning and UAV photogrammetry. The point clouds were the starting point for prototypation and 3D printing on different supports. The idea of the integration between a 3D printed tactile surface and sensors was born as a final thesis project at the Postgraduate Mastercourse in Digital

  20. Imaging of human differentiated 3D neural aggregates using light sheet fluorescence microscopy

    PubMed Central

    Gualda, Emilio J.; Simão, Daniel; Pinto, Catarina; Alves, Paula M.; Brito, Catarina

    2014-01-01

    The development of three dimensional (3D) cell cultures represents a big step for the better understanding of cell behavior and disease in a more natural like environment, providing not only single but multiple cell type interactions in a complex 3D matrix, highly resembling physiological conditions. Light sheet fluorescence microscopy (LSFM) is becoming an excellent tool for fast imaging of such 3D biological structures. We demonstrate the potential of this technique for the imaging of human differentiated 3D neural aggregates in fixed and live samples, namely calcium imaging and cell death processes, showing the power of imaging modality compared with traditional microscopy. The combination of light sheet microscopy and 3D neural cultures will open the door to more challenging experiments involving drug testing at large scale as well as a better understanding of relevant biological processes in a more realistic environment. PMID:25161607

  1. Modeling and Accuracy Assessment for 3D-VIRTUAL Reconstruction in Cultural Heritage Using Low-Cost Photogrammetry: Surveying of the "santa MARÍA Azogue" Church's Front

    NASA Astrophysics Data System (ADS)

    Robleda Prieto, G.; Pérez Ramos, A.

    2015-02-01

    Sometimes it could be difficult to represent "on paper" an architectural idea, a solution, a detail or a newly created element, depending on the complexity what it want be conveyed through its graphical representation but it may be even harder to represent the existing reality. (a building, a detail,...), at least with an acceptable degree of definition and accuracy. As a solution to this hypothetical problem, this paper try to show a methodology to collect measure data by combining different methods or techniques, to obtain the characteristic geometry of architectonic elements, especially in those highly decorated and/or complex geometry, as well as to assess the accuracy of the results obtained, but in an accuracy level enough and not very expensive costs. In addition, we can obtain a 3D recovery model that allows us a strong support, beyond point clouds obtained through another more expensive methods as using laser scanner, to obtain orthoimages. This methodology was used in the study case of the 3D-virtual reconstruction of a main medieval church façade because of the geometrical complexity in many elements as the existing main doorway with archivolts and many details, as well as the rose window located above it so it's inaccessible due to the height.

  2. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  3. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  4. Preparation of cultured cells using high-pressure freezing and freeze substitution for subsequent 2D or 3D visualization in the transmission electron microscope.

    PubMed

    Hawes, Philippa C

    2015-01-01

    Transmission electron microscopy (TEM) is an invaluable technique used for imaging the ultrastructure of samples and it is particularly useful when determining virus-host interactions at a cellular level. The environment inside a TEM is not favorable for biological material (high vacuum and high energy electrons). Also biological samples have little or no intrinsic electron contrast, and rarely do they naturally exist in very thin sheets, as is required for optimum resolution in the TEM. To prepare these samples for imaging in the TEM therefore requires extensive processing which can alter the ultrastructure of the material. Here we describe a method which aims to minimize preparation artifacts by freezing the samples at high pressure to instantaneously preserve ultrastructural detail, then rapidly substituting the ice and infiltrating with resin to provide a firm matrix which can be cut into thin sections for imaging. Thicker sections of this material can also be imaged and reconstructed into 3D volumes using electron tomography.

  5. Culture conditions affect cytotoxin production by Serratia marcescens.

    PubMed

    Carbonell, G V; Fonseca, B A; Figueiredo, L T; Darini, A L; Yanaguita, R M

    1996-12-31

    Cytotoxins have been implicated in the pathogenesis of bacterial infections. In this study, the influence of different culture conditions was evaluated on cytotoxin production of Serratia marcescens. Parameters such as culture media, incubation temperature, starting pH of culture medium, aeration, anaerobiosis, carbon sources, iron concentration in he culture media, and release of cell-bond toxin by polymyxin B were investigated. The data suggest that this cytotoxin is predominantly extracellular and is not induced by iron limitation. Aerobic culture with shaking resulted in higher cytotoxicity than static aerobic or anaerobic culture. Bacteria grown in glucose, sucrose or galactose were more cytotoxic than those grown in inositol or maltose. The culture conditions that were identified as optimal for cytotoxin production by Serratia marcescens were incubation temperature ranging from 30 to 37 degrees C, in medium adjusted pH 8.5, with shaking. This work will contribute to further studies on the identification of this cytotoxic activity.

  6. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges

    PubMed Central

    Montanez-Sauri, Sara I.; Beebe, David J.; Sung, Kyung Eun

    2015-01-01

    The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g. spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments. PMID:25274061

  7. A 3D-Printed Oxygen Control Insert for a 24-Well Plate

    PubMed Central

    Brennan, Martin D.; Rexius-Hall, Megan L.; Eddington, David T.

    2015-01-01

    3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane) membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates. The direct printing allows integrated distribution channels and device geometries not possible with traditional planar lithography. With this device, four different oxygen conditions were able to be controlled, and six wells were maintained under each oxygen condition. We demonstrate enhanced transcription of the gene VEGFA (vascular endothelial growth factor A) with decreasing oxygen levels in human lung adenocarcinoma cells. This is the first 3D-printed device incorporating gas permeable membranes to facilitate oxygen control in cell culture. PMID:26360882

  8. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  9. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  10. Ex Vivo bone formation in bovine trabecular bone cultured in a dynamic 3D bioreactor is enhanced by compressive mechanical strain.

    PubMed

    David, Valentin; Guignandon, Alain; Martin, Aline; Malaval, Luc; Lafage-Proust, Marie-Hélène; Rattner, Aline; Mann, Val; Noble, Brendon; Jones, David B; Vico, Laurence

    2008-01-01

    Our aim was to test cell and trabecular responses to mechanical loading in vitro in a tissue bone explant culture model. We used a new three-dimensional culture model, the ZetOS system, which provides the ability to exert cyclic compression on cancellous bone cylinders (bovine sternum) cultured in forced flow circumfusion chambers, and allows to assess mechanical parameters of the cultivated samples. We evaluated bone cellular parameters through osteocyte viability test, gene and protein expression, and histomorphometric bone formation rate, in nonloaded versus loaded samples. The microarchitecture of bone cores was appraised by in vivo micro-CT imaging. After 3 weeks, the samples receiving daily cyclic compression exhibited increased osteoblast differentiation and activity associated with thicker, more plate-like-shaped trabeculae and higher Young's modulus and ultimate force as compared to unloaded samples. Osteoclast activity was not affected by mechanical strain, although it was responsive to drug treatments (retinoic acid and bisphosphonate) during the first 2 weeks of culture. Thus, in the ZetOS apparatus, we reproduce in vitro the osteogenic effects of mechanical strain known in vivo, making this system a unique and an essential laboratory aid for ex vivo testing of lamellar bone remodeling.

  11. Local heat transfer estimation in microchannels during convective boiling under microgravity conditions: 3D inverse heat conduction problem using BEM techniques

    NASA Astrophysics Data System (ADS)

    Luciani, S.; LeNiliot, C.

    2008-11-01

    Two-phase and boiling flow instabilities are complex, due to phase change and the existence of several interfaces. To fully understand the high heat transfer potential of boiling flows in microscale's geometry, it is vital to quantify these transfers. To perform this task, an experimental device has been designed to observe flow patterns. Analysis is made up by using an inverse method which allows us to estimate the local heat transfers while boiling occurs inside a microchannel. In our configuration, the direct measurement would impair the accuracy of the searched heat transfer coefficient because thermocouples implanted on the surface minichannels would disturb the established flow. In this communication, we are solving a 3D IHCP which consists in estimating using experimental data measurements the surface temperature and the surface heat flux in a minichannel during convective boiling under several gravity levels (g, 1g, 1.8g). The considered IHCP is formulated as a mathematical optimization problem and solved using the boundary element method (BEM).

  12. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  13. Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture

    PubMed Central

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine–glycine–aspartic acid (RGD) peptide. Our studies demonstrate that RGD–polyethylene glycol (PEG)–PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT–MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system.

  14. Arginine-glycine-aspartic acid-polyethylene glycol-polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture.

    PubMed

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine-glycine-aspartic acid (RGD) peptide. Our studies demonstrate that RGD-polyethylene glycol (PEG)-PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT-MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  15. Arginine–glycine–aspartic acid–polyethylene glycol–polyamidoamine dendrimer conjugate improves liver-cell aggregation and function in 3-D spheroid culture

    PubMed Central

    Chen, Zhanfei; Lian, Fen; Wang, Xiaoqian; Chen, Yanling; Tang, Nanhong

    2016-01-01

    The polyamidoamine (PAMAM) dendrimer, a type of macromolecule material, has been used in spheroidal cell culture and drug delivery in recent years. However, PAMAM is not involved in the study of hepatic cell-spheroid culture or its biological activity, particularly in detoxification function. Here, we constructed a PAMAM-dendrimer conjugate decorated by an integrin ligand: arginine–glycine–aspartic acid (RGD) peptide. Our studies demonstrate that RGD–polyethylene glycol (PEG)–PAMAM conjugates can promote singly floating hepatic cells to aggregate together in a sphere-like growth with a weak reactive oxygen species. Moreover, RGD-PEG-PAMAM conjugates can activate the AKT–MAPK pathway in hepatic cells to promote cell proliferation and improve basic function and ammonia metabolism. Together, our data support the hepatocyte sphere treated by RGD-PEG-PAMAM conjugates as a potential source of hepatic cells for a biological artificial liver system. PMID:27621619

  16. Modular, pumpless body-on-a-chip platform for the co-culture of GI tract epithelium and 3D primary liver tissue.

    PubMed

    Esch, Mandy B; Ueno, Hidetaka; Applegate, Dawn R; Shuler, Michael L

    2016-07-01

    We have developed an expandable modular body-on-a-chip system that allows for a plug-and-play approach with several in vitro tissues. The design consists of single-organ chips that are combined with each other to yield a multi-organ body-on-a-chip system. Fluidic flow through the organ chips is driven via gravity and controlled passively via hydraulic resistances of the microfluidic channel network. Such pumpless body-on-a-chip devices are inexpensive and easy to use. We tested the device by culturing GI tract tissue and liver tissue within the device. Integrated Ag/AgCl electrodes were used to measure the resistance across the GI tract cell layer. The transepithelial resistance (TEER) reached values between 250 to 650 Ω cm(2) throughout the 14 day co-culture period. These data indicate that the GI tract cells retained their viability and the GI tract layer as a whole retained its barrier function. Throughout the 14 day co-culture period we measured low amounts of aspartate aminotransferase (AST, ∼10-17.5 U L(-1)), indicating low rates of liver cell death. Metabolic rates of hepatocytes were comparable to those of hepatocytes in single-organ fluidic cell culture systems (albumin production ranged between 3-6 μg per day per million hepatocytes and urea production ranged between 150-200 μg per day per million hepatocytes). Induced CYP activities were higher than previously measured with microfluidic liver only systems. PMID:27332143

  17. The effect of light-emitting diode irradiation at different wavelengths on calcification of osteoblast-like cells in 3D culture.

    PubMed

    Chintavalakorn, Rochaya; Tanglitanont, Tatsanee; Khantachawana, Anak; Viravaidya-Pasuwat, Kwanchanok; Santiwong, Peerapong

    2015-08-01

    This study aimed to investigate the effect of four different light-emitting diode (LED) wavelengths on calcification and proliferation of osteoblast-like cells in vitro. MC3T3-E1 cells were seeded within three-dimensional collagen scaffolds and irradiated daily by LED light with peak emission wavelengths of 630-, 680-, 760- and 830-nm at constant fluency of 3.1 J/cm(2) (irradiance intensity 2 mW/cm(2)). Cultures were measured for calcium content at day 0, 7, 14, 21, 28, 35 and 42. The significant enhancement in calcium content was observed at the early stage of culture (days 7 and 14) (p<;0.05). After that, the calcium content of irradiated groups was similar to that of the controls group. This suggests the transient effect of light irradiation on osteoblastic cell calcification. Only 680-nm irradiated samples revealed a significant enhancement of calcium content until the late stages of culture (from days 21 to 42) (p<;0.001). The cyclin D mRNA expression that was investigated 3 hours after stimulation at day3 also show that the 680-nm LED irradiation can enhance cyclin D expression more than others. For enhancing bone mineralization, LED irradiation at the 680-nm is more effective than those at 630-, 760- and 830-nm. Further studies should be investigated in order to obtain the most effective parameters of LLLI on bone regeneration in clinical setting.

  18. Optimization of culture conditions for Gardnerella vaginalis biofilm formation.

    PubMed

    Machado, Daniela; Palmeira-de-Oliveira, Ana; Cerca, Nuno

    2015-11-01

    Bacterial vaginosis is the leading vaginal disorder in women in reproductive age. Although bacterial vaginosis is related with presence of a biofilm composed predominantly by Gardnerella vaginalis, there has not been a detailed information addressing the environmental conditions that influence the biofilm formation of this bacterial species. Here, we evaluated the influence of some common culture conditions on G. vaginalis biofilm formation, namely inoculum concentration, incubation period, feeding conditions and culture medium composition. Our results showed that culture conditions strongly influenced G. vaginalis biofilm formation and that biofilm formation was enhanced when starting the culture with a higher inoculum, using a fed-batch system and supplementing the growth medium with maltose. PMID:26381661

  19. From "sapienza" to "sapienza, State Archives in Rome". a Looping Effect Bringing Back to the Original Source Comunication and Culture by Innovative and Low Cost 3d Surveying, Imaging Systems and GIS Applications

    NASA Astrophysics Data System (ADS)

    Paolini, P.; Forti, G.; Catalani, G.; Lucchetti, S.; Menghini, A.; Mirandola, A.; Pistacchio, S.; Porzia, U.; Roberti, M.

    2016-04-01

    High Quality survey models, realized by multiple Low Cost methods and technologies, as a container to sharing Cultural and Archival Heritage, this is the aim guiding our research, here described in its primary applications. The SAPIENZA building, a XVI century masterpiece that represented the first unified headquarters of University in Rome, plays since year 1936, when the University moved to its newly edified campus, the role of the main venue for the State Archives. By the collaboration of a group of students of the Architecture Faculty, some integrated survey methods were applied on the monument with success. The beginning was the topographic survey, creating a reference on ground and along the monument for the upcoming applications, a GNNS RTK survey followed georeferencing points on the internal courtyard. Dense stereo matching photogrammetry is nowadays an accepted method for generating 3D survey models, accurate and scalable; it often substitutes 3D laser scanning for its low cost, so that it became our choice. Some 360° shots were planned for creating panoramic views of the double portico from the courtyard, plus additional single shots of some lateral spans and of pillars facing the court, as a single operation with a double finality: to create linked panotours with hotspots to web-linked databases, and 3D textured and georeferenced surface models, allowing to study the harmonic proportions of the classical architectural order. The use of free web Gis platforms, to load the work in Google Earth and the realization of low cost 3D prototypes of some representative parts, has been even performed.

  20. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  2. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  3. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  4. Defining cell culture conditions to improve human norovirus infectivity assays.

    PubMed

    Straub, T M; Hutchison, J R; Bartholomew, R A; Valdez, C O; Valentine, N B; Dohnalkova, A; Ozanich, R M; Bruckner-Lea, C J

    2013-01-01

    Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional (3-D) tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that lead to more reproducible hNoV infectivity in vitro requires that the cell line be (1) of human gastrointestinal origin, (2) expresses apical microvilli, and (3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log(10) increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microscopy. In our hands, using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using qRT-PCR that measures all RNA vs. plaque assays that measure infectious virus. PMID:23306266

  5. Defining cell culture conditions to improve human norovirus infectivity assays.

    PubMed

    Straub, T M; Hutchison, J R; Bartholomew, R A; Valdez, C O; Valentine, N B; Dohnalkova, A; Ozanich, R M; Bruckner-Lea, C J

    2013-01-01

    Significant difficulties remain for determining whether human noroviruses (hNoV) recovered from water, food, and environmental samples are infectious. Three-dimensional (3-D) tissue culture of human intestinal cells has shown promise in developing an infectivity assay, but reproducibility, even within a single laboratory, remains problematic. From the literature and our observations, we hypothesized that the common factors that lead to more reproducible hNoV infectivity in vitro requires that the cell line be (1) of human gastrointestinal origin, (2) expresses apical microvilli, and (3) be a positive secretor cell line. The C2BBe1 cell line, which is a brush-border producing clone of Caco-2, meets these three criteria. When challenged with Genogroup II viruses, we observed a 2 Log(10) increase in viral RNA titer. A passage experiment with GII viruses showed evidence of the ability to propagate hNoV by both quantitative reverse transcription polymerase chain reaction (qRT-PCR) and microscopy. In our hands, using 3-D C2BBe1 cells improves reproducibility of the infectivity assay for hNoV, but the assay can still be variable. Two sources of variability include the cells themselves (mixed phenotypes of small and large intestine) and initial titer measurements using qRT-PCR that measures all RNA vs. plaque assays that measure infectious virus.

  6. Cell type-specific adaptation of cellular and nuclear volume in micro-engineered 3D environments.

    PubMed

    Greiner, Alexandra M; Klein, Franziska; Gudzenko, Tetyana; Richter, Benjamin; Striebel, Thomas; Wundari, Bayu G; Autenrieth, Tatjana J; Wegener, Martin; Franz, Clemens M; Bastmeyer, Martin

    2015-11-01

    Bio-functionalized three-dimensional (3D) structures fabricated by direct laser writing (DLW) are structurally and mechanically well-defined and ideal for systematically investigating the influence of three-dimensionality and substrate stiffness on cell behavior. Here, we show that different fibroblast-like and epithelial cell lines maintain normal proliferation rates and form functional cell-matrix contacts in DLW-fabricated 3D scaffolds of different mechanics and geometry. Furthermore, the molecular composition of cell-matrix contacts forming in these 3D micro-environments and under conventional 2D culture conditions is identical, based on the analysis of several marker proteins (paxillin, phospho-paxillin, phospho-focal adhesion kinase, vinculin, β1-integrin). However, fibroblast-like and epithelial cells differ markedly in the way they adapt their total cell and nuclear volumes in 3D environments. While fibroblast-like cell lines display significantly increased cell and nuclear volumes in 3D substrates compared to 2D substrates, epithelial cells retain similar cell and nuclear volumes in 2D and 3D environments. Despite differential cell volume regulation between fibroblasts and epithelial cells in 3D environments, the nucleus-to-cell (N/C) volume ratios remain constant for all cell types and culture conditions. Thus, changes in cell and nuclear volume during the transition from 2D to 3D environments are strongly cell type-dependent, but independent of scaffold stiffness, while cells maintain the N/C ratio regardless of culture conditions.

  7. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  8. Biomek Cell Workstation: A Flexible System for Automated 3D Cell Cultivation.

    PubMed

    Lehmann, R; Gallert, C; Roddelkopf, T; Junginger, S; Thurow, K

    2016-08-01

    The shift from 2D cultures to 3D cultures enables improvement in cell culture research due to better mimicking of in vivo cell behavior and environmental conditions. Different cell lines and applications require altered 3D constructs. The automation of the manufacturing and screening processes can advance the charge stability, quality, repeatability, and precision. In this study we integrated the automated production of three 3D cell constructs (alginate beads, spheroid cultures, pellet cultures) using the Biomek Cell Workstation and compared them with the traditional manual methods and their consequent bioscreening processes (proliferation, toxicity; days 14 and 35) using a high-throughput screening system. Moreover, the possible influence of antibiotics (penicillin/streptomycin) on the production and screening processes was investigated. The cytotoxicity of automatically produced 3D cell cultures (with and without antibiotics) was mainly decreased. The proliferation showed mainly similar or increased results for the automatically produced 3D constructs. We concluded that the traditional manual methods can be replaced by the automated processes. Furthermore, the formation, cultivation, and screenings can be performed without antibiotics to prevent possible effects.

  9. Incompressible limit of all-time solutions to 3-D full Navier-Stokes equations for perfect gas with well-prepared initial condition

    NASA Astrophysics Data System (ADS)

    Ren, Dandan; Ou, Yaobin

    2016-08-01

    In this paper, we prove the incompressible limit of all-time strong solutions to the three-dimensional full compressible Navier-Stokes equations. Here the velocity field and temperature satisfy the Dirichlet boundary condition and convective boundary condition, respectively. The uniform estimates in both the Mach number {ɛin(0,overline{ɛ}]} and time {tin[0,∞)} are established by deriving a differential inequality with decay property, where {overline{ɛ} in(0,1]} is a constant. Based on these uniform estimates, the global solution of full compressible Navier-Stokes equations with "well-prepared" initial conditions converges to the one of isentropic incompressible Navier-Stokes equations as the Mach number goes to zero.

  10. Microfluidic perfusion culture of human induced pluripotent stem cells under fully defined culture conditions.

    PubMed

    Yoshimitsu, Ryosuke; Hattori, Koji; Sugiura, Shinji; Kondo, Yuki; Yamada, Rotaro; Tachikawa, Saoko; Satoh, Taku; Kurisaki, Akira; Ohnuma, Kiyoshi; Asashima, Makoto; Kanamori, Toshiyuki

    2014-05-01

    Human induced pluripotent stem cells (hiPSCs) are a promising cell source for drug screening. For this application, self-renewal or differentiation of the cells is required, and undefined factors in the culture conditions are not desirable. Microfluidic perfusion culture allows the production of small volume cultures with precisely controlled microenvironments, and is applicable to high-throughput cellular environment screening. Here, we developed a microfluidic perfusion culture system for hiPSCs that uses a microchamber array chip under defined extracellular matrix (ECM) and culture medium conditions. By screening various ECMs we determined that fibronectin and laminin are appropriate for microfluidic devices made out of the most popular material, polydimethylsiloxane (PDMS). We found that the growth rate of hiPSCs under pressure-driven perfusion culture conditions was higher than under static culture conditions in the microchamber array. We applied our new system to self-renewal and differentiation cultures of hiPSCs, and immunocytochemical analysis showed that the state of the hiPSCs was successfully controlled. The effects of three antitumor drugs on hiPSCs were comparable between microchamber array and 96-well plates. We believe that our system will be a platform technology for future large-scale screening of fully defined conditions for differentiation cultures on integrated microfluidic devices.

  11. A 3D Toolbox to Enhance Physiological Relevance of Human Tissue Models.

    PubMed

    Picollet-D'hahan, Nathalie; Dolega, Monika E; Liguori, Lavinia; Marquette, Christophe; Le Gac, Séverine; Gidrol, Xavier; Martin, Donald K

    2016-09-01

    We discuss the current challenges and future prospects of flow-based organoid models and 3D self-assembling scaffolds. The existing paradigm of 3D culture suffers from a lack of control over organoid size and shape; can be an obstacle for cell harvesting and extended cellular and molecular analysis; and does not provide access to the function of exocrine glands. Moreover, existing organ-on-chip models are mostly composed of 2D extracellular matrix (ECM)-coated elastomeric membranes that do not mimic real organ architectures. A new comprehensive 3D toolbox for cell biology has emerged to address some of these issues. Advances in microfabrication and cell-culturing approaches enable the engineering of sophisticated models that mimic organ 3D architectures and physiological conditions, while supporting flow-based drug screening and secretomics-based diagnosis. PMID:27497676

  12. The Educational Value of Visual Cues and 3D-Representational Format in a Computer Animation under Restricted and Realistic Conditions

    ERIC Educational Resources Information Center

    Huk, Thomas; Steinke, Mattias; Floto, Christian

    2010-01-01

    Within the framework of cognitive learning theories, instructional design manipulations have primarily been investigated under tightly controlled laboratory conditions. We carried out two experiments, where the first experiment was conducted in a restricted system-paced setting and is therefore in line with the majority of empirical studies in the…

  13. Application of three-dimensional culture conditions to human embryonic stem cell-derived definitive endoderm cells enhances hepatocyte differentiation and functionality.

    PubMed

    Ramasamy, Thamil Selvee; Yu, Jason S L; Selden, Clare; Hodgson, Humphery; Cui, Wei

    2013-02-01

    Human embryonic stem cells (hESCs) and induced pluripotent stem cells (iPSCs) provide an unlimited source for the generation of human hepatocytes, owing to their indefinite self-renewal and pluripotent properties. Both hESC-/iPSC-derived hepatocytes hold great promise in treating liver diseases as potential candidates for cell replacement therapies or as an in vitro platform to conduct new drug trials. It has been previously demonstrated that the initiation of hESC differentiation in monolayer cultures increases the generation of definitive endoderm (DE) and subsequently of hepatocyte differentiation. However, monolayer culture may hinder the maturation of hESC-derived hepat