Science.gov

Sample records for 3d current system

  1. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  2. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  3. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  4. 3-D Electromagnetic Instabilities in Current Sheet

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Chen, Liu; Tummel, Kurt

    2016-10-01

    3-D electromagnetic instabilities in a Harris current sheet with a finite guide magnetic field BG are systematically studied by employing the gyrokinetic electron and fully kinetic ion (GeFi) particle model with a realistic mass ratio mi /me . Our studies show that lower-hybrid drift instability (LHDI) with k√{ρiρe } 1 and drift kink instability (DKI) and drift sausage instability (DSI) with kρi 1 are excited in the current sheet. The most unstable DKI is away from k . B = 0 , and the most unstable DSI is at k . B = 0 , where k ≡ (kx ,ky) , with kx being along the anti-parallel field direction and ky is along the current direction. On the other hand, an instability with a compressional magnetic field perturbation located at the center of current sheet is also excited under a relatively large BG, and its maximum growth rate is at k × B = 0 . The presence and structure of these instabilities as a function of BG is presented. The GeFi simulation results are compared with those from the fully kinetic particle simulation.

  5. Current progress in 3D printing for cardiovascular tissue engineering.

    PubMed

    Mosadegh, Bobak; Xiong, Guanglei; Dunham, Simon; Min, James K

    2015-03-16

    3D printing is a technology that allows the fabrication of structures with arbitrary geometries and heterogeneous material properties. The application of this technology to biological structures that match the complexity of native tissue is of great interest to researchers. This mini-review highlights the current progress of 3D printing for fabricating artificial tissues of the cardiovascular system, specifically the myocardium, heart valves, and coronary arteries. In addition, how 3D printed sensors and actuators can play a role in tissue engineering is discussed. To date, all the work with building 3D cardiac tissues have been proof-of-principle demonstrations, and in most cases, yielded products less effective than other traditional tissue engineering strategies. However, this technology is in its infancy and therefore there is much promise that through collaboration between biologists, engineers and material scientists, 3D bioprinting can make a significant impact on the field of cardiovascular tissue engineering.

  6. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  7. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  8. Increased Speed: 3D Silicon Sensors. Fast Current Amplifiers

    SciTech Connect

    Parker, Sherwood; Kok, Angela; Kenney, Christopher; Jarron, Pierre; Hasi, Jasmine; Despeisse, Matthieu; Da Via, Cinzia; Anelli, Giovanni; /CERN

    2012-05-07

    The authors describe techniques to make fast, sub-nanosecond time resolution solid-state detector systems using sensors with 3D electrodes, current amplifiers, constant-fraction comparators or fast wave-form recorders, and some of the next steps to reach still faster results.

  9. An interactive multiview 3D display system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  10. Laser Based 3D Volumetric Display System

    DTIC Science & Technology

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  11. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  12. 3-D Extensions for Trustworthy Systems

    DTIC Science & Technology

    2011-01-01

    3- D Extensions for Trustworthy Systems (Invited Paper) Ted Huffmire∗, Timothy Levin∗, Cynthia Irvine∗, Ryan Kastner† and Timothy Sherwood...address these problems, we propose an approach to trustworthy system development based on 3- D integration, an emerging chip fabrication technique in...which two or more integrated circuit dies are fabricated individually and then combined into a single stack using vertical conductive posts. With 3- D

  13. 3D gaze tracking system for NVidia 3D Vision®.

    PubMed

    Wibirama, Sunu; Hamamoto, Kazuhiko

    2013-01-01

    Inappropriate parallax setting in stereoscopic content generally causes visual fatigue and visual discomfort. To optimize three dimensional (3D) effects in stereoscopic content by taking into account health issue, understanding how user gazes at 3D direction in virtual space is currently an important research topic. In this paper, we report the study of developing a novel 3D gaze tracking system for Nvidia 3D Vision(®) to be used in desktop stereoscopic display. We suggest an optimized geometric method to accurately measure the position of virtual 3D object. Our experimental result shows that the proposed system achieved better accuracy compared to conventional geometric method by average errors 0.83 cm, 0.87 cm, and 1.06 cm in X, Y, and Z dimensions, respectively.

  14. 3D Backscatter Imaging System

    NASA Technical Reports Server (NTRS)

    Turner, D. Clark (Inventor); Whitaker, Ross (Inventor)

    2016-01-01

    Systems and methods for imaging an object using backscattered radiation are described. The imaging system comprises both a radiation source for irradiating an object that is rotationally movable about the object, and a detector for detecting backscattered radiation from the object that can be disposed on substantially the same side of the object as the source and which can be rotationally movable about the object. The detector can be separated into multiple detector segments with each segment having a single line of sight projection through the object and so detects radiation along that line of sight. Thus, each detector segment can isolate the desired component of the backscattered radiation. By moving independently of each other about the object, the source and detector can collect multiple images of the object at different angles of rotation and generate a three dimensional reconstruction of the object. Other embodiments are described.

  15. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  16. Using Delft3D to Simulate Current Energy Conversion

    NASA Astrophysics Data System (ADS)

    James, S. C.; Chartrand, C.; Roberts, J.

    2015-12-01

    As public concern with renewable energy increases, current energy conversion (CEC) technology is being developed to optimize energy output and minimize environmental impact. CEC turbines generate energy from tidal and current systems and create wakes that interact with turbines located downstream of a device. The placement of devices can greatly influence power generation and structural reliability. CECs can also alter the ecosystem process surrounding the turbines, such as flow regimes, sediment dynamics, and water quality. Software is needed to investigate specific CEC sites to simulate power generation and hydrodynamic responses of a flow through a CEC turbine array. This work validates Delft3D against several flume experiments by simulating the power generation and hydrodynamic response of flow through a turbine or actuator disc(s). Model parameters are then calibrated against these data sets to reproduce momentum removal and wake recovery data with 3-D flow simulations. Simulated wake profiles and turbulence intensities compare favorably to the experimental data and demonstrate the utility and accuracy of a fast-running tool for future siting and analysis of CEC arrays in complex domains.

  17. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  18. 3D imaging system for biometric applications

    NASA Astrophysics Data System (ADS)

    Harding, Kevin; Abramovich, Gil; Paruchura, Vijay; Manickam, Swaminathan; Vemury, Arun

    2010-04-01

    There is a growing interest in the use of 3D data for many new applications beyond traditional metrology areas. In particular, using 3D data to obtain shape information of both people and objects for applications ranging from identification to game inputs does not require high degrees of calibration or resolutions in the tens of micron range, but does require a means to quickly and robustly collect data in the millimeter range. Systems using methods such as structured light or stereo have seen wide use in measurements, but due to the use of a triangulation angle, and thus the need for a separated second viewpoint, may not be practical for looking at a subject 10 meters away. Even when working close to a subject, such as capturing hands or fingers, the triangulation angle causes occlusions, shadows, and a physically large system that may get in the way. This paper will describe methods to collect medium resolution 3D data, plus highresolution 2D images, using a line of sight approach. The methods use no moving parts and as such are robust to movement (for portability), reliable, and potentially very fast at capturing 3D data. This paper will describe the optical methods considered, variations on these methods, and present experimental data obtained with the approach.

  19. 3D Multifunctional Ablative Thermal Protection System

    NASA Technical Reports Server (NTRS)

    Feldman, Jay; Venkatapathy, Ethiraj; Wilkinson, Curt; Mercer, Ken

    2015-01-01

    NASA is developing the Orion spacecraft to carry astronauts farther into the solar system than ever before, with human exploration of Mars as its ultimate goal. One of the technologies required to enable this advanced, Apollo-shaped capsule is a 3-dimensional quartz fiber composite for the vehicle's compression pad. During its mission, the compression pad serves first as a structural component and later as an ablative heat shield, partially consumed on Earth re-entry. This presentation will summarize the development of a new 3D quartz cyanate ester composite material, 3-Dimensional Multifunctional Ablative Thermal Protection System (3D-MAT), designed to meet the mission requirements for the Orion compression pad. Manufacturing development, aerothermal (arc-jet) testing, structural performance, and the overall status of material development for the 2018 EM-1 flight test will be discussed.

  20. 3D linear dispersion relation for arbitrary shear currents

    NASA Astrophysics Data System (ADS)

    Ellingsen, Simen; Smeltzer, Benjamin

    2016-11-01

    Dispesion properties of waves can be strongly affected by the presence of a sub-surface shear current. A number of approximation techniques exist to calculate dispersion properties of waves on shear currents, most relying on assumptions such as long wavelength, weak vorticity or near-potentiality. Another approach has been to approximate the shear current by a piecewise linear function, corresponding to dividing the fluid phase into a sequence of layers with constant vorticity in each layer. We discuss the practical implementation of this scheme in 3D for arbitrary wavelengths, and how how it may be applied to 3D linear surface waves problems where the full Fourier spectrum in the horizontal plane is required. Solutions to particular implementation challenges such as optimal choice of layer distribution and the nature and removal of spurious solutions are presented, as are several validation cases and tests of convergence. Applications to ring waves and ship waves are provided as examples. Norwegian Research Council (FRINATEK).

  1. Fast wave current drive antenna performance on D3-D

    NASA Astrophysics Data System (ADS)

    Mayberry, M. J.; Pinsker, R. I.; Petty, C. C.; Chiu, S. C.; Jackson, G. L.; Lippmann, S. I.; Prater, R.; Porkolab, M.

    1991-10-01

    Fast wave current drive (FWCD) experiments at 60 MHz are being performed on the D3-D tokamak for the first time in high electron temperature, high (beta) target plasmas. A four-element phased-array antenna is used to launch a directional wave spectrum with the peak n(sub parallel) value (approximately = 7) optimized for strong single-pass electron absorption due to electron Landau damping. For this experiment, high power FW injection (2 MW) must be accomplished without voltage breakdown in the transmission lines or antenna, and without significant impurity influx. In addition, there is the technological challenge of impedance matching a four-element antenna while maintaining equal currents and the correct phasing (90 degrees) in each of the straps for a directional spectrum. We describe the performance of the D3-D FWCD antenna during initial FW electron heating and current drive experiments in terms of these requirements.

  2. 3D, Flash, Induced Current Readout for Silicon Sensors

    SciTech Connect

    Parker, Sherwood I.

    2014-06-07

    A new method for silicon microstrip and pixel detector readout using (1) 65 nm-technology current amplifers which can, for the first time with silicon microstrop and pixel detectors, have response times far shorter than the charge collection time (2) 3D trench electrodes large enough to subtend a reasonable solid angle at most track locations and so have adequate sensitivity over a substantial volume of pixel, (3) induced signals in addition to, or in place of, collected charge

  3. An Effective 3D Ear Acquisition System.

    PubMed

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition.

  4. An Effective 3D Ear Acquisition System

    PubMed Central

    Liu, Yahui; Lu, Guangming; Zhang, David

    2015-01-01

    The human ear is a new feature in biometrics that has several merits over the more common face, fingerprint and iris biometrics. It can be easily captured from a distance without a fully cooperative subject. Also, the ear has a relatively stable structure that does not change much with the age and facial expressions. In this paper, we present a novel method of 3D ear acquisition system by using triangulation imaging principle, and the experiment results show that this design is efficient and can be used for ear recognition. PMID:26061553

  5. Volumetric 3D Display System with Static Screen

    NASA Technical Reports Server (NTRS)

    Geng, Jason

    2011-01-01

    Current display technology has relied on flat, 2D screens that cannot truly convey the third dimension of visual information: depth. In contrast to conventional visualization that is primarily based on 2D flat screens, the volumetric 3D display possesses a true 3D display volume, and places physically each 3D voxel in displayed 3D images at the true 3D (x,y,z) spatial position. Each voxel, analogous to a pixel in a 2D image, emits light from that position to form a real 3D image in the eyes of the viewers. Such true volumetric 3D display technology provides both physiological (accommodation, convergence, binocular disparity, and motion parallax) and psychological (image size, linear perspective, shading, brightness, etc.) depth cues to human visual systems to help in the perception of 3D objects. In a volumetric 3D display, viewers can watch the displayed 3D images from a completely 360 view without using any special eyewear. The volumetric 3D display techniques may lead to a quantum leap in information display technology and can dramatically change the ways humans interact with computers, which can lead to significant improvements in the efficiency of learning and knowledge management processes. Within a block of glass, a large amount of tiny dots of voxels are created by using a recently available machining technique called laser subsurface engraving (LSE). The LSE is able to produce tiny physical crack points (as small as 0.05 mm in diameter) at any (x,y,z) location within the cube of transparent material. The crack dots, when illuminated by a light source, scatter the light around and form visible voxels within the 3D volume. The locations of these tiny voxels are strategically determined such that each can be illuminated by a light ray from a high-resolution digital mirror device (DMD) light engine. The distribution of these voxels occupies the full display volume within the static 3D glass screen. This design eliminates any moving screen seen in previous

  6. An annotation system for 3D fluid flow visualization

    NASA Technical Reports Server (NTRS)

    Loughlin, Maria M.; Hughes, John F.

    1995-01-01

    Annotation is a key activity of data analysis. However, current systems for data analysis focus almost exclusively on visualization. We propose a system which integrates annotations into a visualization system. Annotations are embedded in 3D data space, using the Post-it metaphor. This embedding allows contextual-based information storage and retrieval, and facilitates information sharing in collaborative environments. We provide a traditional database filter and a Magic Lens filter to create specialized views of the data. The system has been customized for fluid flow applications, with features which allow users to store parameters of visualization tools and sketch 3D volumes.

  7. 3-D MHD Simulation of Oscillating Field Current Drive

    NASA Astrophysics Data System (ADS)

    Ebrahimi, F.; Prager, S. C.; Wright, J. C.

    2000-10-01

    Oscillating Field Current Drive (OFCD) is a proposed low frequency steady-state current drive technique for the Reversed Field Pinch (RFP). In OFCD toroidal and poloidal oscillating electric fields are applied with 90^circ phase difference to inject magnetic helicity. In the present work, the 3-D nonlinear, resistive MHD code DEBS is used to simulate OFCD in relaxed RFP plasmas. The present simulations are at high Lundquist number S=10^5 and low spect ratio R/a=1.5. The physics issues investigated are the response of background magnetic fluctuations to the oscillating fields, the relative contributions of the tearing mode dynamo and the oscillating fields to the current profile, and the sustainment and control of the steady-state current profile. Initial results with low amplitude oscillating fields show the expected increase in magnetic helicity and current. Results with higher amplitude will also be presented.

  8. Systems biology in 3D space--enter the morphome.

    PubMed

    Lucocq, John M; Mayhew, Terry M; Schwab, Yannick; Steyer, Anna M; Hacker, Christian

    2015-02-01

    Systems-based understanding of living organisms depends on acquiring huge datasets from arrays of genes, transcripts, proteins, and lipids. These data, referred to as 'omes', are assembled using 'omics' methodologies. Currently a comprehensive, quantitative view of cellular and organellar systems in 3D space at nanoscale/molecular resolution is missing. We introduce here the term 'morphome' for the distribution of living matter within a 3D biological system, and 'morphomics' for methods of collecting 3D data systematically and quantitatively. A sampling-based approach termed stereology currently provides rapid, precise, and minimally biased morphomics. We propose that stereology solves the 'big data' problem posed by emerging wide-scale electron microscopy (EM) and can establish quantitative links between the newer nanoimaging platforms such as electron tomography, cryo-EM, and correlative microscopy.

  9. Quantifying Reconnection in Fragmented 3D Current Layers

    NASA Astrophysics Data System (ADS)

    Wyper, Peter Fraser; Hesse, Michael

    2015-04-01

    There is growing evidence that when magnetic reconnection occurs in high Lundquist number plasmas such as in the Solar Corona or the Earth's Magnetosphere it does so within a fragmented, rather than a smooth current layer. Within the extent of these fragmented current regions the associated magnetic flux transfer and energy release occurs simultaneously in many different places. This simultaneous energy release and flux transfer has been postulated as a possible resolution to the problem of obtaining “fast” reconnection rates in such high conductivity plasmas. But how does one measure the reconnection rate in such fragmented current layers?In 2D the reconnection rate is simply given by the electric field at the dominant X-point, typically then normalized by the product of the upstream magnetic field strength and Alfven speed. However, the continuous nature of connection change in 3D makes measuring the reconnection rate much more challenging. Building on the analytical work of previous investigations (e.g. Hesse & Schindler 1988, Hesse & Birn 1993, Hesse et al. 2005) we present recently derived expressions providing, for the first time, a quantitative measure of reconnection rate in fragmented 3D current layers. We show that in 3D two measures actually characterize the rate of flux transfer; a total rate which measures the true rate at which new connections are formed and a net rate which measures the net change of connection associated with the largest value of ∫E‖dl through all of the non-ideal regions. Some simple examples will be used to illustrate how each expression may be applied and what it quantifies. This work was supported by an appointment to the NASA Postdoctoral Program and by NASA’s Magnetospheric Multiscale mission.

  10. 3-D Particle Simulation of Current Sheet Instabilities

    NASA Astrophysics Data System (ADS)

    Wang, Zhenyu; Lin, Yu; Wang, Xueyi; Tummel, Kurt; Chen, Liu

    2015-11-01

    The electrostatic (ES) and electromagnetic (EM) instabilities of a Harris current sheet are investigated using a 3-D linearized (δf) gyrokinetic (GK) electron and fully kinetic (FK) ion (GeFi) particle simulation code. The equilibrium magnetic field consists of an asymptotic anti-parallel Bx 0 and a guide field BG. The ES simulations show the excitation of lower-hybrid drift instability (LHDI) at the current sheet edge. The growth rate of the 3-D LHDI is scanned through the (kx ,ky) space. The most unstable modes are found to be at k∥ = 0 for smaller ky. As ky increases, the growth rate shows two peaks at k∥ ≠ 0 , consistent with analytical GK theory. The eigenmode structure and growth rate of LHDI obtained from the GeFi simulation agree well with those obtained from the FK PIC simulation. Decreasing BG, the asymptotic βe 0, or background density can destabilize the LHDI. In the EM simulation, tearing mode instability is dominant in the cases with ky kx , there exist two unstable modes: a kink-like (LHDI) mode at the current sheet edge and a sausage-like mode at the sheet center. The results are compared with the GK eigenmode theory and the FK simulation.

  11. 3-D Imaging Systems for Agricultural Applications—A Review

    PubMed Central

    Vázquez-Arellano, Manuel; Griepentrog, Hans W.; Reiser, David; Paraforos, Dimitris S.

    2016-01-01

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture. PMID:27136560

  12. 3-D Imaging Systems for Agricultural Applications-A Review.

    PubMed

    Vázquez-Arellano, Manuel; Griepentrog, Hans W; Reiser, David; Paraforos, Dimitris S

    2016-04-29

    Efficiency increase of resources through automation of agriculture requires more information about the production process, as well as process and machinery status. Sensors are necessary for monitoring the status and condition of production by recognizing the surrounding structures such as objects, field structures, natural or artificial markers, and obstacles. Currently, three dimensional (3-D) sensors are economically affordable and technologically advanced to a great extent, so a breakthrough is already possible if enough research projects are commercialized. The aim of this review paper is to investigate the state-of-the-art of 3-D vision systems in agriculture, and the role and value that only 3-D data can have to provide information about environmental structures based on the recent progress in optical 3-D sensors. The structure of this research consists of an overview of the different optical 3-D vision techniques, based on the basic principles. Afterwards, their application in agriculture are reviewed. The main focus lays on vehicle navigation, and crop and animal husbandry. The depth dimension brought by 3-D sensors provides key information that greatly facilitates the implementation of automation and robotics in agriculture.

  13. CASTLE3D - A Computer Aided System for Labelling Archaeological Excavations in 3D

    NASA Astrophysics Data System (ADS)

    Houshiar, H.; Borrmann, D.; Elseberg, J.; Nüchter, A.; Näth, F.; Winkler, S.

    2015-08-01

    Documentation of archaeological excavation sites with conventional methods and tools such as hand drawings, measuring tape and archaeological notes is time consuming. This process is prone to human errors and the quality of the documentation depends on the qualification of the archaeologist on site. Use of modern technology and methods in 3D surveying and 3D robotics facilitate and improve this process. Computer-aided systems and databases improve the documentation quality and increase the speed of data acquisition. 3D laser scanning is the state of the art in modelling archaeological excavation sites, historical sites and even entire cities or landscapes. Modern laser scanners are capable of data acquisition of up to 1 million points per second. This provides a very detailed 3D point cloud of the environment. 3D point clouds and 3D models of an excavation site provide a better representation of the environment for the archaeologist and for documentation. The point cloud can be used both for further studies on the excavation and for the presentation of results. This paper introduces a Computer aided system for labelling archaeological excavations in 3D (CASTLE3D). Consisting of a set of tools for recording and georeferencing the 3D data from an excavation site, CASTLE3D is a novel documentation approach in industrial archaeology. It provides a 2D and 3D visualisation of the data and an easy-to-use interface that enables the archaeologist to select regions of interest and to interact with the data in both representations. The 2D visualisation and a 3D orthogonal view of the data provide cuts of the environment that resemble the traditional hand drawings. The 3D perspective view gives a realistic view of the environment. CASTLE3D is designed as an easy-to-use on-site semantic mapping tool for archaeologists. Each project contains a predefined set of semantic information that can be used to label findings in the data. Multiple regions of interest can be joined under

  14. 3-dimensional (3D) fabricated polymer based drug delivery systems.

    PubMed

    Moulton, Simon E; Wallace, Gordon G

    2014-11-10

    Drug delivery from 3-dimensional (3D) structures is a rapidly growing area of research. It is essential to achieve structures wherein drug stability is ensured, the drug loading capacity is appropriate and the desired controlled release profile can be attained. Attention must also be paid to the development of appropriate fabrication machinery that allows 3D drug delivery systems (DDS) to be produced in a simple, reliable and reproducible manner. The range of fabrication methods currently being used to form 3D DDSs include electrospinning (solution and melt), wet-spinning and printing (3-dimensional). The use of these techniques enables production of DDSs from the macro-scale down to the nano-scale. This article reviews progress in these fabrication techniques to form DDSs that possess desirable drug delivery kinetics for a wide range of applications.

  15. 3-D Mesh Generation Nonlinear Systems

    SciTech Connect

    Christon, M. A.; Dovey, D.; Stillman, D. W.; Hallquist, J. O.; Rainsberger, R. B

    1994-04-07

    INGRID is a general-purpose, three-dimensional mesh generator developed for use with finite element, nonlinear, structural dynamics codes. INGRID generates the large and complex input data files for DYNA3D, NIKE3D, FACET, and TOPAZ3D. One of the greatest advantages of INGRID is that virtually any shape can be described without resorting to wedge elements, tetrahedrons, triangular elements or highly distorted quadrilateral or hexahedral elements. Other capabilities available are in the areas of geometry and graphics. Exact surface equations and surface intersections considerably improve the ability to deal with accurate models, and a hidden line graphics algorithm is included which is efficient on the most complicated meshes. The primary new capability is associated with the boundary conditions, loads, and material properties required by nonlinear mechanics programs. Commands have been designed for each case to minimize user effort. This is particularly important since special processing is almost always required for each load or boundary condition.

  16. [Placental 3D Doppler angiography: current and upcoming applications].

    PubMed

    Duan, J; Perdriolle-Galet, E; Chabot-Lecoanet, A-C; Callec, R; Beaumont, M; Chavatte-Palmer, P; Tsatsaris, V; Morel, O

    2015-02-01

    The placental dysfunction, which seems to be caused by a defect of trophoblastic invasion and impaired uterine vascular remodeling since the first trimester, is responsible in a non-exclusive way for the chronic placental hypoxia, resulting secondarily in the intra-uterine growth restriction (IUGR) and/or pre-eclampsia (PE). The quality of utero-placental vasculature is essential for a proper fetal development and a successful progress of pregnancy. However, the in vivo assessment of placental vascularization with non-invasive methods is complicated by the small size of placental terminal vessel and its complex architecture. Moreover, imaging with contrast agent is not recommended to pregnant women. Until recently, the fetal and maternal vascularization could only be evaluated through pulse Doppler of uterine arteries during pregnancy, which has little clinical value for utero-placental vascularization defects assessment. Recently, a non-invasive study, without use of contrast agent for vasculature evaluation of an organ of interest has become possible by the development of 3D Doppler angiography technique. The objective of this review was to make an inventory of its current and future applications for utero-placental vasculature quantification. The main findings of the literature on the assessment of utero-placental vascularization in physiological situation and major placental vascular dysfunction pathologies such as PE and IUGR were widely discussed.

  17. 3D vision system for intelligent milking robot automation

    NASA Astrophysics Data System (ADS)

    Akhloufi, M. A.

    2013-12-01

    In a milking robot, the correct localization and positioning of milking teat cups is of very high importance. The milking robots technology has not changed since a decade and is based primarily on laser profiles for teats approximate positions estimation. This technology has reached its limit and does not allow optimal positioning of the milking cups. Also, in the presence of occlusions, the milking robot fails to milk the cow. These problems, have economic consequences for producers and animal health (e.g. development of mastitis). To overcome the limitations of current robots, we have developed a new system based on 3D vision, capable of efficiently positioning the milking cups. A prototype of an intelligent robot system based on 3D vision for real-time positioning of a milking robot has been built and tested under various conditions on a synthetic udder model (in static and moving scenarios). Experimental tests, were performed using 3D Time-Of-Flight (TOF) and RGBD cameras. The proposed algorithms permit the online segmentation of teats by combing 2D and 3D visual information. The obtained results permit the teat 3D position computation. This information is then sent to the milking robot for teat cups positioning. The vision system has a real-time performance and monitors the optimal positioning of the cups even in the presence of motion. The obtained results, with both TOF and RGBD cameras, show the good performance of the proposed system. The best performance was obtained with RGBD cameras. This latter technology will be used in future real life experimental tests.

  18. Medical Applications for 3D Printing: Current and Projected Uses.

    PubMed

    Ventola, C Lee

    2014-10-01

    3D printing is expected to revolutionize health care through uses in tissue and organ fabrication; creation of customized prosthetics, implants, and anatomical models; and pharmaceutical research regarding drug dosage forms, delivery, and discovery.

  19. Fully 3D refraction correction dosimetry system.

    PubMed

    Manjappa, Rakesh; Makki, S Sharath; Kumar, Rajesh; Vasu, Ram Mohan; Kanhirodan, Rajan

    2016-02-21

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  20. Fully 3D refraction correction dosimetry system

    NASA Astrophysics Data System (ADS)

    Manjappa, Rakesh; Sharath Makki, S.; Kumar, Rajesh; Mohan Vasu, Ram; Kanhirodan, Rajan

    2016-02-01

    The irradiation of selective regions in a polymer gel dosimeter results in an increase in optical density and refractive index (RI) at those regions. An optical tomography-based dosimeter depends on rayline path through the dosimeter to estimate and reconstruct the dose distribution. The refraction of light passing through a dose region results in artefacts in the reconstructed images. These refraction errors are dependant on the scanning geometry and collection optics. We developed a fully 3D image reconstruction algorithm, algebraic reconstruction technique-refraction correction (ART-rc) that corrects for the refractive index mismatches present in a gel dosimeter scanner not only at the boundary, but also for any rayline refraction due to multiple dose regions inside the dosimeter. In this study, simulation and experimental studies have been carried out to reconstruct a 3D dose volume using 2D CCD measurements taken for various views. The study also focuses on the effectiveness of using different refractive-index matching media surrounding the gel dosimeter. Since the optical density is assumed to be low for a dosimeter, the filtered backprojection is routinely used for reconstruction. We carry out the reconstructions using conventional algebraic reconstruction (ART) and refractive index corrected ART (ART-rc) algorithms. The reconstructions based on FDK algorithm for cone-beam tomography has also been carried out for comparison. Line scanners and point detectors, are used to obtain reconstructions plane by plane. The rays passing through dose region with a RI mismatch does not reach the detector in the same plane depending on the angle of incidence and RI. In the fully 3D scanning setup using 2D array detectors, light rays that undergo refraction are still collected and hence can still be accounted for in the reconstruction algorithm. It is found that, for the central region of the dosimeter, the usable radius using ART-rc algorithm with water as RI matched

  1. Glasses-free 3D viewing systems for medical imaging

    NASA Astrophysics Data System (ADS)

    Magalhães, Daniel S. F.; Serra, Rolando L.; Vannucci, André L.; Moreno, Alfredo B.; Li, Li M.

    2012-04-01

    In this work we show two different glasses-free 3D viewing systems for medical imaging: a stereoscopic system that employs a vertically dispersive holographic screen (VDHS) and a multi-autostereoscopic system, both used to produce 3D MRI/CT images. We describe how to obtain a VDHS in holographic plates optimized for this application, with field of view of 7 cm to each eye and focal length of 25 cm, showing images done with the system. We also describe a multi-autostereoscopic system, presenting how it can generate 3D medical imaging from viewpoints of a MRI or CT image, showing results of a 3D angioresonance image.

  2. 3-D capacitance density imaging system

    DOEpatents

    Fasching, G.E.

    1988-03-18

    A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.

  3. 3D Imaging for hand gesture recognition: Exploring the software-hardware interaction of current technologies

    NASA Astrophysics Data System (ADS)

    Periverzov, Frol; Ilieş, Horea T.

    2012-09-01

    Interaction with 3D information is one of the fundamental and most familiar tasks in virtually all areas of engineering and science. Several recent technological advances pave the way for developing hand gesture recognition capabilities available to all, which will lead to more intuitive and efficient 3D user interfaces (3DUI). These developments can unlock new levels of expression and productivity in all activities concerned with the creation and manipulation of virtual 3D shapes and, specifically, in engineering design. Building fully automated systems for tracking and interpreting hand gestures requires robust and efficient 3D imaging techniques as well as potent shape classifiers. We survey and explore current and emerging 3D imaging technologies, and focus, in particular, on those that can be used to build interfaces between the users' hands and the machine. The purpose of this paper is to categorize and highlight the relevant differences between these existing 3D imaging approaches in terms of the nature of the information provided, output data format, as well as the specific conditions under which these approaches yield reliable data. Furthermore we explore the impact of each of these approaches on the computational cost and reliability of the required image processing algorithms. Finally we highlight the main challenges and opportunities in developing natural user interfaces based on hand gestures, and conclude with some promising directions for future research. [Figure not available: see fulltext.

  4. Development of perspective methods for modeling 3D currents for coastal systems in connection with environmental problems in South of France as well as South of Russia

    NASA Astrophysics Data System (ADS)

    Alexeenko, Elena; Sukhinov, Alexander; Roux, Bernard; Meule, Samuel; Chistyakov, Alexander

    2010-05-01

    Shallow water reservoirs are complex multi-parameter hydrodynamic systems. The current and the coupled processes occurring in them are spatially three-dimensional and unsteady, and have essentially nonlinear character. Therefore, the use of field experiments to analyse such a systems is extremely labor intensive and costly. Without underestimating the role of field experiments, it should be nevertheless noted that the most optimal in terms of cost and reliability of the results is an approach based on a combination of relatively inexpensive and safe field experiments and mathematical modeling of the processes under study. The present approach has several advantages with respect to the existing models. Three components of velocity vector from the full system of Navier-Stokes equations (and not on the basis of the hydrostatic approximation) and the equation of the surface elevation are calculated. In most hydrodynamic models of shallow water, the third component of the velocity vector is determined from the equations of continuity and the elevation surface level, which introduces significant error in the determination of the component. Calculation of the three components of velocity vector based on the equations of motion is a time-consuming process, so the hydrostatic approximation is used as an initial approximation for calculating the pressure. This approach greatly reduces the computing time and the costs. Also one of the advantages of the present model is an improved parameterization of the vertical turbulent exchange coefficient, on the basis of ADCP measurement data (Acoustic Doppler Current Profiler). In modern numerical models of vertical turbulent exchange, this coefficient often appears as a fitting parameter. Among the numerous approximations of the coefficient of vertical turbulent exchange, the algebraic subgrid model of Belotcerkovskii, which is based on the determination of turbulent flows as multiplications of averaged over time (correlation

  5. Adaptive fuzzy system for 3-D vision

    NASA Technical Reports Server (NTRS)

    Mitra, Sunanda

    1993-01-01

    An adaptive fuzzy system using the concept of the Adaptive Resonance Theory (ART) type neural network architecture and incorporating fuzzy c-means (FCM) system equations for reclassification of cluster centers was developed. The Adaptive Fuzzy Leader Clustering (AFLC) architecture is a hybrid neural-fuzzy system which learns on-line in a stable and efficient manner. The system uses a control structure similar to that found in the Adaptive Resonance Theory (ART-1) network to identify the cluster centers initially. The initial classification of an input takes place in a two stage process; a simple competitive stage and a distance metric comparison stage. The cluster prototypes are then incrementally updated by relocating the centroid positions from Fuzzy c-Means (FCM) system equations for the centroids and the membership values. The operational characteristics of AFLC and the critical parameters involved in its operation are discussed. The performance of the AFLC algorithm is presented through application of the algorithm to the Anderson Iris data, and laser-luminescent fingerprint image data. The AFLC algorithm successfully classifies features extracted from real data, discrete or continuous, indicating the potential strength of this new clustering algorithm in analyzing complex data sets. The hybrid neuro-fuzzy AFLC algorithm will enhance analysis of a number of difficult recognition and control problems involved with Tethered Satellite Systems and on-orbit space shuttle attitude controller.

  6. 3D in vitro modeling of the central nervous system

    PubMed Central

    Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.

    2015-01-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688

  7. 3D in vitro modeling of the central nervous system.

    PubMed

    Hopkins, Amy M; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L

    2015-02-01

    There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.

  8. The Europa Imaging System (EIS): High-Resolution, 3-D Insight into Europa's Geology, Ice Shell, and Potential for Current Activity

    NASA Astrophysics Data System (ADS)

    Turtle, E. P.; McEwen, A. S.; Collins, G. C.; Fletcher, L. N.; Hansen, C. J.; Hayes, A.; Hurford, T., Jr.; Kirk, R. L.; Barr, A.; Nimmo, F.; Patterson, G.; Quick, L. C.; Soderblom, J. M.; Thomas, N.

    2015-12-01

    The Europa Imaging System will transform our understanding of Europa through global decameter-scale coverage, three-dimensional maps, and unprecedented meter-scale imaging. EIS combines narrow-angle and wide-angle cameras (NAC and WAC) designed to address high-priority Europa science and reconnaissance goals. It will: (A) Characterize the ice shell by constraining its thickness and correlating surface features with subsurface structures detected by ice penetrating radar; (B) Constrain formation processes of surface features and the potential for current activity by characterizing endogenic structures, surface units, global cross-cutting relationships, and relationships to Europa's subsurface structure, and by searching for evidence of recent activity, including potential plumes; and (C) Characterize scientifically compelling landing sites and hazards by determining the nature of the surface at scales relevant to a potential lander. The NAC provides very high-resolution, stereo reconnaissance, generating 2-km-wide swaths at 0.5-m pixel scale from 50-km altitude, and uses a gimbal to enable independent targeting. NAC observations also include: near-global (>95%) mapping of Europa at ≤50-m pixel scale (to date, only ~14% of Europa has been imaged at ≤500 m/pixel, with best pixel scale 6 m); regional and high-resolution stereo imaging at <1-m/pixel; and high-phase-angle observations for plume searches. The WAC is designed to acquire pushbroom stereo swaths along flyby ground-tracks, generating digital topographic models with 32-m spatial scale and 4-m vertical precision from 50-km altitude. These data support characterization of cross-track clutter for radar sounding. The WAC also performs pushbroom color imaging with 6 broadband filters (350-1050 nm) to map surface units and correlations with geologic features and topography. EIS will provide comprehensive data sets essential to fulfilling the goal of exploring Europa to investigate its habitability and perform

  9. 3D deterministic lateral displacement separation systems

    NASA Astrophysics Data System (ADS)

    Du, Siqi; Drazer, German

    2016-11-01

    We present a simple modification to enhance the separation ability of deterministic lateral displacement (DLD) systems by expanding the two-dimensional nature of these devices and driving the particles into size-dependent, fully three-dimensional trajectories. Specifically, we drive the particles through an array of long cylindrical posts, such that they not only move parallel to the basal plane of the posts as in traditional two-dimensional DLD systems (in-plane motion), but also along the axial direction of the solid posts (out-of-plane motion). We show that the (projected) in-plane motion of the particles is completely analogous to that observed in 2D-DLD systems and the observed trajectories can be predicted based on a model developed in the 2D case. More importantly, we analyze the particles out-of-plane motion and observe significant differences in the net displacement depending on particle size. Therefore, taking advantage of both the in-plane and out-of-plane motion of the particles, it is possible to achieve the simultaneous fractionation of a polydisperse suspension into multiple streams. We also discuss other modifications to the obstacle array and driving forces that could enhance separation in microfluidic devices.

  10. Evolution of 3D surface imaging systems in facial plastic surgery.

    PubMed

    Tzou, Chieh-Han John; Frey, Manfred

    2011-11-01

    Recent advancements in computer technologies have propelled the development of 3D imaging systems. 3D surface-imaging is taking surgeons to a new level of communication with patients; moreover, it provides quick and standardized image documentation. This article recounts the chronologic evolution of 3D surface imaging, and summarizes the current status of today's facial surface capturing technology. This article also discusses current 3D surface imaging hardware and software, and their different techniques, technologies, and scientific validation, which provides surgeons with the background information necessary for evaluating the systems and knowledge about the systems they might incorporate into their own practice.

  11. Design and Perception Testing of a Novel 3-D Autostereoscopic Holographic Display System

    DTIC Science & Technology

    1999-01-01

    developing an autostereoscopic , 3D holographic visual display system. The current holographic system is being used to conduct 3D visual perception studies...Design and Perception Testing of a Novel 3-D Autostereoscopic Holographic Display System Grace M. Bochenek a, Thomas J. Meitzler b, Paul Muench...Warren, MI 48397-5000 ABSTRACT U.S. Army Tank-Automotive Command (TACOM) researchers are in the early stages of developing an autostereoscopic

  12. Education System Using Interactive 3D Computer Graphics (3D-CG) Animation and Scenario Language for Teaching Materials

    ERIC Educational Resources Information Center

    Matsuda, Hiroshi; Shindo, Yoshiaki

    2006-01-01

    The 3D computer graphics (3D-CG) animation using a virtual actor's speaking is very effective as an educational medium. But it takes a long time to produce a 3D-CG animation. To reduce the cost of producing 3D-CG educational contents and improve the capability of the education system, we have developed a new education system using Virtual Actor.…

  13. Multi-camera system for 3D forensic documentation.

    PubMed

    Leipner, Anja; Baumeister, Rilana; Thali, Michael J; Braun, Marcel; Dobler, Erika; Ebert, Lars C

    2016-04-01

    Three-dimensional (3D) surface documentation is well established in forensic documentation. The most common systems include laser scanners and surface scanners with optical 3D cameras. An additional documentation tool is photogrammetry. This article introduces the botscan© (botspot GmbH, Berlin, Germany) multi-camera system for the forensic markerless photogrammetric whole body 3D surface documentation of living persons in standing posture. We used the botscan© multi-camera system to document a person in 360°. The system has a modular design and works with 64 digital single-lens reflex (DSLR) cameras. The cameras were evenly distributed in a circular chamber. We generated 3D models from the photographs using the PhotoScan© (Agisoft LLC, St. Petersburg, Russia) software. Our results revealed that the botscan© and PhotoScan© produced 360° 3D models with detailed textures. The 3D models had very accurate geometries and could be scaled to full size with the help of scale bars. In conclusion, this multi-camera system provided a rapid and simple method for documenting the whole body of a person to generate 3D data with Photoscan©.

  14. Synthetic 3D multicellular systems for drug development.

    PubMed

    Rimann, Markus; Graf-Hausner, Ursula

    2012-10-01

    Since the 1970s, the limitations of two dimensional (2D) cell culture and the relevance of appropriate three dimensional (3D) cell systems have become increasingly evident. Extensive effort has thus been made to move cells from a flat world to a 3D environment. While 3D cell culture technologies are meanwhile widely used in academia, 2D culture technologies are still entrenched in the (pharmaceutical) industry for most kind of cell-based efficacy and toxicology tests. However, 3D cell culture technologies will certainly become more applicable if biological relevance, reproducibility and high throughput can be assured at acceptable costs. Most recent innovations and developments clearly indicate that the transition from 2D to 3D cell culture for industrial purposes, for example, drug development is simply a question of time.

  15. NoSQL Based 3D City Model Management System

    NASA Astrophysics Data System (ADS)

    Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.

    2014-04-01

    To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.

  16. A 3D digital medical photography system in paediatric medicine.

    PubMed

    Williams, Susanne K; Ellis, Lloyd A; Williams, Gigi

    2008-01-01

    In 2004, traditional clinical photography services at the Educational Resource Centre were extended using new technology. This paper describes the establishment of a 3D digital imaging system in a paediatric setting at the Royal Children's Hospital, Melbourne.

  17. Gastric Contraction Imaging System Using a 3-D Endoscope.

    PubMed

    Yoshimoto, Kayo; Yamada, Kenji; Watabe, Kenji; Takeda, Maki; Nishimura, Takahiro; Kido, Michiko; Nagakura, Toshiaki; Takahashi, Hideya; Nishida, Tsutomu; Iijima, Hideki; Tsujii, Masahiko; Takehara, Tetsuo; Ohno, Yuko

    2014-01-01

    This paper presents a gastric contraction imaging system for assessment of gastric motility using a 3-D endoscope. Gastrointestinal diseases are mainly based on morphological abnormalities. However, gastrointestinal symptoms are sometimes apparent without visible abnormalities. One of the major factors for these diseases is abnormal gastrointestinal motility. For assessment of gastric motility, a gastric motility imaging system is needed. To assess the dynamic motility of the stomach, the proposed system measures 3-D gastric contractions derived from a 3-D profile of the stomach wall obtained with a developed 3-D endoscope. After obtaining contraction waves, their frequency, amplitude, and speed of propagation can be calculated using a Gaussian function. The proposed system was evaluated for 3-D measurements of several objects with known geometries. The results showed that the surface profiles could be obtained with an error of [Formula: see text] of the distance between two different points on images. Subsequently, we evaluated the validity of a prototype system using a wave simulated model. In the experiment, the amplitude and position of waves could be measured with 1-mm accuracy. The present results suggest that the proposed system can measure the speed and amplitude of contractions. This system has low invasiveness and can assess the motility of the stomach wall directly in a 3-D manner. Our method can be used for examination of gastric morphological and functional abnormalities.

  18. A 3D Current Loop Model of Magnetic Clouds

    NASA Astrophysics Data System (ADS)

    Chen, James

    1992-05-01

    A magnetohydrodynamic (MHD) model is developed to study magnetic clouds (Burlaga et al. 1981). In this model, magnetic clouds observed near 1 AU are treated as a consequence of eruptive solar current loops. It is shown that current loops intially in MHD equilibrium can be triggered to rise rapidly, propelling material of up to 10(16) g at up to ~ 1000 km s(-1) and dissipating ~ 10(32) erg of magnetic energy in tens of minutes. The initial rise profile is consistent with observed height-time profiles of erupting filaments (Kahler et al. 1988). Two triggering mechanisms for eruption are suggested: (1)subphotospheric energy storage and trigger and (2) in situ (coronal) energy storage and trigger. In the former, eruption occurs as a result of changes in the subphotospheric magnetic topology and subsequent relaxation to a new equilibrium. In the latter, the current loop can evolve to exceed a local maximum in the magnetic potential associated with the ambient magnetic fields. The former scenario leads to more energetic and longer-lasting eruption than the latter. Burlaga, L. F., Sittler, E., Mariani, F., and Schwenn, R. 1981, J. Geophys. Res., 86, 6673. Kahler, S. W., Moore, R. L., Kane, S. R., and Zirin, H. 1988, Ap. J., 328, 824.

  19. Advanced 3D Sensing and Visualization System for Unattended Monitoring

    SciTech Connect

    Carlson, J.J.; Little, C.Q.; Nelson, C.L.

    1999-01-01

    The purpose of this project was to create a reliable, 3D sensing and visualization system for unattended monitoring. The system provides benefits for several of Sandia's initiatives including nonproliferation, treaty verification, national security and critical infrastructure surety. The robust qualities of the system make it suitable for both interior and exterior monitoring applications. The 3D sensing system combines two existing sensor technologies in a new way to continuously maintain accurate 3D models of both static and dynamic components of monitored areas (e.g., portions of buildings, roads, and secured perimeters in addition to real-time estimates of the shape, location, and motion of humans and moving objects). A key strength of this system is the ability to monitor simultaneous activities on a continuous basis, such as several humans working independently within a controlled workspace, while also detecting unauthorized entry into the workspace. Data from the sensing system is used to identi~ activities or conditions that can signi~ potential surety (safety, security, and reliability) threats. The system could alert a security operator of potential threats or could be used to cue other detection, inspection or warning systems. An interactive, Web-based, 3D visualization capability was also developed using the Virtual Reality Modeling Language (VRML). The intex%ace allows remote, interactive inspection of a monitored area (via the Internet or Satellite Links) using a 3D computer model of the area that is rendered from actual sensor data.

  20. 3D measurement system based on computer-generated gratings

    NASA Astrophysics Data System (ADS)

    Zhu, Yongjian; Pan, Weiqing; Luo, Yanliang

    2010-08-01

    A new kind of 3D measurement system has been developed to achieve the 3D profile of complex object. The principle of measurement system is based on the triangular measurement of digital fringe projection, and the fringes are fully generated from computer. Thus the computer-generated four fringes form the data source of phase-shifting 3D profilometry. The hardware of system includes the computer, video camera, projector, image grabber, and VGA board with two ports (one port links to the screen, another to the projector). The software of system consists of grating projection module, image grabbing module, phase reconstructing module and 3D display module. A software-based synchronizing method between grating projection and image capture is proposed. As for the nonlinear error of captured fringes, a compensating method is introduced based on the pixel-to-pixel gray correction. At the same time, a least square phase unwrapping is used to solve the problem of phase reconstruction by using the combination of Log Modulation Amplitude and Phase Derivative Variance (LMAPDV) as weight. The system adopts an algorithm from Matlab Tool Box for camera calibration. The 3D measurement system has an accuracy of 0.05mm. The execution time of system is 3~5s for one-time measurement.

  1. Proposed traceable structural resolution protocols for 3D imaging systems

    NASA Astrophysics Data System (ADS)

    MacKinnon, David; Beraldin, J.-Angelo; Cournoyer, Luc; Carrier, Benjamin; Blais, François

    2009-08-01

    A protocol for determining structural resolution using a potentially-traceable reference material is proposed. Where possible, terminology was selected to conform to those published in ISO JCGM 200:2008 (VIM) and ASTM E 2544-08 documents. The concepts of resolvability and edge width are introduced to more completely describe the ability of an optical non-contact 3D imaging system to resolve small features. A distinction is made between 3D range cameras, that obtain spatial data from the total field of view at once, and 3D range scanners, that accumulate spatial data for the total field of view over time. The protocol is presented through the evaluation of a 3D laser line range scanner.

  2. Current sheet formation in a 3D line-tied plasma

    NASA Astrophysics Data System (ADS)

    Zhou, Yao; Huang, Yi-Min; Qin, Hong; Bhattacharjee, Amitava

    2016-10-01

    Recently a variational integrator for ideal MHD in Lagrangian labeling has been developed by discretizing Newcomb's Lagrangian on a moving mesh using discretized exterior calculus. With the frozen-in equation built-in, the method is free of artificial reconnection, and therefore optimal for studying current sheet formation. Using this method, it is confirmed that the nonlinear solution to the ideal Hahm-Kulsrud-Taylor problem in 2D yields a singular current sheet. We identify it by showing that the equilibrium solution converges with increasing resolution, except where there is singularity. This approach is in contrast to previous studies which use diverging peak current density as sole evidence of current singularity. We then extend the problem to 3D line-tied geometry. The linear solution, which is singular in 2D, is found to be smooth, but pathological when the system is sufficiently long. Accordingly, the nonlinear solution turns out to be smooth for short systems, but tends to become more singular when the system length increases. A resolution to this problem can potentially settle the long-standing controversy over Parker's conjecture on the formation of current singularity in 3D line-tied geometry. This research was supported by the U.S. DOE under Contract No. DE-AC02-09CH11466.

  3. Implementation of active-type Lamina 3D display system.

    PubMed

    Yoon, Sangcheol; Baek, Hogil; Min, Sung-Wook; Park, Soon-Gi; Park, Min-Kyu; Yoo, Seong-Hyeon; Kim, Hak-Rin; Lee, Byoungho

    2015-06-15

    Lamina 3D display is a new type of multi-layer 3D display, which utilizes the polarization state as a new dimension of depth information. Lamina 3D display system has advanced properties - to reduce the data amount representing 3D image, to be easily made using the conventional projectors, and to have a potential being applied to the many applications. However, the system might have some limitations in depth range and viewing angle due to the properties of the expressive volume components. In this paper, we propose the volume using the layers of switchable diffusers to implement the active-type Lamina 3D display system. Because the diffusing rate of the layers has no relation with the polarization state, the polarizer wheel is applied to the proposed system in purpose of making the sectioned image synchronized with the diffusing layer at the designated location. The imaging volume of the proposed system consists of five layers of polymer dispersed liquid crystal and the total size of the implemented volume is 24x18x12 mm3(3). The proposed system can achieve the improvements of viewing qualities such as enhanced depth expression and widened viewing angle.

  4. HBT-EP Program: MHD Dynamics and Active Control through 3D Fields and Currents

    NASA Astrophysics Data System (ADS)

    Navratil, G. A.; Abler, M. C.; Bialek, J.; Brooks, J. W.; Byrne, P. J.; Desanto, S.; Hughes, P. E.; Levesque, J. P.; Mauel, M. E.; Rhodes, D. J.; Hansen, C. J.

    2016-10-01

    The HBT-EP active mode control research program aims to: (i) advance understanding of the effects of 3D shaping on advanced tokamak fusion performance, (ii) resolve important MHD issues associated with disruptions, and (iii) measure and mitigate the effects of 3D scrape-off layer (SOL) currents through active and passive control of the plasma edge and conducting boundary structures. A GPU-based low latency control system uses 96 inputs and 64 outputs to control the plasma boundary. An in-vessel adjustable ferritic wall is used to study ferritic RWMs with increased growth rates, RMP response, and disruptivity. A quasi-linear sharp-boundary model is developed to study effects of toroidal curvature and plasma shaping on beta limits with resistive plasmas and walls. Measurement of currents between vessel sections reveals currents running from the plasma to the wall during wall-touching kink modes and disruptions. Asymmetries in plasma current are observed using segmented Rogowski coils. Biased electrodes in the plasma are used to control rotation of external kinks and drive currents in the SOL. An extensive array of SOL current monitors and edge drive electrodes will be installed for pioneering studies of helical edge current control. Supported by U.S. DOE Grant DE-FG02-86ER53222.

  5. A 3D surface imaging system for assessing human obesity

    NASA Astrophysics Data System (ADS)

    Xu, B.; Yu, W.; Yao, M.; Yao, X.; Li, Q.; Pepper, M. R.; Freeland-Graves, J. H.

    2009-08-01

    The increasing prevalence of obesity suggests a need to develop a convenient, reliable and economical tool for assessment of this condition. Three-dimensional (3D) body surface imaging has emerged as an exciting technology for estimation of body composition. This paper presents a new 3D body imaging system, which was designed for enhanced portability, affordability, and functionality. In this system, stereo vision technology was used to satisfy the requirements for a simple hardware setup and fast image acquisitions. The portability of the system was created via a two-stand configuration, and the accuracy of body volume measurements was improved by customizing stereo matching and surface reconstruction algorithms that target specific problems in 3D body imaging. Body measurement functions dedicated to body composition assessment also were developed. The overall performance of the system was evaluated in human subjects by comparison to other conventional anthropometric methods, as well as air displacement plethysmography, for body fat assessment.

  6. Fiber optic coherent laser radar 3D vision system

    SciTech Connect

    Clark, R.B.; Gallman, P.G.; Slotwinski, A.R.; Wagner, K.; Weaver, S.; Xu, Jieping

    1996-12-31

    This CLVS will provide a substantial advance in high speed computer vision performance to support robotic Environmental Management (EM) operations. This 3D system employs a compact fiber optic based scanner and operator at a 128 x 128 pixel frame at one frame per second with a range resolution of 1 mm over its 1.5 meter working range. Using acousto-optic deflectors, the scanner is completely randomly addressable. This can provide live 3D monitoring for situations where it is necessary to update once per second. This can be used for decontamination and decommissioning operations in which robotic systems are altering the scene such as in waste removal, surface scarafacing, or equipment disassembly and removal. The fiber- optic coherent laser radar based system is immune to variations in lighting, color, or surface shading, which have plagued the reliability of existing 3D vision systems, while providing substantially superior range resolution.

  7. 3D indium tin oxide electrodes by ultrasonic spray deposition for current collection applications

    NASA Astrophysics Data System (ADS)

    van den Ham, E. J.; Elen, K.; Bonneux, G.; Maino, G.; Notten, P. H. L.; Van Bael, M. K.; Hardy, A.

    2017-04-01

    Three dimensionally (3D) structured indium tin oxide (ITO) thin films are synthesized and characterized as a 3D electrode material for current collection applications. Using metal citrate chemistry in combination with ultrasonic spray deposition, a low cost wet-chemical method has been developed to achieve conformal ITO coatings on non-planar scaffolds. Although there is room for improvement with respect to the resistivity (9.9·10-3 Ω•cm, 220 nm thick planar films), high quality 3D structured coatings were shown to exhibit conductive properties based on ferrocene reactivity. In view of applications in Li-ion batteries, the electrochemical stability of the current collector was investigated, indicating that stability is guaranteed for voltages of 1.5 V and up (vs. Li+/Li). In addition, subsequent 3D coating of the ITO with WO3 as a negative electrode (battery) material confirmed the 3D ITO layer functions as a proper current collector. Using this approach, an over 4-fold capacity increase was booked for 3D structured WO3 in comparison to planar samples, confirming the current collecting capabilities of the 3D ITO coating. Therefore, the 3D ITO presented is considered as a highly interesting material for 3D battery applications and beyond.

  8. Visual Semantic Based 3D Video Retrieval System Using HDFS

    PubMed Central

    Kumar, C.Ranjith; Suguna, S.

    2016-01-01

    This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy. PMID:28003793

  9. Visual Semantic Based 3D Video Retrieval System Using HDFS.

    PubMed

    Kumar, C Ranjith; Suguna, S

    2016-08-01

    This paper brings out a neoteric frame of reference for visual semantic based 3d video search and retrieval applications. Newfangled 3D retrieval application spotlight on shape analysis like object matching, classification and retrieval not only sticking up entirely with video retrieval. In this ambit, we delve into 3D-CBVR (Content Based Video Retrieval) concept for the first time. For this purpose, we intent to hitch on BOVW and Mapreduce in 3D framework. Instead of conventional shape based local descriptors, we tried to coalesce shape, color and texture for feature extraction. For this purpose, we have used combination of geometric & topological features for shape and 3D co-occurrence matrix for color and texture. After thriving extraction of local descriptors, TB-PCT (Threshold Based- Predictive Clustering Tree) algorithm is used to generate visual codebook and histogram is produced. Further, matching is performed using soft weighting scheme with L2 distance function. As a final step, retrieved results are ranked according to the Index value and acknowledged to the user as a feedback .In order to handle prodigious amount of data and Efficacious retrieval, we have incorporated HDFS in our Intellection. Using 3D video dataset, we future the performance of our proposed system which can pan out that the proposed work gives meticulous result and also reduce the time intricacy.

  10. Design of a single projector multiview 3D display system

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2014-03-01

    Multiview three-dimensional (3D) display is able to provide horizontal parallax to viewers with high-resolution and fullcolor images being presented to each view. Most multiview 3D display systems are designed and implemented using multiple projectors, each generating images for one view. Although this multi-projector design strategy is conceptually straightforward, implementation of such multi-projector design often leads to a very expensive system and complicated calibration procedures. Even for a multiview system with a moderate number of projectors (e.g., 32 or 64 projectors), the cost of a multi-projector 3D display system may become prohibitive due to the cost and complexity of integrating multiple projectors. In this article, we describe an optical design technique for a class of multiview 3D display systems that use only a single projector. In this single projector multiview (SPM) system design, multiple views for the 3D display are generated in a time-multiplex fashion by the single high speed projector with specially designed optical components, a scanning mirror, and a reflective mirror array. Images of all views are generated sequentially and projected via the specially design optical system from different viewing directions towards a 3D display screen. Therefore, the single projector is able to generate equivalent number of multiview images from multiple viewing directions, thus fulfilling the tasks of multiple projectors. An obvious advantage of the proposed SPM technique is the significant reduction of cost, size, and complexity, especially when the number of views is high. The SPM strategy also alleviates the time-consuming procedures for multi-projector calibration. The design method is flexible and scalable and can accommodate systems with different number of views.

  11. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D

    PubMed Central

    Lee, Tong Young; Yoon, Kyoung-hye; Lee, Jin Il

    2016-01-01

    ABSTRACT The nematode Caenorhabditis elegans is one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however, C. elegans is found in three dimensional environments such as rotting fruit. To investigate the biology of C. elegans in a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory. PMID:26962047

  12. NGT-3D: a simple nematode cultivation system to study Caenorhabditis elegans biology in 3D.

    PubMed

    Lee, Tong Young; Yoon, Kyoung-Hye; Lee, Jin Il

    2016-04-15

    The nematodeCaenorhabditiselegansis one of the premier experimental model organisms today. In the laboratory, they display characteristic development, fertility, and behaviors in a two dimensional habitat. In nature, however,C. elegansis found in three dimensional environments such as rotting fruit. To investigate the biology ofC. elegansin a 3D controlled environment we designed a nematode cultivation habitat which we term the nematode growth tube or NGT-3D. NGT-3D allows for the growth of both nematodes and the bacteria they consume. Worms show comparable rates of growth, reproduction and lifespan when bacterial colonies in the 3D matrix are abundant. However, when bacteria are sparse, growth and brood size fail to reach levels observed in standard 2D plates. Using NGT-3D we observe drastic deficits in fertility in a sensory mutant in 3D compared to 2D, and this defect was likely due to an inability to locate bacteria. Overall, NGT-3D will sharpen our understanding of nematode biology and allow scientists to investigate questions of nematode ecology and evolutionary fitness in the laboratory.

  13. 3D Multi-Spectrum Sensor System with Face Recognition

    PubMed Central

    Kim, Joongrock; Yu, Sunjin; Kim, Ig-Jae; Lee, Sangyoun

    2013-01-01

    This paper presents a novel three-dimensional (3D) multi-spectrum sensor system, which combines a 3D depth sensor and multiple optical sensors for different wavelengths. Various image sensors, such as visible, infrared (IR) and 3D sensors, have been introduced into the commercial market. Since each sensor has its own advantages under various environmental conditions, the performance of an application depends highly on selecting the correct sensor or combination of sensors. In this paper, a sensor system, which we will refer to as a 3D multi-spectrum sensor system, which comprises three types of sensors, visible, thermal-IR and time-of-flight (ToF), is proposed. Since the proposed system integrates information from each sensor into one calibrated framework, the optimal sensor combination for an application can be easily selected, taking into account all combinations of sensors information. To demonstrate the effectiveness of the proposed system, a face recognition system with light and pose variation is designed. With the proposed sensor system, the optimal sensor combination, which provides new effectively fused features for a face recognition system, is obtained. PMID:24072025

  14. Extensible 3D (X3D) Graphics Clouds for Geographic Information Systems

    DTIC Science & Technology

    2008-03-01

    browser such as Microsoft Internet Explorer or Netscape using an X3D or VRML supporting plug-in. The benefits of diverse support can cause...typing model output with a particular method of 3D cloud production. Data-driven adaptation and production of cloud models for web -based delivery...and production of cloud models for web -based delivery is an achievable capability given continued research and development. vi THIS PAGE

  15. The Current Role of Three-Dimensional (3D) Printing in Plastic Surgery.

    PubMed

    Kamali, Parisa; Dean, David; Skoracki, Roman; Koolen, Pieter G L; Paul, Marek A; Ibrahim, Ahmed M S; Lin, Samuel J

    2016-01-21

    Since the advent of three-dimensional (3D) printing in the 1980s, it is now possible to produce physical objects from digital files and create 3D objects by adding one layer at a time following a predetermined pattern. Due to the continued development of inexpensive and easy- to- use 3D printers and bioprinting, this technique has gained more momentum over time, especially in the field of medicine. This paper reviews the current and possible future application of 3D printing technology within the field of plastic and reconstructive surgery.

  16. The 3D laser radar vision processor system

    NASA Technical Reports Server (NTRS)

    Sebok, T. M.

    1990-01-01

    Loral Defense Systems (LDS) developed a 3D Laser Radar Vision Processor system capable of detecting, classifying, and identifying small mobile targets as well as larger fixed targets using three dimensional laser radar imagery for use with a robotic type system. This processor system is designed to interface with the NASA Johnson Space Center in-house Extra Vehicular Activity (EVA) Retriever robot program and provide to it needed information so it can fetch and grasp targets in a space-type scenario.

  17. A 3-D measurement system using object-oriented FORTH

    SciTech Connect

    Butterfield, K.B.

    1989-01-01

    Discussed is a system for storing 3-D measurements of points that relates the coordinate system of the measurement device to the global coordinate system. The program described here used object-oriented FORTH to store the measured points as sons of the measuring device location. Conversion of local coordinates to absolute coordinates is performed by passing messages to the point objects. Modifications to the object-oriented FORTH system are also described. 1 ref.

  18. Stereoscopic contents authoring system for 3D DMB data service

    NASA Astrophysics Data System (ADS)

    Lee, BongHo; Yun, Kugjin; Hur, Namho; Kim, Jinwoong; Lee, SooIn

    2009-02-01

    This paper presents a stereoscopic contents authoring system that covers the creation and editing of stereoscopic multimedia contents for the 3D DMB (Digital Multimedia Broadcasting) data services. The main concept of 3D DMB data service is that, instead of full 3D video, partial stereoscopic objects (stereoscopic JPEG, PNG and MNG) are stereoscopically displayed on the 2D background video plane. In order to provide stereoscopic objects, we design and implement a 3D DMB content authoring system which provides the convenient and straightforward contents creation and editing functionalities. For the creation of stereoscopic contents, we mainly focused on two methods: CG (Computer Graphics) based creation and real image based creation. In the CG based creation scenario where the generated CG data from the conventional MAYA or 3DS MAX tool is rendered to generate the stereoscopic images by applying the suitable disparity and camera parameters, we use X-file for the direct conversion to stereoscopic objects, so called 3D DMB objects. In the case of real image based creation, the chroma-key method is applied to real video sequences to acquire the alpha-mapped images which are in turn directly converted to stereoscopic objects. The stereoscopic content editing module includes the timeline editor for both the stereoscopic video and stereoscopic objects. For the verification of created stereoscopic contents, we implemented the content verification module to verify and modify the contents by adjusting the disparity. The proposed system will leverage the power of stereoscopic contents creation for mobile 3D data service especially targeted for T-DMB with the capabilities of CG and real image based contents creation, timeline editing and content verification.

  19. Structured Light-Based 3D Reconstruction System for Plants.

    PubMed

    Nguyen, Thuy Tuong; Slaughter, David C; Max, Nelson; Maloof, Julin N; Sinha, Neelima

    2015-07-29

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants. This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance.

  20. Visualizing Terrestrial and Aquatic Systems in 3-D

    EPA Science Inventory

    The environmental modeling community has a long-standing need for affordable, easy-to-use tools that support 3-D visualization of complex spatial and temporal model output. The Visualization of Terrestrial and Aquatic Systems project (VISTAS) aims to help scientists produce effe...

  1. Structured Light-Based 3D Reconstruction System for Plants

    PubMed Central

    Nguyen, Thuy Tuong; Slaughter, David C.; Max, Nelson; Maloof, Julin N.; Sinha, Neelima

    2015-01-01

    Camera-based 3D reconstruction of physical objects is one of the most popular computer vision trends in recent years. Many systems have been built to model different real-world subjects, but there is lack of a completely robust system for plants.This paper presents a full 3D reconstruction system that incorporates both hardware structures (including the proposed structured light system to enhance textures on object surfaces) and software algorithms (including the proposed 3D point cloud registration and plant feature measurement). This paper demonstrates the ability to produce 3D models of whole plants created from multiple pairs of stereo images taken at different viewing angles, without the need to destructively cut away any parts of a plant. The ability to accurately predict phenotyping features, such as the number of leaves, plant height, leaf size and internode distances, is also demonstrated. Experimental results show that, for plants having a range of leaf sizes and a distance between leaves appropriate for the hardware design, the algorithms successfully predict phenotyping features in the target crops, with a recall of 0.97 and a precision of 0.89 for leaf detection and less than a 13-mm error for plant size, leaf size and internode distance. PMID:26230701

  2. 3D X-Ray Luggage-Screening System

    NASA Technical Reports Server (NTRS)

    Fernandez, Kenneth

    2006-01-01

    A three-dimensional (3D) x-ray luggage- screening system has been proposed to reduce the fatigue experienced by human inspectors and increase their ability to detect weapons and other contraband. The system and variants thereof could supplant thousands of xray scanners now in use at hundreds of airports in the United States and other countries. The device would be applicable to any security checkpoint application where current two-dimensional scanners are in use. A conventional x-ray luggage scanner generates a single two-dimensional (2D) image that conveys no depth information. Therefore, a human inspector must scrutinize the image in an effort to understand ambiguous-appearing objects as they pass by at high speed on a conveyor belt. Such a high level of concentration can induce fatigue, causing the inspector to reduce concentration and vigilance. In addition, because of the lack of depth information, contraband objects could be made more difficult to detect by positioning them near other objects so as to create x-ray images that confuse inspectors. The proposed system would make it unnecessary for a human inspector to interpret 2D images, which show objects at different depths as superimposed. Instead, the system would take advantage of the natural human ability to infer 3D information from stereographic or stereoscopic images. The inspector would be able to perceive two objects at different depths, in a more nearly natural manner, as distinct 3D objects lying at different depths. Hence, the inspector could recognize objects with greater accuracy and less effort. The major components of the proposed system would be similar to those of x-ray luggage scanners now in use. As in a conventional x-ray scanner, there would be an x-ray source. Unlike in a conventional scanner, there would be two x-ray image sensors, denoted the left and right sensors, located at positions along the conveyor that are upstream and downstream, respectively (see figure). X-ray illumination

  3. 3D optical measuring technologies and systems for industrial applications

    NASA Astrophysics Data System (ADS)

    Chugui, Yu. V.

    2005-06-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method, development of hole inspection method on the base of diffractive optical elements. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100 % noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, RADAR, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  4. Robust 3D reconstruction system for human jaw modeling

    NASA Astrophysics Data System (ADS)

    Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.

    1999-03-01

    This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.

  5. Panoramic, large-screen, 3-D flight display system design

    NASA Technical Reports Server (NTRS)

    Franklin, Henry; Larson, Brent; Johnson, Michael; Droessler, Justin; Reinhart, William F.

    1995-01-01

    The report documents and summarizes the results of the required evaluations specified in the SOW and the design specifications for the selected display system hardware. Also included are the proposed development plan and schedule as well as the estimated rough order of magnitude (ROM) cost to design, fabricate, and demonstrate a flyable prototype research flight display system. The thrust of the effort was development of a complete understanding of the user/system requirements for a panoramic, collimated, 3-D flyable avionic display system and the translation of the requirements into an acceptable system design for fabrication and demonstration of a prototype display in the early 1997 time frame. Eleven display system design concepts were presented to NASA LaRC during the program, one of which was down-selected to a preferred display system concept. A set of preliminary display requirements was formulated. The state of the art in image source technology, 3-D methods, collimation methods, and interaction methods for a panoramic, 3-D flight display system were reviewed in depth and evaluated. Display technology improvements and risk reductions associated with maturity of the technologies for the preferred display system design concept were identified.

  6. 3D current source density imaging based on acoustoelectric effect: a simulation study using unipolar pulses

    PubMed Central

    Yang, Renhuan; Li, Xu; Liu, Jun; He, Bin

    2011-01-01

    It is of importance to image electrical activity and properties of biological tissues. Recently hybrid imaging modality combing ultrasound scanning and source imaging through the acousto-electric (AE) effect has generated considerable interest. Such modality has the potential to provide high spatial resolution current density imaging by utilizing the pressure induced AE resistivity change confined at the ultrasound focus. In this study, we investigate a novel 3-dimensional (3D) ultrasound current source density imaging (UCSDI) approach using unipolar ultrasound pulses. Utilizing specially designed unipolar ultrasound pulses and by combining AE signals associated to the local resistivity changes at the focusing point, we are able to reconstruct the 3D current density distribution with the boundary voltage measurements obtained while performing a 3D ultrasound scan. We have shown in computer simulation that using the present method, it is feasible to image with high spatial resolution an arbitrary 3D current density distribution in an inhomogeneous conductive media. PMID:21628774

  7. 3D Geological Model for "LUSI" - a Deep Geothermal System

    NASA Astrophysics Data System (ADS)

    Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.

    2016-04-01

    Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.

  8. Subjective evaluation of a 3D videoconferencing system

    NASA Astrophysics Data System (ADS)

    Rizek, Hadi; Brunnström, Kjell; Wang, Kun; Andrén, Börje; Johanson, Mathias

    2014-03-01

    A shortcoming of traditional videoconferencing systems is that they present the user with a flat, two-dimensional image of the remote participants. Recent advances in autostereoscopic display technology now make it possible to develop video conferencing systems supporting true binocular depth perception. In this paper, we present a subjective evaluation of a prototype multiview autostereoscopic video conferencing system and suggest a number of possible improvements based on the results. Whereas methods for subjective evaluation of traditional 2D videoconferencing systems are well established, the introduction of 3D requires an extension of the test procedures to assess the quality of depth perception. For this purpose, two depth-based test tasks have been designed and experiments have been conducted with test subjects comparing the 3D system to a conventional 2D video conferencing system. The outcome of the experiments show that the perception of depth is significantly improved in the 3D system, but the overall quality of experience is higher in the 2D system.

  9. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  10. Sensorized Garment Augmented 3D Pervasive Virtual Reality System

    NASA Astrophysics Data System (ADS)

    Gulrez, Tauseef; Tognetti, Alessandro; de Rossi, Danilo

    Virtual reality (VR) technology has matured to a point where humans can navigate in virtual scenes; however, providing them with a comfortable fully immersive role in VR remains a challenge. Currently available sensing solutions do not provide ease of deployment, particularly in the seated position due to sensor placement restrictions over the body, and optic-sensing requires a restricted indoor environment to track body movements. Here we present a 52-sensor laden garment interfaced with VR, which offers both portability and unencumbered user movement in a VR environment. This chapter addresses the systems engineering aspects of our pervasive computing solution of the interactive sensorized 3D VR and presents the initial results and future research directions. Participants navigated in a virtual art gallery using natural body movements that were detected by their wearable sensor shirt and then mapped the signals to electrical control signals responsible for VR scene navigation. The initial results are positive, and offer many opportunities for use in computationally intelligentman-machine multimedia control.

  11. Equilibrium Reconstructions with V3FIT and Current Evolution Modeling for 3-D Stellarator Plasmas

    NASA Astrophysics Data System (ADS)

    Schmitt, J. C.; Cianciosa, M.; Geiger, J.; Lazerson, S.

    2016-10-01

    V3FIT is a powerful equilibrium reconstruction tool for magnetic confinement fusion experiments which are inherently 3-D in nature (i.e. stellarators) or have 3-D components (tokamaks with 3-D shaping, reversed field pinches with helical states, etc). Here, we present details of the diagnostic modeling, constraints and the user interface for reconstructions of W7-X plasmas. For typical discharges during the OP1.1 run campaign of W7-X, the net toroidal current and current density profile do not reach steady-state. When modeling the current evolution in 3-D plasmas, both poloidal and toroidal currents are linked with both poloidal and toroidal fluxes. In contrast, in toroidally axisymmetric plasmas, the poloidal flux is linked only with the toroidal current and the toroidal current is linked only with the poloidal flux. Compared to an equivalently-sized axisymmetric configuration, the current diffusion in 3-D plasmas is enhanced, leading to a faster relaxation of the current profile to its steady-state. Implications for the time-evolution of the current and rotational transform profiles in stellarator plasmas are discussed. This work is supported by DoE Grant DE-SC00014529.

  12. 3D gel printing for soft-matter systems innovation

    NASA Astrophysics Data System (ADS)

    Furukawa, Hidemitsu; Kawakami, Masaru; Gong, Jin; Makino, Masato; Kabir, M. Hasnat; Saito, Azusa

    2015-04-01

    In the past decade, several high-strength gels have been developed, especially from Japan. These gels are expected to use as a kind of new engineering materials in the fields of industry and medical as substitutes to polyester fibers, which are materials of artificial blood vessels. We consider if various gel materials including such high-strength gels are 3D-printable, many new soft and wet systems will be developed since the most intricate shape gels can be printed regardless of the quite softness and brittleness of gels. Recently we have tried to develop an optical 3D gel printer to realize the free-form formation of gel materials. We named this apparatus Easy Realizer of Soft and Wet Industrial Materials (SWIM-ER). The SWIM-ER will be applied to print bespoke artificial organs, including artificial blood vessels, which will be possibly used for both surgery trainings and actual surgery. The SWIM-ER can print one of the world strongest gels, called Double-Network (DN) gels, by using UV irradiation through an optical fiber. Now we also are developing another type of 3D gel printer for foods, named E-Chef. We believe these new 3D gel printers will broaden the applications of soft-matter gels.

  13. 3D printed nervous system on a chip.

    PubMed

    Johnson, Blake N; Lancaster, Karen Z; Hogue, Ian B; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W; McAlpine, Michael C

    2016-04-21

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology.

  14. 3D Printed Nervous System on a Chip

    PubMed Central

    Johnson, Blake N.; Lancaster, Karen Z.; Hogue, Ian B.; Meng, Fanben; Kong, Yong Lin; Enquist, Lynn W.; McAlpine, Michael C.

    2015-01-01

    Bioinspired organ-level in vitro platforms are emerging as effective technologies for fundamental research, drug discovery, and personalized healthcare. In particular, models for nervous system research are especially important, due to the complexity of neurological phenomena and challenges associated with developing targeted treatment of neurological disorders. Here we introduce an additive manufacturing-based approach in the form of a bioinspired, customizable 3D printed nervous system on a chip (3DNSC) for the study of viral infection in the nervous system. Micro-extrusion 3D printing strategies enabled the assembly of biomimetic scaffold components (microchannels and compartmented chambers) for the alignment of axonal networks and spatial organization of cellular components. Physiologically relevant studies of nervous system infection using the multiscale biomimetic device demonstrated the functionality of the in vitro platform. We found that Schwann cells participate in axon-to-cell viral spread but appear refractory to infection, exhibiting a multiplicity of infection (MOI) of 1.4 genomes per cell. These results suggest that 3D printing is a valuable approach for the prototyping of a customized model nervous system on a chip technology. PMID:26669842

  15. 3-D residual eddy current field characterisation: applied to diffusion weighted magnetic resonance imaging.

    PubMed

    O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar

    2013-08-01

    Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

  16. Advancements in 3D Structural Analysis of Geothermal Systems

    SciTech Connect

    Siler, Drew L; Faulds, James E; Mayhew, Brett; McNamara, David

    2013-06-23

    Robust geothermal activity in the Great Basin, USA is a product of both anomalously high regional heat flow and active fault-controlled extension. Elevated permeability associated with some fault systems provides pathways for circulation of geothermal fluids. Constraining the local-scale 3D geometry of these structures and their roles as fluid flow conduits is crucial in order to mitigate both the costs and risks of geothermal exploration and to identify blind (no surface expression) geothermal resources. Ongoing studies have indicated that much of the robust geothermal activity in the Great Basin is associated with high density faulting at structurally complex fault intersection/interaction areas, such as accommodation/transfer zones between discrete fault systems, step-overs or relay ramps in fault systems, intersection zones between faults with different strikes or different senses of slip, and horse-tailing fault terminations. These conceptualized models are crucial for locating and characterizing geothermal systems in a regional context. At the local scale, however, pinpointing drilling targets and characterizing resource potential within known or probable geothermal areas requires precise 3D characterization of the system. Employing a variety of surface and subsurface data sets, we have conducted detailed 3D geologic analyses of two Great Basin geothermal systems. Using EarthVision (Dynamic Graphics Inc., Alameda, CA) we constructed 3D geologic models of both the actively producing Brady’s geothermal system and a ‘greenfield’ geothermal prospect at Astor Pass, NV. These 3D models allow spatial comparison of disparate data sets in 3D and are the basis for quantitative structural analyses that can aid geothermal resource assessment and be used to pinpoint discrete drilling targets. The relatively abundant data set at Brady’s, ~80 km NE of Reno, NV, includes 24 wells with lithologies interpreted from careful analysis of cuttings and core, a 1

  17. The 3-D description of vertical current sheets with application to solar flares

    NASA Technical Reports Server (NTRS)

    Fontenla, Juan M.; Davis, J. M.

    1991-01-01

    Following a brief review of the processes which have been suggested for explaining the occurrence of solar flares we suggest a new scenario which builds on the achievements of the previous suggestion that the current sheets, which develop naturally in 3-D cases with gravity from impacting independent magnetic structures (i.e., approaching current systems), do not consist of horizontal currents but are instead predominantly vertical current systems. This suggestion is based on the fact that as the subphotospheric sources of the magnetic field displace the upper photosphere and lower chromosphere regions, where plasma beta is near unity, will experience predominantly horizontal mass motions which will lead to a distorted 3-D configurations of the magnetic field having stored free energy. In our scenario, a vertically flowing current sheet separates the plasma regions associated with either of the subphotospheric sources. This reflects the balanced tension of the two stressed fields which twist around each other. This leads naturally to a metastable or unstable situation as the twisted field emerges into a low beta region where vertical motions are not inhibited by gravity. In our flare scenario the impulsive energy release occurs, initially, not by reconnection but mainly by the rapid change of the magnetic field which has become unstable. During the impulsive phase the field lines contort in such way as to realign the electric current sheet into a minimum energy horizontal flow. This contortion produces very large electric fields which will accelerate particles. As the current evolves to a horizontal configuration the magnetic field expands vertically, which can be accompanied by eruptions of material. The instability of a horizontal current is well known and causes the magnetic field to undergo a rapid outward expansion. In our scenario, fast reconnection is not necessary to trigger the flare, however, slow reconnection would occur continuously in the current layer

  18. A 3D Split Manufacturing Approach to Trustworthy System Development

    DTIC Science & Technology

    2012-12-01

    Acıiçmez, J.P. Seifert, and C.K. Koc. Micro -architectural cryptanalysis. IEEE Security and Privacy Magazine, 5(4), July-August 2007. [4] Daniel J...International Symposium on Microarchitecture ( MICRO ), Orlando, FL, December 2006. VALAMEHR et al.: A 3D SPLIT MANUFACTURING APPROACH TO TRUSTWORTHY SYSTEM...IEEE Micro , 27(3), May-June 2007. [16] Gian Luca Loi, Banit Agrawal, Navin Srivastava, Sheng-Chih Lin, Timothy Sherwood, and Kaustav Banerjee. A

  19. 3D temperature field reconstruction using ultrasound sensing system

    NASA Astrophysics Data System (ADS)

    Liu, Yuqian; Ma, Tong; Cao, Chengyu; Wang, Xingwei

    2016-04-01

    3D temperature field reconstruction is of practical interest to the power, transportation and aviation industries and it also opens up opportunities for real time control or optimization of high temperature fluid or combustion process. In our paper, a new distributed optical fiber sensing system consisting of a series of elements will be used to generate and receive acoustic signals. This system is the first active temperature field sensing system that features the advantages of the optical fiber sensors (distributed sensing capability) and the acoustic sensors (non-contact measurement). Signals along multiple paths will be measured simultaneously enabled by a code division multiple access (CDMA) technique. Then a proposed Gaussian Radial Basis Functions (GRBF)-based approach can approximate the temperature field as a finite summation of space-dependent basis functions and time-dependent coefficients. The travel time of the acoustic signals depends on the temperature of the media. On this basis, the Gaussian functions are integrated along a number of paths which are determined by the number and distribution of sensors. The inversion problem to estimate the unknown parameters of the Gaussian functions can be solved with the measured times-of-flight (ToF) of acoustic waves and the length of propagation paths using the recursive least square method (RLS). The simulation results show an approximation error less than 2% in 2D and 5% in 3D respectively. It demonstrates the availability and efficiency of our proposed 3D temperature field reconstruction mechanism.

  20. Effective 3-D surface modeling for geographic information systems

    NASA Astrophysics Data System (ADS)

    Yüksek, K.; Alparslan, M.; Mendi, E.

    2016-01-01

    In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.

  1. 3D-LZ helicopter ladar imaging system

    NASA Astrophysics Data System (ADS)

    Savage, James; Harrington, Walter; McKinley, R. Andrew; Burns, H. N.; Braddom, Steven; Szoboszlay, Zoltan

    2010-04-01

    A joint-service team led by the Air Force Research Laboratory's Munitions and Sensors Directorates completed a successful flight test demonstration of the 3D-LZ Helicopter LADAR Imaging System. This was a milestone demonstration in the development of technology solutions for a problem known as "helicopter brownout", the loss of situational awareness caused by swirling sand during approach and landing. The 3D-LZ LADAR was developed by H.N. Burns Engineering and integrated with the US Army Aeroflightdynamics Directorate's Brown-Out Symbology System aircraft state symbology aboard a US Army EH-60 Black Hawk helicopter. The combination of these systems provided an integrated degraded visual environment landing solution with landing zone situational awareness as well as aircraft guidance and obstacle avoidance information. Pilots from the U.S. Army, Air Force, Navy, and Marine Corps achieved a 77% landing rate in full brownout conditions at a test range at Yuma Proving Ground, Arizona. This paper will focus on the LADAR technology used in 3D-LZ and the results of this milestone demonstration.

  2. A semi-automatic 3D laser scan system design

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Pan, Ming; Zhang, Xiangwei

    2009-11-01

    Digital 3D models are now used everywhere, from traditional fields of industrial design, artistic design, to heritage conservation. Although laser scan is very useful to get densely samples of the objects, nowadays, such an instrument is expensive and always need to be connected to a computer with stable power supply, which prevent it from usage for fieldworks. In this paper, a new semi-automatic 3D laser scan method is proposed using two line laser sources. The planes projected from the laser sources are orthogonal, one of which is fixed relative to the camera, and the other can be rotated along a settled axis. Before scanning, the system must be calibrated, from which the parameters of the camera, the position of the fixed laser plane and the settled axis are introduced. In scanning process, the fixed laser plane and the camera form a conventional structured light system, and the 3d positions of the intersection curves of the fixed laser plane with the object can be computed. The other laser plane is rotated manually or mechanically, and its position can be determined from the cross point intersecting with the fixed laser plane on the object, so the coordinates of sweeping points can be obtained. The new system can be used without a computer (The data can be processed later), which make it suitable for fieldworks. A scanning case is given in the end.

  3. Fiber optic coherent laser radar 3d vision system

    SciTech Connect

    Sebastian, R.L.; Clark, R.B.; Simonson, D.L.

    1994-12-31

    Recent advances in fiber optic component technology and digital processing components have enabled the development of a new 3D vision system based upon a fiber optic FMCW coherent laser radar. The approach includes a compact scanner with no moving parts capable of randomly addressing all pixels. The system maintains the immunity to lighting and surface shading conditions which is characteristic of coherent laser radar. The random pixel addressability allows concentration of scanning and processing on the active areas of a scene, as is done by the human eye-brain system.

  4. Digital acquisition system for high-speed 3-D imaging

    NASA Astrophysics Data System (ADS)

    Yafuso, Eiji

    1997-11-01

    High-speed digital three-dimensional (3-D) imagery is possible using multiple independent charge-coupled device (CCD) cameras with sequentially triggered acquisition and individual field storage capability. The system described here utilizes sixteen independent cameras, providing versatility in configuration and image acquisition. By aligning the cameras in nearly coincident lines-of-sight, a sixteen frame two-dimensional (2-D) sequence can be captured. The delays can be individually adjusted lo yield a greater number of acquired frames during the more rapid segments of the event. Additionally, individual integration periods may be adjusted to ensure adequate radiometric response while minimizing image blur. An alternative alignment and triggering scheme arranges the cameras into two angularly separated banks of eight cameras each. By simultaneously triggering correlated stereo pairs, an eight-frame sequence of stereo images may be captured. In the first alignment scheme the camera lines-of-sight cannot be made precisely coincident. Thus representation of the data as a monocular sequence introduces the issue of independent camera coordinate registration with the real scene. This issue arises more significantly using the stereo pair method to reconstruct quantitative 3-D spatial information of the event as a function of time. The principal development here will be the derivation and evaluation of a solution transform and its inverse for the digital data which will yield a 3-D spatial mapping as a function of time.

  5. Intersecting D 3 -D3 ' -brane system at finite temperature

    NASA Astrophysics Data System (ADS)

    Cottrell, William; Hanson, James; Hashimoto, Akikazu; Loveridge, Andrew; Pettengill, Duncan

    2017-02-01

    We analyze the dynamics of the intersecting D 3 -D3 ' -brane system overlapping in 1 +1 dimensions, in a holographic treatment where N D3 branes are manifested as anti-de Sitter Schwartzschild geometry, and the D3 ' brane is treated as a probe. We extract the thermodynamic equation of state from the set of embedding solutions, and analyze the stability at the perturbative and the nonperturbative level. We review a systematic procedure to resolve local instabilities and multivaluedness in the equations of state based on classic ideas of convexity in the microcanonical ensemble. We then identify a runaway behavior which was not noticed previously for this system.

  6. 3D laser optoacoustic ultrasonic imaging system for preclinical research

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Conjusteau, André; Hernandez, Travis; Su, Richard; Nadvoretskiy, Vyacheslav; Tsyboulski, Dmitri; Anis, Fatima; Anastasio, Mark A.; Oraevsky, Alexander A.

    2013-03-01

    In this work, we introduce a novel three-dimensional imaging system for in vivo high-resolution anatomical and functional whole-body visualization of small animal models developed for preclinical or other type of biomedical research. The system (LOUIS-3DM) combines a multi-wavelength optoacoustic and ultrawide-band laser ultrasound tomographies to obtain coregistered maps of tissue optical absorption and acoustic properties, displayed within the skin outline of the studied animal. The most promising applications of the LOUIS-3DM include 3D angiography, cancer research, and longitudinal studies of biological distribution of optoacoustic contrast agents (carbon nanotubes, metal plasmonic nanoparticles, etc.).

  7. Facial-paralysis diagnostic system based on 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Khairunnisaa, Aida; Basah, Shafriza Nisha; Yazid, Haniza; Basri, Hassrizal Hassan; Yaacob, Sazali; Chin, Lim Chee

    2015-05-01

    The diagnostic process of facial paralysis requires qualitative assessment for the classification and treatment planning. This result is inconsistent assessment that potential affect treatment planning. We developed a facial-paralysis diagnostic system based on 3D reconstruction of RGB and depth data using a standard structured-light camera - Kinect 360 - and implementation of Active Appearance Models (AAM). We also proposed a quantitative assessment for facial paralysis based on triangular model. In this paper, we report on the design and development process, including preliminary experimental results. Our preliminary experimental results demonstrate the feasibility of our quantitative assessment system to diagnose facial paralysis.

  8. ProteinVista: a fast molecular visualization system using Microsoft Direct3D.

    PubMed

    Park, Chan-Yong; Park, Sung-Hee; Park, Soo-Jun; Park, Sun-Hee; Hwang, Chi-Jung

    2008-09-01

    Many tools have been developed to visualize protein and molecular structures. Most high quality protein visualization tools use the OpenGL graphics library as a 3D graphics system. Currently, the performance of recent 3D graphics hardware has rapidly improved. Recent high-performance 3D graphics hardware support Microsoft Direct3D graphics library more than OpenGL and have become very popular in personal computers (PCs). In this paper, a molecular visualization system termed ProteinVista is proposed. ProteinVista is well-designed visualization system using the Microsoft Direct3D graphics library. It provides various visualization styles such as the wireframe, stick, ball and stick, space fill, ribbon, and surface model styles, in addition to display options for 3D visualization. As ProteinVista is optimized for recent 3D graphics hardware platforms and because it uses a geometry instancing technique, its rendering speed is 2.7 times faster compared to other visualization tools.

  9. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges.

    PubMed

    Montanez-Sauri, Sara I; Beebe, David J; Sung, Kyung Eun

    2015-01-01

    The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g., spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high-throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments.

  10. Microscale screening systems for 3D cellular microenvironments: platforms, advances, and challenges

    PubMed Central

    Montanez-Sauri, Sara I.; Beebe, David J.; Sung, Kyung Eun

    2015-01-01

    The increasing interest in studying cells using more in vivo-like three-dimensional (3D) microenvironments has created a need for advanced 3D screening platforms with enhanced functionalities and increased throughput. 3D screening platforms that better mimic in vivo microenvironments with enhanced throughput would provide more in-depth understanding of the complexity and heterogeneity of microenvironments. The platforms would also better predict the toxicity and efficacy of potential drugs in physiologically relevant conditions. Traditional 3D culture models (e.g. spinner flasks, gyratory rotation devices, non-adhesive surfaces, polymers) were developed to create 3D multicellular structures. However, these traditional systems require large volumes of reagents and cells, and are not compatible with high throughput screening (HTS) systems. Microscale technology offers the miniaturization of 3D cultures and allows efficient screening of various conditions. This review will discuss the development, most influential works, and current advantages and challenges of microscale culture systems for screening cells in 3D microenvironments. PMID:25274061

  11. A Patterned 3D Silicon Anode Fabricated by Electrodeposition on a Virus-Structured Current Collector

    SciTech Connect

    Chen, X L; Gerasopoulos, K; Guo, J C; Brown, A; Wang, Chunsheng; Ghodssi, Reza; Culver, J N

    2010-11-09

    Electrochemical methods were developed for the deposition of nanosilicon onto a 3D virus-structured nickel current collector. This nickel current collector is composed of self-assembled nanowire-like rods of genetically modified tobacco mosaic virus (TMV1cys), chemically coated in nickel to create a complex high surface area conductive substrate. The electrochemically depo­sited 3D silicon anodes demonstrate outstanding rate performance, cycling stability, and rate capability. Electrodeposition thus provides a unique means of fabricating silicon anode materials on complex substrates at low cost.

  12. Investigation of leakage current and breakdown voltage in irradiated double-sided 3D silicon sensors

    NASA Astrophysics Data System (ADS)

    Dalla Betta, G.-F.; Ayllon, N.; Boscardin, M.; Hoeferkamp, M.; Mattiazzo, S.; McDuff, H.; Mendicino, R.; Povoli, M.; Seidel, S.; Sultan, D. M. S.; Zorzi, N.

    2016-09-01

    We report on an experimental study aimed at gaining deeper insight into the leakage current and breakdown voltage of irradiated double-sided 3D silicon sensors from FBK, so as to improve both the design and the fabrication technology for use at future hadron colliders such as the High Luminosity LHC. Several 3D diode samples of different technologies and layout are considered, as well as several irradiations with different particle types. While the leakage current follows the expected linear trend with radiation fluence, the breakdown voltage is found to depend on both the bulk damage and the surface damage, and its values can vary significantly with sensor geometry and process details.

  13. 3-d Periodic Packaging: Sodalite, a Model System

    DTIC Science & Technology

    1992-05-15

    to 05-31-92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS 3-d Periodic Packaging: N00014-90-J-1159 Sodalite , A Model System 6. AUTHOR(S) G.D. Stucky, V.I...assembly of confined atomic and molecular arrays. Sodalite , one of the simplest zeolite analogue structures with a 60 atom cage can be synthesized with...structure of both the frameworks and the clusters within the cages of sodalite structural analogues can be precisely determined. In addition to new

  14. 3-D Periodic Packaging: Sodalite, a Model System

    DTIC Science & Technology

    1992-05-15

    hfww 05-15-92 Technical 06-1-91 o 05-31-92 ,mA AMU SUBSTIl SI. FUNDING NUMBUS 3-d Periodic Packaging: Sodalite , A Model System N00014-81-K-0598 AUTNO(S...considerable latitude in the assembly of confined atomic and molecular arrays. Sodalite , one of the simplest zeolite analogue structures with a 60 atom...framework electric field. The structure of both the fiameworks and the clusters within the cages of sodalite structural analogues can be precisely

  15. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing-Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing-Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  16. Low-cost 3D systems: suitable tools for plant phenotyping.

    PubMed

    Paulus, Stefan; Behmann, Jan; Mahlein, Anne-Katrin; Plümer, Lutz; Kuhlmann, Heiner

    2014-02-14

    Over the last few years, 3D imaging of plant geometry has become of significant importance for phenotyping and plant breeding. Several sensing techniques, like 3D reconstruction from multiple images and laser scanning, are the methods of choice in different research projects. The use of RGBcameras for 3D reconstruction requires a significant amount of post-processing, whereas in this context, laser scanning needs huge investment costs. The aim of the present study is a comparison between two current 3D imaging low-cost systems and a high precision close-up laser scanner as a reference method. As low-cost systems, the David laser scanning system and the Microsoft Kinect Device were used. The 3D measuring accuracy of both low-cost sensors was estimated based on the deviations of test specimens. Parameters extracted from the volumetric shape of sugar beet taproots, the leaves of sugar beets and the shape of wheat ears were evaluated. These parameters are compared regarding accuracy and correlation to reference measurements. The evaluation scenarios were chosen with respect to recorded plant parameters in current phenotyping projects. In the present study, low-cost 3D imaging devices have been shown to be highly reliable for the demands of plant phenotyping, with the potential to be implemented in automated application procedures, while saving acquisition costs. Our study confirms that a carefully selected low-cost sensor.

  17. Low-Cost 3D Systems: Suitable Tools for Plant Phenotyping

    PubMed Central

    Paulus, Stefan; Behmann, Jan; Mahlein, Anne-Katrin; Plümer, Lutz; Kuhlmann, Heiner

    2014-01-01

    Over the last few years, 3D imaging of plant geometry has become of significant importance for phenotyping and plant breeding. Several sensing techniques, like 3D reconstruction from multiple images and laser scanning, are the methods of choice in different research projects. The use of RGBcameras for 3D reconstruction requires a significant amount of post-processing, whereas in this context, laser scanning needs huge investment costs. The aim of the present study is a comparison between two current 3D imaging low-cost systems and a high precision close-up laser scanner as a reference method. As low-cost systems, the David laser scanning system and the Microsoft Kinect Device were used. The 3D measuring accuracy of both low-cost sensors was estimated based on the deviations of test specimens. Parameters extracted from the volumetric shape of sugar beet taproots, the leaves of sugar beets and the shape of wheat ears were evaluated. These parameters are compared regarding accuracy and correlation to reference measurements. The evaluation scenarios were chosen with respect to recorded plant parameters in current phenotyping projects. In the present study, low-cost 3D imaging devices have been shown to be highly reliable for the demands of plant phenotyping, with the potential to be implemented in automated application procedures, while saving acquisition costs. Our study confirms that a carefully selected low-cost sensor is able to replace an expensive laser scanner in many plant phenotyping scenarios. PMID:24534920

  18. 3-D Microwell Array System for Culturing Virus Infected Tumor Cells

    PubMed Central

    El Assal, Rami; Gurkan, Umut A.; Chen, Pu; Juillard, Franceline; Tocchio, Alessandro; Chinnasamy, Thiruppathiraja; Beauchemin, Chantal; Unluisler, Sebnem; Canikyan, Serli; Holman, Alyssa; Srivatsa, Srikar; Kaye, Kenneth M.; Demirci, Utkan

    2016-01-01

    Cancer cells have been increasingly grown in pharmaceutical research to understand tumorigenesis and develop new therapeutic drugs. Currently, cells are typically grown using two-dimensional (2-D) cell culture approaches, where the native tumor microenvironment is difficult to recapitulate. Thus, one of the main obstacles in oncology is the lack of proper infection models that recount main features present in tumors. In recent years, microtechnology-based platforms have been employed to generate three-dimensional (3-D) models that better mimic the native microenvironment in cell culture. Here, we present an innovative approach to culture Kaposi’s sarcoma-associated herpesvirus (KSHV) infected human B cells in 3-D using a microwell array system. The results demonstrate that the KSHV-infected B cells can be grown up to 15 days in a 3-D culture. Compared with 2-D, cells grown in 3-D had increased numbers of KSHV latency-associated nuclear antigen (LANA) dots, as detected by immunofluorescence microscopy, indicating a higher viral genome copy number. Cells in 3-D also demonstrated a higher rate of lytic reactivation. The 3-D microwell array system has the potential to improve 3-D cell oncology models and allow for better-controlled studies for drug discovery. PMID:28004818

  19. 3-D Microwell Array System for Culturing Virus Infected Tumor Cells.

    PubMed

    El Assal, Rami; Gurkan, Umut A; Chen, Pu; Juillard, Franceline; Tocchio, Alessandro; Chinnasamy, Thiruppathiraja; Beauchemin, Chantal; Unluisler, Sebnem; Canikyan, Serli; Holman, Alyssa; Srivatsa, Srikar; Kaye, Kenneth M; Demirci, Utkan

    2016-12-22

    Cancer cells have been increasingly grown in pharmaceutical research to understand tumorigenesis and develop new therapeutic drugs. Currently, cells are typically grown using two-dimensional (2-D) cell culture approaches, where the native tumor microenvironment is difficult to recapitulate. Thus, one of the main obstacles in oncology is the lack of proper infection models that recount main features present in tumors. In recent years, microtechnology-based platforms have been employed to generate three-dimensional (3-D) models that better mimic the native microenvironment in cell culture. Here, we present an innovative approach to culture Kaposi's sarcoma-associated herpesvirus (KSHV) infected human B cells in 3-D using a microwell array system. The results demonstrate that the KSHV-infected B cells can be grown up to 15 days in a 3-D culture. Compared with 2-D, cells grown in 3-D had increased numbers of KSHV latency-associated nuclear antigen (LANA) dots, as detected by immunofluorescence microscopy, indicating a higher viral genome copy number. Cells in 3-D also demonstrated a higher rate of lytic reactivation. The 3-D microwell array system has the potential to improve 3-D cell oncology models and allow for better-controlled studies for drug discovery.

  20. Handheld camera 3D modeling system using multiple reference panels

    NASA Astrophysics Data System (ADS)

    Fujimura, Kouta; Oue, Yasuhiro; Terauchi, Tomoya; Emi, Tetsuichi

    2002-03-01

    A novel 3D modeling system in which a target object is easily captured and modeled by using a hand-held camera with several reference panels is presented in this paper. The reference panels are designed to be able to obtain the camera position and discriminate between each other. A conventional 3D modeling system using a reference panel has several restrictions regarding the target object, specifically the size and its location. Our system uses multiple reference panels, which are set around the target object to remove these restrictions. The main features of this system are as follows: 1) The whole shape and photo-realistic textures of the target object can be digitized based on several still images or a movie captured by using a hand-held camera; as well as each location of the camera that can be calculated using the reference panels. 2) Our system can be provided as a software product only. That means there are no special requirements for hardware; even the reference panels , because they can be printed from image files or software. 3) This system can be applied to digitize a larger object. In the experiments, we developed and used an interactive region selection tool to detect the silhouette on each image instead of using the chroma -keying method. We have tested our system with a toy object. The calculation time is about 10 minutes (except for the capturing the images and extracting the silhouette by using our tool) on a personal computer with a Pentium-III processor (600MHz) and 320MB memory. However, it depends on how complex the images are and how many images you use. Our future plan is to evaluate the system with various kind of objects, specifically, large ones in outdoor environments.

  1. Performance Analysis of a Low-Cost Triangulation-Based 3d Camera: Microsoft Kinect System

    NASA Astrophysics Data System (ADS)

    . K. Chow, J. C.; Ang, K. D.; Lichti, D. D.; Teskey, W. F.

    2012-07-01

    Recent technological advancements have made active imaging sensors popular for 3D modelling and motion tracking. The 3D coordinates of signalised targets are traditionally estimated by matching conjugate points in overlapping images. Current 3D cameras can acquire point clouds at video frame rates from a single exposure station. In the area of 3D cameras, Microsoft and PrimeSense have collaborated and developed an active 3D camera based on the triangulation principle, known as the Kinect system. This off-the-shelf system costs less than 150 USD and has drawn a lot of attention from the robotics, computer vision, and photogrammetry disciplines. In this paper, the prospect of using the Kinect system for precise engineering applications was evaluated. The geometric quality of the Kinect system as a function of the scene (i.e. variation of depth, ambient light conditions, incidence angle, and object reflectivity) and the sensor (i.e. warm-up time and distance averaging) were analysed quantitatively. This system's potential in human body measurements was tested against a laser scanner and 3D range camera. A new calibration model for simultaneously determining the exterior orientation parameters, interior orientation parameters, boresight angles, leverarm, and object space features parameters was developed and the effectiveness of this calibration approach was explored.

  2. Inertial Pocket Navigation System: Unaided 3D Positioning

    PubMed Central

    Munoz Diaz, Estefania

    2015-01-01

    Inertial navigation systems use dead-reckoning to estimate the pedestrian's position. There are two types of pedestrian dead-reckoning, the strapdown algorithm and the step-and-heading approach. Unlike the strapdown algorithm, which consists of the double integration of the three orthogonal accelerometer readings, the step-and-heading approach lacks the vertical displacement estimation. We propose the first step-and-heading approach based on unaided inertial data solving 3D positioning. We present a step detector for steps up and down and a novel vertical displacement estimator. Our navigation system uses the sensor introduced in the front pocket of the trousers, a likely location of a smartphone. The proposed algorithms are based on the opening angle of the leg or pitch angle. We analyzed our step detector and compared it with the state-of-the-art, as well as our already proposed step length estimator. Lastly, we assessed our vertical displacement estimator in a real-world scenario. We found that our algorithms outperform the literature step and heading algorithms and solve 3D positioning using unaided inertial data. Additionally, we found that with the pitch angle, five activities are distinguishable: standing, sitting, walking, walking up stairs and walking down stairs. This information complements the pedestrian location and is of interest for applications, such as elderly care. PMID:25897501

  3. Developmental neurotoxic effects of Malathion on 3D neurosphere system

    PubMed Central

    Salama, Mohamed; Lotfy, Ahmed; Fathy, Khaled; Makar, Maria; El-emam, Mona; El-gamal, Aya; El-gamal, Mohamed; Badawy, Ahmad; Mohamed, Wael M.Y.; Sobh, Mohamed

    2015-01-01

    Developmental neurotoxicity (DNT) refers to the toxic effects induced by various chemicals on brain during the early childhood period. As human brains are vulnerable during this period, various chemicals would have significant effects on brains during early childhood. Some toxicants have been confirmed to induce developmental toxic effects on CNS; however, most of agents cannot be identified with certainty. This is because available animal models do not cover the whole spectrum of CNS developmental periods. A novel alternative method that can overcome most of the limitations of the conventional techniques is the use of 3D neurosphere system. This in-vitro system can recapitulate many of the changes during the period of brain development making it an ideal model for predicting developmental neurotoxic effects. In the present study we verified the possible DNT of Malathion, which is one of organophosphate pesticides with suggested possible neurotoxic effects on nursing children. Three doses of Malathion (0.25 μM, 1 μM and 10 μM) were used in cultured neurospheres for a period of 14 days. Malathion was found to affect proliferation, differentiation and viability of neurospheres, these effects were positively correlated to doses and time progress. This study confirms the DNT effects of Malathion on 3D neurosphere model. Further epidemiological studies will be needed to link these results to human exposure and effects data. PMID:27054080

  4. Magnetism in a graphene-4 f -3 d hybrid system

    NASA Astrophysics Data System (ADS)

    Huttmann, Felix; Klar, David; Atodiresei, Nicolae; Schmitz-Antoniak, Carolin; Smekhova, Alevtina; Martínez-Galera, Antonio J.; Caciuc, Vasile; Bihlmayer, Gustav; Blügel, Stefan; Michely, Thomas; Wende, Heiko

    2017-02-01

    We create an interface of graphene with a metallic and magnetic support that leaves its electronic structure largely intact. This is achieved by exposing epitaxial graphene on ferromagnetic thin films of Co and Ni to vapor of the rare earth metal Eu at elevated temperatures, resulting in the intercalation of an Eu monolayer in between graphene and its substrate. The system is atomically well defined, with the Eu monolayer forming a (√{3 }×√{3 }) R 30∘ superstructure with respect to the graphene lattice. Thereby, we avoid the strong hybridization with the (Ni,Co) substrate 3 d states that otherwise drastically modify the electronic structure of graphene. This picture is suggested by our x-ray absorption spectroscopy measurements which show that after Eu intercalation the empty 2 p states of C atoms resemble more the ones measured for graphite in contrast to graphene directly bound to 3 d ferromagnetic substrates. We use x-ray magnetic circular dichroism at the Co and Ni L2 ,3 and Eu M4 ,5 as an element-specific probe to investigate magnetism in these systems. An antiferromagnetic coupling between Eu and Co/Ni moments is found, which is so strong that a magnetic moment of the Eu layer can be detected at room temperature. Density functional theory calculations confirm the antiferromagnetic coupling and provide an atomic insight into the magnetic coupling mechanism.

  5. Reliability Considerations in 3D Stacked Strata Systems

    NASA Astrophysics Data System (ADS)

    Pozder, Scott; Jain, Ankur; Jones, Robert; Huang, Zhihong; Justison, Patrick; Chatterjee, Ritwik

    2009-06-01

    The bonding of multiple silicon strata to form stacked circuits with high bandwidth connections, increased circuit densities, decreased latency and the capability to stack disparate technologies is increasingly gaining interest in the microelectronics industry. Stacking has been demonstrated using bom dielectric-to-dielectric and metal-to-metal bonds for die and wafer stratum bonding. The considerable thermal, mechanical and electromigration reliability challenges resulting from such bonding has been the focus of some recently reported work. In mis paper, the bond reliability of various bonding types, including wafer-to-wafer dielectric bond, die-to-wafer Cu/Sn-to-Cu bond and a simultaneous organic adhesive with Cu/Sn-to-Cu bond is discussed. Thermomechanical and electromigration characterization of the die-to-wafer 3D structures is also discussed. Results indicate that the intrinsic reliability of these structures can be as robust as current 2D technologies.

  6. Medical image retrieval system using multiple features from 3D ROIs

    NASA Astrophysics Data System (ADS)

    Lu, Hongbing; Wang, Weiwei; Liao, Qimei; Zhang, Guopeng; Zhou, Zhiming

    2012-02-01

    Compared to a retrieval using global image features, features extracted from regions of interest (ROIs) that reflect distribution patterns of abnormalities would benefit more for content-based medical image retrieval (CBMIR) systems. Currently, most CBMIR systems have been designed for 2D ROIs, which cannot reflect 3D anatomical features and region distribution of lesions comprehensively. To further improve the accuracy of image retrieval, we proposed a retrieval method with 3D features including both geometric features such as Shape Index (SI) and Curvedness (CV) and texture features derived from 3D Gray Level Co-occurrence Matrix, which were extracted from 3D ROIs, based on our previous 2D medical images retrieval system. The system was evaluated with 20 volume CT datasets for colon polyp detection. Preliminary experiments indicated that the integration of morphological features with texture features could improve retrieval performance greatly. The retrieval result using features extracted from 3D ROIs accorded better with the diagnosis from optical colonoscopy than that based on features from 2D ROIs. With the test database of images, the average accuracy rate for 3D retrieval method was 76.6%, indicating its potential value in clinical application.

  7. The 3-D vision system integrated dexterous hand

    NASA Technical Reports Server (NTRS)

    Luo, Ren C.; Han, Youn-Sik

    1989-01-01

    Most multifingered hands use a tendon mechanism to minimize the size and weight of the hand. Such tendon mechanisms suffer from the problems of striction and friction of the tendons resulting in a reduction of control accuracy. A design for a 3-D vision system integrated dexterous hand with motor control is described which overcomes these problems. The proposed hand is composed of three three-jointed grasping fingers with tactile sensors on their tips, a two-jointed eye finger with a cross-shaped laser beam emitting diode in its distal part. The two non-grasping fingers allow 3-D vision capability and can rotate around the hand to see and measure the sides of grasped objects and the task environment. An algorithm that determines the range and local orientation of the contact surface using a cross-shaped laser beam is introduced along with some potential applications. An efficient method for finger force calculation is presented which uses the measured contact surface normals of an object.

  8. Hybrid additive manufacturing of 3D electronic systems

    NASA Astrophysics Data System (ADS)

    Li, J.; Wasley, T.; Nguyen, T. T.; Ta, V. D.; Shephard, J. D.; Stringer, J.; Smith, P.; Esenturk, E.; Connaughton, C.; Kay, R.

    2016-10-01

    A novel hybrid additive manufacturing (AM) technology combining digital light projection (DLP) stereolithography (SL) with 3D micro-dispensing alongside conventional surface mount packaging is presented in this work. This technology overcomes the inherent limitations of individual AM processes and integrates seamlessly with conventional packaging processes to enable the deposition of multiple materials. This facilitates the creation of bespoke end-use products with complex 3D geometry and multi-layer embedded electronic systems. Through a combination of four-point probe measurement and non-contact focus variation microscopy, it was identified that there was no obvious adverse effect of DLP SL embedding process on the electrical conductivity of printed conductors. The resistivity maintained to be less than 4  ×  10-4 Ω · cm before and after DLP SL embedding when cured at 100 °C for 1 h. The mechanical strength of SL specimens with thick polymerized layers was also identified through tensile testing. It was found that the polymerization thickness should be minimised (less than 2 mm) to maximise the bonding strength. As a demonstrator a polymer pyramid with embedded triple-layer 555 LED blinking circuitry was successfully fabricated to prove the technical viability.

  9. Modeling moving systems with RELAP5-3D

    SciTech Connect

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.

  10. Modeling moving systems with RELAP5-3D

    DOE PAGES

    Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...

    2015-12-04

    RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less

  11. 3D Additive Construction with Regolith for Surface Systems

    NASA Technical Reports Server (NTRS)

    Mueller, Robert P.

    2014-01-01

    Planetary surface exploration on Asteroids, the Moon, Mars and Martian Moons will require the stabilization of loose, fine, dusty regolith to avoid the effects of vertical lander rocket plume impingement, to keep abrasive and harmful dust from getting lofted and for dust free operations. In addition, the same regolith stabilization process can be used for 3 Dimensional ( 3D) printing, additive construction techniques by repeating the 2D stabilization in many vertical layers. This will allow in-situ construction with regolith so that materials will not have to be transported from Earth. Recent work in the NASA Kennedy Space Center (KSC) Surface Systems Office (NE-S) Swamp Works and at the University of Southern California (USC) under two NASA Innovative Advanced Concept (NIAC) awards have shown promising results with regolith (crushed basalt rock) materials for in-situ heat shields, bricks, landing/launch pads, berms, roads, and other structures that could be fabricated using regolith that is sintered or mixed with a polymer binder. The technical goals and objectives of this project are to prove the feasibility of 3D printing additive construction using planetary regolith simulants and to show that they have structural integrity and practical applications in space exploration.

  12. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  13. Sinusoidal phase modulating interferometry system for 3D profile measurement

    NASA Astrophysics Data System (ADS)

    En, Bo; Fa-jie, Duan; Chang-rong, Lv; Fu-kai, Zhang; Fan, Feng

    2014-07-01

    We describe a fiber-optic sinusoidal phase modulating (SPM) interferometer for three-dimensional (3D) profilometry, which is insensitive to external disturbances such as mechanical vibration and temperature fluctuation. Sinusoidal phase modulation is created by modulating the drive voltage of the piezoelectric transducer (PZT) with a sinusoidal wave. The external disturbances that cause phase drift in the interference signal and decrease measuring accuracy are effectively eliminated by building a closed-loop feedback system. The phase stability can be measured with a precision of 2.75 mrad, and the external disturbances can be reduced to 53.43 mrad for the phase of fringe patterns. By measuring the dynamic deformation of the rubber membrane, the RMSE is about 0.018 mm, and a single measurement takes less than 250 ms. The feasibility for real-time application has been verified.

  14. MIMO based 3D imaging system at 360 GHz

    NASA Astrophysics Data System (ADS)

    Herschel, R.; Nowok, S.; Zimmermann, R.; Lang, S. A.; Pohl, N.

    2016-05-01

    A MIMO radar imaging system at 360 GHz is presented as a part of the comprehensive approach of the European FP7 project TeraSCREEN, using multiple frequency bands for active and passive imaging. The MIMO system consists of 16 transmitter and 16 receiver antennas within one single array. Using a bandwidth of 30 GHz, a range resolution up to 5 mm is obtained. With the 16×16 MIMO system 256 different azimuth bins can be distinguished. Mechanical beam steering is used to measure 130 different elevation angles where the angular resolution is obtained by a focusing elliptical mirror. With this system a high resolution 3D image can be generated with 4 frames per second, each containing 16 million points. The principle of the system is presented starting from the functional structure, covering the hardware design and including the digital image generation. This is supported by simulated data and discussed using experimental results from a preliminary 90 GHz system underlining the feasibility of the approach.

  15. Autostereoscopic 3D visualization and image processing system for neurosurgery.

    PubMed

    Meyer, Tobias; Kuß, Julia; Uhlemann, Falk; Wagner, Stefan; Kirsch, Matthias; Sobottka, Stephan B; Steinmeier, Ralf; Schackert, Gabriele; Morgenstern, Ute

    2013-06-01

    A demonstrator system for planning neurosurgical procedures was developed based on commercial hardware and software. The system combines an easy-to-use environment for surgical planning with high-end visualization and the opportunity to analyze data sets for research purposes. The demonstrator system is based on the software AMIRA. Specific algorithms for segmentation, elastic registration, and visualization have been implemented and adapted to the clinical workflow. Modules from AMIRA and the image processing library Insight Segmentation and Registration Toolkit (ITK) can be combined to solve various image processing tasks. Customized modules tailored to specific clinical problems can easily be implemented using the AMIRA application programming interface and a self-developed framework for ITK filters. Visualization is done via autostereoscopic displays, which provide a 3D impression without viewing aids. A Spaceball device allows a comfortable, intuitive way of navigation in the data sets. Via an interface to a neurosurgical navigation system, the demonstrator system can be used intraoperatively. The precision, applicability, and benefit of the demonstrator system for planning of neurosurgical interventions and for neurosurgical research were successfully evaluated by neurosurgeons using phantom and patient data sets.

  16. A single element 3D ultrasound tomography system.

    PubMed

    Xiang Zhang; Fincke, Jonathan; Kuzmin, Andrey; Lempitsky, Victor; Anthony, Brian

    2015-08-01

    Over the past decade, substantial effort has been directed toward developing ultrasonic systems for medical imaging. With advances in computational power, previously theorized scanning methods such as ultrasound tomography can now be realized. In this paper, we present the design, error analysis, and initial backprojection images from a single element 3D ultrasound tomography system. The system enables volumetric pulse-echo or transmission imaging of distal limbs. The motivating clinical applications include: improving prosthetic fittings, monitoring bone density, and characterizing muscle health. The system is designed as a flexible mechanical platform for iterative development of algorithms targeting imaging of soft tissue and bone. The mechanical system independently controls movement of two single element ultrasound transducers in a cylindrical water tank. Each transducer can independently circle about the center of the tank as well as move vertically in depth. High resolution positioning feedback (~1μm) and control enables flexible positioning of the transmitter and the receiver around the cylindrical tank; exchangeable transducers enable algorithm testing with varying transducer frequencies and beam geometries. High speed data acquisition (DAQ) through a dedicated National Instrument PXI setup streams digitized data directly to the host PC. System positioning error has been quantified and is within limits for the imaging requirements of the motivating applications.

  17. Developing a 3D Road Cadastral System: Comparing Legal Requirements and User Needs

    NASA Astrophysics Data System (ADS)

    Gristina, S.; Ellul, C.; Scianna, A.

    2016-10-01

    Road transport has always played an important role in a country's growth and, in order to manage road networks and ensure a high standard of road performance (e.g. durability, efficiency and safety), both public and private road inventories have been implemented using databases and Geographical Information Systems. They enable registering and managing significant amounts of different road information, but to date do not focus on 3D road information, data integration and interoperability. In an increasingly complex 3D urban environment, and in the age of smart cities, however, applications including intelligent transport systems, mobility and traffic management, road maintenance and safety require digital data infrastructures to manage road data: thus new inventories based on integrated 3D road models (queryable, updateable and shareable on line) are required. This paper outlines the first step towards the implementation of 3D GIS-based road inventories. Focusing on the case study of the "Road Cadastre" (the Italian road inventory as established by law), it investigates current limitations and required improvements, and also compares the required data structure imposed by cadastral legislation with real road users' needs. The study aims to: a) determine whether 3D GIS would improve road cadastre (for better management of data through the complete life-cycle infrastructure projects); b) define a conceptual model for a 3D road cadastre for Italy (whose general principles may be extended also to other countries).

  18. Open-GL-based stereo system for 3D measurements

    NASA Astrophysics Data System (ADS)

    Boochs, Frank; Gehrhoff, Anja; Neifer, Markus

    2000-05-01

    A stereo system designed and used for the measurement of 3D- coordinates within metric stereo image pairs will be presented. First, the motivation for the development is shown, allowing to evaluate stereo images. As the use and availability of metric images of digital type rapidly increases corresponding equipment for the measuring process is needed. Systems which have been developed up to now are either very special ones, founded on high end graphics workstations with an according pricing or simple ones with restricted measuring functionality. A new conception will be shown, avoiding special high end graphics hardware but providing the measuring functionality required. The presented stereo system is based on PC-hardware equipped with a graphic board and uses an object oriented programming technique. The specific needs of a measuring system are shown and the corresponding requirements which have to be met by the system. The key role of OpenGL is described, which supplies some elementary graphic functions, being directly supported by graphic boards and thus provides the performance needed. Further important aspects as modularity and hardware independence and their value for the solution are shown. Finally some sample functions concerned with image display and handling are presented in more detail.

  19. A 3D visualization system for molecular structures

    NASA Technical Reports Server (NTRS)

    Green, Terry J.

    1989-01-01

    The properties of molecules derive in part from their structures. Because of the importance of understanding molecular structures various methodologies, ranging from first principles to empirical technique, were developed for computing the structure of molecules. For large molecules such as polymer model compounds, the structural information is difficult to comprehend by examining tabulated data. Therefore, a molecular graphics display system, called MOLDS, was developed to help interpret the data. MOLDS is a menu-driven program developed to run on the LADC SNS computer systems. This program can read a data file generated by the modeling programs or data can be entered using the keyboard. MOLDS has the following capabilities: draws the 3-D representation of a molecule using stick, ball and ball, or space filled model from Cartesian coordinates, draws different perspective views of the molecule; rotates the molecule on the X, Y, Z axis or about some arbitrary line in space, zooms in on a small area of the molecule in order to obtain a better view of a specific region; and makes hard copy representation of molecules on a graphic printer. In addition, MOLDS can be easily updated and readily adapted to run on most computer systems.

  20. Repositioning accuracy of two different mask systems-3D revisited: Comparison using true 3D/3D matching with cone-beam CT

    SciTech Connect

    Boda-Heggemann, Judit . E-mail: judit.boda-heggemann@radonk.ma.uni-heidelberg.de; Walter, Cornelia; Rahn, Angelika; Wertz, Hansjoerg; Loeb, Iris; Lohr, Frank; Wenz, Frederik

    2006-12-01

    Purpose: The repositioning accuracy of mask-based fixation systems has been assessed with two-dimensional/two-dimensional or two-dimensional/three-dimensional (3D) matching. We analyzed the accuracy of commercially available head mask systems, using true 3D/3D matching, with X-ray volume imaging and cone-beam CT. Methods and Materials: Twenty-one patients receiving radiotherapy (intracranial/head-and-neck tumors) were evaluated (14 patients with rigid and 7 with thermoplastic masks). X-ray volume imaging was analyzed online and offline separately for the skull and neck regions. Translation/rotation errors of the target isocenter were analyzed. Four patients were treated to neck sites. For these patients, repositioning was aided by additional body tattoos. A separate analysis of the setup error on the basis of the registration of the cervical vertebra was performed. The residual error after correction and intrafractional motility were calculated. Results: The mean length of the displacement vector for rigid masks was 0.312 {+-} 0.152 cm (intracranial) and 0.586 {+-} 0.294 cm (neck). For the thermoplastic masks, the value was 0.472 {+-} 0.174 cm (intracranial) and 0.726 {+-} 0.445 cm (neck). Rigid masks with body tattoos had a displacement vector length in the neck region of 0.35 {+-} 0.197 cm. The intracranial residual error and intrafractional motility after X-ray volume imaging correction for rigid masks was 0.188 {+-} 0.074 cm, and was 0.134 {+-} 0.14 cm for thermoplastic masks. Conclusions: The results of our study have demonstrated that rigid masks have a high intracranial repositioning accuracy per se. Given the small residual error and intrafractional movement, thermoplastic masks may also be used for high-precision treatments when combined with cone-beam CT. The neck region repositioning accuracy was worse than the intracranial accuracy in both cases. However, body tattoos and image guidance improved the accuracy. Finally, the combination of both mask

  1. Ultra-Wideband Time-Difference-of-Arrival High Resolution 3D Proximity Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Phan, Chau; Dekome, Kent; Dusl, John

    2010-01-01

    This paper describes a research and development effort for a prototype ultra-wideband (UWB) tracking system that is currently under development at NASA Johnson Space Center (JSC). The system is being studied for use in tracking of lunar./Mars rovers and astronauts during early exploration missions when satellite navigation systems are not available. U IATB impulse radio (UWB-IR) technology is exploited in the design and implementation of the prototype location and tracking system. A three-dimensional (3D) proximity tracking prototype design using commercially available UWB products is proposed to implement the Time-Difference- Of-Arrival (TDOA) tracking methodology in this research effort. The TDOA tracking algorithm is utilized for location estimation in the prototype system, not only to exploit the precise time resolution possible with UWB signals, but also to eliminate the need for synchronization between the transmitter and the receiver. Simulations show that the TDOA algorithm can achieve the fine tracking resolution with low noise TDOA estimates for close-in tracking. Field tests demonstrated that this prototype UWB TDOA High Resolution 3D Proximity Tracking System is feasible for providing positioning-awareness information in a 3D space to a robotic control system. This 3D tracking system is developed for a robotic control system in a facility called "Moonyard" at Honeywell Defense & System in Arizona under a Space Act Agreement.

  2. On-Line Operating 3-D Seafloor Positioning System (1)

    NASA Astrophysics Data System (ADS)

    Eguchi, T.

    2003-12-01

    We propose a new observation system of on-line 3-D positioning which will be deployed on the sea-bottom of convergent type plate boundaries where large inter-plate seismic events occurred historically. The system has observation sites at assigned intervals along optical fiber cables. Using the several cables, crossing each other, we can construct a real-time operating network of triangular base lines. Each observing site on the cable will be equipped with two-kind high gain instruments i.e., the laser ranging and pressure gauge sensors, as well as additional apparatuses to remove the influence of temperature and salinity etc. on the data. Attenuation rate of visible rays in seawater is relatively smaller at bands of blue-color (wave length; ˜ 450nm) to yellowish green-color ( ˜ 550nm). The attenuation rate of optical signals of blue to yellow-green color in highly transparent seawater is 0.1 ˜ 0.5 dB/m. If we can utilize the high power optical laser output of the blue to yellow-green band for the positioning, the signals can reach the target receiver station with highly sensitive detector located at the distance of 10**2 m or larger. Using additional data of thermal and salinity fields etc. for compensating refractive index of laser signal ray path in clean seawater, we may attain the resolution of laser ranging at an order of 1 mm for each triangular base line with the total length of 1 ˜ 2 km. The base line consists of several secondary positioning stations with the spacing of ˜ 10**2 m. To improve the data resolution, we apply signal processing such as low-pass filtering etc. As is important, we cannot decompose the change of the base line distance data into 3-D individual components. We need another kind data, such as pure vertical coordinate of the positioning sites to resolve the 3-D components. To measure the vertical coordinate of the seafloor stations, we utilize data from the high gain pressure sensor. In the case of crystallized quartz

  3. Evaluation of the 3d Urban Modelling Capabilities in Geographical Information Systems

    NASA Astrophysics Data System (ADS)

    Dogru, A. O.; Seker, D. Z.

    2010-12-01

    Geographical Information System (GIS) Technology, which provides successful solutions to basic spatial problems, is currently widely used in 3 dimensional (3D) modeling of physical reality with its developing visualization tools. The modeling of large and complicated phenomenon is a challenging problem in terms of computer graphics currently in use. However, it is possible to visualize that phenomenon in 3D by using computer systems. 3D models are used in developing computer games, military training, urban planning, tourism and etc. The use of 3D models for planning and management of urban areas is very popular issue of city administrations. In this context, 3D City models are produced and used for various purposes. However the requirements of the models vary depending on the type and scope of the application. While a high level visualization, where photorealistic visualization techniques are widely used, is required for touristy and recreational purposes, an abstract visualization of the physical reality is generally sufficient for the communication of the thematic information. The visual variables, which are the principle components of cartographic visualization, such as: color, shape, pattern, orientation, size, position, and saturation are used for communicating the thematic information. These kinds of 3D city models are called as abstract models. Standardization of technologies used for 3D modeling is now available by the use of CityGML. CityGML implements several novel concepts to support interoperability, consistency and functionality. For example it supports different Levels-of-Detail (LoD), which may arise from independent data collection processes and are used for efficient visualization and efficient data analysis. In one CityGML data set, the same object may be represented in different LoD simultaneously, enabling the analysis and visualization of the same object with regard to different degrees of resolution. Furthermore, two CityGML data sets

  4. Calculating Pressure-Driven Current Near Magnetic Islands for 3D MHD Equilibria

    NASA Astrophysics Data System (ADS)

    Radhakrishnan, Dhanush; Reiman, Allan

    2016-10-01

    In general, 3D MHD equilibria in toroidal plasmas do not result in nested pressure surfaces. Instead, islands and chaotic regions appear in the equilibrium. Near small magnetic islands, the pressure varies within the flux surfaces, which has a significant effect on the pressure-driven current, introducing singularities. Previously, the MHD equilibrium current near a magnetic island was calculated, including the effect of ``stellarator symmetry,'' wherein the singular components of the pressure-driven current vanish [A. H. Reiman, Phys. Plasmas 23, 072502 (2016)]. Here we first solve for pressure in a cylindrical plasma from the heat diffusion equation, after adding a helical perturbation. We then numerically calculate the corresponding Pfirsch-Schluter current. At the small island limit, we compare the pressure-driven current with the previously calculated solution, and far from the island, we recover the solution for nested flux surfaces. Lastly, we compute the current for a toroidal plasma for symmetric and non-symmetric geometries.

  5. Development of a 3D ultrasound-guided prostate biopsy system

    NASA Astrophysics Data System (ADS)

    Cool, Derek; Sherebrin, Shi; Izawa, Jonathan; Fenster, Aaron

    2007-03-01

    Biopsy of the prostate using ultrasound guidance is the clinical gold standard for diagnosis of prostate adenocarinoma. However, because early stage tumors are rarely visible under US, the procedure carries high false-negative rates and often patients require multiple biopsies before cancer is detected. To improve cancer detection, it is imperative that throughout the biopsy procedure, physicians know where they are within the prostate and where they have sampled during prior biopsies. The current biopsy procedure is limited to using only 2D ultrasound images to find and record target biopsy core sample sites. This information leaves ambiguity as the physician tries to interpret the 2D information and apply it to their 3D workspace. We have developed a 3D ultrasound-guided prostate biopsy system that provides 3D intra-biopsy information to physicians for needle guidance and biopsy location recording. The system is designed to conform to the workflow of the current prostate biopsy procedure, making it easier for clinical integration. In this paper, we describe the system design and validate its accuracy by performing an in vitro biopsy procedure on US/CT multi-modal patient-specific prostate phantoms. A clinical sextant biopsy was performed by a urologist on the phantoms and the 3D models of the prostates were generated with volume errors less than 4% and mean boundary errors of less than 1 mm. Using the 3D biopsy system, needles were guided to within 1.36 +/- 0.83 mm of 3D targets and the position of the biopsy sites were accurately localized to 1.06 +/- 0.89 mm for the two prostates.

  6. Low-cost structured-light based 3D capture system design

    NASA Astrophysics Data System (ADS)

    Dong, Jing; Bengtson, Kurt R.; Robinson, Barrett F.; Allebach, Jan P.

    2014-03-01

    Most of the 3D capture products currently in the market are high-end and pricey. They are not targeted for consumers, but rather for research, medical, or industrial usage. Very few aim to provide a solution for home and small business applications. Our goal is to fill in this gap by only using low-cost components to build a 3D capture system that can satisfy the needs of this market segment. In this paper, we present a low-cost 3D capture system based on the structured-light method. The system is built around the HP TopShot LaserJet Pro M275. For our capture device, we use the 8.0 Mpixel camera that is part of the M275. We augment this hardware with two 3M MPro 150 VGA (640 × 480) pocket projectors. We also describe an analytical approach to predicting the achievable resolution of the reconstructed 3D object based on differentials and small signal theory, and an experimental procedure for validating that the system under test meets the specifications for reconstructed object resolution that are predicted by our analytical model. By comparing our experimental measurements from the camera-projector system with the simulation results based on the model for this system, we conclude that our prototype system has been correctly configured and calibrated. We also conclude that with the analytical models, we have an effective means for specifying system parameters to achieve a given target resolution for the reconstructed object.

  7. Tactile 3D microprobe system with exchangeable styli

    NASA Astrophysics Data System (ADS)

    Balzer, Felix G.; Hausotte, Tino; Dorozhovets, Nataliya; Manske, Eberhard; Jäger, Gerd

    2011-09-01

    Over the past decade a trend of component miniaturization can be observed both in industry and in the laboratory, which involves an increasing demand for nanopositioning and nanomeasuring machines as well as for miniature tactile probes for measuring complex three-dimensional objects. The challenge is that these components—for example, diesel injectors, microgears and small optics—feature dimensions in the micrometre range with associated dimensional tolerances below 100 nm. For this reason, a significant number of research projects have dealt with microprobes for performing the dimensional measurements of microstructures with the goal of achieving measurement uncertainties in the nanometre range. This paper introduces an updated version of a 3D microprobe with an optical detection system developed at the Institute of Process Measurement and Sensor Technology. It consists of a measuring head and a separate probe system. The mechanical design of the probe system has been completely overhauled to enable the exchange of the stylus separately from the flexure elements. This is very important for the determination of the probing sphere's roundness deviations. The silicon membranes used in the first system design are therefore replaced by metal membranes. A new design of these membranes, optimized for isotropic probing forces and locking parasitic movements, is presented. Regarding the measuring head, the optical design has been redesigned to eliminate disruptive interference on the quadrant photodiode used for deflection measurement and to improve adjustment. Its dimensioning is discussed, especially the influence of the laser beam diameter on the interference contrast due to the parallel misalignment of the collimated laser beam. Initial measurement results are presented to prove functionality.

  8. Electric Current Filamentation Induced by 3D Plasma Flows in the Solar Corona

    NASA Astrophysics Data System (ADS)

    Nickeler, Dieter H.; Wiegelmann, Thomas; Karlický, Marian; Kraus, Michaela

    2017-03-01

    Many magnetic structures in the solar atmosphere evolve rather slowly, so they can be assumed as (quasi-)static or (quasi-)stationary and represented via magnetohydrostatic (MHS) or stationary magnetohydrodynamic (MHD) equilibria, respectively. While exact 3D solutions would be desired, they are extremely difficult to find in stationary MHD. We construct solutions with magnetic and flow vector fields that have three components depending on all three coordinates. We show that the noncanonical transformation method produces quasi-3D solutions of stationary MHD by mapping 2D or 2.5D MHS equilibria to corresponding stationary MHD states, that is, states that display the same field-line structure as the original MHS equilibria. These stationary MHD states exist on magnetic flux surfaces of the original 2D MHS states. Although the flux surfaces and therefore also the equilibria have a 2D character, these stationary MHD states depend on all three coordinates and display highly complex currents. The existence of geometrically complex 3D currents within symmetric field-line structures provides the basis for efficient dissipation of the magnetic energy in the solar corona by ohmic heating. We also discuss the possibility of maintaining an important subset of nonlinear MHS states, namely force-free fields, by stationary flows. We find that force-free fields with nonlinear flows only arise under severe restrictions of the field-line geometry and of the magnetic flux density distribution.

  9. 3D spectral imaging system for anterior chamber metrology

    NASA Astrophysics Data System (ADS)

    Anderson, Trevor; Segref, Armin; Frisken, Grant; Frisken, Steven

    2015-03-01

    Accurate metrology of the anterior chamber of the eye is useful for a number of diagnostic and clinical applications. In particular, accurate corneal topography and corneal thickness data is desirable for fitting contact lenses, screening for diseases and monitoring corneal changes. Anterior OCT systems can be used to measure anterior chamber surfaces, however accurate curvature measurements for single point scanning systems are known to be very sensitive to patient movement. To overcome this problem we have developed a parallel 3D spectral metrology system that captures simultaneous A-scans on a 2D lateral grid. This approach enables estimates of the elevation and curvature of anterior and posterior corneal surfaces that are robust to sample movement. Furthermore, multiple simultaneous surface measurements greatly improve the ability to register consecutive frames and enable aggregate measurements over a finer lateral grid. A key element of our approach has been to exploit standard low cost optical components including lenslet arrays and a 2D sensor to provide a path towards low cost implementation. We demonstrate first prototypes based on 6 Mpixel sensor using a 250 μm pitch lenslet array with 300 sample beams to achieve an RMS elevation accuracy of 1μm with 95 dB sensitivity and a 7.0 mm range. Initial tests on Porcine eyes, model eyes and calibration spheres demonstrate the validity of the concept. With the next iteration of designs we expect to be able to achieve over 1000 simultaneous A-scans in excess of 75 frames per second.

  10. HIPERCIR: a low-cost high-performance 3D radiology image analysis system

    NASA Astrophysics Data System (ADS)

    Blanquer, Ignacio; Hernandez, Vincente; Ramirez, Javier; Vidal, Antonio M.; Alcaniz-Raya, Mariano L.; Grau Colomer, Vincente; Monserrat, Carlos A.; Concepcion, Luis; Marti-Bonmati, Luis

    1999-07-01

    Clinics have to deal currently with hundreds of 3D images a day. The processing and visualization using currently affordable systems is very costly and slow. The present work shows the features of a software integrated parallel computing package developed at the Universidad Politecnica de Valencia (UPV), under the European Project HIPERCIR, which is aimed at reducing the time and requirements for processing and visualizing the 3D images with low-cost solutions, such as networks of PCs running standard operating systems. HIPERCIR is targeted to Radiology Departments of Hospitals and Radiology System Providers to provide them with a tool for easing the day-to-day diagnosis. This project is being developed by a consortium formed by medical image processing and parallel computing experts from the Computing Systems Department of the UPV, experts on biomedical software and radiology and tomography clinic experts.

  11. 3D characterization of the Astor Pass geothermal system, Nevada

    SciTech Connect

    Mayhew, Brett; Faulds, James E

    2013-10-19

    The Astor Pass geothermal system resides in the northwestern part of the Pyramid Lake Paiute Reservation, on the margins of the Basin and Range and Walker Lane tectonic provinces in northwestern Nevada. Seismic reflection interpretation, detailed analysis of well cuttings, stress field analysis, and construction of a 3D geologic model have been used in the characterization of the stratigraphic and structural framework of the geothermal area. The area is primarily comprised of middle Miocene Pyramid sequence volcanic and sedimentary rocks, nonconformably overlying Mesozoic metamorphic and granitic rocks. Wells drilled at Astor Pass show a ~1 km thick section of highly transmissive Miocene volcanic reservoir with temperatures of ~95°C. Seismic reflection interpretation confirms a high fault density in the geothermal area, with many possible fluid pathways penetrating into the relatively impermeable Mesozoic basement. Stress field analysis using borehole breakout data reveals a complex transtensional faulting regime with a regionally consistent west-northwest-trending least principal stress direction. Considering possible strike-slip and normal stress regimes, the stress data were utilized in a slip and dilation tendency analysis of the fault model, which suggests two promising fault areas controlling upwelling geothermal fluids. Both of these fault intersection areas show positive attributes for controlling geothermal fluids, but hydrologic tests show the ~1 km thick volcanic section is highly transmissive. Thus, focused upwellings along discrete fault conduits may be confined to the Mesozoic basement before fluids diffuse into the Miocene volcanic reservoir above. This large diffuse reservoir in the faulted Miocene volcanic rocks is capable of sustaining high pump rates. Understanding this type of system may be helpful in examining large, permeable reservoirs in deep sedimentary basins of the eastern Basin and Range and the highly fractured volcanic geothermal

  12. Fast 3D multiple fan-beam CT systems

    NASA Astrophysics Data System (ADS)

    Kohlbrenner, Adrian; Haemmerle, Stefan; Laib, Andres; Koller, Bruno; Ruegsegger, Peter

    1999-09-01

    Two fast, CCD-based three-dimensional CT scanners for in vivo applications have been developed. One is designed for small laboratory animals and has a voxel size of 20 micrometer, while the other, having a voxel size of 80 micrometer, is used for human examinations. Both instruments make use of a novel multiple fan-beam technique: radiation from a line-focus X-ray tube is divided into a stack of fan-beams by a 28 micrometer pitch foil collimator. The resulting wedge-shaped X-ray field is the key to the instrument's high scanning speed and allows to position the sample close to the X-ray source, which makes it possible to build compact CT systems. In contrast to cone- beam scanners, the multiple fan-beam scanner relies on standard fan-beam algorithms, thereby eliminating inaccuracies in the reconstruction process. The projections from one single rotation are acquired within 2 min and are subsequently reconstructed into a 1024 X 1024 X 255 voxel array. Hence a single rotation about the sample delivers a 3D image containing a quarter of a billion voxels. Such volumetric images are 6.6 mm in height and can be stacked on top of each other. An area CCD sensor bonded to a fiber-optic light guide acts as a detector. Since no image intensifier, conventional optics or tapers are used throughout the system, the image is virtually distortion free. The scanner's high scanning speed and high resolution at moderately low radiation dose are the basis for reliable time serial measurements and analyses.

  13. Non-linear tearing of 3D null point current sheets

    SciTech Connect

    Wyper, P. F. Pontin, D. I.

    2014-08-15

    The manner in which the rate of magnetic reconnection scales with the Lundquist number in realistic three-dimensional (3D) geometries is still an unsolved problem. It has been demonstrated that in 2D rapid non-linear tearing allows the reconnection rate to become almost independent of the Lundquist number (the “plasmoid instability”). Here, we present the first study of an analogous instability in a fully 3D geometry, defined by a magnetic null point. The 3D null current layer is found to be susceptible to an analogous instability but is marginally more stable than an equivalent 2D Sweet-Parker-like layer. Tearing of the sheet creates a thin boundary layer around the separatrix surface, contained within a flux envelope with a hyperbolic structure that mimics a spine-fan topology. Efficient mixing of flux between the two topological domains occurs as the flux rope structures created during the tearing process evolve within this envelope. This leads to a substantial increase in the rate of reconnection between the two domains.

  14. 3D cell culture: a review of current approaches and techniques.

    PubMed

    Haycock, John W

    2011-01-01

    Cell culture in two dimensions has been routinely and diligently undertaken in thousands of laboratories worldwide for the past four decades. However, the culture of cells in two dimensions is arguably primitive and does not reproduce the anatomy or physiology of a tissue for informative or useful study. Creating a third dimension for cell culture is clearly more relevant, but requires a multidisciplinary approach and multidisciplinary expertise. When entering the third dimension, investigators need to consider the design of scaffolds for supporting the organisation of cells or the use of bioreactors for controlling nutrient and waste product exchange. As 3D culture systems become more mature and relevant to human and animal physiology, the ability to design and develop co-cultures becomes possible as does the ability to integrate stem cells. The primary objectives for developing 3D cell culture systems vary widely - and range from engineering tissues for clinical delivery through to the development of models for drug screening. The intention of this review is to provide a general overview of the common approaches and techniques for designing 3D culture models.

  15. Lightning strike simulation using coaxial line technique and 3D linear injection current analysis

    NASA Astrophysics Data System (ADS)

    Flourens, F.; Gauthier, D.; Serafin, D.

    1989-09-01

    The GORFFD code for determining aircraft responses to either a lightning event or to simulated current injection is based on the finite-difference solution of Maxwell's equation, and allows the simulation of complex, 3D metallic and dielectric composite structures. A transfer method is used to analyze the EM environment associated with in-flight measurements. Attention is given to a linear-analysis numerical model in which the lightning channel is simulated as a thin wire that is driven by a current source. Surface E-fields and current mappings are produced for the Transall transport and Mirage fighter aircraft. An experimental method has been devised for verification of these lightning-strike simulations.

  16. Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment

    SciTech Connect

    Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T.; Hanson, J. D.

    2014-09-15

    The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50 kW input power with a resonance that is off-axis, 50 kW on-axis heating and 100 kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50 kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50 kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100 kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the

  17. 3D nanopore shape control by current-stimulus dielectric breakdown

    NASA Astrophysics Data System (ADS)

    Ying, Cuifeng; Zhang, Yuechuan; Feng, Yanxiao; Zhou, Daming; Wang, Deqiang; Xiang, Yinxiao; Zhou, Wenyuan; Chen, Yongsheng; Du, Chunlei; Tian, Jianguo

    2016-08-01

    We propose a simple and cost-effect method, current-stimulus dielectric breakdown, to manipulate the 3D shapes of the nanochannels in 20-nm-thick SiNx membranes. Besides the precise control of nanopore size, the cone orientation can be determined by the pulse polarity. The cone angle of nanopores can be systematically tuned by simply changing the stimulus pulse waveform, allowing the gradual shape control from conical to obconical. After they are formed, the cone angle of these nanopores can be further tuned in a certain range by adjusting the widening pulse. Such size and 3D shape controllable abiotic nanopores can construct a constriction in the nanochannel and hence produce a sub-nm "sensing zone" to suit any desired bio-sensing or precise DNA sequencing. Using these conical nanopores, 20-nt ssDNA composed of homopolymers (poly(dA)20, poly(dC)20, and poly(dT)20) can be clearly differentiated by their ionic current signals.

  18. 3D reconstruction of tropospheric cirrus clouds by stereovision system

    NASA Astrophysics Data System (ADS)

    Nadjib Kouahla, Mohamed; Moreels, Guy; Seridi, Hamid

    2016-07-01

    A stereo imaging method is applied to measure the altitude of cirrus clouds and provide a 3D map of the altitude of the layer centroid. They are located in the high troposphere and, sometimes in the lower stratosphere, between 6 and 10 km high. Two simultaneous images of the same scene are taken with Canon cameras (400D) in two sites distant of 37 Km. Each image processed in order to invert the perspective effect and provide a satellite-type view of the layer. Pairs of matched points that correspond to a physical emissive point in the common area are identified in calculating a correlation coefficient (ZNCC: Zero mean Normalized Cross-correlation or ZSSD: as Zero mean Sum of Squared Differences). This method is suitable for obtaining 3D representations in the case of low-contrast objects. An observational campaign was conducted in June 2014 in France. The images were taken simultaneously at Marnay (47°17'31.5" N, 5°44'58.8" E; altitude 275 m) 25 km northwest of Besancon and in Mont poupet (46°58'31.5" N, 5°52'22.7" E; altitude 600 m) southwest of Besancon at 43 km. 3D maps of the Natural cirrus clouds and artificial like "aircraft trails" are retrieved. They are compared with pseudo-relief intensity maps of the same region. The mean altitude of the cirrus barycenter is located at 8.5 ± 1km on June 11.

  19. Bioengineered 3D Glial Cell Culture Systems and Applications for Neurodegeneration and Neuroinflammation.

    PubMed

    Watson, P Marc D; Kavanagh, Edel; Allenby, Gary; Vassey, Matthew

    2017-02-01

    Neurodegeneration and neuroinflammation are key features in a range of chronic central nervous system (CNS) diseases such as Alzheimer's and Parkinson's disease, as well as acute conditions like stroke and traumatic brain injury, for which there remains significant unmet clinical need. It is now well recognized that current cell culture methodologies are limited in their ability to recapitulate the cellular environment that is present in vivo, and there is a growing body of evidence to show that three-dimensional (3D) culture systems represent a more physiologically accurate model than traditional two-dimensional (2D) cultures. Given the complexity of the environment from which cells originate, and their various cell-cell and cell-matrix interactions, it is important to develop models that can be controlled and reproducible for drug discovery. 3D cell models have now been developed for almost all CNS cell types, including neurons, astrocytes, microglia, and oligodendrocyte cells. This review will highlight a number of current and emerging techniques for the culture of astrocytes and microglia, glial cell types with a critical role in neurodegenerative and neuroinflammatory conditions. We describe recent advances in glial cell culture using electrospun polymers and hydrogel macromolecules, and highlight how these novel culture environments influence astrocyte and microglial phenotypes in vitro, as compared to traditional 2D systems. These models will be explored to illuminate current trends in the techniques used to create 3D environments for application in research and drug discovery focused on astrocytes and microglial cells.

  20. 3D MHD SIMULATION OF FLARE SUPRA-ARCADE DOWNFLOWS IN A TURBULENT CURRENT SHEET MEDIUM

    SciTech Connect

    Cécere, M.; Zurbriggen, E.; Costa, A.; Schneiter, M.

    2015-07-01

    Supra-arcade downflows (SADs) are sunward, generally dark, plasma density depletions originated above posteruption flare arcades. In this paper, using 3D MHD simulations we investigate whether the SAD cavities can be produced by a direct combination of the tearing mode and Kelvin–Helmholtz instabilities leading to a turbulent current sheet (CS) medium or if the current sheet is merely the background where SADs are produced, triggered by an impulsive deposition of energy. We find that to give an account of the observational dark lane structures an addition of local energy, provided by a reconnection event, is required. We suggest that there may be a closed relation between characteristic SAD sizes and CS widths that must be satisfied to obtain an observable SAD.

  1. Influence of Critical Current Density on Magnetic Force of Htsc Bulk above Pmr with 3D-MODELING Numerical Solutions

    NASA Astrophysics Data System (ADS)

    Lu, Yiyun; Lu, Bingjuan; Ge, Yunwang; Chen, Wenqing

    Numerical electromagnetic field simulations of high-temperature superconductors (HTSC) bulk were carried out to calculate the magnetic force between the HTSC bulk and the permanent magnet railway (PMR). A 3D-modeling numerical calculation method is proposed using the finite element method. The model is formulated with the magnetic field vector (H-method). The resulting code was written with FORTRAN language. The electric field intensity E and the current density J constitutive relation of HTSC were described with E-J power law. The Kim macro-model is used to describe critical current density Jc of HTSC bulk. Two virtual HTSC bulks were used to solve the critical current density Jc anisotropic properties of HTSC materials. A superconducting levitation system composed of one HTSC bulk and PMR is successfully investigated using the proposed method. By this method, the influence of critical current density on magnetic levitation force of the superconducting levitation system is mathematically studied.

  2. 3D fingerprint imaging system based on full-field fringe projection profilometry

    NASA Astrophysics Data System (ADS)

    Huang, Shujun; Zhang, Zonghua; Zhao, Yan; Dai, Jie; Chen, Chao; Xu, Yongjia; Zhang, E.; Xie, Lili

    2014-01-01

    As an unique, unchangeable and easily acquired biometrics, fingerprint has been widely studied in academics and applied in many fields over the years. The traditional fingerprint recognition methods are based on the obtained 2D feature of fingerprint. However, fingerprint is a 3D biological characteristic. The mapping from 3D to 2D loses 1D information and causes nonlinear distortion of the captured fingerprint. Therefore, it is becoming more and more important to obtain 3D fingerprint information for recognition. In this paper, a novel 3D fingerprint imaging system is presented based on fringe projection technique to obtain 3D features and the corresponding color texture information. A series of color sinusoidal fringe patterns with optimum three-fringe numbers are projected onto a finger surface. From another viewpoint, the fringe patterns are deformed by the finger surface and captured by a CCD camera. 3D shape data of the finger can be obtained from the captured fringe pattern images. This paper studies the prototype of the 3D fingerprint imaging system, including principle of 3D fingerprint acquisition, hardware design of the 3D imaging system, 3D calibration of the system, and software development. Some experiments are carried out by acquiring several 3D fingerprint data. The experimental results demonstrate the feasibility of the proposed 3D fingerprint imaging system.

  3. High pressure system for 3-D study of elastic anisotropy

    NASA Astrophysics Data System (ADS)

    Lokajicek, T.; Pros, Z.; Klima, K.

    2003-04-01

    New high pressure system was designed for the study of elastic anisotropy of condensed matter under high confining pressure up to 700 MPa. Simultaneously could be measured dynamic and static parameters: a) dynamic parameters by ultrasonic sounding, b) static parameters by measuring of spherical sample deformation. The measurement is carried out on spherical samples diameter 50 +/- 0.01 mm. Higher value of confining pressure was reached due to the new construction of sample positioning unit. The positioning unit is equipped with two Portecap step motors, which are located inside the vessel and make possible to rotate with the sphere and couple of piezoceramic transducers. Sample deformation is measured in the same direction as ultrasonic signal travel time. Only electric leads connects inner part of high pressure vessel with surrounding environment. Experimental set up enables: - simultaneous P-wave ultrasonic sounding, - measurement of current sample deformation at sounding points, - measurement of current value of confining pressure and - measurement of current stress media temperature. Air driven high pressure pump Haskel is used to produce high value of confining pressure up to 700 MPa. Ultrasonic signals are recorded by digital scope Agilent 54562 with sampling frequency 100 MHz. Control and measuring software was developed under Agilent VEE software environment working under MS Win 2000 operating system. Measuring set up was tested by measurement of monomineral spherical samples of quartz and corundum. Both of them have trigonal symmetry. The measurement showed that the P-wave velocity range of quartz was between 5.7-7.0 km/sec. and velocity range of corundum was between 9.7-10.9 km/sec. High pressure resistant LVDT transducers Mesing together with Intronix electronic unit were used to monitor sample deformation. Sample deformation is monitored with the accuracy of 0.1 micron. All test measurements proved the good accuracy of the whole measuring set up. This

  4. System and method for 3D printing of aerogels

    DOEpatents

    Worsley, Marcus A.; Duoss, Eric; Kuntz, Joshua; Spadaccini, Christopher; Zhu, Cheng

    2016-03-08

    A method of forming an aerogel. The method may involve providing a graphene oxide powder and mixing the graphene oxide powder with a solution to form an ink. A 3D printing technique may be used to write the ink into a catalytic solution that is contained in a fluid containment member to form a wet part. The wet part may then be cured in a sealed container for a predetermined period of time at a predetermined temperature. The cured wet part may then be dried to form a finished aerogel part.

  5. Holographic imaging of 3D objects on dichromated polymer systems

    NASA Astrophysics Data System (ADS)

    Lemelin, Guylain; Jourdain, Anne; Manivannan, Gurusamy; Lessard, Roger A.

    1996-01-01

    Conventional volume transmission holograms of a 3D scene were recorded on dichromated poly(acrylic acid) (DCPAA) films under 488 nm light. The holographic characterization and quality of reconstruction have been studied by varying the influencing parameters such as concentration of dichromate and electron donor, and the molecular weight of the polymer matrix. Ammonium and potassium dichromate have been employed to sensitize the poly(acrylic) matrix. the recorded hologram can be efficiently reconstructed either with red light or with low energy in the blue region without any post thermal or chemical processing.

  6. TBIdoc: 3D content-based CT image retrieval system for traumatic brain injury

    NASA Astrophysics Data System (ADS)

    Li, Shimiao; Gong, Tianxia; Wang, Jie; Liu, Ruizhe; Tan, Chew Lim; Leong, Tze Yun; Pang, Boon Chuan; Lim, C. C. Tchoyoson; Lee, Cheng Kiang; Tian, Qi; Zhang, Zhuo

    2010-03-01

    Traumatic brain injury (TBI) is a major cause of death and disability. Computed Tomography (CT) scan is widely used in the diagnosis of TBI. Nowadays, large amount of TBI CT data is stacked in the hospital radiology department. Such data and the associated patient information contain valuable information for clinical diagnosis and outcome prediction. However, current hospital database system does not provide an efficient and intuitive tool for doctors to search out cases relevant to the current study case. In this paper, we present the TBIdoc system: a content-based image retrieval (CBIR) system which works on the TBI CT images. In this web-based system, user can query by uploading CT image slices from one study, retrieval result is a list of TBI cases ranked according to their 3D visual similarity to the query case. Specifically, cases of TBI CT images often present diffuse or focal lesions. In TBIdoc system, these pathological image features are represented as bin-based binary feature vectors. We use the Jaccard-Needham measure as the similarity measurement. Based on these, we propose a 3D similarity measure for computing the similarity score between two series of CT slices. nDCG is used to evaluate the system performance, which shows the system produces satisfactory retrieval results. The system is expected to improve the current hospital data management in TBI and to give better support for the clinical decision-making process. It may also contribute to the computer-aided education in TBI.

  7. A 3-D fluorescence imaging system incorporating structured illumination technology

    NASA Astrophysics Data System (ADS)

    Antos, L.; Emord, P.; Luquette, B.; McGee, B.; Nguyen, D.; Phipps, A.; Phillips, D.; Helguera, M.

    2010-02-01

    A currently available 2-D high-resolution, optical molecular imaging system was modified by the addition of a structured illumination source, OptigridTM, to investigate the feasibility of providing depth resolution along the optical axis. The modification involved the insertion of the OptigridTM and a lens in the path between the light source and the image plane, as well as control and signal processing software. Projection of the OptigridTM onto the imaging surface at an angle, was resolved applying the Scheimpflug principle. The illumination system implements modulation of the light source and provides a framework for capturing depth resolved mages. The system is capable of in-focus projection of the OptigridTM at different spatial frequencies, and supports the use of different lenses. A calibration process was developed for the system to achieve consistent phase shifts of the OptigridTM. Post-processing extracted depth information using depth modulation analysis using a phantom block with fluorescent sheets at different depths. An important aspect of this effort was that it was carried out by a multidisciplinary team of engineering and science students as part of a capstone senior design program. The disciplines represented are mechanical engineering, electrical engineering and imaging science. The project was sponsored by a financial grant from New York State with equipment support from two industrial concerns. The students were provided with a basic imaging concept and charged with developing, implementing, testing and validating a feasible proof-of-concept prototype system that was returned to the originator of the concept for further evaluation and characterization.

  8. Role of head of turbulent 3-D density currents in mixing during slumping regime

    NASA Astrophysics Data System (ADS)

    Bhaganagar, Kiran

    2017-02-01

    A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that

  9. Intra-operative 3D imaging system for robot-assisted fracture manipulation.

    PubMed

    Dagnino, G; Georgilas, I; Tarassoli, P; Atkins, R; Dogramadzi, S

    2015-01-01

    Reduction is a crucial step in the treatment of broken bones. Achieving precise anatomical alignment of bone fragments is essential for a good fast healing process. Percutaneous techniques are associated with faster recovery time and lower infection risk. However, deducing intra-operatively the desired reduction position is quite challenging due to the currently available technology. The 2D nature of this technology (i.e. the image intensifier) doesn't provide enough information to the surgeon regarding the fracture alignment and rotation, which is actually a three-dimensional problem. This paper describes the design and development of a 3D imaging system for the intra-operative virtual reduction of joint fractures. The proposed imaging system is able to receive and segment CT scan data of the fracture, to generate the 3D models of the bone fragments, and display them on a GUI. A commercial optical tracker was included into the system to track the actual pose of the bone fragments in the physical space, and generate the corresponding pose relations in the virtual environment of the imaging system. The surgeon virtually reduces the fracture in the 3D virtual environment, and a robotic manipulator connected to the fracture through an orthopedic pin executes the physical reductions accordingly. The system is here evaluated through fracture reduction experiments, demonstrating a reduction accuracy of 1.04 ± 0.69 mm (translational RMSE) and 0.89 ± 0.71 ° (rotational RMSE).

  10. Development and characterization of 3D-printed feed spacers for spiral wound membrane systems.

    PubMed

    Siddiqui, Amber; Farhat, Nadia; Bucs, Szilárd S; Linares, Rodrigo Valladares; Picioreanu, Cristian; Kruithof, Joop C; van Loosdrecht, Mark C M; Kidwell, James; Vrouwenvelder, Johannes S

    2016-03-15

    Feed spacers are important for the impact of biofouling on the performance of spiral-wound reverse osmosis (RO) and nanofiltration (NF) membrane systems. The objective of this study was to propose a strategy for developing, characterizing, and testing of feed spacers by numerical modeling, three-dimensional (3D) printing of feed spacers and experimental membrane fouling simulator (MFS) studies. The results of numerical modeling on the hydrodynamic behavior of various feed spacer geometries suggested that the impact of spacers on hydrodynamics and biofouling can be improved. A good agreement was found for the modeled and measured relationship between linear flow velocity and pressure drop for feed spacers with the same geometry, indicating that modeling can serve as the first step in spacer characterization. An experimental comparison study of a feed spacer currently applied in practice and a 3D printed feed spacer with the same geometry showed (i) similar hydrodynamic behavior, (ii) similar pressure drop development with time and (iii) similar biomass accumulation during MFS biofouling studies, indicating that 3D printing technology is an alternative strategy for development of thin feed spacers with a complex geometry. Based on the numerical modeling results, a modified feed spacer with low pressure drop was selected for 3D printing. The comparison study of the feed spacer from practice and the modified geometry 3D printed feed spacer established that the 3D printed spacer had (i) a lower pressure drop during hydrodynamic testing, (ii) a lower pressure drop increase in time with the same accumulated biomass amount, indicating that modifying feed spacer geometries can reduce the impact of accumulated biomass on membrane performance. The combination of numerical modeling of feed spacers and experimental testing of 3D printed feed spacers is a promising strategy (rapid, low cost and representative) to develop advanced feed spacers aiming to reduce the impact of

  11. A GIS-based 3D online information system for underground energy storage in northern Germany

    NASA Astrophysics Data System (ADS)

    Nolde, Michael; Malte, Schwanebeck; Ehsan, Biniyaz; Rainer, Duttmann

    2015-04-01

    We would like to present the concept and current state of development of a GIS-based 3D online information system for underground energy storage. Its aim is to support the local authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The presented information system uses data of geological features such as rock layers, salt domes and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, powerline arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the process of pre-selecting sites suitable for energy storage. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. While the process of pre-selection itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, so that it can easily be utilized in any web browser. The results are visualized online as interactive 3d graphics. The information system is implemented in the Python programming language in combination with current Web standards, and is build using only free and open source software. It is being developed at Kiel University as part of the ANGUS+ project (lead by Prof. Sebastian Bauer) for the federal state of

  12. Transient 3D numerical simulations of column collapse and pyroclastic density current scenarios at Vesuvius

    NASA Astrophysics Data System (ADS)

    Esposti Ongaro, T.; Neri, A.; Menconi, G.; de'Michieli Vitturi, M.; Marianelli, P.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.

    2008-12-01

    Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial

  13. Toward 3D-IPTV: design and implementation of a stereoscopic and multiple-perspective video streaming system

    NASA Astrophysics Data System (ADS)

    Petrovic, Goran; Farin, Dirk; de With, Peter H. N.

    2008-02-01

    3D-Video systems allow a user to perceive depth in the viewed scene and to display the scene from arbitrary viewpoints interactively and on-demand. This paper presents a prototype implementation of a 3D-video streaming system using an IP network. The architecture of our streaming system is layered, where each information layer conveys a single coded video signal or coded scene-description data. We demonstrate the benefits of a layered architecture with two examples: (a) stereoscopic video streaming, (b) monoscopic video streaming with remote multiple-perspective rendering. Our implementation experiments confirm that prototyping 3D-video streaming systems is possible with today's software and hardware. Furthermore, our current operational prototype demonstrates that highly heterogeneous clients can coexist in the system, ranging from auto-stereoscopic 3D displays to resource-constrained mobile devices.

  14. 3D optical sectioning with a new hyperspectral confocal fluorescence imaging system.

    SciTech Connect

    Nieman, Linda T.; Sinclair, Michael B.; Davidson, George S.; Van Benthem, Mark Hilary; Haaland, David Michael; Timlin, Jerilyn Ann; Sasaki, Darryl Yoshio; Bachand, George David; Jones, Howland D. T.

    2007-02-01

    A novel hyperspectral fluorescence microscope for high-resolution 3D optical sectioning of cells and other structures has been designed, constructed, and used to investigate a number of different problems. We have significantly extended new multivariate curve resolution (MCR) data analysis methods to deconvolve the hyperspectral image data and to rapidly extract quantitative 3D concentration distribution maps of all emitting species. The imaging system has many advantages over current confocal imaging systems including simultaneous monitoring of numerous highly overlapped fluorophores, immunity to autofluorescence or impurity fluorescence, enhanced sensitivity, and dramatically improved accuracy, reliability, and dynamic range. Efficient data compression in the spectral dimension has allowed personal computers to perform quantitative analysis of hyperspectral images of large size without loss of image quality. We have also developed and tested software to perform analysis of time resolved hyperspectral images using trilinear multivariate analysis methods. The new imaging system is an enabling technology for numerous applications including (1) 3D composition mapping analysis of multicomponent processes occurring during host-pathogen interactions, (2) monitoring microfluidic processes, (3) imaging of molecular motors and (4) understanding photosynthetic processes in wild type and mutant Synechocystis cyanobacteria.

  15. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes

    PubMed Central

    Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng; Li, Nian-Wu; Guo, Yu-Guo

    2015-01-01

    Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li. Li anode is accommodated in the 3D structure without uncontrollable Li dendrites. With the growth of Li dendrites being effectively suppressed, the Li anode in the 3D current collector can run for 600 h without short circuit and exhibits low voltage hysteresis. The exceptional electrochemical performance of the Li-metal anode in the 3D current collector highlights the importance of rational design of current collectors and reveals a new avenue for developing Li anodes with a long lifespan. PMID:26299379

  16. 3D Stationary electric current density in a spherical tumor treated with low direct current: an analytical solution.

    PubMed

    Jiménez, Rolando Placeres; Pupo, Ana Elisa Bergues; Cabrales, Jesús Manuel Bergues; Joa, Javier Antonio González; Cabrales, Luis Enrique Bergues; Nava, Juan José Godina; Aguilera, Andrés Ramírez; Mateus, Miguel Angel O'Farril; Jarque, Manuel Verdecia; Brooks, Soraida Candida Acosta

    2011-02-01

    Electrotherapy with direct current delivered through implanted electrodes is used for local control of solid tumors in both preclinical and clinical studies. The aim of this research is to develop a solution method for obtaining a three-dimensional analytical expression for potential and electric current density as functions of direct electric current intensity, differences in conductivities between the tumor and the surrounding healthy tissue, and length, number and polarity of electrodes. The influence of these parameters on electric current density in both media is analyzed. The results show that the electric current density in the tumor is higher than that in the surrounding healthy tissue for any value of these parameters. The conclusion is that the solution method presented in this study is of practical interest because it provides, in a few minutes, a convenient way to visualize in 3D the electric current densities generated by a radial electrode array by means of the adequate selection of direct current intensity, length, number, and polarity of electrodes, and the difference in conductivity between the solid tumor and its surrounding healthy tissue.

  17. Combination of Virtual Tours, 3d Model and Digital Data in a 3d Archaeological Knowledge and Information System

    NASA Astrophysics Data System (ADS)

    Koehl, M.; Brigand, N.

    2012-08-01

    The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image

  18. A 3-D reconstruction solution to current density imaging based on acoustoelectric effect by deconvolution: a simulation study.

    PubMed

    Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang

    2013-05-01

    Hybrid imaging modality combining ultrasound scanning and electrical current density imaging through the acoustoelectric (AE) effect may potentially provide solutions to imaging electrical activities and properties of biological tissues with high spatial resolution. In this study, a 3-D reconstruction solution to ultrasound current source density imaging (UCSDI) by means of Wiener deconvolution is proposed and evaluated through computer simulations. As compared to previous 2-D UCSDI problem, in a 3-D volume conductor with broadly distributed current density field, the AE signal becomes a 3-D convolution between the electric field and the acoustic field, and effective 3-D reconstruction algorithm has not been developed so far. In the proposed method, a 3-D ultrasound scanning is performed while the corresponding AE signals are collected from multiple electrode pairs attached on the surface of the imaging object. From the collected AE signals, the acoustic field and electric field were first decoupled by Wiener deconvolution. Then, the current density distribution was reconstructed by inverse projection. Our simulations using artificial current fields in homogeneous phantoms suggest that the proposed method is feasible and robust against noise. It is also shown that using the proposed method, it is feasible to reconstruct 3-D current density distribution in an inhomogeneous conductive medium.

  19. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    PubMed

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients.

  20. D3D augmented reality imaging system: proof of concept in mammography

    PubMed Central

    Douglas, David B; Petricoin, Emanuel F; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Purpose The purpose of this article is to present images from simulated breast microcalcifications and assess the pattern of the microcalcifications with a technical development called “depth 3-dimensional (D3D) augmented reality”. Materials and methods A computer, head display unit, joystick, D3D augmented reality software, and an in-house script of simulated data of breast microcalcifications in a ductal distribution were used. No patient data was used and no statistical analysis was performed. Results The D3D augmented reality system demonstrated stereoscopic depth perception by presenting a unique image to each eye, focal point convergence, head position tracking, 3D cursor, and joystick fly-through. Conclusion The D3D augmented reality imaging system offers image viewing with depth perception and focal point convergence. The D3D augmented reality system should be tested to determine its utility in clinical practice. PMID:27563261

  1. Disparity pattern-based autostereoscopic 3D metrology system for in situ measurement of microstructured surfaces.

    PubMed

    Li, Da; Cheung, Chi Fai; Ren, MingJun; Whitehouse, David; Zhao, Xing

    2015-11-15

    This paper presents a disparity pattern-based autostereoscopic (DPA) 3D metrology system that makes use of a microlens array to capture raw 3D information of the measured surface in a single snapshot through a CCD camera. Hence, a 3D digital model of the target surface with the measuring data is generated through a system-associated direct extraction of disparity information (DEDI) method. The DEDI method is highly efficient for performing the direct 3D mapping of the target surface based on tomography-like operation upon every depth plane with the defocused information excluded. Precise measurement results are provided through an error-elimination process based on statistical analysis. Experimental results show that the proposed DPA 3D metrology system is capable of measuring 3D microstructured surfaces with submicrometer measuring repeatability for high precision and in situ measurement of microstructured surfaces.

  2. A hand-held 3D laser scanning with global positioning system of subvoxel precision

    NASA Astrophysics Data System (ADS)

    Arias, Néstor; Meneses, Néstor; Meneses, Jaime; Gharbi, Tijani

    2011-01-01

    In this paper we propose a hand-held 3D laser scanner composed of an optical head device to extract 3D local surface information and a stereo vision system with subvoxel precision to measure the position and orientation of the 3D optical head. The optical head is manually scanned over the surface object by the operator. The orientation and position of the 3D optical head is determined by a phase-sensitive method using a 2D regular intensity pattern. This phase reference pattern is rigidly fixed to the optical head and allows their 3D location with subvoxel precision in the observation field of the stereo vision system. The 3D resolution achieved by the stereo vision system is about 33 microns at 1.8 m with an observation field of 60cm x 60cm.

  3. The Virtual-casing Principle For 3D Toroidal Systems

    SciTech Connect

    Lazerson, Samuel A.

    2014-02-24

    The capability to calculate the magnetic field due to the plasma currents in a toroidally confined magnetic fusion equilibrium is of manifest relevance to equilibrium reconstruction and stellarator divertor design. Two methodologies arise for calculating such quantities. The first being a volume integral over the plasma current density for a given equilibrium. Such an integral is computationally expensive. The second is a surface integral over a surface current on the equilibrium boundary. This method is computationally desirable as the calculation does not grow as the radial resolution of the volume integral. This surface integral method has come to be known as the "virtual-casing principle". In this paper, a full derivation of this method is presented along with a discussion regarding its optimal application.

  4. Evaluation Model for Pavement Surface Distress on 3d Point Clouds from Mobile Mapping System

    NASA Astrophysics Data System (ADS)

    Aoki, K.; Yamamoto, K.; Shimamura, H.

    2012-07-01

    This paper proposes a methodology to evaluate the pavement surface distress for maintenance planning of road pavement using 3D point clouds from Mobile Mapping System (MMS). The issue on maintenance planning of road pavement requires scheduled rehabilitation activities for damaged pavement sections to keep high level of services. The importance of this performance-based infrastructure asset management on actual inspection data is globally recognized. Inspection methodology of road pavement surface, a semi-automatic measurement system utilizing inspection vehicles for measuring surface deterioration indexes, such as cracking, rutting and IRI, have already been introduced and capable of continuously archiving the pavement performance data. However, any scheduled inspection using automatic measurement vehicle needs much cost according to the instruments' specification or inspection interval. Therefore, implementation of road maintenance work, especially for the local government, is difficult considering costeffectiveness. Based on this background, in this research, the methodologies for a simplified evaluation for pavement surface and assessment of damaged pavement section are proposed using 3D point clouds data to build urban 3D modelling. The simplified evaluation results of road surface were able to provide useful information for road administrator to find out the pavement section for a detailed examination and for an immediate repair work. In particular, the regularity of enumeration of 3D point clouds was evaluated using Chow-test and F-test model by extracting the section where the structural change of a coordinate value was remarkably achieved. Finally, the validity of the current methodology was investigated by conducting a case study dealing with the actual inspection data of the local roads.

  5. Building a 3D scanner system based on monocular vision.

    PubMed

    Zhang, Zhiyi; Yuan, Lin

    2012-04-10

    This paper proposes a three-dimensional scanner system, which is built by using an ingenious geometric construction method based on monocular vision. The system is simple, low cost, and easy to use, and the measurement results are very precise. To build it, one web camera, one handheld linear laser, and one background calibration board are required. The experimental results show that the system is robust and effective, and the scanning precision can be satisfied for normal users.

  6. New neural-networks-based 3D object recognition system

    NASA Astrophysics Data System (ADS)

    Abolmaesumi, Purang; Jahed, M.

    1997-09-01

    Three-dimensional object recognition has always been one of the challenging fields in computer vision. In recent years, Ulman and Basri (1991) have proposed that this task can be done by using a database of 2-D views of the objects. The main problem in their proposed system is that the correspondent points should be known to interpolate the views. On the other hand, their system should have a supervisor to decide which class does the represented view belong to. In this paper, we propose a new momentum-Fourier descriptor that is invariant to scale, translation, and rotation. This descriptor provides the input feature vectors to our proposed system. By using the Dystal network, we show that the objects can be classified with over 95% precision. We have used this system to classify the objects like cube, cone, sphere, torus, and cylinder. Because of the nature of the Dystal network, this system reaches to its stable point by a single representation of the view to the system. This system can also classify the similar views to a single class (e.g., for the cube, the system generated 9 different classes for 50 different input views), which can be used to select an optimum database of training views. The system is also very flexible to the noise and deformed views.

  7. A 3D metrology system for the GMT

    NASA Astrophysics Data System (ADS)

    Rakich, A.; Dettmann, Lee; Leveque, S.; Guisard, S.

    2016-08-01

    The Giant Magellan Telescope (GMT)1 is a 25 m telescope composed of seven 8.4 m "unit telescopes", on a common mount. Each primary and conjugated secondary mirror segment will feed a common instrument interface, their focal planes co-aligned and co-phased. During telescope operation, the alignment of the optical components will deflect due to variations in thermal environment and gravity induced structural flexure of the mount. The ultimate co-alignment and co-phasing of the telescope is achieved by a combination of the Acquisition Guiding and Wavefront Sensing system and two segment edge-sensing systems2. An analysis of the capture range of the wavefront sensing system indicates that it is unlikely that that system will operate efficiently or reliably with initial mirror positions provided by open-loop corrections alone3. The project is developing a Telescope Metrology System (TMS) which incorporates a large number of absolute distance measuring interferometers. The system will align optical components of the telescope to the instrument interface to (well) within the capture range of the active optics wavefront sensing systems. The advantages offered by this technological approach to a TMS, over a network of laser trackers, are discussed. Initial investigations of the Etalon Absolute Multiline Technology™ by Etalon Ag4 show that a metrology network based on this product is capable of meeting requirements. A conceptual design of the system is presented and expected performance is discussed.

  8. Toward a classification of semidegenerate 3D superintegrable systems

    NASA Astrophysics Data System (ADS)

    Escobar-Ruiz, M. A.; Miller, Willard, Jr.

    2017-03-01

    Superintegrable systems of 2nd order in 3 dimensions with exactly 3-parameter potentials are intriguing objects. Next to the nondegenerate 4-parameter potential systems they admit the maximum number of symmetry operators, but their symmetry algebras do not close under commutation and not enough is known about their structure to give a complete classification. Some examples are known for which the 3-parameter system can be extended to a 4th order superintegrable system with a 4-parameter potential and 6 linearly independent symmetry generators. In this paper we use Bôcher contractions of the conformal Lie algebra so≤ft(5,{C}\\right) to itself to generate a large family of 3-parameter systems with 4th order extensions, on a variety of manifolds, all from Bôcher contractions of a single ‘generic’ system on the 3-sphere. We give a contraction scheme relating these systems. The results have myriad applications for finding explicit solutions for both quantum and classical systems.

  9. Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration

    PubMed Central

    Cui, Haitao; Zhu, Wei; Holmes, Benjamin

    2016-01-01

    A critical challenge to the development of large‐scale artificial tissue grafts for defect reconstruction is vascularization of the tissue construct. As an emerging tissue/organ manufacturing technique, 3D bioprinting offers great precision in controlling the internal architecture of a scaffold with preferable mechanical strength and printing complicated microstructures comparable to native tissue. However, current bioprinting techniques still exhibit difficulty in achieving biomimetic nano resolution and cooperating with bioactive spatiotemporal signals. In this study, a comprehensive design of engineered vascularized bone construct is presented for the first time by integrating biomimetic 3D bioprinted fluid perfused microstructure with biologically inspired smart release nanocoating, which is regarded as an aspiring concept combining engineering, biological, and material science. In this biologically inspired design, angiogenesis and osteogenesis are successively induced through a matrix metalloprotease 2 regulative mechanism by delivering dual growth factors with sequential release in spatiotemporal coordination. Availability of this system is evaluated in dynamic culture condition, which is similar to fluid surrounding in vivo, as an alternative animal model study. Results, particularly from co‐cultured dynamically samples demonstrate excellent bioactivity and vascularized bone forming potential of nanocoating modified 3D bioprinted scaffolds for human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells. PMID:27818910

  10. Evaluating the performance of close-range 3D active vision systems for industrial design applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Gaiani, Marco

    2004-12-01

    In recent years, active three-dimensional (3D) active vision systems or range cameras for short have come out of research laboratories to find niche markets in application fields as diverse as industrial design, automotive manufacturing, geomatics, space exploration and cultural heritage to name a few. Many publications address different issues link to 3D sensing and processing but currently these technologies pose a number of challenges to many recent users, i.e., "what are they, how good are they and how do they compare?". The need to understand, test and integrate those range cameras with other technologies, e.g. photogrammetry, CAD, etc. is driven by the quest for optimal resolution, accuracy, speed and cost. Before investing, users want to be certain that a given range camera satisfy their operational requirements. The understanding of the basic theory and best practices associated with those cameras are in fact fundamental to fulfilling the requirements listed above in an optimal way. This paper addresses the evaluation of active 3D range cameras as part of a study to better understand and select one or a number of them to fulfill the needs of industrial design applications. In particular, object material and surface features effect, calibration and performance evaluation are discussed. Results are given for six different range cameras for close range applications.

  11. Evaluating the performance of close-range 3D active vision systems for industrial design applications

    NASA Astrophysics Data System (ADS)

    Beraldin, J.-Angelo; Gaiani, Marco

    2005-01-01

    In recent years, active three-dimensional (3D) active vision systems or range cameras for short have come out of research laboratories to find niche markets in application fields as diverse as industrial design, automotive manufacturing, geomatics, space exploration and cultural heritage to name a few. Many publications address different issues link to 3D sensing and processing but currently these technologies pose a number of challenges to many recent users, i.e., "what are they, how good are they and how do they compare?". The need to understand, test and integrate those range cameras with other technologies, e.g. photogrammetry, CAD, etc. is driven by the quest for optimal resolution, accuracy, speed and cost. Before investing, users want to be certain that a given range camera satisfy their operational requirements. The understanding of the basic theory and best practices associated with those cameras are in fact fundamental to fulfilling the requirements listed above in an optimal way. This paper addresses the evaluation of active 3D range cameras as part of a study to better understand and select one or a number of them to fulfill the needs of industrial design applications. In particular, object material and surface features effect, calibration and performance evaluation are discussed. Results are given for six different range cameras for close range applications.

  12. Development of 3-D Hydrogel Culture Systems With On-Demand Cell Separation

    PubMed Central

    Hamilton, Sharon K.; Bloodworth, Nathaniel C.; Massad, Christopher S.; Hammoudi, Taymour M.; Suri, Shalu; Yang, Peter J.; Lu, Hang; Temenoff, Johnna S.

    2013-01-01

    Recently there has been an increased interest in the effects of paracrine signaling between groups of cells, particularly in the context of better understanding how stem cells contribute to tissue repair. Most current 3-D co-culture methods lack the ability to effectively separate 2 cell populations after the culture period, which is important for simultaneously analyzing the reciprocal effects of each cell type on the other. Here, we detail the development of a 3-D hydrogel co-culture system that allows us to culture different cell types for up to 7 days and subsequently separate and isolate the different cell populations using enzyme-sensitive glues. Separable 3-D co-culture laminates were prepared by laminating PEG-based hydrogels with enzyme-degradable hydrogel adhesives. Encapsulated cell populations exhibited good segregation with well-defined interfaces. Furthermore, constructs can be separated on-demand upon addition of the appropriate enzyme and cell viability remains high throughout the culture period, even after laminate separation. This platform offers great potential for a variety of basic cell signaling studies as the incorporation of an enzyme-sensitive adhesive interface allows the on-demand separation of individual cell populations for immediate analysis or further culture to examine persistence of co-culture effects and paracrine signaling on cell populations. PMID:23447378

  13. Biologically Inspired Smart Release System Based on 3D Bioprinted Perfused Scaffold for Vascularized Tissue Regeneration.

    PubMed

    Cui, Haitao; Zhu, Wei; Holmes, Benjamin; Zhang, Lijie Grace

    2016-08-01

    A critical challenge to the development of large-scale artificial tissue grafts for defect reconstruction is vascularization of the tissue construct. As an emerging tissue/organ manufacturing technique, 3D bioprinting offers great precision in controlling the internal architecture of a scaffold with preferable mechanical strength and printing complicated microstructures comparable to native tissue. However, current bioprinting techniques still exhibit difficulty in achieving biomimetic nano resolution and cooperating with bioactive spatiotemporal signals. In this study, a comprehensive design of engineered vascularized bone construct is presented for the first time by integrating biomimetic 3D bioprinted fluid perfused microstructure with biologically inspired smart release nanocoating, which is regarded as an aspiring concept combining engineering, biological, and material science. In this biologically inspired design, angiogenesis and osteogenesis are successively induced through a matrix metalloprotease 2 regulative mechanism by delivering dual growth factors with sequential release in spatiotemporal coordination. Availability of this system is evaluated in dynamic culture condition, which is similar to fluid surrounding in vivo, as an alternative animal model study. Results, particularly from co-cultured dynamically samples demonstrate excellent bioactivity and vascularized bone forming potential of nanocoating modified 3D bioprinted scaffolds for human bone marrow mesenchymal stem cells and human umbilical vein endothelial cells.

  14. Visualizing Terrestrial and Aquatic Systems in 3D

    EPA Science Inventory

    The need for better visualization tools for environmental science is well documented, and the Visualization for Terrestrial and Aquatic Systems project (VISTAS) aims to both help scientists produce effective environmental science visualizations and to determine which visualizatio...

  15. A View to the Future: A Novel Approach for 3D-3D Superimposition and Quantification of Differences for Identification from Next-Generation Video Surveillance Systems.

    PubMed

    Gibelli, Daniele; De Angelis, Danilo; Poppa, Pasquale; Sforza, Chiarella; Cattaneo, Cristina

    2017-03-01

    Techniques of 2D-3D superimposition are widely used in cases of personal identification from video surveillance systems. However, the progressive improvement of 3D image acquisition technology will enable operators to perform also 3D-3D facial superimposition. This study aims at analyzing the possible applications of 3D-3D superimposition to personal identification, although from a theoretical point of view. Twenty subjects underwent a facial 3D scan by stereophotogrammetry twice at different time periods. Scans were superimposed two by two according to nine landmarks, and root-mean-square (RMS) value of point-to-point distances was calculated. When the two superimposed models belonged to the same individual, RMS value was 2.10 mm, while it was 4.47 mm in mismatches with a statistically significant difference (p < 0.0001). This experiment shows the potential of 3D-3D superimposition: Further studies are needed to ascertain technical limits which may occur in practice and to improve methods useful in the forensic practice.

  16. High definition 3D imaging lidar system using CCD

    NASA Astrophysics Data System (ADS)

    Jo, Sungeun; Kong, Hong Jin; Bang, Hyochoong

    2016-10-01

    In this study we propose and demonstrate a novel technique for measuring distance with high definition three-dimensional imaging. To meet the stringent requirements of various missions, spatial resolution and range precision are important properties for flash LIDAR systems. The proposed LIDAR system employs a polarization modulator and a CCD. When a laser pulse is emitted from the laser, it triggers the polarization modulator. The laser pulse is scattered by the target and is reflected back to the LIDAR system while the polarization modulator is rotating. Its polarization state is a function of time. The laser-return pulse passes through the polarization modulator in a certain polarization state, and the polarization state is calculated using the intensities of the laser pulses measured by the CCD. Because the function of the time and the polarization state is already known, the polarization state can be converted to time-of-flight. By adopting a polarization modulator and a CCD and only measuring the energy of a laser pulse to obtain range, a high resolution three-dimensional image can be acquired by the proposed three-dimensional imaging LIDAR system. Since this system only measures the energy of the laser pulse, a high bandwidth detector and a high resolution TDC are not required for high range precision. The proposed method is expected to be an alternative method for many three-dimensional imaging LIDAR system applications that require high resolution.

  17. 3-D Object Recognition Using Combined Overhead And Robot Eye-In-Hand Vision System

    NASA Astrophysics Data System (ADS)

    Luc, Ren C.; Lin, Min-Hsiung

    1987-10-01

    A new approach for recognizing 3-D objects using a combined overhead and eye-in-hand vision system is presented. A novel eye-in-hand vision system using a fiber-optic image array is described. The significance of this approach is the fast and accurate recognition of 3-D object information compared to traditional stereo image processing. For the recognition of 3-D objects, the over-head vision system will take 2-D top view image and the eye-in-hand vision system will take side view images orthogonal to the top view image plane. We have developed and demonstrated a unique approach to integrate this 2-D information into a 3-D representation based on a new approach called "3-D Volumetric Descrip-tion from 2-D Orthogonal Projections". The Unimate PUMA 560 and TRAPIX 5500 real-time image processor have been used to test the success of the entire system.

  18. Effects of obliquely opposing and following currents on wave propagation in a new 3D wave-current basin

    NASA Astrophysics Data System (ADS)

    Lieske, Mike; Schlurmann, Torsten

    2016-04-01

    INTRODUCTION & MOTIVATION The design of structures in coastal and offshore areas and their maintenance are key components of coastal protection. Usually, assessments of processes and loads on coastal structures are derived from experiments with flow and wave parameters in separate physical models. However, Peregrin (1976) already points out that processes in natural shallow coastal waters flow and sea state processes do not occur separately, but influence each other nonlinearly. Kemp & Simons (1982) perform 2D laboratory tests and study the interactions between a turbulent flow and following waves. They highlight the significance of wave-induced changes in the current properties, especially in the mean flow profiles, and draw attention to turbulent fluctuations and bottom shear stresses. Kemp & Simons (1983) also study these processes and features with opposing waves. Studies on the wave-current interaction in three-dimensional space for a certain wave height, wave period and water depth were conducted by MacIver et al. (2006). The research focus is set on the investigation of long-crested waves on obliquely opposing and following currents in the new 3D wave-current basin. METHODOLOGY In a first step the flow analysis without waves is carried out and includes measurements of flow profiles in the sweet spot of the basin at predefined measurement positions. Five measuring points in the water column have been delineated in different water depths in order to obtain vertical flow profiles. For the characterization of the undisturbed flow properties in the basin, an uniformly distributed flow was generated in the wave basin. In the second step wave analysis without current, the unidirectional wave propagation and wave height were investigated for long-crested waves in intermediate wave conditions. In the sweet spot of the wave basin waves with three different wave directions, three wave periods and uniform wave steepness were examined. For evaluation, we applied a common

  19. Computational 3-D Model of the Human Respiratory System

    EPA Science Inventory

    We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...

  20. A 3-D Multilateration: A Precision Geodetic Measurement System

    NASA Technical Reports Server (NTRS)

    Escobal, P. R.; Fliegel, H. F.; Jaffe, R. M.; Muller, P. M.; Ong, K. M.; Vonroos, O. H.

    1972-01-01

    A system was designed with the capability of determining 1-cm accuracy station positions in three dimensions using pulsed laser earth satellite tracking stations coupled with strictly geometric data reduction. With this high accuracy, several crucial geodetic applications become possible, including earthquake hazards assessment, precision surveying, plate tectonics, and orbital determination.

  1. Multi-user 3D film on a time-multiplexed side-emission backlight system.

    PubMed

    Ting, Chih-Hung; Chang, Yu-Cheng; Chen, Chun-Ho; Huang, Yi-Pai; Tsai, Han-Wen

    2016-10-01

    The desirable features for a portable 3D display include displaying 2D and 3D images without resolution degradation for multiple users, a 2D/3D switchable functionality, and, in particular, a compact volume. To produce a portable 3D display with these desirable features, we propose here a multi-user 3D film combined with a side-emission backlight system that has a directional-sequential light distribution. According to the simulation and experimental results, the multi-user 3D film successfully uses an inverted trapezoid structure to separate the rays of each light source and increases the number of observers from one to three. Additionally, the specification of the inverted trapezoid structure can be determined via equations for different designated viewing positions of the side observer and for the ratio of light intensities for the central and side observers.

  2. Autonomic nervous system responses can reveal visual fatigue induced by 3D displays.

    PubMed

    Kim, Chi Jung; Park, Sangin; Won, Myeung Ju; Whang, Mincheol; Lee, Eui Chul

    2013-09-26

    Previous research has indicated that viewing 3D displays may induce greater visual fatigue than viewing 2D displays. Whether viewing 3D displays can evoke measureable emotional responses, however, is uncertain. In the present study, we examined autonomic nervous system responses in subjects viewing 2D or 3D displays. Autonomic responses were quantified in each subject by heart rate, galvanic skin response, and skin temperature. Viewers of both 2D and 3D displays showed strong positive correlations with heart rate, which indicated little differences between groups. In contrast, galvanic skin response and skin temperature showed weak positive correlations with average difference between viewing 2D and 3D. We suggest that galvanic skin response and skin temperature can be used to measure and compare autonomic nervous responses in subjects viewing 2D and 3D displays.

  3. Data acquirement and remodeling on volumetric 3D emissive display system

    NASA Astrophysics Data System (ADS)

    Yao, Yi; Liu, Xu; Lin, Yuanfang; Zhang, Huangzhu; Zhang, Xiaojie; Liu, Xiangdong

    2005-01-01

    Since present display technology is projecting 3D to 2D, people's eyes are deceived by the loss of spatial data. So it's a revolution for human vision to develop a real 3D display device. The monitor is based on emissive pad with 64*256 LED array. When rotated at a frequency of 10 Hertz, it shows real 3D images with pixels at their exact positions. The article presents a procedure that the software possesses 3D object and converts to volumetric 3D formatted data for this system. For simulating the phenomenon on PC, it also presents a program remodels the object based on OpenGL. An algorithm for faster processing and optimizing rendering speed is also given. The monitor provides real 3D scenes with free visual angle. It can be expected that the revolution will bring a strike on modern monitors and will lead to a new world for display technology.

  4. Scripting in Radiation Therapy: An Automatic 3D Beam-Naming System

    SciTech Connect

    Holdsworth, Clay; Hummel-Kramer, Sharon M.; Phillips, Mark

    2011-10-01

    Scripts can be executed within the radiation treatment planning software framework to reduce human error, increase treatment planning efficiency, reduce confusion, and promote consistency within an institution or even among institutions. Scripting is versatile, and one application is an automatic 3D beam-naming system that describes the position of the beam relative to the patient in 3D space. The naming system meets the need for nomenclature that is conducive for clear and accurate communication of beam entry relative to patient anatomy. In radiation oncology in particular, where miscommunication can cause significant harm to patients, a system that minimizes error is essential. Frequent sharing of radiation treatment information occurs not only among members within a department but also between different treatment centers. Descriptions of treatment beams are perhaps the most commonly shared information about a patient's course of treatment in radiation oncology. Automating the naming system by the use of a script reduces the potential for human error, improves efficiency, enforces consistency, and would allow an institution to convert to a new naming system with greater ease. This script has been implemented in the Department of Radiation Oncology at the University of Washington Medical Center since December 2009. It is currently part of the dosimetry protocol and is accessible by medical dosimetrists, radiation oncologists, and medical physicists. This paper highlights the advantages of using an automatic 3D beam-naming script to flawlessly and quickly identify treatment beams with unique names. Scripting in radiation treatment planning software has many uses and great potential for improving clinical care.

  5. Air-touch interaction system for integral imaging 3D display

    NASA Astrophysics Data System (ADS)

    Dong, Han Yuan; Xiang, Lee Ming; Lee, Byung Gook

    2016-07-01

    In this paper, we propose an air-touch interaction system for the tabletop type integral imaging 3D display. This system consists of the real 3D image generation system based on integral imaging technique and the interaction device using a real-time finger detection interface. In this system, we used multi-layer B-spline surface approximation to detect the fingertip and gesture easily in less than 10cm height from the screen via input the hand image. The proposed system can be used in effective human computer interaction method for the tabletop type 3D display.

  6. 3D heterostructures and systems for novel MEMS/NEMS

    PubMed Central

    Yakovlevich Prinz, Victor; Alexandrovich Seleznev, Vladimir; Victorovich Prinz, Alexander; Vladimirovich Kopylov, Alexander

    2009-01-01

    In this review, we consider the application of solid micro- and nanostructures of various shapes as building blocks for micro-electro-mechanical or nano-electro-mechanical systems (MEMS/NEMS). We provide examples of practical applications of structures created by MEMS/NEMS fabrication. Novel devices are briefly described, such as a high-power electrostatic nanoactuator, a fast-response tubular anemometer for measuring gas and liquid flows, a nanoprinter, a nanosyringe and optical MEMS/NEMS. The prospects are described for achieving NEMS with tunable quantum properties. PMID:27877295

  7. A primitive-based 3D object recognition system

    NASA Technical Reports Server (NTRS)

    Dhawan, Atam P.

    1988-01-01

    An intermediate-level knowledge-based system for decomposing segmented data into three-dimensional primitives was developed to create an approximate three-dimensional description of the real world scene from a single two-dimensional perspective view. A knowledge-based approach was also developed for high-level primitive-based matching of three-dimensional objects. Both the intermediate-level decomposition and the high-level interpretation are based on the structural and relational matching; moreover, they are implemented in a frame-based environment.

  8. On 3D Riesz systems of harmonic conjugates

    NASA Astrophysics Data System (ADS)

    Avetisyan, K.; Gürlebeck, K.; Morais, J.

    2012-11-01

    This note announces some results that will be presented in the forthcoming paper [10]. In continuation to these studies we discuss a constructive approach for the generation of harmonic conjugates to find nullsolutions to the Riesz system in R3. This class of solutions coincides with the subclass of monogenic functions with values in the reduced quaternions. The algorithm for harmonic conjugates is presented by means of an integral representation. Additionally, we discuss the weighted (monogenic) Hardy and Bergman spaces on the unit ball in R3 consisting of functions with values in the reduced quaternions. We end up showing the boundedness of the underlying harmonic conjugation operators in certain weighted spaces.

  9. 3D two-photon lithographic microfabrication system

    DOEpatents

    Kim, Daekeun; So, Peter T. C.

    2011-03-08

    An imaging system is provided that includes a optical pulse generator for providing an optical pulse having a spectral bandwidth and includes monochromatic waves having different wavelengths. A dispersive element receives a second optical pulse associated with the optical pulse and disperses the second optical pulse at different angles on the surface of the dispersive element depending on wavelength. One or more focal elements receives the dispersed second optical pulse produced on the dispersive element. The one or more focal element recombine the dispersed second optical pulse at a focal plane on a specimen where the width of the optical pulse is restored at the focal plane.

  10. Large LED screen 3D television system without eyewear

    NASA Astrophysics Data System (ADS)

    Nishida, Nobuo; Yamamoto, Hirotsugu; Hayasaki, Yoshio

    2004-10-01

    Since the development of high-brightness blue and green LEDs, the use of outdoor commercial LED displays has been increasing. Because of their high brightness, good visibility, and long-term durability to the weather, LED displays are a preferred technology for outdoor installations such as stadiums, street advertising, and billboards. This paper deals with a large stereoscopic full-color LED display by use of a parallax barrier. We discuss optimization of the viewing area, which depends on LED arrangements. An enlarged viewing area has been demonstrated by using a 3-in-1 chip LED panel that has wider black regions than ordinary LED lamp cluster panels. We have developed a real-time measurement system of a viewer's position and utilized the measurement system for evaluation of performance of the different designs of stereoscopic LED displays, including conventional designs to provide multiple perspective images and designs to eliminate pseudoscopic viewing areas. In order to show real-world images, it is necessary to capture stereo-images, to process them, and to show in real-time. We have developed an active binocular camera and demonstrated the real-time display of stereoscopic movies and real-time control of convergence.

  11. A Microscopic Optically Tracking Navigation System That Uses High-resolution 3D Computer Graphics.

    PubMed

    Yoshino, Masanori; Saito, Toki; Kin, Taichi; Nakagawa, Daichi; Nakatomi, Hirofumi; Oyama, Hiroshi; Saito, Nobuhito

    2015-01-01

    Three-dimensional (3D) computer graphics (CG) are useful for preoperative planning of neurosurgical operations. However, application of 3D CG to intraoperative navigation is not widespread because existing commercial operative navigation systems do not show 3D CG in sufficient detail. We have developed a microscopic optically tracking navigation system that uses high-resolution 3D CG. This article presents the technical details of our microscopic optically tracking navigation system. Our navigation system consists of three components: the operative microscope, registration, and the image display system. An optical tracker was attached to the microscope to monitor the position and attitude of the microscope in real time; point-pair registration was used to register the operation room coordinate system, and the image coordinate system; and the image display system showed the 3D CG image in the field-of-view of the microscope. Ten neurosurgeons (seven males, two females; mean age 32.9 years) participated in an experiment to assess the accuracy of this system using a phantom model. Accuracy of our system was compared with the commercial system. The 3D CG provided by the navigation system coincided well with the operative scene under the microscope. Target registration error for our system was 2.9 ± 1.9 mm. Our navigation system provides a clear image of the operation position and the surrounding structures. Systems like this may reduce intraoperative complications.

  12. CISUS: an integrated 3D ultrasound system for IGT using a modular tracking API

    NASA Astrophysics Data System (ADS)

    Boctor, Emad M.; Viswanathan, Anand; Pieper, Steve; Choti, Michael A.; Taylor, Russell H.; Kikinis, Ron; Fichtinger, Gabor

    2004-05-01

    Ultrasound has become popular in clinical/surgical applications, both as the primary image guidance modality and also in conjunction with other modalities like CT or MRI. Three dimensional ultrasound (3DUS) systems have also demonstrated usefulness in image-guided therapy (IGT). At the same time, however, current lack of open-source and open-architecture multi-modal medical visualization systems prevents 3DUS from fulfilling its potential. Several stand-alone 3DUS systems, like Stradx or In-Vivo exist today. Although these systems have been found to be useful in real clinical setting, it is difficult to augment their functionality and integrate them in versatile IGT systems. To address these limitations, a robotic/freehand 3DUS open environment (CISUS) is being integrated into the 3D Slicer, an open-source research tool developed for medical image analysis and surgical planning. In addition, the system capitalizes on generic application programming interfaces (APIs) for tracking devices and robotic control. The resulting platform-independent open-source system may serve as a valuable tool to the image guided surgery community. Other researchers could straightforwardly integrate the generic CISUS system along with other functionalities (i.e. dual view visualization, registration, real-time tracking, segmentation, etc) to rapidly create their medical/surgical applications. Our current driving clinical application is robotically assisted and freehand 3DUS-guided liver ablation, which is fully being integrated under the CISUS-3D Slicer. Initial functionality and pre-clinical feasibility are demonstrated on phantom and ex-vivo animal models.

  13. Characterization of 3D printing output using an optical sensing system

    NASA Astrophysics Data System (ADS)

    Straub, Jeremy

    2015-05-01

    This paper presents the experimental design and initial testing of a system to characterize the progress and performance of a 3D printer. The system is based on five Raspberry Pi single-board computers. It collects images of the 3D printed object, which are compared to an ideal model. The system, while suitable for printers of all sizes, can potentially be produced at a sufficiently low cost to allow its incorporation into consumer-grade printers. The efficacy and accuracy of this system is presented and discussed. The paper concludes with a discussion of the benefits of being able to characterize 3D printer performance.

  14. 3D Acoustic Mapping Of The Kuroshio (Taiwan Current) Off The Southeast Coast Of Taiwan

    DTIC Science & Technology

    2012-09-30

    739-8527, Japan TEL/FAX: +81-082-424-7625 E - mail : akaneko@hiroshima-u.ac.jp INTRODUCTION Ocean acoustic tomography (OAT) is a powerful tool...southeast of Taiwan were measured using two OAT transceiver systems , located 47-km apart near the underwater sound channel axis (at about 1,000 m depth...infrequent application to the western boundary current regions, located along the continental slopes. An OAT system , placed near the underwater sound

  15. 3D objects enlargement technique using an optical system and multiple SLMs for electronic holography.

    PubMed

    Yamamoto, Kenji; Ichihashi, Yasuyuki; Senoh, Takanori; Oi, Ryutaro; Kurita, Taiichiro

    2012-09-10

    One problem in electronic holography, which is caused by the display performance of spatial light modulators (SLM), is that the size of reconstructed 3D objects is small. Although methods for increasing the size using multiple SLMs have been considered, they typically had the problem that some parts of 3D objects were missing as a result of the gap between adjacent SLMs or 3D objects lost the vertical parallax. This paper proposes a method of resolving this problem by locating an optical system containing a lens array and other components in front of multiple SLMs. We used an optical system and 9 SLMs to construct a device equivalent to an SLM with approximately 74,600,000 pixels and used this to reconstruct 3D objects in both the horizontal and vertical parallax with an image size of 63 mm without losing any part of 3D objects.

  16. Generation of Multi-Scale Vascular Network System within 3D Hydrogel using 3D Bio-Printing Technology.

    PubMed

    Lee, Vivian K; Lanzi, Alison M; Haygan, Ngo; Yoo, Seung-Schik; Vincent, Peter A; Dai, Guohao

    2014-09-01

    Although 3D bio-printing technology has great potential in creating complex tissues with multiple cell types and matrices, maintaining the viability of thick tissue construct for tissue growth and maturation after the printing is challenging due to lack of vascular perfusion. Perfused capillary network can be a solution for this issue; however, construction of a complete capillary network at single cell level using the existing technology is nearly impossible due to limitations in time and spatial resolution of the dispensing technology. To address the vascularization issue, we developed a 3D printing method to construct larger (lumen size of ~1mm) fluidic vascular channels and to create adjacent capillary network through a natural maturation process, thus providing a feasible solution to connect the capillary network to the large perfused vascular channels. In our model, microvascular bed was formed in between two large fluidic vessels, and then connected to the vessels by angiogenic sprouting from the large channel edge. Our bio-printing technology has a great potential in engineering vascularized thick tissues and vascular niches, as the vascular channels are simultaneously created while cells and matrices are printed around the channels in desired 3D patterns.

  17. The CT-PPS tracking system with 3D pixel detectors

    NASA Astrophysics Data System (ADS)

    Ravera, F.

    2016-11-01

    The CMS-TOTEM Precision Proton Spectrometer (CT-PPS) detector will be installed in Roman pots (RP) positioned on either side of CMS, at about 210 m from the interaction point. This detector will measure leading protons, allowing detailed studies of diffractive physics and central exclusive production in standard LHC running conditions. An essential component of the CT-PPS apparatus is the tracking system, which consists of two detector stations per arm equipped with six 3D silicon pixel-sensor modules, each read out by six PSI46dig chips. The front-end electronics has been designed to fulfill the mechanical constraints of the RP and to be compatible as much as possible with the readout chain of the CMS pixel detector. The tracking system is currently under construction and will be installed by the end of 2016. In this contribution the final design and the expected performance of the CT-PPS tracking system is presented. A summary of the studies performed, before and after irradiation, on the 3D detectors produced for CT-PPS is given.

  18. Accuracy Evaluation of a 3D Ultrasound-guided Biopsy System.

    PubMed

    Wooten, Walter J; Nye, Jonathan A; Schuster, David M; Nieh, Peter T; Master, Viraj A; Votaw, John R; Fei, Baowei

    2013-03-14

    Early detection of prostate cancer is critical in maximizing the probability of successful treatment. Current systematic biopsy approach takes 12 or more randomly distributed core tissue samples within the prostate and can have a high potential, especially with early disease, for a false negative diagnosis. The purpose of this study is to determine the accuracy of a 3D ultrasound-guided biopsy system. Testing was conducted on prostate phantoms created from an agar mixture which had embedded markers. The phantoms were scanned and the 3D ultrasound system was used to direct the biopsy. Each phantom was analyzed with a CT scan to obtain needle deflection measurements. The deflection experienced throughout the biopsy process was dependent on the depth of the biopsy target. The results for markers at a depth of less than 20 mm, 20-30 mm, and greater than 30 mm were 3.3 mm, 4.7 mm, and 6.2 mm, respectively. This measurement encapsulates the entire biopsy process, from the scanning of the phantom to the firing of the biopsy needle. Increased depth of the biopsy target caused a greater deflection from the intended path in most cases which was due to an angular incidence of the biopsy needle. Although some deflection was present, this system exhibits a clear advantage in the targeted biopsy of prostate cancer and has the potential to reduce the number of false negative biopsies for large lesions.

  19. Accuracy evaluation of a 3D ultrasound-guided biopsy system

    NASA Astrophysics Data System (ADS)

    Wooten, Walter J.; Nye, Jonathan A.; Schuster, David M.; Nieh, Peter T.; Master, Viraj A.; Votaw, John R.; Fei, Baowei

    2013-03-01

    Early detection of prostate cancer is critical in maximizing the probability of successful treatment. Current systematic biopsy approach takes 12 or more randomly distributed core tissue samples within the prostate and can have a high potential, especially with early disease, for a false negative diagnosis. The purpose of this study is to determine the accuracy of a 3D ultrasound-guided biopsy system. Testing was conducted on prostate phantoms created from an agar mixture which had embedded markers. The phantoms were scanned and the 3D ultrasound system was used to direct the biopsy. Each phantom was analyzed with a CT scan to obtain needle deflection measurements. The deflection experienced throughout the biopsy process was dependent on the depth of the biopsy target. The results for markers at a depth of less than 20 mm, 20-30 mm, and greater than 30 mm were 3.3 mm, 4.7 mm, and 6.2 mm, respectively. This measurement encapsulates the entire biopsy process, from the scanning of the phantom to the firing of the biopsy needle. Increased depth of the biopsy target caused a greater deflection from the intended path in most cases which was due to an angular incidence of the biopsy needle. Although some deflection was present, this system exhibits a clear advantage in the targeted biopsy of prostate cancer and has the potential to reduce the number of false negative biopsies for large lesions.

  20. Object-adaptive depth compensated inter prediction for depth video coding in 3D video system

    NASA Astrophysics Data System (ADS)

    Kang, Min-Koo; Lee, Jaejoon; Lim, Ilsoon; Ho, Yo-Sung

    2011-01-01

    Nowadays, the 3D video system using the MVD (multi-view video plus depth) data format is being actively studied. The system has many advantages with respect to virtual view synthesis such as an auto-stereoscopic functionality, but compression of huge input data remains a problem. Therefore, efficient 3D data compression is extremely important in the system, and problems of low temporal consistency and viewpoint correlation should be resolved for efficient depth video coding. In this paper, we propose an object-adaptive depth compensated inter prediction method to resolve the problems where object-adaptive mean-depth difference between a current block, to be coded, and a reference block are compensated during inter prediction. In addition, unique properties of depth video are exploited to reduce side information required for signaling decoder to conduct the same process. To evaluate the coding performance, we have implemented the proposed method into MVC (multiview video coding) reference software, JMVC 8.2. Experimental results have demonstrated that our proposed method is especially efficient for depth videos estimated by DERS (depth estimation reference software) discussed in the MPEG 3DV coding group. The coding gain was up to 11.69% bit-saving, and it was even increased when we evaluated it on synthesized views of virtual viewpoints.

  1. Simulations of high current wire array Z-pinches using a parallel 3D resistive MHD

    NASA Astrophysics Data System (ADS)

    Chittenden, J. P.; Jennings, C. A.; Ciardi, A.

    2006-10-01

    We present calculations of the implosion and stagnation phases of wire array Z-pinches at Sandia National Laboratory which model the full 3D plasma volume. Modelling the full volume in 3D is found to be necessary in order to accommodate all possible mechanisms for broadening the width of the imploding plasma and for modelling all modes of instability in the stagnated pinch. The width of the imploding plasma is shown to arise from the evolution of the uncorrelated modulations present on each wire in the array early in time into a globally correlated 3D instability structure. The 3D nature of the collision of two nested arrays is highlighted and the implications for radiation pulse shaping are discussed. The addition of a simple circuit model to model the Z generator allows the pinch energetics during stagnation to be treated more accurately and provides another point of comparison to experimental data. The implications of these results for improved X-ray production are discussed both for the keV range and for soft X-ray radiation sources used in inertial confinement fusion research. This work was partially supported by the U.S. Department of Energy through cooperative agreement DE-FC03-02NA00057.

  2. Non-linear Tearing and Flux rope Formation in 3D Null Current Sheets

    NASA Astrophysics Data System (ADS)

    Wyper, P. F.; Pontin, D. I.

    2014-12-01

    The manner in which small scale structure affects the large scale reconnection process in realistic 3D geometries is still an unsolved problem. With the increase in computational resources and improvements in satellite instrumentation, signatures of flux ropes or "plasmoids" are now observed with increasing regularity, yet their formation and dynamics are poorly understood. It has been demonstrated that even at MHD scales, in 2D rapid non-linear tearing of Sweet-Parker-like layers forms multiple magnetic islands ("plasmoids") and allows the reconnection rate to become almost independent of the Lundquist number (the "plasmoid instability"). This work presents some of our recent theoretical work focussing on an analogous instability in a fully 3D geometry. Using results from a series of 3D high resolution MHD simulations, the formation and evolution of fully three dimensional "flux rope" structures following the 3D plasmoid instability will be presented, and their effects on the manner of the reconnection process as a whole discussed.

  3. Development of a 3D Electromagnetic Model for Eddy Current Tubing Inspection: Application to Steam Generator Tubing

    SciTech Connect

    Pichenot, G.; Premel, D.; Sollier, T.; Maillot, V.

    2004-02-26

    In nuclear plants, the inspection of heat exchanger tubes is usually carried out by using eddy current nondestructive testing. A numerical model, based on a volume integral approach using the Green's dyadic formalism, has been developed, with support from the French Institute for Radiological Protection and Nuclear Safety, to predict the response of an eddy current bobbin coil to 3D flaws located in the tube's wall. With an aim of integrating this model into the NDE multi techniques platform CIVA, it has been validated with experimental data for 2D and 3D flaws.

  4. [Current status of 3D/4D volume ultrasound of the breast].

    PubMed

    Weismann, C; Hergan, K

    2007-06-01

    3D/4D volume ultrasound is an established method that offers various options for analyzing and presenting ultrasound volume data. The following imaging techniques are based on automatically acquired ultrasound volumes. The multiplanar view is the typical mode of 3D ultrasound data presentation. The niche mode view is a cut open view of the volume data set. The surface mode is a rendering technique that represents the data within a volume of interest (VOI) with different slice thicknesses (typically 1-4 mm) with a contrast-enhanced surface algorithm. Related to the diagnostic target, the transparency mode helps to present echopoor or echorich structures and their spatial relationships within the ultrasound volume. Glass body rendering is a special type of transparency mode that makes the grayscale data transparent and shows the color flow data in a surface render mode. The inversion mode offers a three-dimensional surface presentation of echopoor lesions. Volume Contrast Imaging (VCI) works with static 3D volume data and is able to be used with 4D for dynamic scanning. Volume calculation of a lesion and virtual computer-assisted organ analysis of the same lesion is performed with VoCal software. Tomographic Ultrasound Imaging (TUI) is the perfect tool to document static 3D ultrasound volumes. 3D/4D volume ultrasound of the breast provides diagnostic information of the coronal plane. In this plane benign lesions show the compression pattern sign, while malignant lesions show the retraction pattern or star pattern sign. The indeterminate pattern of a lesion combines signs of compression and retraction or star pattern in the coronal plane. Glass body rendering in combination with Power-Doppler, Color-Doppler or High-Definition Flow Imaging presents the intra- and peritumoral three-dimensional vascular architecture. 3D targeting shows correct or incorrect needle placement in all three planes after 2D or 4D needle guidance. In conclusion, it is safe to say that 3D/4D

  5. A GIS Based 3D Online Decision Assistance System for Underground Energy Storage in Northern Germany

    NASA Astrophysics Data System (ADS)

    Nolde, M.; Schwanebeck, M.; Biniyaz, E.; Duttmann, R.

    2014-12-01

    We would like to present a GIS-based 3D online decision assistance system for underground energy storage. Its aim is to support the local land use planning authorities through pre-selection of possible sites for thermal, electrical and substantial underground energy storages. Since the extension of renewable energies has become legal requirement in Germany, the underground storing of superfluously produced green energy (such as during a heavy wind event) in the form of compressed air, gas or heated water has become increasingly important. However, the selection of suitable sites is a complex task. The assistance system uses data of geological features such as rock layers, salt caverns and faults enriched with attribute data such as rock porosity and permeability. This information is combined with surface data of the existing energy infrastructure, such as locations of wind and biogas stations, power line arrangement and cable capacity, and energy distribution stations. Furthermore, legal obligations such as protected areas on the surface and current underground mining permissions are used for the decision finding process. Not only the current situation but also prospective scenarios, such as expected growth in produced amount of energy are incorporated in the system. The decision process is carried out via the 'Analytic Hierarchy Process' (AHP) methodology of the 'Multi Object Decision Making' (MODM) approach. While the process itself is completely automated, the user has full control of the weighting of the different factors via the web interface. The system is implemented as an online 3D server GIS environment, with no software needed to be installed on the user side. The results are visualized as interactive 3d graphics. The implementation of the assistance system is based exclusively on free and open source software, and utilizes the 'Python' programming language in combination with current web technologies, such as 'HTML5', 'CSS3' and 'JavaScript'. It is

  6. SPADAS: a high-speed 3D single-photon camera for advanced driver assistance systems

    NASA Astrophysics Data System (ADS)

    Bronzi, D.; Zou, Y.; Bellisai, S.; Villa, F.; Tisa, S.; Tosi, A.; Zappa, F.

    2015-02-01

    Advanced Driver Assistance Systems (ADAS) are the most advanced technologies to fight road accidents. Within ADAS, an important role is played by radar- and lidar-based sensors, which are mostly employed for collision avoidance and adaptive cruise control. Nonetheless, they have a narrow field-of-view and a limited ability to detect and differentiate objects. Standard camera-based technologies (e.g. stereovision) could balance these weaknesses, but they are currently not able to fulfill all automotive requirements (distance range, accuracy, acquisition speed, and frame-rate). To this purpose, we developed an automotive-oriented CMOS single-photon camera for optical 3D ranging based on indirect time-of-flight (iTOF) measurements. Imagers based on Single-photon avalanche diode (SPAD) arrays offer higher sensitivity with respect to CCD/CMOS rangefinders, have inherent better time resolution, higher accuracy and better linearity. Moreover, iTOF requires neither high bandwidth electronics nor short-pulsed lasers, hence allowing the development of cost-effective systems. The CMOS SPAD sensor is based on 64 × 32 pixels, each able to process both 2D intensity-data and 3D depth-ranging information, with background suppression. Pixel-level memories allow fully parallel imaging and prevents motion artefacts (skew, wobble, motion blur) and partial exposure effects, which otherwise would hinder the detection of fast moving objects. The camera is housed in an aluminum case supporting a 12 mm F/1.4 C-mount imaging lens, with a 40°×20° field-of-view. The whole system is very rugged and compact and a perfect solution for vehicle's cockpit, with dimensions of 80 mm × 45 mm × 70 mm, and less that 1 W consumption. To provide the required optical power (1.5 W, eye safe) and to allow fast (up to 25 MHz) modulation of the active illumination, we developed a modular laser source, based on five laser driver cards, with three 808 nm lasers each. We present the full characterization of

  7. Impact of the 3-D model strategy on science learning of the solar system

    NASA Astrophysics Data System (ADS)

    Alharbi, Mohammed

    The purpose of this mixed method study, quantitative and descriptive, was to determine whether the first-middle grade (seventh grade) students at Saudi schools are able to learn and use the Autodesk Maya software to interact and create their own 3-D models and animations and whether their use of the software influences their study habits and their understanding of the school subject matter. The study revealed that there is value to the science students regarding the use of 3-D software to create 3-D models to complete science assignments. Also, this study aimed to address the middle-school students' ability to learn 3-D software in art class, and then ultimately use it in their science class. The success of this study may open the way to consider the impact of 3-D modeling on other school subjects, such as mathematics, art, and geography. When the students start using graphic design, including 3-D software, at a young age, they tend to develop personal creativity and skills. The success of this study, if applied in schools, will provide the community with skillful young designers and increase awareness of graphic design and the new 3-D technology. Experimental method was used to answer the quantitative research question, are there significant differences applying the learning method using 3-D models (no 3-D, premade 3-D, and create 3-D) in a science class being taught about the solar system and its impact on the students' science achievement scores? Descriptive method was used to answer the qualitative research questions that are about the difficulty of learning and using Autodesk Maya software, time that students take to use the basic levels of Polygon and Animation parts of the Autodesk Maya software, and level of students' work quality.

  8. Hierarchical micro-lamella-structured 3D porous copper current collector coated with tin for advanced lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Park, Hyeji; Um, Ji Hyun; Choi, Hyelim; Yoon, Won-Sub; Sung, Yung-Eun; Choe, Heeman

    2017-03-01

    A Novel 3D porous Sn-Cu architecture is prepared as an anode material for use in an advanced lithium-ion battery. Micro-lamellar-structured 3D porous Cu foam, which is electroless-plated with Sn as an active material, is used as anode current collector. Compared to Sn-coated Cu foil, the 3D Sn-Cu foam exhibits superior Li-ion capacity and stable capacity retention, demonstrating the advantage of 3D porous architecture by preserving its structural integrity. In addition, the effect of heat-treatment after Sn plating is investigated. Sn/Sn6Cu5 and SnO2/Cu10Sn3 were formed on and in the 3D Sn-Cu foam under the heat-treatment at 150 °C and 500 °C, respectively. The development of Cu10Sn3 in the 3D Sn-Cu foam heat-treated at 500 °C can be a key factor for the enhanced cyclic stability because the Cu10Sn3 inactively reacts with Li-ion and alleviates the volume expansion of SnO2 as an inactive matrix.

  9. A fast 3D reconstruction system with a low-cost camera accessory

    NASA Astrophysics Data System (ADS)

    Zhang, Yiwei; Gibson, Graham M.; Hay, Rebecca; Bowman, Richard W.; Padgett, Miles J.; Edgar, Matthew P.

    2015-06-01

    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object.

  10. A fast 3D reconstruction system with a low-cost camera accessory

    PubMed Central

    Zhang, Yiwei; Gibson, Graham M.; Hay, Rebecca; Bowman, Richard W.; Padgett, Miles J.; Edgar, Matthew P.

    2015-01-01

    Photometric stereo is a three dimensional (3D) imaging technique that uses multiple 2D images, obtained from a fixed camera perspective, with different illumination directions. Compared to other 3D imaging methods such as geometry modeling and 3D-scanning, it comes with a number of advantages, such as having a simple and efficient reconstruction routine. In this work, we describe a low-cost accessory to a commercial digital single-lens reflex (DSLR) camera system allowing fast reconstruction of 3D objects using photometric stereo. The accessory consists of four white LED lights fixed to the lens of a commercial DSLR camera and a USB programmable controller board to sequentially control the illumination. 3D images are derived for different objects with varying geometric complexity and results are presented, showing a typical height error of <3 mm for a 50 mm sized object. PMID:26057407

  11. Detecting method of subjects' 3D positions and experimental advanced camera control system

    NASA Astrophysics Data System (ADS)

    Kato, Daiichiro; Abe, Kazuo; Ishikawa, Akio; Yamada, Mitsuho; Suzuki, Takahito; Kuwashima, Shigesumi

    1997-04-01

    Steady progress is being made in the development of an intelligent robot camera capable of automatically shooting pictures with a powerful sense of reality or tracking objects whose shooting requires advanced techniques. Currently, only experienced broadcasting cameramen can provide these pictures.TO develop an intelligent robot camera with these abilities, we need to clearly understand how a broadcasting cameraman assesses his shooting situation and how his camera is moved during shooting. We use a real- time analyzer to study a cameraman's work and his gaze movements at studios and during sports broadcasts. This time, we have developed a detecting method of subjects' 3D positions and an experimental camera control system to help us further understand the movements required for an intelligent robot camera. The features are as follows: (1) Two sensor cameras shoot a moving subject and detect colors, producing its 3D coordinates. (2) Capable of driving a camera based on camera movement data obtained by a real-time analyzer. 'Moving shoot' is the name we have given to the object position detection technology on which this system is based. We used it in a soccer game, producing computer graphics showing how players moved. These results will also be reported.

  12. A new 3D LDV system for the NASA Ames 6 x 6 ft. wind tunnel

    NASA Technical Reports Server (NTRS)

    Owen, F. K.; Orngard, G. M.; Mcdevitt, T. K.

    1985-01-01

    An obvious extension of wind tunnel laser Doppler velocimetry (LDV), which is currently mainly limited to two-component measurements, would involve the measurement of three simultaneous velocity components. The present paper is concerned with an approach to reduce the degree of optical complexity involved in the design of a three-dimensional (3D) LDV system, taking into account the use of polarization separation. Such a system, utilizing polarization as well as color separation, has been designed and tested in a 6 x 6 foot supersonic wind tunnel. The considered instrument was designed for the on line measurement of three mean velocity components, turbulence levels, and shear stresses on a number of models under a wide variety of test conditions. Attention is given to optical details, data reduction, and sample application.

  13. 3D detection of obstacle distribution in walking guide system for the blind

    NASA Astrophysics Data System (ADS)

    Yoon, Myoung-Jong; Yu, Kee-Ho

    2007-12-01

    In this paper, the concept of a walking guide system with tactile display is introduced, and experiments of 3-D obstacle detection and tactile perception are carried out and analyzed. The algorithm of 3-D obstacle detection and the method of mapping the generated obstacle map and the tactile display device for the walking guide system are proposed. The experiment of the 3-D detection for the obstacle position using ultrasonic sensors is performed and estimated. Some design guidelines for a tactile display device that can display obstacle distribution is discussed.

  14. Development of 3D Woven Ablative Thermal Protection Systems (TPS) for NASA Spacecraft

    NASA Technical Reports Server (NTRS)

    Feldman, Jay D.; Ellerby, Don; Stackpoole, Mairead; Peterson, Keith; Venkatapathy, Ethiraj

    2015-01-01

    The development of a new class of thermal protection system (TPS) materials known as 3D Woven TPS led by the Entry Systems and Technology Division of NASA Ames Research Center (ARC) will be discussed. This effort utilizes 3D weaving and resin infusion technologies to produce heat shield materials that are engineered and optimized for specific missions and requirements. A wide range of architectures and compositions have been produced and preliminarily tested to prove the viability and tailorability of the 3D weaving approach to TPS.

  15. A 3D acquisition system combination of structured-light scanning and shape from silhouette

    NASA Astrophysics Data System (ADS)

    Sun, Changku; Tao, Li; Wang, Peng; He, Li

    2006-05-01

    A robust and accurate three dimensional (3D) acquisition system is presented, which is a combination of structured-light scanning and shape from silhouette. Using common world coordinate system, two groups of point data can be integrated into the final complete 3D model without any integration and registration algorithm. The mathematics model of structured-light scanning is described in detail, and the shape from silhouette algorithm is introduced as well. The complete 3D model of a cup with a handle is obtained successfully by the proposed technique. At last the measurement on a ball bearing is performed, with the measurement precision better than 0.15 mm.

  16. Comparison of Failure Modes in 2-D and 3-D Woven Carbon Phenolic Systems

    NASA Technical Reports Server (NTRS)

    Rossman, Grant A.; Stackpoole, Mairead; Feldman, Jay; Venkatapathy, Ethiraj; Braun, Robert D.

    2013-01-01

    NASA Ames Research Center is developing Woven Thermal Protection System (WTPS) materials as a new class of heatshields for entry vehicles (Stackpoole). Currently, there are few options for ablative entry heatshield materials, none of which is ideally suited to the planetary probe missions currently of interest to NASA. While carbon phenolic was successfully used for the missions Pioneer Venus and Galileo (to Jupiter), the heritage constituents are no longer available. An alternate carbon phenolic would need to be qualified for probe missions, which is most efficient at heat fluxes greater than those currently of interest. Additional TPS materials such as Avcoat and PICA are not sufficiently robust for the heat fluxes required. As a result, there is a large TPS gap between the materials efficient at very high conditions (carbon phenolic) and those that are effective at low-moderate conditions (all others). Development of 3D Woven TPS is intended to fill this gap, targeting mid-density weaves that could with withstand mid-range heat fluxes between 1100 W/sq cm and 8000 W/sq cm (Venkatapathy (2012). Preliminary experimental studies have been performed to show the feasibility of WTPS as a future mid-range TPS material. One study performed in the mARC Jet Facility at NASA Ames Research Center characterized the performance of a 3D Woven TPS sample and compared it to 2D carbon phenolic samples at ply angles of 0deg, 23.5deg, and 90deg. Each sample contained similar compositions of phenolic and carbon fiber volume fractions for experimental consistency. The goal of this study was to compare the performance of the TPS materials by evaluating resulting recession and failure modes. After exposing both samples to similar heat flux and pressure conditions, the 2D carbon phenolic laminate was shown to experience significant delamination between layers and further pocketing underneath separated layers. The 3D Woven TPS sample did not experience the delamination or pocketing

  17. Peach Bottom 2 Turbine Trip Simulation Using TRAC-BF1/COS3D, a Best-Estimate Coupled 3-D Core and Thermal-Hydraulic Code System

    SciTech Connect

    Ui, Atsushi; Miyaji, Takamasa

    2004-10-15

    The best-estimate coupled three-dimensional (3-D) core and thermal-hydraulic code system TRAC-BF1/COS3D has been developed. COS3D, based on a modified one-group neutronic model, is a 3-D core simulator used for licensing analyses and core management of commercial boiling water reactor (BWR) plants in Japan. TRAC-BF1 is a plant simulator based on a two-fluid model. TRAC-BF1/COS3D is a coupled system of both codes, which are connected using a parallel computing tool. This code system was applied to the OECD/NRC BWR Turbine Trip Benchmark. Since the two-group cross-section tables are provided by the benchmark team, COS3D was modified to apply to this specification. Three best-estimate scenarios and four hypothetical scenarios were calculated using this code system. In the best-estimate scenario, the predicted core power with TRAC-BF1/COS3D is slightly underestimated compared with the measured data. The reason seems to be a slight difference in the core boundary conditions, that is, pressure changes and the core inlet flow distribution, because the peak in this analysis is sensitive to them. However, the results of this benchmark analysis show that TRAC-BF1/COS3D gives good precision for the prediction of the actual BWR transient behavior on the whole. Furthermore, the results with the modified one-group model and the two-group model were compared to verify the application of the modified one-group model to this benchmark. This comparison shows that the results of the modified one-group model are appropriate and sufficiently precise.

  18. IMPROMPTU: a system for automatic 3D medical image-analysis.

    PubMed

    Sundaramoorthy, G; Hoford, J D; Hoffman, E A; Higgins, W E

    1995-01-01

    The utility of three-dimensional (3D) medical imaging is hampered by difficulties in extracting anatomical regions and making measurements in 3D images. Presently, a user is generally forced to use time-consuming, subjective, manual methods, such as slice tracing and region painting, to define regions of interest. Automatic image-analysis methods can ameliorate the difficulties of manual methods. This paper describes a graphical user interface (GUI) system for constructing automatic image-analysis processes for 3D medical-imaging applications. The system, referred to as IMPROMPTU, provides a user-friendly environment for prototyping, testing and executing complex image-analysis processes. IMPROMPTU can stand alone or it can interact with an existing graphics-based 3D medical image-analysis package (VIDA), giving a strong environment for 3D image-analysis, consisting of tools for visualization, manual interaction, and automatic processing. IMPROMPTU links to a large library of 1D, 2D, and 3D image-processing functions, referred to as VIPLIB, but a user can easily link in custom-made functions. 3D applications of the system are given for left-ventricular chamber, myocardial, and upper-airway extractions.

  19. GEO3D - Three-Dimensional Computer Model of a Ground Source Heat Pump System

    SciTech Connect

    James Menart

    2013-06-07

    This file is the setup file for the computer program GEO3D. GEO3D is a computer program written by Jim Menart to simulate vertical wells in conjunction with a heat pump for ground source heat pump (GSHP) systems. This is a very detailed three-dimensional computer model. This program produces detailed heat transfer and temperature field information for a vertical GSHP system.

  20. 3D and 4D atlas system of living human body structure.

    PubMed

    Suzuki, N; Takatsu, A; Hattori, A; Ezumi, T; Oda, S; Yanai, T; Tominaga, H

    1998-01-01

    A reference system for accessing anatomical information from a complete 3D structure of the whole body "living human", including 4D cardiac dynamics, was reconstructed with 3D and 4D data sets obtained from normal volunteers. With this system, we were able to produce a human atlas in which sectional images can be accessed from any part of the human body interactively by real-time image generation.

  1. Real-time 3D human capture system for mixed-reality art and entertainment.

    PubMed

    Nguyen, Ta Huynh Duy; Qui, Tran Cong Thien; Xu, Ke; Cheok, Adrian David; Teo, Sze Lee; Zhou, ZhiYing; Mallawaarachchi, Asitha; Lee, Shang Ping; Liu, Wei; Teo, Hui Siang; Thang, Le Nam; Li, Yu; Kato, Hirokazu

    2005-01-01

    A real-time system for capturing humans in 3D and placing them into a mixed reality environment is presented in this paper. The subject is captured by nine cameras surrounding her. Looking through a head-mounted-display with a camera in front pointing at a marker, the user can see the 3D image of this subject overlaid onto a mixed reality scene. The 3D images of the subject viewed from this viewpoint are constructed using a robust and fast shape-from-silhouette algorithm. The paper also presents several techniques to produce good quality and speed up the whole system. The frame rate of our system is around 25 fps using only standard Intel processor-based personal computers. Besides a remote live 3D conferencing and collaborating system, we also describe an application of the system in art and entertainment, named Magic Land, which is a mixed reality environment where captured avatars of human and 3D computer generated virtual animations can form an interactive story and play with each other. This system demonstrates many technologies in human computer interaction: mixed reality, tangible interaction, and 3D communication. The result of the user study not only emphasizes the benefits, but also addresses some issues of these technologies.

  2. Geological evolution of the North Sea: a dynamic 3D model including petroleum system elements

    NASA Astrophysics Data System (ADS)

    Sabine, Heim; Rüdiger, Lutz; Dirk, Kaufmann; Lutz, Reinhardt

    2013-04-01

    This study investigates the sedimentary basin evolution of the German North Sea with a focus on petroleum generation, migration and accumulation. The study is conducted within the framework of the project "Geoscientific Potential of the German North Sea (GPDN)", a joint project of federal (BGR, BSH) and state authorities (LBEG) with partners from industry and scientific institutions. Based on the structural model of the "Geotektonischer Atlas 3D" (GTA3D, LBEG), this dynamic 3D model contains additionally the northwestern part ("Entenschnabel" area) of the German North Sea. Geological information, e.g. lithostratigraphy, facies and structural data, provided by industry, was taken from published research projects, or literature data such as the Southern Permian Basin Atlas (SPBA; Doornenbal et al., 2010). Numerical modeling was carried out for a sedimentary succession containing 17 stratigraphic layers and several sublayers, representing the sedimentary deposition from the Devonian until Present. Structural details have been considered in terms of simplified faults and salt structures, as well as main erosion and salt movement events. Lithology, facies and the boundary conditions e.g. heat flow, paleo water-depth and sediment water interface temperature were assigned. The system calibration is based on geochemical and petrological data, such as maturity of organic matter (VRr) and present day temperature. Due to the maturity of the sedimentary organic matter Carboniferous layers are the major source rocks for gas generation. Main reservoir rocks are the Rotliegend sandstones, furthermore, sandstones of the Lower Triassic and Jurassic can serve as reservoir rocks in areas where the Zechstein salts are absent. The model provides information on the temperature and maturity distribution within the main source rock layers as well as information of potential hydrocarbon generation based on kinetic data for gas liberation. Finally, this dynamic 3D model offers a first

  3. Augmented Reality Imaging System: 3D Viewing of a Breast Cancer

    PubMed Central

    Douglas, David B.; Boone, John M.; Petricoin, Emanuel; Liotta, Lance; Wilson, Eugene

    2016-01-01

    Objective To display images of breast cancer from a dedicated breast CT using Depth 3-Dimensional (D3D) augmented reality. Methods A case of breast cancer imaged using contrast-enhanced breast CT (Computed Tomography) was viewed with the augmented reality imaging, which uses a head display unit (HDU) and joystick control interface. Results The augmented reality system demonstrated 3D viewing of the breast mass with head position tracking, stereoscopic depth perception, focal point convergence and the use of a 3D cursor and joy-stick enabled fly through with visualization of the spiculations extending from the breast cancer. Conclusion The augmented reality system provided 3D visualization of the breast cancer with depth perception and visualization of the mass's spiculations. The augmented reality system should be further researched to determine the utility in clinical practice. PMID:27774517

  4. Research on gaze-based interaction to 3D display system

    NASA Astrophysics Data System (ADS)

    Kwon, Yong-Moo; Jeon, Kyeong-Won; Kim, Sung-Kyu

    2006-10-01

    There have been reported several researches on gaze tracking techniques using monocular camera or stereo camera. The most popular used gaze estimation techniques are based on PCCR (Pupil Center & Cornea Reflection). These techniques are for gaze tracking for 2D screen or images. In this paper, we address the gaze-based 3D interaction to stereo image for 3D virtual space. To the best of our knowledge, our paper first addresses the 3D gaze interaction techniques to 3D display system. Our research goal is the estimation of both of gaze direction and gaze depth. Until now, the most researches are focused on only gaze direction for the application to 2D display system. It should be noted that both of gaze direction and gaze depth should be estimated for the gaze-based interaction in 3D virtual space. In this paper, we address the gaze-based 3D interaction techniques with glassless stereo display. The estimation of gaze direction and gaze depth from both eyes is a new important research topic for gaze-based 3D interaction. We present our approach for the estimation of gaze direction and gaze depth and show experimentation results.

  5. 3D Hall MHD Reconnection Dynamics in a Strongly Sheared System

    NASA Astrophysics Data System (ADS)

    Huba, J. D.; Rudakov, L. I.

    2002-12-01

    A 3D Hall MHD simulation code (VooDoo) has recently been developed at the Naval Research Laboratory. Recent results have demonstrated that magnetic shock-like structures [Rudakov and Huba, 2002] and a `reconnection wave' [Huba and Rudakov, 2002] can propagate in three dimensional, reversed field plasma layers. In this talk we present preliminary results of a fully 3D magnetic reconnection process in a reversed field plasma that includes a strong guide field, i.e., no magnetic nulls. The initial configuration of the plasma system is as follows. The ambient, reversed magnetic field is in the x-direction with Bx = B0 tanh(y/Ly) where Ly is the scale length of the current sheet. The ambient guide field is in the z-direction with Bz = B0. Perturbation fields δ Bx and δ By are introduced to initiate the reconnection process. This initial configuration is similar to that used in the 2D GEM reconnection study. However, the perturbation fields are localized in the z-direction. We find that the magnetic topology of the system is reconfigured via a process akin to `magnetic flipping' described by Priest and Forbes (1992). A high-density, magnetic flux-rope forms in the center of the plasma sheet. Magnetic flipping occurs between the center of the flux-tube and the boundaries in the x-direction. Associated with this magnetic flipping geometry, the reconnected magnetic field component By reverses sign 3 times in the x-direction, in contrast to only once in the no-guide field case. As in previous Hall MHD reconnection simulation studies, the system evolves asymmetrically along the current. Huba, J.D. and L.I. Rudakov, to be published in Phys. Plasmas, 2002. Priest, E.R. and T.G. Forbes, J. Geophys. Res. 97, 1521, 1992. Rudakov, L.I. and J.D. Huba, Phys. Rev. Lett. 89, 095002, 2002. Research supported by NASA and ONR.

  6. An Open Source 3-D Printed Modular Micro-Drive System for Acute Neurophysiology

    PubMed Central

    Eskandar, Emad N.

    2014-01-01

    Current, commercial, electrode micro-drives that allow independent positioning of multiple electrodes are expensive. Custom designed solutions developed by individual laboratories require fabrication by experienced machinists working in well equipped machine shops and are therefore difficult to disseminate into widespread use. Here, we present an easy to assemble modular micro-drive system for acute primate neurophysiology (PriED) that utilizes rapid prototyping (3-d printing) and readily available off the shelf-parts. The use of 3-d printed parts drastically reduces the cost of the device, making it available to labs without the resources of sophisticated machine shops. The direct transfer of designs from electronic files to physical parts also gives researchers opportunities to easily modify and implement custom solutions to specific recording needs. We also demonstrate a novel model of data sharing for the scientific community: a publicly available repository of drive designs. Researchers can download the drive part designs from the repository, print, assemble and then use the drives. Importantly, users can upload their modified designs with annotations making them easily available for others to use. PMID:24736691

  7. Development of the crone seedlings handling system using 3D-sensor and force control gripper

    NASA Astrophysics Data System (ADS)

    Hojo, Hirotaka; Takarada, Hiroshi; Hiroyasu, Takahisa; Hata, Seiji

    2005-12-01

    The crone seedlings have unstable form and it is hard to handle. In order to transplant crone seedlings automatically, the functions of 3D-shape recognition and force control of grippers are indispensable. We have introduced the new handling technology which combines the 3D-mesurement using the relative stereo method and gripping method by gripping stroke control for high elasticity forceps structure. In this gripping method, the gripping force is controlled according to the shoot diameter which is measured by 3d-mesurment of relative stereo method. The experimental crone seedlings transplant system using the new handling technique has been shown.

  8. A real-time 3D end-to-end augmented reality system (and its representation transformations)

    NASA Astrophysics Data System (ADS)

    Tytgat, Donny; Aerts, Maarten; De Busser, Jeroen; Lievens, Sammy; Rondao Alface, Patrice; Macq, Jean-Francois

    2016-09-01

    The new generation of HMDs coming to the market is expected to enable many new applications that allow free viewpoint experiences with captured video objects. Current applications usually rely on 3D content that is manually created or captured in an offline manner. In contrast, this paper focuses on augmented reality applications that use live captured 3D objects while maintaining free viewpoint interaction. We present a system that allows live dynamic 3D objects (e.g. a person who is talking) to be captured in real-time. Real-time performance is achieved by traversing a number of representation formats and exploiting their specific benefits. For instance, depth images are maintained for fast neighborhood retrieval and occlusion determination, while implicit surfaces are used to facilitate multi-source aggregation for both geometry and texture. The result is a 3D reconstruction system that outputs multi-textured triangle meshes at real-time rates. An end-to-end system is presented that captures and reconstructs live 3D data and allows for this data to be used on a networked (AR) device. For allocating the different functional blocks onto the available physical devices, a number of alternatives are proposed considering the available computational power and bandwidth for each of the components. As we will show, the representation format can play an important role in this functional allocation and allows for a flexible system that can support a highly heterogeneous infrastructure.

  9. Billion-atom synchronous parallel kinetic Monte Carlo simulations of critical 3D Ising systems

    SciTech Connect

    Martinez, E.; Monasterio, P.R.; Marian, J.

    2011-02-20

    An extension of the synchronous parallel kinetic Monte Carlo (spkMC) algorithm developed by Martinez et al. [J. Comp. Phys. 227 (2008) 3804] to discrete lattices is presented. The method solves the master equation synchronously by recourse to null events that keep all processors' time clocks current in a global sense. Boundary conflicts are resolved by adopting a chessboard decomposition into non-interacting sublattices. We find that the bias introduced by the spatial correlations attendant to the sublattice decomposition is within the standard deviation of serial calculations, which confirms the statistical validity of our algorithm. We have analyzed the parallel efficiency of spkMC and find that it scales consistently with problem size and sublattice partition. We apply the method to the calculation of scale-dependent critical exponents in billion-atom 3D Ising systems, with very good agreement with state-of-the-art multispin simulations.

  10. Imaging the behavior of molecules in biological systems: breaking the 3D speed barrier with 3D multi-resolution microscopy.

    PubMed

    Welsher, Kevin; Yang, Haw

    2015-01-01

    The overwhelming effort in the development of new microscopy methods has been focused on increasing the spatial and temporal resolution in all three dimensions to enable the measurement of the molecular scale phenomena at the heart of biological processes. However, there exists a significant speed barrier to existing 3D imaging methods, which is associated with the overhead required to image large volumes. This overhead can be overcome to provide nearly unlimited temporal precision by simply focusing on a single molecule or particle via real-time 3D single-particle tracking and the newly developed 3D Multi-resolution Microscopy (3D-MM). Here, we investigate the optical and mechanical limits of real-time 3D single-particle tracking in the context of other methods. In particular, we investigate the use of an optical cantilever for position sensitive detection, finding that this method yields system magnifications of over 3000×. We also investigate the ideal PID control parameters and their effect on the power spectrum of simulated trajectories. Taken together, these data suggest that the speed limit in real-time 3D single particle-tracking is a result of slow piezoelectric stage response as opposed to optical sensitivity or PID control.

  11. Accurate 2D/3D electromagnetic modeling for time-domain airborne EM systems

    NASA Astrophysics Data System (ADS)

    Yin, C.; Hodges, G.

    2012-12-01

    The existing industry software cannot deliver correct results for 3D time-domain airborne EM responses. In this paper, starting from the Fourier transform and convolution, we compare the stability of different modeling techniques and analyze the reason for instable calculations of the time-domain airborne EM responses. We find that the singularity of the impulse responses of EM systems at very early time that are used in the convolution is responsible for the instability of the modeling (Fig.1). Based on this finding, we put forward an algorithm that uses step response rather than impulse response of the airborne EM system for the convolution and create a stable algorithm that delivers precise results and maintains well the integral/derivative relationship between the magnetic field B and the magnetic induction dB/dt. A three-step transformation procedure for the modeling is proposed: 1) output the frequency-domain EM response data from the existing software; 2) transform into step-response by digital Fourier/Hankel transform; 3) convolve the step response with the transmitting current or its derivatives. The method has proved to be working very well (Fig. 2). The algorithm can be extended to the modeling of other time-domain ground and airborne EM system responses.Fig. 1: Comparison of impulse and step responses for an airborne EM system Fig. 2: Bz and dBz/dt calculated from step (middle panel) and impulse responses (lower panel) for the same 3D model as in Fig.1.

  12. BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.

    PubMed

    Charvet, Guillaume; Rousseau, Lionel; Billoint, Olivier; Gharbi, Sadok; Rostaing, Jean-Pierre; Joucla, Sébastien; Trevisiol, Michel; Bourgerette, Alain; Chauvet, Philippe; Moulin, Céline; Goy, François; Mercier, Bruno; Colin, Mikael; Spirkovitch, Serge; Fanet, Hervé; Meyrand, Pierre; Guillemaud, Régis; Yvert, Blaise

    2010-04-15

    Microelectrode arrays (MEAs) offer a powerful tool to both record activity and deliver electrical microstimulations to neural networks either in vitro or in vivo. Microelectronics microfabrication technologies now allow building high-density MEAs containing several hundreds of microelectrodes. However, dense arrays of 3D micro-needle electrodes, providing closer contact with the neural tissue than planar electrodes, are not achievable using conventional isotropic etching processes. Moreover, increasing the number of electrodes using conventional electronics is difficult to achieve into compact devices addressing all channels independently for simultaneous recording and stimulation. Here, we present a full modular and versatile 256-channel MEA system based on integrated electronics. First, transparent high-density arrays of 3D-shaped microelectrodes were realized by deep reactive ion etching techniques of a silicon substrate reported on glass. This approach allowed achieving high electrode aspect ratios, and different shapes of tip electrodes. Next, we developed a dedicated analog 64-channel Application Specific Integrated Circuit (ASIC) including one amplification stage and one current generator per channel, and analog output multiplexing. A full modular system, called BIOMEA, has been designed, allowing connecting different types of MEAs (64, 128, or 256 electrodes) to different numbers of ASICs for simultaneous recording and/or stimulation on all channels. Finally, this system has been validated experimentally by recording and electrically eliciting low-amplitude spontaneous rhythmic activity (both LFPs and spikes) in the developing mouse CNS. The availability of high-density MEA systems with integrated electronics will offer new possibilities for both in vitro and in vivo studies of large neural networks.

  13. Characterisation of embroidered 3D electrodes by use of anthraquinone-1,5-disulfonic acid as probe system

    NASA Astrophysics Data System (ADS)

    Aguiló-Aguayo, Noemí; Bechtold, Thomas

    2014-05-01

    New electrode designs are required for electrochemical applications such as batteries or fuel cells. Embroidered 3D Cu porous electrodes with a geometric surface of 100 cm2 are presented and characterised by means of the anthraquinone-1,5-disfulfonic acid (AQDS2-) redox system in alkaline solution. The electrochemical behaviour of the 3D electrode is established by the comparison of cyclic voltammetry responses using a micro cell and a 100 cm2 plane Cu-plate electrode. Dependencies of the peak currents and peak-to-peak potential separation on scan rate and AQDS2- concentration are studied. The AQDS2- characterisation is also performed by means of spectroelectrochemical experiments.

  14. Core Formation in Planetesimals: Textural Analyses From 3D Synchrotron Imaging and Complex Systems Modeling

    NASA Astrophysics Data System (ADS)

    Rushmer, T. A.; Tordesillas, A.; Walker, D. M.; Parkinson, D. Y.; Clark, S. M.

    2012-12-01

    Recent scenarios of core formation in planetesimals using calculations from planetary dynamists and from extinct radionuclides (e.g. 26Al, 60Fe), call for segregation of a metal liquid (core) from both solid silicate and a partially molten silicate - a silicate mush - matrix. These segregation scenarios require segregation of metallic metal along fracture networks or by the growth of molten core material into blebs large enough to overcome the strength of the mush matrix. Such segregation scenarios usually involve high strain rates so that separation can occur, which is in agreement with the accretion model of planetary growth. Experimental work has suggested deformation and shear can help develop fracture networks and coalesce metallic blebs. Here, we have developed an innovative approach that currently combines 2D textures in experimental deformation experiments on a partially molten natural meteorite with complex network analyses. 3D textural data from experimental samples, deformed at high strain rates, with or without silicate melts present, have been obtained by synchrotron-based high resolution hard x-ray microtomography imaging. A series of two-dimensional images is collected as the sample is rotated, and tomographic reconstruction yields the full 3D representation of the sample. Virtual slices through the 3D object in any arbitrary direction can be visualized, or the full data set can be visualized by volume rendering. More importantly, automated image filtering and segmentation allows the extraction of boundaries between the various phases. The volumes, shapes, and distributions of each phase, and the connectivity between them, can then be quantitatively analysed, and these results can be compared to models. We are currently using these new visual data sets to augment our 2D data. These results will be included in our current complex system analytical approach. This integrated method can elucidate and quantify the growth of metallic blebs in regions where

  15. Small SWAP 3D imaging flash ladar for small tactical unmanned air systems

    NASA Astrophysics Data System (ADS)

    Bird, Alan; Anderson, Scott A.; Wojcik, Michael; Budge, Scott E.

    2015-05-01

    The Space Dynamics Laboratory (SDL), working with Naval Research Laboratory (NRL) and industry leaders Advanced Scientific Concepts (ASC) and Hood Technology Corporation, has developed a small SWAP (size, weight, and power) 3D imaging flash ladar (LAser Detection And Ranging) sensor system concept design for small tactical unmanned air systems (STUAS). The design utilizes an ASC 3D flash ladar camera and laser in a Hood Technology gyro-stabilized gimbal system. The design is an autonomous, intelligent, geo-aware sensor system that supplies real-time 3D terrain and target images. Flash ladar and visible camera data are processed at the sensor using a custom digitizer/frame grabber with compression. Mounted in the aft housing are power, controls, processing computers, and GPS/INS. The onboard processor controls pointing and handles image data, detection algorithms and queuing. The small SWAP 3D imaging flash ladar sensor system generates georeferenced terrain and target images with a low probability of false return and <10 cm range accuracy through foliage in real-time. The 3D imaging flash ladar is designed for a STUAS with a complete system SWAP estimate of <9 kg, <0.2 m3 and <350 W power. The system is modeled using LadarSIM, a MATLAB® and Simulink®- based ladar system simulator designed and developed by the Center for Advanced Imaging Ladar (CAIL) at Utah State University. We will present the concept design and modeled performance predictions.

  16. 2D and 3D Mechanobiology in Human and Nonhuman Systems.

    PubMed

    Warren, Kristin M; Islam, Md Mydul; LeDuc, Philip R; Steward, Robert

    2016-08-31

    Mechanobiology involves the investigation of mechanical forces and their effect on the development, physiology, and pathology of biological systems. The human body has garnered much attention from many groups in the field, as mechanical forces have been shown to influence almost all aspects of human life ranging from breathing to cancer metastasis. Beyond being influential in human systems, mechanical forces have also been shown to impact nonhuman systems such as algae and zebrafish. Studies of nonhuman and human systems at the cellular level have primarily been done in two-dimensional (2D) environments, but most of these systems reside in three-dimensional (3D) environments. Furthermore, outcomes obtained from 3D studies are often quite different than those from 2D studies. We present here an overview of a select group of human and nonhuman systems in 2D and 3D environments. We also highlight mechanobiological approaches and their respective implications for human and nonhuman physiology.

  17. Integration of Petrophysical Methods and 3D Printing Technology to Replicate Reservoir Pore Systems

    NASA Astrophysics Data System (ADS)

    Ishutov, S.; Hasiuk, F.; Gray, J.; Harding, C.

    2014-12-01

    Pore-scale imaging and modeling are becoming routine geoscience techniques of reservoir analysis and simulation in oil and gas industry. Three-dimensional printing may facilitate the transformation of pore-space imagery into rock models, which can be compared to traditional laboratory methods and literature data. Although current methodologies for rapid rock modeling and printing obscure many details of grain geometry, computed tomography data is one route to refine pore networks and experimentally test hypotheses related to rock properties, such as porosity and permeability. This study uses three-dimensional printing as a novel way of interacting with x-ray computed tomography data from reservoir core plugs based on digital modeling of pore systems in coarse-grained sandstones and limestones. The advantages of using artificial rocks as a proxy are to better understand the contributions of pore system characteristics at various scales to petrophysical properties in oil and gas reservoirs. Pore radii of reservoir sandstones used in this study range from 1 to 100s of microns, whereas the pore radii for limestones vary from 0.01 to 10s of microns. The resolution of computed tomography imaging is ~10 microns; the resolution of 3D digital printing used in the study varies from 2.5 to 300 microns. For this technology to be useful, loss of pore network information must be minimized in the course of data acquisition, modeling, and production as well as verified against core-scale measurements. The ultimate goal of this study is to develop a reservoir rock "photocopier" that couples 3D scanning and modeling with 3D printing to reproduce a) petrophyscially accurate copies of reservoir pore systems and b) digitally modified pore systems for testing hypotheses about reservoir flow. By allowing us to build porous media with known properties (porosity, permeability, surface area), technology will also advance our understanding of the tools used to measure these quantities (e

  18. Structure light telecentric stereoscopic vision 3D measurement system based on Scheimpflug condition

    NASA Astrophysics Data System (ADS)

    Mei, Qing; Gao, Jian; Lin, Hui; Chen, Yun; Yunbo, He; Wang, Wei; Zhang, Guanjin; Chen, Xin

    2016-11-01

    We designed a new three-dimensional (3D) measurement system for micro components: a structure light telecentric stereoscopic vision 3D measurement system based on the Scheimpflug condition. This system creatively combines the telecentric imaging model and the Scheimpflug condition on the basis of structure light stereoscopic vision, having benefits of a wide measurement range, high accuracy, fast speed, and low price. The system measurement range is 20 mm×13 mm×6 mm, the lateral resolution is 20 μm, and the practical vertical resolution reaches 2.6 μm, which is close to the theoretical value of 2 μm and well satisfies the 3D measurement needs of micro components such as semiconductor devices, photoelectron elements, and micro-electromechanical systems. In this paper, we first introduce the principle and structure of the system and then present the system calibration and 3D reconstruction. We then present an experiment that was performed for the 3D reconstruction of the surface topography of a wafer, followed by a discussion. Finally, the conclusions are presented.

  19. Implementation of a fully 3D system model for brain SPECT with fan- beam-collimator OSEM reconstruction with 3D total variation regularization

    NASA Astrophysics Data System (ADS)

    Ye, Hongwei; Krol, Andrzej; Lipson, Edward D.; Lu, Yao; Xu, Yuesheng; Lee, Wei; Feiglin, David H.

    2007-03-01

    In order to improve tomographically reconstructed image quality, we have implemented a fully 3D reconstruction, using an ordered subsets expectation maximization (OSEM) algorithm for fan-beam collimator (FBC) SPECT, along with a volumetric system model-fan-volume system model (FVSM), a modified attenuation compensation, a 3D depth- and angle-dependent resolution and sensitivity correction, and a 3D total variation (TV) regularization. SPECT data were acquired in a 128x64 matrix, in 120 views with a circular orbit. The numerical Zubal brain phantom was used to simulate a FBC HMPAO Tc-99m brain SPECT scan, and a low noise and scatter-free projection dataset was obtained using the SimSET Monte Carlo package. A SPECT scan for a mini-Defrise phantom and brain HMPAO SPECT scans for five patients were acquired with a triple-head gamma camera (Triad 88) equipped with a low-energy high-resolution (LEHR) FBC. The reconstructed images, obtained using clinical filtered back projection (FBP), OSEM with a line-length system model (LLSM) and 3D TV regularization, and OSEM with FVSM and 3D TV regularization were quantitatively studied. Overall improvement in the image quality has been observed, including better axial and transaxial resolution, better integral uniformity, higher contrast-to-noise ration between the gray matter and the white matter, and better accuracy and lower bias in OSEM-FVSM, compared with OSEM-LLSM and clinical FBP.

  20. System for conveyor belt part picking using structured light and 3D pose estimation

    NASA Astrophysics Data System (ADS)

    Thielemann, J.; Skotheim, Ø.; Nygaard, J. O.; Vollset, T.

    2009-01-01

    Automatic picking of parts is an important challenge to solve within factory automation, because it can remove tedious manual work and save labor costs. One such application involves parts that arrive with random position and orientation on a conveyor belt. The parts should be picked off the conveyor belt and placed systematically into bins. We describe a system that consists of a structured light instrument for capturing 3D data and robust methods for aligning an input 3D template with a 3D image of the scene. The method uses general and robust pre-processing steps based on geometric primitives that allow the well-known Iterative Closest Point algorithm to converge quickly and robustly to the correct solution. The method has been demonstrated for localization of car parts with random position and orientation. We believe that the method is applicable for a wide range of industrial automation problems where precise localization of 3D objects in a scene is needed.

  1. A 3D terrain reconstruction method of stereo vision based quadruped robot navigation system

    NASA Astrophysics Data System (ADS)

    Ge, Zhuo; Zhu, Ying; Liang, Guanhao

    2017-01-01

    To provide 3D environment information for the quadruped robot autonomous navigation system during walking through rough terrain, based on the stereo vision, a novel 3D terrain reconstruction method is presented. In order to solve the problem that images collected by stereo sensors have large regions with similar grayscale and the problem that image matching is poor at real-time performance, watershed algorithm and fuzzy c-means clustering algorithm are combined for contour extraction. Aiming at the problem of error matching, duel constraint with region matching and pixel matching is established for matching optimization. Using the stereo matching edge pixel pairs, the 3D coordinate algorithm is estimated according to the binocular stereo vision imaging model. Experimental results show that the proposed method can yield high stereo matching ratio and reconstruct 3D scene quickly and efficiently.

  2. Adaptive optimal quantization for 3D mesh representation in the spherical coordinate system

    NASA Astrophysics Data System (ADS)

    Ahn, Jeong-Hwan; Ho, Yo-Sung

    1998-12-01

    In recent days, applications using 3D models are increasing. Since the 3D model contains a huge amount of information, compression of the 3D model data is necessary for efficient storage or transmission. In this paper, we propose an adaptive encoding scheme to compress the geometry information of the 3D model. Using the Levinson-Durbin algorithm, the encoder first predicts vertex positions along a vertex spanning tree. After each prediction error is normalized, the prediction error vector of each vertex point is represented in the spherical coordinate system (r,(theta) ,(phi) ). Each r is then quantizes by an optimal uniform quantizer. A pair of each ((theta) ,(phi) ) is also successively encoded by partitioning the surface of the sphere according to the quantized value of r. The proposed scheme demonstrates improved coding efficiency by exploiting the statistical properties of r and ((theta) ,(phi) ).

  3. Simultaneous perimeter measurement for 3D object with a binocular stereo vision measurement system

    NASA Astrophysics Data System (ADS)

    Peng, Zhao; Guo-Qiang, Ni

    2010-04-01

    A simultaneous measurement scheme for multiple three-dimensional (3D) objects' surface boundary perimeters is proposed. This scheme consists of three steps. First, a binocular stereo vision measurement system with two CCD cameras is devised to obtain the two images of the detected objects' 3D surface boundaries. Second, two geodesic active contours are applied to converge to the objects' contour edges simultaneously in the two CCD images to perform the stereo matching. Finally, the multiple spatial contours are reconstructed using the cubic B-spline curve interpolation. The true contour length of every spatial contour is computed as the true boundary perimeter of every 3D object. An experiment on the bent surface's perimeter measurement for the four 3D objects indicates that this scheme's measurement repetition error decreases to 0.7 mm.

  4. Three-dimensional simulations of high-current beams in induction accelerators with WARP3d

    SciTech Connect

    Grote, D.P.; Friedman, A.; Haber, I.

    1995-09-01

    For many issues relevant to acceleration and propagation of heavy-ion beams for inertial confinement fusion, understanding the behavior of the beam requires the self-consistent inclusion of the self-fields of the beams in multiple dimensions. For these reasons, the three-dimensional simulation code WARP3d A.Friedman was developed. The code combines the particle-in-cell plasma simulation technique with a realistic description of the elements which make up an accelerator. In this paper, the general structure of the code is reviewed and details of two ongoing applications are presented along with a discussion of simulation techniques used. The most important results of this work are presented.

  5. Novel fully integrated computer system for custom footwear: from 3D digitization to manufacturing

    NASA Astrophysics Data System (ADS)

    Houle, Pascal-Simon; Beaulieu, Eric; Liu, Zhaoheng

    1998-03-01

    This paper presents a recently developed custom footwear system, which integrates 3D digitization technology, range image fusion techniques, a 3D graphical environment for corrective actions, parametric curved surface representation and computer numerical control (CNC) machining. In this system, a support designed with the help of biomechanics experts can stabilize the foot in a correct and neutral position. The foot surface is then captured by a 3D camera using active ranging techniques. A software using a library of documented foot pathologies suggests corrective actions on the orthosis. Three kinds of deformations can be achieved. The first method uses previously scanned pad surfaces by our 3D scanner, which can be easily mapped onto the foot surface to locally modify the surface shape. The second kind of deformation is construction of B-Spline surfaces by manipulating control points and modifying knot vectors in a 3D graphical environment to build desired deformation. The last one is a manual electronic 3D pen, which may be of different shapes and sizes, and has an adjustable 'pressure' information. All applied deformations should respect a G1 surface continuity, which ensure that the surface can accustom a foot. Once the surface modification process is completed, the resulting data is sent to manufacturing software for CNC machining.

  6. Evaluation and comparison of current biopsy needle localization and tracking methods using 3D ultrasound.

    PubMed

    Zhao, Yue; Shen, Yi; Bernard, Adeline; Cachard, Christian; Liebgott, Hervé

    2017-01-01

    This article compares four different biopsy needle localization algorithms in both 3D and 4D situations to evaluate their accuracy and execution time. The localization algorithms were: Principle component analysis (PCA), random Hough transform (RHT), parallel integral projection (PIP) and ROI-RK (ROI based RANSAC and Kalman filter). To enhance the contrast of the biopsy needle and background tissue, a line filtering pre-processing step was implemented. To make the PCA, RHT and PIP algorithms comparable with the ROI-RK method, a region of interest (ROI) strategy was added. Simulated and ex-vivo data were used to evaluate the performance of the different biopsy needle localization algorithms. The resolutions of the sectorial and cylindrical volumes were 0.3mm×0.4mm×0.6mmand0.1mm×0.1mm×0.2mm (axial×lateral×azimuthal) respectively. In so far as the simulation and experimental results show, the ROI-RK method successfully located and tracked the biopsy needle in both 3D and 4D situations. The tip localization error was within 1.5mm and the axis accuracy was within 1.6mm. To the best of our knowledge, considering both localization accuracy and execution time, the ROI-RK was the most stable and time-saving method. Normally, accuracy comes at the expense of time. However, the ROI-RK method was able to locate the biopsy needle with high accuracy in real time, which makes it a promising method for clinical applications.

  7. Advanced resin systems and 3D textile preforms for low cost composite structures

    NASA Technical Reports Server (NTRS)

    Shukla, J. G.; Bayha, T. D.

    1993-01-01

    Advanced resin systems and 3D textile preforms are being evaluated at Lockheed Aeronautical Systems Company (LASC) under NASA's Advanced Composites Technology (ACT) Program. This work is aimed towards the development of low-cost, damage-tolerant composite fuselage structures. Resin systems for resin transfer molding and powder epoxy towpreg materials are being evaluated for processability, performance and cost. Three developmental epoxy resin systems for resin transfer molding (RTM) and three resin systems for powder towpregging are being investigated. Various 3D textile preform architectures using advanced weaving and braiding processes are also being evaluated. Trials are being conducted with powdered towpreg, in 2D weaving and 3D braiding processes for their textile processability and their potential for fabrication in 'net shape' fuselage structures. The progress in advanced resin screening and textile preform development is reviewed here.

  8. Note: An improved 3D imaging system for electron-electron coincidence measurements

    SciTech Connect

    Lin, Yun Fei; Lee, Suk Kyoung; Adhikari, Pradip; Herath, Thushani; Lingenfelter, Steven; Winney, Alexander H.; Li, Wen

    2015-09-15

    We demonstrate an improved imaging system that can achieve highly efficient 3D detection of two electrons in coincidence. The imaging system is based on a fast frame complementary metal-oxide semiconductor camera and a high-speed waveform digitizer. We have shown previously that this detection system is capable of 3D detection of ions and electrons with good temporal and spatial resolution. Here, we show that with a new timing analysis algorithm, this system can achieve an unprecedented dead-time (<0.7 ns) and dead-space (<1 mm) when detecting two electrons. A true zero dead-time detection is also demonstrated.

  9. Development of a 3-D Measuring System for Upper Limb Movements Using Image Processing

    NASA Astrophysics Data System (ADS)

    Ogata, Kohichi; Toume, Tadashi; Nakanishi, Ryoji

    This paper describes a 3-D motion capture system for the quantitative evaluation of a finger-nose test using image processing. In the field of clinical medicine, qualitative and quantitative evaluation of voluntary movements is necessary for correct diagnosis of disorders. For this purpose, we have developed a 3-D measuring system with a multi-camera system. The configuration of the system is described and examples of movement data are shown for normal subjects and patients. In the finger-nose test at a fast trial speed, a discriminant analysis using Maharanobis generalized distances shows a discriminant rate of 93% between normal subjects and spinocerebellar degeneration(SCD) patients.

  10. 3D Biomaterial Microarrays for Regenerative Medicine: Current State-of-the-Art, Emerging Directions and Future Trends.

    PubMed

    Gaharwar, Akhilesh K; Arpanaei, Ayyoob; Andresen, Thomas L; Dolatshahi-Pirouz, Alireza

    2016-01-27

    Three dimensional (3D) biomaterial microarrays hold enormous promise for regenerative medicine because of their ability to accelerate the design and fabrication of biomimetic materials. Such tissue-like biomaterials can provide an appropriate microenvironment for stimulating and controlling stem cell differentiation into tissue-specific lineages. The use of 3D biomaterial microarrays can, if optimized correctly, result in a more than 1000-fold reduction in biomaterials and cells consumption when engineering optimal materials combinations, which makes these miniaturized systems very attractive for tissue engineering and drug screening applications.

  11. CS651 Computer Systems Security Foundations 3d Imagination Cyber Security Management Plan

    SciTech Connect

    Nielsen, Roy S.

    2015-03-02

    3d Imagination is a new company that bases its business on selling and improving 3d open source related hardware. The devices that they sell include 3d imagers, 3d printers, pick and place machines and laser etchers. They have a fast company intranet for ease in sharing, storing and printing large, complex 3d designs. They have an employee set that requires a variety of operating systems including Windows, Mac and a variety of Linux both for running business services as well as design and test machines. There are a wide variety of private networks for testing transfer rates to and from the 3d devices, without interference with other network tra c. They do video conferencing conferencing with customers and other designers. One of their machines is based on the project found at delta.firepick.org(Krassenstein, 2014; Biggs, 2014), which in future, will perform most of those functions. Their devices all include embedded systems, that may have full blown operating systems. Most of their systems are designed to have swappable parts, so when a new technology is born, it can be quickly adopted by people with 3d Imagination hardware. This company is producing a fair number of systems and components, however to get the funding they need to mass produce quality parts, so they are preparing for an IPO to raise the funds they need. They would like to have a cyber-security audit performed so they can give their investors con dence that they are protecting their data, customers information and printers in a proactive manner.

  12. Moving from Batch to Field Using the RT3D Reactive Transport Modeling System

    NASA Astrophysics Data System (ADS)

    Clement, T. P.; Gautam, T. R.

    2002-12-01

    The public domain reactive transport code RT3D (Clement, 1997) is a general-purpose numerical code for solving coupled, multi-species reactive transport in saturated groundwater systems. The code uses MODFLOW to simulate flow and several modules of MT3DMS to simulate the advection and dispersion processes. RT3D employs the operator-split strategy which allows the code solve the coupled reactive transport problem in a modular fashion. The coupling between reaction and transport is defined through a separate module where the reaction equations are specified. The code supports a versatile user-defined reaction option that allows users to define their own reaction system through a Fortran-90 subroutine, known as the RT3D-reaction package. Further a utility code, known as BATCHRXN, allows the users to independently test and debug their reaction package. To analyze a new reaction system at a batch scale, users should first run BATCHRXN to test the ability of their reaction package to model the batch data. After testing, the reaction package can simply be ported to the RT3D environment to study the model response under 1-, 2-, or 3-dimensional transport conditions. This paper presents example problems that demonstrate the methods for moving from batch to field-scale simulations using BATCHRXN and RT3D codes. The first example describes a simple first-order reaction system for simulating the sequential degradation of Tetrachloroethene (PCE) and its daughter products. The second example uses a relatively complex reaction system for describing the multiple degradation pathways of Tetrachloroethane (PCA) and its daughter products. References 1) Clement, T.P, RT3D - A modular computer code for simulating reactive multi-species transport in 3-Dimensional groundwater aquifers, Battelle Pacific Northwest National Laboratory Research Report, PNNL-SA-28967, September, 1997. Available at: http://bioprocess.pnl.gov/rt3d.htm.

  13. 3D indoor modeling using a hand-held embedded system with multiple laser range scanners

    NASA Astrophysics Data System (ADS)

    Hu, Shaoxing; Wang, Duhu; Xu, Shike

    2016-10-01

    Accurate three-dimensional perception is a key technology for many engineering applications, including mobile mapping, obstacle detection and virtual reality. In this article, we present a hand-held embedded system designed for constructing 3D representation of structured indoor environments. Different from traditional vehicle-borne mobile mapping methods, the system presented here is capable of efficiently acquiring 3D data while an operator carrying the device traverses through the site. It consists of a simultaneous localization and mapping(SLAM) module, a 3D attitude estimate module and a point cloud processing module. The SLAM is based on a scan matching approach using a modern LIDAR system, and the 3D attitude estimate is generated by a navigation filter using inertial sensors. The hardware comprises three 2D time-flight laser range finders and an inertial measurement unit(IMU). All the sensors are rigidly mounted on a body frame. The algorithms are developed on the frame of robot operating system(ROS). The 3D model is constructed using the point cloud library(PCL). Multiple datasets have shown robust performance of the presented system in indoor scenarios.

  14. Application of the BacT/ALERTR 3D system for sterility testing of injectable products.

    PubMed

    Bugno, Adriana; Lira, Rodolfo Santos; Oliveira, Wesley Anderson; Almodovar, Adriana Aparecida Buzzo; Saes, Deborah Pita Sanches; Pinto, Terezinha de Jesus Andreoli

    2015-01-01

    Sterility testing as described in the pharmacopoeia compendia requires a 14-day incubation period to obtain an analytical result. Alternative methods that could be applied to evaluating product sterility are especially interesting due to the possibility of reducing this incubation period and thus the associated costs. The aims of this study were to evaluate the performance of the BacT/ALERT(R) 3D system in detecting microorganisms in large-volume parenteral solutions that were intentionally contaminated and to compare this system to pharmacopoeia sterility testing using the membrane filtration method. The results indicated that there were no significant differences between the methods regarding the ability to detect microbial contamination; however, detection with the BacT/ALERT(R) 3D system was faster compared to the pharmacopoeia method. Therefore, the BacT/ALERT(R) 3D system is a viable alternative for assessing the sterility of injectable products.

  15. Application of the BacT/ALERTR 3D system for sterility testing of injectable products

    PubMed Central

    Bugno, Adriana; Lira, Rodolfo Santos; Oliveira, Wesley Anderson; Almodovar, Adriana Aparecida Buzzo; Saes, Deborah Pita Sanches; de Jesus Andreoli Pinto, Terezinha

    2015-01-01

    Sterility testing as described in the pharmacopoeia compendia requires a 14-day incubation period to obtain an analytical result. Alternative methods that could be applied to evaluating product sterility are especially interesting due to the possibility of reducing this incubation period and thus the associated costs. The aims of this study were to evaluate the performance of the BacT/ALERTR 3D system in detecting microorganisms in large-volume parenteral solutions that were intentionally contaminated and to compare this system to pharmacopoeia sterility testing using the membrane filtration method. The results indicated that there were no significant differences between the methods regarding the ability to detect microbial contamination; however, detection with the BacT/ALERTR 3D system was faster compared to the pharmacopoeia method. Therefore, the BacT/ALERTR 3D system is a viable alternative for assessing the sterility of injectable products. PMID:26413055

  16. An efficient calibration method for freehand 3-D ultrasound imaging systems.

    PubMed

    Leotta, Daniel F

    2004-07-01

    A phantom has been developed to quickly calibrate a freehand 3-D ultrasound (US) imaging system. Calibration defines the spatial relationship between the US image plane and an external tracking device attached to the scanhead. The phantom consists of a planar array of strings and beads, and a set of out-of-plane strings that guide the user to proper scanhead orientation for imaging. When an US image plane is coincident with the plane defined by the strings, the calibration parameters are calculated by matching of homologous points in the image and phantom. The resulting precision and accuracy of the 3-D imaging system are similar to those achieved with a more complex calibration procedure. The 3-D reconstruction performance of the calibrated system is demonstrated with a magnetic tracking system, but the method could be applied to other tracking devices.

  17. A Laser Line Auto-Scanning System for Underwater 3D Reconstruction.

    PubMed

    Chi, Shukai; Xie, Zexiao; Chen, Wenzhu

    2016-09-20

    In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer's rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory.

  18. A Laser Line Auto-Scanning System for Underwater 3D Reconstruction

    PubMed Central

    Chi, Shukai; Xie, Zexiao; Chen, Wenzhu

    2016-01-01

    In this study, a laser line auto-scanning system was designed to perform underwater close-range 3D reconstructions with high accuracy and resolution. The system changes the laser plane direction with a galvanometer to perform automatic scanning and obtain continuous laser strips for underwater 3D reconstruction. The system parameters were calibrated with the homography constraints between the target plane and image plane. A cost function was defined to optimize the galvanometer’s rotating axis equation. Compensation was carried out for the refraction of the incident and emitted light at the interface. The accuracy and the spatial measurement capability of the system were tested and analyzed with standard balls under laboratory underwater conditions, and the 3D surface reconstruction for a sealing cover of an underwater instrument was proved to be satisfactory. PMID:27657074

  19. Crosstalk reduction in auto-stereoscopic projection 3D display system.

    PubMed

    Lee, Kwang-Hoon; Park, Youngsik; Lee, Hyoung; Yoon, Seon Kyu; Kim, Sung-Kyu

    2012-08-27

    In auto-stereoscopic multi-views 3D display systems, the crosstalk and low resolution become problems for taking a clear depth image with the sufficient motion parallax. To solve these problems, we propose the projection-type auto-stereoscopic multi-view 3D display system, in which the hybrid optical system with the lenticular-parallax barrier and multi projectors. Condensing width of the projected unit-pixel image within the lenslet by hybrid optics is the core concept in this proposal. As the result, the point crosstalk is improved 53% and resolution is increased up to 5 times.

  20. Multimodal 3D PET/CT system for bronchoscopic procedure planning

    NASA Astrophysics Data System (ADS)

    Cheirsilp, Ronnarit; Higgins, William E.

    2013-02-01

    Integrated positron emission tomography (PET) / computed-tomography (CT) scanners give 3D multimodal data sets of the chest. Such data sets offer the potential for more complete and specific identification of suspect lesions and lymph nodes for lung-cancer assessment. This in turn enables better planning of staging bronchoscopies. The richness of the data, however, makes the visualization and planning process difficult. We present an integrated multimodal 3D PET/CT system that enables efficient region identification and bronchoscopic procedure planning. The system first invokes a series of automated 3D image-processing methods that construct a 3D chest model. Next, the user interacts with a set of interactive multimodal graphical tools that facilitate procedure planning for specific regions of interest (ROIs): 1) an interactive region candidate list that enables efficient ROI viewing in all tools; 2) a virtual PET-CT bronchoscopy rendering with SUV quantitative visualization to give a "fly through" endoluminal view of prospective ROIs; 3) transverse, sagittal, coronal multi-planar reformatted (MPR) views of the raw CT, PET, and fused CT-PET data; and 4) interactive multimodal volume/surface rendering to give a 3D perspective of the anatomy and candidate ROIs. In addition the ROI selection process is driven by a semi-automatic multimodal method for region identification. In this way, the system provides both global and local information to facilitate more specific ROI identification and procedure planning. We present results to illustrate the system's function and performance.

  1. Calculation of the virtual current in an electromagnetic flow meter with one bubble using 3D model.

    PubMed

    Zhang, Xiao-Zhang; Li, Yantao

    2004-04-01

    Based on the theory of electromagnetic induction flow measurement, the Laplace equation in a complicated three-dimensional (3D) domain is solved by an alternating method. Virtual current potentials are obtained for an electromagnetic flow meter with one spherical bubble inside. The solutions are used to investigate the effects of bubble size and bubble position on the virtual current. Comparisons are done among the cases of 2D and 3D models, and of point electrode and large electrode. The results show that the 2D model overestimates the effect, while large electrodes are least sensitive to the bubble. This paper offers fundamentals for the study of the behavior of an electromagnetic flow meter in multiphase flow. For application, the results provide a possible way to estimate errors of the flow meter caused by multiphase flow.

  2. Second order superintegrable systems in conformally flat spaces. IV. The classical 3D Staeckel transform and 3D classification theory

    SciTech Connect

    Kalnins, E.G.; Kress, J.M.; Miller, W. Jr.

    2006-04-15

    This article is one of a series that lays the groundwork for a structure and classification theory of second order superintegrable systems, both classical and quantum, in conformally flat spaces. In the first part of the article we study the Staeckel transform (or coupling constant metamorphosis) as an invertible mapping between classical superintegrable systems on different three-dimensional spaces. We show first that all superintegrable systems with nondegenerate potentials are multiseparable and then that each such system on any conformally flat space is Staeckel equivalent to a system on a constant curvature space. In the second part of the article we classify all the superintegrable systems that admit separation in generic coordinates. We find that there are eight families of these systems.

  3. Current Status of Surgical Planning for Orthognathic Surgery: Traditional Methods versus 3D Surgical Planning

    PubMed Central

    Hammoudeh, Jeffrey A.; Howell, Lori K.; Boutros, Shadi; Scott, Michelle A.

    2015-01-01

    Background: Orthognathic surgery has traditionally been performed using stone model surgery. This involves translating desired clinical movements of the maxilla and mandible into stone models that are then cut and repositioned into class I occlusion from which a splint is generated. Model surgery is an accurate and reproducible method of surgical correction of the dentofacial skeleton in cleft and noncleft patients, albeit considerably time-consuming. With the advent of computed tomography scanning, 3D imaging and virtual surgical planning (VSP) have gained a foothold in orthognathic surgery with VSP rapidly replacing traditional model surgery in many parts of the country and the world. What has yet to be determined is whether the application and feasibility of virtual model surgery is at a point where it will eliminate the need for traditional model surgery in both the private and academic setting. Methods: Traditional model surgery was compared with VSP splint fabrication to determine the feasibility of use and accuracy of application in orthognathic surgery within our institution. Results: VSP was found to generate acrylic splints of equal quality to model surgery splints in a fraction of the time. Drawbacks of VSP splint fabrication are the increased cost of production and certain limitations as it relates to complex craniofacial patients. Conclusions: It is our opinion that virtual model surgery will displace and replace traditional model surgery as it will become cost and time effective in both the private and academic setting for practitioners providing orthognathic surgical care in cleft and noncleft patients. PMID:25750846

  4. Commentary on accessing 3-D currents in space: Experiences from Cluster

    NASA Astrophysics Data System (ADS)

    Dunlop, M. W.; Haaland, S.; Escoubet, P. C.; Dong, X.-C.

    2016-08-01

    The curlometer was introduced to estimate the electric current density from four-point measurements in space; anticipating the realization of the four spacecraft Cluster mission which began full science operations in February 2001. The method uses Ampère's law to estimate current from the magnetic field measurements, suitable for the high-conductivity plasma of the magnetosphere and surrounding regions. The accuracy of the method is limited by the spatial separation knowledge, accuracy of the magnetic field measurement, and the relative scale size of the current structures sampled but nevertheless has proven to be robust and reliable in many regions of the magnetosphere. The method has been applied successfully and has been a key element, in studies of the magnetopause currents; the magnetotail current sheet; and the ring current, as well as allowing other current structures such as flux tubes and field aligned currents to be determined. The method is also applicable to situations where less than four spacecraft are closely grouped or where special assumptions (particularly stationarity) can be made. In view of the new four-point observations of the MMS mission taking place now, which cover a dramatically different spatial regime, we comment on the performance, adaptability, and lessons learnt from the curlometer technique. We emphasize the adaptability of the method, in particular, to the new sampling regime offered by the MMS mission; thereby offering a tool to address open questions on small-scale current structures.

  5. Optoelectronic instrumentation enhancement using data mining feedback for a 3D measurement system

    NASA Astrophysics Data System (ADS)

    Flores-Fuentes, Wendy; Sergiyenko, Oleg; Gonzalez-Navarro, Félix F.; Rivas-López, Moisés; Hernandez-Balbuena, Daniel; Rodríguez-Quiñonez, Julio C.; Tyrsa, Vera; Lindner, Lars

    2016-12-01

    3D measurement by a cyber-physical system based on optoelectronic scanning instrumentation has been enhanced by outliers and regression data mining feedback. The prototype has applications in (1) industrial manufacturing systems that include: robotic machinery, embedded vision, and motion control, (2) health care systems for measurement scanning, and (3) infrastructure by providing structural health monitoring. This paper presents new research performed in data processing of a 3D measurement vision sensing database. Outliers from multivariate data have been detected and removal to improve artificial intelligence regression algorithm results. Physical measurement error regression data has been used for 3D measurements error correction. Concluding, that the joint of physical phenomena, measurement and computation is an effectiveness action for feedback loops in the control of industrial, medical and civil tasks.

  6. Error control in the set-up of stereo camera systems for 3d animal tracking

    NASA Astrophysics Data System (ADS)

    Cavagna, A.; Creato, C.; Del Castello, L.; Giardina, I.; Melillo, S.; Parisi, L.; Viale, M.

    2015-12-01

    Three-dimensional tracking of animal systems is the key to the comprehension of collective behavior. Experimental data collected via a stereo camera system allow the reconstruction of the 3d trajectories of each individual in the group. Trajectories can then be used to compute some quantities of interest to better understand collective motion, such as velocities, distances between individuals and correlation functions. The reliability of the retrieved trajectories is strictly related to the accuracy of the 3d reconstruction. In this paper, we perform a careful analysis of the most significant errors affecting 3d reconstruction, showing how the accuracy depends on the camera system set-up and on the precision of the calibration parameters.

  7. Optical design of wavelength selective CPVT system with 3D/2D hybrid concentration

    NASA Astrophysics Data System (ADS)

    Ahmad, N.; Ijiro, T.; Yamada, N.; Kawaguchi, T.; Maemura, T.; Ohashi, H.

    2012-10-01

    Optical design of a concentrating photovoltaic/thermal (CPVT) system is carried out. Using wavelength-selective optics, the system demonstrates 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. Characteristics of the two types of concentrator systems are examined with ray-tracing analysis. The first system is a glazed mirror-based concentrator system mounted on a 2-axis pedestal tracker. The size of the secondary optical element is minimized to decrease the cost of the system, and it has a wavelength-selective function for performing 3-D concentration onto a solar cell and 2-D concentration onto a thermal receiver. The second system is a non-glazed beamdown concentrator system containing parabolic mirrors in the lower part. The beam-down selective mirror performs 3-D concentration onto a solar cell placed above the beam-down selective mirror, and 2-D concentration down to a thermal receiver placed at the bottom level. The system is mounted on a two-axis carousel tracker. A parametric study is performed for those systems with different geometrical 2-D/3-D concentration ratios. Wavelength-selective optics such as hot/cold mirrors and spectrum-splitting technologies are taken into account in the analysis. Results show reduced heat load on the solar cell and increased total system efficiency compared to a non-selective CPV system. Requirements for the wavelength-selective properties are elucidated. It is also shown that the hybrid concept with 2-D concentration onto a thermal receiver and 3-D concentration onto a solar cell has an advantageous geometry because of the high total system efficiency and compatibility with the piping arrangement of the thermal receiver.

  8. Dose Verification of Stereotactic Radiosurgery Treatment for Trigeminal Neuralgia with Presage 3D Dosimetry System

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Thomas, A.; Newton, J.; Ibbott, G.; Deasy, J.; Oldham, M.

    2010-11-01

    Achieving adequate verification and quality-assurance (QA) for radiosurgery treatment of trigeminal-neuralgia (TGN) is particularly challenging because of the combination of very small fields, very high doses, and complex irradiation geometries (multiple gantry and couch combinations). TGN treatments have extreme requirements for dosimetry tools and QA techniques, to ensure adequate verification. In this work we evaluate the potential of Presage/Optical-CT dosimetry system as a tool for the verification of TGN distributions in high-resolution and in 3D. A TGN treatment was planned and delivered to a Presage 3D dosimeter positioned inside the Radiological-Physics-Center (RPC) head and neck IMRT credentialing phantom. A 6-arc treatment plan was created using the iPlan system, and a maximum dose of 80Gy was delivered with a Varian Trilogy machine. The delivered dose to Presage was determined by optical-CT scanning using the Duke Large field-of-view Optical-CT Scanner (DLOS) in 3D, with isotropic resolution of 0.7mm3. DLOS scanning and reconstruction took about 20minutes. 3D dose comparisons were made with the planning system. Good agreement was observed between the planned and measured 3D dose distributions, and this work provides strong support for the viability of Presage/Optical-CT as a highly useful new approach for verification of this complex technique.

  9. Lab Experiments Probe Interactions Between Dilute Pyroclastic Density Currents and 3D Barriers

    NASA Astrophysics Data System (ADS)

    Fauria, K.; Andrews, B. J.; Manga, M.

    2014-12-01

    We conducted scaled laboratory experiments of unconfined dilute pyroclastic density currents (PDCs) to examine interactions between three - dimensional obstacles and dilute PDCs. While it is known that PDCs can surmount barriers by converting kinetic energy into potential energy, the signature of topography on PDC dynamics is unclear. To examine the interplay between PDCs and topography, we turbulently suspended heated and ambient-temperature 20 μm talc powder in air within an 8.5 x 6.1 x 2.6 m tank. Experimental parameters (Froude number, densimetric and thermal Richardson number, particle Stokes and Settling numbers) were scaled such that the experimental currents were dynamically similar to natural PCS. The Reynolds number, however, is much smaller than in natural currents, but still large enough for the flows to be turbulent. We placed cylindrical and ridge-like objects in the path of the currents, illuminated the currents with orthogonal laser sheets, and recorded each experiment with high definition cameras. We observed currents surmounting ridge-like barriers (barrier height = current height). Slanted ridges redirected the currents upward and parallel to the upstream face of the ridges (~45° from horizontal). Down stream of the slanted ridges, ambient-temperature currents reattached to the floor. By comparison, hot currents reversed buoyancy and lifted off. These observations suggest that obstacles enhance air entrainment, a process key to affecting runout distance and the depletion of fine particles in ignimbrites. Moreover, we observed vortex shedding in the wake of cylinders. Our experiments demonstrate that barriers of various shapes affect PDC dynamics and can shorten PDC runout distances. Understanding the effects of topography on PDCs is required for interpreting many deposits because processes such as vortex shedding and topographically-induced changes in turbulent length scales and entrainment likely leave depositional signatures.

  10. Investigation of Presage 3D Dosimetry as a Method of Clinically Intuitive Quality Assurance and Comparison to a Semi-3D Delta4 System

    NASA Astrophysics Data System (ADS)

    Crockett, Ethan Van

    The need for clinically intuitive metrics for patient-specific quality assurance in radiation therapy has been well-documented (Zhen, Nelms et al. 2011). A novel transform method has shown to be effective at converting full-density 3D dose measurements made in a phantom to dose values in the patient geometry, enabling comparisons using clinically intuitive metrics such as dose-volume histograms (Oldham et al. 2011). This work investigates the transform method and compares its calculated dose-volume histograms (DVHs) to DVH values calculated by a Delta4 QA device (Scandidos), marking the first comparison of a true 3D system to a semi-3D device using clinical metrics. Measurements were made using Presage 3D dosimeters, which were readout by an in-house optical-CT scanner. Three patient cases were chosen for the study: one head-and-neck VMAT treatment and two spine IMRT treatments. The transform method showed good agreement with the planned dose values for all three cases. Furthermore, the transformed DVHs adhered to the planned dose with more accuracy than the Delta4 DVHs. The similarity between the Delta4 DVHs and the transformed DVHs, however, was greater for one of the spine cases than it was for the head-and-neck case, implying that the accuracy of the Delta4 Anatomy software may vary from one treatment site to another. Overall, the transform method, which incorporates data from full-density 3D dose measurements, provides clinically intuitive results that are more accurate and consistent than the corresponding results from a semi-3D Delta 4 system.

  11. Minimally Invasive Cardiac Surgery Using a 3D High-Definition Endoscopic System.

    PubMed

    Ruttkay, Tamas; Götte, Julia; Walle, Ulrike; Doll, Nicolas

    2015-01-01

    We describe a minimally invasive heart surgery application of the EinsteinVision 2.0 3D high-definition endoscopic system (Aesculap AG, Tuttlingen, Germany) in an 81-year-old man with severe tricuspid valve insufficiency. Fourteen years ago, he underwent a Ross procedure followed by a DDD pacemaker implantation 4 years later for tachy-brady-syndrome. His biventricular function was normal. We recommended minimally invasive tricuspid valve repair. The application of the aformentioned endoscopic system was simple, and the impressive 3D depth view offered an easy and precise manipulation through a minimal thoracotomy incision, avoiding the need for a rib spreading retractor.

  12. A photogrammetry-based system for 3D surface reconstruction of prosthetics and orthotics.

    PubMed

    Li, Guang-kun; Gao, Fan; Wang, Zhi-gang

    2011-01-01

    The objective of this study is to develop an innovative close range digital photogrammetry (CRDP) system using the commercial digital SLR cameras to measure and reconstruct the 3D surface of prosthetics and orthotics. This paper describes the instrumentation, techniques and preliminary results of the proposed system. The technique works by taking pictures of the object from multiple view angles. The series of pictures were post-processed via feature point extraction, point match and 3D surface reconstruction. In comparison with the traditional method such as laser scanning, the major advantages of our instrument include the lower cost, compact and easy-to-use hardware, satisfactory measurement accuracy, and significantly less measurement time. Besides its potential applications in prosthetics and orthotics surface measurement, the simple setup and its ease of use will make it suitable for various 3D surface reconstructions.

  13. Using a 3D Culture System to Differentiate Visceral Adipocytes In Vitro.

    PubMed

    Emont, Margo P; Yu, Hui; Jun, Heejin; Hong, Xiaowei; Maganti, Nenita; Stegemann, Jan P; Wu, Jun

    2015-12-01

    It has long been recognized that body fat distribution and regional adiposity play a major role in the control of metabolic homeostasis. However, the ability to study and compare the cell autonomous regulation and response of adipocytes from different fat depots has been hampered by the difficulty of inducing preadipocytes isolated from the visceral depot to differentiate into mature adipocytes in culture. Here, we present an easily created 3-dimensional (3D) culture system that can be used to differentiate preadipocytes from the visceral depot as robustly as those from the sc depot. The cells differentiated in these 3D collagen gels are mature adipocytes that retain depot-specific characteristics, as determined by imaging, gene expression, and functional assays. This 3D culture system therefore allows for study of the development and function of adipocytes from both depots in vitro and may ultimately lead to a greater understanding of site-specific functional differences of adipose tissues to metabolic dysregulation.

  14. Structured light imaging system for structural and optical characterization of 3D tissue-simulating phantoms

    NASA Astrophysics Data System (ADS)

    Liu, Songde; Smith, Zach; Xu, Ronald X.

    2016-10-01

    There is a pressing need for a phantom standard to calibrate medical optical devices. However, 3D printing of tissue-simulating phantom standard is challenged by lacking of appropriate methods to characterize and reproduce surface topography and optical properties accurately. We have developed a structured light imaging system to characterize surface topography and optical properties (absorption coefficient and reduced scattering coefficient) of 3D tissue-simulating phantoms. The system consisted of a hyperspectral light source, a digital light projector (DLP), a CMOS camera, two polarizers, a rotational stage, a translation stage, a motion controller, and a personal computer. Tissue-simulating phantoms with different structural and optical properties were characterized by the proposed imaging system and validated by a standard integrating sphere system. The experimental results showed that the proposed system was able to achieve pixel-level optical properties with a percentage error of less than 11% for absorption coefficient and less than 7% for reduced scattering coefficient for phantoms without surface curvature. In the meanwhile, 3D topographic profile of the phantom can be effectively reconstructed with an accuracy of less than 1% deviation error. Our study demonstrated that the proposed structured light imaging system has the potential to characterize structural profile and optical properties of 3D tissue-simulating phantoms.

  15. Simple, Expendable, 3D-Printed Microfluidic Systems for Sample Preparation of Petroleum.

    PubMed

    Kataoka, Érica M; Murer, Rui C; Santos, Jandyson M; Carvalho, Rogério M; Eberlin, Marcos N; Augusto, Fabio; Poppi, Ronei J; Gobbi, Angelo L; Hantao, Leandro W

    2017-03-21

    In this study, we introduce a simple protocol to manufacture disposable, 3D-printed microfluidic systems for sample preparation of petroleum. This platform is produced with a consumer-grade 3D-printer, using fused deposition modeling. Successful incorporation of solid-phase extraction (SPE) to microchip was ensured by facile 3D element integration using proposed approach. This 3D-printed μSPE device was applied to challenging matrices in oil and gas industry, such as crude oil and oil-brine emulsions. Case studies investigated important limitations of nonsilicon and nonglass microchips, namely, resistance to nonpolar solvents and conservation of sample integrity. Microfluidic features remained fully functional even after prolonged exposure to nonpolar solvents (20 min). Also, 3D-printed μSPE devices enabled fast emulsion breaking and solvent deasphalting of petroleum, yielding high recovery values (98%) without compromising maltene integrity. Such finding was ascertained by high-resolution molecular analyses using comprehensive two-dimensional gas chromatography and gas chromatography/mass spectrometry by monitoring important biomarker classes, such as C10 demethylated terpanes, ααα-steranes, and monoaromatic steroids. 3D-Printed chips enabled faster and reliable preparation of maltenes by exhibiting a 10-fold reduction in sample processing time, compared to the reference method. Furthermore, polar (oxygen-, nitrogen-, and sulfur-containing) analytes found in low-concentrations were analyzed by Fourier transform ion cyclotron resonance mass spectrometry. Analysis results demonstrated that accurate characterization may be accomplished for most classes of polar compounds, except for asphaltenes, which exhibited lower recoveries (82%) due to irreversible adsorption to sorbent phase. Therefore, 3D-printing is a compelling alternative to existing microfabrication solutions, as robust devices were easy to prepare and operate.

  16. Electric current variations and 3D magnetic configuration of coronal jets

    NASA Astrophysics Data System (ADS)

    Schmieder, Brigitte; Harra, Louise K.; Aulanier, Guillaume; Guo, Yang; Demoulin, Pascal; Moreno-Insertis, Fernando, , Prof

    Coronal jets (EUV) were observed by SDO/AIA on September 17, 2010. HMI and THEMIS measured the vector magnetic field from which we derived the magnetic flux, the phostospheric velocity and the vertical electric current. The magnetic configuration was computed with a non linear force-free approach. The phostospheric current pattern of the recurrent jets were associated with the quasi-separatrix layers deduced from the magnetic extrapolation. The large twisted near-by Eiffel-tower-shape jet was also caused by reconnection in current layers containing a null point. This jet cannot be classified precisely within either the quiescent or the blowout jet types. We will show the importance of the existence of bald patches in the low atmosphere

  17. Electric fields and field-aligned currents in polar regions of the solar corona: 3-D MHD consideration

    NASA Technical Reports Server (NTRS)

    Pisanko, Yu. V.

    1995-01-01

    The calculation of the solar rotation electro-dynamical effects in the near-the-Sun solar wind seems more convenient from the non-inertial corotating reference frame. This implies some modification of the 3-D MHD equations generally on the base of the General Theory of Relativity. The paper deals with the search of stationary (in corotating non-inertial reference frame) solutions of the modified 3-D MHD equations for the in near-the-Sun high latitude sub-alfvenic solar wind. The solution is obtained requiring electric fields and field-aligned electric currents in the high latitude near-the-Sun solar wind. Various scenario are explored self-consistently via a number of numerical experiments. The analogy with the high latitude Earth's magnetosphere is used for the interpretation of the results. Possible observational manifestations are discussed.

  18. Postprocessing of 3-D current density reconstruction results with equivalent ellipsoids.

    PubMed

    Ziolkowski, Marek; Haueisen, Jens; Leder, Uwe

    2002-11-01

    A method of postprocessing and visualizing three-dimensional vector fields, such as current density reconstruction results, is presented. This method is based on equivalent ellipsoids fitted to the vector fields. The technique has been tested with simulated data and current density reconstructions based on bioelectromagnetic data obtained from a physical thorax phantom. Three different approaches based on: 1) longest distance; 2) dominant direction; and 3) principal component analysis, for fitting the equivalent ellipsoids are proposed. Multiple foci in vector fields are extracted by multiple ellipsoids which are fitted iteratively. The method enables statistical postprocessing for the sake of comparisons of different source reconstructions algorithms or comparisons of groups of patients or volunteers.

  19. Controllable 3D Display System Based on Frontal Projection Lenticular Screen

    NASA Astrophysics Data System (ADS)

    Feng, Q.; Sang, X.; Yu, X.; Gao, X.; Wang, P.; Li, C.; Zhao, T.

    2014-08-01

    A novel auto-stereoscopic three-dimensional (3D) projection display system based on the frontal projection lenticular screen is demonstrated. It can provide high real 3D experiences and the freedom of interaction. In the demonstrated system, the content can be changed and the dense of viewing points can be freely adjusted according to the viewers' demand. The high dense viewing points can provide smooth motion parallax and larger image depth without blurry. The basic principle of stereoscopic display is described firstly. Then, design architectures including hardware and software are demonstrated. The system consists of a frontal projection lenticular screen, an optimally designed projector-array and a set of multi-channel image processors. The parameters of the frontal projection lenticular screen are based on the demand of viewing such as the viewing distance and the width of view zones. Each projector is arranged on an adjustable platform. The set of multi-channel image processors are made up of six PCs. One of them is used as the main controller, the other five client PCs can process 30 channel signals and transmit them to the projector-array. Then a natural 3D scene will be perceived based on the frontal projection lenticular screen with more than 1.5 m image depth in real time. The control section is presented in detail, including parallax adjustment, system synchronization, distortion correction, etc. Experimental results demonstrate the effectiveness of this novel controllable 3D display system.

  20. SU-E-T-154: Establishment and Implement of 3D Image Guided Brachytherapy Planning System

    SciTech Connect

    Jiang, S; Zhao, S; Chen, Y; Li, Z; Li, P; Huang, Z; Yang, Z; Zhang, X

    2014-06-01

    Purpose: Cannot observe the dose intuitionally is a limitation of the existing 2D pre-implantation dose planning. Meanwhile, a navigation module is essential to improve the accuracy and efficiency of the implantation. Hence a 3D Image Guided Brachytherapy Planning System conducting dose planning and intra-operative navigation based on 3D multi-organs reconstruction is developed. Methods: Multi-organs including the tumor are reconstructed in one sweep of all the segmented images using the multiorgans reconstruction method. The reconstructed organs group establishs a three-dimensional visualized operative environment. The 3D dose maps of the three-dimentional conformal localized dose planning are calculated with Monte Carlo method while the corresponding isodose lines and isodose surfaces are displayed in a stereo view. The real-time intra-operative navigation is based on an electromagnetic tracking system (ETS) and the fusion between MRI and ultrasound images. Applying Least Square Method, the coordinate registration between 3D models and patient is realized by the ETS which is calibrated by a laser tracker. The system is validated by working on eight patients with prostate cancer. The navigation has passed the precision measurement in the laboratory. Results: The traditional marching cubes (MC) method reconstructs one organ at one time and assembles them together. Compared to MC, presented multi-organs reconstruction method has superiorities in reserving the integrality and connectivity of reconstructed organs. The 3D conformal localized dose planning, realizing the 'exfoliation display' of different isodose surfaces, helps make sure the dose distribution has encompassed the nidus and avoid the injury of healthy tissues. During the navigation, surgeons could observe the coordinate of instruments real-timely employing the ETS. After the calibration, accuracy error of the needle position is less than 2.5mm according to the experiments. Conclusion: The speed and

  1. Generic precise augmented reality guiding system and its calibration method based on 3D virtual model.

    PubMed

    Liu, Miao; Yang, Shourui; Wang, Zhangying; Huang, Shujun; Liu, Yue; Niu, Zhenqi; Zhang, Xiaoxuan; Zhu, Jigui; Zhang, Zonghua

    2016-05-30

    Augmented reality system can be applied to provide precise guidance for various kinds of manual works. The adaptability and guiding accuracy of such systems are decided by the computational model and the corresponding calibration method. In this paper, a novel type of augmented reality guiding system and the corresponding designing scheme are proposed. Guided by external positioning equipment, the proposed system can achieve high relative indication accuracy in a large working space. Meanwhile, the proposed system is realized with a digital projector and the general back projection model is derived with geometry relationship between digitized 3D model and the projector in free space. The corresponding calibration method is also designed for the proposed system to obtain the parameters of projector. To validate the proposed back projection model, the coordinate data collected by a 3D positioning equipment is used to calculate and optimize the extrinsic parameters. The final projecting indication accuracy of the system is verified with subpixel pattern projecting technique.

  2. A new 3D reconstruction method of small solar system bodies

    NASA Astrophysics Data System (ADS)

    Capanna, C.; Jorda, L.; Lamy, P.; Gesquiere, G.

    2011-10-01

    The 3D reconstruction of small solar system bodies consitutes an essential step toward understanding and interpreting their physical and geological properties. We propose a new reconstruction method by photoclinometry based on the minimization of the chisquare difference between observed and synthetic images by deformation of a 3D triangular mesh. This method has been tested on images of the two asteroids (2867) Steins and (21) Lutetia observed during ESA's ROSETTA mission, and it will be applied to elaborate digital terrain models from images of the asteroid (4) Vesta, the target of NASA's DAWN spacecraft.

  3. A Parallel Numerical Algorithm To Solve Linear Systems Of Equations Emerging From 3D Radiative Transfer

    NASA Astrophysics Data System (ADS)

    Wichert, Viktoria; Arkenberg, Mario; Hauschildt, Peter H.

    2016-10-01

    Highly resolved state-of-the-art 3D atmosphere simulations will remain computationally extremely expensive for years to come. In addition to the need for more computing power, rethinking coding practices is necessary. We take a dual approach by introducing especially adapted, parallel numerical methods and correspondingly parallelizing critical code passages. In the following, we present our respective work on PHOENIX/3D. With new parallel numerical algorithms, there is a big opportunity for improvement when iteratively solving the system of equations emerging from the operator splitting of the radiative transfer equation J = ΛS. The narrow-banded approximate Λ-operator Λ* , which is used in PHOENIX/3D, occurs in each iteration step. By implementing a numerical algorithm which takes advantage of its characteristic traits, the parallel code's efficiency is further increased and a speed-up in computational time can be achieved.

  4. Full-color autostereoscopic 3D display system using color-dispersion-compensated synthetic phase holograms.

    PubMed

    Choi, Kyongsik; Kim, Hwi; Lee, Byoungho

    2004-10-18

    A novel full-color autostereoscopic three-dimensional (3D) display system has been developed using color-dispersion-compensated (CDC) synthetic phase holograms (SPHs) on a phase-type spatial light modulator. To design the CDC phase holograms, we used a modified iterative Fourier transform algorithm with scaling constants and phase quantization level constraints. We obtained a high diffraction efficiency (~90.04%), a large signal-to-noise ratio (~9.57dB), and a low reconstruction error (~0.0011) from our simulation results. Each optimized phase hologram was synthesized with each CDC directional hologram for red, green, and blue wavelengths for full-color autostereoscopic 3D display. The CDC SPHs were composed and modulated by only one phase-type spatial light modulator. We have demonstrated experimentally that the designed CDC SPHs are able to generate full-color autostereoscopic 3D images and video frames very well, without any use of glasses.

  5. Study on camera calibration technique of 3D color digitization system

    NASA Astrophysics Data System (ADS)

    Sun, Yuchen; Ge, Baozhen

    2006-11-01

    3D (three-dimensional) color digitization of an object is fulfilled by light-stripe method based on laser triangle principle and direct capturing method based on the color photo of the object. With this system, information matching between 3D and color sensor and data registration of different sensors are fulfilled by a sensor calibration process. The process uses the same round filament target to calibrate all of the sensors together. The principle and procedure of the process are presented in detail. Finally, a costume model is 3D color digitized and the obtaining data sets are processed by the method discussed, the results verify the correctness and feasibility of the algorithm.

  6. Active-Vision Control Systems for Complex Adversarial 3-D Environments

    DTIC Science & Technology

    2009-03-01

    Control Systems MURI Final Report 36 51. D. Nain, S. Haker , A. Bobick, A. Tannenbaum, "Multiscale 3D shape representation and segmentation using...Conference, August 2008. 99. L. Zhu, Y. Yang, S. Haker , and A. Tannenbaum, "An image morphing technique based on optimal mass preserving mapping," IEEE

  7. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems.

    PubMed

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-05-04

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system's trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach.

  8. A 3D Model Based Imdoor Navigation System for Hubei Provincial Museum

    NASA Astrophysics Data System (ADS)

    Xu, W.; Kruminaite, M.; Onrust, B.; Liu, H.; Xiong, Q.; Zlatanova, S.

    2013-11-01

    3D models are more powerful than 2D maps for indoor navigation in a complicate space like Hubei Provincial Museum because they can provide accurate descriptions of locations of indoor objects (e.g., doors, windows, tables) and context information of these objects. In addition, the 3D model is the preferred navigation environment by the user according to the survey. Therefore a 3D model based indoor navigation system is developed for Hubei Provincial Museum to guide the visitors of museum. The system consists of three layers: application, web service and navigation, which is built to support localization, navigation and visualization functions of the system. There are three main strengths of this system: it stores all data needed in one database and processes most calculations on the webserver which make the mobile client very lightweight, the network used for navigation is extracted semi-automatically and renewable, the graphic user interface (GUI), which is based on a game engine, has high performance of visualizing 3D model on a mobile display.

  9. 3D Game-Based Learning System for Improving Learning Achievement in Software Engineering Curriculum

    ERIC Educational Resources Information Center

    Su,Chung-Ho; Cheng, Ching-Hsue

    2013-01-01

    The advancement of game-based learning has encouraged many related studies, such that students could better learn curriculum by 3-dimension virtual reality. To enhance software engineering learning, this paper develops a 3D game-based learning system to assist teaching and assess the students' motivation, satisfaction and learning achievement. A…

  10. a 3d Information System for the Documentation of Archaeologica L Excavations

    NASA Astrophysics Data System (ADS)

    Ardissone, P.; Bornaz, L.; Degattis, G.; Domaine, R.

    2013-07-01

    these methodologies and procedures will be presented and described in the article. For the documentation of the archaeological excavations and for the management of the conservation activities (condition assessment, planning, and conservation work). Ad Hoc 3D solutions has costumized 2 special plug-ins of its own software platform Ad Hoc: Ad Hoc Archaeology and Ad Hoc Conservation. The software platform integrates a 3D database management system. All information (measurements, plotting, areas of interests…) are organized according to their correct 3D position. They can be queried using attributes, geometric characteristics or their spatial position. The Ad Hoc Archaeology plug-in allows archeologists to fill out UUSS sheets in an internal database, put them in the correct location within the 3D model of the site, define the mutual relations between the UUSS, divide the different archaeological phases. A simple interface will facilitate the construction of the stratigraphic chart (matrix), in a 3D environment as well (matrix 3D). The Ad Hoc Conservation plug-in permits conservators and restorers to create relationships between the different approaches and descriptions of the same parts of the monument, i.e.: between stratigraphyc units or historical phases and architectural components and/or decay pathologies. The 3D DBMS conservation module uses a codified terminology based on "ICOMOS illustrated glossary of stone deterioration" and other glossary. Specific tools permits restorers to compute correctly surfaces and volumes. In this way decay extension and intensity can be measured with high precision and with an high level of detail, for a correct time and costs estimation of each conservation step.

  11. Fast, automatic, and accurate catheter reconstruction in HDR brachytherapy using an electromagnetic 3D tracking system

    SciTech Connect

    Poulin, Eric; Racine, Emmanuel; Beaulieu, Luc; Binnekamp, Dirk

    2015-03-15

    Purpose: In high dose rate brachytherapy (HDR-B), current catheter reconstruction protocols are relatively slow and error prone. The purpose of this technical note is to evaluate the accuracy and the robustness of an electromagnetic (EM) tracking system for automated and real-time catheter reconstruction. Methods: For this preclinical study, a total of ten catheters were inserted in gelatin phantoms with different trajectories. Catheters were reconstructed using a 18G biopsy needle, used as an EM stylet and equipped with a miniaturized sensor, and the second generation Aurora{sup ®} Planar Field Generator from Northern Digital Inc. The Aurora EM system provides position and orientation value with precisions of 0.7 mm and 0.2°, respectively. Phantoms were also scanned using a μCT (GE Healthcare) and Philips Big Bore clinical computed tomography (CT) system with a spatial resolution of 89 μm and 2 mm, respectively. Reconstructions using the EM stylet were compared to μCT and CT. To assess the robustness of the EM reconstruction, five catheters were reconstructed twice and compared. Results: Reconstruction time for one catheter was 10 s, leading to a total reconstruction time inferior to 3 min for a typical 17-catheter implant. When compared to the μCT, the mean EM tip identification error was 0.69 ± 0.29 mm while the CT error was 1.08 ± 0.67 mm. The mean 3D distance error was found to be 0.66 ± 0.33 mm and 1.08 ± 0.72 mm for the EM and CT, respectively. EM 3D catheter trajectories were found to be more accurate. A maximum difference of less than 0.6 mm was found between successive EM reconstructions. Conclusions: The EM reconstruction was found to be more accurate and precise than the conventional methods used for catheter reconstruction in HDR-B. This approach can be applied to any type of catheters and applicators.

  12. A 3D modeling and measurement system for cultural heritage preservation

    NASA Astrophysics Data System (ADS)

    Du, Guoguang; Zhou, Mingquan; Ren, Pu; Shui, Wuyang; Zhou, Pengbo; Wu, Zhongke

    2015-07-01

    Cultural Heritage reflects the human production, life style and environmental conditions of various historical periods. It exists as one of the major national carriers of national history and culture. In order to do better protection and utilization for these cultural heritages, a system of three-dimensional (3D) reconstruction and statistical measurement is proposed in this paper. The system solves the problems of cultural heritage's data storage, measurement and analysis. Firstly, for the high precision modeling and measurement problems, range data registration and integration algorithm used to achieve high precision 3D reconstruction. Secondly, multi-view stereo reconstruction method is used to solve the problem of rapid reconstruction by procedures such as the original image data pre-processing, camera calibration, point cloud modeling. At last, the artifacts' measure underlying database is established by calculating the measurements of the 3D model's surface. These measurements contain Euclidean distance between the points on the surface, geodesic distance between the points, normal and curvature in each point, superficial area of a region, volume of model's part and some other measurements. These measurements provide a basis for carrying out information mining of cultural heritage. The system has been applied to the applications of 3D modeling, data measurement of the Terracotta Warriors relics, Tibetan architecture and some other relics.

  13. 3D homogeneity study in PMMA layers using a Fourier domain OCT system

    NASA Astrophysics Data System (ADS)

    Briones-R., Manuel de J.; Torre-Ibarra, Manuel H. De La; Tavera, Cesar G.; Luna H., Juan M.; Mendoza-Santoyo, Fernando

    2016-11-01

    Micro-metallic particles embedded in polymers are now widely used in several industrial applications in order to modify the mechanical properties of the bulk. A uniform distribution of these particles inside the polymers is highly desired for instance, when a biological backscattering is simulated or a bio-framework is designed. A 3D Fourier domain optical coherence tomography system to detect the polymer's internal homogeneity is proposed. This optical system has a 2D camera sensor array that records a fringe pattern used to reconstruct with a single shot the tomographic image of the sample. The system gathers the full 3D tomographic and optical phase information during a controlled deformation by means of a motion linear stage. This stage avoids the use of expensive tilting stages, which in addition are commonly controlled by piezo drivers. As proof of principle, a series of different deformations were proposed to detect the uniform or non-uniform internal deposition of copper micro particles. The results are presented as images coming from the 3D tomographic micro reconstruction of the samples, and the 3D optical phase information that identifies the in-homogeneity regions within the Poly methyl methacrylate (PMMA) volume.

  14. 3D-Web-GIS RFID location sensing system for construction objects.

    PubMed

    Ko, Chien-Ho

    2013-01-01

    Construction site managers could benefit from being able to visualize on-site construction objects. Radio frequency identification (RFID) technology has been shown to improve the efficiency of construction object management. The objective of this study is to develop a 3D-Web-GIS RFID location sensing system for construction objects. An RFID 3D location sensing algorithm combining Simulated Annealing (SA) and a gradient descent method is proposed to determine target object location. In the algorithm, SA is used to stabilize the search process and the gradient descent method is used to reduce errors. The locations of the analyzed objects are visualized using the 3D-Web-GIS system. A real construction site is used to validate the applicability of the proposed method, with results indicating that the proposed approach can provide faster, more accurate, and more stable 3D positioning results than other location sensing algorithms. The proposed system allows construction managers to better understand worksite status, thus enhancing managerial efficiency.

  15. IGUANA: a high-performance 2D and 3D visualisation system

    NASA Astrophysics Data System (ADS)

    Alverson, G.; Eulisse, G.; Muzaffar, S.; Osborne, I.; Taylor, L.; Tuura, L. A.

    2004-11-01

    The IGUANA project has developed visualisation tools for multiple high-energy experiments. At the core of IGUANA is a generic, high-performance visualisation system based on OpenInventor and OpenGL. This paper describes the back-end and a feature-rich 3D visualisation system built on it, as well as a new 2D visualisation system that can automatically generate 2D views from 3D data, for example to produce R/Z or X/Y detector displays from existing 3D display with little effort. IGUANA has collaborated with the open-source gl2ps project to create a high-quality vector postscript output that can produce true vector graphics output from any OpenGL 2D or 3D display, complete with surface shading and culling of invisible surfaces. We describe how it works. We also describe how one can measure the memory and performance costs of various OpenInventor constructs and how to test scene graphs. We present good patterns to follow and bad patterns to avoid. We have added more advanced tools such as per-object clipping, slicing, lighting or animation, as well as multiple linked views with OpenInventor, and describe them in this paper. We give details on how to edit object appearance efficiently and easily, and even dynamically as a function of object properties, with instant visual feedback to the user.

  16. Bore-Sight Calibration of Multiple Laser Range Finders for Kinematic 3D Laser Scanning Systems

    PubMed Central

    Jung, Jaehoon; Kim, Jeonghyun; Yoon, Sanghyun; Kim, Sangmin; Cho, Hyoungsig; Kim, Changjae; Heo, Joon

    2015-01-01

    The Simultaneous Localization and Mapping (SLAM) technique has been used for autonomous navigation of mobile systems; now, its applications have been extended to 3D data acquisition of indoor environments. In order to reconstruct 3D scenes of indoor space, the kinematic 3D laser scanning system, developed herein, carries three laser range finders (LRFs): one is mounted horizontally for system-position correction and the other two are mounted vertically to collect 3D point-cloud data of the surrounding environment along the system’s trajectory. However, the kinematic laser scanning results can be impaired by errors resulting from sensor misalignment. In the present study, the bore-sight calibration of multiple LRF sensors was performed using a specially designed double-deck calibration facility, which is composed of two half-circle-shaped aluminum frames. Moreover, in order to automatically achieve point-to-point correspondences between a scan point and the target center, a V-shaped target was designed as well. The bore-sight calibration parameters were estimated by a constrained least squares method, which iteratively minimizes the weighted sum of squares of residuals while constraining some highly-correlated parameters. The calibration performance was analyzed by means of a correlation matrix. After calibration, the visual inspection of mapped data and residual calculation confirmed the effectiveness of the proposed calibration approach. PMID:25946627

  17. Solution of 3D inverse scattering problems by combined inverse equivalent current and finite element methods

    SciTech Connect

    Kılıç, Emre Eibert, Thomas F.

    2015-05-01

    An approach combining boundary integral and finite element methods is introduced for the solution of three-dimensional inverse electromagnetic medium scattering problems. Based on the equivalence principle, unknown equivalent electric and magnetic surface current densities on a closed surface are utilized to decompose the inverse medium problem into two parts: a linear radiation problem and a nonlinear cavity problem. The first problem is formulated by a boundary integral equation, the computational burden of which is reduced by employing the multilevel fast multipole method (MLFMM). Reconstructed Cauchy data on the surface allows the utilization of the Lorentz reciprocity and the Poynting's theorems. Exploiting these theorems, the noise level and an initial guess are estimated for the cavity problem. Moreover, it is possible to determine whether the material is lossy or not. In the second problem, the estimated surface currents form inhomogeneous boundary conditions of the cavity problem. The cavity problem is formulated by the finite element technique and solved iteratively by the Gauss–Newton method to reconstruct the properties of the object. Regularization for both the first and the second problems is achieved by a Krylov subspace method. The proposed method is tested against both synthetic and experimental data and promising reconstruction results are obtained.

  18. Computation of stationary 3D halo currents in fusion devices with accuracy control

    SciTech Connect

    Bettini, Paolo; Specogna, Ruben

    2014-09-15

    This paper addresses the calculation of the resistive distribution of halo currents in three-dimensional structures of large magnetic confinement fusion machines. A Neumann electrokinetic problem is solved on a geometry so complicated that complementarity is used to monitor the discretization error. An irrotational electric field is obtained by a geometric formulation based on the electric scalar potential, whereas three geometric formulations are compared to obtain a solenoidal current density: a formulation based on the electric vector potential and two geometric formulations inspired from mixed and mixed-hybrid Finite Elements. The electric vector potential formulation is usually considered impractical since an enormous computing power is wasted by the topological pre-processing it requires. To solve this challenging problem, we present novel algorithms based on lazy cohomology generators that enable to save orders of magnitude computational time with respect to all other state-of-the-art solutions proposed in literature. Believing that our results are useful in other fields of scientific computing, the proposed algorithm is presented as a detailed pseudocode in such a way that it can be easily implemented.

  19. Proposed NRC portable target case for short-range triangulation-based 3D imaging systems characterization

    NASA Astrophysics Data System (ADS)

    Carrier, Benjamin; MacKinnon, David; Cournoyer, Luc; Beraldin, J.-Angelo

    2011-03-01

    The National Research Council of Canada (NRC) is currently evaluating and designing artifacts and methods to completely characterize 3-D imaging systems. We have gathered a set of artifacts to form a low-cost portable case and provide a clearly-defined set of procedures for generating characteristic values using these artifacts. In its current version, this case is specifically designed for the characterization of short-range (standoff distance of 1 centimeter to 3 meters) triangulation-based 3-D imaging systems. The case is known as the "NRC Portable Target Case for Short-Range Triangulation-based 3-D Imaging Systems" (NRC-PTC). The artifacts in the case have been carefully chosen for their geometric, thermal, and optical properties. A set of characterization procedures are provided with these artifacts based on procedures either already in use or are based on knowledge acquired from various tests carried out by the NRC. Geometric dimensioning and tolerancing (GD&T), a well-known terminology in the industrial field, was used to define the set of tests. The following parameters of a system are characterized: dimensional properties, form properties, orientation properties, localization properties, profile properties, repeatability, intermediate precision, and reproducibility. A number of tests were performed in a special dimensional metrology laboratory to validate the capability of the NRC-PTC. The NRC-PTC will soon be subjected to reproducibility testing using an intercomparison evaluation to validate its use in different laboratories.

  20. Angle extended linear MEMS scanning system for 3D laser vision sensor

    NASA Astrophysics Data System (ADS)

    Pang, Yajun; Zhang, Yinxin; Yang, Huaidong; Zhu, Pan; Gai, Ye; Zhao, Jian; Huang, Zhanhua

    2016-09-01

    Scanning system is often considered as the most important part for 3D laser vision sensor. In this paper, we propose a method for the optical system design of angle extended linear MEMS scanning system, which has features of huge scanning degree, small beam divergence angle and small spot size for 3D laser vision sensor. The principle of design and theoretical formulas are derived strictly. With the help of software ZEMAX, a linear scanning optical system based on MEMS has been designed. Results show that the designed system can extend scanning angle from ±8° to ±26.5° with a divergence angle small than 3.5 mr, and the spot size is reduced for 4.545 times.

  1. Nondestructive optical testing of 3D disperse systems with micro- and nano-particles

    NASA Astrophysics Data System (ADS)

    Bezrukova, Alexandra G.

    2005-04-01

    Nondestructive testing and analysis of three-dimensional (3D) disperse systems (DS) with micro- and nano-particles of different nature by complex of optical compatible methods can provide further progress in on-line control of water and air. The simultaneous analysis of 3D-DS by refractometry, absorbency, fluorescence and by different types of light scattering can help to elaborate the sensing elements for specific impurity control. In our research we have investigated by complex of optical methods different 3D-DS such as: proteins, nucleoproteids, lipoproteids, liposomes, viruses, virosomes, lipid emulsions, blood substitutes, latexes, liquid crystals, biological cells with various form and size (including bacterial cells), metallic powders, clays, kimberlites, zeolites, oils, crude oils, etc., and mixtures -- proteins with nucleic acids, liposomes and viruses, liquid crystals with surfactants, mixtures of clay with bacterial cells, samples of natural and water-supply waters, etc. This experience suggests that the set of optical parameters of so called second class is unique for each 3D-DS. In another words each DS can be characterized by n-dimensional vector in n-dimensional space of optical parameters. Mixtures can be considered as polycomponent and polymodal 3D-DS (such as natural water and air). Due to the fusion of various optical data it is possible to indicate by information statistical theory the inverse physical problem on the presence of impurities in mixtures (viruses, bacteria, oil, metallic particles, etc.), and in this case polymodality of particle size distribution is not an obstacle. Bank of optical data for 3D-DS is the base for analysis by information-statistical method.

  2. In Vivo Validation of a 3-D Ultrasound System for Imaging the Lateral Ventricles of Neonates.

    PubMed

    Kishimoto, Jessica; Fenster, Aaron; Lee, David S C; de Ribaupierre, Sandrine

    2016-04-01

    Intra-ventricular hemorrhage, with the resultant cerebral ventricle dilation, is a common cause of brain injury in preterm neonates. Clinically, monitoring is performed using 2-D ultrasound (US); however, its clinical utility in dilation is limited because it cannot provide accurate measurements of irregular volumes such as those of the ventricles, and this might delay treatment until the patient's condition deteriorates severely. We have developed a 3-D US system to image the lateral ventricles of neonates within the confines of incubators. We describe an in vivo ventricle volume validation study in two parts: (i) comparisons between ventricle volumes derived from 3-D US and magnetic resonance images obtained within 24 h; and (ii) the difference between 3-D US ventricle volumes before and after clinically necessary interventions (ventricle taps), which remove cerebral spinal fluid. Magnetic resonance imaging ventricle volumes were found to be 13% greater than 3-D US ventricle volumes; however, we observed high correlations (R(2) = 0.99) when comparing the two modalities. Differences in ventricle volume pre- and post-intervention compared with the reported volume of cerebrospinal fluid removed also were highly correlated (R(2) = 0.93); the slope was not found to be statistically significantly different from 1 (p < 0.05), and the y-intercept was not found to be statistically different from 0 (p < 0.05). Comparison between 3-D US images can detect the volume change after neonatal intra-ventricular hemorrhage. This could be used to determine which patients will have progressive ventricle dilation and allow for more timely surgical interventions. However, 3-D US ventricle volumes should not be directly compared with magnetic resonance imaging ventricle volumes.

  3. The design of red-blue 3D video fusion system based on DM642

    NASA Astrophysics Data System (ADS)

    Fu, Rongguo; Luo, Hao; Lv, Jin; Feng, Shu; Wei, Yifang; Zhang, Hao

    2016-10-01

    Aiming at the uncertainty of traditional 3D video capturing including camera focal lengths, distance and angle parameters between two cameras, a red-blue 3D video fusion system based on DM642 hardware processing platform is designed with the parallel optical axis. In view of the brightness reduction of traditional 3D video, the brightness enhancement algorithm based on human visual characteristics is proposed and the luminance component processing method based on YCbCr color space is also proposed. The BIOS real-time operating system is used to improve the real-time performance. The video processing circuit with the core of DM642 enhances the brightness of the images, then converts the video signals of YCbCr to RGB and extracts the R component from one camera, so does the other video and G, B component are extracted synchronously, outputs 3D fusion images finally. The real-time adjustments such as translation and scaling of the two color components are realized through the serial communication between the VC software and BIOS. The system with the method of adding red-blue components reduces the lost of the chrominance components and makes the picture color saturation reduce to more than 95% of the original. Enhancement algorithm after optimization to reduce the amount of data fusion in the processing of video is used to reduce the fusion time and watching effect is improved. Experimental results show that the system can capture images in near distance, output red-blue 3D video and presents the nice experiences to the audience wearing red-blue glasses.

  4. Remapping of digital subtraction angiography on a standard fluoroscopy system using 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme

    2015-03-01

    Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.

  5. Key factors in the design of a LED volumetric 3D display system

    NASA Astrophysics Data System (ADS)

    Lin, Yuanfang; Liu, Xu; Yao, Yi; Zhang, Xiaojie; Liu, Xiangdong; Lin, Fengchun

    2005-01-01

    Through careful consideration of key factors that impact upon voxel attributes and image quality, a volumetric three-dimensional (3D) display system employing the rotation of a two-dimensional (2D) thin active panel was developed. It was designed as a lower-cost 3D visualization platform for experimentation and demonstration. Light emitting diodes (LEDs) were arranged into a 256x64 dot matrix on a single surface of the panel, which was positioned symmetrically about the axis of rotation. The motor and necessary supporting structures were located below the panel. LEDs individually of 500 ns response time, 1.6 mm×0.8 mm×0.6 mm external dimensions, 0.38 mm×0.43 mm horizontal and vertical spacing were adopted. The system is functional, providing 512×256×64, i.e. over 8 million addressable voxels within a 292 mm×165 mm cylindrical volume at a refresh frequency in excess of 16 Hz. Due to persistence of vision, momentarily addressed voxels will be perceived and fused into a 3D image. Many static or dynamic 3D scenes were displayed, which can be directly viewed from any position with few occlusion zones and dead zones. Important depth cues like binocular disparity and motion parallax are satisfied naturally.

  6. GeoCube: A 3D mineral resources quantitative prediction and assessment system

    NASA Astrophysics Data System (ADS)

    Li, Ruixi; Wang, Gongwen; Carranza, Emmanuel John Muico

    2016-04-01

    This paper introduces a software system (GeoCube) for three dimensional (3D) extraction and integration of exploration criteria from spatial data. The software system contains four key modules: (1) Import and Export, supporting many formats from commercial 3D geological modeling software and offering various export options; (2) pre-process, containing basic statistics and fractal/multi-fractal methods (concentration-volume (C-V) fractal method) for extraction of exploration criteria from spatial data (i.e., separation of geological, geochemical and geophysical anomalies from background values in 3D space); (3) assessment, supporting five data-driven integration methods (viz., information entropy, logistic regression, ordinary weights of evidence, weighted weights of evidence, boost weights of evidence) for integration of exploration criteria; and (4) post-process, for classifying integration outcomes into several levels based on mineralization potentiality. The Nanihu Mo (W) camp (5.0 km×4.0 km×2.7 km) of the Luanchuan region was used as a case study. The results show that GeoCube can enhance the use of 3D geological modeling to store, retrieve, process, display, analyze and integrate exploration criteria. Furthermore, it was found that the ordinary weights of evidence, boost weights of evidence and logistic regression methods showed superior performance as integration tools for exploration targeting in this case study.

  7. 3-D transient eddy current calculations for the FELIX cylinder experiments

    SciTech Connect

    Davey, K.R.; Turner, L.R.

    1986-12-01

    The three-dimensional eddy current transient field problem is formulated first using the U-V method. This method breaks the vector Helmholtz equation into two scalar Helmholtz equations. Null field integral equations and the appropriate boundary conditions are used to set up an identification matrix which is independent of null field point locations. Embedded in the identification matrix are the unknown eigenvalues of the problem representing its impulse response in time. These eigenvalues are found by equating the determinant of the identification matrix to zero. When this initial forcing function is Fourier decomposed into its spatial harmonics, each Fourier component can be associated with a unique eigenvalue by this technique. The true transient solution comes through a convolution of the impulse response so obtained with the particular external field decay governing the problem at hand. The technique is applied to the FELIX cylinder experiments; computed results are compared to data. A pseudoanalytic confirmation of the eigenvalues so obtained is formulated to validate the procedure.

  8. 3D Relativistic Magnetohydrodynamic Simulations of Current-Driven Instability. 1; Instability of a Static Column

    NASA Technical Reports Server (NTRS)

    Mizuno, Yosuke; Lyubarsky, Yuri; ishikawa, Ken-Ichi; Hardee, Philip E.

    2010-01-01

    We have investigated the development of current-driven (CD) kink instability through three-dimensional relativistic MHD simulations. A static force-free equilibrium helical magnetic configuration is considered in order to study the influence of the initial configuration on the linear and nonlinear evolution of the instability. We found that the initial configuration is strongly distorted but not disrupted by the kink instability. The instability develops as predicted by linear theory. In the non-linear regime the kink amplitude continues to increase up to the terminal simulation time, albeit at different rates, for all but one simulation. The growth rate and nonlinear evolution of the CD kink instability depends moderately on the density profile and strongly on the magnetic pitch profile. The growth rate of the kink mode is reduced in the linear regime by an increase in the magnetic pitch with radius and the non-linear regime is reached at a later time than for constant helical pitch. On the other hand, the growth rate of the kink mode is increased in the linear regime by a decrease in the magnetic pitch with radius and reaches the non-linear regime sooner than the case with constant magnetic pitch. Kink amplitude growth in the non-linear regime for decreasing magnetic pitch leads to a slender helically twisted column wrapped by magnetic field. On the other hand, kink amplitude growth in the non-linear regime nearly ceases for increasing magnetic pitch.

  9. Numerical and experimental study of the 3D effect on connecting arm of vertical axis tidal current turbine

    NASA Astrophysics Data System (ADS)

    Guo, Wei; Kang, Hai-gui; Chen, Bing; Xie, Yu; Wang, Yin

    2016-03-01

    Vertical axis tidal current turbine is a promising device to extract energy from ocean current. One of the important components of the turbine is the connecting arm, which can bring about a significant effect on the pressure distribution along the span of the turbine blade, herein we call it 3D effect. However, so far the effect is rarely reported in the research, moreover, in numerical simulation. In the present study, a 3D numerical model of the turbine with the connecting arm was developed by using FLUENT software compiling the UDF (User Defined Function) command. The simulation results show that the pressure distribution along the span of blade with the connecting arm model is significantly different from those without the connecting arm. To facilitate the validation of numerical model, the laboratory experiment has been carried out by using three different types of NACA aerofoil connecting arm and circle section connecting arm. And results show that the turbine with NACA0012 connecting arm has the best start-up performance which is 0.346 m/s and the peak point of power conversion coefficient is around 0.33. A further study has been performed and a conclusion is drawn that the aerofoil and thickness of connecting arm are the most important factors on the power conversion coefficient of the vertical axis tidal current turbine.

  10. Pipeline inwall 3D measurement system based on the cross structured light

    NASA Astrophysics Data System (ADS)

    Shen, Da; Lin, Zhipeng; Xue, Lei; Zheng, Qiang; Wang, Zichi

    2014-01-01

    In order to accurately realize the defect detection of pipeline inwall, this paper proposes a measurement system made up of cross structured light, single CCD camera and a smart car, etc. Based on structured light measurement technology, this paper mainly introduces the structured light measurement system, the imaging mathematical model, and the parameters and method of camera calibration. Using these measuring principles and methods, the camera in remote control car platform achieves continuous shooting of objects and real-time rebound processing as well as utilizing established model to extract 3D point cloud coordinate to reconstruct pipeline defects, so it is possible to achieve 3D automatic measuring, and verifies the correctness and feasibility of this system. It has been found that this system has great measurement accuracy in practice.

  11. Prediction of parallel NIKE3D performance on the KSR1 system

    SciTech Connect

    Su, P.S.; Zacharia, T.; Fulton, R.E.

    1995-05-01

    Finite element method is one of the bases for numerical solutions to engineering problems. Complex engineering problems using finite element analysis typically imply excessively large computational time. Parallel supercomputers have the potential for significantly increasing calculation speeds in order to meet these computational requirements. This paper predicts parallel NIKE3D performance on the Kendall Square Research (KSR1) system. The first part of the prediction is based on the implementation of parallel Cholesky (U{sup T}DU) matrix decomposition algorithm through actual computations on the KSRI multiprocessor system, with 64 processors, at Oak Ridge National Laboratory. The other predictions are based on actual computations for parallel element matrix generation, parallel global stiffness matrix assembly, and parallel forward/backward substitution on the BBN TC2000 multiprocessor system at Lawrence Livermore National Laboratory. The preliminary results indicate that parallel NIKE3D performance can be attractive under local/shared-memory multiprocessor system environments.

  12. Turn-key calibration of counter-propagating multiple beam 3D trapping system

    NASA Astrophysics Data System (ADS)

    Seidelin Dam, Jeppe; Perch-Nielsen, Ivan R.; Palima, Darwin; Glückstad, Jesper

    2008-02-01

    Optical trapping by use of multiple counter-propagating beam traps has not been widely implemented outside optical engineering laboratories. One, if not the primary, reason for this is the relatively complex calibration procedures involved in connection with this optical geometry. In this talk, we present automated solutions to all the calibration issues, which in effect results in a turn-key counter-propagating multi-beam 3D trapping system. These results allow a wider audience to utilize counter-propagating beam trapping systems. The calibrated system can be used to independently manipulate a plurality of cells real-time in a large 3D working area. Optionally, the system can be extended to allow for use of various spectroscopic methods concurrently with optical manipulation/trapping.

  13. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    PubMed

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA.

  14. Micro-precise spatiotemporal delivery system embedded in 3D printing for complex tissue regeneration.

    PubMed

    Tarafder, Solaiman; Koch, Alia; Jun, Yena; Chou, Conrad; Awadallah, Mary R; Lee, Chang H

    2016-04-25

    Three dimensional (3D) printing has emerged as an efficient tool for tissue engineering and regenerative medicine, given its advantages for constructing custom-designed scaffolds with tunable microstructure/physical properties. Here we developed a micro-precise spatiotemporal delivery system embedded in 3D printed scaffolds. PLGA microspheres (μS) were encapsulated with growth factors (GFs) and then embedded inside PCL microfibers that constitute custom-designed 3D scaffolds. Given the substantial difference in the melting points between PLGA and PCL and their low heat conductivity, μS were able to maintain its original structure while protecting GF's bioactivities. Micro-precise spatial control of multiple GFs was achieved by interchanging dispensing cartridges during a single printing process. Spatially controlled delivery of GFs, with a prolonged release, guided formation of multi-tissue interfaces from bone marrow derived mesenchymal stem/progenitor cells (MSCs). To investigate efficacy of the micro-precise delivery system embedded in 3D printed scaffold, temporomandibular joint (TMJ) disc scaffolds were fabricated with micro-precise spatiotemporal delivery of CTGF and TGFβ3, mimicking native-like multiphase fibrocartilage. In vitro, TMJ disc scaffolds spatially embedded with CTGF/TGFβ3-μS resulted in formation of multiphase fibrocartilaginous tissues from MSCs. In vivo, TMJ disc perforation was performed in rabbits, followed by implantation of CTGF/TGFβ3-μS-embedded scaffolds. After 4 wks, CTGF/TGFβ3-μS embedded scaffolds significantly improved healing of the perforated TMJ disc as compared to the degenerated TMJ disc in the control group with scaffold embedded with empty μS. In addition, CTGF/TGFβ3-μS embedded scaffolds significantly prevented arthritic changes on TMJ condyles. In conclusion, our micro-precise spatiotemporal delivery system embedded in 3D printing may serve as an efficient tool to regenerate complex and inhomogeneous tissues.

  15. Permanent 3D laser scanning system for an active landslide in Gresten (Austria)

    NASA Astrophysics Data System (ADS)

    Canli, Ekrem; Höfle, Bernhard; Hämmerle, Martin; Benni, Thiebes; Glade, Thomas

    2015-04-01

    Terrestrial laser scanners (TLS) have widely been used for high spatial resolution data acquisition of topographic features and geomorphic analyses. Existing applications encompass different landslides including rockfall, translational or rotational landslides, debris flow, but also coastal cliff erosion, braided river evolution or river bank erosion. The main advantages of TLS are (a) the high spatial sampling density of XYZ-measurements (e.g. 1 point every 2-3 mm at 10 m distance), particularly in comparison with the low data density monitoring techniques such as GNSS or total stations, (b) the millimeter accuracy and precision of the range measurement to centimeter accuracy of the final DEM, and (c) the highly dense area-wide scanning that enables to look through vegetation and to measure bare ground. One of its main constraints is the temporal resolution of acquired data due to labor costs and time requirements for field campaigns. Thus, repetition measurements are generally performed only episodically. However, for an increased scientific understanding of the processes as well as for early warning purposes, we present a novel permanent 3D monitoring setup to increase the temporal resolution of TLS measurements. This accounts for different potential monitoring deliverables such as volumetric calculations, spatio-temporal movement patterns, predictions and even alerting. This system was installed at the active Salcher landslide in Gresten (Austria) that is situated in the transition zone of the Gresten Klippenbelt (Helvetic) and the Flyschzone (Penninic). The characteristic lithofacies are the Gresten Beds of Early Jurassic age that are covered by a sequence of marly and silty beds with intercalated sandy limestones. Permanent data acquisition can be implemented into our workflow with any long-range TLS system offering fully automated capturing. We utilize an Optech ILRIS-3D scanner. The time interval between two scans is currently set to 24 hours, but can be

  16. Integrated Navigation, Guidance, and Control of Missile Systems: 3-D Dynamic Model

    DTIC Science & Technology

    2013-02-01

    UNCLASSIFIED DSTO-TR-2805 Figure B.1: Aerodynamic variables for a missile and is the lift coefficient . LC  , represent respectively the...UNCLASSIFIED Integrated Navigation, Guidance, and Control of Missile Systems: 3-D Dynamic Model Farhan A. Faruqi Weapons...engagement kinematics is derived suitable for developing, implementing and testing modern missile guidance systems. The model developed here is

  17. On the critical one-component velocity regularity criteria to 3-D incompressible MHD system

    NASA Astrophysics Data System (ADS)

    Liu, Yanlin

    2016-05-01

    Let (u , b) be a smooth enough solution of 3-D incompressible MHD system. We prove that if (u , b) blows up at a finite time T*, then for any p ∈ ] 4 , ∞ [, there holds ∫0T* (‖u3(t‧) ‖ H ˙ 1/2 +2/p p + ‖b(t‧) ‖ H ˙ 1/2 +2/p p) dt‧ = ∞. We remark that all these quantities are in the critical regularity of the MHD system.

  18. Fast particles identification in programmable form at level-0 trigger by means of the 3D-Flow system

    SciTech Connect

    Crosetto, Dario B.

    1998-10-30

    The 3D-Flow Processor system is a new, technology-independent concept in very fast, real-time system architectures. Based on either an FPGA or an ASIC implementation, it can address, in a fully programmable manner, applications where commercially available processors would fail because of throughput requirements. Possible applications include filtering-algorithms (pattern recognition) from the input of multiple sensors, as well as moving any input validated by these filtering-algorithms to a single output channel. Both operations can easily be implemented on a 3D-Flow system to achieve a real-time processing system with a very short lag time. This system can be built either with off-the-shelf FPGAs or, for higher data rates, with CMOS chips containing 4 to 16 processors each. The basic building block of the system, a 3D-Flow processor, has been successfully designed in VHDL code written in ''Generic HDL'' (mostly made of reusable blocks that are synthesizable in different technologies, or FPGAs), to produce a netlist for a four-processor ASIC featuring 0.35 micron CBA (Ceil Base Array) technology at 3.3 Volts, 884 mW power dissipation at 60 MHz and 63.75 mm sq. die size. The same VHDL code has been targeted to three FPGA manufacturers (Altera EPF10K250A, ORCA-Lucent Technologies 0R3T165 and Xilinx XCV1000). A complete set of software tools, the 3D-Flow System Manager, equally applicable to ASIC or FPGA implementations, has been produced to provide full system simulation, application development, real-time monitoring, and run-time fault recovery. Today's technology can accommodate 16 processors per chip in a medium size die, at a cost per processor of less than $5 based on the current silicon die/size technology cost.

  19. Erythrocyte C3d and C4d for Monitoring Disease Activity in Systemic Lupus Erythematosus

    PubMed Central

    Kao, Amy H.; Navratil, Jeannine S.; Ruffing, Margie J.; Liu, Chau-Ching; Hawkins, Douglas; McKinnon, Kathleen M.; Danchenko, Natalya; Ahearn, Joseph M.; Manzi, Susan

    2010-01-01

    Objective Disease activity in systemic lupus erythematosus (SLE) is typically monitored by measuring serum C3 and C4. However, these proteins have limited utility as lupus biomarkers, because they are substrates rather than products of complement activation. The aim of this study was to evaluate the utility of measuring the erythrocyte-bound complement activation products, erythrocyte-bound C3d (E-C3d) and E-C4d, compared with that of serum C3 and C4 for monitoring disease activity in patients with SLE. Methods The levels of E-C3d and E-C4d were measured by flow cytometry in 157 patients with SLE, 290 patients with other diseases, and 256 healthy individuals. The patients with SLE were followed up longitudinally. Disease activity was measured at each visit, using the validated Systemic Lupus Activity Measure (SLAM) and the Safety of Estrogens in Lupus Erythematosus: National Assessment (SELENA) version of the Systemic Lupus Erythematosus Disease Activity Index (SLEDAI). Results At baseline, patients with SLE had higher median levels of E-C3d and E-C4d (P < 0.0001) in addition to higher within-patient and between-patient variability in both E-C3d and E-C4d when compared with the 2 non-SLE groups. In a longitudinal analysis of patients with SLE, E-C3d, E-C4d, serum C3, and anti–double-stranded DNA (anti-dsDNA) antibodies were each significantly associated with the SLAM and SELENA–SLEDAI. In a multivariable analysis, E-C4d remained significantly associated with these SLE activity measures after adjusting for serum C3, C4, and anti-dsDNA antibodies; however, E-C3d was associated with the SLAM but not with the SELENA–SLEDAI. Conclusion Determining the levels of the erythrocyte-bound complement activation products, especially E-C4d, is an informative measure of SLE disease activity as compared with assessing serum C4 levels and should be considered for monitoring disease activity in patients with SLE. PMID:20187154

  20. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  1. Integrated Avionics System (IAS), Integrating 3-D Technology On A Spacecraft Panel

    NASA Technical Reports Server (NTRS)

    Hunter, Don J.; Halpert, Gerald

    1999-01-01

    As spacecraft designs converge toward miniaturization, and with the volumetric and mass challenges placed on avionics, programs will continue to advance the "state of the art" in spacecraft system development with new challenges to reduce power, mass and volume. Traditionally, the trend is to focus on high-density 3-D packaging technologies. Industry has made significant progress in 3-D technologies, and other related internal and external interconnection schemes. Although new technologies have improved packaging densities, a system packaging architecture is required that not only reduces spacecraft volume and mass budgets, but increase integration efficiencies, provide modularity and flexibility to accommodate multiple missions while maintaining a low recurring cost. With these challenges in mind, a novel system packaging approach incorporates solutions that provide broader environmental applications, more flexible system interconnectivity, scalability, and simplified assembly test and integration schemes. The Integrated Avionics System (IAS) provides for a low-mass, modular distributed or centralized packaging architecture which combines ridged-flex technologies, high-density COTS hardware and a new 3-D mechanical packaging approach, Horizontal Mounted Cube (HMC). This paper will describe the fundamental elements of the IAS, HMC hardware design, system integration and environmental test results.

  2. Modeling alongshore propagating tides and currents around West Maui, Hawaii and implications for transport using Delft3D.

    NASA Astrophysics Data System (ADS)

    Vitousek, S.; Fletcher, C. H.; Storlazzi, C. D.

    2006-12-01

    Nearshore currents are driven by a number of components including tides, waves winds and even internal tides. To adequately simulate transport of sand and other constituents, the realistic behavior of the dominant current-generating phenomena should be resolved. This often requires sufficient observations and calibration/validation efforts to achieve realistic modeling results. The work explores the capabilities of modeling the currents along West Maui. The West Maui coast has a propagating tide where the observed peak tidal currents, which are directed parallel to the coast, occur very closely to the peak tidal water levels. In 2003, the USGS collected an extensive set of current observations along West Maui, Hawaii, with the goal of better understanding transport mechanisms of sediment, larvae, pollutants and other particles in coral reef settings. The observations included vessel mounted ADCP surveys and an array seafloor instruments at the 10m isobath along the coast. A simple 2DH model of West Maui using Delft3D shows good comparison of the modeled and observed currents. Nearshore currents driven by waves and winds are also considered. During the data collection period a significant erosion event occurred within the study domain at Kaanapali Beach. This event undermined several trees on the shoreline and threatened resort infrastructure. In modeling the nearshore currents of this region we hope to determine the potential for sand transport and shoreline change to hindcast this event.

  3. 3D MHD Simulations of Injector Coupling and Current Drive in HIT-SI

    NASA Astrophysics Data System (ADS)

    Hansen, Chris; Marklin, George; Jarboe, Thomas

    2013-10-01

    A new non-linear reduced MHD code has been developed using the PSI-TET framework, which is capable of modeling the full HIT-SI geometry with consistent boundary conditions for the insulator coated flux conserver. The PSI-TET framework provides general mechanics supporting the development of multi-physics simulation using high order finite methods with a tetrahedral spatial discretization. Using these capabilities an implementation of reduced Hall-MHD was developed where temperature and density are assumed to be uniform and constant, reducing the full MHD equations to the momentum and induction equations. A Nedelec vector basis set is used for the magnetic field, which preserves the divergence free property of the induction equation, and a scalar Lagrange basis is used for each component of the velocity. The equation system is advanced using a time centered implicit scheme, which is solved using a multi-grid preconditioned Newton-Krylov method. Results will be presented focusing on internal injector dynamics and coupling to the Spheromak region. Comparison between this code and experimental data as well as existing NIMROD simulations of HIT-SI, which model the injector operation with boundary conditions on an axisymmetric grid, will also be shown. Work supported by DOE.

  4. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud-resolving models (CRMs) agree with observations better than traditional singlecolumn models in simulating various types of clouds and cloud systems from Merent geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloudscale model (termed a super-parameterization or multiscale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameteridon NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production nms will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, (2) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  5. Coupled fvGCM-GCE Modeling System, 3D Cloud-Resolving Model and Cloud Library

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo

    2005-01-01

    Recent GEWEX Cloud System Study (GCSS) model comparison projects have indicated that cloud- resolving models (CRMs) agree with observations better than traditional single-column models in simulating various types of clouds and cloud systems from different geographic locations. Current and future NASA satellite programs can provide cloud, precipitation, aerosol and other data at very fine spatial and temporal scales. It requires a coupled global circulation model (GCM) and cloud-scale model (termed a super-parameterization or multi-scale modeling framework, MMF) to use these satellite data to improve the understanding of the physical processes that are responsible for the variation in global and regional climate and hydrological systems. The use of a GCM will enable global coverage, and the use of a CRM will allow for better and more sophisticated physical parameterization. NASA satellite and field campaign cloud related datasets can provide initial conditions as well as validation for both the MMF and CRMs. A seed fund is available at NASA Goddard to build a MMF based on the 2D Goddard Cumulus Ensemble (GCE) model and the Goddard finite volume general circulation model (fvGCM). A prototype MMF in being developed and production runs will be conducted at the beginning of 2005. In this talk, I will present: (1) A brief review on GCE model and its applications on precipitation processes, ( 2 ) The Goddard MMF and the major difference between two existing MMFs (CSU MMF and Goddard MMF), (3) A cloud library generated by Goddard MMF, and 3D GCE model, and (4) A brief discussion on the GCE model on developing a global cloud simulator.

  6. Development of a 3D Digital Particle Image Thermometry and Velocimetry (3DDPITV) System

    NASA Astrophysics Data System (ADS)

    Schmitt, David; Rixon, Greg; Dabiri, Dana

    2006-11-01

    A novel 3D Digital Particle Image Thermometry and Velocimetry (3DDPITV) system has been designed and fabricated. By combining 3D Digital Particle Image Velocimetry (3DDPIV) and Digital Particle Image Thermometry (DPIT) into one system, this technique provides simultaneous temperature and velocity data in a volume of ˜1x1x0.5 in^3 using temperature sensitive liquid crystal particles as flow sensors. Two high-intensity xenon flashlamps were used as illumination sources. The imaging system consists of six CCD cameras, three allocated for measuring velocity, based on particle motion, and three for measuring temperature, based on particle color. The cameras were optically aligned using a precision grid and high-resolution translation stages. Temperature calibration was then performed using a precision thermometer and a temperature-controlled bath. Results from proof-of-concept experiments will be presented and discussed.

  7. Structured light 3D tracking system for measuring motions in PET brain imaging

    NASA Astrophysics Data System (ADS)

    Olesen, Oline V.; Jørgensen, Morten R.; Paulsen, Rasmus R.; Højgaard, Liselotte; Roed, Bjarne; Larsen, Rasmus

    2010-02-01

    Patient motion during scanning deteriorates image quality, especially for high resolution PET scanners. A new proposal for a 3D head tracking system for motion correction in high resolution PET brain imaging is set up and demonstrated. A prototype tracking system based on structured light with a DLP projector and a CCD camera is set up on a model of the High Resolution Research Tomograph (HRRT). Methods to reconstruct 3D point clouds of simple surfaces based on phase-shifting interferometry (PSI) are demonstrated. The projector and camera are calibrated using a simple stereo vision procedure where the projector is treated as a camera. Additionally, the surface reconstructions are corrected for the non-linear projector output prior to image capture. The results are convincing and a first step toward a fully automated tracking system for measuring head motions in PET imaging.

  8. Quasimodes instability analysis of uncertain asymmetric rotor system based on 3D solid element model

    NASA Astrophysics Data System (ADS)

    Zuo, Yanfei; Wang, Jianjun; Ma, Weimeng

    2017-03-01

    Uncertainties are considered in the equation of motion of an asymmetric rotor system. Based on Hill's determinant method, quasimodes stability analysis with uncertain parameters is used to get stochastic boundaries of unstable regions. Firstly, A 3D finite element rotor model was built in rotating frame with four parameterized coefficients, which is assumed as random parameters representing the uncertainties existing in the rotor system. Then the influences of uncertain coefficients on the distribution of the unstable region boundaries are analyzed. The results show that uncertain parameters have various influences on the size, boundary and number of unstable regions. At last, the statistic results of the minimum and maximum spin speeds of unstable regions were got by Monte Carlo simulation. The used method is suitable for real engineering rotor system, because arbitrary configuration of rotors can be modeled by 3D finite element.

  9. First 3D reconstruction of the rhizocephalan root system using MicroCT

    NASA Astrophysics Data System (ADS)

    Noever, Christoph; Keiler, Jonas; Glenner, Henrik

    2016-07-01

    Parasitic barnacles (Cirripedia: Rhizocephala) are highly specialized parasites of crustaceans. Instead of an alimentary tract for feeding they utilize a system of roots, which infiltrates the body of their hosts to absorb nutrients. Using X-ray micro computer tomography (MicroCT) and computer-aided 3D-reconstruction, we document the spatial organization of this root system, the interna, inside the intact host and also demonstrate its use for morphological examinations of the parasites reproductive part, the externa. This is the first 3D visualization of the unique root system of the Rhizocephala in situ, showing how it is related to the inner organs of the host. We investigated the interna from different parasitic barnacles of the family Peltogastridae, which are parasitic on anomuran crustaceans. Rhizocephalan parasites of pagurid hermit crabs and lithodid crabs were analysed in this study.

  10. In vivo validation of a 3D ultrasound system for imaging the lateral ventricles of neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; Fenster, A.; Chen, N.; Lee, D.; de Ribaupierre, S.

    2014-03-01

    Dilated lateral ventricles in neonates can be due to many different causes, such as brain loss, or congenital malformation; however, the main cause is hydrocephalus, which is the accumulation of fluid within the ventricular system. Hydrocephalus can raise intracranial pressure resulting in secondary brain damage, and up to 25% of patients with severely enlarged ventricles have epilepsy in later life. Ventricle enlargement is clinically monitored using 2D US through the fontanels. The sensitivity of 2D US to dilation is poor because it cannot provide accurate measurements of irregular volumes such as the ventricles, so most clinical evaluations are of a qualitative nature. We developed a 3D US system to image the cerebral ventricles of neonates within the confines of incubators that can be easily translated to more open environments. Ventricle volumes can be segmented from these images giving a quantitative volumetric measurement of ventricle enlargement without moving the patient into an imaging facility. In this paper, we report on in vivo validation studies: 1) comparing 3D US ventricle volumes before and after clinically necessary interventions removing CSF, and 2) comparing 3D US ventricle volumes to those from MRI. Post-intervention ventricle volumes were less than pre-intervention measurements for all patients and all interventions. We found high correlations (R = 0.97) between the difference in ventricle volume and the reported removed CSF with the slope not significantly different than 1 (p < 0.05). Comparisons between ventricle volumes from 3D US and MR images taken 4 (±3.8) days of each other did not show significant difference (p=0.44) between 3D US and MRI through paired t-test.

  11. A 3D human neural cell culture system for modeling Alzheimer’s disease

    PubMed Central

    Kim, Young Hye; Choi, Se Hoon; D’Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J.; Klee, Justin B.; Brüstle, Oliver; Tanzi, Rudolph E.; Kim, Doo Yeon

    2015-01-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer’s disease (AD) because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel three-dimensional (3D) culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of β-amyloid and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix, and the analysis of AD pathogenesis. The 3D culture generation takes 1–2 days. The aggregation of β-amyloid is observed after 6-weeks of differentiation followed by robust tau pathology after 10–14 weeks. PMID:26068894

  12. A 3D human neural cell culture system for modeling Alzheimer's disease.

    PubMed

    Kim, Young Hye; Choi, Se Hoon; D'Avanzo, Carla; Hebisch, Matthias; Sliwinski, Christopher; Bylykbashi, Enjana; Washicosky, Kevin J; Klee, Justin B; Brüstle, Oliver; Tanzi, Rudolph E; Kim, Doo Yeon

    2015-07-01

    Stem cell technologies have facilitated the development of human cellular disease models that can be used to study pathogenesis and test therapeutic candidates. These models hold promise for complex neurological diseases such as Alzheimer's disease (AD), because existing animal models have been unable to fully recapitulate all aspects of pathology. We recently reported the characterization of a novel 3D culture system that exhibits key events in AD pathogenesis, including extracellular aggregation of amyloid-β (Aβ) and accumulation of hyperphosphorylated tau. Here we provide instructions for the generation and analysis of 3D human neural cell cultures, including the production of genetically modified human neural progenitor cells (hNPCs) with familial AD mutations, the differentiation of the hNPCs in a 3D matrix and the analysis of AD pathogenesis. The 3D culture generation takes 1-2 d. The aggregation of Aβ is observed after 6 weeks of differentiation, followed by robust tau pathology after 10-14 weeks.

  13. Multispectral photon counting integral imaging system for color visualization of photon limited 3D scenes

    NASA Astrophysics Data System (ADS)

    Moon, Inkyu

    2014-06-01

    This paper provides an overview of a colorful photon-counting integral imaging system using Bayer elemental images for 3D visualization of photon limited scenes. The color image sensor with a format of Bayer color filter array, i.e., a red, a green, or a blue filter in a repeating pattern, captures elemental image set of a photon limited three-dimensional (3D) scene. It is assumed that the observed photon count in each channel (red, green or blue) follows Poisson statistics. The reconstruction of 3D scene with a format of Bayer is obtained by applying computational geometrical ray back propagation algorithm and parametric maximum likelihood estimator to the photon-limited Bayer elemental images. Finally, several standard demosaicing algorithms are applied in order to convert the 3D reconstruction with a Bayer format into a RGB per pixel format. Experimental results demonstrate that the gradient corrected linear interpolation technique achieves better performance in regard with acceptable PSNR and less computational complexity.

  14. Display of real-time 3D sensor data in a DVE system

    NASA Astrophysics Data System (ADS)

    Völschow, Philipp; Münsterer, Thomas; Strobel, Michael; Kuhn, Michael

    2016-05-01

    This paper describes the implementation of displaying real-time processed LiDAR 3D data in a DVE pilot assistance system. The goal is to display to the pilot a comprehensive image of the surrounding world without misleading or cluttering information. 3D data which can be attributed, i.e. classified, to terrain or predefined obstacle classes is depicted differently from data belonging to elevated objects which could not be classified. Display techniques may be different for head-down and head-up displays to avoid cluttering of the outside view in the latter case. While terrain is shown as shaded surfaces with grid structures or as grid structures alone, respectively, classified obstacles are typically displayed with obstacle symbols only. Data from objects elevated above ground are displayed as shaded 3D points in space. In addition the displayed 3D points are accumulated over a certain time frame allowing on the one hand side a cohesive structure being displayed and on the other hand displaying moving objects correctly. In addition color coding or texturing can be applied based on known terrain features like land use.

  15. Analysis of a 3-D system function measured for magnetic particle imaging.

    PubMed

    Rahmer, Jürgen; Weizenecker, Jürgen; Gleich, Bernhard; Borgert, Jörn

    2012-06-01

    Magnetic particle imaging (MPI) is a new tomographic imaging approach that can quantitatively map magnetic nanoparticle distributions in vivo. It is capable of volumetric real-time imaging at particle concentrations low enough to enable clinical applications. For image reconstruction in 3-D MPI, a system function (SF) is used, which describes the relation between the acquired MPI signal and the spatial origin of the signal. The SF depends on the instrumental configuration, the applied field sequence, and the magnetic particle characteristics. Its properties reflect the quality of the spatial encoding process. This work presents a detailed analysis of a measured SF to give experimental evidence that 3-D MPI encodes information using a set of 3-D spatial patterns or basis functions that is stored in the SF. This resembles filling 3-D k-space in magnetic resonance imaging, but is faster since all information is gathered simultaneously over a broad acquisition bandwidth. A frequency domain analysis shows that the finest structures that can be encoded with the presented SF are as small as 0.6 mm. SF simulations are performed to demonstrate that larger particle cores extend the set of basis functions towards higher resolution and that the experimentally observed spatial patterns require the existence of particles with core sizes of about 30 nm in the calibration sample. A simple formula is presented that qualitatively describes the basis functions to be expected at a certain frequency.

  16. Multiview 3-D Echocardiography Fusion with Breath-Hold Position Tracking Using an Optical Tracking System.

    PubMed

    Punithakumar, Kumaradevan; Hareendranathan, Abhilash R; McNulty, Alexander; Biamonte, Marina; He, Allen; Noga, Michelle; Boulanger, Pierre; Becher, Harald

    2016-08-01

    Recent advances in echocardiography allow real-time 3-D dynamic image acquisition of the heart. However, one of the major limitations of 3-D echocardiography is the limited field of view, which results in an acquisition insufficient to cover the whole geometry of the heart. This study proposes the novel approach of fusing multiple 3-D echocardiography images using an optical tracking system that incorporates breath-hold position tracking to infer that the heart remains at the same position during different acquisitions. In six healthy male volunteers, 18 pairs of apical/parasternal 3-D ultrasound data sets were acquired during a single breath-hold as well as in subsequent breath-holds. The proposed method yielded a field of view improvement of 35.4 ± 12.5%. To improve the quality of the fused image, a wavelet-based fusion algorithm was developed that computes pixelwise likelihood values for overlapping voxels from multiple image views. The proposed wavelet-based fusion approach yielded significant improvement in contrast (66.46 ± 21.68%), contrast-to-noise ratio (49.92 ± 28.71%), signal-to-noise ratio (57.59 ± 47.85%) and feature count (13.06 ± 7.44%) in comparison to individual views.

  17. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  18. Detailed analysis of an optimized FPP-based 3D imaging system

    NASA Astrophysics Data System (ADS)

    Tran, Dat; Thai, Anh; Duong, Kiet; Nguyen, Thanh; Nehmetallah, Georges

    2016-05-01

    In this paper, we present detail analysis and a step-by-step implementation of an optimized fringe projection profilometry (FPP) based 3D shape measurement system. First, we propose a multi-frequency and multi-phase shifting sinusoidal fringe pattern reconstruction approach to increase accuracy and sensitivity of the system. Second, phase error compensation caused by the nonlinear transfer function of the projector and camera is performed through polynomial approximation. Third, phase unwrapping is performed using spatial and temporal techniques and the tradeoff between processing speed and high accuracy is discussed in details. Fourth, generalized camera and system calibration are developed for phase to real world coordinate transformation. The calibration coefficients are estimated accurately using a reference plane and several gauge blocks with precisely known heights and by employing a nonlinear least square fitting method. Fifth, a texture will be attached to the height profile by registering a 2D real photo to the 3D height map. The last step is to perform 3D image fusion and registration using an iterative closest point (ICP) algorithm for a full field of view reconstruction. The system is experimentally constructed using compact, portable, and low cost off-the-shelf components. A MATLAB® based GUI is developed to control and synchronize the whole system.

  19. Development of Mobile Mapping System for 3D Road Asset Inventory

    PubMed Central

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-01-01

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed. PMID:26985897

  20. Development of Mobile Mapping System for 3D Road Asset Inventory.

    PubMed

    Sairam, Nivedita; Nagarajan, Sudhagar; Ornitz, Scott

    2016-03-12

    Asset Management is an important component of an infrastructure project. A significant cost is involved in maintaining and updating the asset information. Data collection is the most time-consuming task in the development of an asset management system. In order to reduce the time and cost involved in data collection, this paper proposes a low cost Mobile Mapping System using an equipped laser scanner and cameras. First, the feasibility of low cost sensors for 3D asset inventory is discussed by deriving appropriate sensor models. Then, through calibration procedures, respective alignments of the laser scanner, cameras, Inertial Measurement Unit and GPS (Global Positioning System) antenna are determined. The efficiency of this Mobile Mapping System is experimented by mounting it on a truck and golf cart. By using derived sensor models, geo-referenced images and 3D point clouds are derived. After validating the quality of the derived data, the paper provides a framework to extract road assets both automatically and manually using techniques implementing RANSAC plane fitting and edge extraction algorithms. Then the scope of such extraction techniques along with a sample GIS (Geographic Information System) database structure for unified 3D asset inventory are discussed.

  1. Performance analysis of 3-D shape measurement algorithm with a short baseline projector-camera system.

    PubMed

    Liu, Jianyang; Li, Youfu

    A number of works for 3-D shape measurement based on structured light have been well-studied in the last decades. A common way to model the system is to use the binocular stereovision-like model. In this model, the projector is treated as a camera, thus making a projector-camera-based system unified with a well-established traditional binocular stereovision system. After calibrating the projector and camera, a 3-D shape information is obtained by conventional triangulation. However, in such a stereovision-like system, the short baseline problem exists and limits the measurement accuracy. Hence, in this work, we present a new projecting-imaging model based on fringe projection profilometry (FPP). In this model, we first derive a rigorous mathematical relationship that exists between the height of an object's surface, the phase difference distribution map, and the parameters of the setup. Based on this model, we then study the problem of how the uncertainty of relevant parameters, particularly the baseline's length, affects the 3-D shape measurement accuracy using our proposed model. We provide an extensive uncertainty analysis on the proposed model through partial derivative analysis, relative error analysis, and sensitivity analysis. Moreover, the Monte Carlo simulation experiment is also conducted which shows that the measurement performance of the projector-camera system has a short baseline.

  2. In vitro systems to study nephropharmacology: 2D versus 3D models.

    PubMed

    Sánchez-Romero, Natalia; Schophuizen, Carolien M S; Giménez, Ignacio; Masereeuw, Rosalinde

    2016-11-05

    The conventional 2-dimensional (2D) cell culture is an invaluable tool in, amongst others, cell biology and experimental pharmacology. However, cells cultured in 2D, on the top of stiff plastic plates lose their phenotypical characteristics and fail in recreating the physiological environment found in vivo. This is a fundamental requirement when the goal of the study is to get a rigorous predictive response of human drug action and safety. Recent approaches in the field of renal cell biology are focused on the generation of 3D cell culture models due to the more bona fide features that they exhibit and the fact that they are more closely related to the observed physiological conditions, and better predict in vivo drug handling. In this review, we describe the currently available 3D in vitro models of the kidney, and some future directions for studying renal drug handling, disease modeling and kidney regeneration.

  3. Advances in Drug Delivery Systems, from 0 to 3D superstructures.

    PubMed

    Radulescu, Marius; Popescu, Simona; Ficai, Denisa; Sonmez, Maria; Oprea, Ovidiu; Spoială, Angela; Ficai, Anton; Andronescu, Ecaterina

    2016-04-01

    Nanotechnology manages the fabrication and modification of materials at infinitesimal scale; it has been used in different fields starting from communications, engineering, chemistry, robotics, biology and is having a significant breakthrough in medicine. Nanomedicine is currently exploited for manufacturing therapeutic DDS and to develop treatments protocols for various diseases and disorders. To obtain DDS, different types of materials are used, from organic to inorganic, polar to non-polar, micro to nanomaterials or 0D to 3D structured materials, respectively. Many of these materials were extensively studied and reviewed in the literature. The influence of the nature of the supports and their polarity was extensively studied during the last decades, as well as the importance of the porosity and pore size, but only limited papers are devoted to the holistic analysis of the dimensionality of the support. For this purpose, we created this review, focused on studying the main characteristics of the 0-3D DDS.

  4. 3D model of small-scale density cavities in the auroral magnetosphere with field-aligned current

    NASA Astrophysics Data System (ADS)

    Bespalov, P. A.; Misonova, V. G.; Savina, O. N.

    2016-09-01

    We propose a 3D model of small-scale density cavities stimulated by an auroral field-aligned current and an oscillating field-aligned current of kinetic Alfvén waves. It is shown that when the field-aligned current increases so that the electron drift velocity exceeds a value of the order of the electron thermal velocity, the plasma becomes unstable to the formation of cavities with low density and strong electric field. The condition of instability is associated with the value of the background magnetic field. In the case of a relatively weak magnetic field (where the electron gyro-radius is greater than the ion acoustic wavelength), the current instability can lead to the formation of one-dimensional cavities along the magnetic field. In the case of a stronger magnetic field (where the ion acoustic wavelength is greater than the electron gyro-radius, but still is less than the ion gyro-radius), the instability can lead to the formation of 3D density cavities. In this case, the spatial scales of the cavity, both along and across the background magnetic field, can be comparable, and at the earlier stage of the cavity formation they are of the order of the ion acoustic wavelength. Rarefactions of the cavity density are accompanied by an increase in the electric field and are limited by the pressure of bipolar electric fields that occur within them. The estimates of typical density cavity characteristics and the results of numerical solutions agree with known experimental data: small-scale structures with a sufficiently strong electric field are observed in the auroral regions with strong field-aligned current.

  5. A 3D sphere culture system containing functional polymers for large-scale human pluripotent stem cell production.

    PubMed

    Otsuji, Tomomi G; Bin, Jiang; Yoshimura, Azumi; Tomura, Misayo; Tateyama, Daiki; Minami, Itsunari; Yoshikawa, Yoshihiro; Aiba, Kazuhiro; Heuser, John E; Nishino, Taito; Hasegawa, Kouichi; Nakatsuji, Norio

    2014-05-06

    Utilizing human pluripotent stem cells (hPSCs) in cell-based therapy and drug discovery requires large-scale cell production. However, scaling up conventional adherent cultures presents challenges of maintaining a uniform high quality at low cost. In this regard, suspension cultures are a viable alternative, because they are scalable and do not require adhesion surfaces. 3D culture systems such as bioreactors can be exploited for large-scale production. However, the limitations of current suspension culture methods include spontaneous fusion between cell aggregates and suboptimal passaging methods by dissociation and reaggregation. 3D culture systems that dynamically stir carrier beads or cell aggregates should be refined to reduce shearing forces that damage hPSCs. Here, we report a simple 3D sphere culture system that incorporates mechanical passaging and functional polymers. This setup resolves major problems associated with suspension culture methods and dynamic stirring systems and may be optimal for applications involving large-scale hPSC production.

  6. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system

    SciTech Connect

    Sakhalkar, H. S.; Adamovics, J.; Ibbott, G.; Oldham, M.

    2009-01-15

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H and N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1x3 cm{sup 2}) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to {approx}2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  7. A comprehensive evaluation of the PRESAGE/optical-CT 3D dosimetry system.

    PubMed

    Sakhalkar, H S; Adamovics, J; Ibbott, G; Oldham, M

    2009-01-01

    This work presents extensive investigations to evaluate the robustness (intradosimeter consistency and temporal stability of response), reproducibility, precision, and accuracy of a relatively new 3D dosimetry system comprising a leuco-dye doped plastic 3D dosimeter (PRESAGE) and a commercial optical-CT scanner (OCTOPUS 5x scanner from MGS Research, Inc). Four identical PRESAGE 3D dosimeters were created such that they were compatible with the Radiologic Physics Center (RPC) head-and-neck (H&N) IMRT credentialing phantom. Each dosimeter was irradiated with a rotationally symmetric arrangement of nine identical small fields (1 x 3 cm2) impinging on the flat circular face of the dosimeter. A repetitious sequence of three dose levels (4, 2.88, and 1.28 Gy) was delivered. The rotationally symmetric treatment resulted in a dose distribution with high spatial variation in axial planes but only gradual variation with depth along the long axis of the dosimeter. The significance of this treatment was that it facilitated accurate film dosimetry in the axial plane, for independent verification. Also, it enabled rigorous evaluation of robustness, reproducibility and accuracy of response, at the three dose levels. The OCTOPUS 5x commercial scanner was used for dose readout from the dosimeters at daily time intervals. The use of improved optics and acquisition technique yielded substantially improved noise characteristics (reduced to approximately 2%) than has been achieved previously. Intradosimeter uniformity of radiochromic response was evaluated by calculating a 3D gamma comparison between each dosimeter and axially rotated copies of the same dosimeter. This convenient technique exploits the rotational symmetry of the distribution. All points in the gamma comparison passed a 2% difference, 1 mm distance-to-agreement criteria indicating excellent intradosimeter uniformity even at low dose levels. Postirradiation, the dosimeters were all found to exhibit a slight increase in

  8. An approach to 3D model fusion in GIS systems and its application in a future ECDIS

    NASA Astrophysics Data System (ADS)

    Liu, Tao; Zhao, Depeng; Pan, Mingyang

    2016-04-01

    Three-dimensional (3D) computer graphics technology is widely used in various areas and causes profound changes. As an information carrier, 3D models are becoming increasingly important. The use of 3D models greatly helps to improve the cartographic expression and design. 3D models are more visually efficient, quicker and easier to understand and they can express more detailed geographical information. However, it is hard to efficiently and precisely fuse 3D models in local systems. The purpose of this study is to propose an automatic and precise approach to fuse 3D models in geographic information systems (GIS). It is the basic premise for subsequent uses of 3D models in local systems, such as attribute searching, spatial analysis, and so on. The basic steps of our research are: (1) pose adjustment by principal component analysis (PCA); (2) silhouette extraction by simple mesh silhouette extraction and silhouette merger; (3) size adjustment; (4) position matching. Finally, we implement the above methods in our system Automotive Intelligent Chart (AIC) 3D Electronic Chart Display and Information Systems (ECDIS). The fusion approach we propose is a common method and each calculation step is carefully designed. This approach solves the problem of cross-platform model fusion. 3D models can be from any source. They may be stored in the local cache or retrieved from Internet, or may be manually created by different tools or automatically generated by different programs. The system can be any kind of 3D GIS system.

  9. Scalable, high-performance 3D imaging software platform: system architecture and application to virtual colonoscopy.

    PubMed

    Yoshida, Hiroyuki; Wu, Yin; Cai, Wenli; Brett, Bevin

    2012-01-01

    One of the key challenges in three-dimensional (3D) medical imaging is to enable the fast turn-around time, which is often required for interactive or real-time response. This inevitably requires not only high computational power but also high memory bandwidth due to the massive amount of data that need to be processed. In this work, we have developed a software platform that is designed to support high-performance 3D medical image processing for a wide range of applications using increasingly available and affordable commodity computing systems: multi-core, clusters, and cloud computing systems. To achieve scalable, high-performance computing, our platform (1) employs size-adaptive, distributable block volumes as a core data structure for efficient parallelization of a wide range of 3D image processing algorithms; (2) supports task scheduling for efficient load distribution and balancing; and (3) consists of a layered parallel software libraries that allow a wide range of medical applications to share the same functionalities. We evaluated the performance of our platform by applying it to an electronic cleansing system in virtual colonoscopy, with initial experimental results showing a 10 times performance improvement on an 8-core workstation over the original sequential implementation of the system.

  10. Development and application of 3-D foot-shape measurement system under different loads

    NASA Astrophysics Data System (ADS)

    Liu, Guozhong; Wang, Boxiong; Shi, Hui; Luo, Xiuzhi

    2008-03-01

    The 3-D foot-shape measurement system under different loads based on laser-line-scanning principle was designed and the model of the measurement system was developed. 3-D foot-shape measurements without blind areas under different loads and the automatic extraction of foot-parameter are achieved with the system. A global calibration method for CCD cameras using a one-axis motion unit in the measurement system and the specialized calibration kits is presented. Errors caused by the nonlinearity of CCD cameras and other devices and caused by the installation of the one axis motion platform, the laser plane and the toughened glass plane can be eliminated by using the nonlinear coordinate mapping function and the Powell optimized method in calibration. Foot measurements under different loads for 170 participants were conducted and the statistic foot parameter measurement results for male and female participants under non-weight condition and changes of foot parameters under half-body-weight condition, full-body-weight condition and over-body-weight condition compared with non-weight condition are presented. 3-D foot-shape measurement under different loads makes it possible to realize custom-made shoe-making and shows great prosperity in shoe design, foot orthopaedic treatment, shoe size standardization, and establishment of a feet database for consumers and athletes.

  11. Compact multi-projection 3D display system with light-guide projection.

    PubMed

    Lee, Chang-Kun; Park, Soon-gi; Moon, Seokil; Hong, Jong-Young; Lee, Byoungho

    2015-11-02

    We propose a compact multi-projection based multi-view 3D display system using an optical light-guide, and perform an analysis of the characteristics of the image for distortion compensation via an optically equivalent model of the light-guide. The projected image traveling through the light-guide experiences multiple total internal reflections at the interface. As a result, the projection distance in the horizontal direction is effectively reduced to the thickness of the light-guide, and the projection part of the multi-projection based multi-view 3D display system is minimized. In addition, we deduce an equivalent model of such a light-guide to simplify the analysis of the image distortion in the light-guide. From the equivalent model, the focus of the image is adjusted, and pre-distorted images for each projection unit are calculated by two-step image rectification in air and the material. The distortion-compensated view images are represented on the exit surface of the light-guide when the light-guide is located in the intended position. Viewing zones are generated by combining the light-guide projection system, a vertical diffuser, and a Fresnel lens. The feasibility of the proposed method is experimentally verified and a ten-view 3D display system with a minimized structure is implemented.

  12. Evaluation of precision and accuracy assessment of different 3-D surface imaging systems for biomedical purposes.

    PubMed

    Eder, Maximilian; Brockmann, Gernot; Zimmermann, Alexander; Papadopoulos, Moschos A; Schwenzer-Zimmerer, Katja; Zeilhofer, Hans Florian; Sader, Robert; Papadopulos, Nikolaos A; Kovacs, Laszlo

    2013-04-01

    Three-dimensional (3-D) surface imaging has gained clinical acceptance, especially in the field of cranio-maxillo-facial and plastic, reconstructive, and aesthetic surgery. Six scanners based on different scanning principles (Minolta Vivid 910®, Polhemus FastSCAN™, GFM PRIMOS®, GFM TopoCAM®, Steinbichler Comet® Vario Zoom 250, 3dMD DSP 400®) were used to measure five sheep skulls of different sizes. In three areas with varying anatomical complexity (areas, 1 = high; 2 = moderate; 3 = low), 56 distances between 20 landmarks are defined on each skull. Manual measurement (MM), coordinate machine measurements (CMM) and computer tomography (CT) measurements were used to define a reference method for further precision and accuracy evaluation of different 3-D scanning systems. MM showed high correlation to CMM and CT measurements (both r = 0.987; p < 0.001) and served as the reference method. TopoCAM®, Comet® and Vivid 910® showed highest measurement precision over all areas of complexity; Vivid 910®, the Comet® and the DSP 400® demonstrated highest accuracy over all areas with Vivid 910® being most accurate in areas 1 and 3, and the DSP 400® most accurate in area 2. In accordance to the measured distance length, most 3-D devices present higher measurement precision and accuracy for large distances and lower degrees of precision and accuracy for short distances. In general, higher degrees of complexity are associated with lower 3-D assessment accuracy, suggesting that for optimal results, different types of scanners should be applied to specific clinical applications and medical problems according to their special construction designs and characteristics.

  13. A Markerless 3D Computerized Motion Capture System Incorporating a Skeleton Model for Monkeys

    PubMed Central

    Nakamura, Tomoya; Matsumoto, Jumpei; Nishimaru, Hiroshi; Bretas, Rafael Vieira; Takamura, Yusaku; Hori, Etsuro; Ono, Taketoshi; Nishijo, Hisao

    2016-01-01

    In this study, we propose a novel markerless motion capture system (MCS) for monkeys, in which 3D surface images of monkeys were reconstructed by integrating data from four depth cameras, and a skeleton model of the monkey was fitted onto 3D images of monkeys in each frame of the video. To validate the MCS, first, estimated 3D positions of body parts were compared between the 3D MCS-assisted estimation and manual estimation based on visual inspection when a monkey performed a shuttling behavior in which it had to avoid obstacles in various positions. The mean estimation error of the positions of body parts (3–14 cm) and of head rotation (35–43°) between the 3D MCS-assisted and manual estimation were comparable to the errors between two different experimenters performing manual estimation. Furthermore, the MCS could identify specific monkey actions, and there was no false positive nor false negative detection of actions compared with those in manual estimation. Second, to check the reproducibility of MCS-assisted estimation, the same analyses of the above experiments were repeated by a different user. The estimation errors of positions of most body parts between the two experimenters were significantly smaller in the MCS-assisted estimation than in the manual estimation. Third, effects of methamphetamine (MAP) administration on the spontaneous behaviors of four monkeys were analyzed using the MCS. MAP significantly increased head movements, tended to decrease locomotion speed, and had no significant effect on total path length. The results were comparable to previous human clinical data. Furthermore, estimated data following MAP injection (total path length, walking speed, and speed of head rotation) correlated significantly between the two experimenters in the MCS-assisted estimation (r = 0.863 to 0.999). The results suggest that the presented MCS in monkeys is useful in investigating neural mechanisms underlying various psychiatric disorders and developing

  14. 3D real-time measurement system of seam with laser

    NASA Astrophysics Data System (ADS)

    Huang, Min-shuang; Huang, Jun-fen

    2014-02-01

    3-D Real-time Measurement System of seam outline based on Moiré Projection is proposed and designed. The system is composed of LD, grating, CCD, video A/D, FPGA, DSP and an output interface. The principle and hardware makeup of high-speed and real-time image processing circuit based on a Digital Signal Processor (DSP) and a Field Programmable Gate Array (FPGA) are introduced. Noise generation mechanism in poor welding field conditions is analyzed when Moiré stripes are projected on a welding workpiece surface. Median filter is adopted to smooth the acquired original laser image of seam, and then measurement results of a 3-D outline image of weld groove are provided.

  15. 3D Droplet Microfluidic Systems for High-Throughput Biological Experimentation.

    PubMed

    Kang, Dong-Ku; Gong, Xiuqing; Cho, Soongwon; Kim, Jin-young; Edel, Joshua B; Chang, Soo-Ik; Choo, Jaebum; deMello, Andrew J

    2015-11-03

    Herein, we describe the development of a multilayer droplet microfluidic system for creating concentration gradients and generating microdroplets of varying composition for high-throughput biochemical and cell-based screening applications. The 3D droplet-based microfluidic device consists of multiple PDMS layers, which are used to generate logarithmic concentration gradient reagent profiles. Parallel flow focusing structures are used to form picoliter-sized droplets of defined volumes but of varying composition. As proof of concept, we demonstrate rapid enzymatic activity assays and drug cytotoxicity assays on bacteria. The 3D droplet-based microfluidic platform has the potential to allow for high-efficiency and high-throughput analysis, overcoming the structural limitations of single layer microfluidic systems.

  16. An efficient solid modeling system based on a hand-held 3D laser scan device

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming

    2014-12-01

    The hand-held 3D laser scanner sold in the market is appealing for its port and convenient to use, but price is expensive. To develop such a system based cheap devices using the same principles as the commercial systems is impossible. In this paper, a simple hand-held 3D laser scanner is developed based on a volume reconstruction method using cheap devices. Unlike convenient laser scanner to collect point cloud of an object surface, the proposed method only scan few key profile curves on the surface. Planar section curve network can be generated from these profile curves to construct a volume model of the object. The details of design are presented, and illustrated by the example of a complex shaped object.

  17. Implementation of parallel matrix decomposition for NIKE3D on the KSR1 system

    SciTech Connect

    Su, Philip S.; Fulton, R.E.; Zacharia, T.

    1995-06-01

    New massively parallel computer architecture has revolutionized the design of computer algorithms and promises to have significant influence on algorithms for engineering computations. Realistic engineering problems using finite element analysis typically imply excessively large computational requirements. Parallel supercomputers that have the potential for significantly increasing calculation speeds can meet these computational requirements. This report explores the potential for the parallel Cholesky (U{sup T}DU) matrix decomposition algorithm on NIKE3D through actual computations. The examples of two- and three-dimensional nonlinear dynamic finite element problems are presented on the Kendall Square Research (KSR1) multiprocessor system, with 64 processors, at Oak Ridge National Laboratory. The numerical results indicate that the parallel Cholesky (U{sup T}DU) matrix decomposition algorithm is attractive for NIKE3D under multi-processor system environments.

  18. Remote measurement methods for 3-D modeling purposes using BAE Systems' Software

    NASA Astrophysics Data System (ADS)

    Walker, Stewart; Pietrzak, Arleta

    2015-06-01

    Efficient, accurate data collection from imagery is the key to an economical generation of useful geospatial products. Incremental developments of traditional geospatial data collection and the arrival of new image data sources cause new software packages to be created and existing ones to be adjusted to enable such data to be processed. In the past, BAE Systems' digital photogrammetric workstation, SOCET SET®, met fin de siècle expectations in data processing and feature extraction. Its successor, SOCET GXP®, addresses today's photogrammetric requirements and new data sources. SOCET GXP is an advanced workstation for mapping and photogrammetric tasks, with automated functionality for triangulation, Digital Elevation Model (DEM) extraction, orthorectification and mosaicking, feature extraction and creation of 3-D models with texturing. BAE Systems continues to add sensor models to accommodate new image sources, in response to customer demand. New capabilities added in the latest version of SOCET GXP facilitate modeling, visualization and analysis of 3-D features.

  19. M-OTDR sensing system based on 3D encoded microstructures

    PubMed Central

    Sun, Qizhen; Ai, Fan; Liu, Deming; Cheng, Jianwei; Luo, Hongbo; Peng, Kuan; Luo, Yiyang; Yan, Zhijun; Shum, Perry Ping

    2017-01-01

    In this work, a quasi-distributed sensing scheme named as microstructured OTDR (M-OTDR) by introducing ultra-weak microstructures along the fiber is proposed. Owing to its relative higher reflectivity compared with the backscattered coefficient in fiber and three dimensional (3D) i.e. wavelength/frequency/time encoded property, the M-OTDR system exhibits the superiorities of high signal to noise ratio (SNR), high spatial resolution of millimeter level and high multiplexing capacity up to several ten thousands theoretically. A proof-of-concept system consisting of 64 sensing units is constructed to demonstrate the feasibility and sensing performance. With the help of the demodulation method based on 3D analysis and spectrum reconstruction of the signal light, quasi-distributed temperature sensing with a spatial resolution of 20 cm as well as a measurement resolution of 0.1 °C is realized. PMID:28106132

  20. System for the Analysis and Visualization of Large 3D Anatomical Trees

    PubMed Central

    Yu, Kun-Chang; Ritman, Erik L.; Higgins, William E.

    2007-01-01

    Modern micro-CT and multi-detector helical CT scanners can produce high-resolution 3D digital images of various anatomical trees. The large size and complexity of these trees make it essentially impossible to define them interactively. Automatic approaches have been proposed for a few specific problems, but none of these approaches guarantee extracting geometrically accurate multi-generational tree structures. This paper proposes an interactive system for defining and visualizing large anatomical trees and for subsequent quantitative data mining. The system consists of a large number of tools for automatic image analysis, semi-automatic and interactive tree editing, and an assortment of visualization tools. Results are presented for a variety of 3D high-resolution images. PMID:17669390

  1. [3D-TV health assessment system by the multi-modal physiological signals].

    PubMed

    Li, Zhongqiang; Xing, Lidong; Qian, Zhiyu; Wang, Xiao; Yu, Defei; Liu, Baoyu; Jin, Shuai

    2014-03-01

    In order to meet the requirements of the multi-physiological signal measurement of the 3D-TV health assessment, try to find the suitable biological acquisition chips and design the hardware system which can detect different physiological signals in real time. The systems mainly uses ARM11/S3C6410 microcontroller to control the EEG/EOG acquisition chip RHA2116 and the ECG acquisition chip ADS1298, and then the microcontroller transfer the data collected by the chips to the PC software by the USB port which can display and save the experimental data in real time, then use the Matlab software for further processing of the data, finally make a final health assessment. In the meantime, for the different varieties in the different brain regions of watching 3D-TV, developed the special brain electrode placement and the experimental data processing methods, then effectively disposed the multi-signal data in the multilevel.

  2. Virtual touch 3D interactive system for autostereoscopic display with embedded optical sensor

    NASA Astrophysics Data System (ADS)

    Huang, Yi-Pai; Wang, Guo-Zhen; Ma, Ming-Ching; Tung, Shang-Yu; Huang, Shu-Yi; Tseng, Hung-Wei; Kuo, Chung-Hong; Li, Chun-Huai

    2011-06-01

    The traidational 3D interactive sysetm which uses CCD camera to capture image is difficult to operate on near range for mobile applications.Therefore, 3D interactive display with embedded optical sensor was proposed. Based on optical sensor based system, we proposed four different methods to support differenct functions. T mark algorithm can obtain 5- axis information (x, y, z,θ, and φ)of LED no matter where LED was vertical or inclined to panel and whatever it rotated. Sequential mark algorithm and color filter based algorithm can support mulit-user. Finally, bare finger touch system with sequential illuminator can achieve to interact with auto-stereoscopic images by bare finger. Furthermore, the proposed methods were verified on a 4-inch panel with embedded optical sensors.

  3. The thermal regime of the Campi Flegrei magmatic system reconstructed through 3D numerical simulations

    NASA Astrophysics Data System (ADS)

    Di Renzo, Valeria; Wohletz, Kenneth; Civetta, Lucia; Moretti, Roberto; Orsi, Giovanni; Gasparini, Paolo

    2016-12-01

    We illustrate a quantitative conductive/convective thermal model incorporating a wide range of geophysical, petrological, geological, geochemical and isotopical observations that constrain the thermal evolution and present state of the Campi Flegrei caldera (CFc) magmatic system. The proposed model has been computed on the basis of the current knowledge of: (1) the volcanic and magmatic history of the volcano over the last 44 ka, (2) its underlying crustal structure, and (3) the physical properties of the erupted magmas. 3D numerical simulations of heat conduction and convection within heterogeneous rock/magma materials with evolving heat sources and boundary conditions that simulate magma rise from a deep (≥ 8 km depth) to shallow (2-6 km) reservoirs, magma chamber formation, magma extrusion, caldera collapse, and intra-caldera hydrothermal convection, have been carried out. The evolution of the CFc magmatic system through time has been simulated through different steps related to its changes in terms of depth, location and size of magma reservoirs and their replenishment. The thermal modeling results show that both heat conduction and convection have played an important role in the CFc thermal evolution, although with different timing. The simulated present heat distribution is in agreement with the measured geothermal profiles (Agip, 1987), reproduces the thermal gradient peaks at the CFc margins in correspondence to the anomalies in surface gradients (Corrado et al., 1998), and suggests temperatures of 700 °C at depth of 4 km in the central portion of the caldera, in agreement with the estimated temperature for the brittle-ductile transition (Hill, 1992).

  4. Ultra-Compact, High-Resolution LADAR System for 3D Imaging

    NASA Technical Reports Server (NTRS)

    Xu, Jing; Gutierrez, Roman

    2009-01-01

    An eye-safe LADAR system weighs under 500 grams and has range resolution of 1 mm at 10 m. This laser uses an adjustable, tiny microelectromechanical system (MEMS) mirror that was made in SiWave to sweep laser frequency. The size of the laser device is small (70x50x13 mm). The LADAR uses all the mature fiber-optic telecommunication technologies in the system, making this innovation an efficient performer. The tiny size and light weight makes the system useful for commercial and industrial applications including surface damage inspections, range measurements, and 3D imaging.

  5. Virtual performer: single camera 3D measuring system for interaction in virtual space

    NASA Astrophysics Data System (ADS)

    Sakamoto, Kunio; Taneji, Shoto

    2006-10-01

    The authors developed interaction media systems in the 3D virtual space. In these systems, the musician virtually plays an instrument like the theremin in the virtual space or the performer plays a show using the virtual character such as a puppet. This interactive virtual media system consists of the image capture, measuring performer's position, detecting and recognizing motions and synthesizing video image using the personal computer. In this paper, we propose some applications of interaction media systems; a virtual musical instrument and superimposing CG character. Moreover, this paper describes the measuring method of the positions of the performer, his/her head and both eyes using a single camera.

  6. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    SciTech Connect

    Zeng, Xubin; Troch, Peter; Pelletier, Jon; Niu, Guo-Yue; Gochis, David

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  7. Template protection and its implementation in 3D face recognition systems

    NASA Astrophysics Data System (ADS)

    Zhou, Xuebing

    2007-04-01

    As biometric recognition systems are widely applied in various application areas, security and privacy risks have recently attracted the attention of the biometric community. Template protection techniques prevent stored reference data from revealing private biometric information and enhance the security of biometrics systems against attacks such as identity theft and cross matching. This paper concentrates on a template protection algorithm that merges methods from cryptography, error correction coding and biometrics. The key component of the algorithm is to convert biometric templates into binary vectors. It is shown that the binary vectors should be robust, uniformly distributed, statistically independent and collision-free so that authentication performance can be optimized and information leakage can be avoided. Depending on statistical character of the biometric template, different approaches for transforming biometric templates into compact binary vectors are presented. The proposed methods are integrated into a 3D face recognition system and tested on the 3D facial images of the FRGC database. It is shown that the resulting binary vectors provide an authentication performance that is similar to the original 3D face templates. A high security level is achieved with reasonable false acceptance and false rejection rates of the system, based on an efficient statistical analysis. The algorithm estimates the statistical character of biometric templates from a number of biometric samples in the enrollment database. For the FRGC 3D face database, the small distinction of robustness and discriminative power between the classification results under the assumption of uniquely distributed templates and the ones under the assumption of Gaussian distributed templates is shown in our tests.

  8. DVE flight test results of a sensor enhanced 3D conformal pilot support system

    NASA Astrophysics Data System (ADS)

    Münsterer, Thomas; Völschow, Philipp; Singer, Bernhard; Strobel, Michael; Kramper, Patrick

    2015-06-01

    The paper presents results and findings of flight tests of the Airbus Defence and Space DVE system SFERION performed at Yuma Proving Grounds. During the flight tests ladar information was fused with a priori DB knowledge in real-time and 3D conformal symbology was generated for display on an HMD. The test flights included low level flights as well as numerous brownout landings.

  9. Augmented reality system for oral surgery using 3D auto stereoscopic visualization.

    PubMed

    Tran, Huy Hoang; Suenaga, Hideyuki; Kuwana, Kenta; Masamune, Ken; Dohi, Takeyoshi; Nakajima, Susumu; Liao, Hongen

    2011-01-01

    We present an augmented reality system for oral and maxillofacial surgery in this paper. Instead of being displayed on a separated screen, three-dimensional (3D) virtual presentations of osseous structures and soft tissues are projected onto the patient's body, providing surgeons with exact knowledge of depth information of high risk tissues inside the bone. We employ a 3D integral imaging technique which produce motion parallax in both horizontal and vertical direction over a wide viewing area in this study. In addition, surgeons are able to check the progress of the operation in real-time through an intuitive 3D based interface which is content-rich, hardware accelerated. These features prevent surgeons from penetrating into high risk areas and thus help improve the quality of the operation. Operational tasks such as hole drilling, screw fixation were performed using our system and showed an overall positional error of less than 1 mm. Feasibility of our system was also verified with a human volunteer experiment.

  10. DANTSYS/MPI: a system for 3-D deterministic transport on parallel architectures

    SciTech Connect

    Baker, R.S.; Alcouffe, R.E.

    1996-12-31

    Since 1994, we have been using a data parallel form of our deterministic transport code DANTSYS to perform time-independent fixed source and eigenvalue calculations on the CM-200`s at Los Alamos National Laboratory (LANL). Parallelization of the transport sweep is obtained by using a 2-D spatial decomposition which retains the ability to invert the source iteration equation in a single iteration (i.e., the diagonal plane sweep). We have now implemented a message passing version of DANTSYS, referred to as DANTSYS/MPI, on the Cray T3D installed at Los Alamos in 1995. By taking advantage of the SPMD (Single Program, Multiple Data) architecture of the Cray T3D, as well as its low latency communications network, we have managed to achieve grind times (time to solve a single cell in phase space) of less than 10 nanoseconds on the 512 PE (Processing Element) T3D, as opposed to typical grind times of 150-200 nanoseconds on a 2048 PE CM-200, or 300-400 nanoseconds on a single PE of a Cray Y-MP. In addition, we have also parallelized the Diffusion Synthetic Accelerator (DSA) equations which are used to accelerate the convergence of the transport equation. DANTSYS/MPI currently runs on traditional Cray PVP`s and the Cray T3D, and it`s computational kernel (Sweep3D) has been ported to and tested on an array of SGI SMP`s (Symmetric Memory Processors), a network of IBM 590 workstations, an IBM SP2, and the Intel TFLOPs machine at Sandia National Laboratory. This paper describes the implementation of DANTSYS/MPI on the Cray T3D, and presents a simple performance model which accurately predicts the grind time as a function of the number of PE`s and problem size, or scalability. This paper also describes the parallel implementation and performance of the elliptic solver used in DANTSYS/MPI for solving the synthetic acceleration equations.

  11. Efficient data exchange: Integrating a vector GIS with an object-oriented, 3-D visualization system

    SciTech Connect

    Kuiper, J.; Ayers, A.; Johnson, R.; Tolbert-Smith, M.

    1996-03-01

    A common problem encountered in Geographic Information System (GIS) modeling is the exchange of data between different software packages to best utilize the unique features of each package. This paper describes a project to integrate two systems through efficient data exchange. The first is a widely used GIS based on a relational data model. This system has a broad set of data input, processing, and output capabilities, but lacks three-dimensional (3-D) visualization and certain modeling functions. The second system is a specialized object-oriented package designed for 3-D visualization and modeling. Although this second system is useful for subsurface modeling and hazardous waste site characterization, it does not provide many of the, capabilities of a complete GIS. The system-integration project resulted in an easy-to-use program to transfer information between the systems, making many of the more complex conversion issues transparent to the user. The strengths of both systems are accessible, allowing the scientist more time to focus on analysis. This paper details the capabilities of the two systems, explains the technical issues associated with data exchange and how they were solved, and outlines an example analysis project that used the integrated systems.

  12. 3D printed biomimetic vascular phantoms for assessment of hyperspectral imaging systems

    NASA Astrophysics Data System (ADS)

    Wang, Jianting; Ghassemi, Pejhman; Melchiorri, Anthony; Ramella-Roman, Jessica; Mathews, Scott A.; Coburn, James; Sorg, Brian; Chen, Yu; Pfefer, Joshua

    2015-03-01

    The emerging technique of three-dimensional (3D) printing provides a revolutionary way to fabricate objects with biologically realistic geometries. Previously we have performed optical and morphological characterization of basic 3D printed tissue-simulating phantoms and found them suitable for use in evaluating biophotonic imaging systems. In this study we assess the potential for printing phantoms with irregular, image-defined vascular networks that can be used to provide clinically-relevant insights into device performance. A previously acquired fundus camera image of the human retina was segmented, embedded into a 3D matrix, edited to incorporate the tubular shape of vessels and converted into a digital format suitable for printing. A polymer with biologically realistic optical properties was identified by spectrophotometer measurements of several commercially available samples. Phantoms were printed with the retinal vascular network reproduced as ~1.0 mm diameter channels at a range of depths up to ~3 mm. The morphology of the printed vessels was verified by volumetric imaging with μ-CT. Channels were filled with hemoglobin solutions at controlled oxygenation levels, and the phantoms were imaged by a near-infrared hyperspectral reflectance imaging system. The effect of vessel depth on hemoglobin saturation estimates was studied. Additionally, a phantom incorporating the vascular network at two depths was printed and filled with hemoglobin solution at two different saturation levels. Overall, results indicated that 3D printed phantoms are useful for assessing biophotonic system performance and have the potential to form the basis of clinically-relevant standardized test methods for assessment of medical imaging modalities.

  13. 3D ultrasound system to investigate intraventricular hemorrhage in preterm neonates

    NASA Astrophysics Data System (ADS)

    Kishimoto, J.; de Ribaupierre, S.; Lee, D. S. C.; Mehta, R.; St. Lawrence, K.; Fenster, A.

    2013-11-01

    Intraventricular hemorrhage (IVH) is a common disorder among preterm neonates that is routinely diagnosed and monitored by 2D cranial ultrasound (US). The cerebral ventricles of patients with IVH often have a period of ventricular dilation (ventriculomegaly). This initial increase in ventricle size can either spontaneously resolve, which often shows clinically as a period of stabilization in ventricle size and eventual decline back towards a more normal size, or progressive ventricular dilation that does not stabilize and which may require interventional therapy to reduce symptoms relating to increased intracranial pressure. To improve the characterization of ventricle dilation, we developed a 3D US imaging system that can be used with a conventional clinical US scanner to image the ventricular system of preterm neonates at risk of ventriculomegaly. A motorized transducer housing was designed specifically for hand-held use inside an incubator using a transducer commonly used for cranial 2D US scans. This system was validated using geometric phantoms, US/MRI compatible ventricle volume phantoms, and patient images to determine 3D reconstruction accuracy and inter- and intra-observer volume estimation variability. 3D US geometric reconstruction was found to be accurate with an error of <0.2%. Measured volumes of a US/MRI compatible ventricle-like phantom were within 5% of gold standard water displacement measurements. Intra-class correlation for the three observers was 0.97, showing very high agreement between observers. The coefficient of variation was between 1.8-6.3% for repeated segmentations of the same patient. The minimum detectable difference was calculated to be 0.63 cm3 for a single observer. Results from ANOVA for three observers segmenting three patients of IVH grade II did not show any significant differences (p > 0.05) for the measured ventricle volumes between observers. This 3D US system can reliably produce 3D US images of the neonatal ventricular

  14. Numerical simulation of suspended sediment concentration by 3D coupled wave-current model in the Oujiang River Estuary, China

    NASA Astrophysics Data System (ADS)

    Xu, Ting; You, Xue-yi

    2017-04-01

    A 3D sediment transport model based on the modified environmental fluid dynamics code (EFDC) and the nearshore waves simulation model (SWAN) is developed to study the change of suspended sediment concentration and bottom shear stress under the actions of pure current and wave-current. After being validated by the field measured data, the proposed sediment transport model is applied in the Oujiang River Estuary, China. The results show that the ratios of both bottom shear stress and suspended sediment concentration of pure current to those of wave-current show a gradually increase from shallow nearshore water to deep open sea. The results also show that the proportion of wave contributions on bottom shear stress and sediment concentration are above 60%, approximately 20-30% and less than 10% for the water depth of less than 5 m, 5-10 m and more than 20 m, respectively. For the waters among islands, the proportion of wave contribution to bottom shear stress and sediment concentration is reduced to 10-20% for -5 m water depth and this is more obvious for the waves of large amplitude. The bottom stress and suspended sediment concentration between islands are mainly controlled by tidal current, and the effect of wave is not significant.

  15. Quantitative investigation of chemical shrinkage stress in flip chip using a 3D moire interferometry system

    NASA Astrophysics Data System (ADS)

    Su, Fei; Liu, Lie; Yi, Sung; Chian, Kerm S.

    2002-06-01

    Thermo-mechanical reliability is a key issue of IC packaging. In this paper, the chemical shrinkage stress caused by the underfill curing is quantitatively investigated: DSC test result provides the basis for the determination of temperature profile for the curing of underfill. The 3D deformation of the flip chip during the underfill curing process is measured with 3D Moire interferometry system. Also a simple theoretical model is set up for this problem, DMA test provide the necessary parameters for this model. The experimental and theoretical results agree well with each other, both results show that the chemical shrinkage stress is fairly small when compared with the thermal residual stress, so this part of residual stress can be neglected in the commonly used finite element analysis (FEA) model.

  16. A novel 3D constellation-masked method for physical security in hierarchical OFDMA system.

    PubMed

    Zhang, Lijia; Liu, Bo; Xin, Xiangjun; Liu, Deming

    2013-07-01

    This paper proposes a novel 3D constellation-masked method to ensure the physical security in hierarchical optical orthogonal frequency division multiplexing access (OFDMA) system. The 3D constellation masking is executed on the two levels of hierarchical modulation and among different OFDM subcarriers, which is realized by the masking vectors. The Lorenz chaotic model is adopted for the generation of masking vectors in the proposed scheme. A 9.85 Gb/s encrypted hierarchical QAM OFDM signal is successfully demonstrated in the experiment. The performance of illegal optical network unit (ONU) with different masking vectors is also investigated. The proposed method is demonstrated to be secure and efficient against the commonly known attacks in the experiment.

  17. A web-based 3D visualisation and assessment system for urban precinct scenario modelling

    NASA Astrophysics Data System (ADS)

    Trubka, Roman; Glackin, Stephen; Lade, Oliver; Pettit, Chris

    2016-07-01

    Recent years have seen an increasing number of spatial tools and technologies for enabling better decision-making in the urban environment. They have largely arisen because of the need for cities to be more efficiently planned to accommodate growing populations while mitigating urban sprawl, and also because of innovations in rendering data in 3D being well suited for visualising the urban built environment. In this paper we review a number of systems that are better known and more commonly used in the field of urban planning. We then introduce Envision Scenario Planner (ESP), a web-based 3D precinct geodesign, visualisation and assessment tool, developed using Agile and Co-design methods. We provide a comprehensive account of the tool, beginning with a discussion of its design and development process and concluding with an example use case and a discussion of the lessons learned in its development.

  18. Multi-camera sensor system for 3D segmentation and localization of multiple mobile robots.

    PubMed

    Losada, Cristina; Mazo, Manuel; Palazuelos, Sira; Pizarro, Daniel; Marrón, Marta

    2010-01-01

    This paper presents a method for obtaining the motion segmentation and 3D localization of multiple mobile robots in an intelligent space using a multi-camera sensor system. The set of calibrated and synchronized cameras are placed in fixed positions within the environment (intelligent space). The proposed algorithm for motion segmentation and 3D localization is based on the minimization of an objective function. This function includes information from all the cameras, and it does not rely on previous knowledge or invasive landmarks on board the robots. The proposed objective function depends on three groups of variables: the segmentation boundaries, the motion parameters and the depth. For the objective function minimization, we use a greedy iterative algorithm with three steps that, after initialization of segmentation boundaries and depth, are repeated until convergence.

  19. 3D cell culture systems modeling tumor growth determinants in cancer target discovery.

    PubMed

    Thoma, Claudio R; Zimmermann, Miriam; Agarkova, Irina; Kelm, Jens M; Krek, Wilhelm

    2014-04-01

    Phenotypic heterogeneity of cancer cells, cell biological context, heterotypic crosstalk and the microenvironment are key determinants of the multistep process of tumor development. They sign responsible, to a significant extent, for the limited response and resistance of cancer cells to molecular-targeted therapies. Better functional knowledge of the complex intra- and intercellular signaling circuits underlying communication between the different cell types populating a tumor tissue and of the systemic and local factors that shape the tumor microenvironment is therefore imperative. Sophisticated 3D multicellular tumor spheroid (MCTS) systems provide an emerging tool to model the phenotypic and cellular heterogeneity as well as microenvironmental aspects of in vivo tumor growth. In this review we discuss the cellular, chemical and physical factors contributing to zonation and cellular crosstalk within tumor masses. On this basis, we further describe 3D cell culture technologies for growth of MCTS as advanced tools for exploring molecular tumor growth determinants and facilitating drug discovery efforts. We conclude with a synopsis on technological aspects for on-line analysis and post-processing of 3D MCTS models.

  20. Laser 3-D measuring system and real-time visual feedback for teaching and correcting breathing.

    PubMed

    Povšič, Klemen; Fležar, Matjaž; Možina, Janez; Jezeršek, Matija

    2012-03-01

    We present a novel method for real-time 3-D body-shape measurement during breathing based on the laser multiple-line triangulation principle. The laser projector illuminates the measured surface with a pattern of 33 equally inclined light planes. Simultaneously, the camera records the distorted light pattern from a different viewpoint. The acquired images are transferred to a personal computer, where the 3-D surface reconstruction, shape analysis, and display are performed in real time. The measured surface displacements are displayed with a color palette, which enables visual feedback to the patient while breathing is being taught. The measuring range is approximately 400×600×500 mm in width, height, and depth, respectively, and the accuracy of the calibrated apparatus is ±0.7 mm. The system was evaluated by means of its capability to distinguish between different breathing patterns. The accuracy of the measured volumes of chest-wall deformation during breathing was verified using standard methods of volume measurements. The results show that the presented 3-D measuring system with visual feedback has great potential as a diagnostic and training assistance tool when monitoring and evaluating the breathing pattern, because it offers a simple and effective method of graphical communication with the patient.

  1. Embedded 3D shape measurement system based on a novel spatio-temporal coding method

    NASA Astrophysics Data System (ADS)

    Xu, Bin; Tian, Jindong; Tian, Yong; Li, Dong

    2016-11-01

    Structured light measurement has been wildly used since 1970s in industrial component detection, reverse engineering, 3D molding, robot navigation, medical and many other fields. In order to satisfy the demand for high speed, high precision and high resolution 3-D measurement for embedded system, a new patterns combining binary and gray coding principle in space are designed and projected onto the object surface orderly. Each pixel corresponds to the designed sequence of gray values in time - domain, which is treated as a feature vector. The unique gray vector is then dimensionally reduced to a scalar which could be used as characteristic information for binocular matching. In this method, the number of projected structured light patterns is reduced, and the time-consuming phase unwrapping in traditional phase shift methods is avoided. This algorithm is eventually implemented on DM3730 embedded system for 3-D measuring, which consists of an ARM and a DSP core and has a strong capability of digital signal processing. Experimental results demonstrated the feasibility of the proposed method.

  2. In vivo 3D visualization of peripheral circulatory system using linear optoacoustic array

    NASA Astrophysics Data System (ADS)

    Ermilov, Sergey A.; Brecht, Hans-Peter; Fronheiser, Matthew P.; Nadvoretsky, Vyacheslav; Su, Richard; Conjusteau, Andre; Oraevsky, Alexander A.

    2010-02-01

    In this work we modified light illumination of the laser optoacoustic (OA) imaging system to improve the 3D visualization of human forearm vasculature. The computer modeling demonstrated that the new illumination design that features laser beams converging on the surface of the skin in the imaging plane of the probe provides superior OA images in comparison to the images generated by the illumination with parallel laser beams. We also developed the procedure for vein/artery differentiation based on OA imaging with 690 nm and 1080 nm laser wavelengths. The procedure includes statistical analysis of the intensities of OA images of the neighboring blood vessels. Analysis of the OA images generated by computer simulation of a human forearm illuminated at 690 nm and 1080 nm resulted in successful differentiation of veins and arteries. In vivo scanning of a human forearm provided high contrast 3D OA image of a forearm skin and a superficial blood vessel. The blood vessel image contrast was further enhanced after it was automatically traced using the developed software. The software also allowed evaluation of the effective blood vessel diameter at each step of the scan. We propose that the developed 3D OA imaging system can be used during preoperative mapping of forearm vessels that is essential for hemodialysis treatment.

  3. Impact of 3D Var GSI-ENKF hybrid data assimilation system

    NASA Astrophysics Data System (ADS)

    Prasad, V. S.; Johny, C. J.; Sodhi, Jagdeep Singh

    2016-12-01

    The hybrid two-way coupled 3DEnsVar assimilation system was tested with the NCMRWF global data assimilation forecasting system. At present, this system consists of T574L64 deterministic model and the grid-point statistical interpolation analysis scheme. In this experiment, the analysis system is modified with a two-way coupling with an 80 member Ensemble Kalman Filter of T254L64 resolution and runs are carried out in parallel to the operational system for the Indian summer monsoon season (June-September) for the year 2015 to study its impact. Both the assimilation systems are based on NCEP GFS system. It is found that hybrid assimilation marginally improved the quality of the forecasts of all variables over the deterministic 3D Var system, in terms of statistical skill scores and also in terms of circulation features. The impact of the hybrid system in prediction of extreme rainfall and cyclone track is discussed.

  4. Study of a viewer tracking system with multiview 3D display

    NASA Astrophysics Data System (ADS)

    Yang, Jinn-Cherng; Wu, Chang-Shuo; Hsiao, Chuan-Heng; Yang, Ming-Chieh; Liu, Wen-Chieh; Hung, Yi-Ping

    2008-02-01

    An autostereoscopic display provides users great enjoyment of stereo visualization without uncomfortable and inconvenient drawbacks of wearing stereo glasses. However, bandwidth constraints of current multi-view 3D display severely restrict the number of views that can be simultaneously displayed without degrading resolution or increasing display cost unacceptably. An alternative to multiple view presentation is that the position of observer can be measured by using viewer-tracking sensor. It is a very important module of the viewer-tracking component for fluently rendering and accurately projecting the stereo video. In order to render stereo content with respect to user's view points and to optically project the content onto the left and right eyes of the user accurately, the real-time viewer tracking technique that allows the user to move around freely when watching the autostereoscopic display is developed in this study. It comprises the face detection by using multiple eigenspaces of various lighting conditions, fast block matching for tracking four motion parameters of the user's face region. The Edge Orientation Histogram (EOH) on Real AdaBoost to improve the performance of original AdaBoost algorithm is also applied in this study. The AdaBoost algorithm using Haar feature in OpenCV library developed by Intel to detect human face and enhance the accuracy performance with rotating image. The frame rate of viewer tracking process can achieve up to 15 Hz. Since performance of the viewer tracking autostereoscopic display is still influenced under variant environmental conditions, the accuracy, robustness and efficiency of the viewer-tracking system are evaluated in this study.

  5. Novel metrics and methodology for the characterisation of 3D imaging systems

    NASA Astrophysics Data System (ADS)

    Hodgson, John R.; Kinnell, Peter; Justham, Laura; Lohse, Niels; Jackson, Michael R.

    2017-04-01

    The modelling, benchmarking and selection process for non-contact 3D imaging systems relies on the ability to characterise their performance. Characterisation methods that require optically compliant artefacts such as matt white spheres or planes, fail to reveal the performance limitations of a 3D sensor as would be encountered when measuring a real world object with problematic surface finish. This paper reports a method of evaluating the performance of 3D imaging systems on surfaces of arbitrary isotropic surface finish, position and orientation. The method involves capturing point clouds from a set of samples in a range of surface orientations and distances from the sensor. Point clouds are processed to create a single performance chart per surface finish, which shows both if a point is likely to be recovered, and the expected point noise as a function of surface orientation and distance from the sensor. In this paper, the method is demonstrated by utilising a low cost pan-tilt table and an active stereo 3D camera. Its performance is characterised by the fraction and quality of recovered data points on aluminium isotropic surfaces ranging in roughness average (Ra) from 0.09 to 0.46 μm at angles of up to 55° relative to the sensor over a distances from 400 to 800 mm to the scanner. Results from a matt white surface similar to those used in previous characterisation methods contrast drastically with results from even the dullest aluminium sample tested, demonstrating the need to characterise sensors by their limitations, not just best case performance.

  6. 3D reconstruction from a monocular vision system for unmanned ground vehicles

    NASA Astrophysics Data System (ADS)

    Tompkins, R. Cortland; Diskin, Yakov; Youssef, Menatoallah M.; Asari, Vijayan K.

    2011-11-01

    In this paper we present a 3D reconstruction technique designed to support an autonomously navigated unmanned system. The algorithm and methods presented focus on the 3D reconstruction of a scene, with color and distance information, using only a single moving camera. In this way, the system may provide positional self-awareness for navigation within a known, GPS-denied area. It can also be used to construct a new model of unknown areas. Existing 3D reconstruction methods for GPS-denied areas often rely on expensive inertial measurement units to establish camera location and orientation. The algorithm proposed---after the preprocessing tasks of stabilization and video enhancement---performs Speeded-Up Robust Feature extraction, in which we locate unique stable points within every frame. Additional features are extracted using an optical flow method, with the resultant points fused and pruned based on several quality metrics. Each unique point is then tracked through the video sequence and assigned a disparity value used to compute the depth for each feature within the scene. The algorithm also assigns each feature point a horizontal and vertical coordinate using the camera's field of views specifications. From this, a resultant point cloud consists of thousands of feature points plotted from a particular camera position and direction, generated from pairs of sequential frames. The proposed method can use the yaw, pitch and roll information calculated from visual cues within the image data to accurately compute location and orientation. This positioning information enables the reconstruction of a robust 3D model particularly suitable for autonomous navigation and mapping tasks.

  7. 3-D ultrasonic strain imaging based on a linear scanning system.

    PubMed

    Huang, Qinghua; Xie, Bo; Ye, Pengfei; Chen, Zhaohong

    2015-02-01

    This paper introduces a 3-D strain imaging method based on a freehand linear scanning mode. We designed a linear sliding track with a position sensor and a height-adjustable holder to constrain the movement of an ultrasound probe in a freehand manner. When moving the probe along the sliding track, the corresponding positional measures for the probe are transmitted via a wireless communication module based on Bluetooth in real time. In a single examination, the probe is scanned in two sweeps in which the height of the probe is adjusted by the holder to collect the pre- and postcompression radio-frequency echoes, respectively. To generate a 3-D strain image, a volume cubic in which the voxels denote relative strains for tissues is defined according to the range of the two sweeps. With respect to the post-compression frames, several slices in the volume are determined and the pre-compression frames are re-sampled to precisely correspond to the post-compression frames. Thereby, a strain estimation method based on minimizing a cost function using dynamic programming is used to obtain the 2-D strain image for each pair of frames from the re-sampled pre-compression sweep and the post-compression sweep, respectively. A software system is developed for volume reconstruction, visualization, and measurement of the 3-D strain images. The experimental results show that high-quality 3-D strain images of phantom and human tissues can be generated by the proposed method, indicating that the proposed system can be applied for real clinical applications (e.g., musculoskeletal assessments).

  8. Using an automated 3D-tracking system to record individual and shoals of adult zebrafish.

    PubMed

    Maaswinkel, Hans; Zhu, Liqun; Weng, Wei

    2013-12-05

    Like many aquatic animals, zebrafish (Danio rerio) moves in a 3D space. It is thus preferable to use a 3D recording system to study its behavior. The presented automatic video tracking system accomplishes this by using a mirror system and a calibration procedure that corrects for the considerable error introduced by the transition of light from water to air. With this system it is possible to record both single and groups of adult zebrafish. Before use, the system has to be calibrated. The system consists of three modules: Recording, Path Reconstruction, and Data Processing. The step-by-step protocols for calibration and using the three modules are presented. Depending on the experimental setup, the system can be used for testing neophobia, white aversion, social cohesion, motor impairments, novel object exploration etc. It is especially promising as a first-step tool to study the effects of drugs or mutations on basic behavioral patterns. The system provides information about vertical and horizontal distribution of the zebrafish, about the xyz-components of kinematic parameters (such as locomotion, velocity, acceleration, and turning angle) and it provides the data necessary to calculate parameters for social cohesions when testing shoals.

  9. Particle acceleration in 3D single current sheets formed in the solar corona and heliosphere: PIC approach

    NASA Astrophysics Data System (ADS)

    Zharkova, V. V.; Siversky, T.

    2015-09-01

    Acceleration of protons and electrons in a reconnecting current sheet (RCS) is investigated with the test particle and particle-in-cell (PIC) approaches in a 3D magnetic topology. PIC simulations confirm a spatial separation of electrons and protons with respect to the midplane depending on the guiding field. Simulation reveals that the separation occurs in magnetic topologies with strong guiding fields and lasts as long as the particles are kept dragged into a current sheet. This separation produces a polarisation electric field induced by the plasma feedback to a presence of accelerated particles, which shape can change from symmetric towards the midplane (for weak guiding field) to fully asymmetric (for strong guiding field). Particles are found accelerated at a midplane of any current sheets present in the heliosphere to the energies up to hundred keV for electrons and hundred MeV for protons. The maximum energy gained by particles during their motion inside the current sheet is defined by its magnetic field topology (the ratio of magnetic field components), the side and location from the X-nullpoint, where the particles enter a current sheet. In strong magnetic fields of the solar corona with weaker guiding fields, electrons are found circulating about the midplane to large distances where proton are getting accelerated, creating about the current sheet midplane clouds of high energy electrons, which can be the source of hard X-ray emission in the coronal sources of flares. These electrons are ejected into the same footpoint as protons after the latter reach the energy sufficicent to break from a current sheet. In a weaker magnetic field of the heliosphere the bounced electrons with lower energies cannot reach the midplane turning instead at some distance D before the current sheet midplane by 180 degrees from their initial motion. Also the beams of accelerated transit and bounced particles are found to generate turbulent electric fields in a form of Langmuir

  10. Soft 3D-Printed Phantom of the Human Kidney with Collecting System.

    PubMed

    Adams, Fabian; Qiu, Tian; Mark, Andrew; Fritz, Benjamin; Kramer, Lena; Schlager, Daniel; Wetterauer, Ulrich; Miernik, Arkadiusz; Fischer, Peer

    2017-04-01

    Organ models are used for planning and simulation of operations, developing new surgical instruments, and training purposes. There is a substantial demand for in vitro organ phantoms, especially in urological surgery. Animal models and existing simulator systems poorly mimic the detailed morphology and the physical properties of human organs. In this paper, we report a novel fabrication process to make a human kidney phantom with realistic anatomical structures and physical properties. The detailed anatomical structure was directly acquired from high resolution CT data sets of human cadaveric kidneys. The soft phantoms were constructed using a novel technique that combines 3D wax printing and polymer molding. Anatomical details and material properties of the phantoms were validated in detail by CT scan, ultrasound, and endoscopy. CT reconstruction, ultrasound examination, and endoscopy showed that the designed phantom mimics a real kidney's detailed anatomy and correctly corresponds to the targeted human cadaver's upper urinary tract. Soft materials with a tensile modulus of 0.8-1.5 MPa as well as biocompatible hydrogels were used to mimic human kidney tissues. We developed a method of constructing 3D organ models from medical imaging data using a 3D wax printing and molding process. This method is cost-effective means for obtaining a reproducible and robust model suitable for surgical simulation and training purposes.

  11. 3D niche microarrays for systems-level analyses of cell fate.

    PubMed

    Ranga, A; Gobaa, S; Okawa, Y; Mosiewicz, K; Negro, A; Lutolf, M P

    2014-07-14

    The behaviour of mammalian cells in a tissue is governed by the three-dimensional (3D) microenvironment and involves a dynamic interplay between biochemical and mechanical signals provided by the extracellular matrix (ECM), cell-cell interactions and soluble factors. The complexity of the microenvironment and the context-dependent cell responses that arise from these interactions have posed a major challenge to understanding the underlying regulatory mechanisms. Here we develop an experimental paradigm to dissect the role of various interacting factors by simultaneously synthesizing more than 1,000 unique microenvironments with robotic nanolitre liquid-dispensing technology and by probing their effects on cell fate. Using this novel 3D microarray platform, we assess the combined effects of matrix elasticity, proteolytic degradability and three distinct classes of signalling proteins on mouse embryonic stem cells, unveiling a comprehensive map of interactions involved in regulating self-renewal. This approach is broadly applicable to gain a systems-level understanding of multifactorial 3D cell-matrix interactions.

  12. State of the art of 3D scanning systems and inspection of textile surfaces

    NASA Astrophysics Data System (ADS)

    Montilla, M.; Orjuela-Vargas, S. A.; Philips, W.

    2014-02-01

    The rapid development of hardware and software in the digital image processing field has boosted research in computer vision for applications in industry. The development of new electronic devices and the tendency to decrease their prices makes possible new developments that few decades ago were possible only in the imagination. This is the case of 3D imaging technology which permits to detect failures in industrial products by inspecting aspects on their 3D surface. In search of an optimal solution for scanning textiles we present in this paper a review of existing techniques for digitizing 3D surfaces. Topographic details of textiles can be obtained by digitizing surfaces using laser line triangulation, phase shifting optical triangulation, projected-light, stereo-vision systems and silhouette analysis. Although we are focused on methods that have been used in the textile industry, we also consider potential mechanisms used for other applications. We discuss the advantages and disadvantages of the evaluated methods and state a summary of potential implementations for the textile industry.

  13. Simulation and testing of a multichannel system for 3D sound localization

    NASA Astrophysics Data System (ADS)

    Matthews, Edward Albert

    Three-dimensional (3D) audio involves the ability to localize sound anywhere in a three-dimensional space. 3D audio can be used to provide the listener with the perception of moving sounds and can provide a realistic listening experience for applications such as gaming, video conferencing, movies, and concerts. The purpose of this research is to simulate and test 3D audio by incorporating auditory localization techniques in a multi-channel speaker system. The objective is to develop an algorithm that can place an audio event in a desired location by calculating and controlling the gain factors of each speaker. A MATLAB simulation displays the location of the speakers and perceived sound, which is verified through experimentation. The scenario in which the listener is not equidistant from each of the speakers is also investigated and simulated. This research is envisioned to lead to a better understanding of human localization of sound, and will contribute to a more realistic listening experience.

  14. Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.

    PubMed

    Stout, David A; Toyjanova, Jennet; Franck, Christian

    2015-06-12

    The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis.

  15. DYNA3D, INGRID, and TAURUS: an integrated, interactive software system for crashworthiness engineering

    SciTech Connect

    Benson, D.J.; Hallquist, J.O.; Stillman, D.W.

    1985-04-01

    Crashworthiness engineering has always been a high priority at Lawrence Livermore National Laboratory because of its role in the safe transport of radioactive material for the nuclear power industry and military. As a result, the authors have developed an integrated, interactive set of finite element programs for crashworthiness analysis. The heart of the system is DYNA3D, an explicit, fully vectorized, large deformation structural dynamics code. DYNA3D has the following four capabilities that are critical for the efficient and accurate analysis of crashes: (1) fully nonlinear solid, shell, and beam elements for representing a structure, (2) a broad range of constitutive models for representing the materials, (3) sophisticated contact algorithms for the impact interactions, and (4) a rigid body capability to represent the bodies away from the impact zones at a greatly reduced cost without sacrificing any accuracy in the momentum calculations. To generate the large and complex data files for DYNA3D, INGRID, a general purpose mesh generator, is used. It runs on everything from IBM PCs to CRAYS, and can generate 1000 nodes/minute on a PC. With its efficient hidden line algorithms and many options for specifying geometry, INGRID also doubles as a geometric modeller. TAURUS, an interactive post processor, is used to display DYNA3D output. In addition to the standard monochrome hidden line display, time history plotting, and contouring, TAURUS generates interactive color displays on 8 color video screens by plotting color bands superimposed on the mesh which indicate the value of the state variables. For higher quality color output, graphic output files may be sent to the DICOMED film recorders. We have found that color is every bit as important as hidden line removal in aiding the analyst in understanding his results. In this paper the basic methodologies of the programs are presented along with several crashworthiness calculations.

  16. Innovation in Education--Inclusion of 3D-Printing Technology in Modern Education System of Pakistan: Case from Pakistani Educational Institutes

    ERIC Educational Resources Information Center

    Waseem, Kainat; Kainat, Hasnain Alam; Qureshi, Ovais Hussain

    2016-01-01

    On this research, the traditional education system of Pakistan has been analyzed in comparison to international modern education system with 3D printing technology. Also how this technology results in revolutionizing current education system and its future aspects. The study adopted semi-structured interviews to solicit an understanding of…

  17. Image quality of a cone beam O-arm 3D imaging system

    NASA Astrophysics Data System (ADS)

    Zhang, Jie; Weir, Victor; Lin, Jingying; Hsiung, Hsiang; Ritenour, E. Russell

    2009-02-01

    The O-arm is a cone beam imaging system designed primarily to support orthopedic surgery and is also used for image-guided and vascular surgery. Using a gantry that can be opened or closed, the O-arm can function as a 2-dimensional (2D) fluoroscopy device or collect 3-dimensional (3D) volumetric imaging data like a CT system. Clinical applications of the O-arm in spine surgical procedures, assessment of pedicle screw position, and kyphoplasty procedures show that the O-arm 3D mode provides enhanced imaging information compared to radiographs or fluoroscopy alone. In this study, the image quality of an O-arm system was quantitatively evaluated. A 20 cm diameter CATPHAN 424 phantom was scanned using the pre-programmed head protocols: small/medium (120 kVp, 100 mAs), large (120 kVp, 128 mAs), and extra-large (120 kVp, 160 mAs) in 3D mode. High resolution reconstruction mode (512×512×0.83 mm) was used to reconstruct images for the analysis of low and high contrast resolution, and noise power spectrum. MTF was measured using the point spread function. The results show that the O-arm image is uniform but with a noise pattern which cannot be removed by simply increasing the mAs. The high contrast resolution of the O-arm system was approximately 9 lp/cm. The system has a 10% MTF at 0.45 mm. The low-contrast resolution cannot be decided due to the noise pattern. For surgery where locations of a structure are emphasized over a survey of all image details, the image quality of the O-arm is well accepted clinically.

  18. Precision-guided surgical navigation system using laser guidance and 3D autostereoscopic image overlay.

    PubMed

    Liao, Hongen; Ishihara, Hirotaka; Tran, Huy Hoang; Masamune, Ken; Sakuma, Ichiro; Dohi, Takeyoshi

    2010-01-01

    This paper describes a precision-guided surgical navigation system for minimally invasive surgery. The system combines a laser guidance technique with a three-dimensional (3D) autostereoscopic image overlay technique. Images of surgical anatomic structures superimposed onto the patient are created by employing an animated imaging method called integral videography (IV), which can display geometrically accurate 3D autostereoscopic images and reproduce motion parallax without the need for special viewing or tracking devices. To improve the placement accuracy of surgical instruments, we integrated an image overlay system with a laser guidance system for alignment of the surgical instrument and better visualization of patient's internal structure. We fabricated a laser guidance device and mounted it on an IV image overlay device. Experimental evaluations showed that the system could guide a linear surgical instrument toward a target with an average error of 2.48 mm and standard deviation of 1.76 mm. Further improvement to the design of the laser guidance device and the patient-image registration procedure of the IV image overlay will make this system practical; its use would increase surgical accuracy and reduce invasiveness.

  19. Calcaneal osteotomy preoperative planning system with 3D full-sized computer-assisted technology.

    PubMed

    Chou, Yi-Jiun; Sun, Shuh-Ping; Liu, Hsin-Hua

    2011-10-01

    In this study, we developed a CT-based computer-assisted pre-operative planning and simulating system for the calcaneal osteotomy by integrating different software's function. This system uses the full-scaled 3D reverse engineering technique in designing and developing preoperative planning modules for the calcaneal osteotomy surgery. The planning system presents a real-sized three-dimensional image of the calcaneus, and provides detailed interior measurements of the calcaneus from various cutting planes. This study applied computer-assisted technology to integrate different software's function to a surgical planning system. These functions include 3-D image model capturing, cutting, moving, rotating and measurement for relevant foot anatomy, and can be integrated as the user's function. Furthermore, the system is computer-based and computer-assisted technology. Surgeons can utilize it as part of preoperative planning to develop efficient operative procedures. This system also has a database that can be updated and extended and will provide the clinical cases to different users for experienced based learning.

  20. Design and test of a PC-based portable three-dimensional ultrasound software system Ultra3D.

    PubMed

    Xu, X George; Hum Na, Yong; Zhang, Tiantian

    2008-02-01

    Currently, portable ultrasound units lack three-dimensional (3D) image display, limiting their potential usefulness especially under remote and hostile operating environments where information must be intuitive and objective. A freehand 3D image processing and visualization software package, Ultra3D, has been developed and tested, especially to work with a miniaturized linear-array transducer probe that is connected to a laptop PC. This paper presents the software design and method to integrate Ultra3D into Terason's miniaturized SmartProbe for freehand 3D ultrasound imaging. Since images generated by Ultra3D are in a digital imaging and communications in medicine (DICOM) format, data sharing with others is easy.

  1. Commissioning and benchmarking a 3D dosimetry system for clinical use

    SciTech Connect

    Thomas, Andrew; Newton, Joseph; Adamovics, John; Oldham, Mark

    2011-08-15

    Purpose: A 3D dosimetry system is described which consists of two parts: a radiochromic plastic dosimeter PRESAGE (which responds to absorbed dose with a linear change in optical-density) and the Duke large-field-of-view optical-CT scanner (DLOS). The DLOS/PRESAGE system has recently been commissioned and benchmarked for clinical use and, in particular, for verification and commissioning of complex radiation treatments. Methods: DLOS commissioning involved determining the dynamic range, spatial resolution, noise, temporal, and other characteristics of the light source and imaging components. Benchmarking tests were performed on the combined DLOS/PRESAGE system to establish baseline dosimetric performance. The tests consisted of delivering simple radiation treatments to PRESAGE dosimeters, and comparing the measured 3D relative dose distributions with the known gold standard. The gold standard distribution was obtained from machine beam-data or the treatment planning system (TPS). All studies used standardized procedures to ensure consistency. Results: For commissioning, isotropic spatial resolution was submillimeter (MTF > 0.5 for frequencies of 1.5 lp/mm) and the dynamic range was {approx}60 dB. Flood field uniformity was within 10% and stable after 45 min of warm-up. Stray-light is small, due to telecentricity, but even the residual can be removed through deconvolution by a point-spread-function. For benchmarking, the mean 3D passing NDD (normalized dose distribution) rate (3%, 3mm, 5% dose threshold) over the benchmark data sets was 97.3% {+-} 0.6% (range 96%-98%), which is on par with other planar dosimeters used in external beam radiation therapy indicating excellent agreement. Noise was low at <2% of maximum dose (4-12 Gy) for 2 mm reconstructions. The telecentric design was critical to enabling fast imaging with minimal stray-light artifacts. Conclusions: This work presents the first comprehensive benchmarking of a 3D dosimetry system for clinical use. The

  2. Design and Performance Evaluation on Ultra-Wideband Time-Of-Arrival 3D Tracking System

    NASA Technical Reports Server (NTRS)

    Ni, Jianjun; Arndt, Dickey; Ngo, Phong; Dusl, John

    2012-01-01

    A three-dimensional (3D) Ultra-Wideband (UWB) Time--of-Arrival (TOA) tracking system has been studied at NASA Johnson Space Center (JSC) to provide the tracking capability inside the International Space Station (ISS) modules for various applications. One of applications is to locate and report the location where crew experienced possible high level of carbon-dioxide and felt upset. In order to accurately locate those places in a multipath intensive environment like ISS modules, it requires a robust real-time location system (RTLS) which can provide the required accuracy and update rate. A 3D UWB TOA tracking system with two-way ranging has been proposed and studied. The designed system will be tested in the Wireless Habitat Testbed which simulates the ISS module environment. In this presentation, we discuss the 3D TOA tracking algorithm and the performance evaluation based on different tracking baseline configurations. The simulation results show that two configurations of the tracking baseline are feasible. With 100 picoseconds standard deviation (STD) of TOA estimates, the average tracking error 0.2392 feet (about 7 centimeters) can be achieved for configuration Twisted Rectangle while the average tracking error 0.9183 feet (about 28 centimeters) can be achieved for configuration Slightly-Twisted Top Rectangle . The tracking accuracy can be further improved with the improvement of the STD of TOA estimates. With 10 picoseconds STD of TOA estimates, the average tracking error 0.0239 feet (less than 1 centimeter) can be achieved for configuration "Twisted Rectangle".

  3. 3-D nasal cultures: Systems toxicological assessment of a candidate modified-risk tobacco product.

    PubMed

    Iskandar, Anita R; Mathis, Carole; Martin, Florian; Leroy, Patrice; Sewer, Alain; Majeed, Shoaib; Kuehn, Diana; Trivedi, Keyur; Grandolfo, Davide; Cabanski, Maciej; Guedj, Emmanuel; Merg, Celine; Frentzel, Stefan; Ivanov, Nikolai V; Peitsch, Manuel C; Hoeng, Julia

    2017-01-01

    In vitro toxicology approaches have evolved from a focus on molecular changes within a cell to understanding of toxicity-related mechanisms in systems that can mimic the in vivo environment. The recent development of three dimensional (3-D) organotypic nasal epithelial culture models offers a physiologically robust system for studying the effects of exposure through inhalation. Exposure to cigarette smoke (CS) is associated with nasal inflammation; thus, the nasal epithelium is relevant for evaluating the pathophysiological impact of CS exposure. The present study investigated further the application of in vitro human 3-D nasal epithelial culture models for toxicological assessment of inhalation exposure. Aligned with 3Rs strategy, this study aimed to explore the relevance of a human 3-D nasal culture model to assess the toxicological impact of aerosols generated from a candidate modified risk tobacco product (cMRTP), the Tobacco Heating System (THS) 2.2, as compared with smoke generated from reference cigarette 3R4F. A series of experimental repetitions, where multiple concentrations of THS2.2 aerosol and 3R4F smoke were applied, were conducted to obtain reproducible measurements to understand the cellular/molecular changes that occur following exposure. In agreement with "Toxicity Testing in the 21st Century - a Vision and a Strategy", this study implemented a systems toxicology approach and found that for all tested concentrations the impact of 3R4F smoke was substantially greater than that of THS2.2 aerosol in terms of cytotoxicity levels, alterations in tissue morphology, secretion of pro-inflammatory mediators, impaired ciliary function, and increased perturbed transcriptomes and miRNA expression profiles.

  4. Stereotactic vacuum-assisted biopsies on a digital breast 3D-tomosynthesis system.

    PubMed

    Viala, Juliette; Gignier, Pierre; Perret, Baudouin; Hovasse, Claudie; Hovasse, Denis; Chancelier-Galan, Marie-Dominique; Bornet, Gregoire; Hamrouni, Adel; Lasry, Jean-Louis; Convard, Jean-Paul

    2013-01-01

    The purpose of this study was to describe our operating process and to report results of 118 stereotactic vacuum-assisted biopsies performed on a digital breast 3D-tomosynthesis system. From October 2009 to December 2010, 118 stereotactic vacuum assisted biopsies have been performed on a digital breast 3D-tomosynthesis system. Informed consent was obtained for all patients. A total of 106 patients had a lesion, six had two lesions. Sixty-one lesions were clusters of micro-calcifications, 54 were masses and three were architectural distortions. Patients were in lateral decubitus position to allow shortest skin-target approach (or sitting). Specific compression paddle, adapted on the system, performed, and graduated, allowing localization in X-Y. Tomosynthesis views define the depth of lesion. Graduated Coaxial localization kit determines the beginning of the biopsy window. Biopsies were performed with an ATEC-Suros, 9 Gauge handpiece. All biopsies, except one, have reached the lesions. Five hemorrhages were incurred in the process, but no interruption was needed. Eight breast hematomas, were all spontaneously resolved. One was an infection. About 40% of patients had a skin ecchymosis. Processing is fast, easy, and requires lower irradiation dose than with classical stereotactic biopsies. Histology analysis reported 45 benign clusters of micro-calcifications, 16 malignant clusters of micro-calcifications, 24 benign masses, and 33 malignant masses. Of 13 malignant lesions, digital 2D-mammography failed to detect eight lesions and underestimated the classification of five lesions. Digital breast 3D-tomosynthesis depicts malignant lesions not visualized on digital 2D-mammography. Development of tomosynthesis biopsy unit integrated to stereotactic system will permit histology analysis for suspicious lesions.

  5. Mobile large scale 3D coordinate measuring system based on network of rotating laser automatic theodolites

    NASA Astrophysics Data System (ADS)

    Liu, Zhigang; Liu, Zhongzheng; Wu, Jianwei; Xu, Yaozhong

    2010-08-01

    This paper presents a mobile 3D coordinate measuring system for large scale metrology. This system is composed of a network of rotating laser automatic theodolites (N-RLATs) and a portable touch probe. In the N-RLAT system, each RLAT consists of two laser fans which rotate about its own Z axis at a constant speed and scan the whole metrology space. The optical sensors mounted on the portable touch probe receive the sweeping laser fans and generate the corresponding pulse signals, which establish a relationship between rotating angle of laser fan and time, and then the space angle measurement is converted into the corresponding peak time precision measurement of pulse signal. The rotating laser fans are modeled mathematically as a time varying parametrical vector in its local framework. A two steps on-site calibration method for solving the parameters of each RLAT and coordinate transformation among the N-RLATs. The portable probe is composed of optical sensors array with specified geometrical features and a touch point, on which the coordinates of optical sensors is determined by the N-RLATs and the touch point is estimated by solving a non-linear system. A prototype mobile 3D coordinate measuring system is developed and experiment results show its validity.

  6. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  7. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  8. 3-D synthetic aperture processing on high-frequency wide-beam microwave systems

    NASA Astrophysics Data System (ADS)

    Cristofani, Edison; Brook, Anna; Vandewal, Marijke

    2012-06-01

    The use of High-Frequency MicroWaves (HFMW) for high-resolution imagery has gained interest over the last years. Very promising in-depth applications can be foreseen for composite non-metal, non-polarized materials, widely used in the aeronautic and aerospace industries. Most of these materials present a high transparency in the HFMW range and, therefore, defects, delaminations or occlusions within the material can be located. This property can be exploited by applying 3-D HFMW imaging where conventional focused imaging systems are typically used but a different approach such as Synthetic Aperture (SA) radar can be addressed. This paper will present an end-to-end 3-D imagery system for short-range, non-destructive testing based on a frequency-modulated continuous-wave HFMWsensor operating at 100 GHz, implying no health concerns to the human body as well as relatively low cost and limited power requirements. The sensor scans the material while moving sequentially in every elevation plane following a 2-D grid and uses a significantly wide beam antenna for data acquisition, in contrast to focused systems. Collected data must be coherently combined using a SA algorithm to form focused images. Range-independent, synthetically improved cross-range resolutions are remarkable added values of SA processing. Such algorithms can be found in the literature and operate in the time or frequency domains, being the former computationally impractical and the latter the best option for in-depth 3-D imaging. A balanced trade-off between performance and image focusing quality is investigated for several SA algorithms.

  9. 3D Tomography of Ionospheric Perturbations Produced by Earthquakes Using Global Positioning System

    NASA Astrophysics Data System (ADS)

    Crespon, F.; Garcia, R.; Lognonné, P.; Murakami, M.

    2004-12-01

    The recent development of Global Positioning System led to establish dense regional networks of bistatic GPS receivers providing today a powerful ionospheric observing system. Now the ionosphere can be imaged by tomographic methods using GPS data. Therefore the ionospheric perturbations can be characterized by monitoring Total Electronic Content (TEC). These disturbances have multiple sources located adove and below ionospheric layers. The most known are the Travelling Ionospheric Disturbances (TID) produced by internal gravity waves. But some ionospheric disturbances are also due to infrasonic waves. We focus this study on ionospheric perturbations generated by infrasonic waves exited by seismic waves, resulting from the coupling between Earth and the atmosphere. We present a spectral analysis of TEC GPS data, the 3D tomographic method and its application to post-seismic perturbations. By removing background noise we are able to monitor acoustic post-seismic waves, generated by the rupture process and the seismic surface waves, that reach the ionosphere. Especially, we show the observations for the Denali earthquake of 3rd November 2002 and the Hokkaido earthquake of 25th September 2003 using respectively the Californian networks (SICGN) and the Japan network (GEONET). Both the horizontal and vertical propagation of the waves are vizualized in the 3D tomographic movies. The observed waves arrive with a timing and a propagation velocity coherent with expected waves and we purpose an interpretation in terms of infrasonic waves in the atmosphere, generated both near the epicenter and at further distance, at the level of the Rayleigh waves front. Finally we present the improvement of the 3D tomographic methods with the advent of the Galileo system and possible application in seismology.

  10. Innovative LIDAR 3D Dynamic Measurement System to estimate fruit-tree leaf area.

    PubMed

    Sanz-Cortiella, Ricardo; Llorens-Calveras, Jordi; Escolà, Alexandre; Arnó-Satorra, Jaume; Ribes-Dasi, Manel; Masip-Vilalta, Joan; Camp, Ferran; Gràcia-Aguilá, Felip; Solanelles-Batlle, Francesc; Planas-DeMartí, Santiago; Pallejà-Cabré, Tomàs; Palacin-Roca, Jordi; Gregorio-Lopez, Eduard; Del-Moral-Martínez, Ignacio; Rosell-Polo, Joan R

    2011-01-01

    In this work, a LIDAR-based 3D Dynamic Measurement System is presented and evaluated for the geometric characterization of tree crops. Using this measurement system, trees were scanned from two opposing sides to obtain two three-dimensional point clouds. After registration of the point clouds, a simple and easily obtainable parameter is the number of impacts received by the scanned vegetation. The work in this study is based on the hypothesis of the existence of a linear relationship between the number of impacts of the LIDAR sensor laser beam on the vegetation and the tree leaf area. Tests performed under laboratory conditions using an ornamental tree and, subsequently, in a pear tree orchard demonstrate the correct operation of the measurement system presented in this paper. The results from both the laboratory and field tests confirm the initial hypothesis and the 3D Dynamic Measurement System is validated in field operation. This opens the door to new lines of research centred on the geometric characterization of tree crops in the field of agriculture and, more specifically, in precision fruit growing.

  11. ProVac3D and Application to the Neutral Beam Injection System of ITER

    SciTech Connect

    Luo, X.; Dremel, M.; Day, Ch.

    2008-12-31

    In order to heat the confined plasma up to 100 million degrees Celsius and initiate a sustained fusion reaction, ITER will use several heating mechanisms at the same time, of which Neutral Beam Injection (NBI) systems play an important role. The NBI includes several internal gas sources and has to be operated under vacuum conditions. We have developed ProVac3D, a Monte Carlo simulation code, to calculate gas dynamics and the density profiles in volumes of interest inside NBI. This enables us to elaborate our in-situ and state-of-the-art cryogenic pump design and estimate the corresponding pumping speed.

  12. Integration Of 3D Geographic Information System (GIS) For Effective Waste Management Practice

    SciTech Connect

    Rood, G.J.; Hecox, G.R.

    2006-07-01

    Soil remediation in response to the presence of residual radioactivity resulting from past MED/AEC activities is currently in progress under the Formerly Utilized Sites Remedial Action Program near the St. Louis, MO airport. During GY05, approximately 92,000 cubic meters (120,000 cubic yards) of radioactive soil was excavated, packaged and transported via rail for disposal at U.S. Ecology or Envirocare of Utah, LLC. To facilitate the management of excavation/transportation/disposal activities, a 3D GIS was developed for the site that was used to estimate the in-situ radionuclide activities, activities in excavation block areas, and shipping activities using a sum-of ratio (SOR) method for combining various radionuclide compounds into applicable transportation and disposal SOR values. The 3D GIS was developed starting with the SOR values for the approximately 900 samples from 90 borings. These values were processed into a three-dimensional (3D) point grid using kriging with nominal grid spacing of 1.5 by 1.5 meter horizontal by 0.3 meter vertical. The final grid, clipped to the area and soil interval above the planned base of excavation, consisted of 210,000 individual points. Standard GIS volumetric and spatial join procedures were used to calculate the volume of soil represented by each grid point, the base of excavation, depth below ground surface, elevation, surface elevation and SOR values for each point in the final grid. To create the maps needed for management, the point grid results were spatially joined to each excavation area in 0.9 meter (3 foot) depth intervals and the average SOR and total volumes were calculations. The final maps were color-coded for easy identification of areas above the specific transportation or disposal criteria. (authors)

  13. Complete calibration of a phase-based 3D imaging system based on fringe projection technique

    NASA Astrophysics Data System (ADS)

    Meng, Shasha; Ma, Haiyan; Zhang, Zonghua; Guo, Tong; Zhang, Sixiang; Hu, Xiaotang

    2011-11-01

    Phase calculation-based 3D imaging systems have been widely studied because of the advantages of non-contact operation, full-field, fast acquisition and automatic data processing. A vital step is calibration, which builds up the relationship between phase map and range image. The existing calibration methods are complicated because of using a precise translating stage or a 3D gauge block. Recently, we presented a simple method to convert phase into depth data by using a polynomial function and a plate having discrete markers on the surface with known distance in between. However, the initial position of all the markers needs to be determined manually and the X, Y coordinates are not calibrated. This paper presents a complete calibration method of phase calculation-based 3D imaging systems by using a plate having discrete markers on the surface with known distance in between. The absolute phase of each pixel can be calculated by projecting fringe pattern onto the plate. Each marker position can be determined by an automatic extraction algorithm, so the relative depth of each pixel to a chosen reference plane can be obtained. Therefore, coefficient set of the polynomial function for each pixel are determined by using the obtained absolute phase and depth data. In the meanwhile, pixel positions and the X, Y coordinates can be established by the parameters of the CCD camera. Experimental results and performance evaluation show that the proposed calibration method can easily build up the relationship between absolute phase map and range image in a simple way.

  14. Automatic nipple detection on 3D images of an automated breast ultrasound system (ABUS)

    NASA Astrophysics Data System (ADS)

    Javanshir Moghaddam, Mandana; Tan, Tao; Karssemeijer, Nico; Platel, Bram

    2014-03-01

    Recent studies have demonstrated that applying Automated Breast Ultrasound in addition to mammography in women with dense breasts can lead to additional detection of small, early stage breast cancers which are occult in corresponding mammograms. In this paper, we proposed a fully automatic method for detecting the nipple location in 3D ultrasound breast images acquired from Automated Breast Ultrasound Systems. The nipple location is a valuable landmark to report the position of possible abnormalities in a breast or to guide image registration. To detect the nipple location, all images were normalized. Subsequently, features have been extracted in a multi scale approach and classification experiments were performed using a gentle boost classifier to identify the nipple location. The method was applied on a dataset of 100 patients with 294 different 3D ultrasound views from Siemens and U-systems acquisition systems. Our database is a representative sample of cases obtained in clinical practice by four medical centers. The automatic method could accurately locate the nipple in 90% of AP (Anterior-Posterior) views and in 79% of the other views.

  15. 3D printed miniaturized spectral system for tissue fluorescence lifetime measurements

    NASA Astrophysics Data System (ADS)

    Zou, Luwei; Mahmoud, Mohamad; Fahs, Mehdi; Liu, Rui; Lo, Joe F.

    2016-04-01

    Various types of collagens, e.g. type I and III, represent the main load-bearing components in biological tissues. Their composition changes during processes like wound healing and fibrosis. Collagens exhibit autofluorescence when excited by ultra-violet light, distinguishable by their unique fluorescent lifetimes across a range of emission wavelengths. Therefore, we designed a miniaturized spectral-lifetime detection system for collagens as a non-invasive probe for monitoring tissue in wound healing and scarring applications. A sine modulated LED illumination was applied to enable frequency domain (FD) fluorescence lifetime measurements under different wavelengths bands, separated via a series of longpass dichroics at 387nm, 409nm and 435nm. To achieve the minute scale of optomechanics, we employed a stereolithography based 3D printer with <50 μm resolution to create a custom designed optical mount in a hand-held form factor. We examined the characteristics of the 3D printed optical system with finite element modeling to simulate the effect of thermal (LED) and mechanical (handling) strain on the optical system. Using this device, the phase shift and demodulation of collagen types were measured, where the separate spectral bands enhanced the differentiation of their lifetimes.

  16. Viewing zone duplication of multi-projection 3D display system using uniaxial crystal.

    PubMed

    Lee, Chang-Kun; Park, Soon-Gi; Moon, Seokil; Lee, Byoungho

    2016-04-18

    We propose a novel multiplexing technique for increasing the viewing zone of a multi-view based multi-projection 3D display system by employing double refraction in uniaxial crystal. When linearly polarized images from projector pass through the uniaxial crystal, two possible optical paths exist according to the polarization states of image. Therefore, the optical paths of the image could be changed, and the viewing zone is shifted in a lateral direction. The polarization modulation of the image from a single projection unit enables us to generate two viewing zones at different positions. For realizing full-color images at each viewing zone, a polarization-based temporal multiplexing technique is adopted with a conventional polarization switching device of liquid crystal (LC) display. Through experiments, a prototype of a ten-view multi-projection 3D display system presenting full-colored view images is implemented by combining five laser scanning projectors, an optically clear calcite (CaCO3) crystal, and an LC polarization rotator. For each time sequence of temporal multiplexing, the luminance distribution of the proposed system is measured and analyzed.

  17. Optimization of a 3D Dynamic Culturing System for In Vitro Modeling of Frontotemporal Neurodegeneration-Relevant Pathologic Features.

    PubMed

    Tunesi, Marta; Fusco, Federica; Fiordaliso, Fabio; Corbelli, Alessandro; Biella, Gloria; Raimondi, Manuela T

    2016-01-01

    Frontotemporal lobar degeneration (FTLD) is a severe neurodegenerative disorder that is diagnosed with increasing frequency in clinical setting. Currently, no therapy is available and in addition the molecular basis of the disease are far from being elucidated. Consequently, it is of pivotal importance to develop reliable and cost-effective in vitro models for basic research purposes and drug screening. To this respect, recent results in the field of Alzheimer's disease have suggested that a tridimensional (3D) environment is an added value to better model key pathologic features of the disease. Here, we have tried to add complexity to the 3D cell culturing concept by using a microfluidic bioreactor, where cells are cultured under a continuous flow of medium, thus mimicking the interstitial fluid movement that actually perfuses the body tissues, including the brain. We have implemented this model using a neuronal-like cell line (SH-SY5Y), a widely exploited cell model for neurodegenerative disorders that shows some basic features relevant for FTLD modeling, such as the release of the FTLD-related protein progranulin (PRGN) in specific vesicles (exosomes). We have efficiently seeded the cells on 3D scaffolds, optimized a disease-relevant oxidative stress experiment (by targeting mitochondrial function that is one of the possible FTLD-involved pathological mechanisms) and evaluated cell metabolic activity in dynamic culture in comparison to static conditions, finding that SH-SY5Y cells cultured in 3D scaffold are susceptible to the oxidative damage triggered by a mitochondrial-targeting toxin (6-OHDA) and that the same cells cultured in dynamic conditions kept their basic capacity to secrete PRGN in exosomes once recovered from the bioreactor and plated in standard 2D conditions. We think that a further improvement of our microfluidic system may help in providing a full device where assessing basic FTLD-related features (including PRGN dynamic secretion) that may be

  18. 3-D sensor using relative stereo method for bio-seedlings transplanting system

    NASA Astrophysics Data System (ADS)

    Hiroyasu, Takehisa; Hayashi, Jun'ichiro; Hojo, Hirotaka; Hata, Seiji

    2005-12-01

    In the plant factory of crone seedlings, most of the production processes are highly automated, but the transplanting process of the small seedlings is hard to be automated because the figures of small seedlings are not stable and to handle the seedlings it is required to observe the shapes of the small seedlings. Here, a 3-D vision system for robot to be used for the transplanting process in a plant factory has been introduced. This system has been employed relative stereo method and slit light measuring method and it can detect the shape of small seedlings and decides the cutting point. In this paper, the structure of the vision system and the image processing method for the system is explained.

  19. Monitoring and Simulating the 3-D Density Currents at the Confluence of the Snake and Clearwater Rivers

    SciTech Connect

    Cook, Chris B.; Richmond, Marshall C.

    2004-12-01

    Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater River, a major tributary to the Lower Snake River, and to improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional density currents at the Clearwater and Snake River confluence and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model was also applied. By utilizing both field data and a numerical model, a more holistic view of the 3-D density currents was discovered than by either method alone. During this process, it was discovered that several predictable stratification patterns would develop depending upon the discharge ratio and the thermal gradient between the two rivers. These results illustrate the complex hydrodynamic structure at the confluence of the Clearwater and Snake Rivers, which has previously been shown by fish biologists to be a difficult passage zone for migrating salmonids of various life stages.

  20. Fusion of current technologies with real-time 3D MEMS ladar for novel security and defense applications

    NASA Astrophysics Data System (ADS)

    Siepmann, James P.

    2006-05-01

    Through the utilization of scanning MEMS mirrors in ladar devices, a whole new range of potential military, Homeland Security, law enforcement, and civilian applications is now possible. Currently, ladar devices are typically large (>15,000 cc), heavy (>15 kg), and expensive (>$100,000) while current MEMS ladar designs are more than a magnitude less, opening up a myriad of potential new applications. One such application with current technology is a GPS integrated MEMS ladar unit, which could be used for real-time border monitoring or the creation of virtual 3D battlefields after being dropped or propelled into hostile territory. Another current technology that can be integrated into a MEMS ladar unit is digital video that can give high resolution and true color to a picture that is then enhanced with range information in a real-time display format that is easier for the user to understand and assimilate than typical gray-scale or false color images. The problem with using 2-axis MEMS mirrors in ladar devices is that in order to have a resonance frequency capable of practical real-time scanning, they must either be quite small and/or have a low maximum tilt angle. Typically, this value has been less than (< or = to 10 mg-mm2-kHz2)-degrees. We have been able to solve this problem by using angle amplification techniques that utilize a series of MEMS mirrors and/or a specialized set of optics to achieve a broad field of view. These techniques and some of their novel applications mentioned will be explained and discussed herein.

  1. 3D neutronic codes coupled with thermal-hydraulic system codes for PWR, and BWR and VVER reactors

    SciTech Connect

    Langenbuch, S.; Velkov, K.; Lizorkin, M.

    1997-07-01

    This paper describes the objectives of code development for coupling 3D neutronics codes with thermal-hydraulic system codes. The present status of coupling ATHLET with three 3D neutronics codes for VVER- and LWR-reactors is presented. After describing the basic features of the 3D neutronic codes BIPR-8 from Kurchatov-Institute, DYN3D from Research Center Rossendorf and QUABOX/CUBBOX from GRS, first applications of coupled codes for different transient and accident scenarios are presented. The need of further investigations is discussed.

  2. Optimization of the aperture and the transducer characteristics of a 3D ultrasound computer tomography system

    NASA Astrophysics Data System (ADS)

    Ruiter, Nicole V.; Zapf, Michael; Hopp, Torsten; Dapp, Robin; Gemmeke, Hartmut

    2014-03-01

    A promising candidate for improved imaging of breast cancer is ultrasound computer tomography (USCT). The aim of this work was to design a new aperture for our full 3D USCT which extends the properties of the current aperture to a larger ROI fitting the buoyant breast in water and decreasing artifacts in transmission tomography. The optimization resulted in a larger opening angle of the transducers, a larger diameter of the aperture and an approximately homogeneous distribution of the transducers, with locally random distances. The developed optimization methods allow us to automatically generate an optimized aperture for given diameters of apertures and transducer arrays, as well as quantitative comparison to other arbitrary apertures. Thus, during the design phase of the next generation KIT 3D USCT, the image quality can be balanced against the specification parameters and given hardware and cost limitations. The methods can be applied for general aperture optimization, only limited by the assumptions of a hemispherical aperture and circular transducer arrays.

  3. Development of a 3D Underground Cadastral System with Indoor Mapping for As-Built BIM: The Case Study of Gangnam Subway Station in Korea

    PubMed Central

    Kim, Sangmin; Kim, Jeonghyun; Jung, Jaehoon; Heo, Joon

    2015-01-01

    The cadastral system provides land ownership information by registering and representing land boundaries on a map. The current cadastral system in Korea, however, focuses mainly on the management of 2D land-surface boundaries. It is not yet possible to provide efficient or reliable land administration, as this 2D system cannot support or manage land information on 3D properties (including architectures and civil infrastructures) for both above-ground and underground facilities. A geometrical model of the 3D parcel, therefore, is required for registration of 3D properties. This paper, considering the role of the cadastral system, proposes a framework for a 3D underground cadastral system that can register various types of 3D underground properties using indoor mapping for as-built Building Information Modeling (BIM). The implementation consists of four phases: (1) geometric modeling of a real underground infrastructure using terrestrial laser scanning data; (2) implementation of as-built BIM based on geometric modeling results; (3) accuracy assessment for created as-built BIM using reference points acquired by total station; and (4) creation of three types of 3D underground cadastral map to represent underground properties. The experimental results, based on indoor mapping for as-built BIM, show that the proposed framework for a 3D underground cadastral system is able to register the rights, responsibilities, and restrictions corresponding to the 3D underground properties. In this way, clearly identifying the underground physical situation enables more reliable and effective decision-making in all aspects of the national land administration system. PMID:26690174

  4. Development of a 3D Underground Cadastral System with Indoor Mapping for As-Built BIM: The Case Study of Gangnam Subway Station in Korea.

    PubMed

    Kim, Sangmin; Kim, Jeonghyun; Jung, Jaehoon; Heo, Joon

    2015-12-09

    The cadastral system provides land ownership information by registering and representing land boundaries on a map. The current cadastral system in Korea, however, focuses mainly on the management of 2D land-surface boundaries. It is not yet possible to provide efficient or reliable land administration, as this 2D system cannot support or manage land information on 3D properties (including architectures and civil infrastructures) for both above-ground and underground facilities. A geometrical model of the 3D parcel, therefore, is required for registration of 3D properties. This paper, considering the role of the cadastral system, proposes a framework for a 3D underground cadastral system that can register various types of 3D underground properties using indoor mapping for as-built Building Information Modeling (BIM). The implementation consists of four phases: (1) geometric modeling of a real underground infrastructure using terrestrial laser scanning data; (2) implementation of as-built BIM based on geometric modeling results; (3) accuracy assessment for created as-built BIM using reference points acquired by total station; and (4) creation of three types of 3D underground cadastral map to represent underground properties. The experimental results, based on indoor mapping for as-built BIM, show that the proposed framework for a 3D underground cadastral system is able to register the rights, responsibilities, and restrictions corresponding to the 3D underground properties. In this way, clearly identifying the underground physical situation enables more reliable and effective decision-making in all aspects of the national land administration system.

  5. Development of 3D-CT System Using MIRRORCLE-6X

    NASA Astrophysics Data System (ADS)

    Sasaki, M.; Takaku, J.; Hirai, T.; Yamada, H.

    2007-03-01

    The technique of computed tomography (CT) has been used in various fields, such as medical, non-destructive testing (NDT), baggage checking, etc. A 3D-CT system based on the portable synchrotron "MIRRORCLE"-series will be a novel instrument for these fields. The hard x-rays generated from the "MIRRORCLE" have a wide energy spectrum. Light and thin materials create absorption and refraction contrast in x-ray images by the lower energy component (< 60 keV), and heavy and thick materials create absorption contrast by the higher energy component. In addition, images with higher resolutions can be obtained using "MIRRORCLE" with a small source size of micron order. Thus, high resolution 3D-CT images of specimens containing both light and heavy materials can be obtained using "MIRRORCLE" and a 2D-detector with a wide dynamic range. In this paper, the development and output of a 3D-CT system using the "MIRRORCLE-6X" and a flat panel detector are reported. A 3D image of a piece of concrete was obtained. The detector was a flat panel detector (VARIAN, PAXSCAN2520) with 254 μm pixel size. The object and the detector were set at 50 cm and 250 cm respectively from the x-ray source, so that the magnification was 5x. The x-ray source was a 50 μm Pt rod. The rotation stage and the detector were remote-controlled using a computer, which was originally created using LabView and Visual Basic software. The exposure time was about 20 minutes. The reconstruction calculation was based on the Feldkamp algorithm, and the pixel size was 50 μm. We could observe sub-mm holes and density differences in the object. Thus, the "MIRRORCLE-CV" with 1MeV electron energy, which has same x-ray generation principles, will be an excellent x-ray source for medical diagnostics and NDT.

  6. A biofidelic 3D culture model to study the development of brain cellular systems.

    PubMed

    Ren, M; Du, C; Herrero Acero, E; Tang-Schomer, M D; Özkucur, N

    2016-04-26

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems.

  7. A flexible 3D vision system based on structured light for in-line product inspection

    NASA Astrophysics Data System (ADS)

    Skotheim, Øystein; Nygaard, Jens Olav; Thielemann, Jens; Vollset, Thor

    2008-02-01

    A flexible and highly configurable 3D vision system targeted for in-line product inspection is presented. The system includes a low cost 3D camera based on structured light and a set of flexible software tools that automate the measurement process. The specification of the measurement tasks is done in a first manual step. The user selects regions of the point cloud to analyze and specifies primitives to be characterized within these regions. After all measurement tasks have been specified, measurements can be carried out on successive parts automatically and without supervision. As a test case, a measurement cell for inspection of a V-shaped car component has been developed. The car component consists of two steel tubes attached to a central hub. Each of the tubes has an additional bushing clamped to its end. A measurement is performed in a few seconds and results in an ordered point cloud with 1.2 million points. The software is configured to fit cylinders to each of the steel tubes as well as to the inside of the bushings of the car part. The size, position and orientation of the fitted cylinders allow us to measure and verify a series of dimensions specified on the CAD drawing of the component with sub-millimetre accuracy.

  8. A small animal image guided irradiation system study using 3D dosimeters

    NASA Astrophysics Data System (ADS)

    Qian, Xin; Admovics, John; Wuu, Cheng-Shie

    2015-01-01

    In a high resolution image-guided small animal irradiation platform, a cone beam computed tomography (CBCT) is integrated with an irradiation unit for precise targeting. Precise quality assurance is essential for both imaging and irradiation components. The conventional commissioning techniques with films face major challenges due to alignment uncertainty and labour intensive film preparation and scanning. In addition, due to the novel design of this platform the mouse stage rotation for CBCT imaging is perpendicular to the gantry rotation for irradiation. Because these two rotations are associated with different mechanical systems, discrepancy between rotation isocenters exists. In order to deliver x-ray precisely, it is essential to verify coincidence of the imaging and the irradiation isocenters. A 3D PRESAGE dosimeter can provide an excellent tool for checking dosimetry and verifying coincidence of irradiation and imaging coordinates in one system. Dosimetric measurements were performed to obtain beam profiles and percent depth dose (PDD). Isocentricity and coincidence of the mouse stage and gantry rotations were evaluated with starshots acquired using PRESAGE dosimeters. A single PRESAGE dosimeter can provide 3 -D information in both geometric and dosimetric uncertainty, which is crucial for translational studies.

  9. Development of a Wireless and Near Real-Time 3D Ultrasound Strain Imaging System.

    PubMed

    Chen, Zhaohong; Chen, Yongdong; Huang, Qinghua

    2016-04-01

    Ultrasound elastography is an important medical imaging tool for characterization of lesions. In this paper, we present a wireless and near real-time 3D ultrasound strain imaging system. It uses a 3D translating device to control a commercial linear ultrasound transducer to collect pre-compression and post-compression radio-frequency (RF) echo signal frames. The RF frames are wirelessly transferred to a high-performance server via a local area network (LAN). A dynamic programming strain estimation algorithm is implemented with the compute unified device architecture (CUDA) on the graphic processing unit (GPU) in the server to calculate the strain image after receiving a pre-compression RF frame and a post-compression RF frame at the same position. Each strain image is inserted into a strain volume which can be rendered in near real-time. We take full advantage of the translating device to precisely control the probe movement and compression. The GPU-based parallel computing techniques are designed to reduce the computation time. Phantom and in vivo experimental results demonstrate that our system can generate strain volumes with good quality and display an incrementally reconstructed volume image in near real-time.

  10. A biofidelic 3D culture model to study the development of brain cellular systems

    PubMed Central

    Ren, M.; Du, C.; Herrero Acero, E.; Tang-Schomer, M. D.; Özkucur, N.

    2016-01-01

    Little is known about how cells assemble as systems during corticogenesis to generate collective functions. We built a neurobiology platform that consists of fetal rat cerebral cortical cells grown within 3D silk scaffolds (SF). Ivermectin (Ivm), a glycine receptor (GLR) agonist, was used to modulate cell resting membrane potential (Vmem) according to methods described in a previous work that implicated Ivm in the arrangement and connectivity of cortical cell assemblies. The cells developed into distinct populations of neuroglial stem/progenitor cells, mature neurons or epithelial-mesenchymal cells. Importantly, the synchronized electrical activity in the newly developed cortical assemblies could be recorded as local field potential (LFP) measurements. This study therefore describes the first example of the development of a biologically relevant cortical plate assembly outside of the body. This model provides i) a preclinical basis for engineering cerebral cortex tissue autografts and ii) a biofidelic 3D culture model for investigating biologically relevant processes during the functional development of cerebral cortical cellular systems. PMID:27112667

  11. A preliminary evaluation work on a 3D ultrasound imaging system for 2D array transducer

    NASA Astrophysics Data System (ADS)

    Zhong, Xiaoli; Li, Xu; Yang, Jiali; Li, Chunyu; Song, Junjie; Ding, Mingyue; Yuchi, Ming

    2016-04-01

    This paper presents a preliminary evaluation work on a pre-designed 3-D ultrasound imaging system. The system mainly consists of four parts, a 7.5MHz, 24×24 2-D array transducer, the transmit/receive circuit, power supply, data acquisition and real-time imaging module. The row-column addressing scheme is adopted for the transducer fabrication, which greatly reduces the number of active channels . The element area of the transducer is 4.6mm by 4.6mm. Four kinds of tests were carried out to evaluate the imaging performance, including the penetration depth range, axial and lateral resolution, positioning accuracy and 3-D imaging frame rate. Several strong reflection metal objects , fixed in a water tank, were selected for the purpose of imaging due to a low signal-to-noise ratio of the transducer. The distance between the transducer and the tested objects , the thickness of aluminum, and the seam width of the aluminum sheet were measured by a calibrated micrometer to evaluate the penetration depth, the axial and lateral resolution, respectively. The experiment al results showed that the imaging penetration depth range was from 1.0cm to 6.2cm, the axial and lateral resolution were 0.32mm and 1.37mm respectively, the imaging speed was up to 27 frames per second and the positioning accuracy was 9.2%.

  12. Interactive toothbrushing education by a smart toothbrush system via 3D visualization.

    PubMed

    Kim, Kyeong-Seop; Yoon, Tae-Ho; Lee, Jeong-Whan; Kim, Dong-Jun

    2009-11-01

    The very first step for keeping good dental hygiene is to employ the correct toothbrushing style. Due to the possible occurrence of periodontal disease at an early age, it is critical to begin correct toothbrushing patterns as early as possible. With this aim, we proposed a novel toothbrush monitoring and training system to interactively educate on toothbrushing behavior in terms of the correct brushing motion and grip axis orientation. Our intelligent toothbrush monitoring system first senses a user's brushing pattern by analyzing the waveforms acquired from a built-in accelerometer and magnetic sensor. To discern the inappropriate toothbrushing style, a real-time interactive three dimensional display system, based on an OpenGL 3D surface rendering scheme, is applied to visualize a subject's brushing patterns and subsequently advise on the correct brushing method.

  13. THREE DIMENSIONAL INTEGRATED CHARACTERIZATION AND ARCHIVING SYSTEM (3D-ICAS)

    SciTech Connect

    George Jarvis

    2001-06-18

    The overall objective of this project is to develop an integrated system that remotely characterizes, maps, and archives measurement data of hazardous decontamination and decommissioning (D&D) areas. The system will generate a detailed 3-dimensional topography of the area as well as real-time quantitative measurements of volatile organics and radionuclides. The system will analyze substrate materials consisting of concrete, asbestos, and transite. The system will permanently archive the data measurements for regulatory and data integrity documentation. Exposure limits, rest breaks, and donning and removal of protective garments generate waste in the form of contaminated protective garments and equipment. Survey times are increased and handling and transporting potentially hazardous materials incur additional costs. Off-site laboratory analysis is expensive and time-consuming, often necessitating delay of further activities until results are received. The Three Dimensional Integrated Characterization and Archiving System (3D-ICAS) has been developed to alleviate some of these problems. 3D-ICAS provides a flexible system for physical, chemical and nuclear measurements reduces costs and improves data quality. Operationally, 3D-ICAS performs real-time determinations of hazardous and toxic contamination. A prototype demonstration unit is available for use in early 2000. The tasks in this Phase included: (1) Mobility Platforms: Integrate hardware onto mobility platforms, upgrade surface sensors, develop unit operations and protocol. (2) System Developments: Evaluate metals detection capability using x-ray fluorescence technology. (3) IWOS Upgrades: Upgrade the IWOS software and hardware for compatibility with mobility platform. The system was modified, tested and debugged during 1999 and 2000. The 3D-ICAS was shipped on 11 May 2001 to FIU-HCET for demonstration and validation of the design modifications. These modifications included simplifying the design from a two

  14. A Soft Sensor-Based Three-Dimensional (3-D) Finger Motion Measurement System

    PubMed Central

    Park, Wookeun; Ro, Kyongkwan; Kim, Suin; Bae, Joonbum

    2017-01-01

    In this study, a soft sensor-based three-dimensional (3-D) finger motion measurement system is proposed. The sensors, made of the soft material Ecoflex, comprise embedded microchannels filled with a conductive liquid metal (EGaln). The superior elasticity, light weight, and sensitivity of soft sensors allows them to be embedded in environments in which conventional sensors cannot. Complicated finger joints, such as the carpometacarpal (CMC) joint of the thumb are modeled to specify the location of the sensors. Algorithms to decouple the signals from soft sensors are proposed to extract the pure flexion, extension, abduction, and adduction joint angles. The performance of the proposed system and algorithms are verified by comparison with a camera-based motion capture system. PMID:28241414

  15. Noise analysis for near field 3-D FM-CW radar imaging systems

    SciTech Connect

    Sheen, David M.

    2015-06-19

    Near field radar imaging systems are used for several applications including concealed weapon detection in airports and other high-security venues. Despite the near-field operation, phase noise and thermal noise can limit the performance in several ways including reduction in system sensitivity and reduction of image dynamic range. In this paper, the effects of thermal noise, phase noise, and processing gain are analyzed in the context of a near field 3-D FM-CW imaging radar as might be used for concealed weapon detection. In addition to traditional frequency domain analysis, a time-domain simulation is employed to graphically demonstrate the effect of these noise sources on a fast-chirping FM-CW system.

  16. A fully defined and scalable 3D culture system for human pluripotent stem cell expansion and differentiation

    NASA Astrophysics Data System (ADS)

    Lei, Yuguo; Schaffer, David V.

    2013-12-01

    Human pluripotent stem cells (hPSCs), including human embryonic stem cells and induced pluripotent stem cells, are promising for numerous biomedical applications, such as cell replacement therapies, tissue and whole-organ engineering, and high-throughput pharmacology and toxicology screening. Each of these applications requires large numbers of cells of high quality; however, the scalable expansion and differentiation of hPSCs, especially for clinical utilization, remains a challenge. We report a simple, defined, efficient, scalable, and good manufacturing practice-compatible 3D culture system for hPSC expansion and differentiation. It employs a thermoresponsive hydrogel that combines easy manipulation and completely defined conditions, free of any human- or animal-derived factors, and entailing only recombinant protein factors. Under an optimized protocol, the 3D system enables long-term, serial expansion of multiple hPSCs lines with a high expansion rate (∼20-fold per 5-d passage, for a 1072-fold expansion over 280 d), yield (∼2.0 × 107 cells per mL of hydrogel), and purity (∼95% Oct4+), even with single-cell inoculation, all of which offer considerable advantages relative to current approaches. Moreover, the system enabled 3D directed differentiation of hPSCs into multiple lineages, including dopaminergic neuron progenitors with a yield of ∼8 × 107 dopaminergic progenitors per mL of hydrogel and ∼80-fold expansion by the end of a 15-d derivation. This versatile system may be useful at numerous scales, from basic biological investigation to clinical development.

  17. Spatially monitoring oxygen level in 3D microfabricated cell culture systems using optical oxygen sensing beads.

    PubMed

    Wang, Lin; Acosta, Miguel A; Leach, Jennie B; Carrier, Rebecca L

    2013-04-21

    Capability of measuring and monitoring local oxygen concentration at the single cell level (tens of microns scale) is often desirable but difficult to achieve in cell culture. In this study, biocompatible oxygen sensing beads were prepared and tested for their potential for real-time monitoring and mapping of local oxygen concentration in 3D micro-patterned cell culture systems. Each oxygen sensing bead is composed of a silica core loaded with both an oxygen sensitive Ru(Ph2phen3)Cl2 dye and oxygen insensitive Nile blue reference dye, and a poly-dimethylsiloxane (PDMS) shell rendering biocompatibility. Human intestinal epithelial Caco-2 cells were cultivated on a series of PDMS and type I collagen based substrates patterned with micro-well arrays for 3 or 7 days, and then brought into contact with oxygen sensing beads. Using an image analysis algorithm to convert florescence intensity of beads to partial oxygen pressure in the culture system, tens of microns-size oxygen sensing beads enabled the spatial measurement of local oxygen concentration in the microfabricated system. Results generally indicated lower oxygen level inside wells than on top of wells, and local oxygen level dependence on structural features of cell culture surfaces. Interestingly, chemical composition of cell culture substrates also appeared to affect oxygen level, with type-I collagen based cell culture systems having lower oxygen concentration compared to PDMS based cell culture systems. In general, results suggest that oxygen sensing beads can be utilized to achieve real-time and local monitoring of micro-environment oxygen level in 3D microfabricated cell culture systems.

  18. Feasibility Study for Ballet E-Learning: Automatic Composition System for Ballet "Enchainement" with Online 3D Motion Data Archive

    ERIC Educational Resources Information Center

    Umino, Bin; Longstaff, Jeffrey Scott; Soga, Asako

    2009-01-01

    This paper reports on "Web3D dance composer" for ballet e-learning. Elementary "petit allegro" ballet steps were enumerated in collaboration with ballet teachers, digitally acquired through 3D motion capture systems, and categorised into families and sub-families. Digital data was manipulated into virtual reality modelling language (VRML) and fit…

  19. Analysis and adaptive synchronization of eight-term 3-D polynomial chaotic systems with three quadratic nonlinearities

    NASA Astrophysics Data System (ADS)

    Vaidyanathan, S.

    2014-06-01

    This paper proposes a eight-term 3-D polynomial chaotic system with three quadratic nonlinearities and describes its properties. The maximal Lyapunov exponent (MLE) of the proposed 3-D chaotic system is obtained as L 1 = 6.5294. Next, new results are derived for the global chaos synchronization of the identical eight-term 3-D chaotic systems with unknown system parameters using adaptive control. Lyapunov stability theory has been applied for establishing the adaptive synchronization results. Numerical simulations are shown using MATLAB to describe the main results derived in this paper.

  20. The application of iterative closest point (ICP) registration to improve 3D terrain mapping estimates using the flash 3D ladar system

    NASA Astrophysics Data System (ADS)

    Woods, Jack; Armstrong, Ernest E.; Armbruster, Walter; Richmond, Richard

    2010-04-01

    The primary purpose of this research was to develop an effective means of creating a 3D terrain map image (point-cloud) in GPS denied regions from a sequence of co-bore sighted visible and 3D LIDAR images. Both the visible and 3D LADAR cameras were hard mounted to a vehicle. The vehicle was then driven around the streets of an abandoned village used as a training facility by the German Army and imagery was collected. The visible and 3D LADAR images were then fused and 3D registration performed using a variation of the Iterative Closest Point (ICP) algorithm. The ICP algorithm is widely used for various spatial and geometric alignment of 3D imagery producing a set of rotation and translation transformations between two 3D images. ICP rotation and translation information obtain from registering the fused visible and 3D LADAR imagery was then used to calculate the x-y plane, range and intensity (xyzi) coordinates of various structures (building, vehicles, trees etc.) along the driven path. The xyzi coordinates information was then combined to create a 3D terrain map (point-cloud). In this paper, we describe the development and application of 3D imaging techniques (most specifically the ICP algorithm) used to improve spatial, range and intensity estimates of imagery collected during urban terrain mapping using a co-bore sighted, commercially available digital video camera with focal plan of 640×480 pixels and a 3D FLASH LADAR. Various representations of the reconstructed point-clouds for the drive through data will also be presented.

  1. Inverse current-source density method in 3D: reconstruction fidelity, boundary effects, and influence of distant sources.

    PubMed

    Łeski, Szymon; Wójcik, Daniel K; Tereszczuk, Joanna; Swiejkowski, Daniel A; Kublik, Ewa; Wróbel, Andrzej

    2007-01-01

    Estimation of the continuous current-source density in bulk tissue from a finite set of electrode measurements is a daunting task. Here we present a methodology which allows such a reconstruction by generalizing the one-dimensional inverse CSD method. The idea is to assume a particular plausible form of CSD within a class described by a number of parameters which can be estimated from available data, for example a set of cubic splines in 3D spanned on a fixed grid of the same size as the set of measurements. To avoid specificity of particular choice of reconstruction grid we add random jitter to the points positions and show that it leads to a correct reconstruction. We propose different ways of improving the quality of reconstruction which take into account the sources located outside the recording region through appropriate boundary treatment. The efficiency of the traditional CSD and variants of inverse CSD methods is compared using several fidelity measures on different test data to investigate when one of the methods is superior to the others. The methods are illustrated with reconstructions of CSD from potentials evoked by stimulation of a bunch of whiskers recorded in a slab of the rat forebrain on a grid of 4x5x7 positions.

  2. Depth map coding using residual segmentation for 3D video system

    NASA Astrophysics Data System (ADS)

    Lee, Cheon; Ho, Yo-Sung

    2013-06-01

    Advanced 3D video systems employ multi-view video-plus-depth data to support the free-viewpoint navigation and comfortable 3D viewing; thus efficient depth map coding becomes an important issue. Unlike the color image, the depth map has a property that depth values of the inner part of an object are monotonic, but those of object boundaries change abruptly. Therefore, residual data generated by prediction errors around object boundaries consume many bits in depth map coding. Representing them with segment data can be better than the use of the conventional transformation around the boundary regions. In this paper, we propose an efficient depth map coding method using a residual segmentation instead of using trans