Science.gov

Sample records for 3d dendritic spine

  1. A New Algorithm for 3D Dendritic Spine Detection

    NASA Astrophysics Data System (ADS)

    Zhou, Wengang; Li, Houqiang; Zhou, Xiaobo; Wong, Stephen

    2007-11-01

    It has been shown in recent research that there is a close relationship between neurological functions of neuron and its morphology. As manual analysis of large data sets is too tedious and may be subjected to user bias, a computer aided processing method is urgently desired. In this paper, we propose an automatic approach for 3D dendritic spine detection, which can greatly help neuron-biologists to obtain morphological information about a neuron and its spines. The work mainly consists of segmentation and spine component detection. The segmentation of dendrite and spine components is carried out by means of 3D level set based on local binary fitting model, which yields better results than global threshold method. As for spine component detection, an efficient approach is presented which consists of backbone extraction, detached and attached spine components detection. The detection is robust to noise and the detected spines are well represented. We validate our algorithm with real 3D neuron images and the result reveals that it works well.

  2. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner.

  3. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons

    PubMed Central

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M.; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3–4 and 8–9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  4. FIB/SEM technology and high-throughput 3D reconstruction of dendritic spines and synapses in GFP-labeled adult-generated neurons.

    PubMed

    Bosch, Carles; Martínez, Albert; Masachs, Nuria; Teixeira, Cátia M; Fernaud, Isabel; Ulloa, Fausto; Pérez-Martínez, Esther; Lois, Carlos; Comella, Joan X; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2015-01-01

    The fine analysis of synaptic contacts is usually performed using transmission electron microscopy (TEM) and its combination with neuronal labeling techniques. However, the complex 3D architecture of neuronal samples calls for their reconstruction from serial sections. Here we show that focused ion beam/scanning electron microscopy (FIB/SEM) allows efficient, complete, and automatic 3D reconstruction of identified dendrites, including their spines and synapses, from GFP/DAB-labeled neurons, with a resolution comparable to that of TEM. We applied this technology to analyze the synaptogenesis of labeled adult-generated granule cells (GCs) in mice. 3D reconstruction of dendritic spines in GCs aged 3-4 and 8-9 weeks revealed two different stages of dendritic spine development and unexpected features of synapse formation, including vacant and branched dendritic spines and presynaptic terminals establishing synapses with up to 10 dendritic spines. Given the reliability, efficiency, and high resolution of FIB/SEM technology and the wide use of DAB in conventional EM, we consider FIB/SEM fundamental for the detailed characterization of identified synaptic contacts in neurons in a high-throughput manner. PMID:26052271

  5. Dendritic spine alterations in schizophrenia.

    PubMed

    Moyer, Caitlin E; Shelton, Micah A; Sweet, Robert A

    2015-08-01

    Schizophrenia is a chronic illness affecting approximately 0.5-1% of the world's population. The etiology of schizophrenia is complex, including multiple genes, and contributing environmental effects that adversely impact neurodevelopment. Nevertheless, a final common result, present in many subjects with schizophrenia, is impairment of pyramidal neuron dendritic morphology in multiple regions of the cerebral cortex. In this review, we summarize the evidence of reduced dendritic spine density and other dendritic abnormalities in schizophrenia, evaluate current data that informs the neurodevelopment timing of these impairments, and discuss what is known about possible upstream sources of dendritic spine loss in this illness.

  6. Lipid dynamics at dendritic spines.

    PubMed

    Dotti, Carlos Gerardo; Esteban, Jose Antonio; Ledesma, María Dolores

    2014-01-01

    Dynamic changes in the structure and composition of the membrane protrusions forming dendritic spines underlie memory and learning processes. In recent years a great effort has been made to characterize in detail the protein machinery that controls spine plasticity. However, we know much less about the involvement of lipids, despite being major membrane components and structure determinants. Moreover, protein complexes that regulate spine plasticity depend on specific interactions with membrane lipids for proper function and accurate intracellular signaling. In this review we gather information available on the lipid composition at dendritic spine membranes and on its dynamics. We pay particular attention to the influence that spine lipid dynamism has on glutamate receptors, which are key regulators of synaptic plasticity.

  7. Non-synaptic dendritic spines in neocortex.

    PubMed

    Arellano, J I; Espinosa, A; Fairén, A; Yuste, R; DeFelipe, J

    2007-03-16

    A long-held assumption states that each dendritic spine in the cerebral cortex forms a synapse, although this issue has not been systematically investigated. We performed complete ultrastructural reconstructions of a large (n=144) population of identified spines in adult mouse neocortex finding that only 3.6% of the spines clearly lacked synapses. Nonsynaptic spines were small and had no clear head, resembling dendritic filopodia, and could represent a source of new synaptic connections in the adult cerebral cortex.

  8. Dendritic spine dysgenesis in Autism Related Disorders

    PubMed Central

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-01-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  9. Dendritic spine dysgenesis in autism related disorders.

    PubMed

    Phillips, Mary; Pozzo-Miller, Lucas

    2015-08-01

    The activity-dependent structural and functional plasticity of dendritic spines has led to the long-standing belief that these neuronal compartments are the subcellular sites of learning and memory. Of relevance to human health, central neurons in several neuropsychiatric illnesses, including autism related disorders, have atypical numbers and morphologies of dendritic spines. These so-called dendritic spine dysgeneses found in individuals with autism related disorders are consistently replicated in experimental mouse models. Dendritic spine dysgenesis reflects the underlying synaptopathology that drives clinically relevant behavioral deficits in experimental mouse models, providing a platform for testing new therapeutic approaches. By examining molecular signaling pathways, synaptic deficits, and spine dysgenesis in experimental mouse models of autism related disorders we find strong evidence for mTOR to be a critical point of convergence and promising therapeutic target. PMID:25578949

  10. Ultrastructure of Dendritic Spines: Correlation Between Synaptic and Spine Morphologies

    PubMed Central

    Arellano, Jon I.; Benavides-Piccione, Ruth; DeFelipe, Javier; Yuste, Rafael

    2007-01-01

    Dendritic spines are critical elements of cortical circuits, since they establish most excitatory synapses. Recent studies have reported correlations between morphological and functional parameters of spines. Specifically, the spine head volume is correlated with the area of the postsynaptic density (PSD), the number of postsynaptic receptors and the ready-releasable pool of transmitter, whereas the length of the spine neck is proportional to the degree of biochemical and electrical isolation of the spine from its parent dendrite. Therefore, the morphology of a spine could determine its synaptic strength and learning rules. To better understand the natural variability of neocortical spine morphologies, we used a combination of gold-toned Golgi impregnations and serial thin-section electron microscopy and performed three-dimensional reconstructions of spines from layer 2/3 pyramidal cells from mouse visual cortex. We characterized the structure and synaptic features of 144 completed reconstructed spines, and analyzed their morphologies according to their positions. For all morphological parameters analyzed, spines exhibited a continuum of variability, without clearly distinguishable subtypes of spines or clear dependence of their morphologies on their distance to the soma. On average, the spine head volume was correlated strongly with PSD area and weakly with neck diameter, but not with neck length. The large morphological diversity suggests an equally large variability of synaptic strength and learning rules. PMID:18982124

  11. Dendritic spine dysgenesis in Rett syndrome

    PubMed Central

    Xu, Xin; Miller, Eric C.; Pozzo-Miller, Lucas

    2014-01-01

    Spines are small cytoplasmic extensions of dendrites that form the postsynaptic compartment of the majority of excitatory synapses in the mammalian brain. Alterations in the numerical density, size, and shape of dendritic spines have been correlated with neuronal dysfunction in several neurological and neurodevelopmental disorders associated with intellectual disability, including Rett syndrome (RTT). RTT is a progressive neurodevelopmental disorder associated with intellectual disability that is caused by loss of function mutations in the transcriptional regulator methyl CpG-binding protein 2 (MECP2). Here, we review the evidence demonstrating that principal neurons in RTT individuals and Mecp2-based experimental models exhibit alterations in the number and morphology of dendritic spines. We also discuss the exciting possibility that signaling pathways downstream of brain-derived neurotrophic factor (BDNF), which is transcriptionally regulated by MeCP2, offer promising therapeutic options for modulating dendritic spine development and plasticity in RTT and other MECP2-associated neurodevelopmental disorders. PMID:25309341

  12. Plasticity of Dendritic Spines: Subcompartmentalization of Signaling

    PubMed Central

    Colgan, Lesley A.; Yasuda, Ryohei

    2014-01-01

    The ability to induce and study neuronal plasticity in single dendritic spines has greatly advanced our understanding of the signaling mechanisms that mediate long-term potentiation. It is now clear that in addition to compartmentalization by the individual spine, subcompartmentalization of biochemical signals occurs at specialized microdomains within the spine. The spatiotemporal coordination of these complex cascades allows for the concomitant remodeling of the postsynaptic density actin spinoskeleton and for the regulation of membrane traffic to express functional and structural plasticity. Here, we highlight recent findings in the signaling cascades at spine microdomains as well as the challenges and approaches to studying plasticity at the spine level. PMID:24215443

  13. Studying Signal Transduction in Single Dendritic Spines

    PubMed Central

    Yasuda, Ryohei

    2012-01-01

    Many forms of synaptic plasticity are triggered by biochemical signaling that occurs in small postsynaptic compartments called dendritic spines, each of which typically houses the postsynaptic terminal associated with a single glutamatergic synapse. Recent advances in optical techniques allow investigators to monitor biochemical signaling in single dendritic spines and thus reveal the signaling mechanisms that link synaptic activity and the induction of synaptic plasticity. This is mostly in the study of Ca2+-dependent forms of synaptic plasticity for which many of the steps between Ca2+ influx and changes to the synapse are now known. This article introduces the new techniques used to investigate signaling in single dendritic spines and the neurobiological insights that they have produced. PMID:22843821

  14. The spine problem: finding a function for dendritic spines.

    PubMed

    Malanowski, Sarah; Craver, Carl F

    2014-01-01

    Why do neurons have dendritic spines? This question-the heart of what Yuste calls "the spine problem"-presupposes that why-questions of this sort have scientific answers: that empirical findings can favor or count against claims about why neurons have spines. Here we show how such questions can receive empirical answers. We construe such why-questions as questions about how spines make a difference to the behavior of some mechanism that we take to be significant. Why-questions are driven fundamentally by the effort to understand how some item, such as the dendritic spine, is situated in the causal structure of the world (the causal nexus). They ask for a filter on that busy world that allows us to see a part's individual contribution to a mechanism, independent of everything else going on. So understood, answers to why-questions can be assessed by testing the claims these answers make about the causal structure of a mechanism. We distinguish four ways of making a difference to a mechanism (necessary, modulatory, component, background condition), and we sketch their evidential requirements. One consequence of our analysis is that there are many spine problems and that any given spine problem might have many acceptable answers. PMID:25309340

  15. The spine problem: finding a function for dendritic spines

    PubMed Central

    Malanowski, Sarah; Craver, Carl F.

    2014-01-01

    Why do neurons have dendritic spines? This question—the heart of what Yuste calls “the spine problem”—presupposes that why-questions of this sort have scientific answers: that empirical findings can favor or count against claims about why neurons have spines. Here we show how such questions can receive empirical answers. We construe such why-questions as questions about how spines make a difference to the behavior of some mechanism that we take to be significant. Why-questions are driven fundamentally by the effort to understand how some item, such as the dendritic spine, is situated in the causal structure of the world (the causal nexus). They ask for a filter on that busy world that allows us to see a part’s individual contribution to a mechanism, independent of everything else going on. So understood, answers to why-questions can be assessed by testing the claims these answers make about the causal structure of a mechanism. We distinguish four ways of making a difference to a mechanism (necessary, modulatory, component, background condition), and we sketch their evidential requirements. One consequence of our analysis is that there are many spine problems and that any given spine problem might have many acceptable answers. PMID:25309340

  16. Dendritic spine detection using curvilinear structure detector and LDA classifier.

    PubMed

    Zhang, Yong; Zhou, Xiaobo; Witt, Rochelle M; Sabatini, Bernardo L; Adjeroh, Donald; Wong, Stephen T C

    2007-06-01

    Dendritic spines are small, bulbous cellular compartments that carry synapses. Biologists have been studying the biochemical pathways by examining the morphological and statistical changes of the dendritic spines at the intracellular level. In this paper a novel approach is presented for automated detection of dendritic spines in neuron images. The dendritic spines are recognized as small objects of variable shape attached or detached to multiple dendritic backbones in the 2D projection of the image stack along the optical direction. We extend the curvilinear structure detector to extract the boundaries as well as the centerlines for the dendritic backbones and spines. We further build a classifier using Linear Discriminate Analysis (LDA) to classify the attached spines into valid and invalid types to improve the accuracy of the spine detection. We evaluate the proposed approach by comparing with the manual results in terms of backbone length, spine number, spine length, and spine density.

  17. The discovery of dendritic spines by Cajal.

    PubMed

    Yuste, Rafael

    2015-01-01

    Dendritic spines were considered an artifact of the Golgi method until a brash Spanish histologist, Santiago Ramón y Cajal, bet his scientific career arguing that they were indeed real, correctly deducing their key role in mediating synaptic connectivity. This article reviews the historical context of the discovery of spines and the reasons behind Cajal's obsession with them, all the way till his deathbed. PMID:25954162

  18. Automated curved planar reformation of 3D spine images

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Likar, Bostjan; Pernus, Franjo

    2005-10-01

    Traditional techniques for visualizing anatomical structures are based on planar cross-sections from volume images, such as images obtained by computed tomography (CT) or magnetic resonance imaging (MRI). However, planar cross-sections taken in the coordinate system of the 3D image often do not provide sufficient or qualitative enough diagnostic information, because planar cross-sections cannot follow curved anatomical structures (e.g. arteries, colon, spine, etc). Therefore, not all of the important details can be shown simultaneously in any planar cross-section. To overcome this problem, reformatted images in the coordinate system of the inspected structure must be created. This operation is usually referred to as curved planar reformation (CPR). In this paper we propose an automated method for CPR of 3D spine images, which is based on the image transformation from the standard image-based to a novel spine-based coordinate system. The axes of the proposed spine-based coordinate system are determined on the curve that represents the vertebral column, and the rotation of the vertebrae around the spine curve, both of which are described by polynomial models. The optimal polynomial parameters are obtained in an image analysis based optimization framework. The proposed method was qualitatively and quantitatively evaluated on five CT spine images. The method performed well on both normal and pathological cases and was consistent with manually obtained ground truth data. The proposed spine-based CPR benefits from reduced structural complexity in favour of improved feature perception of the spine. The reformatted images are diagnostically valuable and enable easier navigation, manipulation and orientation in 3D space. Moreover, reformatted images may prove useful for segmentation and other image analysis tasks.

  19. 3-D Display Of Magnetic Resonance Imaging Of The Spine

    NASA Astrophysics Data System (ADS)

    Nelson, Alan C.; Kim, Yongmin; Haralick, Robert M.; Anderson, Paul A.; Johnson, Roger H.; DeSoto, Larry A.

    1988-06-01

    The original data is produced through standard magnetic resonance imaging (MRI) procedures with a surface coil applied to the lower back of a normal human subject. The 3-D spine image data consists of twenty-six contiguous slices with 256 x 256 pixels per slice. Two methods for visualization of the 3-D spine are explored. One method utilizes a verifocal mirror system which creates a true 3-D virtual picture of the object. Another method uses a standard high resolution monitor to simultaneously show the three orthogonal sections which intersect at any user-selected point within the object volume. We discuss the application of these systems in assessment of low back pain.

  20. Random positions of dendritic spines in human cerebral cortex.

    PubMed

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Yuste, Rafael

    2014-07-23

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits.

  1. Random Positions of Dendritic Spines in Human Cerebral Cortex

    PubMed Central

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier

    2014-01-01

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  2. Random positions of dendritic spines in human cerebral cortex.

    PubMed

    Morales, Juan; Benavides-Piccione, Ruth; Dar, Mor; Fernaud, Isabel; Rodríguez, Angel; Anton-Sanchez, Laura; Bielza, Concha; Larrañaga, Pedro; DeFelipe, Javier; Yuste, Rafael

    2014-07-23

    Dendritic spines establish most excitatory synapses in the brain and are located in Purkinje cell's dendrites along helical paths, perhaps maximizing the probability to contact different axons. To test whether spine helixes also occur in neocortex, we reconstructed >500 dendritic segments from adult human cortex obtained from autopsies. With Fourier analysis and spatial statistics, we analyzed spine position along apical and basal dendrites of layer 3 pyramidal neurons from frontal, temporal, and cingulate cortex. Although we occasionally detected helical positioning, for the great majority of dendrites we could not reject the null hypothesis of spatial randomness in spine locations, either in apical or basal dendrites, in neurons of different cortical areas or among spines of different volumes and lengths. We conclude that in adult human neocortex spine positions are mostly random. We discuss the relevance of these results for spine formation and plasticity and their functional impact for cortical circuits. PMID:25057209

  3. Endoplasmic reticulum calcium stores in dendritic spines

    PubMed Central

    Segal, Menahem; Korkotian, Eduard

    2014-01-01

    Despite decades of research, the role of calcium stores in dendritic spines structure, function and plasticity is still debated. The reasons for this may have to do with the multitude of overlapping calcium handling machineries in the neuron, including stores, voltage and ligand gated channels, pumps and transporters. Also, different cells in the brain are endowed with calcium stores that are activated by different receptor types, and their differential compartmentalization in dendrites, spines and presynaptic terminals complicates their analysis. In the present review we address several key issues, including the role of calcium stores in synaptic plasticity, their role during development, in stress and in neurodegenerative diseases. Apparently, there is increasing evidence for a crucial role of calcium stores, especially of the ryanodine species, in synaptic plasticity and neuronal survival. PMID:25071469

  4. Age-Based Comparison of Human Dendritic Spine Structure Using Complete Three-Dimensional Reconstructions

    PubMed Central

    Benavides-Piccione, Ruth; Fernaud-Espinosa, Isabel; Robles, Victor; Yuste, Rafael; DeFelipe, Javier

    2013-01-01

    Dendritic spines of pyramidal neurons are targets of most excitatory synapses in the cerebral cortex. Recent evidence suggests that the morphology of the dendritic spine could determine its synaptic strength and learning rules. However, unfortunately, there are scant data available regarding the detailed morphology of these structures for the human cerebral cortex. In the present study, we analyzed over 8900 individual dendritic spines that were completely 3D reconstructed along the length of apical and basal dendrites of layer III pyramidal neurons in the cingulate cortex of 2 male humans (aged 40 and 85 years old), using intracellular injections of Lucifer Yellow in fixed tissue. We assembled a large, quantitative database, which revealed a major reduction in spine densities in the aged case. Specifically, small and short spines of basal dendrites and long spines of apical dendrites were lost, regardless of the distance from the soma. Given the age difference between the cases, our results suggest selective alterations in spines with aging in humans and indicate that the spine volume and length are regulated by different biological mechanisms. PMID:22710613

  5. Actin in dendritic spines: connecting dynamics to function

    PubMed Central

    2010-01-01

    Dendritic spines are small actin-rich protrusions from neuronal dendrites that form the postsynaptic part of most excitatory synapses and are major sites of information processing and storage in the brain. Changes in the shape and size of dendritic spines are correlated with the strength of excitatory synaptic connections and heavily depend on remodeling of its underlying actin cytoskeleton. Emerging evidence suggests that most signaling pathways linking synaptic activity to spine morphology influence local actin dynamics. Therefore, specific mechanisms of actin regulation are integral to the formation, maturation, and plasticity of dendritic spines and to learning and memory. PMID:20457765

  6. Astrocytes refine cortical connectivity at dendritic spines

    PubMed Central

    Risher, W Christopher; Patel, Sagar; Kim, Il Hwan; Uezu, Akiyoshi; Bhagat, Srishti; Wilton, Daniel K; Pilaz, Louis-Jan; Singh Alvarado, Jonnathan; Calhan, Osman Y; Silver, Debra L; Stevens, Beth; Calakos, Nicole; Soderling, Scott H; Eroglu, Cagla

    2014-01-01

    During cortical synaptic development, thalamic axons must establish synaptic connections despite the presence of the more abundant intracortical projections. How thalamocortical synapses are formed and maintained in this competitive environment is unknown. Here, we show that astrocyte-secreted protein hevin is required for normal thalamocortical synaptic connectivity in the mouse cortex. Absence of hevin results in a profound, long-lasting reduction in thalamocortical synapses accompanied by a transient increase in intracortical excitatory connections. Three-dimensional reconstructions of cortical neurons from serial section electron microscopy (ssEM) revealed that, during early postnatal development, dendritic spines often receive multiple excitatory inputs. Immuno-EM and confocal analyses revealed that majority of the spines with multiple excitatory contacts (SMECs) receive simultaneous thalamic and cortical inputs. Proportion of SMECs diminishes as the brain develops, but SMECs remain abundant in Hevin-null mice. These findings reveal that, through secretion of hevin, astrocytes control an important developmental synaptic refinement process at dendritic spines. DOI: http://dx.doi.org/10.7554/eLife.04047.001 PMID:25517933

  7. Morphological change tracking of dendritic spines based on structural features.

    PubMed

    Son, J; Song, S; Lee, S; Chang, S; Kim, M

    2011-03-01

    Identification and tracking of dendritic spine morphology from two-dimensional time-lapsed images plays an important role in neurobiological research. Such analysis can enable us to derive a correlation between morphological characteristics and molecular mechanism of dendritic spine development and remodelling. Moreover, Neuronal morphology of hippocampal Cornu Ammonis 1 region is critical for understanding the Alzheimer's disease. Therefore, we need to extract and trace the dendritic spines accurately for examining their development and remodelling processes, which are related to functions of hippocampal Cornu Ammonis 1. There are some problems to be solved in related researches. Noise due to the properties of optical microscopes makes it difficult to identify and trace dendritic spines accurately. To solve these problems, in this paper we present a local spine detection technique minimizing noise influence in two-dimensional optical microscopy images. Also, we suggest an efficient mapping method for tracking the dynamics of dendritic spines to measure their morphological changes quantitatively. First, to utilize structural feature of spines, which are small protrusions of tree-like dendrites, we extract the tips of each dendritic branch and use this position as an initial contour position for a deformable model-based segmentation. We then use a geodesic active contour model to detect the spines accurately. Secondly, we apply an optical flow method, which takes into account both structure and movement of objects, to map every time-series image frame. Proposed method provides accurate measurements of dendritic spine length, volume, shape classification for time-lapse images of dendrites of hippocampal neurons. We compared the proposed spine detection algorithm with manual method performed by biologists and noncommercial software NeuronIQ. In particular, this method is able to segment dendritic spines better than existing methods with high sensitivity in adjacent

  8. Cortical Dendritic Spine Heads Are Not Electrically Isolated by the Spine Neck from Membrane Potential Signals in Parent Dendrites

    PubMed Central

    Popovic, Marko A.; Gao, Xin; Carnevale, Nicholas T.; Zecevic, Dejan

    2014-01-01

    The evidence for an important hypothesis that cortical spine morphology might participate in modifying synaptic efficacy that underlies plasticity and possibly learning and memory mechanisms is inconclusive. Both theory and experiments suggest that the transfer of excitatory postsynaptic potential signals from spines to parent dendrites depends on the spine neck morphology and resistance. Furthermore, modeling of signal transfer in the opposite direction predicts that synapses on spine heads are not electrically isolated from voltages in the parent dendrite. In sharp contrast to this theoretical prediction, one of a very few measurements of electrical signals from spines reported that slow hyperpolarizing membrane potential changes are attenuated considerably by the spine neck as they spread from dendrites to synapses on spine heads. This result challenges our understanding of the electrical behavior of spines at a fundamental level. To re-examine the specific question of the transfer of dendritic signals to synapses of spines, we took advantage of a high-sensitivity Vm-imaging technique and carried out optical measurements of electrical signals from 4 groups of spines with different neck length and simultaneously from parent dendrites. The results show that spine neck does not filter membrane potential signals as they spread from the dendrites into the spine heads. PMID:23054810

  9. Organization of TNIK in dendritic spines

    PubMed Central

    Burette, Alain C.; Phend, Kristen D.; Burette, Susan; Lin, Qingcong; Liang, Musen; Foltz, Gretchen; Taylor, Noël; Wang, Qi; Brandon, Nicholas J.; Bates, Brian; Ehlers, Michael D.; Weinberg, Richard J.

    2015-01-01

    TRAF2- and NCK-interacting kinase (TNIK) has been identified as an interactor of the psychiatric risk factor, Disrupted in Schizophrenia 1 (DISC1). As a step toward deciphering its function in the brain, we performed high-resolution light and electron microscopic immunocytochemistry. We demonstrate here that TNIK is expressed in neurons throughout the adult mouse brain. In striatum and cerebral cortex, TNIK concentrates in dendritic spines, especially in the vicinity of the lateral edge of the synapse. Thus, TNIK is highly enriched at a microdomain critical for glutamatergic signaling and implicated in the regulation of synaptic strength. PMID:25753355

  10. Impact of immersion oils and mounting media on the confocal imaging of dendritic spines

    PubMed Central

    Peterson, Brittni M.; Mermelstein, Paul G.; Meisel, Robert L.

    2015-01-01

    Background Structural plasticity, such as changes in dendritic spine morphology and density, reflect changes in synaptic connectivity and circuitry. Procedural variables used in different methods for labeling dendritic spines have been quantitatively evaluated for their impact on the ability to resolve individual spines in confocal microscopic analyses. In contrast, there have been discussions, though no quantitative analyses, of the potential effects of choosing specific mounting media and immersion oils on dendritic spine resolution. New Method Here we provide quantitative data measuring the impact of these variables on resolving dendritic spines in 3D confocal analyses. Medium spiny neurons from the rat striatum and nucleus accumbens are used as examples. Results Both choice of mounting media and immersion oil affected the visualization of dendritic spines, with choosing the appropriate immersion oil as being more imperative. These biologic data are supported by quantitative measures of the 3D diffraction pattern (i.e. point spread function) of a point source of light under the same mounting medium and immersion oil combinations. Comparison with Existing Method Although not a new method, this manuscript provides quantitative data demonstrating that different mounting media and immersion oils can impact the ability to resolve dendritic spines. These findings highlight the importance of reporting which mounting medium and immersion oil are used in preparations for confocal analyses, especially when comparing published results from different laboratories. Conclusion Collectively, these data suggest that choosing the appropriate immersion oil and mounting media is critical for obtaining the best resolution, and consequently more accurate measures of dendritic spine densities. PMID:25601477

  11. Statistical analysis of dendritic spine distributions in rat hippocampal cultures

    PubMed Central

    2013-01-01

    Background Dendritic spines serve as key computational structures in brain plasticity. Much remains to be learned about their spatial and temporal distribution among neurons. Our aim in this study was to perform exploratory analyses based on the population distributions of dendritic spines with regard to their morphological characteristics and period of growth in dissociated hippocampal neurons. We fit a log-linear model to the contingency table of spine features such as spine type and distance from the soma to first determine which features were important in modeling the spines, as well as the relationships between such features. A multinomial logistic regression was then used to predict the spine types using the features suggested by the log-linear model, along with neighboring spine information. Finally, an important variant of Ripley’s K-function applicable to linear networks was used to study the spatial distribution of spines along dendrites. Results Our study indicated that in the culture system, (i) dendritic spine densities were "completely spatially random", (ii) spine type and distance from the soma were independent quantities, and most importantly, (iii) spines had a tendency to cluster with other spines of the same type. Conclusions Although these results may vary with other systems, our primary contribution is the set of statistical tools for morphological modeling of spines which can be used to assess neuronal cultures following gene manipulation such as RNAi, and to study induced pluripotent stem cells differentiated to neurons. PMID:24088199

  12. Dendritic spines: from structure to in vivo function

    PubMed Central

    Rochefort, Nathalie L; Konnerth, Arthur

    2012-01-01

    Dendritic spines arise as small protrusions from the dendritic shaft of various types of neuron and receive inputs from excitatory axons. Ever since dendritic spines were first described in the nineteenth century, questions about their function have spawned many hypotheses. In this review, we introduce understanding of the structural and biochemical properties of dendritic spines with emphasis on components studied with imaging methods. We then explore advances in in vivo imaging methods that are allowing spine activity to be studied in living tissue, from super-resolution techniques to calcium imaging. Finally, we review studies on spine structure and function in vivo. These new results shed light on the development, integration properties and plasticity of spines. PMID:22791026

  13. Axin Regulates Dendritic Spine Morphogenesis through Cdc42-Dependent Signaling

    PubMed Central

    Chen, Yu; Liang, Zhuoyi; Fei, Erkang; Chen, Yuewen; Zhou, Xiaopu; Fang, Weiqun; Fu, Wing-Yu; Fu, Amy K. Y.; Ip, Nancy Y.

    2015-01-01

    During development, scaffold proteins serve as important platforms for orchestrating signaling complexes to transduce extracellular stimuli into intracellular responses that regulate dendritic spine morphology and function. Axin (“axis inhibitor”) is a key scaffold protein in canonical Wnt signaling that interacts with specific synaptic proteins. However, the cellular functions of these protein–protein interactions in dendritic spine morphology and synaptic regulation are unclear. Here, we report that Axin protein is enriched in synaptic fractions, colocalizes with the postsynaptic marker PSD-95 in cultured hippocampal neurons, and interacts with a signaling protein Ca2+/calmodulin-dependent protein kinase II (CaMKII) in synaptosomal fractions. Axin depletion by shRNA in cultured neurons or intact hippocampal CA1 regions significantly reduced dendritic spine density. Intriguingly, the defective dendritic spine morphogenesis in Axin-knockdown neurons could be restored by overexpression of the small Rho-GTPase Cdc42, whose activity is regulated by CaMKII. Moreover, pharmacological stabilization of Axin resulted in increased dendritic spine number and spontaneous neurotransmission, while Axin stabilization in hippocampal neurons reduced the elimination of dendritic spines. Taken together, our findings suggest that Axin promotes dendritic spine stabilization through Cdc42-dependent cytoskeletal reorganization. PMID:26204446

  14. Accelerators, Brakes, and Gears of Actin Dynamics in Dendritic Spines

    PubMed Central

    Pontrello, Crystal G.; Ethell, Iryna M.

    2010-01-01

    Dendritic spines are actin-rich structures that accommodate the postsynaptic sites of most excitatory synapses in the brain. Although dendritic spines form and mature as synaptic connections develop, they remain plastic even in the adult brain, where they can rapidly grow, change, or collapse in response to normal physiological changes in synaptic activity that underlie learning and memory. Pathological stimuli can adversely affect dendritic spine shape and number, and this is seen in neurodegenerative disorders and some forms of mental retardation and autism as well. Many of the molecular signals that control these changes in dendritic spines act through the regulation of filamentous actin (F-actin), some through direct interaction with actin, and others via downstream effectors. For example, cortactin, cofilin, and gelsolin are actin-binding proteins that directly regulate actin dynamics in dendritic spines. Activities of these proteins are precisely regulated by intracellular signaling events that control their phosphorylation state and localization. In this review, we discuss how actin-regulating proteins maintain the balance between F-actin assembly and disassembly that is needed to stabilize mature dendritic spines, and how changes in their activities may lead to rapid remodeling of dendritic spines. PMID:20463852

  15. Quantifying barcodes of dendritic spines using entropy-based metrics

    PubMed Central

    Viggiano, D.; Srivastava, D. P.; Speranza, L.; Perrone-Capano, C.; Bellenchi, G. C.; di Porzio, U.; Buckley, N. J.

    2015-01-01

    Spine motility analysis has become the mainstay for investigating synaptic plasticity but is limited in its versatility requiring complex, non automatized instrumentations. We describe an entropy-based method for determining the spatial distribution of dendritic spines that allows successful estimation of spine motility from still images. This method has the potential to extend the applicability of spine motility analysis to ex vivo preparations. PMID:26419702

  16. Glia selectively approach synapses on thin dendritic spines

    PubMed Central

    Medvedev, Nikolai; Popov, Victor; Henneberger, Christian; Kraev, Igor; Rusakov, Dmitri A.; Stewart, Michael G.

    2014-01-01

    This paper examines the relationship between the morphological modality of 189 dendritic spines and the surrounding astroglia using full three-dimensional reconstructions of neuropil fragments. An integrative measure of three-dimensional glial coverage confirms that thin spine postsynaptic densities are more tightly surrounded by glia. This distinction suggests that diffusion-dependent synapse–glia communication near ‘learning’ synapses (associated with thin spines) could be stronger than that near ‘memory’ synapses (associated with larger spines). PMID:25225105

  17. Location-dependent synaptic plasticity rules by dendritic spine cooperativity.

    PubMed

    Weber, Jens P; Andrásfalvy, Bertalan K; Polito, Marina; Magó, Ádám; Ujfalussy, Balázs B; Makara, Judit K

    2016-01-01

    Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca(2+) signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca(2+) signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na(+) spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns. PMID:27098773

  18. Location-dependent synaptic plasticity rules by dendritic spine cooperativity

    PubMed Central

    Weber, Jens P.; Andrásfalvy, Bertalan K.; Polito, Marina; Magó, Ádám; Ujfalussy, Balázs B.; Makara, Judit K.

    2016-01-01

    Nonlinear interactions between coactive synapses enable neurons to discriminate between spatiotemporal patterns of inputs. Using patterned postsynaptic stimulation by two-photon glutamate uncaging, here we investigate the sensitivity of synaptic Ca2+ signalling and long-term plasticity in individual spines to coincident activity of nearby synapses. We find a proximodistally increasing gradient of nonlinear NMDA receptor (NMDAR)-mediated amplification of spine Ca2+ signals by a few neighbouring coactive synapses along individual perisomatic dendrites. This synaptic cooperativity does not require dendritic spikes, but is correlated with dendritic Na+ spike propagation strength. Furthermore, we show that repetitive synchronous subthreshold activation of small spine clusters produces input specific, NMDAR-dependent cooperative long-term potentiation at distal but not proximal dendritic locations. The sensitive synaptic cooperativity at distal dendritic compartments shown here may promote the formation of functional synaptic clusters, which in turn can facilitate active dendritic processing and storage of information encoded in spatiotemporal synaptic activity patterns. PMID:27098773

  19. Maladaptive dendritic spine remodeling contributes to diabetic neuropathic pain.

    PubMed

    Tan, Andrew M; Samad, Omar A; Fischer, Tanya Z; Zhao, Peng; Persson, Anna-Karin; Waxman, Stephen G

    2012-05-16

    Diabetic neuropathic pain imposes a huge burden on individuals and society, and represents a major public health problem. Despite aggressive efforts, diabetic neuropathic pain is generally refractory to available clinical treatments. A structure-function link between maladaptive dendritic spine plasticity and pain has been demonstrated previously in CNS and PNS injury models of neuropathic pain. Here, we reasoned that if dendritic spine remodeling contributes to diabetic neuropathic pain, then (1) the presence of malformed spines should coincide with the development of pain, and (2) disrupting maladaptive spine structure should reduce chronic pain. To determine whether dendritic spine remodeling contributes to neuropathic pain in streptozotocin (STZ)-induced diabetic rats, we analyzed dendritic spine morphology and electrophysiological and behavioral signs of neuropathic pain. Our results show changes in dendritic spine shape, distribution, and shape on wide-dynamic-range (WDR) neurons within lamina IV-V of the dorsal horn in diabetes. These diabetes-induced changes were accompanied by WDR neuron hyperexcitability and decreased pain thresholds at 4 weeks. Treatment with NSC23766 (N(6)-[2-[[4-(diethylamino)-1-methylbutyl]amino]-6-methyl-4-pyrimidinyl]-2-methyl-4,6-quinolinediamine trihydrochloride), a Rac1-specific inhibitor known to interfere with spine plasticity, decreased the presence of malformed spines in diabetes, attenuated neuronal hyperresponsiveness to peripheral stimuli, reduced spontaneous firing activity from WDR neurons, and improved nociceptive mechanical pain thresholds. At 1 week after STZ injection, animals with hyperglycemia with no evidence of pain had few or no changes in spine morphology. These results demonstrate that diabetes-induced maladaptive dendritic spine remodeling has a mechanistic role in neuropathic pain. Molecular pathways that control spine morphogenesis and plasticity may be promising future targets for treatment.

  20. Dendritic spine geometry can localize GTPase signaling in neurons

    PubMed Central

    Ramirez, Samuel A.; Raghavachari, Sridhar; Lew, Daniel J.

    2015-01-01

    Dendritic spines are the postsynaptic terminals of most excitatory synapses in the mammalian brain. Learning and memory are associated with long-lasting structural remodeling of dendritic spines through an actin-mediated process regulated by the Rho-family GTPases RhoA, Rac, and Cdc42. These GTPases undergo sustained activation after synaptic stimulation, but whereas Rho activity can spread from the stimulated spine, Cdc42 activity remains localized to the stimulated spine. Because Cdc42 itself diffuses rapidly in and out of the spine, the basis for the retention of Cdc42 activity in the stimulated spine long after synaptic stimulation has ceased is unclear. Here we model the spread of Cdc42 activation at dendritic spines by means of reaction-diffusion equations solved on spine-like geometries. Excitable behavior arising from positive feedback in Cdc42 activation leads to spreading waves of Cdc42 activity. However, because of the very narrow neck of the dendritic spine, wave propagation is halted through a phenomenon we term geometrical wave-pinning. We show that this can account for the localization of Cdc42 activity in the stimulated spine, and, of interest, retention is enhanced by high diffusivity of Cdc42. Our findings are broadly applicable to other instances of signaling in extreme geometries, including filopodia and primary cilia. PMID:26337387

  1. Musical representation of dendritic spine distribution: a new exploratory tool.

    PubMed

    Toharia, Pablo; Morales, Juan; de Juan, Octavio; Fernaud, Isabel; Rodríguez, Angel; DeFelipe, Javier

    2014-04-01

    Dendritic spines are small protrusions along the dendrites of many types of neurons in the central nervous system and represent the major target of excitatory synapses. For this reason, numerous anatomical, physiological and computational studies have focused on these structures. In the cerebral cortex the most abundant and characteristic neuronal type are pyramidal cells (about 85 % of all neurons) and their dendritic spines are the main postsynaptic target of excitatory glutamatergic synapses. Thus, our understanding of the synaptic organization of the cerebral cortex largely depends on the knowledge regarding synaptic inputs to dendritic spines of pyramidal cells. Much of the structural data on dendritic spines produced by modern neuroscience involves the quantitative analysis of image stacks from light and electron microscopy, using standard statistical and mathematical tools and software developed to this end. Here, we present a new method with musical feedback for exploring dendritic spine morphology and distribution patterns in pyramidal neurons. We demonstrate that audio analysis of spiny dendrites with apparently similar morphology may "sound" quite different, revealing anatomical substrates that are not apparent from simple visual inspection. These morphological/music translations may serve as a guide for further mathematical analysis of the design of the pyramidal neurons and of spiny dendrites in general.

  2. Musical representation of dendritic spine distribution: a new exploratory tool.

    PubMed

    Toharia, Pablo; Morales, Juan; de Juan, Octavio; Fernaud, Isabel; Rodríguez, Angel; DeFelipe, Javier

    2014-04-01

    Dendritic spines are small protrusions along the dendrites of many types of neurons in the central nervous system and represent the major target of excitatory synapses. For this reason, numerous anatomical, physiological and computational studies have focused on these structures. In the cerebral cortex the most abundant and characteristic neuronal type are pyramidal cells (about 85 % of all neurons) and their dendritic spines are the main postsynaptic target of excitatory glutamatergic synapses. Thus, our understanding of the synaptic organization of the cerebral cortex largely depends on the knowledge regarding synaptic inputs to dendritic spines of pyramidal cells. Much of the structural data on dendritic spines produced by modern neuroscience involves the quantitative analysis of image stacks from light and electron microscopy, using standard statistical and mathematical tools and software developed to this end. Here, we present a new method with musical feedback for exploring dendritic spine morphology and distribution patterns in pyramidal neurons. We demonstrate that audio analysis of spiny dendrites with apparently similar morphology may "sound" quite different, revealing anatomical substrates that are not apparent from simple visual inspection. These morphological/music translations may serve as a guide for further mathematical analysis of the design of the pyramidal neurons and of spiny dendrites in general. PMID:24395057

  3. Dendritic Spines as Tunable Regulators of Synaptic Signals

    PubMed Central

    Tønnesen, Jan; Nägerl, U. Valentin

    2016-01-01

    Neurons are perpetually receiving vast amounts of information in the form of synaptic input from surrounding cells. The majority of input occurs at thousands of dendritic spines, which mediate excitatory synaptic transmission in the brain, and is integrated by the dendritic and somatic compartments of the postsynaptic neuron. The functional role of dendritic spines in shaping biochemical and electrical signals transmitted via synapses has long been intensely studied. Yet, many basic questions remain unanswered, in particular regarding the impact of their nanoscale morphology on electrical signals. Here, we review our current understanding of the structure and function relationship of dendritic spines, focusing on the controversy of electrical compartmentalization and the potential role of spine structural changes in synaptic plasticity. PMID:27340393

  4. Electrical behaviour of dendritic spines as revealed by voltage imaging

    PubMed Central

    Popovic, Marko A.; Carnevale, Nicholas; Rozsa, Balazs; Zecevic, Dejan

    2015-01-01

    Thousands of dendritic spines on individual neurons process information and mediate plasticity by generating electrical input signals using a sophisticated assembly of transmitter receptors and voltage-sensitive ion channel molecules. Our understanding, however, of the electrical behaviour of spines is limited because it has not been possible to record input signals from these structures with adequate sensitivity and spatiotemporal resolution. Current interpretation of indirect data and speculations based on theoretical considerations are inconclusive. Here we use an electrochromic voltage-sensitive dye which acts as a transmembrane optical voltmeter with a linear scale to directly monitor electrical signals from individual spines on thin basal dendrites. The results show that synapses on these spines are not electrically isolated by the spine neck to a significant extent. Electrically, they behave as if they are located directly on dendrites. PMID:26436431

  5. Barriers in the brain: resolving dendritic spine morphology and compartmentalization

    PubMed Central

    Adrian, Max; Kusters, Remy; Wierenga, Corette J.; Storm, Cornelis; Hoogenraad, Casper C.; Kapitein, Lukas C.

    2014-01-01

    Dendritic spines are micron-sized protrusions that harbor the majority of excitatory synapses in the central nervous system. The head of the spine is connected to the dendritic shaft by a 50–400 nm thin membrane tube, called the spine neck, which has been hypothesized to confine biochemical and electric signals within the spine compartment. Such compartmentalization could minimize interspinal crosstalk and thereby support spine-specific synapse plasticity. However, to what extent compartmentalization is governed by spine morphology, and in particular the diameter of the spine neck, has remained unresolved. Here, we review recent advances in tool development – both experimental and theoretical – that facilitate studying the role of the spine neck in compartmentalization. Special emphasis is given to recent advances in microscopy methods and quantitative modeling applications as we discuss compartmentalization of biochemical signals, membrane receptors and electrical signals in spines. Multidisciplinary approaches should help to answer how dendritic spine architecture affects the cellular and molecular processes required for synapse maintenance and modulation. PMID:25538570

  6. Input transformation by dendritic spines of pyramidal neurons

    PubMed Central

    Araya, Roberto

    2014-01-01

    In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike. PMID:25520626

  7. Input transformation by dendritic spines of pyramidal neurons.

    PubMed

    Araya, Roberto

    2014-01-01

    In the mammalian brain, most inputs received by a neuron are formed on the dendritic tree. In the neocortex, the dendrites of pyramidal neurons are covered by thousands of tiny protrusions known as dendritic spines, which are the major recipient sites for excitatory synaptic information in the brain. Their peculiar morphology, with a small head connected to the dendritic shaft by a slender neck, has inspired decades of theoretical and more recently experimental work in an attempt to understand how excitatory synaptic inputs are processed, stored and integrated in pyramidal neurons. Advances in electrophysiological, optical and genetic tools are now enabling us to unravel the biophysical and molecular mechanisms controlling spine function in health and disease. Here I highlight relevant findings, challenges and hypotheses on spine function, with an emphasis on the electrical properties of spines and on how these affect the storage and integration of excitatory synaptic inputs in pyramidal neurons. In an attempt to make sense of the published data, I propose that the raison d'etre for dendritic spines lies in their ability to undergo activity-dependent structural and molecular changes that can modify synaptic strength, and hence alter the gain of the linearly integrated sub-threshold depolarizations in pyramidal neuron dendrites before the generation of a dendritic spike.

  8. A Septin-Dependent Diffusion Barrier at Dendritic Spine Necks

    PubMed Central

    Petersen, Jennifer D.; Racz, Bence; Sheng, Morgan; Choquet, Daniel

    2014-01-01

    Excitatory glutamatergic synapses at dendritic spines exchange and modulate their receptor content via lateral membrane diffusion. Several studies have shown that the thin spine neck impedes the access of membrane and solute molecules to the spine head. However, it is unclear whether the spine neck geometry alone restricts access to dendritic spines or if a physical barrier to the diffusion of molecules exists. Here, we investigated whether a complex of septin cytoskeletal GTPases localized at the base of the spine neck regulates diffusion across the spine neck. We found that, during development, a marker of the septin complex, Septin7 (Sept7), becomes localized to the spine neck where it forms a stable structure underneath the plasma membrane. We show that diffusion of receptors and bulk membrane, but not cytoplasmic proteins, is slower in spines bearing Sept7 at their neck. Finally, when Sept7 expression was suppressed by RNA interference, membrane molecules explored larger membrane areas. Our findings indicate that Sept7 regulates membrane protein access to spines. PMID:25494357

  9. Dendritic spine dysgenesis contributes to hyperreflexia after spinal cord injury.

    PubMed

    Bandaru, Samira P; Liu, Shujun; Waxman, Stephen G; Tan, Andrew M

    2015-03-01

    Hyperreflexia and spasticity are chronic complications in spinal cord injury (SCI), with limited options for safe and effective treatment. A central mechanism in spasticity is hyperexcitability of the spinal stretch reflex, which presents symptomatically as a velocity-dependent increase in tonic stretch reflexes and exaggerated tendon jerks. In this study we tested the hypothesis that dendritic spine remodeling within motor reflex pathways in the spinal cord contributes to H-reflex dysfunction indicative of spasticity after contusion SCI. Six weeks after SCI in adult Sprague-Dawley rats, we observed changes in dendritic spine morphology on α-motor neurons below the level of injury, including increased density, altered spine shape, and redistribution along dendritic branches. These abnormal spine morphologies accompanied the loss of H-reflex rate-dependent depression (RDD) and increased ratio of H-reflex to M-wave responses (H/M ratio). Above the level of injury, spine density decreased compared with below-injury spine profiles and spine distributions were similar to those for uninjured controls. As expected, there was no H-reflex hyperexcitability above the level of injury in forelimb H-reflex testing. Treatment with NSC23766, a Rac1-specific inhibitor, decreased the presence of abnormal dendritic spine profiles below the level of injury, restored RDD of the H-reflex, and decreased H/M ratios in SCI animals. These findings provide evidence for a novel mechanistic relationship between abnormal dendritic spine remodeling in the spinal cord motor system and reflex dysfunction in SCI.

  10. Dendritic Spines in Depression: What We Learned from Animal Models

    PubMed Central

    Qiao, Hui; Li, Ming-Xing; Xu, Chang; Chen, Hui-Bin; An, Shu-Cheng; Ma, Xin-Ming

    2016-01-01

    Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms. PMID:26881133

  11. Principles of Long-Term Dynamics of Dendritic Spines

    PubMed Central

    Yasumatsu, Nobuaki; Matsuzaki, Masanori; Miyazaki, Takashi; Noguchi, Jun; Kasai, Haruo

    2008-01-01

    Long-term potentiation (LTP) of synapse strength requires enlargement of dendritic spines on cerebral pyramidal neurons. Long-term depression (LTD) is linked to spine shrinkage. Indeed, spines are dynamic structures: they form, change their shapes and volumes or can disappear in the space of hours. Do all such changes result from synaptic activity, or do some changes result from intrinsic processes? How do enlargement and shrinkage of spines relate to elimination and generation of spines, and how do these processes contribute to the stationary distribution of spine volumes? To answer these questions, we recorded the volumes of many individual spines daily for several days using two-photon imaging of CA1 pyramidal neurons in cultured slices of rat hippocampus between postnatal day 17 to 23. With normal synaptic transmission, spines often changed volume or were created or eliminated, thereby showing activity-dependent plasticity. However, we found that spines changed volume even after we blocked synaptic activity, reflecting a native instability of these small structures over the long term. Such “intrinsic fluctuations” showed unique dependence on spine volume. A mathematical model constructed from these data and the theory of random fluctuations explains population behaviors of spines, such as rates of elimination and generation, stationary distribution of volumes and the long-term persistence of large spines. Our study finds that generation and elimination of spines are more prevalent than previously believed, and spine volume shows significant correlation with its age and life expectancy. The population dynamics of spines also predict key psychological features of memory. PMID:19074033

  12. Balancing Structure and Function at Hippocampal Dendritic Spines

    PubMed Central

    Bourne, Jennifer N.; Harris, Kristen M.

    2008-01-01

    Dendritic spines are the primary recipients of excitatory input in the central nervous system. They provide biochemical compartments that control locally the mechanisms of signaling at individual synapses. Hippocampal spines show structural plasticity as the basis for physiological changes in synaptic efficacy that underlie learning and memory. Spine structure is regulated by molecular mechanisms that are fine-tuned and adjusted according to developmental age, level and direction of synaptic activity, specific brain region, and exact behavioral or experimental conditions. Reciprocal changes between the structure and function of spines impact both local and global integration of signals within dendrites. Advances in imaging and computing technologies may provide the resources needed to reconstruct entire neural circuits. Key to this endeavor is having sufficient resolution to determine the extrinsic factors (such as perisynaptic astroglia) and the intrinsic factors (such as core subcellular organelles) that are required to build and maintain synapses. PMID:18284372

  13. Primary Cilia and Dendritic Spines: Different but Similar Signaling Compartments

    PubMed Central

    Nechipurenko, Inna V.; Doroquez, David B.; Sengupta, Piali

    2013-01-01

    Primary non-motile cilia and dendritic spines are cellular compartments that are specialized to sense and transduce environmental cues and presynaptic signals, respectively. Despite their unique cellular roles, both compartments exhibit remarkable parallels in the general principles, as well as molecular mechanisms, by which their protein composition, membrane domain architecture, cellular interactions, and structural and functional plasticity are regulated. We compare and contrast the pathways required for the generation and function of cilia and dendritic spines, and suggest that insights from the study of one may inform investigations into the other of these critically important signaling structures. PMID:24048681

  14. Paradoxical signaling regulates structural plasticity in dendritic spines.

    PubMed

    Rangamani, Padmini; Levy, Michael G; Khan, Shahid; Oster, George

    2016-09-01

    Transient spine enlargement (3- to 5-min timescale) is an important event associated with the structural plasticity of dendritic spines. Many of the molecular mechanisms associated with transient spine enlargement have been identified experimentally. Here, we use a systems biology approach to construct a mathematical model of biochemical signaling and actin-mediated transient spine expansion in response to calcium influx caused by NMDA receptor activation. We have identified that a key feature of this signaling network is the paradoxical signaling loop. Paradoxical components act bifunctionally in signaling networks, and their role is to control both the activation and the inhibition of a desired response function (protein activity or spine volume). Using ordinary differential equation (ODE)-based modeling, we show that the dynamics of different regulators of transient spine expansion, including calmodulin-dependent protein kinase II (CaMKII), RhoA, and Cdc42, and the spine volume can be described using paradoxical signaling loops. Our model is able to capture the experimentally observed dynamics of transient spine volume. Furthermore, we show that actin remodeling events provide a robustness to spine volume dynamics. We also generate experimentally testable predictions about the role of different components and parameters of the network on spine dynamics. PMID:27551076

  15. Hippocampal Dendritic Spines Are Segregated Depending on Their Actin Polymerization

    PubMed Central

    Domínguez-Iturza, Nuria; Calvo, María; Benoist, Marion; Esteban, José Antonio; Morales, Miguel

    2016-01-01

    Dendritic spines are mushroom-shaped protrusions of the postsynaptic membrane. Spines receive the majority of glutamatergic synaptic inputs. Their morphology, dynamics, and density have been related to synaptic plasticity and learning. The main determinant of spine shape is filamentous actin. Using FRAP, we have reexamined the actin dynamics of individual spines from pyramidal hippocampal neurons, both in cultures and in hippocampal organotypic slices. Our results indicate that, in cultures, the actin mobile fraction is independently regulated at the individual spine level, and mobile fraction values do not correlate with either age or distance from the soma. The most significant factor regulating actin mobile fraction was the presence of astrocytes in the culture substrate. Spines from neurons growing in the virtual absence of astrocytes have a more stable actin cytoskeleton, while spines from neurons growing in close contact with astrocytes show a more dynamic cytoskeleton. According to their recovery time, spines were distributed into two populations with slower and faster recovery times, while spines from slice cultures were grouped into one population. Finally, employing fast lineal acquisition protocols, we confirmed the existence of loci with high polymerization rates within the spine. PMID:26881098

  16. Characterization of dendritic spines in the Drosophila central nervous system.

    PubMed

    Leiss, Florian; Koper, Ewa; Hein, Irina; Fouquet, Wernher; Lindner, Jana; Sigrist, Stephan; Tavosanis, Gaia

    2009-03-01

    Dendritic spines are a characteristic feature of a number of neurons in the vertebrate nervous system and have been implicated in processes that include learning and memory. In spite of this, there has been no comprehensive analysis of the presence of spines in a classical genetic system, such as Drosophila, so far. Here, we demonstrate that a subset of processes along the dendrites of visual system interneurons in the adult fly central nervous system, called LPTCs, closely resemble vertebrate spines, based on a number of criteria. First, the morphology, size, and density of these processes are very similar to those of vertebrate spines. Second, they are enriched in actin and devoid of tubulin. Third, they are sites of synaptic connections based on confocal and electron microscopy. Importantly, they represent a preferential site of localization of an acetylcholine receptor subunit, suggesting that they are sites of excitatory synaptic input. Finally, their number is modulated by the level of the small GTPase dRac1. Our results provide a basis to dissect the genetics of dendritic spine formation and maintenance and the functional role of spines.

  17. PTEN knockdown alters dendritic spine/protrusion morphology, not density

    PubMed Central

    Haws, Michael E.; Jaramillo, Thomas C.; Espinosa-Becerra, Felipe; Widman, Allie; Stuber, Garret D.; Sparta, Dennis R.; Tye, Kay M.; Russo, Scott J.; Parada, Luis F.; Kaplitt, Michael; Bonci, Antonello; Powell, Craig M.

    2014-01-01

    Mutations in phosphatase and tensin homolog deleted on chromosome ten (PTEN) are implicated in neuropsychiatric disorders including autism. Previous studies report that PTEN knockdown in neurons in vivo leads to increased spine density and synaptic activity. To better characterize synaptic changes in neurons lacking PTEN, we examined the effects of shRNA knockdown of PTEN in basolateral amygdala neurons on synaptic spine density and morphology using fluorescent dye confocal imaging. Contrary to previous studies in dentate gyrus, we find that knockdown of PTEN in basolateral amygdala leads to a significant decrease in total spine density in distal dendrites. Curiously, this decreased spine density is associated with increased miniature excitatory post-synaptic current frequency and amplitude, suggesting an increase in number and function of mature spines. These seemingly contradictory findings were reconciled by spine morphology analysis demonstrating increased mushroom spine density and size with correspondingly decreased thin protrusion density at more distal segments. The same analysis of PTEN conditional deletion in dentate gyrus demonstrated that loss of PTEN does not significantly alter total density of dendritic protrusions in the dentate gyrus, but does decrease thin protrusion density and increases density of more mature mushroom spines. These findings suggest that, contrary to previous reports, PTEN knockdown may not induce de novo spinogenesis, but instead may increase synaptic activity by inducing morphological and functional maturation of spines. Furthermore, behavioral analysis of basolateral amygdala PTEN knockdown suggests that these changes limited only to the basolateral amygdala complex may not be sufficient to induce increased anxiety-related behaviors. PMID:24264880

  18. Measuring F-actin properties in dendritic spines

    PubMed Central

    Koskinen, Mikko; Hotulainen, Pirta

    2014-01-01

    During the last decade, numerous studies have demonstrated that the actin cytoskeleton plays a pivotal role in the control of dendritic spine shape. Synaptic stimulation rapidly changes the actin dynamics and many actin regulators have been shown to play roles in neuron functionality. Accordingly, defects in the regulation of the actin cytoskeleton in neurons have been implicated in memory disorders. Due to the small size of spines, it is difficult to detect changes in the actin structures in dendritic spines by conventional light microscopy imaging. Instead, to know how tightly actin filaments are bundled together, and how fast the filaments turnover, we need to use advanced microscopy techniques, such as fluorescence recovery after photobleaching (FRAP), photoactivatable green fluorescent protein (PAGFP) fluorescence decay and fluorescence anisotropy. Fluorescence anisotropy, which measures the Förster resonance energy transfer (FRET) between two GFP fluorophores, has been proposed as a method to measure the level of actin polymerization. Here, we propose a novel idea that fluorescence anisotropy could be more suitable to study the level of actin filament bundling instead of actin polymerization. We validate the method in U2OS cell line where the actin structures can be clearly distinguished and apply to analyze how actin filament organization in dendritic spines changes during neuronal maturation. In addition to fluorescence anisotropy validation, we take a critical look at the properties and limitations of FRAP and PAGFP fluorescence decay methods and offer our proposals for the analysis methods for these approaches. These three methods complement each other, each providing additional information about actin dynamics and organization in dendritic spines. PMID:25140131

  19. The dendritic spine story: an intriguing process of discovery

    PubMed Central

    DeFelipe, Javier

    2015-01-01

    Dendritic spines are key components of a variety of microcircuits and they represent the majority of postsynaptic targets of glutamatergic axon terminals in the brain. The present article will focus on the discovery of dendritic spines, which was possible thanks to the application of the Golgi technique to the study of the nervous system, and will also explore the early interpretation of these elements. This discovery represents an interesting chapter in the history of neuroscience as it shows us that progress in the study of the structure of the nervous system is based not only on the emergence of new techniques but also on our ability to exploit the methods already available and correctly interpret their microscopic images. PMID:25798090

  20. 3D navigation of endoscopic rhizotomy at the lumbar spine.

    PubMed

    Jentzsch, Thorsten; Sprengel, Kai; Peterer, Lorenz; Mica, Ladislav; Werner, Clément M L

    2016-01-01

    We present a detailed description of the surgical technique and the preliminary results of an endoscopic denervation for patients with chronic low back pain (CLBP) originating from the facet joints (FJ). Endoscopic denervation of the medial branches of the dorsal rami supplying the FJ has recently been appraised as providing excellent intraoperative visualization and long term pain relief for these patients. Conventional endoscopic rhizotomy has been expanded to include a the precise localization of 3D navigation. A surgical description and the results of our first four patients treated with 3D navigated endoscopic rhizotomy (3DNER) are presented. Four patients with a mean age of 59years and a follow-up time of 2months were included. All patients reported pain reduction in the immediate postoperative period, while three patients (75%) had long lasting relief. The patient without persisting relief had previously sustained a lumbar disc prolapse and only achieved minor pain relief with preoperative FJ infiltration, compared to the significant relief that was seen in the other patients. In contrast to conventional rhizotomy, 3DNER enables the surgeon to ablate more precisely and extensively, which is especially useful if scar tissue is present from previous injuries or surgeries. When successful, this technique may provide long lasting pain relief, especially if the preoperative FJ infiltrations are followed by a substantial pain reduction. PMID:26628214

  1. Three-dimensional Quantification of Dendritic Spines from Pyramidal Neurons Derived from Human Induced Pluripotent Stem Cells.

    PubMed

    Gouder, Laura; Tinevez, Jean-Yves; Goubran-Botros, Hany; Benchoua, Alexandra; Bourgeron, Thomas; Cloëz-Tayarani, Isabelle

    2015-01-01

    Dendritic spines are small protrusions that correspond to the post-synaptic compartments of excitatory synapses in the central nervous system. They are distributed along the dendrites. Their morphology is largely dependent on neuronal activity, and they are dynamic. Dendritic spines express glutamatergic receptors (AMPA and NMDA receptors) on their surface and at the levels of postsynaptic densities. Each spine allows the neuron to control its state and local activity independently. Spine morphologies have been extensively studied in glutamatergic pyramidal cells of the brain cortex, using both in vivo approaches and neuronal cultures obtained from rodent tissues. Neuropathological conditions can be associated to altered spine induction and maturation, as shown in rodent cultured neurons and one-dimensional quantitative analysis (1). The present study describes a protocol for the 3D quantitative analysis of spine morphologies using human cortical neurons derived from neural stem cells (late cortical progenitors). These cells were initially obtained from induced pluripotent stem cells. This protocol allows the analysis of spine morphologies at different culture periods, and with possible comparison between induced pluripotent stem cells obtained from control individuals with those obtained from patients with psychiatric diseases. PMID:26484791

  2. Polarity Determinants in Dendritic Spine Development and Plasticity.

    PubMed

    Zhang, Huaye

    2016-01-01

    The asymmetric distribution of various proteins and RNAs is essential for all stages of animal development, and establishment and maintenance of this cellular polarity are regulated by a group of conserved polarity determinants. Studies over the last 10 years highlight important functions for polarity proteins, including apical-basal polarity and planar cell polarity regulators, in dendritic spine development and plasticity. Remarkably, many of the conserved polarity machineries function in similar manners in the context of spine development as they do in epithelial morphogenesis. Interestingly, some polarity proteins also utilize neuronal-specific mechanisms. Although many questions remain unanswered in our understanding of how polarity proteins regulate spine development and plasticity, current and future research will undoubtedly shed more light on how this conserved group of proteins orchestrates different pathways to shape the neuronal circuitry.

  3. Polarity Determinants in Dendritic Spine Development and Plasticity

    PubMed Central

    Zhang, Huaye

    2016-01-01

    The asymmetric distribution of various proteins and RNAs is essential for all stages of animal development, and establishment and maintenance of this cellular polarity are regulated by a group of conserved polarity determinants. Studies over the last 10 years highlight important functions for polarity proteins, including apical-basal polarity and planar cell polarity regulators, in dendritic spine development and plasticity. Remarkably, many of the conserved polarity machineries function in similar manners in the context of spine development as they do in epithelial morphogenesis. Interestingly, some polarity proteins also utilize neuronal-specific mechanisms. Although many questions remain unanswered in our understanding of how polarity proteins regulate spine development and plasticity, current and future research will undoubtedly shed more light on how this conserved group of proteins orchestrates different pathways to shape the neuronal circuitry. PMID:26839714

  4. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine.

    PubMed

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong; Du, Sidan; Wu, Jane

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm-RTSVM- which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research. PMID:27547530

  5. Morphological analysis of dendrites and spines by hybridization of ridge detection with twin support vector machine

    PubMed Central

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Shao, Ying; Zhang, Yudong

    2016-01-01

    Dendritic spines are described as neuronal protrusions. The morphology of dendritic spines and dendrites has a strong relationship to its function, as well as playing an important role in understanding brain function. Quantitative analysis of dendrites and dendritic spines is essential to an understanding of the formation and function of the nervous system. However, highly efficient tools for the quantitative analysis of dendrites and dendritic spines are currently undeveloped. In this paper we propose a novel three-step cascaded algorithm–RTSVM— which is composed of ridge detection as the curvature structure identifier for backbone extraction, boundary location based on differences in density, the Hu moment as features and Twin Support Vector Machine (TSVM) classifiers for spine classification. Our data demonstrates that this newly developed algorithm has performed better than other available techniques used to detect accuracy and false alarm rates. This algorithm will be used effectively in neuroscience research. PMID:27547530

  6. A simple approach for 3D reconstruction of the spine from biplanar radiography

    NASA Astrophysics Data System (ADS)

    Zhang, Junhua; Shi, Xinling; Lv, Liang; Guo, Fei; Zhang, Yufeng

    2014-04-01

    This paper proposed a simple approach for 3D spinal reconstruction from biplanar radiography. The proposed reconstruction consisted in reconstructing the 3D central curve of the spine based on the epipolar geometry and automatically aligning vertebrae under the constraint of this curve. The vertebral orientations were adjusted by matching the projections of the 3D pedicles with the 2D pedicles in biplanar radiographs. The user interaction time was within one minute for a thoracic spine. Sixteen pairs of radiographs of a thoracic spinal model were used to evaluate the precision and accuracy. The precision was within 3.1 mm for the location and 3.5° for the orientation. The accuracy was within 3.5 mm for the location and 3.9° for the orientation. These results demonstrate that this approach can be a promising tool to obtain the 3D spinal geometry with acceptable user interactions in scoliotic clinics.

  7. Resolving lubrication layers in immersed boundary method simulations of vesicular transport in dendritic spines

    NASA Astrophysics Data System (ADS)

    Fai, Thomas; Kusters, Remy; Rycroft, Chris

    2015-11-01

    Our understanding of how neuronal connections in the brain are maintained and reorganized is being revolutionized by new experimental and computational techniques. Existing high-resolution 3D images show that neuronal axons often terminate onto micron-sized structures known as dendritic spines, which are characterized by their thin necks and bulbous heads. Vesicles containing membrane receptors must deform significantly to squeeze into the bulbous heads of the spines, but more quantitative estimates of the force and energy required are still lacking. We have used three-dimensional immersed boundary method simulations to capture the fluid dynamics of vesicle transport into spines. We vary the applied force and neck geometry to identify the region in phase space in which the vesicle can squeeze into the spine. These results are compared to pass-stuck diagrams computed previously in the case of vesicles squeezing through open channels with rigid walls. The resulting force estimates are found to be consistent with the physiological density of motor proteins. Resolving the thin lubricating layers between the vesicles and spine poses significant numerical challenges, and we have used elements from lubrication theory to help resolve these boundary layers.

  8. CHMP2B mutants linked to frontotemporal dementia impair maturation of dendritic spines

    PubMed Central

    Belly, Agnès; Bodon, Gilles; Blot, Béatrice; Bouron, Alexandre; Sadoul, Rémy; Goldberg, Yves

    2010-01-01

    Summary The highly conserved ESCRT-III complex is responsible for deformation and cleavage of membranes during endosomal trafficking and other cellular activities. In humans, dominant mutations in the ESCRT-III subunit CHMP2B cause fronto-temporal dementia (FTD). The decade-long process leading to this cortical degeneration is not well understood. One possibility is that, akin to other neurodegenerative diseases, the pathogenic protein affects the integrity of dendritic spines and synapses before any neuronal death. Using confocal microscopy and 3D reconstruction, we examined whether expressing the FTD-linked mutants CHMP2Bintron5 and CHMP2BΔ10 in cultured hippocampal neurones modified the number or structure of spines. Both mutants induced a significant decrease in the proportion of large spines with mushroom morphology, without overt degeneration. Furthermore, CHMP2BΔ10 induced a drop in frequency and amplitude of spontaneous excitatory post-synaptic currents, suggesting that the more potent synapses were lost. These effects seemed unrelated to changes in autophagy. Depletion of endogenous CHMP2B by RNAi resulted in morphological changes similar to those induced by mutant CHMP2B, consistent with dominant negative activity of pathogenic mutants. Thus, CHMP2B is required for spine growth. Taken together, these results demonstrate that a mutant ESCRT-III subunit linked to a human neurodegenerative disease can disrupt the normal pattern of spine development. PMID:20699355

  9. Rac1-regulated dendritic spine remodeling contributes to neuropathic pain after peripheral nerve injury.

    PubMed

    Tan, Andrew M; Chang, Yu-Wen; Zhao, Peng; Hains, Bryan C; Waxman, Stephen G

    2011-12-01

    Although prior studies have implicated maladaptive remodeling of dendritic spines on wide-dynamic range dorsal horn neurons as a contributor to pain after spinal cord injury, there have been no studies on dendritic spines after peripheral nerve injury. To determine whether dendritic spine remodeling contributes to neuronal hyperexcitability and neuropathic pain after peripheral nerve injury, we analyzed dendritic spine morphology and functional influence in lamina IV-V dorsal horn neurons after sham, chronic constriction injury (CCI) of the sciatic nerve, and CCI treatment with NSC23766, a selective inhibitor of Rac1, which has been implicated in dendritic spine development. 10 days after CCI, spine density increased with mature, mushroom-shaped spines preferentially distributed along dendritic branch regions closer to the cell body. Because spine morphology is strongly correlated with synaptic function and transmission, we recorded the response of single units to innocuous and noxious peripheral stimuli and performed behavioral assays for tactile allodynia and thermal hyperalgesia. Wide dynamic range dorsal horn neurons of CCI animals exhibited hyperexcitable responses to a range of stimuli. They also showed reduced nociceptive thresholds in the ipsilateral hind paw. 3-day treatment with NSC23766 significantly reduced post-CCI spine dimensions and densities, and attenuated injury-induced hyperexcitability. Drug treatment reduced behavioral measures of tactile allodynia, but not for thermal hyperalgesia. Together, our results demonstrate that peripheral nerve injury induces Rac1-regulated remodeling of dendritic spines on dorsal horn neurons, and suggest that this spine remodeling contributes to neuropathic pain.

  10. A framework for human spine imaging using a freehand 3D ultrasound system.

    PubMed

    Purnama, Ketut E; Wilkinson, Michael H F; Veldhuizen, Albert G; van Ooijen, Peter M A; Lubbers, Jaap; Burgerhof, Johannes G M; Sardjono, Tri A; Verkerke, Gijbertus J

    2010-01-01

    The use of 3D ultrasound imaging to follow the progression of scoliosis, i.e., a 3D deformation of the spine, is described. Unlike other current examination modalities, in particular based on X-ray, its non-detrimental effect enables it to be used frequently to follow the progression of scoliosis which sometimes may develop rapidly. Furthermore, 3D ultrasound imaging provides information in 3D directly in contrast to projection methods. This paper describes a feasibility study of an ultrasound system to provide a 3D image of the human spine, and presents a framework of procedures to perform this task. The framework consist of an ultrasound image acquisition procedure to image a large part of the human spine by means of a freehand 3D ultrasound system and a volume reconstruction procedure which was performed in four stages: bin-filling, hole-filling, volume segment alignment, and volume segment compounding. The overall results of the procedures in this framework show that imaging of the human spine using ultrasound is feasible. Vertebral parts such as the transverse processes, laminae, superior articular processes, and spinous process of the vertebrae appear as clouds of voxels having intensities higher than the surrounding voxels. In sagittal slices, a string of transverse processes appears representing the curvature of the spine. In the bin-filling stage the estimated mean absolute noise level of a single measurement of a single voxel was determined. Our comparative study for the hole-filling methods based on rank sum statistics proved that the pixel nearest neighbour (PNN) method with variable radius and with the proposed olympic operation is the best method. Its mean absolute grey value error was less in magnitude than the noise level of a single measurement.

  11. Dendritic Polyglycerol Sulfate Inhibits Microglial Activation and Reduces Hippocampal CA1 Dendritic Spine Morphology Deficits.

    PubMed

    Maysinger, Dusica; Gröger, Dominic; Lake, Andrew; Licha, Kai; Weinhart, Marie; Chang, Philip K-Y; Mulvey, Rose; Haag, Rainer; McKinney, R Anne

    2015-09-14

    Hyperactivity of microglia and loss of functional circuitry is a common feature of many neurological disorders including those induced or exacerbated by inflammation. Herein, we investigate the response of microglia and changes in hippocampal dendritic postsynaptic spines by dendritic polyglycerol sulfate (dPGS) treatment. Mouse microglia and organotypic hippocampal slices were exposed to dPGS and an inflammogen (lipopolysaccharides). Measurements of intracellular fluorescence and confocal microscopic analyses revealed that dPGS is avidly internalized by microglia but not CA1 pyramidal neurons. Concentration and time-dependent response studies consistently showed no obvious toxicity of dPGS. The adverse effects induced by proinflammogen LPS exposure were reduced and dendritic spine morphology was normalized with the addition of dPGS. This was accompanied by a significant reduction in nitrite and proinflammatory cytokines (TNF-α and IL-6) from hyperactive microglia suggesting normalized circuitry function with dPGS treatment. Collectively, these results suggest that dPGS acts anti-inflammatory, inhibits inflammation-induced degenerative changes in microglia phenotype and rescues dendritic spine morphology. PMID:26218295

  12. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins.

    PubMed

    Heintz, Tristan G; Eva, Richard; Fawcett, James W

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling. PMID:27518800

  13. Regional Regulation of Purkinje Cell Dendritic Spines by Integrins and Eph/Ephrins

    PubMed Central

    Heintz, Tristan G.; Eva, Richard; Fawcett, James W.

    2016-01-01

    Climbing fibres and parallel fibres compete for dendritic space on Purkinje cells in the cerebellum. Normally, climbing fibres populate the proximal dendrites, where they suppress the multiple small spines typical of parallel fibres, leading to their replacement by the few large spines that contact climbing fibres. Previous work has shown that ephrins acting via EphA4 are a signal for this change in spine type and density. We have used an in vitro culture model in which to investigate the ephrin effect on Purkinje cell dendritic spines and the role of integrins in these changes. We found that integrins α3, α5 and β4 are present in many of the dendritic spines of cultured Purkinje cells. pFAK, the main downstream signalling molecule from integrins, has a similar distribution, although the intenstity of pFAK staining and the percentage of pFAK+ spines was consistently higher in the proximal dendrites. Activating integrins with Mg2+ led to an increase in the intensity of pFAK staining and an increase in the proportion of pFAK+ spines in both the proximal and distal dendrites, but no change in spine length, density or morphology. Blocking integrin binding with an RGD-containing peptide led to a reduction in spine length, with more stubby spines on both proximal and distal dendrites. Treatment of the cultures with ephrinA3-Fc chimera suppressed dendritic spines specifically on the proximal dendrites and there was also a decrease of pFAK in spines on this domain. This effect was blocked by simultaneous activation of integrins with Mn2+. We conclude that Eph/ephrin signaling regulates proximal dendritic spines in Purkinje cells by inactivating integrin downstream signalling. PMID:27518800

  14. Measuring CaMKII concentration in dendritic spines

    PubMed Central

    Otmakhov, Nikolai; Lisman, John

    2011-01-01

    Here, we present a method for measuring the concentration of endogenous protein in cellular compartments. Importantly, the method is applicable to compartments such as dendritic spines with dimensions often close to the resolution limit of optical microscopy. To our knowledge, a method with such capabilities has not yet been described. The method utilizes overexpression of the protein of interest, which is tagged with fluorescent protein. This is followed by immunostaining of both overexpressed and endogenous proteins. Expression of a volume marker is also required. We applied this method to measure the concentration of Ca/Calmodulin kinase II (CaMKII) in different cellular compartments of hippocampal pyramidal neurons. It was found that the concentrations of CaMKIIα subunits in cell bodies, proximal dendrites, and spines on these dendrites are 71, 46, and 103 μM, respectively. Considering the 3:1 ratio of α to β CaMKII subunits in the hippocampus, the concentrations of total (α + β) CaMKII subunits in these compartments are 94, 61, and 138 μM, respectively. PMID:21985762

  15. A Postsynaptic Role for Short-Term Neuronal Facilitation in Dendritic Spines

    PubMed Central

    Yang, Sunggu; Santos, Mariton D.; Tang, Cha-Min; Kim, Jae Geun; Yang, Sungchil

    2016-01-01

    Synaptic plasticity is a fundamental component of information processing in the brain. Presynaptic facilitation in response to repetitive stimuli, often referred to as paired-pulse facilitation (PPF), is a dominant form of short-term synaptic plasticity. Recently, an additional cellular mechanism for short-term facilitation, short-term postsynaptic plasticity (STPP), has been proposed. While a dendritic mechanism was described in hippocampus, its expression has not yet been demonstrated at the levels of the spine. Furthermore, it is unknown whether the mechanism can be expressed in other brain regions, such as sensory cortex. Here, we demonstrated that a postsynaptic response can be facilitated by prior spine excitation in both hippocampal and cortical neurons, using 3D digital holography and two-photon calcium imaging. The coordinated action of pre- and post-synaptic plasticity may provide a more thorough account of information processing in the brain. PMID:27746721

  16. NOTE: A 3D MRI sequence for computer assisted surgery of the lumbar spine

    NASA Astrophysics Data System (ADS)

    Hoad, C. L.; Martel, A. L.; Kerslake, R.; Grevitt, M.

    2001-08-01

    The aim of this research was to develop a magnetic resonance (MR) sequence capable of producing images suitable for use with computer assisted surgery (CAS) of the lumbar spine. These images needed good tissue contrast between bone and soft tissue to allow for image segmentation and generation of a 3D-surface model of the bone for surface registration. A 3D double echo fast gradient echo sequence was designed. Images were filtered for noise and non-uniformity and combined into a single data set. Registration experiments were carried out to directly compare segmentation of MR and computed tomography (CT) images using a physical model of a spine. These experiments showed the MR data produced adequate surface registration in 90% of the experiments compared to 100% with CT data. The MR images acquired using the sequence and processing described in this article are suitable to be used with CAS of the spine.

  17. From Synaptic Transmission to Cognition: An Intermediary Role for Dendritic Spines

    ERIC Educational Resources Information Center

    Gonzalez-Burgos, Ignacio

    2012-01-01

    Dendritic spines are cytoplasmic protrusions that develop directly or indirectly from the filopodia of neurons. Dendritic spines mediate excitatory neurotransmission and they can isolate the electrical activity generated by synaptic impulses, enabling them to translate excitatory afferent information via several types of plastic changes, including…

  18. The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons.

    PubMed

    Alfaro, Iván E; Varela-Nallar, Lorena; Varas-Godoy, Manuel; Inestrosa, Nibaldo C

    2015-07-01

    Wnt signaling regulates synaptic development and function and contributes to the fine-tuning of the molecular and morphological differentiation of synapses. We have shown previously that Wnt5a activates non-canonical Wnt signaling to stimulate postsynaptic differentiation in excitatory hippocampal neurons promoting the clustering of the postsynaptic scaffold protein PSD-95 and the development of dendritic spines. At least three different kinds of Wnt receptors have been associated with Wnt5a signaling: seven trans-membrane Frizzled receptors and the tyrosine kinase receptors Ryk and ROR2. We report here that ROR2 is distributed in the dendrites of hippocampal neurons in close proximity to synaptic contacts and it is contained in dendritic spine protrusions. We demonstrate that ROR2 is necessary to maintain dendritic spine number and morphological distribution in cultured hippocampal neurons. ROR2 overexpression increased dendritic spine growth without affecting the density of dendritic spine protrusions in a form dependent on its extracellular Wnt binding cysteine rich domain (CRD) and kinase domain. Overexpression of dominant negative ROR2 lacking the extracellular CRD decreased spine density and the proportion of mushroom like spines, while ROR2 lacking the C-terminal and active kinase domains only affected spine morphology. Our results indicate a crucial role of the ROR2 in the formation and maturation of the postsynaptic dendritic spines in hippocampal neurons.

  19. The ROR2 tyrosine kinase receptor regulates dendritic spine morphogenesis in hippocampal neurons.

    PubMed

    Alfaro, Iván E; Varela-Nallar, Lorena; Varas-Godoy, Manuel; Inestrosa, Nibaldo C

    2015-07-01

    Wnt signaling regulates synaptic development and function and contributes to the fine-tuning of the molecular and morphological differentiation of synapses. We have shown previously that Wnt5a activates non-canonical Wnt signaling to stimulate postsynaptic differentiation in excitatory hippocampal neurons promoting the clustering of the postsynaptic scaffold protein PSD-95 and the development of dendritic spines. At least three different kinds of Wnt receptors have been associated with Wnt5a signaling: seven trans-membrane Frizzled receptors and the tyrosine kinase receptors Ryk and ROR2. We report here that ROR2 is distributed in the dendrites of hippocampal neurons in close proximity to synaptic contacts and it is contained in dendritic spine protrusions. We demonstrate that ROR2 is necessary to maintain dendritic spine number and morphological distribution in cultured hippocampal neurons. ROR2 overexpression increased dendritic spine growth without affecting the density of dendritic spine protrusions in a form dependent on its extracellular Wnt binding cysteine rich domain (CRD) and kinase domain. Overexpression of dominant negative ROR2 lacking the extracellular CRD decreased spine density and the proportion of mushroom like spines, while ROR2 lacking the C-terminal and active kinase domains only affected spine morphology. Our results indicate a crucial role of the ROR2 in the formation and maturation of the postsynaptic dendritic spines in hippocampal neurons. PMID:26003414

  20. Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Likar, Boštjan; Pernuš, Franjo; Vrtovec, Tomaž

    2011-12-01

    Accurate and objective evaluation of vertebral deformations is of significant importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is focused on three-dimensional (3D) computed tomography (CT) and magnetic resonance (MR) imaging techniques, the established methods for evaluation of vertebral deformations are limited to measuring deformations in two-dimensional (2D) x-ray images. In this paper, we propose a method for quantitative description of vertebral body deformations by efficient modelling and segmentation of vertebral bodies in 3D. The deformations are evaluated from the parameters of a 3D superquadric model, which is initialized as an elliptical cylinder and then gradually deformed by introducing transformations that yield a more detailed representation of the vertebral body shape. After modelling the vertebral body shape with 25 clinically meaningful parameters and the vertebral body pose with six rigid body parameters, the 3D model is aligned to the observed vertebral body in the 3D image. The performance of the method was evaluated on 75 vertebrae from CT and 75 vertebrae from T2-weighted MR spine images, extracted from the thoracolumbar part of normal and pathological spines. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images, as the proposed 3D model is able to describe both normal and pathological vertebral body deformations. The method may therefore be used for initialization of whole vertebra segmentation or for quantitative measurement of vertebral body deformations.

  1. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation.

    PubMed

    Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina

    2016-10-01

    Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond. PMID:27413766

  2. Superresolving dendritic spine morphology with STED microscopy under holographic photostimulation.

    PubMed

    Lauterbach, Marcel Andreas; Guillon, Marc; Desnos, Claire; Khamsing, Dany; Jaffal, Zahra; Darchen, François; Emiliani, Valentina

    2016-10-01

    Emerging all-optical methods provide unique possibilities for noninvasive studies of physiological processes at the cellular and subcellular scale. On the one hand, superresolution microscopy enables observation of living samples with nanometer resolution. On the other hand, light can be used to stimulate cells due to the advent of optogenetics and photolyzable neurotransmitters. To exploit the full potential of optical stimulation, light must be delivered to specific cells or even parts of cells such as dendritic spines. This can be achieved with computer generated holography (CGH), which shapes light to arbitrary patterns by phase-only modulation. We demonstrate here in detail how CGH can be incorporated into a stimulated emission depletion (STED) microscope for photostimulation of neurons and monitoring of nanoscale morphological changes. We implement an original optical system to allow simultaneous holographic photostimulation and superresolution STED imaging. We present how synapses can be clearly visualized in live cells using membrane stains either with lipophilic organic dyes or with fluorescent proteins. We demonstrate the capabilities of this microscope to precisely monitor morphological changes of dendritic spines after stimulation. These all-optical methods for cell stimulation and monitoring are expected to spread to various fields of biological research in neuroscience and beyond.

  3. Modeling and Measurement of 3D Deformation of Scoliotic Spine Using 2D X-ray Images

    NASA Astrophysics Data System (ADS)

    Li, Hao; Leow, Wee Kheng; Huang, Chao-Hui; Howe, Tet Sen

    Scoliosis causes deformations such as twisting and lateral bending of the spine. To correct scoliotic deformation, the extents of 3D spinal deformation need to be measured. This paper studies the modeling and measurement of scoliotic spine based on 3D curve model. Through modeling the spine as a 3D Cosserat rod, the 3D structure of a scoliotic spine can be recovered by obtaining the minimum potential energy registration of the rod to the scoliotic spine in the x-ray image. Test results show that it is possible to obtain accurate 3D reconstruction using only the landmarks in a single view, provided that appropriate boundary conditions and elastic properties are included as constraints.

  4. Reelin Regulates the Maturation of Dendritic Spines, Synaptogenesis and Glial Ensheathment of Newborn Granule Cells

    PubMed Central

    Bosch, Carles; Masachs, Nuria; Exposito-Alonso, David; Martínez, Albert; Teixeira, Cátia M.; Fernaud, Isabel; Pujadas, Lluís; Ulloa, Fausto; Comella, Joan X.; DeFelipe, Javier; Merchán-Pérez, Angel; Soriano, Eduardo

    2016-01-01

    The Reelin pathway is essential for both neural migration and for the development and maturation of synaptic connections. However, its role in adult synaptic formation and remodeling is still being investigated. Here, we investigated the impact of the Reelin/Dab1 pathway on the synaptogenesis of newborn granule cells (GCs) in the young-adult mouse hippocampus. We show that neither Reelin overexpression nor the inactivation of its intracellular adapter, Dab1, substantially alters dendritic spine numbers in these neurons. In contrast, 3D-electron microscopy (focused ion beam milling/scanning electron microscope) revealed that dysregulation of the Reelin/Dab1 pathway leads to both transient and permanent changes in the types and morphology of dendritic spines, mainly altering mushroom, filopodial, and branched GC spines. We also found that the Reelin/Dab1 pathway controls synaptic configuration of presynaptic boutons in the dentate gyrus, with its dysregulation leading to a substantial decrease in multi-synaptic bouton innervation. Lastly, we show that the Reelin/Dab1 pathway controls astroglial ensheathment of synapses. Thus, the Reelin pathway is a key regulator of adult-generated GC integration, by controlling dendritic spine types and shapes, their synaptic innervation patterns, and glial ensheathment. These findings may help to better understanding of hippocampal circuit alterations in neurological disorders in which the Reelin pathway is implicated. Significance Statement The extracellular protein Reelin has an important role in neurological diseases, including epilepsy, Alzheimer's disease and psychiatric diseases, targeting hippocampal circuits. Here we address the role of Reelin in the development of synaptic contacts in adult-generated granule cells (GCs), a neuronal population that is crucial for learning and memory and implicated in neurological and psychiatric diseases. We found that the Reelin pathway controls the shapes, sizes, and types of dendritic

  5. Remodeling the Dendritic Spines in the Hindlimb Representation of the Sensory Cortex after Spinal Cord Hemisection in Mice.

    PubMed

    Zhang, Kexue; Zhang, Jinhui; Zhou, Yanmei; Chen, Chao; Li, Wei; Ma, Lei; Zhang, Licheng; Zhao, Jingxin; Gan, Wenbiao; Zhang, Lihai; Tang, Peifu

    2015-01-01

    Spinal cord injury (SCI) can induce remodeling of multiple levels of the cerebral cortex system especially in the sensory cortex. The aim of this study was to assess, in vivo and bilaterally, the remodeling of dendritic spines in the hindlimb representation of the sensory cortex after spinal cord hemisection. Thy1-YFP transgenic mice were randomly divided into the control group and the SCI group, and the spinal vertebral plates (T11-T12) of all mice were excised. Next, the left hemisphere of the spinal cord (T12) was hemisected in the SCI group. The hindlimb representations of the sensory cortex in both groups were imaged bilaterally on the day before (0d), and three days (3d), two weeks (2w), and one month (1m) after the SCI. The rates of stable, newly formed, and eliminated spines were calculated by comparing images of individual dendritic spine in the same areas at different time points. In comparison to the control group, the rate of newly formed spines in the contralateral sensory cortex of the SCI group increased at three days and two weeks after injury. The rates of eliminated spines in the bilateral sensory cortices increased and the rate of stable spines in the bilateral cortices declined at two weeks and one month. From three days to two weeks, the stable rates of bilaterally stable spines in the SCI group decreased. In comparison to the control group and contralateral cortex in the SCI group, the re-emerging rate of eliminated spines in ipsilateral cortex of the SCI group decreased significantly. The stable rates of newly formed spines in bilateral cortices of the SCI group decreased from two weeks to one month. We found that the remodeling in the hindlimb representation of the sensory cortex after spinal cord hemisection occurred bilaterally. This remodeling included eliminating spines and forming new spines, as well as changing the reorganized regions of the brain cortex after the SCI over time. Soon after the SCI, the cortex was remodeled by

  6. mGluR5 Positive and Negative Allosteric Modulators Differentially Affect Dendritic Spine Density and Morphology in the Prefrontal Cortex.

    PubMed

    LaCrosse, Amber L; Taylor, Sara B; Nemirovsky, Natali E; Gass, Justin T; Olive, Michael F

    2015-01-01

    Positive and negative allosteric modulators (PAMs and NAMs, respectively) of type 5 metabotropic glutamate receptors (mGluR5) are currently being investigated as novel treatments for neuropsychiatric diseases including drug addiction, schizophrenia, and Fragile X syndrome. However, only a handful of studies have examined the effects of mGluR5 PAMs or NAMs on the structural plasticity of dendritic spines in otherwise naïve animals, particularly in brain regions mediating executive function. In the present study, we assessed dendritic spine density and morphology in pyramidal cells of the medial prefrontal cortex (mPFC) after repeated administration of either the prototypical mGluR5 PAM 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5- yl)benzamide (CDPPB, 20 mg/kg), the clinically utilized mGluR5 NAM 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4Himidazol- 2-yl)urea (fenobam, 20 mg/kg), or vehicle in male Sprague-Dawley rats. Following once daily treatment for 10 consecutive days, coronal brain sections containing the mPFC underwent diolistic labeling and 3D image analysis of dendritic spines. Compared to vehicle treated animals, rats administered fenobam exhibited significant increases in dendritic spine density and the overall frequency of spines with small (<0.2 μm) head diameters, decreases in frequency of spines with medium (0.2-0.4 μm) head diameters, and had no changes in frequency of spines with large head diameters (>0.4 μm). Administration of CDPPB had no discernable effects on dendritic spine density or morphology, and neither CDPPB nor fenobam had any effect on spine length or volume. We conclude that mGluR5 PAMs and NAMs differentially affect mPFC dendritic spine structural plasticity in otherwise naïve animals, and additional studies assessing their effects in combination with cognitive or behavioral tasks are needed.

  7. Evidence for reduced experience-dependent dendritic spine plasticity in the aging prefrontal cortex

    PubMed Central

    Bloss, Erik B.; Janssen, William G.; Ohm, Daniel T.; Yuk, Frank J.; Wadsworth, Shannon; Saardi, Karl M.; McEwen, Bruce S.; Morrison, John H.

    2011-01-01

    Cognitive functions that require the prefrontal cortex are highly sensitive to aging in humans, non-human primates, and rodents, although the neurobiological correlates of this vulnerability remain largely unknown. It has been proposed that dendritic spines represent the primary site of structural plasticity in the adult brain, and recent data have supported the hypothesis that aging is associated with alterations of dendritic spine morphology and plasticity in prefrontal cortex. However, no study to date has directly examined whether aging alters the capacity for experience-dependent spine plasticity in aging prefrontal neurons. To address this possibility we used young, middle-aged, and aged rats in a behavioral stress paradigm known to produce spine remodeling in prefrontal cortical neurons. In young rats, stress resulted in dendritic spine loss and altered patterns of spine morphology; in contrast, spines from middle-aged and aged animals were remarkably stable and did not show evidence of remodeling. The loss of stress-induced spine plasticity observed in aging rats occurred alongside robust age-related reductions in spine density and shifts in remaining spine morphology. Taken together, the data presented here provide the first evidence that experience-dependent spine plasticity is altered by aging in prefrontal cortex, and support a model in which dendritic spines become progressively less plastic in the aging brain. PMID:21613496

  8. Cellular source-specific effects of apolipoprotein (apo) E4 on dendrite arborization and dendritic spine development.

    PubMed

    Jain, Sachi; Yoon, Seo Yeon; Leung, Laura; Knoferle, Johanna; Huang, Yadong

    2013-01-01

    Apolipoprotein (apo) E4 is the leading genetic risk factor for Alzheimer's disease (AD), and it has a gene dose-dependent effect on the risk and age of onset of AD. Although apoE4 is primarily produced by astrocytes in the brain, neurons can also produce apoE4 under stress conditions. ApoE4 is known to inhibit neurite outgrowth and spine development in vitro and in vivo, but the potential influence of apoE4's cellular source on dendritic arborization and spine development has not yet been investigated. In this study, we report impairments in dendritic arborization and a loss of spines, especially thin (learning) and mushroom (memory) spines, in the hippocampus and entorhinal cortex of 19-21-month-old female neuron-specific-enolase (NSE)-apoE4 and apoE4-knockin (KI) mice compared to their respective apoE3-expressing counterparts. In general, NSE-apoE4 mice had more severe and widespread deficits in dendritic arborization as well as spine density and morphology than apoE4-KI mice. The loss of dendritic spines, especially mushroom spines, occurred in NSE-apoE4 mice as early as 7-8 months of age. In contrast, glial fibrillary acidic protein (GFAP)-apoE4 mice, which express apoE4 solely in astrocytes, did not have impairments in their dendrite arborization or spine density and morphology compared to GFAP-apoE3 mice at both ages. These results indicate that the effects of apoE4 on dendrite arborization, spine density, and spine morphology depend critically on its cellular source, with neuronal apoE4 having more detrimental effects than astrocytic apoE4.

  9. Olfactory experiences dynamically regulate plasticity of dendritic spines in granule cells of Xenopus tadpoles in vivo

    PubMed Central

    Zhang, Li; Huang, Yubin; Hu, Bing

    2016-01-01

    Granule cells, rich in dendrites with densely punctated dendritic spines, are the most abundant inhibitory interneurons in the olfactory bulb. The dendritic spines of granule cells undergo remodeling during the development of the nervous system. The morphological plasticity of the spines’ response to different olfactory experiences in vivo is not fully known. In initial studies, a single granule cell in Xenopus tadpoles was labeled with GFP plasmids via cell electroporation; then, morphologic changes of the granule cell spines were visualized by in vivo confocal time-lapse imaging. With the help of long-term imaging, the total spine density, dynamics, and stability of four types of dendritic spines (mushroom, stubby, thin and filopodia) were obtained. Morphological analysis demonstrated that odor enrichment produced a remarkable increase in the spine density and stability of large mushroom spine. Then, with the help of short-term imaging, we analyzed the morphological transitions among different spines. We found that transitions between small spines (thin and filopodia) were more easily influenced by odor stimulation or olfactory deprivation. These results indicate that different olfactory experiences can regulate the morphological plasticity of different dendritic spines in the granule cell. PMID:27713557

  10. Morphometric evaluations of personalised 3D reconstructions and geometric models of the human spine.

    PubMed

    Aubin, C E; Dansereau, J; Parent, F; Labelle, H; de Guise, J A

    1997-11-01

    In the past, several techniques have been developed to study and analyse the 3D characteristics of the human spine: multi-view radiographic or biplanar 3D reconstructions, CT-scan 3D reconstructions and geometric models. Extensive evaluations of three of these techniques that are routinely used at Sainte-Justine Hospital (Montréal, Canada) are presented. The accuracy of these methods is assessed by comparing them with precise measurements made with a coordinate measuring machine on 17 thoracic and lumbar vertebrae (T1-L5) extracted from a normal cadaveric spine specimen. Multi-view radiographic 3D reconstructions are evaluated for different combinations of X-ray views: lateral (LAT), postero-anterior with normal incidence (PA0 degree) and postero-anterior with 20 degrees angled down incidence (PA20 degrees). The following accuracies are found for these reconstructions obtained from different radiographic setups: 2.1 +/- 1.5 mm for the combination with PA0 degree-LAT views, and 5.6 +/- 4.5 mm for the PA0 degree-PA20 degrees stereopair. Higher errors are found in the postero-anterior direction, especially for the PA0 degree-PA20 degrees view combination. Pedicles are found to be the most precise landmarks. Accuracy for CT-scan 3D reconstructions is about 1.1 +/- 0.8 mm. As for a geometric model built using a multiview radiographic reconstruction based on six landmarks per vertebra, accuracies of about 2.6 +/- 2.4 mm for landmarks and 2.3 +/- 2.0 mm for morphometric parameters are found. The geometric model and 3D reconstruction techniques give accurate information, at low X-ray dose. The accuracy assessment of the techniques used to study the 3D characteristics of the human spine is important, because it allows better and more efficient quantitative evaluations of spinal dysfunctions and their treatments, as well as biomechanical modeling of the spine. PMID:9538536

  11. Activity-dependent dendritic spine neck changes are correlated with synaptic strength

    PubMed Central

    Araya, Roberto; Vogels, Tim P.; Yuste, Rafael

    2014-01-01

    Most excitatory inputs in the mammalian brain are made on dendritic spines, rather than on dendritic shafts. Spines compartmentalize calcium, and this biochemical isolation can underlie input-specific synaptic plasticity, providing a raison d’etre for spines. However, recent results indicate that the spine can experience a membrane potential different from that in the parent dendrite, as though the spine neck electrically isolated the spine. Here we use two-photon calcium imaging of mouse neocortical pyramidal neurons to analyze the correlation between the morphologies of spines activated under minimal synaptic stimulation and the excitatory postsynaptic potentials they generate. We find that excitatory postsynaptic potential amplitudes are inversely correlated with spine neck lengths. Furthermore, a spike timing-dependent plasticity protocol, in which two-photon glutamate uncaging over a spine is paired with postsynaptic spikes, produces rapid shrinkage of the spine neck and concomitant increases in the amplitude of the evoked spine potentials. Using numerical simulations, we explore the parameter regimes for the spine neck resistance and synaptic conductance changes necessary to explain our observations. Our data, directly correlating synaptic and morphological plasticity, imply that long-necked spines have small or negligible somatic voltage contributions, but that, upon synaptic stimulation paired with postsynaptic activity, they can shorten their necks and increase synaptic efficacy, thus changing the input/output gain of pyramidal neurons. PMID:24982196

  12. 3D visualization of the scoliotic spine: longitudinal studies, data acquisition, and radiation dosage constraints

    NASA Astrophysics Data System (ADS)

    Kalvin, Alan D.; Adler, Roy L.; Margulies, Joseph Y.; Tresser, Charles P.; Wu, Chai W.

    1999-05-01

    Decision making in the treatment of scoliosis is typically based on longitudinal studies that involve the imaging and visualization the progressive degeneration of a patient's spine over a period of years. Some patients will need surgery if their spinal deformation exceeds a certain degree of severity. Currently, surgeons rely on 2D measurements, obtained from x-rays, to quantify spinal deformation. Clearly working only with 2D measurements seriously limits the surgeon's ability to infer 3D spinal pathology. Standard CT scanning is not a practical solution for obtaining 3D spinal measurements of scoliotic patients. Because it would expose the patient to a prohibitively high dose of radiation. We have developed 2 new CT-based methods of 3D spinal visualization that produce 3D models of the spine by integrating a very small number of axial CT slices with data obtained from CT scout data. In the first method the scout data are converted to sinogram data, and then processed by a tomographic image reconstruction algorithm. In the second method, the vertebral boundaries are detected in the scout data, and these edges are then used as linear constraints to determine 2D convex hulls of the vertebrae.

  13. Models and simulation of 3D neuronal dendritic trees using Bayesian networks.

    PubMed

    López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier

    2011-12-01

    Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology.

  14. Models and simulation of 3D neuronal dendritic trees using Bayesian networks.

    PubMed

    López-Cruz, Pedro L; Bielza, Concha; Larrañaga, Pedro; Benavides-Piccione, Ruth; DeFelipe, Javier

    2011-12-01

    Neuron morphology is crucial for neuronal connectivity and brain information processing. Computational models are important tools for studying dendritic morphology and its role in brain function. We applied a class of probabilistic graphical models called Bayesian networks to generate virtual dendrites from layer III pyramidal neurons from three different regions of the neocortex of the mouse. A set of 41 morphological variables were measured from the 3D reconstructions of real dendrites and their probability distributions used in a machine learning algorithm to induce the model from the data. A simulation algorithm is also proposed to obtain new dendrites by sampling values from Bayesian networks. The main advantage of this approach is that it takes into account and automatically locates the relationships between variables in the data instead of using predefined dependencies. Therefore, the methodology can be applied to any neuronal class while at the same time exploiting class-specific properties. Also, a Bayesian network was defined for each part of the dendrite, allowing the relationships to change in the different sections and to model heterogeneous developmental factors or spatial influences. Several univariate statistical tests and a novel multivariate test based on Kullback-Leibler divergence estimation confirmed that virtual dendrites were similar to real ones. The analyses of the models showed relationships that conform to current neuroanatomical knowledge and support model correctness. At the same time, studying the relationships in the models can help to identify new interactions between variables related to dendritic morphology. PMID:21305364

  15. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition

    NASA Astrophysics Data System (ADS)

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-03-01

    Cl‑ plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl‑ is not well understood. The role of spines in Cl‑ diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl‑ changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl‑ dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl‑ diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl‑ extrusion altered Cl‑ diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl‑ diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl‑ diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed.

  16. Spines slow down dendritic chloride diffusion and affect short-term ionic plasticity of GABAergic inhibition

    PubMed Central

    Mohapatra, Namrata; Tønnesen, Jan; Vlachos, Andreas; Kuner, Thomas; Deller, Thomas; Nägerl, U. Valentin; Santamaria, Fidel; Jedlicka, Peter

    2016-01-01

    Cl− plays a crucial role in neuronal function and synaptic inhibition. However, the impact of neuronal morphology on the diffusion and redistribution of intracellular Cl− is not well understood. The role of spines in Cl− diffusion along dendritic trees has not been addressed so far. Because measuring fast and spatially restricted Cl− changes within dendrites is not yet technically possible, we used computational approaches to predict the effects of spines on Cl− dynamics in morphologically complex dendrites. In all morphologies tested, including dendrites imaged by super-resolution STED microscopy in live brain tissue, spines slowed down longitudinal Cl− diffusion along dendrites. This effect was robust and could be observed in both deterministic as well as stochastic simulations. Cl− extrusion altered Cl− diffusion to a much lesser extent than the presence of spines. The spine-dependent slowing of Cl− diffusion affected the amount and spatial spread of changes in the GABA reversal potential thereby altering homosynaptic as well as heterosynaptic short-term ionic plasticity at GABAergic synapses in dendrites. Altogether, our results suggest a fundamental role of dendritic spines in shaping Cl− diffusion, which could be of relevance in the context of pathological conditions where spine densities and neural excitability are perturbed. PMID:26987404

  17. Optimization of spine surgery planning with 3D image templating tools

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Huddleston, Paul M.; Holmes, David R., III; Shridharani, Shyam M.; Robb, Richard A.

    2008-03-01

    The current standard of care for patients with spinal disorders involves a thorough clinical history, physical exam, and imaging studies. Simple radiographs provide a valuable assessment but prove inadequate for surgery planning because of the complex 3-dimensional anatomy of the spinal column and the close proximity of the neural elements, large blood vessels, and viscera. Currently, clinicians still use primitive techniques such as paper cutouts, pencils, and markers in an attempt to analyze and plan surgical procedures. 3D imaging studies are routinely ordered prior to spine surgeries but are currently limited to generating simple, linear and angular measurements from 2D views orthogonal to the central axis of the patient. Complex spinal corrections require more accurate and precise calculation of 3D parameters such as oblique lengths, angles, levers, and pivot points within individual vertebra. We have developed a clinician friendly spine surgery planning tool which incorporates rapid oblique reformatting of each individual vertebra, followed by interactive templating for 3D placement of implants. The template placement is guided by the simultaneous representation of multiple 2D section views from reformatted orthogonal views and a 3D rendering of individual or multiple vertebrae enabling superimposition of virtual implants. These tools run efficiently on desktop PCs typically found in clinician offices or workrooms. A preliminary study conducted with Mayo Clinic spine surgeons using several actual cases suggests significantly improved accuracy of pre-operative measurements and implant localization, which is expected to increase spinal procedure efficiency and safety, and reduce time and cost of the operation.

  18. Computer-aided assessment of anomalies in the scoliotic spine in 3-D MRI images.

    PubMed

    Jäger, Florian; Hornegger, Joachim; Schwab, Siegfried; Janka, Rolf

    2009-01-01

    The assessment of anomalies in the scoliotic spine using Magnetic Resonance Imaging (MRI) is an essential task during the planning phase of a patient's treatment and operations. Due to the pathologic bending of the spine, this is an extremely time consuming process as an orthogonal view onto every vertebra is required. In this article we present a system for computer-aided assessment (CAA) of anomalies in 3-D MRI images of the spine relying on curved planar reformations (CPR). We introduce all necessary steps, from the pre-processing of the data to the visualization component. As the core part of the framework is based on a segmentation of the spinal cord we focus on this. The proposed segmentation method is an iterative process. In every iteration the segmentation is updated by an energy based scheme derived from Markov random field (MRF) theory. We evaluate the segmentation results on public available clinical relevant 3-D MRI data sets of scoliosis patients. In order to assess the quality of the segmentation we use the angle between automatically computed planes through the vertebra and planes estimated by medical experts. This results in a mean angle difference of less than six degrees.

  19. Local phase tensor features for 3-D ultrasound to statistical shape+pose spine model registration.

    PubMed

    Hacihaliloglu, Ilker; Rasoulian, Abtin; Rohling, Robert N; Abolmaesumi, Purang

    2014-11-01

    Most conventional spine interventions are performed under X-ray fluoroscopy guidance. In recent years, there has been a growing interest to develop nonionizing imaging alternatives to guide these procedures. Ultrasound guidance has emerged as a leading alternative. However, a challenging problem is automatic identification of the spinal anatomy in ultrasound data. In this paper, we propose a local phase-based bone feature enhancement technique that can robustly identify the spine surface in ultrasound images. The local phase information is obtained using a gradient energy tensor filter. This information is used to construct local phase tensors in ultrasound images, which highlight the spine surface. We show that our proposed approach results in a more distinct enhancement of the bone surfaces compared to recently proposed techniques based on monogenic scale-space filters and logarithmic Gabor filters. We also demonstrate that registration accuracy of a statistical shape+pose model of the spine to 3-D ultrasound images can be significantly improved, using the proposed method, compared to those obtained using monogenic scale-space filters and logarithmic Gabor filters.

  20. Effect of high magnetic field on a quasi-3D silver dendrite growing system

    NASA Astrophysics Data System (ADS)

    Tang, Fengzhi; Katsuki, Akio; Tanimoto, Yoshifumi

    2006-05-01

    The Ag+/Cu liquid-solid redox reaction was investigated in a vertical and inhomogeneous high magnetic field (up to 15 T). According to a comparison between the morphologies of quasi-3D silver dendrites generated under different magnetic flux densities, the imposition of a high magnetic field strongly affected the aggregation process of the silver dendrites. The present experiment used four kinds of liquid-solid boundaries, which are affected by the reaction direction and solution condition, as bases for the diffusion limited aggregation (DLA)-like dendritic growth of silver deposition. Results are interpreted in terms of convections of the aqueous solution and a tentative quantitative analysis of forces acting on particles arising from the magnetic field. A new force is predicted theoretically and is discussed in detail.

  1. Isoflurane reversibly destabilizes hippocampal dendritic spines by an actin-dependent mechanism.

    PubMed

    Platholi, Jimcy; Herold, Karl F; Hemmings, Hugh C; Halpain, Shelley

    2014-01-01

    General anesthetics produce a reversible coma-like state through modulation of excitatory and inhibitory synaptic transmission. Recent evidence suggests that anesthetic exposure can also lead to sustained cognitive dysfunction. However, the subcellular effects of anesthetics on the structure of established synapses are not known. We investigated effects of the widely used volatile anesthetic isoflurane on the structural stability of hippocampal dendritic spines, a postsynaptic structure critical to excitatory synaptic transmission in learning and memory. Exposure to clinical concentrations of isoflurane induced rapid and non-uniform shrinkage and loss of dendritic spines in mature cultured rat hippocampal neurons. Spine shrinkage was associated with a reduction in spine F-actin concentration. Spine loss was prevented by either jasplakinolide or cytochalasin D, drugs that prevent F-actin disassembly. Isoflurane-induced spine shrinkage and loss were reversible upon isoflurane elimination. Thus, isoflurane destabilizes spine F-actin, resulting in changes to dendritic spine morphology and number. These findings support an actin-based mechanism for isoflurane-induced alterations of synaptic structure in the hippocampus. These reversible alterations in dendritic spine structure have important implications for acute anesthetic effects on excitatory synaptic transmission and synaptic stability in the hippocampus, a locus for anesthetic-induced amnesia, and have important implications for anesthetic effects on synaptic plasticity. PMID:25068870

  2. Casting a Net on Dendritic Spines: The Extracellular Matrix and its Receptors

    PubMed Central

    Dansie, Lorraine E.; Ethell, Iryna M.

    2011-01-01

    Dendritic spines are dynamic structures that accommodate the majority of excitatory synapses in the brain and are influenced by extracellular signals from presynaptic neurons, glial cells and the extracellular matrix (ECM). The ECM surrounds dendritic spines and extends into the synaptic cleft, maintaining synapse integrity as well as mediating trans-synaptic communications between neurons. Several scaffolding proteins and glycans that compose the ECM form a lattice-like network, which serves as an attractive ground for various secreted glycoproteins, lectins, growth factors and enzymes. ECM components can control dendritic spines through the interactions with their specific receptors or by influencing the functions of other synaptic proteins. In this review, we focus on ECM components and their receptors that regulate dendritic spine development and plasticity in the normal and diseased brain. PMID:21834084

  3. Dendritic spines as individual neuronal compartments for synaptic Ca2+ responses.

    PubMed

    Müller, W; Connor, J A

    1991-11-01

    The possibility that postsynaptic spines on neuronal dendrites are discrete biochemical compartments for Ca(2+)-activated processes involved in synaptic plasticity is a widely proposed concept that has eluded experimental demonstration. Using microfluorometry on CA3 neurons in hippocampal slices, we show here that with weak presynaptic stimulation of associative/commissural fibres, Ca2+ accumulates in single postsynaptic spines but not in the parent dendrite. Stronger stimulation also promotes changes in dendrites. The NMDA-receptor antagonist AP-5 blocks changes in Ca2+ in spines. Sustained steep Ca2+ gradients between single spines and the parent dendrite, often lasting several minutes, develop with repeated stimulation. The observed compartmentalization allows for the specificity, cooperativity and associativity displayed by memory models such as long-term potentiation. PMID:1682815

  4. Mechanical coupling between transsynaptic N-cadherin adhesions and actin flow stabilizes dendritic spines

    PubMed Central

    Chazeau, Anaël; Garcia, Mikael; Czöndör, Katalin; Perrais, David; Tessier, Béatrice; Giannone, Grégory; Thoumine, Olivier

    2015-01-01

    The morphology of neuronal dendritic spines is a critical indicator of synaptic function. It is regulated by several factors, including the intracellular actin/myosin cytoskeleton and transcellular N-cadherin adhesions. To examine the mechanical relationship between these molecular components, we performed quantitative live-imaging experiments in primary hippocampal neurons. We found that actin turnover and structural motility were lower in dendritic spines than in immature filopodia and increased upon expression of a nonadhesive N-cadherin mutant, resulting in an inverse relationship between spine motility and actin enrichment. Furthermore, the pharmacological stimulation of myosin II induced the rearward motion of actin structures in spines, showing that myosin II exerts tension on the actin network. Strikingly, the formation of stable, spine-like structures enriched in actin was induced at contacts between dendritic filopodia and N-cadherin–coated beads or micropatterns. Finally, computer simulations of actin dynamics mimicked various experimental conditions, pointing to the actin flow rate as an important parameter controlling actin enrichment in dendritic spines. Together these data demonstrate that a clutch-like mechanism between N-cadherin adhesions and the actin flow underlies the stabilization of dendritic filopodia into mature spines, a mechanism that may have important implications in synapse initiation, maturation, and plasticity in the developing brain. PMID:25568337

  5. The Flatness of Bifurcations in 3D Dendritic Trees: An Optimal Design.

    PubMed

    van Pelt, Jaap; Uylings, Harry B M

    2011-01-01

    The geometry of natural branching systems generally reflects functional optimization. A common property is that their bifurcations are planar and that daughter segments do not turn back in the direction of the parent segment. The present study investigates whether this also applies to bifurcations in 3D dendritic arborizations. This question was earlier addressed in a first study of flatness of 3D dendritic bifurcations by Uylings and Smit (1975), who used the apex angle of the right circular cone as flatness measure. The present study was inspired by recent renewed interest in this measure. Because we encountered ourselves shortcomings of this cone angle measure, the search for an optimal measure for flatness of 3D bifurcation was the second aim of our study. Therefore, a number of measures has been developed in order to quantify flatness and orientation properties of spatial bifurcations. All these measures have been expressed mathematically in terms of the three bifurcation angles between the three pairs of segments in the bifurcation. The flatness measures have been applied and evaluated to bifurcations in rat cortical pyramidal cell basal and apical dendritic trees, and to random spatial bifurcations. Dendritic and random bifurcations show significant different flatness measure distributions, supporting the conclusion that dendritic bifurcations are significantly more flat than random bifurcations. Basal dendritic bifurcations also show the property that their parent segments are generally aligned oppositely to the bisector of the angle between their daughter segments, resulting in "symmetrical" configurations. Such geometries may arise when during neuronal development the segments at a newly formed bifurcation are subjected to elastic tensions, which force the bifurcation into an equilibrium planar shape. Apical bifurcations, however, have parent segments oppositely aligned with one of the daughter segments. These geometries arise in the case of side

  6. In Vivo Two-Photon Imaging of Dendritic Spines in Marmoset Neocortex1,2,3

    PubMed Central

    Sadakane, Osamu; Watakabe, Akiya; Ohtsuka, Masanari; Takaji, Masafumi; Sasaki, Tetsuya; Kasai, Masatoshi; Isa, Tadashi; Kato, Go; Nabekura, Junichi; Mizukami, Hiroaki; Ozawa, Keiya; Kawasaki, Hiroshi

    2015-01-01

    Abstract Two-photon microscopy in combination with a technique involving the artificial expression of fluorescent protein has enabled the direct observation of dendritic spines in living brains. However, the application of this method to primate brains has been hindered by the lack of appropriate labeling techniques for visualizing dendritic spines. Here, we developed an adeno-associated virus vector-based fluorescent protein expression system for visualizing dendritic spines in vivo in the marmoset neocortex. For the clear visualization of each spine, the expression of reporter fluorescent protein should be both sparse and strong. To fulfill these requirements, we amplified fluorescent signals using the tetracycline transactivator (tTA)–tetracycline-responsive element system and by titrating down the amount of Thy1S promoter-driven tTA for sparse expression. By this method, we were able to visualize dendritic spines in the marmoset cortex by two-photon microscopy in vivo and analyze the turnover of spines in the prefrontal cortex. Our results demonstrated that short spines in the marmoset cortex tend to change more frequently than long spines. The comparison of in vivo samples with fixed samples showed that we did not detect all existing spines by our method. Although we found glial cell proliferation, the damage of tissues caused by window construction was relatively small, judging from the comparison of spine length between samples with or without window construction. Our new labeling technique for two-photon imaging to visualize in vivo dendritic spines of the marmoset neocortex can be applicable to examining circuit reorganization and synaptic plasticity in primates. PMID:26465000

  7. Local postsynaptic voltage-gated sodium channel activation in dendritic spines of olfactory bulb granule cells.

    PubMed

    Bywalez, Wolfgang G; Patirniche, Dinu; Rupprecht, Vanessa; Stemmler, Martin; Herz, Andreas V M; Pálfi, Dénes; Rózsa, Balázs; Egger, Veronica

    2015-02-01

    Neuronal dendritic spines have been speculated to function as independent computational units, yet evidence for active electrical computation in spines is scarce. Here we show that strictly local voltage-gated sodium channel (Nav) activation can occur during excitatory postsynaptic potentials in the spines of olfactory bulb granule cells, which we mimic and detect via combined two-photon uncaging of glutamate and calcium imaging in conjunction with whole-cell recordings. We find that local Nav activation boosts calcium entry into spines through high-voltage-activated calcium channels and accelerates postsynaptic somatic depolarization, without affecting NMDA receptor-mediated signaling. Hence, Nav-mediated boosting promotes rapid output from the reciprocal granule cell spine onto the lateral mitral cell dendrite and thus can speed up recurrent inhibition. This striking example of electrical compartmentalization both adds to the understanding of olfactory network processing and broadens the general view of spine function.

  8. Oriented Markov random field based dendritic spine segmentation for fluorescence microscopy images.

    PubMed

    Cheng, Jie; Zhou, Xiaobo; Miller, Eric L; Alvarez, Veronica A; Sabatini, Bernardo L; Wong, Stephen T C

    2010-10-01

    Dendritic spines have been shown to be closely related to various functional properties of the neuron. Usually dendritic spines are manually labeled to analyze their morphological changes, which is very time-consuming and susceptible to operator bias, even with the assistance of computers. To deal with these issues, several methods have been recently proposed to automatically detect and measure the dendritic spines with little human interaction. However, problems such as degraded detection performance for images with larger pixel size (e.g. 0.125 μm/pixel instead of 0.08 μm/pixel) still exist in these methods. Moreover, the shapes of detected spines are also distorted. For example, the "necks" of some spines are missed. Here we present an oriented Markov random field (OMRF) based algorithm which improves spine detection as well as their geometric characterization. We begin with the identification of a region of interest (ROI) containing all the dendrites and spines to be analyzed. For this purpose, we introduce an adaptive procedure for identifying the image background. Next, the OMRF model is discussed within a statistical framework and the segmentation is solved as a maximum a posteriori estimation (MAP) problem, whose optimal solution is found by a knowledge-guided iterative conditional mode (KICM) algorithm. Compared with the existing algorithms, the proposed algorithm not only provides a more accurate representation of the spine shape, but also improves the detection performance by more than 50% with regard to reducing both the misses and false detection.

  9. GABA-A receptor inhibition of local calcium signaling in spines and dendrites.

    PubMed

    Marlin, Joseph J; Carter, Adam G

    2014-11-26

    Cortical interneurons activate GABA-A receptors to rapidly control electrical and biochemical signaling at pyramidal neurons. Different populations of interneurons are known to uniquely target the soma and dendrites of pyramidal neurons. However, the ability of these interneurons to inhibit Ca(2+) signaling at spines and dendrites is largely unexplored. Here we use whole-cell recordings, two-photon microscopy, GABA uncaging and optogenetics to study dendritic inhibition at layer 5 (L5) pyramidal neurons in slices of mouse PFC. We first show that GABA-A receptors strongly inhibit action potential (AP)-evoked Ca(2+) signals at both spines and dendrites. We find robust inhibition over tens of milliseconds that spreads along the dendritic branch. However, we observe no difference in the amount of inhibition at neighboring spines and dendrites. We then examine the influence of interneurons expressing parvalbumin (PV), somatostatin (SOM), or 5HT3a receptors. We determine that these populations of interneurons make unique contacts onto the apical and basal dendrites of L5 pyramidal neurons. We also show that SOM and 5HT3a but not PV interneurons potently inhibit AP Ca(2+) signals via GABA-A receptors at both spines and dendrites. These findings reveal how multiple interneurons regulate local Ca(2+) signaling in pyramidal neurons, with implications for cortical function and disease.

  10. GABAB receptors modulate NMDA receptor calcium signals in dendritic spines.

    PubMed

    Chalifoux, Jason R; Carter, Adam G

    2010-04-15

    Metabotropic GABA(B) receptors play a fundamental role in modulating the excitability of neurons and circuits throughout the brain. These receptors influence synaptic transmission by inhibiting presynaptic release or activating postsynaptic potassium channels. However, their ability to directly influence different types of postsynaptic glutamate receptors remains unresolved. Here we examine GABA(B) receptor modulation in layer 2/3 pyramidal neurons from the mouse prefrontal cortex. We use two-photon laser-scanning microscopy to study synaptic modulation at individual dendritic spines. Using two-photon optical quantal analysis, we first demonstrate robust presynaptic modulation of multivesicular release at single synapses. Using two-photon glutamate uncaging, we then reveal that GABA(B) receptors strongly inhibit NMDA receptor calcium signals. This postsynaptic modulation occurs via the PKA pathway and does not affect synaptic currents mediated by AMPA or NMDA receptors. This form of GABA(B) receptor modulation has widespread implications for the control of calcium-dependent neuronal function.

  11. Electrical and Ca2+ signaling in dendritic spines of substantia nigra dopaminergic neurons

    PubMed Central

    Hage, Travis A; Sun, Yujie; Khaliq, Zayd M

    2016-01-01

    Little is known about the density and function of dendritic spines on midbrain dopamine neurons, or the relative contribution of spine and shaft synapses to excitability. Using Ca2+ imaging, glutamate uncaging, fluorescence recovery after photobleaching and transgenic mice expressing labeled PSD-95, we comparatively analyzed electrical and Ca2+ signaling in spines and shaft synapses of dopamine neurons. Dendritic spines were present on dopaminergic neurons at low densities in live and fixed tissue. Uncaging-evoked potential amplitudes correlated inversely with spine length but positively with the presence of PSD-95. Spine Ca2+ signals were less sensitive to hyperpolarization than shaft synapses, suggesting amplification of spine head voltages. Lastly, activating spines during pacemaking, we observed an unexpected enhancement of spine Ca2+ midway throughout the spike cycle, likely involving recruitment of NMDA receptors and voltage-gated conductances. These results demonstrate functionality of spines in dopamine neurons and reveal a novel modulation of spine Ca2+ signaling during pacemaking. DOI: http://dx.doi.org/10.7554/eLife.13905.001 PMID:27163179

  12. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    PubMed

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  13. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation

    PubMed Central

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-01-01

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders. PMID:26984393

  14. VCP and ATL1 regulate endoplasmic reticulum and protein synthesis for dendritic spine formation.

    PubMed

    Shih, Yu-Tzu; Hsueh, Yi-Ping

    2016-03-17

    Imbalanced protein homeostasis, such as excessive protein synthesis and protein aggregation, is a pathogenic hallmark of a range of neurological disorders. Here, using expression of mutant proteins, a knockdown approach and disease mutation knockin mice, we show that VCP (valosin-containing protein), together with its cofactor P47 and the endoplasmic reticulum (ER) morphology regulator ATL1 (Atlastin-1), regulates tubular ER formation and influences the efficiency of protein synthesis to control dendritic spine formation in neurons. Strengthening the significance of protein synthesis in dendritic spinogenesis, the translation blocker cyclohexamide and the mTOR inhibitor rapamycin reduce dendritic spine density, while a leucine supplement that increases protein synthesis ameliorates the dendritic spine defects caused by Vcp and Atl1 deficiencies. Because VCP and ATL1 are the causative genes of several neurodegenerative and neurodevelopmental disorders, we suggest that impaired ER formation and inefficient protein synthesis are significant in the pathogenesis of multiple neurological disorders.

  15. Real-scale 3D models of the scoliotic spine from biplanar radiography without calibration objects.

    PubMed

    Moura, Daniel C; Barbosa, Jorge G

    2014-10-01

    This paper presents a new method for modelling the spines of subjects and making accurate 3D measurements using standard radiologic systems without requiring calibration objects. The method makes use of the focal distance and statistical models for estimating the geometrical parameters of the system. A dataset of 32 subjects was used to assess this method. The results show small errors for the main clinical indices, such as an RMS error of 0.49° for the Cobb angle, 0.50° for kyphosis, 0.38° for lordosis, and 2.62mm for the spinal length. This method is the first to achieve this level of accuracy without requiring the use of calibration objects when acquiring radiographs. We conclude that the proposed method allows for the evaluation of scoliosis with a much simpler setup than currently available methods. PMID:24908193

  16. EPSPs Measured in Proximal Dendritic Spines of Cortical Pyramidal Neurons123

    PubMed Central

    2016-01-01

    Abstract EPSPs occur when the neurotransmitter glutamate binds to postsynaptic receptors located on small pleomorphic membrane protrusions called dendritic spines. To transmit the synaptic signal, these potentials must travel through the spine neck and the dendritic tree to reach the soma. Due to their small size, the electrical behavior of spines and their ability to compartmentalize electrical signals has been very difficult to assess experimentally. In this study, we developed a method to perform simultaneous two-photon voltage-sensitive dye recording with two-photon glutamate uncaging in order to measure the characteristics (amplitude and duration) of uncaging-evoked EPSPs in single spines on the basal dendrites of L5 pyramidal neurons in acute brain slices from CD1 control mice. We were able to record uncaging-evoked spine potentials that resembled miniature EPSPs at the soma from a wide range of spine morphologies. In proximal spines, these potentials averaged 13.0 mV (range, 6.5–30.8 mV; N = 20) for an average somatic EPSP of 0.59 mV, whereas the mean attenuation ratio (spine/soma) was found to be 25.3. Durations of spine EPSP waveforms were found to be 11.7 ms on average. Modeling studies demonstrate the important role that spine neck resistance (Rneck) plays in spine EPSP amplitudes. Simulations used to estimate Rneck by fits to voltage-sensitive dye measurements produced a mean of 179 MΩ (range, 23–420 MΩ; N = 19). Independent measurements based on fluorescence recovery after photobleaching of a cytosolic dye from spines of the same population of neurons produced a mean Rneck estimate of 204 MΩ (range, 52–521 MΩ; N = 34). PMID:27257618

  17. Non-Ionotropic NMDA Receptor Signaling Drives Activity-Induced Dendritic Spine Shrinkage

    PubMed Central

    Stein, Ivar S.; Gray, John A.

    2015-01-01

    The elimination of dendritic spine synapses is a critical step in the refinement of neuronal circuits during development of the cerebral cortex. Several studies have shown that activity-induced shrinkage and retraction of dendritic spines depend on activation of the NMDA-type glutamate receptor (NMDAR), which leads to influx of extracellular calcium ions and activation of calcium-dependent phosphatases that modify regulators of the spine cytoskeleton, suggesting that influx of extracellular calcium ions drives spine shrinkage. Intriguingly, a recent report revealed a novel non-ionotropic function of the NMDAR in the regulation of synaptic strength, which relies on glutamate binding but is independent of ion flux through the receptor (Nabavi et al., 2013). Here, we tested whether non-ionotropic NMDAR signaling could also play a role in driving structural plasticity of dendritic spines. Using two-photon glutamate uncaging and time-lapse imaging of rat hippocampal CA1 neurons, we show that low-frequency glutamatergic stimulation results in shrinkage of dendritic spines even in the presence of the NMDAR d-serine/glycine binding site antagonist 7-chlorokynurenic acid (7CK), which fully blocks NMDAR-mediated currents and Ca2+ transients. Notably, application of 7CK or MK-801 also converts spine enlargement resulting from a high-frequency uncaging stimulus into spine shrinkage, demonstrating that strong Ca2+ influx through the NMDAR normally overcomes a non-ionotropic shrinkage signal to drive spine growth. Our results support a model in which NMDAR signaling, independent of ion flux, drives structural shrinkage at spiny synapses. SIGNIFICANCE STATEMENT Dendritic spine elimination is vital for the refinement of neural circuits during development and has been linked to improvements in behavioral performance in the adult. Spine shrinkage and elimination have been widely accepted to depend on Ca2+ influx through NMDA-type glutamate receptors (NMDARs) in conjunction with long

  18. Dendritic spine density of prefrontal layer 6 pyramidal neurons in relation to apical dendrite sculpting by nicotinic acetylcholine receptors

    PubMed Central

    Kang, Lily; Tian, Michael K.; Bailey, Craig D. C.; Lambe, Evelyn K.

    2015-01-01

    Prefrontal layer 6 (L6) pyramidal neurons play an important role in the adult control of attention, facilitated by their strong activation by nicotinic acetylcholine receptors. These neurons in mouse association cortex are distinctive morphologically when compared to L6 neurons in primary cortical regions. Roughly equal proportions of the prefrontal L6 neurons have apical dendrites that are “long” (reaching to the pial surface) vs. “short” (terminating in the deep layers, as in primary cortical regions). This distinct prefrontal morphological pattern is established in the post-juvenile period and appears dependent on nicotinic receptors. Here, we examine dendritic spine densities in these two subgroups of prefrontal L6 pyramidal neurons under control conditions as well as after perturbation of nicotinic acetylcholine receptors. In control mice, the long neurons have significantly greater apical and basal dendritic spine density compared to the short neurons. Furthermore, manipulations of nicotinic receptors (chrna5 deletion or chronic developmental nicotine exposure) have distinct effects on these two subgroups of L6 neurons: apical spine density is significantly reduced in long neurons, and basal spine density is significantly increased in short neurons. These changes appear dependent on the α5 nicotinic subunit encoded by chrna5. Overall, the two subgroups of prefrontal L6 neurons appear positioned to integrate information either across cortex (long neurons) or within the deep layers (short neurons), and nicotinic perturbations differently alter spine density within each subgroup. PMID:26500498

  19. Activation of NMDA receptors promotes dendritic spine development through MMP-mediated ICAM-5 cleavage

    PubMed Central

    Tian, Li; Stefanidakis, Michael; Ning, Lin; Van Lint, Philippe; Nyman-Huttunen, Henrietta; Libert, Claude; Itohara, Shigeyoshi; Mishina, Masayoshi; Rauvala, Heikki; Gahmberg, Carl G.

    2007-01-01

    Matrix metalloproteinase (MMP)-2 and -9 are pivotal in remodeling many tissues. However, their functions and candidate substrates for brain development are poorly characterized. Intercellular adhesion molecule-5 (ICAM-5; Telencephalin) is a neuronal adhesion molecule that regulates dendritic elongation and spine maturation. We find that ICAM-5 is cleaved from hippocampal neurons when the cells are treated with N-methyl-d-aspartic acid (NMDA) or α-amino-3-hydroxy-5-methylisoxazole-propionic acid (AMPA). The cleavage is blocked by MMP-2 and -9 inhibitors and small interfering RNAs. Newborn MMP-2– and MMP-9–deficient mice brains contain more full-length ICAM-5 than wild-type mice. NMDA receptor activation disrupts the actin cytoskeletal association of ICAM-5, which promotes its cleavage. ICAM-5 is mainly located in dendritic filopodia and immature thin spines. MMP inhibitors block the NMDA-induced cleavage of ICAM-5 more efficiently in dendritic shafts than in thin spines. ICAM-5 deficiency causes retraction of thin spine heads in response to NMDA stimulation. Soluble ICAM-5 promotes elongation of dendritic filopodia from wild-type neurons, but not from ICAM-5–deficient neurons. Thus, MMPs are important for ICAM-5–mediated dendritic spine development. PMID:17682049

  20. Burn injury-induced mechanical allodynia is maintained by Rac1-regulated dendritic spine dysgenesis.

    PubMed

    Tan, Andrew M; Samad, Omar A; Liu, Shujun; Bandaru, Samira; Zhao, Peng; Waxman, Stephen G

    2013-10-01

    Although nearly 11 million individuals yearly require medical treatment due to burn injuries and develop clinically intractable pain, burn injury-induced pain is poorly understood, with relatively few studies in preclinical models. To elucidate mechanisms of burn injury-induced chronic pain, we utilized a second-degree burn model, which produces a persistent neuropathic pain phenotype. Rats with burn injury exhibited reduced mechanical pain thresholds ipsilateral to the burn injury. Ipsilateral WDR neurons in the spinal cord dorsal horn exhibited hyperexcitability in response to a range of stimuli applied to their hindpaw receptive fields. Because dendritic spine morphology is strongly associated with synaptic function and transmission, we profiled dendritic spine shape, density, and distribution of WDR neurons. Dendritic spine dysgenesis was observed on ipsilateral WDR neurons in burn-injured animals exhibiting behavioral and electrophysiological evidence of neuropathic pain. Heat hyperalgesia testing produced variable results, as expected from previous studies of this model of second-degree burn injury in rats. Administration of Rac1-inhibitor, NSC23766, attenuated dendritic spine dysgenesis, decreased mechanical allodynia and electrophysiological signs of burn-induced neuropathic pain. These results support two related implications: that the presence of abnormal dendritic spines contributes to the maintenance of neuropathic pain, and that therapeutic targeting of Rac1 signaling merits further investigation as a novel strategy for pain management after burn injury.

  1. ARF6-mediated endosomal transport of Telencephalin affects dendritic filopodia-to-spine maturation

    PubMed Central

    Raemaekers, Tim; Peric, Aleksandar; Baatsen, Pieter; Sannerud, Ragna; Declerck, Ilse; Baert, Veerle; Michiels, Christine; Annaert, Wim

    2012-01-01

    Dendritic filopodia are dynamic structures thought to be the precursors of spines during synapse development. Morphological maturation to spines is associated with the stabilization and strengthening of synapses, and can be altered in various neurological disorders. Telencephalin (TLN/intercellular adhesion molecule-5 (ICAM5)) localizes to dendritic filopodia, where it facilitates their formation/maintenance, thereby slowing spine morphogenesis. As spines are largely devoid of TLN, its exclusion from the filopodia surface appears to be required in this maturation process. Using HeLa cells and primary hippocampal neurons, we demonstrate that surface removal of TLN involves internalization events mediated by the small GTPase ADP-ribosylation factor 6 (ARF6), and its activator EFA6A. This endocytosis of TLN affects filopodia-to-spine transition, and requires Rac1-mediated dephosphorylation/release of actin-binding ERM proteins from TLN. At the somato-dendritic surface, TLN and EFA6A are confined to distinct, flotillin-positive membrane subdomains. The co-distribution of TLN with this lipid raft marker also persists during its endosomal targeting to CD63-positive late endosomes. This suggests a specific microenvironment facilitating ARF6-mediated mobilization of TLN that contributes to promotion of dendritic spine development. PMID:22781129

  2. Sexual experience enhances cognitive flexibility and dendritic spine density in the medial prefrontal cortex.

    PubMed

    Glasper, Erica R; LaMarca, Elizabeth A; Bocarsly, Miriam E; Fasolino, Maria; Opendak, Maya; Gould, Elizabeth

    2015-11-01

    The medial prefrontal cortex is important for cognitive flexibility, a capability that is affected by environmental conditions and specific experiences. Aversive experience, such as chronic restraint stress, is known to impair performance on a task of cognitive flexibility, specifically attentional set-shifting, in rats. Concomitant with this performance decrement, chronic stress reduces the number of dendritic spines on pyramidal neurons in the medial prefrontal cortex. No previous studies have examined whether a rewarding experience, namely mating, affects cognitive flexibility and dendritic spines in the medial prefrontal cortex of male rats. To test this possibility, we exposed adult male rats to sexual receptive females once daily for one week, assessed attentional set-shifting performance, and then analyzed their brains for changes in dendritic spines. We found that sexual experience improved performance on extradimensional set-shifting, which is known to require the medial prefrontal cortex. Additionally, we observed increased dendritic spine density on apical and basal dendrites of pyramidal neurons in the medial prefrontal cortex, but not the orbitofrontal cortex, after sexual experience. We also found that sexual experience enhanced dendritic spine density on granule neurons of the dentate gyrus. The ventral hippocampus sends a direct projection to the medial prefrontal cortex, raising the possibility that experience-dependent changes in the hippocampus are necessary for alterations in medial prefrontal cortex structure and function. As a first attempt at investigating this, we inactivated the ventral hippocampus with the GABA agonist muscimol, after each daily bout of sexual experience to observe whether the beneficial effects on cognitive flexibility were abolished. Contrary to our hypothesis, blocking hippocampal activity after sexual experience had no impact on enhanced cognitive flexibility. Taken together, these findings indicate that sexual

  3. Extracellular matrix control of dendritic spine and synapse structure and plasticity in adulthood

    PubMed Central

    Levy, Aaron D.; Omar, Mitchell H.; Koleske, Anthony J.

    2014-01-01

    Dendritic spines are the receptive contacts at most excitatory synapses in the central nervous system. Spines are dynamic in the developing brain, changing shape as they mature as well as appearing and disappearing as they make and break connections. Spines become much more stable in adulthood, and spine structure must be actively maintained to support established circuit function. At the same time, adult spines must retain some plasticity so their structure can be modified by activity and experience. As such, the regulation of spine stability and remodeling in the adult animal is critical for normal function, and disruption of these processes is associated with a variety of late onset diseases including schizophrenia and Alzheimer’s disease. The extracellular matrix (ECM), composed of a meshwork of proteins and proteoglycans, is a critical regulator of spine and synapse stability and plasticity. While the role of ECM receptors in spine regulation has been extensively studied, considerably less research has focused directly on the role of specific ECM ligands. Here, we review the evidence for a role of several brain ECM ligands and remodeling proteases in the regulation of dendritic spine and synapse formation, plasticity, and stability in adults. PMID:25368556

  4. Endophilin A1 regulates dendritic spine morphogenesis and stability through interaction with p140Cap

    PubMed Central

    Yang, Yanrui; Wei, Mengping; Xiong, Ying; Du, Xiangyang; Zhu, Shaoxia; Yang, Lin; Zhang, Chen; Liu, Jia-Jia

    2015-01-01

    Dendritic spines are actin-rich membrane protrusions that are the major sites of excitatory synaptic input in the mammalian brain, and their morphological plasticity provides structural basis for learning and memory. Here we report that endophilin A1, with a well-established role in clathrin-mediated synaptic vesicle endocytosis at the presynaptic terminal, also localizes to dendritic spines and is required for spine morphogenesis, synapse formation and synaptic function. We identify p140Cap, a regulator of cytoskeleton reorganization, as a downstream effector of endophilin A1 and demonstrate that disruption of their interaction impairs spine formation and maturation. Moreover, we demonstrate that knockdown of endophilin A1 or p140Cap impairs spine stabilization and synaptic function. We further show that endophilin A1 regulates the distribution of p140Cap and its downstream effector, the F-actin-binding protein cortactin as well as F-actin enrichment in dendritic spines. Together, these results reveal a novel function of postsynaptic endophilin A1 in spine morphogenesis, stabilization and synaptic function through the regulation of p140Cap. PMID:25771685

  5. mGluR5 Positive and Negative Allosteric Modulators Differentially Affect Dendritic Spine Density and Morphology in the Prefrontal Cortex.

    PubMed

    LaCrosse, Amber L; Taylor, Sara B; Nemirovsky, Natali E; Gass, Justin T; Olive, Michael F

    2015-01-01

    Positive and negative allosteric modulators (PAMs and NAMs, respectively) of type 5 metabotropic glutamate receptors (mGluR5) are currently being investigated as novel treatments for neuropsychiatric diseases including drug addiction, schizophrenia, and Fragile X syndrome. However, only a handful of studies have examined the effects of mGluR5 PAMs or NAMs on the structural plasticity of dendritic spines in otherwise naïve animals, particularly in brain regions mediating executive function. In the present study, we assessed dendritic spine density and morphology in pyramidal cells of the medial prefrontal cortex (mPFC) after repeated administration of either the prototypical mGluR5 PAM 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5- yl)benzamide (CDPPB, 20 mg/kg), the clinically utilized mGluR5 NAM 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4Himidazol- 2-yl)urea (fenobam, 20 mg/kg), or vehicle in male Sprague-Dawley rats. Following once daily treatment for 10 consecutive days, coronal brain sections containing the mPFC underwent diolistic labeling and 3D image analysis of dendritic spines. Compared to vehicle treated animals, rats administered fenobam exhibited significant increases in dendritic spine density and the overall frequency of spines with small (<0.2 μm) head diameters, decreases in frequency of spines with medium (0.2-0.4 μm) head diameters, and had no changes in frequency of spines with large head diameters (>0.4 μm). Administration of CDPPB had no discernable effects on dendritic spine density or morphology, and neither CDPPB nor fenobam had any effect on spine length or volume. We conclude that mGluR5 PAMs and NAMs differentially affect mPFC dendritic spine structural plasticity in otherwise naïve animals, and additional studies assessing their effects in combination with cognitive or behavioral tasks are needed. PMID:25921744

  6. mGluR5 Positive and Negative Allosteric Modulators Differentially Affect Dendritic Spine Density and Morphology in the Prefrontal Cortex

    PubMed Central

    LaCrosse, Amber L.; Taylor, Sara B.; Nemirovsky, Natali E.; Gass, Justin T.; Olive, M. Foster

    2015-01-01

    Positive and negative allosteric modulators (PAMs and NAMs, respectively) of type 5 metabotropic glutamate receptors (mGluR5) are currently being investigated as novel treatments for neuropsychiatric diseases including drug addiction, schizophrenia, and Fragile X syndrome. However, only a handful of studies have examined the effects of mGluR5 PAMs or NAMs on the structural plasticity of dendritic spines in otherwise naïve animals, particularly in brain regions mediating executive function. In the present study, we assessed dendritic spine density and morphology in pyramidal cells of the medial prefrontal cortex (mPFC) after repeated administration of either the prototypical mGluR5 PAM 3-cyano-N-(1,3-diphenyl-1H-pyrazol-5-yl)benzamide (CDPPB, 20 mg/kg), the clinically utilized mGluR5 NAM 1-(3-chlorophenyl)-3-(3-methyl-5-oxo-4H-imidazol-2-yl)urea (fenobam, 20 mg/kg), or vehicle in male Sprague-Dawley rats. Following once daily treatment for 10 consecutive days, coronal brain sections containing the mPFC underwent diolistic labeling and 3D image analysis of dendritic spines. Compared to vehicle treated animals, rats administered fenobam exhibited significant increases in dendritic spine density and the overall frequency of spines with small (<0.2 μm) head diameters, decreases in frequency of spines with medium (0.2–0.4 μm) head diameters, and had no changes in frequency of spines with large head diameters (>0.4 μm). Administration of CDPPB had no discernable effects on dendritic spine density or morphology, and neither CDPPB nor fenobam had any effect on spine length or volume. We conclude that mGluR5 PAMs and NAMs differentially affect mPFC dendritic spine structural plasticity in otherwise naïve animals, and additional studies assessing their effects in combination with cognitive or behavioral tasks are needed. PMID:25921744

  7. Maternal Loss of Ube3a Impairs Experience-Driven Dendritic Spine Maintenance in the Developing Visual Cortex

    PubMed Central

    Kim, Hyojin; Kunz, Portia A.; Mooney, Richard

    2016-01-01

    Dendritic spines are a morphological feature of the majority of excitatory synapses in the mammalian neocortex and are motile structures with shapes and lifetimes that change throughout development. Proper cortical development and function, including cortical contributions to learning and memory formation, require appropriate experience-dependent dendritic spine remodeling. Dendritic spine abnormalities have been reported for many neurodevelopmental disorders, including Angelman syndrome (AS), which is caused by the loss of the maternally inherited UBE3A allele (encoding ubiquitin protein ligase E3A). Prior studies revealed that UBE3A protein loss leads to reductions in dendritic spine density and diminished excitatory synaptic transmission. However, the decrease in spine density could come from either a reduction in spine formation or an increase in spine elimination. Here, we used acute and longitudinal in vivo two-photon microscopy to investigate developmental and experience-dependent changes in the numbers, dynamics, and morphology of layer 5 pyramidal neuron apical dendritic spines in the primary visual cortex of control and AS model mice (Ube3am−/p+ mice). We found that neurons in AS model mice undergo a greater elimination of dendritic spines than wild-type mice during the end of the first postnatal month. However, when raised in darkness, spine density and dynamics were indistinguishable between control and AS model mice, which indicates that decreased spine density in AS model mice reflects impaired experience-driven spine maintenance. Our data thus demonstrate an experience-dependent anatomical substrate by which the loss of UBE3A reduces dendritic spine density and disrupts cortical circuitry. SIGNIFICANCE STATEMENT Reduced dendritic spine densities are common in the neurodevelopmental disorder Angelman syndrome (AS). Because prior reports were based on postmortem tissue, it was unknown whether this anatomical deficit arises from decreased spine

  8. Arf4 Determines Dentate Gyrus-Mediated Pattern Separation by Regulating Dendritic Spine Development

    PubMed Central

    Jain, Sachi; Yoon, Seo Yeon; Zhu, Lei; Brodbeck, Jens; Dai, Jessica; Walker, David; Huang, Yadong

    2012-01-01

    The ability to distinguish between similar experiences is a critical feature of episodic memory and is primarily regulated by the dentate gyrus (DG) region of the hippocampus. However, the molecular mechanisms underlying such pattern separation tasks are poorly understood. We report a novel role for the small GTPase ADP ribosylation factor 4 (Arf4) in controlling pattern separation by regulating dendritic spine development. Arf4+/− mice at 4–5 months of age display severe impairments in a pattern separation task, as well as significant dendritic spine loss and smaller miniature excitatory post-synaptic currents (mEPSCs) in granule cells of the DG. Arf4 knockdown also decreases spine density in primary neurons, whereas Arf4 overexpression promotes spine development. A constitutively active form of Arf4, Arf4-Q71L, promotes spine density to an even greater extent than wildtype Arf4, whereas the inactive Arf4-T31N mutant does not increase spine density relative to controls. Arf4′s effects on spine development are regulated by ASAP1, a GTPase-activating protein that modulates Arf4 GTPase activity. ASAP1 overexpression decreases spine density, and this effect is partially rescued by concomitant overexpression of wildtype Arf4 or Arf4-Q71L. In addition, Arf4 overexpression rescues spine loss in primary neurons from an Alzheimer's disease-related apolipoprotein (apo) E4 mouse model. Our findings suggest that Arf4 is a critical modulator of DG-mediated pattern separation by regulating dendritic spine development. PMID:23050017

  9. Spatial distribution of Na+-K+-ATPase in dendritic spines dissected by nanoscale superresolution STED microscopy

    PubMed Central

    2011-01-01

    Background The Na+,K+-ATPase plays an important role for ion homeostasis in virtually all mammalian cells, including neurons. Despite this, there is as yet little known about the isoform specific distribution in neurons. Results With help of superresolving stimulated emission depletion microscopy the spatial distribution of Na+,K+-ATPase in dendritic spines of cultured striatum neurons have been dissected. The found compartmentalized distribution provides a strong evidence for the confinement of neuronal Na+,K+-ATPase (α3 isoform) in the postsynaptic region of the spine. Conclusions A compartmentalized distribution may have implications for the generation of local sodium gradients within the spine and for the structural and functional interaction between the sodium pump and other synaptic proteins. Superresolution microscopy has thus opened up a new perspective to elucidate the nature of the physiological function, regulation and signaling role of Na+,K+-ATPase from its topological distribution in dendritic spines. PMID:21272290

  10. The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A.

    PubMed

    Segura, Inmaculada; Lange, Christian; Knevels, Ellen; Moskalyuk, Anastasiya; Pulizzi, Rocco; Eelen, Guy; Chaze, Thibault; Tudor, Cicerone; Boulegue, Cyril; Holt, Matthew; Daelemans, Dirk; Matondo, Mariette; Ghesquière, Bart; Giugliano, Michele; Ruiz de Almodovar, Carmen; Dewerchin, Mieke; Carmeliet, Peter

    2016-03-22

    Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA) as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL)-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition. PMID:26972007

  11. The Oxygen Sensor PHD2 Controls Dendritic Spines and Synapses via Modification of Filamin A

    PubMed Central

    Segura, Inmaculada; Lange, Christian; Knevels, Ellen; Moskalyuk, Anastasiya; Pulizzi, Rocco; Eelen, Guy; Chaze, Thibault; Tudor, Cicerone; Boulegue, Cyril; Holt, Matthew; Daelemans, Dirk; Matondo, Mariette; Ghesquière, Bart; Giugliano, Michele; Ruiz de Almodovar, Carmen; Dewerchin, Mieke; Carmeliet, Peter

    2016-01-01

    Summary Neuronal function is highly sensitive to changes in oxygen levels, but how hypoxia affects dendritic spine formation and synaptogenesis is unknown. Here we report that hypoxia, chemical inhibition of the oxygen-sensing prolyl hydroxylase domain proteins (PHDs), and silencing of Phd2 induce immature filopodium-like dendritic protrusions, promote spine regression, reduce synaptic density, and decrease the frequency of spontaneous action potentials independently of HIF signaling. We identified the actin cross-linker filamin A (FLNA) as a target of PHD2 mediating these effects. In normoxia, PHD2 hydroxylates the proline residues P2309 and P2316 in FLNA, leading to von Hippel-Lindau (VHL)-mediated ubiquitination and proteasomal degradation. In hypoxia, PHD2 inactivation rapidly upregulates FLNA protein levels because of blockage of its proteasomal degradation. FLNA upregulation induces more immature spines, whereas Flna silencing rescues the immature spine phenotype induced by PHD2 inhibition. PMID:26972007

  12. Voxel-based morphometry predicts shifts in dendritic spine density and morphology with auditory fear conditioning.

    PubMed

    Keifer, O P; Hurt, R C; Gutman, D A; Keilholz, S D; Gourley, S L; Ressler, K J

    2015-07-07

    Neuroimaging has provided compelling data about the brain. Yet the underlying mechanisms of many neuroimaging techniques have not been elucidated. Here we report a voxel-based morphometry (VBM) study of Thy1-YFP mice following auditory fear conditioning complemented by confocal microscopy analysis of cortical thickness, neuronal morphometric features and nuclei size/density. Significant VBM results included the nuclei of the amygdala, the insula and the auditory cortex. There were no significant VBM changes in a control brain area. Focusing on the auditory cortex, confocal analysis showed that fear conditioning led to a significantly increased density of shorter and wider dendritic spines, while there were no spine differences in the control area. Of all the morphology metrics studied, the spine density was the only one to show significant correlation with the VBM signal. These data demonstrate that learning-induced structural changes detected by VBM may be partially explained by increases in dendritic spine density.

  13. Neural Cell Adhesion Molecule NrCAM Regulates Semaphorin 3F-Induced Dendritic Spine Remodeling

    PubMed Central

    Demyanenko, Galina P.; Mohan, Vishwa; Zhang, Xuying; Brennaman, Leann H.; Dharbal, Katherine E.S.; Tran, Tracy S.; Manis, Paul B.

    2014-01-01

    Neuron-glial related cell adhesion molecule (NrCAM) is a regulator of axon growth and repellent guidance, and has been implicated in autism spectrum disorders. Here a novel postsynaptic role for NrCAM in Semaphorin3F (Sema3F)-induced dendritic spine remodeling was identified in pyramidal neurons of the primary visual cortex (V1). NrCAM localized to dendritic spines of star pyramidal cells in postnatal V1, where it was coexpressed with Sema3F. NrCAM deletion in mice resulted in elevated spine densities on apical dendrites of star pyramidal cells at both postnatal and adult stages, and electron microscopy revealed increased numbers of asymmetric synapses in layer 4 of V1. Whole-cell recordings in cortical slices from NrCAM-null mice revealed increased frequency of mEPSCs in star pyramidal neurons. Recombinant Sema3F-Fc protein induced spine retraction on apical dendrites of wild-type, but not NrCAM-null cortical neurons in culture, while re-expression of NrCAM rescued the spine retraction response. NrCAM formed a complex in brain with Sema3F receptor subunits Neuropilin-2 (Npn-2) and PlexinA3 (PlexA3) through an Npn-2-binding sequence (TARNER) in the extracellular Ig1 domain. A trans heterozygous genetic interaction test demonstrated that Sema3F and NrCAM pathways interacted in vivo to regulate spine density in star pyramidal neurons. These findings reveal NrCAM as a novel postnatal regulator of dendritic spine density in cortical pyramidal neurons, and an integral component of the Sema3F receptor complex. The results implicate NrCAM as a contributor to excitatory/inhibitory balance in neocortical circuits. PMID:25143608

  14. Ovarian Steroids Increase PSD-95 Expression and Dendritic Spines in the Dorsal Raphe of Ovariectomized Macaques

    PubMed Central

    Rivera, Heidi M.; Bethea, Cynthia L.

    2014-01-01

    Estradiol (E) and progesterone (P) promote spinogenesis in several brain areas. Intracellular signaling cascades that promote spinogenesis involve RhoGTPases, glutamate signaling and synapse assembly. We found that in serotonin neurons, E±P administration increases (a) gene and protein expression of RhoGTPases, (b) gene expression of glutamate receptors (c) gene expression of pivotal synapse assembly proteins. Therefore, in this study we determined whether structural changes in dendritic spines in the dorsal raphe follow the observed changes in gene and protein expression. Dendritic spines were examined with immunogold silver staining of a spine marker protein, postsynaptic density-95 (PSD-95) and with Golgi staining. In the PSD-95 study, adult Ovx monkeys received placebo, E, P, or E+P for 1 month (n=3/group). Sections were immunostained for PSD-95 and the number of PSD-95-positive puncta was determined with stereology. E, P and E+P treatment significantly increased the total number of PSD-95-positive puncta (ANOVA, P=0.04). In the Golgi study, adult Ovx monkeys received placebo, E or E+P for 1 month (n=3–4) and the midbrain was Golgi-stained. A total of 80 neurons were analyzed with Neurolucida software. There was a significant difference in spine density that depended on branch order (two-way ANOVA). E+P treatment significantly increased spine density in higher-order (3–5°) dendritic branches relative to Ovx group (Bonferroni, P<0.05). In summary, E+P leads to the elaboration of dendritic spines on dorsal raphe neurons. The ability of E to induce PSD-95, but not actual spines, suggests either a sampling or time lag issue. Increased spinogenesis on serotonin dendrites would facilitate excitatory glutamatergic input and, in turn, increase serotonin neurotransmission throughout the brain. PMID:23959764

  15. Super-Resolution Dynamic Imaging of Dendritic Spines Using a Low-Affinity Photoconvertible Actin Probe

    PubMed Central

    Lelek, Mickaël; Darzacq, Xavier; Triller, Antoine; Zimmer, Christophe; Dahan, Maxime

    2011-01-01

    The actin cytoskeleton of dendritic spines plays a key role in morphological aspects of synaptic plasticity. The detailed analysis of the spine structure and dynamics in live neurons, however, has been hampered by the diffraction-limited resolution of conventional fluorescence microscopy. The advent of nanoscopic imaging techniques thus holds great promise for the study of these processes. We implemented a strategy for the visualization of morphological changes of dendritic spines over tens of minutes at a lateral resolution of 25 to 65 nm. We have generated a low-affinity photoconvertible probe, capable of reversibly binding to actin and thus allowing long-term photoactivated localization microscopy of the spine cytoskeleton. Using this approach, we resolve structural parameters of spines and record their long-term dynamics at a temporal resolution below one minute. Furthermore, we have determined changes in the spine morphology in response to pharmacologically induced synaptic activity and quantified the actin redistribution underlying these changes. By combining PALM imaging with quantum dot tracking, we could also simultaneously visualize the cytoskeleton and the spine membrane, allowing us to record complementary information on the morphological changes of the spines at super-resolution. PMID:21264214

  16. The evolving role of dendritic spines and memory: interaction(s) with estradiol

    PubMed Central

    Frankfurt, Maya; Luine, Victoria

    2015-01-01

    Memory processing is presumed to depend on synaptic plasticity, which appears to have a role in mediating the acquisition, consolidation, and retention of memory. We have studied the relationship between estrogen, recognition memory, and dendritic spine density in the hippocampus and medial prefrontal cortex, areas critical for memory, across the lifespan in female rodents. The present paper reviews the literature on dendritic spine plasticity in mediating both short and long term memory, as well as the decreased memory that occurs with aging and Alzheimer's Disease. It also addresses the role of acute and chronic estrogen treatment in these processes. PMID:25993604

  17. Emerging Roles of Filopodia and Dendritic Spines in Motoneuron Plasticity during Development and Disease

    PubMed Central

    Kanjhan, Refik; Noakes, Peter G.; Bellingham, Mark C.

    2016-01-01

    Motoneurons develop extensive dendritic trees for receiving excitatory and inhibitory synaptic inputs to perform a variety of complex motor tasks. At birth, the somatodendritic domains of mouse hypoglossal and lumbar motoneurons have dense filopodia and spines. Consistent with Vaughn's synaptotropic hypothesis, we propose a developmental unified-hybrid model implicating filopodia in motoneuron spinogenesis/synaptogenesis and dendritic growth and branching critical for circuit formation and synaptic plasticity at embryonic/prenatal/neonatal period. Filopodia density decreases and spine density initially increases until postnatal day 15 (P15) and then decreases by P30. Spine distribution shifts towards the distal dendrites, and spines become shorter (stubby), coinciding with decreases in frequency and increases in amplitude of excitatory postsynaptic currents with maturation. In transgenic mice, either overexpressing the mutated human Cu/Zn-superoxide dismutase (hSOD1G93A) gene or deficient in GABAergic/glycinergic synaptic transmission (gephyrin, GAD-67, or VGAT gene knockout), hypoglossal motoneurons develop excitatory glutamatergic synaptic hyperactivity. Functional synaptic hyperactivity is associated with increased dendritic growth, branching, and increased spine and filopodia density, involving actin-based cytoskeletal and structural remodelling. Energy-dependent ionic pumps that maintain intracellular sodium/calcium homeostasis are chronically challenged by activity and selectively overwhelmed by hyperactivity which eventually causes sustained membrane depolarization leading to excitotoxicity, activating microglia to phagocytose degenerating neurons under neuropathological conditions. PMID:26843990

  18. Effects of lead exposure on dendrite and spine development in hippocampal dentate gyrus areas of rats.

    PubMed

    Hu, Fan; Ge, Meng-Meng; Chen, Wei-Heng

    2016-03-01

    Lead exposure has been implicated in the impairment of synaptic plasticity in the hippocampal dentate gyrus (DG) areas of rats. However, whether the degradation of physiological properties is based on the morphological alteration of granule neurons in DG areas remains elusive. Here, we examined the dendritic branch extension and spine formation of granule neurons after lead exposure during development in rats. Dendritic morphology was studied using Golgi-Cox stain method, which was followed by Sholl analysis at postnatal days 14 and 21. Our results indicated that, for both ages, lead exposure significantly decreased the total dendritic length and spine density of granule neurons in the DG of the rat hippocampus. Further branch order analysis revealed that the decrease of dendritic length was observed only at the second branch order. Moreover, there were obvious deficits in the proportion and size of mushroom-type spines. These deficits in spine formation and maturity were accompanied by a decrease in Arc/Arg3.1 expression. Our present findings are the first to show that developmental lead exposure disturbs branch and spine formation in hippocampal DG areas. Arc/Arg3.1 may have a critical role in the disruption of neuronal morphology and synaptic plasticity in lead-exposed rats.

  19. Aluminum chloride induces neuroinflammation, loss of neuronal dendritic spine and cognition impairment in developing rat.

    PubMed

    Cao, Zheng; Yang, Xu; Zhang, Haiyang; Wang, Haoran; Huang, Wanyue; Xu, Feibo; Zhuang, Cuicui; Wang, Xiaoguang; Li, Yanfei

    2016-05-01

    Aluminum (Al) is present in the daily life of humans, and the incidence of Al contamination increased in recent years. Long-term excessive Al intake induces neuroinflammation and cognition impairment. Neuroinflammation alter density of dendritic spine, which, in turn, influence cognition function. However, it is unknown whether increased neuroinflammation is associated with altered density of dendritic spine in Al-treated rats. In the present study, AlCl3 was orally administrated to rat at 50, 150 and 450 mg/kg for 90d. We examined the effects of AlCl3 on the cognition function, density of dendritic spine in hippocampus of CA1 and DG region and the mRNA levels of IL-1β, IL-6, TNF-α, MHC II, CX3CL1 and BNDF in developing rat. These results showed exposure to AlCl3 lead to increased mRNA levels of IL-1β, IL-6, TNF-α and MCH II, decreased mRNA levels of CX3CL1 and BDNF, decreased density of dendritic spine and impaired learning and memory in developing rat. Our results suggest AlCl3 can induce neuroinflammation that may result in loss of spine, and thereby leads to learning and memory deficits. PMID:26946116

  20. Control of Dendritic Spine Morphological and Functional Plasticity by Small GTPases

    PubMed Central

    Woolfrey, Kevin M.; Srivastava, Deepak P.

    2016-01-01

    Structural plasticity of excitatory synapses is a vital component of neuronal development, synaptic plasticity, and behaviour. Abnormal development or regulation of excitatory synapses has also been strongly implicated in many neurodevelopmental, psychiatric, and neurodegenerative disorders. In the mammalian forebrain, the majority of excitatory synapses are located on dendritic spines, specialized dendritic protrusions that are enriched in actin. Research over recent years has begun to unravel the complexities involved in the regulation of dendritic spine structure. The small GTPase family of proteins have emerged as key regulators of structural plasticity, linking extracellular signals with the modulation of dendritic spines, which potentially underlies their ability to influence cognition. Here we review a number of studies that examine how small GTPases are activated and regulated in neurons and furthermore how they can impact actin dynamics, and thus dendritic spine morphology. Elucidating this signalling process is critical for furthering our understanding of the basic mechanisms by which information is encoded in neural circuits but may also provide insight into novel targets for the development of effective therapies to treat cognitive dysfunction seen in a range of neurological disorders. PMID:26989514

  1. Extinction procedure induces pruning of dendritic spines in CA1 hippocampal field depending on strength of training in rats

    PubMed Central

    Garín-Aguilar, María E.; Díaz-Cintra, Sofía; Quirarte, Gina L.; Aguilar-Vázquez, Azucena; Medina, Andrea C.; Prado-Alcalá, Roberto A.

    2012-01-01

    Numerous reports indicate that learning and memory of conditioned responses are accompanied by genesis of dendritic spines in the hippocampus, although there is a conspicuous lack of information regarding spine modifications after behavioral extinction. There is ample evidence that treatments that typically produce amnesia become innocuous when animals are submitted to a procedure of enhanced training. We now report that extinction of inhibitory avoidance (IA), trained with relatively low foot-shock intensities, induces pruning of dendritic spines along the length of the apical dendrites of hippocampal CA1 neurons. When animals are trained with a relatively high foot-shock there is a high resistance to extinction, and pruning in the proximal and medial segments of the apical dendrite are seen, while spine count in the distal dendrite remains normal. These results indicate that pruning is involved in behavioral extinction, while maintenance of spines is a probable mechanism that mediates the protecting effect against amnesic treatments produced by enhanced training. PMID:22438840

  2. Known-component 3D-2D registration for image guidance and quality assurance in spine surgery pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Uneri, A.; Stayman, J. W.; De Silva, T.; Wang, A. S.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Wolinsky, J.-P.; Gokaslan, Z. L.; Siewerdsen, J. H.

    2015-03-01

    Purpose. To extend the functionality of radiographic / fluoroscopic imaging systems already within standard spine surgery workflow to: 1) provide guidance of surgical device analogous to an external tracking system; and 2) provide intraoperative quality assurance (QA) of the surgical product. Methods. Using fast, robust 3D-2D registration in combination with 3D models of known components (surgical devices), the 3D pose determination was solved to relate known components to 2D projection images and 3D preoperative CT in near-real-time. Exact and parametric models of the components were used as input to the algorithm to evaluate the effects of model fidelity. The proposed algorithm employs the covariance matrix adaptation evolution strategy (CMA-ES) to maximize gradient correlation (GC) between measured projections and simulated forward projections of components. Geometric accuracy was evaluated in a spine phantom in terms of target registration error at the tool tip (TREx), and angular deviation (TREΦ) from planned trajectory. Results. Transpedicle surgical devices (probe tool and spine screws) were successfully guided with TREx<2 mm and TREΦ <0.5° given projection views separated by at least >30° (easily accommodated on a mobile C-arm). QA of the surgical product based on 3D-2D registration demonstrated the detection of pedicle screw breach with TREx<1 mm, demonstrating a trend of improved accuracy correlated to the fidelity of the component model employed. Conclusions. 3D-2D registration combined with 3D models of known surgical components provides a novel method for near-real-time guidance and quality assurance using a mobile C-arm without external trackers or fiducial markers. Ongoing work includes determination of optimal views based on component shape and trajectory, improved robustness to anatomical deformation, and expanded preclinical testing in spine and intracranial surgeries.

  3. Iso-C3D navigation assisted pedicle screw placement in deformities of the cervical and thoracic spine

    PubMed Central

    Rajan, Vinod V; Kamath, Vijay; Shetty, Ajoy Prasad; Rajasekaran, S

    2010-01-01

    Background: Pedicle screw instrumentation of the deformed cervical and thoracic spine is challenging to even the most experienced surgeon and associated with increased incidence of screw misplacement. Iso-C3D based navigation has been reported to improve the accuracy of pedicle screw placement, however, there are very few studies assessing its efficacy in the presence of deformity. We conducted a study to evaluate the accuracy of Iso-C3D based navigation in pedicle screw fixation in the deformed cervical and thoracic spine. Materials and Methods: We inserted 98 cervical pedicle screws (18 patients) and 242 thoracic pedicle screws (17 patients) using Iso-C3D based navigation for deformities of spine due to scoliosis, ankylosing spondylitis, post traumatic and degenerative disorders. Two independent observers determined and graded the accuracy of screw placement from postoperative computed tomography (CT) scans. Results: Postoperative CT scans of the cervical spine showed 90.8% perfectly placed screws with 7 (7%) grade I pedicle breaches, 2 (2%) grade II pedicle breaches and one anterior cortex penetration (< 2mm). Five lateral pedicle breaches violated the vertebral artery foramen and three medial pedicle breaches penetrated the spinal canal; however, no patient had any neurovascular complications. In the thoracic spine there were 92.2% perfectly placed screws with only six (2%) grade II pedicle breaches, eight (3%) grade I pedicle breaches and five screws (2%) penetrating the anterior or lateral cortex. No neuro-vascular complications were encountered. Conclusion: Iso-C3D based navigation improves the accuracy of pedicle screw placement in deformities of the cervical and thoracic spine. The low incidence of pedicle breach implies increased safety for the patient. PMID:20419003

  4. Dendritic Spine Alterations in Neocortical Pyramidal Neurons following Postnatal Neuronal Nogo-A Knockdown

    PubMed Central

    Pradhan, A.D.; Case, A.M.; Farrer, R.G.; Tsai, S.Y.; Cheatwood, J.L.; Martin, J.L.; Kartje, G.L.

    2010-01-01

    The myelin-associated protein Nogo-A is a well-known inhibitor of axonal regeneration and compensatory plasticity, yet functions of neuronal Nogo-A are not as clear. The present study examined the effects of decreased levels of neuronal Nogo-A on dendritic spines of developing neocortical neurons. Decreased Nogo-A levels in these neurons resulted in lowered spine density and an increase in filopodial type protrusions. These results suggest a role for neuronal Nogo-A in maintaining a spine phenotype in neocortical pyramidal cells. PMID:20938157

  5. Automated detection, 3D segmentation and analysis of high resolution spine MR images using statistical shape models

    NASA Astrophysics Data System (ADS)

    Neubert, A.; Fripp, J.; Engstrom, C.; Schwarz, R.; Lauer, L.; Salvado, O.; Crozier, S.

    2012-12-01

    Recent advances in high resolution magnetic resonance (MR) imaging of the spine provide a basis for the automated assessment of intervertebral disc (IVD) and vertebral body (VB) anatomy. High resolution three-dimensional (3D) morphological information contained in these images may be useful for early detection and monitoring of common spine disorders, such as disc degeneration. This work proposes an automated approach to extract the 3D segmentations of lumbar and thoracic IVDs and VBs from MR images using statistical shape analysis and registration of grey level intensity profiles. The algorithm was validated on a dataset of volumetric scans of the thoracolumbar spine of asymptomatic volunteers obtained on a 3T scanner using the relatively new 3D T2-weighted SPACE pulse sequence. Manual segmentations and expert radiological findings of early signs of disc degeneration were used in the validation. There was good agreement between manual and automated segmentation of the IVD and VB volumes with the mean Dice scores of 0.89 ± 0.04 and 0.91 ± 0.02 and mean absolute surface distances of 0.55 ± 0.18 mm and 0.67 ± 0.17 mm respectively. The method compares favourably to existing 3D MR segmentation techniques for VBs. This is the first time IVDs have been automatically segmented from 3D volumetric scans and shape parameters obtained were used in preliminary analyses to accurately classify (100% sensitivity, 98.3% specificity) disc abnormalities associated with early degenerative changes.

  6. Cell-Autonomous Regulation of Dendritic Spine Density by PirB

    PubMed Central

    2016-01-01

    Synapse density on cortical pyramidal neurons is modulated by experience. This process is highest during developmental critical periods, when mechanisms of synaptic plasticity are fully engaged. In mouse visual cortex, the critical period for ocular dominance (OD) plasticity coincides with the developmental pruning of synapses. At this time, mice lacking paired Ig-like receptor B (PirB) have excess numbers of dendritic spines on L5 neurons; these spines persist and are thought to underlie the juvenile-like OD plasticity observed in adulthood. Here we examine whether PirB is required specifically in excitatory neurons to exert its effect on dendritic spine and synapse density during the critical period. In mice with a conditional allele of PirB (PirBfl/fl), PirB was deleted only from L2/3 cortical pyramidal neurons in vivo by timed in utero electroporation of Cre recombinase. Sparse mosaic expression of Cre produced neurons lacking PirB in a sea of wild-type neurons and glia. These neurons had significantly elevated dendritic spine density, as well as increased frequency of miniature EPSCs, suggesting that they receive a greater number of synaptic inputs relative to Cre– neighbors. The effect of cell-specific PirB deletion on dendritic spine density was not accompanied by changes in dendritic branching complexity or axonal bouton density. Together, results imply a neuron-specific, cell-autonomous action of PirB on synaptic density in L2/3 pyramidal cells of visual cortex. Moreover, they are consistent with the idea that PirB functions normally to corepress spine density and synaptic plasticity, thereby maintaining headroom for cells to encode ongoing experience-dependent structural change throughout life. PMID:27752542

  7. Loss of Microtubule-Associated Protein 2 Immunoreactivity Linked to Dendritic Spine Loss in Schizophrenia

    PubMed Central

    Shelton, Micah A.; Newman, Jason T.; Gu, Hong; Sampson, Allan R.; Fish, Kenneth N.; MacDonald, Matthew L; Moyer, Caitlin E.; DiBitetto, James V; Dorph-Petersen, Karl-Anton; Penzes, Peter; Lewis, David A.; Sweet, Robert A.

    2015-01-01

    Background Microtubule-associated protein 2 (MAP2) is a neuronal protein that plays a role in maintaining dendritic structure through its interaction with microtubules. In schizophrenia (Sz), a number of studies have revealed that MAP2’s typically robust immunoreactivity (IR) is significantly reduced across several cortical regions. Previous studies have not explored the relationship between MAP2-IR reduction and lower dendritic spine density, which is frequently reported in schizophrenia nor has MAP2-IR loss been investigated in the primary auditory cortex (Brodmann Area 41), a site of conserved pathology in Sz. Methods Using quantitative spinning disk confocal microscopy in two cohorts of Sz subjects and matched control subjects (Sz, n=20; C, n=20), we measured MAP2-IR as well as dendritic spine density and spine number in deep layer 3 of BA41. Results Sz subjects exhibited a significant reduction in MAP2-IR. The reductions in MAP2-IR were not associated with neuron loss, loss of MAP2 protein, clinical confounders, or technical factors. Dendritic spine density and number were also reduced in Sz and correlated with MAP2-IR. Twelve (60%) Sz subjects exhibited MAP2-IR values lower than the lowest values in controls; only in this group were spine density and number significantly reduced. Conclusions These findings demonstrate that MAP2-IR loss is closely linked to dendritic spine pathology in Sz. Because MAP2 shares substantial sequence, regulatory, and functional homology with MAP tau, the wealth of knowledge regarding tau biology and the rapidly expanding field of tau therapeutics provide resources for identifying how MAP2 is altered in Sz and possible leads to novel therapeutics. PMID:25818630

  8. Activity-dependent accumulation of calcium in Purkinje cell dendritic spines

    SciTech Connect

    Andrews, S.B.; Leapman, R.D.; Landis, D.M.; Reese, T.S.

    1988-03-01

    The calcium content of synapses of parallel fibers on Purkinje cell dendritic spines was determined by electron probe x-ray microanalysis of freeze-dried cryosections from directly frozen slices of mouse cerebellar cortex. In fresh slices frozen within 20-30 sec of excision, calcium concentrations ranging from 0.8 to 18.6 mmol/kg of dry weight were measured in cisterns of smooth endoplasmic reticulum within Purkinje cell dendritic spines. The average calcium content of spine cisterns in rapidly excised slices (6.7 +/- 0.6 mmol/kg of dry weight +/- SEM) was higher than the average calcium content of spine cisterns in brain slices incubated without stimulation for 1-2 hr before direct freezing (2.5 +/- 0.4 mmol/kg of dry weight). Depolarization of incubated cerebellar slices by isotonic 55 mM KCl resulted in the accumulation within spine cisterns of very high amounts of calcium or isotonically substituted strontium, both derived from the extracellular fluid. These results suggest that one function of spine cisterns is to sequester free calcium that enters the spine through ligand-gated or voltage-gated channels during synaptic transmission.

  9. Hippocampal CA1 pyramidal neurons of Mecp2 mutant mice show a dendritic spine phenotype only in the presymptomatic stage.

    PubMed

    Chapleau, Christopher A; Boggio, Elena Maria; Calfa, Gaston; Percy, Alan K; Giustetto, Maurizio; Pozzo-Miller, Lucas

    2012-01-01

    Alterations in dendritic spines have been documented in numerous neurodevelopmental disorders, including Rett Syndrome (RTT). RTT, an X chromosome-linked disorder associated with mutations in MECP2, is the leading cause of intellectual disabilities in women. Neurons in Mecp2-deficient mice show lower dendritic spine density in several brain regions. To better understand the role of MeCP2 on excitatory spine synapses, we analyzed dendritic spines of CA1 pyramidal neurons in the hippocampus of Mecp2(tm1.1Jae) male mutant mice by either confocal microscopy or electron microscopy (EM). At postnatal-day 7 (P7), well before the onset of RTT-like symptoms, CA1 pyramidal neurons from mutant mice showed lower dendritic spine density than those from wildtype littermates. On the other hand, at P15 or later showing characteristic RTT-like symptoms, dendritic spine density did not differ between mutant and wildtype neurons. Consistently, stereological analyses at the EM level revealed similar densities of asymmetric spine synapses in CA1 stratum radiatum of symptomatic mutant and wildtype littermates. These results raise caution regarding the use of dendritic spine density in hippocampal neurons as a phenotypic endpoint for the evaluation of therapeutic interventions in symptomatic Mecp2-deficient mice. However, they underscore the potential role of MeCP2 in the maintenance of excitatory spine synapses.

  10. Reversible reduction in dendritic spines in CA1 of rat and ground squirrel subjected to hypothermia-normothermia in vivo: A three-dimensional electron microscope study.

    PubMed

    Popov, V I; Medvedev, N I; Patrushev, I V; Ignat'ev, D A; Morenkov, E D; Stewart, M G

    2007-11-01

    A study was made at electron microscope level of changes in the three-dimensional (3-D) morphology of dendritic spines and postsynaptic densities (PSDs) in CA1 of the hippocampus in ground squirrels, taken either at low temperature during hibernation (brain temperature 2-4 degrees C), or after warming and recovery to the normothermic state (34 degrees C). In addition, the morphology of PSDs and spines was measured in a non-hibernating mammal, rat, subjected to cooling at 2 degrees C at which time core rectal temperature was 15 degrees C, and then after warming to normothermic conditions. Significant differences were found in the proportion of thin and stubby spines, and shaft synapses in CA1 for rats and ground squirrels for normothermia compared with cooling or hibernation. Hypothermia induced a decrease in the proportion of thin spines, and an increase in stubby and shaft spines, but no change in the proportion of mushroom spines. The changes in redistribution of these three categories of spines in ground squirrel are more prominent than in rat. There were no significant differences in synapse density determined for ground squirrels or rats at normal compared with low temperature. Measurement of spine and PSD volume (for mushroom and thin spines) also showed no significant differences between the two functional states in either rats or ground squirrels, nor were there any differences in distances between neighboring synapses. Spinules on dendritic shafts were notable qualitatively during hibernation, but absent in normothermia. These data show that hypothermia results in morphological changes which are essentially similar in both a hibernating and a non-hibernating animal.

  11. Conditional self-discrimination enhances dendritic spine number and dendritic length at prefrontal cortex and hippocampal neurons of rats.

    PubMed

    Penagos-Corzo, Julio C; Bonilla, Andrea; Rodríguez-Moreno, Antonio; Flores, Gonzalo; Negrete-Díaz, José V

    2015-11-01

    We studied conditional self-discrimination (CSD) in rats and compared the neuronal cytoarchitecture of untrained animals and rats that were trained in self-discrimination. For this purpose, we used thirty 10-week-old male rats were randomized into three groups: one control group and two conditioning groups: a comparison group (associative learning) and an experimental group (self-discrimination). At the end of the conditioning process, the experimental group managed to discriminate their own state of thirst. After the conditioning process, dendritic morphological changes in the pyramidal neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus were evaluated using Golgi-Cox stain method and then analyzed by the Sholl method. Differences were found in total dendritic length and spine density. Animals trained in self-discrimination showed an increase in the dendritic length and the number of dendritic spines of neurons of the prefrontal cortex and CA1 region of the dorsal hippocampus. Our data suggest that conditional self-discrimination improves the connectivity of the prefrontal cortex and dorsal CA1, which has implications for memory and learning processes.

  12. Reversible loss of dendritic spines and altered excitability after chronic epilepsy in hippocampal slice cultures.

    PubMed Central

    Müller, M; Gähwiler, B H; Rietschin, L; Thompson, S M

    1993-01-01

    The morphological and functional consequences of epileptic activity were investigated by applying the convulsants bicuculline and/or picrotoxin to mature rat hippocampal slice cultures. After 3 days, some cells in all hippocampal subfields showed signs of degeneration, including swollen somata, vacuolation, and dendritic deformities, whereas others displayed only a massive reduction in the number of their dendritic spines. Intracellular recordings from CA3 pyramidal cells revealed a decrease in the amplitude of evoked excitatory synaptic potentials. gamma-Aminobutyric acid-releasing interneurons and inhibitory synaptic potentials were unaffected. Seven days after withdrawal of convulsants, remaining cells possessed a normal number of dendritic spines, thus demonstrating a considerable capacity for recovery. The pathological changes induced by convulsants are similar to those found in the hippocampi of human epileptics, suggesting that they are a consequence, rather than a cause, of epilepsy. Images PMID:8093558

  13. Protein kinase D promotes plasticity-induced F-actin stabilization in dendritic spines and regulates memory formation

    PubMed Central

    Bencsik, Norbert; Szíber, Zsófia; Liliom, Hanna; Tárnok, Krisztián; Borbély, Sándor; Gulyás, Márton; Rátkai, Anikó; Szűcs, Attila; Hazai-Novák, Diána; Ellwanger, Kornelia; Rácz, Bence; Pfizenmaier, Klaus; Hausser, Angelika

    2015-01-01

    Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines. PMID:26304723

  14. Urokinase-Type Plasminogen Activator Promotes Dendritic Spine Recovery and Improves Neurological Outcome Following Ischemic Stroke

    PubMed Central

    Wu, Fang; Catano, Marcela; Echeverry, Ramiro; Torre, Enrique; Haile, Woldeab B.; An, Jie; Chen, Changhua; Cheng, Lihong; Nicholson, Andrew; Tong, Frank C.; Park, Jaekeun

    2014-01-01

    Spines are dendritic protrusions that receive most of the excitatory input in the brain. Early after the onset of cerebral ischemia dendritic spines in the peri-infarct cortex are replaced by areas of focal swelling, and their re-emergence from these varicosities is associated with neurological recovery after acute ischemic stroke (AIS). Urokinase-type plasminogen activator (uPA) is a serine proteinase that plays a central role in tissue remodeling via binding to the urokinase plasminogen activator receptor (uPAR). We report that cerebral cortical neurons release uPA during the recovery phase from ischemic stroke in vivo or hypoxia in vitro. Although uPA does not have an effect on ischemia- or hypoxia-induced neuronal death, genetic deficiency of uPA (uPA−/−) or uPAR (uPAR−/−) abrogates functional recovery after AIS. Treatment with recombinant uPA after ischemic stroke induces neurological recovery in wild-type and uPA−/− but not in uPAR−/− mice. Diffusion tensor imaging studies indicate that uPA−/− mice have increased water diffusivity and decreased anisotropy associated with impaired dendritic spine recovery and decreased length of distal neurites in the peri-infarct cortex. We found that the excitotoxic injury induces the clustering of uPAR in dendritic varicosities, and that the binding of uPA to uPAR promotes the reorganization of the actin cytoskeleton and re-emergence of dendritic filopodia from uPAR-enriched varicosities. This effect is independent of uPA's proteolytic properties and instead is mediated by Rac-regulated profilin expression and cofilin phosphorylation. Our data indicate that binding of uPA to uPAR promotes dendritic spine recovery and improves functional outcome following AIS. PMID:25339736

  15. The Role of Synaptopodin in Membrane Protein Diffusion in the Dendritic Spine Neck

    PubMed Central

    Wang, Lili; Dumoulin, Andréa; Renner, Marianne; Triller, Antoine; Specht, Christian G.

    2016-01-01

    The dynamic exchange of neurotransmitter receptors at synapses relies on their lateral diffusion in the plasma membrane. At synapses located on dendritic spines this process is limited by the geometry of the spine neck that restricts the passage of membrane proteins. Biochemical compartmentalisation of the spine is believed to underlie the input-specificity of excitatory synapses and to set the scale on which functional changes can occur. Synaptopodin is located predominantly in the neck of dendritic spines, and is thus ideally placed to regulate the exchange of synaptic membrane proteins. The central aim of our study was to assess whether the presence of synaptopodin influences the mobility of membrane proteins in the spine neck and to characterise whether this was due to direct molecular interactions or to spatial constraints that are related to the structural organisation of the neck. Using single particle tracking we have identified a specific effect of synaptopodin on the diffusion of metabotropic mGluR5 receptors in the spine neck. However, super-resolution STORM/PALM imaging showed that this was not due to direct interactions between the two proteins, but that the presence of synaptopodin is associated with an altered local organisation of the F-actin cytoskeleton, that in turn could restrict the diffusion of membrane proteins with large intracellular domains through the spine neck. This study contributes new data on the way in which the spine neck compartmentalises excitatory synapses. Our data complement models that consider the impact of the spine neck as a function of its shape, by showing that the internal organisation of the neck imposes additional physical barriers to membrane protein diffusion. PMID:26840625

  16. Abnormal intrinsic dynamics of dendritic spines in a fragile X syndrome mouse model in vivo

    PubMed Central

    Nagaoka, Akira; Takehara, Hiroaki; Hayashi-Takagi, Akiko; Noguchi, Jun; Ishii, Kazuhiko; Shirai, Fukutoshi; Yagishita, Sho; Akagi, Takanori; Ichiki, Takanori; Kasai, Haruo

    2016-01-01

    Dendritic spine generation and elimination play an important role in learning and memory, the dynamics of which have been examined within the neocortex in vivo. Spine turnover has also been detected in the absence of specific learning tasks, and is frequently exaggerated in animal models of autistic spectrum disorder (ASD). The present study aimed to examine whether the baseline rate of spine turnover was activity-dependent. This was achieved using a microfluidic brain interface and open-dura surgery, with the goal of abolishing neuronal Ca2+ signaling in the visual cortex of wild-type mice and rodent models of fragile X syndrome (Fmr1 knockout [KO]). In wild-type and Fmr1 KO mice, the majority of baseline turnover was found to be activity-independent. Accordingly, the application of matrix metalloproteinase-9 inhibitors selectively restored the abnormal spine dynamics observed in Fmr1 KO mice, without affecting the intrinsic dynamics of spine turnover in wild-type mice. Such findings indicate that the baseline turnover of dendritic spines is mediated by activity-independent intrinsic dynamics. Furthermore, these results suggest that the targeting of abnormal intrinsic dynamics might pose a novel therapy for ASD. PMID:27221801

  17. Activity-Dependent Dendritic Spine Shrinkage and Growth Involve Downregulation of Cofilin via Distinct Mechanisms

    PubMed Central

    Calabrese, Barbara; Saffin, Jean-Michel; Halpain, Shelley

    2014-01-01

    A current model posits that cofilin-dependent actin severing negatively impacts dendritic spine volume. Studies suggested that increased cofilin activity underlies activity-dependent spine shrinkage, and that reduced cofilin activity induces activity-dependent spine growth. We suggest instead that both types of structural plasticity correlate with decreased cofilin activity. However, the mechanism of inhibition determines the outcome for spine morphology. RNAi in rat hippocampal cultures demonstrates that cofilin is essential for normal spine maintenance. Cofilin-F-actin binding and filament barbed-end production decrease during the early phase of activity-dependent spine shrinkage; cofilin concentration also decreases. Inhibition of the cathepsin B/L family of proteases prevents both cofilin loss and spine shrinkage. Conversely, during activity-dependent spine growth, LIM kinase stimulates cofilin phosphorylation, which activates phospholipase D-1 to promote actin polymerization. These results implicate novel molecular mechanisms and prompt a revision of the current model for how cofilin functions in activity-dependent structural plasticity. PMID:24740405

  18. Study of dendritic growth and coarsening using a 3-D phase field model: Implementation of the Para-AMR algorithm

    NASA Astrophysics Data System (ADS)

    Guo, Z.; Xiong, S. M.

    2015-06-01

    To efficiently solve the coupled phase field equations in 3-D, an algorithm comprising of adaptive mesh refinement (AMR) and parallel (Para-) computing capabilities was developed. Dendritic growth and subsequent coarsening were studied by employing the model to simulate multi-dendrite growth under isothermal conditions. Quantitative comparison including decrease of interface area (S) and nonlinear growing of the characteristic length (ratio between solid volume V and surface area S i.e. V/S) as time was performed between the simulation results and these predicted by the existing theories. In particular, various mechanisms including growth of lower curvature area in expense of higher curvature one, coalescence of neighbouring dendrite arms and groove advancement at the root of higher order arms for dendritic coarsening were identified and successfully revealed via the 3-D phase field simulation. In addition, results showed that the proposed algorithm could greatly shorten the computing time for 3-D phase field simulation and enable one to gain much more insight in understanding the underlying physics during dendrite growth in solidification.

  19. Role of Ca2+/calmodulin-dependent protein kinase II in dendritic spine remodeling during epileptiform activity in vitro.

    PubMed

    Zha, Xiang-ming; Dailey, Michael E; Green, Steven H

    2009-07-01

    Epileptiform activity (EA) in vivo and in vitro induces a loss of dendritic spines and synapses. Because CaMKII has been implicated in synaptogenesis and synaptic plasticity, we investigated the role of CaMKII in the effects of EA on spines, using rat hippocampal slice cultures. To visualize dendrites and postsynaptic densities (PSDs) in pyramidal neurons in the slices, we used biolistic transfection to express either free GFP or a PSD95-YFP construct that specifically labels PSDs. This allowed us to distinguish two classes of dendritic protrusions: spines that contain PSDs, and filopodia that lack PSDs and that are, on average, longer than spines. By these criteria, 48 hr of EA caused a decrease specifically in the number of spines. Immunoblots showed that EA increased CaMKII activity in the slices. Inhibition of CaMKII by expression of AIP, a specific peptide inhibitor of CaMKII, reduced spine number under basal conditions and failed to prevent EA-induced spine loss. However, under EA conditions, AIP increased the number of filopodia and the number of PSDs on the dendritic shaft. These data show at least two roles for CaMKII activity in maintenance and remodeling of dendritic spines under basal or EA conditions. First, CaMKII activity promotes the maintenance of spines and spine PSDs. Second, CaMKII activity suppresses EA-induced formation of filopodia and suppresses an increase in shaft PSDs, apparently by promoting translocation of PSDs from dendritic shafts to spines and/or selectively stabilizing spine rather than shaft PSDs.

  20. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons

    PubMed Central

    Ramírez, Valerie T.; Ramos-Fernández, Eva; Inestrosa, Nibaldo C.

    2016-01-01

    Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gαo signaling, increasing the intracellular Ca2+ concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gαo subunit signaling in the regulation of synapse formation. PMID:26881110

  1. Anabolic-androgenic steroids decrease dendritic spine density in the nucleus accumbens of male rats.

    PubMed

    Wallin-Miller, Kathryn; Li, Grace; Kelishani, Diana; Wood, Ruth I

    2016-08-25

    Recent studies have demonstrated that anabolic-androgenic steroids (AAS) modify cognitive processes such as decision making and behavioral flexibility. However, the neural mechanisms underlying these AAS-induced cognitive changes remain poorly understood. The mesocorticolimbic dopamine (DA) system, particularly the nucleus accumbens (Acb), is important for reward, motivated behavior, and higher cognitive processes such as decision making. Therefore, AAS-induced plasticity in the DA system is a potential structural substrate for the observed cognitive alterations. High doses of testosterone (the most commonly-used AAS) increase dendritic spine density in limbic regions including the amygdala and hippocampus. However, effects on Acb are unknown. This was the focus of the present study. Adolescent male Long-Evans rats were treated chronically for 8weeks with high-dose testosterone (7.5mg/kg in water with 13% cyclodextrin) or vehicle sc. Brains were stained by Golgi-Cox to analyze neuronal morphology in medium spiny neurons of the shell region of Acb (AcbSh). Eightweeks of testosterone treatment significantly decreased spine density in AcbSh compared to brains of vehicle-treated rats (F1,14=5.455, p<0.05). Testosterone did not significantly affect total spine number, dendritic length, or arborization measured by Sholl analysis. These results show that AAS alter neuronal morphology in AcbSh by decreasing spine density throughout the dendritic tree, and provides a potential mechanism for AAS to modify cognition and decision-making behavior.

  2. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gα(o) signaling, increasing the intracellular Ca(2+) concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gα(o) subunit signaling in the regulation of synapse formation. PMID:26881110

  3. Anabolic-androgenic steroids decrease dendritic spine density in the nucleus accumbens of male rats.

    PubMed

    Wallin-Miller, Kathryn; Li, Grace; Kelishani, Diana; Wood, Ruth I

    2016-08-25

    Recent studies have demonstrated that anabolic-androgenic steroids (AAS) modify cognitive processes such as decision making and behavioral flexibility. However, the neural mechanisms underlying these AAS-induced cognitive changes remain poorly understood. The mesocorticolimbic dopamine (DA) system, particularly the nucleus accumbens (Acb), is important for reward, motivated behavior, and higher cognitive processes such as decision making. Therefore, AAS-induced plasticity in the DA system is a potential structural substrate for the observed cognitive alterations. High doses of testosterone (the most commonly-used AAS) increase dendritic spine density in limbic regions including the amygdala and hippocampus. However, effects on Acb are unknown. This was the focus of the present study. Adolescent male Long-Evans rats were treated chronically for 8weeks with high-dose testosterone (7.5mg/kg in water with 13% cyclodextrin) or vehicle sc. Brains were stained by Golgi-Cox to analyze neuronal morphology in medium spiny neurons of the shell region of Acb (AcbSh). Eightweeks of testosterone treatment significantly decreased spine density in AcbSh compared to brains of vehicle-treated rats (F1,14=5.455, p<0.05). Testosterone did not significantly affect total spine number, dendritic length, or arborization measured by Sholl analysis. These results show that AAS alter neuronal morphology in AcbSh by decreasing spine density throughout the dendritic tree, and provides a potential mechanism for AAS to modify cognition and decision-making behavior. PMID:27238893

  4. The Gαo Activator Mastoparan-7 Promotes Dendritic Spine Formation in Hippocampal Neurons.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Inestrosa, Nibaldo C

    2016-01-01

    Mastoparan-7 (Mas-7), an analogue of the peptide mastoparan, which is derived from wasp venom, is a direct activator of Pertussis toxin- (PTX-) sensitive G proteins. Mas-7 produces several biological effects in different cell types; however, little is known about how Mas-7 influences mature hippocampal neurons. We examined the specific role of Mas-7 in the development of dendritic spines, the sites of excitatory synaptic contact that are crucial for synaptic plasticity. We report here that exposure of hippocampal neurons to a low dose of Mas-7 increases dendritic spine density and spine head width in a time-dependent manner. Additionally, Mas-7 enhances postsynaptic density protein-95 (PSD-95) clustering in neurites and activates Gα(o) signaling, increasing the intracellular Ca(2+) concentration. To define the role of signaling intermediates, we measured the levels of phosphorylated protein kinase C (PKC), c-Jun N-terminal kinase (JNK), and calcium-calmodulin dependent protein kinase IIα (CaMKIIα) after Mas-7 treatment and determined that CaMKII activation is necessary for the Mas-7-dependent increase in dendritic spine density. Our results demonstrate a critical role for Gα(o) subunit signaling in the regulation of synapse formation.

  5. NAC1 regulates the recruitment of the proteasome complex into dendritic spines.

    PubMed

    Shen, Haowei; Korutla, Laxminarayana; Champtiaux, Nicholas; Toda, Shigenobu; LaLumiere, Ryan; Vallone, Joseph; Klugmann, Matthias; Blendy, Julie A; Mackler, Scott A; Kalivas, Peter W

    2007-08-15

    Coordinated proteolysis of synaptic proteins is required for synaptic plasticity, but a mechanism for recruiting the ubiquitin-proteasome system (UPS) into dendritic spines is not known. NAC1 is a cocaine-regulated transcriptional protein that was found to complex with proteins in the UPS, including cullins and Mov34. NAC1 and the proteasome were cotranslocated from the nucleus into dendritic spines in cortical neurons in response to proteasome inhibition or disinhibiting synaptic activity with bicuculline. Bicuculline also produced a progressive accumulation of the proteasome and NAC1 in the postsynaptic density. Recruitment of the proteasome into dendrites and postsynaptic density by bicuculline was prevented in neurons from mice harboring an NAC1 gene deletion or in neurons transfected with mutated NAC1 lacking the proteasome binding domain. These experiments show that NAC1 modulates the translocation of the UPS from the nucleus into dendritic spines, thereby suggesting a potential missing link in the recruitment of necessary proteolysis machinery for synaptic remodeling.

  6. Cofilin1 Controls Transcolumnar Plasticity in Dendritic Spines in Adult Barrel Cortex

    PubMed Central

    Tsubota, Tadashi; Okubo-Suzuki, Reiko; Ohashi, Yohei; Tamura, Keita; Ogata, Koshin; Yaguchi, Masae; Matsuyama, Makoto; Inokuchi, Kaoru; Miyashita, Yasushi

    2015-01-01

    During sensory deprivation, the barrel cortex undergoes expansion of a functional column representing spared inputs (spared column), into the neighboring deprived columns (representing deprived inputs) which are in turn shrunk. As a result, the neurons in a deprived column simultaneously increase and decrease their responses to spared and deprived inputs, respectively. Previous studies revealed that dendritic spines are remodeled during this barrel map plasticity. Because cofilin1, a predominant regulator of actin filament turnover, governs both the expansion and shrinkage of the dendritic spine structure in vitro, it hypothetically regulates both responses in barrel map plasticity. However, this hypothesis remains untested. Using lentiviral vectors, we knocked down cofilin1 locally within layer 2/3 neurons in a deprived column. Cofilin1-knocked-down neurons were optogenetically labeled using channelrhodopsin-2, and electrophysiological recordings were targeted to these knocked-down neurons. We showed that cofilin1 knockdown impaired response increases to spared inputs but preserved response decreases to deprived inputs, indicating that cofilin1 dependency is dissociated in these two types of barrel map plasticity. To explore the structural basis of this dissociation, we then analyzed spine densities on deprived column dendritic branches, which were supposed to receive dense horizontal transcolumnar projections from the spared column. We found that spine number increased in a cofilin1-dependent manner selectively in the distal part of the supragranular layer, where most of the transcolumnar projections existed. Our findings suggest that cofilin1-mediated actin dynamics regulate functional map plasticity in an input-specific manner through the dendritic spine remodeling that occurs in the horizontal transcolumnar circuits. These new mechanistic insights into transcolumnar plasticity in adult rats may have a general significance for understanding reorganization of

  7. Low Doses of 17β-Estradiol Rapidly Improve Learning and Increase Hippocampal Dendritic Spines

    PubMed Central

    Phan, Anna; Gabor, Christopher S; Favaro, Kayla J; Kaschack, Shayna; Armstrong, John N; MacLusky, Neil J; Choleris, Elena

    2012-01-01

    While a great deal of research has been performed on the long-term genomic actions of estrogens, their rapid effects and implications for learning and memory are less well characterized. The often conflicting results of estrogenic effects on learning and memory may be due to complex and little understood interactions between genomic and rapid effects. Here, we investigated the effects of low, physiologically relevant, doses of 17β-estradiol on three different learning paradigms that assess social and non-social aspects of recognition memory and spatial memory, during a transcription independent period of memory maintenance. Ovariectomized female CD1 mice were subcutaneously administered vehicle, 1.5 μg/kg, 2 μg/kg, or 3 μg/kg of 17β-estradiol 15 minutes before social recognition, object recognition, or object placement learning. These paradigms were designed to allow the testing of learning effects within 40 min of hormone administration. In addition, using a different set of ovariectomized mice, we examined the rapid effects of 1.5 μg/kg, 2 μg/kg, or 3 μg/kg of 17β-estradiol on CA1 hippocampal dendritic spines. All 17β-estradiol doses tested impacted learning, memory, and CA1 hippocampal spines. 17β-Estradiol improved both social and object recognition, and may facilitate object placement learning and memory. In addition, 17β-estradiol increased dendritic spine density in the stratum radiatum subregion of the CA1 hippocampus, but did not affect dendritic spines in the lacunosum-moleculare, within 40 min of administration. These results demonstrate that the rapid actions of 17β-estradiol have important implications for general learning and memory processes that are not specific for a particular type of learning paradigm. These effects may be mediated by the rapid formation of new dendritic spines in the hippocampus. PMID:22669167

  8. Detection of Dendritic Spines Using Wavelet-Based Conditional Symmetric Analysis and Regularized Morphological Shared-Weight Neural Networks

    PubMed Central

    Wang, Shuihua; Chen, Mengmeng; Li, Yang; Zhang, Yudong; Han, Liangxiu; Wu, Jane; Du, Sidan

    2015-01-01

    Identification and detection of dendritic spines in neuron images are of high interest in diagnosis and treatment of neurological and psychiatric disorders (e.g., Alzheimer's disease, Parkinson's diseases, and autism). In this paper, we have proposed a novel automatic approach using wavelet-based conditional symmetric analysis and regularized morphological shared-weight neural networks (RMSNN) for dendritic spine identification involving the following steps: backbone extraction, localization of dendritic spines, and classification. First, a new algorithm based on wavelet transform and conditional symmetric analysis has been developed to extract backbone and locate the dendrite boundary. Then, the RMSNN has been proposed to classify the spines into three predefined categories (mushroom, thin, and stubby). We have compared our proposed approach against the existing methods. The experimental result demonstrates that the proposed approach can accurately locate the dendrite and accurately classify the spines into three categories with the accuracy of 99.1% for “mushroom” spines, 97.6% for “stubby” spines, and 98.6% for “thin” spines. PMID:26692046

  9. Actinin-4 Governs Dendritic Spine Dynamics and Promotes Their Remodeling by Metabotropic Glutamate Receptors*

    PubMed Central

    Kalinowska, Magdalena; Chávez, Andrés E.; Lutzu, Stefano; Castillo, Pablo E.; Bukauskas, Feliksas F.; Francesconi, Anna

    2015-01-01

    Dendritic spines are dynamic, actin-rich protrusions in neurons that undergo remodeling during neuronal development and activity-dependent plasticity within the central nervous system. Although group 1 metabotropic glutamate receptors (mGluRs) are critical for spine remodeling under physiopathological conditions, the molecular components linking receptor activity to structural plasticity remain unknown. Here we identify a Ca2+-sensitive actin-binding protein, α-actinin-4, as a novel group 1 mGluR-interacting partner that orchestrates spine dynamics and morphogenesis in primary neurons. Functional silencing of α-actinin-4 abolished spine elongation and turnover stimulated by group 1 mGluRs despite intact surface receptor expression and downstream ERK1/2 signaling. This function of α-actinin-4 in spine dynamics was underscored by gain-of-function phenotypes in untreated neurons. Here α-actinin-4 induced spine head enlargement, a morphological change requiring the C-terminal domain of α-actinin-4 that binds to CaMKII, an interaction we showed to be regulated by group 1 mGluR activation. Our data provide mechanistic insights into spine remodeling by metabotropic signaling and identify α-actinin-4 as a critical effector of structural plasticity within neurons. PMID:25944910

  10. Associative Pavlovian conditioning leads to an increase in spinophilin-immunoreactive dendritic spines in the lateral amygdala.

    PubMed

    Radley, Jason J; Johnson, Luke R; Janssen, William G M; Martino, Jeremiah; Lamprecht, Raphael; Hof, Patrick R; LeDoux, Joseph E; Morrison, John H

    2006-08-01

    Changes in dendritic spine number and shape are believed to reflect structural plasticity consequent to learning. Previous studies have strongly suggested that the dorsal subnucleus of the lateral amygdala is an important site of physiological plasticity in Pavlovian fear conditioning. In the present study, we examined the effect of auditory fear conditioning on dendritic spine numbers in the dorsal subnucleus of the lateral amygdala using an immunolabelling procedure to visualize the spine-associated protein spinophilin. Associatively conditioned rats that received paired tone and shock presentations had 35% more total spinophilin-immunoreactive spines than animals that had unpaired stimulation, consistent with the idea that changes in the number of dendritic spines occur during learning and account in part for memory.

  11. WIP modulates dendritic spine actin cytoskeleton by transcriptional control of lipid metabolic enzymes.

    PubMed

    Franco-Villanueva, Ana; Fernández-López, Estefanía; Gabandé-Rodríguez, Enrique; Bañón-Rodríguez, Inmaculada; Esteban, Jose Antonio; Antón, Inés M; Ledesma, María Dolores

    2014-08-15

    We identify Wiskott-Aldrich syndrome protein (WASP)-interacting protein (WIP) as a novel component of neuronal synapses whose absence increases dendritic spine size and filamentous actin levels in an N-WASP/Arp2/3-independent, RhoA/ROCK/profilinIIa-dependent manner. These effects depend on the reduction of membrane sphingomyelin (SM) due to transcriptional upregulation of neutral sphingomyelinase (NSM) through active RhoA; this enhances RhoA binding to the membrane, raft partitioning and activation in steady state but prevents RhoA changes in response to stimulus. Inhibition of NSM or SM addition reverses RhoA, filamentous actin and functional anomalies in synapses lacking WIP. Our findings characterize WIP as a link between membrane lipid composition and actin cytoskeleton at dendritic spines. They also contribute to explain cognitive deficits shared by individuals bearing mutations in the region assigned to the gene encoding for WIP.

  12. IRSp53/BAIAP2 in dendritic spine development, NMDA receptor regulation, and psychiatric disorders.

    PubMed

    Kang, Jaeseung; Park, Haram; Kim, Eunjoon

    2016-01-01

    IRSp53 (also known as BAIAP2) is a multi-domain scaffolding and adaptor protein that has been implicated in the regulation of membrane and actin dynamics at subcellular structures, including filopodia and lamellipodia. Accumulating evidence indicates that IRSp53 is an abundant component of the postsynaptic density at excitatory synapses and an important regulator of actin-rich dendritic spines. In addition, IRSp53 has been implicated in diverse psychiatric disorders, including autism spectrum disorders, schizophrenia, and attention deficit/hyperactivity disorder. Mice lacking IRSp53 display enhanced NMDA (N-methyl-d-aspartate) receptor function accompanied by social and cognitive deficits, which are reversed by pharmacological suppression of NMDA receptor function. These results suggest the hypothesis that defective actin/membrane modulation in IRSp53-deficient dendritic spines may lead to social and cognitive deficits through NMDA receptor dysfunction. This article is part of the Special Issue entitled 'Synaptopathy--from Biology to Therapy'.

  13. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines

    PubMed Central

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  14. State-dependent diffusion of actin-depolymerizing factor/cofilin underlies the enlargement and shrinkage of dendritic spines.

    PubMed

    Noguchi, Jun; Hayama, Tatsuya; Watanabe, Satoshi; Ucar, Hasan; Yagishita, Sho; Takahashi, Noriko; Kasai, Haruo

    2016-01-01

    Dendritic spines are the postsynaptic sites of most excitatory synapses in the brain, and spine enlargement and shrinkage give rise to long-term potentiation and depression of synapses, respectively. Because spine structural plasticity is accompanied by remodeling of actin scaffolds, we hypothesized that the filamentous actin regulatory protein cofilin plays a crucial role in this process. Here we investigated the diffusional properties of cofilin, the actin-severing and depolymerizing actions of which are activated by dephosphorylation. Cofilin diffusion was measured using fluorescently labeled cofilin fusion proteins and two-photon imaging. We show that cofilins are highly diffusible along dendrites in the resting state. However, during spine enlargement, wild-type cofilin and a phosphomimetic cofilin mutant remain confined to the stimulated spine, whereas a nonphosphorylatable mutant does not. Moreover, inhibition of cofilin phosphorylation with a competitive peptide disables spine enlargement, suggesting that phosphorylated-cofilin accumulation is a key regulator of enlargement, which is localized to individual spines. Conversely, spine shrinkage spreads to neighboring spines, even though triggered by weaker stimuli than enlargement. Diffusion of exogenous cofilin injected into a pyramidal neuron soma causes spine shrinkage and reduced PSD95 in spines, suggesting that diffusion of dephosphorylated endogenous cofilin underlies the spreading of spine shrinkage and long-term depression. PMID:27595610

  15. Actin-Dependent Alterations of Dendritic Spine Morphology in Shankopathies

    PubMed Central

    Sarowar, Tasnuva

    2016-01-01

    Shank proteins (Shank1, Shank2, and Shank3) act as scaffolding molecules in the postsynaptic density of many excitatory neurons. Mutations in SHANK genes, in particular SHANK2 and SHANK3, lead to autism spectrum disorders (ASD) in both human and mouse models. Shank3 proteins are made of several domains—the Shank/ProSAP N-terminal (SPN) domain, ankyrin repeats, SH3 domain, PDZ domain, a proline-rich region, and the sterile alpha motif (SAM) domain. Via various binding partners of these domains, Shank3 is able to bind and interact with a wide range of proteins including modulators of small GTPases such as RICH2, a RhoGAP protein, and βPIX, a RhoGEF protein for Rac1 and Cdc42, actin binding proteins and actin modulators. Dysregulation of all isoforms of Shank proteins, but especially Shank3, leads to alterations in spine morphogenesis, shape, and activity of the synapse via altering actin dynamics. Therefore, here, we highlight the role of Shank proteins as modulators of small GTPases and, ultimately, actin dynamics, as found in multiple in vitro and in vivo models. The failure to mediate this regulatory role might present a shared mechanism in the pathophysiology of autism-associated mutations, which leads to dysregulation of spine morphogenesis and synaptic signaling. PMID:27795858

  16. Nanoscale segregation of actin nucleation and elongation factors determines dendritic spine protrusion

    PubMed Central

    Chazeau, Anaël; Mehidi, Amine; Nair, Deepak; Gautier, Jérémie J; Leduc, Cécile; Chamma, Ingrid; Kage, Frieda; Kechkar, Adel; Thoumine, Olivier; Rottner, Klemens; Choquet, Daniel; Gautreau, Alexis; Sibarita, Jean-Baptiste; Giannone, Grégory

    2014-01-01

    Actin dynamics drive morphological remodeling of neuronal dendritic spines and changes in synaptic transmission. Yet, the spatiotemporal coordination of actin regulators in spines is unknown. Using single protein tracking and super-resolution imaging, we revealed the nanoscale organization and dynamics of branched F-actin regulators in spines. Branched F-actin nucleation occurs at the PSD vicinity, while elongation occurs at the tip of finger-like protrusions. This spatial segregation differs from lamellipodia where both branched F-actin nucleation and elongation occur at protrusion tips. The PSD is a persistent confinement zone for IRSp53 and the WAVE complex, an activator of the Arp2/3 complex. In contrast, filament elongators like VASP and formin-like protein-2 move outwards from the PSD with protrusion tips. Accordingly, Arp2/3 complexes associated with F-actin are immobile and surround the PSD. Arp2/3 and Rac1 GTPase converge to the PSD, respectively, by cytosolic and free-diffusion on the membrane. Enhanced Rac1 activation and Shank3 over-expression, both associated with spine enlargement, induce delocalization of the WAVE complex from the PSD. Thus, the specific localization of branched F-actin regulators in spines might be reorganized during spine morphological remodeling often associated with synaptic plasticity. PMID:25293574

  17. Lipocalin-2 controls neuronal excitability and anxiety by regulating dendritic spine formation and maturation.

    PubMed

    Mucha, Mariusz; Skrzypiec, Anna E; Schiavon, Emanuele; Attwood, Benjamin K; Kucerova, Eva; Pawlak, Robert

    2011-11-01

    Psychological stress causes adaptive changes in the nervous system directed toward maintaining homoeostasis. These biochemical and structural mechanisms regulate animal behavior, and their malfunction may result in various forms of affective disorders. Here we found that the lipocalin-2 (Lcn2) gene, encoding a secreted protein of unknown neuronal function, was up-regulated in mouse hippocampus following psychological stress. Addition of lipocalin-2 to cultured hippocampal neurons reduced dendritic spine actin's mobility, caused retraction of mushroom spines, and inhibited spine maturation. These effects were further enhanced by inactivating iron-binding residues of Lcn-2, suggesting that they were facilitated by the iron-free form of Lcn-2. Concurrently, disruption of the Lcn2 gene in mice promoted stress-induced increase in spine density and caused an increase in the proportion of mushroom spines. The above changes correlated with higher excitability of CA1 principal neurons and with elevated stress-induced anxiety in Lcn-2(-/-) mice. Our study demonstrates that lipocalin-2 promotes stress-induced changes in spine morphology and function to regulate neuronal excitability and anxiety. PMID:21969573

  18. The Planar Cell Polarity Transmembrane Protein Vangl2 Promotes Dendrite, Spine and Glutamatergic Synapse Formation in the Mammalian Forebrain.

    PubMed

    Okerlund, Nathan D; Stanley, Robert E; Cheyette, Benjamin N R

    2016-07-01

    The transmembrane protein Vangl2, a key regulator of the Wnt/planar cell polarity (PCP) pathway, is involved in dendrite arbor elaboration, dendritic spine formation and glutamatergic synapse formation in mammalian central nervous system neurons. Cultured forebrain neurons from Vangl2 knockout mice have simpler dendrite arbors, fewer total spines, less mature spines and fewer glutamatergic synapse inputs on their dendrites than control neurons. Neurons from mice heterozygous for a semidominant Vangl2 mutation have similar but not identical phenotypes, and these phenotypes are also observed in Golgi-stained brain tissue from adult mutant mice. Given increasing evidence linking psychiatric pathophysiology to these subneuronal sites and structures, our findings underscore the relevance of core PCP proteins including Vangl2 to the underlying biology of major mental illnesses and their treatment. PMID:27606324

  19. Known-component 3D-2D registration for quality assurance of spine surgery pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Uneri, A.; De Silva, T.; Stayman, J. W.; Kleinszig, G.; Vogt, S.; Khanna, A. J.; Gokaslan, Z. L.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2015-10-01

    A 3D-2D image registration method is presented that exploits knowledge of interventional devices (e.g. K-wires or spine screws—referred to as ‘known components’) to extend the functionality of intraoperative radiography/fluoroscopy by providing quantitative measurement and quality assurance (QA) of the surgical product. The known-component registration (KC-Reg) algorithm uses robust 3D-2D registration combined with 3D component models of surgical devices known to be present in intraoperative 2D radiographs. Component models were investigated that vary in fidelity from simple parametric models (e.g. approximation of a screw as a simple cylinder, referred to as ‘parametrically-known’ component [pKC] registration) to precise models based on device-specific CAD drawings (referred to as ‘exactly-known’ component [eKC] registration). 3D-2D registration from three intraoperative radiographs was solved using the covariance matrix adaptation evolution strategy (CMA-ES) to maximize image-gradient similarity, relating device placement relative to 3D preoperative CT of the patient. Spine phantom and cadaver studies were conducted to evaluate registration accuracy and demonstrate QA of the surgical product by verification of the type of devices delivered and conformance within the ‘acceptance window’ of the spinal pedicle. Pedicle screws were successfully registered to radiographs acquired from a mobile C-arm, providing TRE 1-4 mm and  <5° using simple parametric (pKC) models, further improved to  <1 mm and  <1° using eKC registration. Using advanced pKC models, screws that did not match the device models specified in the surgical plan were detected with an accuracy of  >99%. Visualization of registered devices relative to surgical planning and the pedicle acceptance window provided potentially valuable QA of the surgical product and reliable detection of pedicle screw breach. 3D-2D registration combined with 3D models of known surgical

  20. Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse.

    PubMed

    Liu, W S; Pesold, C; Rodriguez, M A; Carboni, G; Auta, J; Lacor, P; Larson, J; Condie, B G; Guidotti, A; Costa, E

    2001-03-13

    Heterozygous reeler mice (HRM) haploinsufficient for reelin express approximately 50% of the brain reelin content of wild-type mice, but are phenotypically different from both wild-type mice and homozygous reeler mice. They exhibit, (i) a down-regulation of glutamic acid decarboxylase 67 (GAD(67))-positive neurons in some but not every cortical layer of frontoparietal cortex (FPC), (ii) an increase of neuronal packing density and a decrease of cortical thickness because of neuropil hypoplasia, (iii) a decrease of dendritic spine expression density on basal and apical dendritic branches of motor FPC layer III pyramidal neurons, and (iv) a similar decrease in dendritic spines expressed on the basal dendrite branches of CA1 pyramidal neurons of the hippocampus. To establish whether the defect of GAD(67) down-regulation observed in HRM is responsible for neuropil hypoplasia and decreased dendritic spine density, we studied heterozygous GAD(67) knockout mice (HG(67)M). These mice exhibited a down-regulation of GAD(67) mRNA expression in FPC (about 50%), but they expressed normal amounts of reelin and had no neuropil hypoplasia or down-regulation of dendritic spine expression. These findings, coupled with electron-microscopic observations that reelin colocalizes with integrin receptors on dendritic spines, suggest that reelin may be a factor in the dynamic expression of cortical dendritic spines perhaps by promoting integrin receptor clustering. These findings are interesting because the brain neurochemical and neuroanatomical phenotypic traits exhibited by the HRM are in several ways similar to those found in postmortem brains of psychotic patients.

  1. Down-regulation of dendritic spine and glutamic acid decarboxylase 67 expressions in the reelin haploinsufficient heterozygous reeler mouse

    PubMed Central

    Liu, Wen Sheng; Pesold, Christine; Rodriguez, Miguel A.; Carboni, Giovanni; Auta, James; Lacor, Pascal; Larson, John; Condie, Brian G.; Guidotti, Alessandro; Costa, Erminio

    2001-01-01

    Heterozygous reeler mice (HRM) haploinsufficient for reelin express ≈50% of the brain reelin content of wild-type mice, but are phenotypically different from both wild-type mice and homozygous reeler mice. They exhibit, (i) a down-regulation of glutamic acid decarboxylase 67 (GAD67)-positive neurons in some but not every cortical layer of frontoparietal cortex (FPC), (ii) an increase of neuronal packing density and a decrease of cortical thickness because of neuropil hypoplasia, (iii) a decrease of dendritic spine expression density on basal and apical dendritic branches of motor FPC layer III pyramidal neurons, and (iv) a similar decrease in dendritic spines expressed on the basal dendrite branches of CA1 pyramidal neurons of the hippocampus. To establish whether the defect of GAD67 down-regulation observed in HRM is responsible for neuropil hypoplasia and decreased dendritic spine density, we studied heterozygous GAD67 knockout mice (HG67M). These mice exhibited a down-regulation of GAD67 mRNA expression in FPC (about 50%), but they expressed normal amounts of reelin and had no neuropil hypoplasia or down-regulation of dendritic spine expression. These findings, coupled with electron-microscopic observations that reelin colocalizes with integrin receptors on dendritic spines, suggest that reelin may be a factor in the dynamic expression of cortical dendritic spines perhaps by promoting integrin receptor clustering. These findings are interesting because the brain neurochemical and neuroanatomical phenotypic traits exhibited by the HRM are in several ways similar to those found in postmortem brains of psychotic patients. PMID:11248103

  2. The internal architecture of dendritic spines revealed by super-resolution imaging: What did we learn so far?

    SciTech Connect

    MacGillavry, Harold D. Hoogenraad, Casper C.

    2015-07-15

    The molecular architecture of dendritic spines defines the efficiency of signal transmission across excitatory synapses. It is therefore critical to understand the mechanisms that control the dynamic localization of the molecular constituents within spines. However, because of the small scale at which most processes within spines take place, conventional light microscopy techniques are not adequate to provide the necessary level of resolution. Recently, super-resolution imaging techniques have overcome the classical barrier imposed by the diffraction of light, and can now resolve the localization and dynamic behavior of proteins within small compartments with nanometer precision, revolutionizing the study of dendritic spine architecture. Here, we highlight exciting new findings from recent super-resolution studies on neuronal spines, and discuss how these studies revealed important new insights into how protein complexes are assembled and how their dynamic behavior shapes the efficiency of synaptic transmission.

  3. Essential Roles for ARID1B in Dendritic Arborization and Spine Morphology of Developing Pyramidal Neurons

    PubMed Central

    Ka, Minhan; Chopra, Divyan A.; Dravid, Shashank M.

    2016-01-01

    De novo truncating mutations in ARID1B, a chromatin-remodeling gene, cause Coffin–Siris syndrome, a developmental disorder characterized by intellectual disability and speech impairment; however, how the genetic elimination leads to cognitive dysfunction remains unknown. Thus, we investigated the neural functions of ARID1B during brain development. Here, we show that ARID1B regulates dendritic differentiation in the developing mouse brain. We knocked down ARID1B expression in mouse pyramidal neurons using in utero gene delivery methodologies. ARID1B knockdown suppressed dendritic arborization of cortical and hippocampal pyramidal neurons in mice. The abnormal development of dendrites accompanied a decrease in dendritic outgrowth into layer I. Furthermore, knockdown of ARID1B resulted in aberrant dendritic spines and synaptic transmission. Finally, ARID1B deficiency led to altered expression of c-Fos and Arc, and overexpression of these factors rescued abnormal differentiation induced by ARID1B knockdown. Our results demonstrate a novel role for ARID1B in neuronal differentiation and provide new insights into the origin of cognitive dysfunction associated with developmental intellectual disability. SIGNIFICANCE STATEMENT Haploinsufficiency of ARID1B, a component of chromatin remodeling complex, causes intellectual disability. However, the role of ARID1B in brain development is unknown. Here, we demonstrate that ARID1B is required for neuronal differentiation in the developing brain, such as in dendritic arborization and synapse formation. Our findings suggest that ARID1B plays a critical role in the establishment of cognitive circuitry by regulating dendritic complexity. Thus, ARID1B deficiency may cause intellectual disability via abnormal brain wiring induced by the defective differentiation of cortical neurons. PMID:26937011

  4. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX.

    PubMed

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd; Rivera, Claudio; Ludwig, Anastasia

    2015-06-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  5. KCC2 regulates actin dynamics in dendritic spines via interaction with β-PIX

    PubMed Central

    Llano, Olaya; Smirnov, Sergey; Soni, Shetal; Golubtsov, Andrey; Guillemin, Isabelle; Hotulainen, Pirta; Medina, Igor; Nothwang, Hans Gerd

    2015-01-01

    Chloride extrusion in mature neurons is largely mediated by the neuron-specific potassium-chloride cotransporter KCC2. In addition, independently of its chloride transport function, KCC2 regulates the development and morphology of dendritic spines through structural interactions with the actin cytoskeleton. The mechanism of this effect remains largely unknown. In this paper, we show a novel pathway for KCC2-mediated regulation of the actin cytoskeleton in neurons. We found that KCC2, through interaction with the b isoform of Rac/Cdc42 guanine nucleotide exchange factor β-PIX, regulates the activity of Rac1 GTPase and the phosphorylation of one of the major actin-regulating proteins, cofilin-1. KCC2-deficient neurons had abnormally high levels of phosphorylated cofilin-1. Consistently, dendritic spines of these neurons exhibited a large pool of stable actin, resulting in reduced spine motility and diminished density of functional synapses. In conclusion, we describe a novel signaling pathway that couples KCC2 to the cytoskeleton and regulates the formation of glutamatergic synapses. PMID:26056138

  6. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2.

    PubMed

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A; Peche, Vivek S

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2(gt/gt) mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2(gt/gt) with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2(gt/gt) neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  7. (56)Fe Irradiation Alters Spine Density and Dendritic Complexity in the Mouse Hippocampus.

    PubMed

    Allen, Antiño R; Raber, Jacob; Chakraborti, Ayanabha; Sharma, Sourabh; Fike, John R

    2015-12-01

    A unique feature of the space radiation environment is the presence of high-energy charged particles, which can be significantly hazardous to space flight crews who are exposed during a mission. Health risks associated with high-LET radiation exposure include cognitive injury. The pathogenesis of this injury is unknown but may involve modifications to dendritic structure and/or alterations in dendritic spine density and morphology. In this study, 24 two-month-old C57BL6/J male mice were either whole-body irradiated with 0.5 Gy (56)Fe (600 MeV/n; n = 12) or sham irradiated (n = 12). Three months postirradiation animals were tested for locomotor activity and habituation. After behavioral testing, animals were euthanized and the brains were flash frozen. Compared to sham-irradiated mice, irradiated mice moved less when first introduced to the environment, although they did recognize the environment when re-exposed to it one day later. Exposure to (56)Fe radiation significantly compromised the dendritic architecture and reduced spine density throughout the hippocampal tri-synaptic network. To our knowledge, these data represents the first reported evidence that high-LET radiation has deleterious effects on mature neurons associated with hippocampal learning and memory. PMID:26579941

  8. Neuronal Actin Dynamics, Spine Density and Neuronal Dendritic Complexity Are Regulated by CAP2

    PubMed Central

    Kumar, Atul; Paeger, Lars; Kosmas, Kosmas; Kloppenburg, Peter; Noegel, Angelika A.; Peche, Vivek S.

    2016-01-01

    Actin remodeling is crucial for dendritic spine development, morphology and density. CAP2 is a regulator of actin dynamics through sequestering G-actin and severing F-actin. In a mouse model, ablation of CAP2 leads to cardiovascular defects and delayed wound healing. This report investigates the role of CAP2 in the brain using Cap2gt/gt mice. Dendritic complexity, the number and morphology of dendritic spines were altered in Cap2gt/gt with increased number of excitatory synapses. This was accompanied by increased F-actin content and F-actin accumulation in cultured Cap2gt/gt neurons. Moreover, reduced surface GluA1 was observed in mutant neurons under basal condition and after induction of chemical LTP. Additionally, we show an interaction between CAP2 and n-cofilin, presumably mediated through the C-terminal domain of CAP2 and dependent on cofilin Ser3 phosphorylation. In vivo, the consequences of this interaction were altered phosphorylated cofilin levels and formation of cofilin aggregates in the neurons. Thus, our studies identify a novel role of CAP2 in neuronal development and neuronal actin dynamics. PMID:27507934

  9. Essential Role for Vav GEFs in Brain-derived Neurotrophic Factor (BDNF)-induced Dendritic Spine Growth and Synapse Plasticity

    PubMed Central

    Hale, Carly F.; Dietz, Karen C.; Varela, Juan A.; Wood, Cody B.; Zirlin, Benjamin C.; Leverich, Leah S.; Greene, Robert W.; Cowan, Christopher W.

    2011-01-01

    Brain-derived neurotrophic factor (BDNF) and its cognate receptor, TrkB, regulate a wide range of cellular processes, including dendritic spine formation and functional synapse plasticity. However, the signaling mechanisms that link BDNF-activated TrkB to F-actin remodeling enzymes and dendritic spine morphological plasticity remain poorly understood. We report here that BDNF/TrkB signaling in neurons activates the Vav family of Rac/RhoA guanine nucleotide exchange factors (GEFs) through a novel TrkB kinase-dependent mechanism. We find that Vav is required for BDNF-stimulated Rac-GTP production in cortical and hippocampal neurons. Vav is partially enriched at excitatory synapses in the postnatal hippocampus, but does not appear to be required for normal dendritic spine density. Rather, we observe significant reductions in both BDNF-induced, rapid dendritic spine head growth and in CA3-CA1 theta burst stimulated (TBS) long-term potentiation (LTP) in Vav-deficient mouse hippocampal slices, suggesting that Vav-dependent regulation of dendritic spine morphological plasticity facilitates normal functional synapse plasticity. PMID:21880903

  10. Balance lower limb loads and 3D spine modifications after total hip joint replacement: effects of leg length discrepancy correction.

    PubMed

    D'Amico, Moreno; Ciarrocca, Francesca; Liscio, Grazia; Serafini, Paolo; Tommasini, Maura; Vallasciani, Massimo

    2006-01-01

    Following total hip joint replacement (THJR), the durability of a prosthesis is limited by: wearing of frictional surfaces and loosening and migration of the prosthesis-cement-bone system. Literature review witnesses biomechanical studies focused mainly/only on hip functional state while none of them approached leg length discrepancy (LLD), posture unbalancing or spine related problems after THJR. Conversely, these latter could be critical elements for surgery and rehabilitation success, given the possible induction of asymmetric loading patterns. This study presents the results obtained by using a recently proposed methodology, to measure 3D subject posture balance and spine morphology and to evaluate its usefulness in individual therapy tuning/follow up. 3D subject's posture has been measured by means of 3D opto-electronic device, force platform and baropodography. 90 subjects after THJR have been included in this study. The subjects have been evaluated in two different epochs: 3 weeks after surgical intervention and after 3 months. 77/90 patients presented a LLD, pelvic obliquity and posture unbalancing. More than 90% of this group showed an overall postural re-balancing induced by the use of simple underfoot wedge. 70/77 patients needed wedge under the healthy side showing the surgical intervention produced a leg lengthening. 60/90 (52 LLD) patients underwent up to now to control and patients who wore the suggested wedge (63.4%) presented an improvement over all the considered quantitative parameters. Patients who wore a shorter than suggested wedge (23.1%), or that did not wear the suggested wedge (13.5%) presented a moderate or significant worsening of their postural balancing respectively.

  11. Interdigitating biocalcite dendrites form a 3-D jigsaw structure in brachiopod shells.

    PubMed

    Goetz, Andreas J; Steinmetz, David R; Griesshaber, Erika; Zaefferer, Stefan; Raabe, Dierk; Kelm, Klemens; Irsen, Stephan; Sehrbrock, Angelika; Schmahl, Wolfgang W

    2011-05-01

    We report a newly discovered dense microstructure of dendrite-like biocalcite that is formed by marine organisms. High spatial resolution electron backscatter diffraction (EBSD) was carried out under specific analytical conditions (15 and 10 kV) on the primary layer of the modern brachiopod Gryphus vitreus. The primary layer of modern brachiopods, previously termed nanocrystalline, is formed by an array of concave/convex calcite grains with interdigitated recesses and protrusions of abutting crystals without any cavities in or between the dendrites. The interface topology of this structure ranges from a few tens of nanometres to tens of micrometres, giving a nanoscale structure to the material fabric. The dendritic grains show a spread of crystallographic orientation of several degrees and can thus be referred to as mesocrystals. Individual dendritic mesocrystals reach sizes in one dimension larger than 20 μm. The preferred crystallographic orientation is similar in the primary and adjacent fibrous shell layers, even though these two layers show completely different crystal morphologies and grain boundary topologies. This observation indicates that two separate control mechanisms are active when the primary and the fibrous shell layers are formed. We propose a growth model for the interdigitated dendritic calcite grain structure based on a precursor of vesicles filled with amorphous calcium carbonate (ACC).

  12. Dendritic Spine Injury Induced by the 8-Hydroxy Metabolite of Efavirenz

    PubMed Central

    Tovar-y-Romo, Luis B.; Bumpus, Namandjé N.; Pomerantz, Daniel; Avery, Lindsay B.; Sacktor, Ned; McArthur, Justin C.

    2012-01-01

    Despite combination antiretroviral therapies (cARTs), a significant proportion of HIV-infected patients develop HIV-associated neurocognitive disorders (HAND). Ongoing viral replication in the central nervous system (CNS) caused by poor brain penetration of cART may contribute to HAND. However, it has also been proposed that the toxic effects of long-term cART may contribute to HAND. A better understanding of the neurotoxic potential of cART is critically needed in light of the use of CNS-penetrating cARTs to contend with the virus reservoir in the brain. The efavirenz (EFV) metabolites 7-hydroxyefavirenz (7-OH-EFV) and 8-hydroxyefavirenz (8-OH-EFV) were synthesized and purified, and their chemical structures were confirmed by mass spectrometry and NMR. The effects of EFV, 7-OH-EFV, and 8-OH-EFV on calcium, dendritic spine morphology, and survival were determined in primary neurons. EFV, 7-OH-EFV, and 8-OH-EFV each induced neuronal damage in a dose-dependent manner. However, 8-OH-EFV was at least an order of magnitude more toxic than EFV or 7-OH-EFV, inducing considerable damage to dendritic spines at a 10 nM concentration. The 8-OH-EFV metabolite evoked calcium flux in neurons, which was mediated primarily by L-type voltage-operated calcium channels (VOCCs). Blockade of L-type VOCCs protected dendritic spines from 8-OH-EFV-induced damage. Concentrations of EFV and 8-OH-EFV in the cerebral spinal fluid of HIV-infected subjects taking EFV were within the range that damaged neurons in culture. These findings demonstrate that the 8-OH metabolite of EFV is a potent neurotoxin and highlight the importance of directly determining the effects of antiretroviral drugs and drug metabolites on neurons and other brain cells. PMID:22984227

  13. Dendritic spine injury induced by the 8-hydroxy metabolite of efavirenz.

    PubMed

    Tovar-y-Romo, Luis B; Bumpus, Namandjé N; Pomerantz, Daniel; Avery, Lindsay B; Sacktor, Ned; McArthur, Justin C; Haughey, Norman J

    2012-12-01

    Despite combination antiretroviral therapies (cARTs), a significant proportion of HIV-infected patients develop HIV-associated neurocognitive disorders (HAND). Ongoing viral replication in the central nervous system (CNS) caused by poor brain penetration of cART may contribute to HAND. However, it has also been proposed that the toxic effects of long-term cART may contribute to HAND. A better understanding of the neurotoxic potential of cART is critically needed in light of the use of CNS-penetrating cARTs to contend with the virus reservoir in the brain. The efavirenz (EFV) metabolites 7-hydroxyefavirenz (7-OH-EFV) and 8-hydroxyefavirenz (8-OH-EFV) were synthesized and purified, and their chemical structures were confirmed by mass spectrometry and NMR. The effects of EFV, 7-OH-EFV, and 8-OH-EFV on calcium, dendritic spine morphology, and survival were determined in primary neurons. EFV, 7-OH-EFV, and 8-OH-EFV each induced neuronal damage in a dose-dependent manner. However, 8-OH-EFV was at least an order of magnitude more toxic than EFV or 7-OH-EFV, inducing considerable damage to dendritic spines at a 10 nM concentration. The 8-OH-EFV metabolite evoked calcium flux in neurons, which was mediated primarily by L-type voltage-operated calcium channels (VOCCs). Blockade of L-type VOCCs protected dendritic spines from 8-OH-EFV-induced damage. Concentrations of EFV and 8-OH-EFV in the cerebral spinal fluid of HIV-infected subjects taking EFV were within the range that damaged neurons in culture. These findings demonstrate that the 8-OH metabolite of EFV is a potent neurotoxin and highlight the importance of directly determining the effects of antiretroviral drugs and drug metabolites on neurons and other brain cells. PMID:22984227

  14. Controlled synthesis of 2-D and 3-D dendritic platinum nanostructures.

    SciTech Connect

    Brinker, C. Jeffrey; Shelnutt, John Allen; Yang, Yi; van Swol, Frank B.; Pereira, Eulalia; Jiang, Ying-Bing; Medforth, Craig John; Xu, Huifang; Song, Yujiang; Singh, Anup K.

    2004-06-01

    Seeding and autocatalytic reduction of platinum salts in aqueous surfactant solution using ascorbic acid as the reductant leads to remarkable dendritic metal nanostructures. In micellar surfactant solutions, spherical dendritic metal nanostructures are obtained, and the smallest of these nanodendrites resemble assemblies of joined nanoparticles and the nanodendrites are single crystals. With liposomes as the template, dendritic platinum sheets in the form of thin circular disks or solid foam-like nanomaterials can be made. Synthetic control over the morphology of these nanodendrites, nanosheets, and nanostructured foams is realized by using a tin-porphyrin photocatalyst to conveniently and effectively produce a large initial population of catalytic growth centers. The concentration of seed particles determines the ultimate average size and uniformity of these novel two- and three-dimensional platinum nanostructures.

  15. Hybrid nickel manganese oxide nanosheet-3D metallic dendrite percolation network electrodes for high-rate electrochemical energy storage

    NASA Astrophysics Data System (ADS)

    Nguyen, Tuyen; Eugénio, Sónia; Boudard, Michel; Rapenne, Laetitia; Carmezim, M. João; Silva, Teresa M.; Montemor, M. Fátima

    2015-07-01

    This work reports the fabrication, by electrodeposition and post-thermal annealing, of hybrid electrodes for high rate electrochemical energy storage composed of nickel manganese oxide (Ni0.86Mn0.14O) nanosheets over 3D open porous dendritic NiCu foams. The hybrid electrodes are made of two different percolation networks of nanosheets and dendrites, and exhibit a specific capacitance value of 848 F g-1 at 1 A g-1. The electrochemical tests revealed that the electrodes display an excellent rate capability, characterized by capacitance retention of approximately 83% when the applied current density increases from 1 A g-1 to 20 A g-1. The electrodes also evidenced high charge-discharge cycling stability, which attained 103% after 1000 cycles.

  16. Automatic Masking for Robust 3D-2D Image Registration in Image-Guided Spine Surgery

    PubMed Central

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-01-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies. PMID:27335531

  17. Automatic masking for robust 3D-2D image registration in image-guided spine surgery

    NASA Astrophysics Data System (ADS)

    Ketcha, M. D.; De Silva, T.; Uneri, A.; Kleinszig, G.; Vogt, S.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-03-01

    During spinal neurosurgery, patient-specific information, planning, and annotation such as vertebral labels can be mapped from preoperative 3D CT to intraoperative 2D radiographs via image-based 3D-2D registration. Such registration has been shown to provide a potentially valuable means of decision support in target localization as well as quality assurance of the surgical product. However, robust registration can be challenged by mismatch in image content between the preoperative CT and intraoperative radiographs, arising, for example, from anatomical deformation or the presence of surgical tools within the radiograph. In this work, we develop and evaluate methods for automatically mitigating the effect of content mismatch by leveraging the surgical planning data to assign greater weight to anatomical regions known to be reliable for registration and vital to the surgical task while removing problematic regions that are highly deformable or often occluded by surgical tools. We investigated two approaches to assigning variable weight (i.e., "masking") to image content and/or the similarity metric: (1) masking the preoperative 3D CT ("volumetric masking"); and (2) masking within the 2D similarity metric calculation ("projection masking"). The accuracy of registration was evaluated in terms of projection distance error (PDE) in 61 cases selected from an IRB-approved clinical study. The best performing of the masking techniques was found to reduce the rate of gross failure (PDE > 20 mm) from 11.48% to 5.57% in this challenging retrospective data set. These approaches provided robustness to content mismatch and eliminated distinct failure modes of registration. Such improvement was gained without additional workflow and has motivated incorporation of the masking methods within a system under development for prospective clinical studies.

  18. Splice variants of the CaV1.3 L-type calcium channel regulate dendritic spine morphology

    PubMed Central

    Stanika, Ruslan; Campiglio, Marta; Pinggera, Alexandra; Lee, Amy; Striessnig, Jörg; Flucher, Bernhard E.; Obermair, Gerald J.

    2016-01-01

    Dendritic spines are the postsynaptic compartments of glutamatergic synapses in the brain. Their number and shape are subject to change in synaptic plasticity and neurological disorders including autism spectrum disorders and Parkinson’s disease. The L-type calcium channel CaV1.3 constitutes an important calcium entry pathway implicated in the regulation of spine morphology. Here we investigated the importance of full-length CaV1.3L and two C-terminally truncated splice variants (CaV1.342A and CaV1.343S) and their modulation by densin-180 and shank1b for the morphology of dendritic spines of cultured hippocampal neurons. Live-cell immunofluorescence and super-resolution microscopy of epitope-tagged CaV1.3L revealed its localization at the base-, neck-, and head-region of dendritic spines. Expression of the short splice variants or deletion of the C-terminal PDZ-binding motif in CaV1.3L induced aberrant dendritic spine elongation. Similar morphological alterations were induced by co-expression of densin-180 or shank1b with CaV1.3L and correlated with increased CaV1.3 currents and dendritic calcium signals in transfected neurons. Together, our findings suggest a key role of CaV1.3 in regulating dendritic spine structure. Under physiological conditions it may contribute to the structural plasticity of glutamatergic synapses. Conversely, altered regulation of CaV1.3 channels may provide an important mechanism in the development of postsynaptic aberrations associated with neurodegenerative disorders. PMID:27708393

  19. Changes in the plastic properties of hippocampal dendritic spines underlie the attenuation of place learning in healthy aged rats.

    PubMed

    González-Ramírez, Myrna M; Velázquez-Zamora, Dulce A; Olvera-Cortés, María Esther; González-Burgos, Ignacio

    2014-03-01

    Normal aging is characterized by slight impairments in spatial memory, and the modification of some electrophysiological parameters that underlie place learning and associated reference memory. However, the morphological mechanisms underlying these impairments remain unknown. In the present study, we analyzed the spine density and the proportion of thin, mushroom, stubby, wide, branched and double spines on pyramidal neuron dendrites in the hippocampal CA1 field of young and aged rats. These parameters were assessed both before and after evaluating place learning and reference memory in the Morris water maze. Aged rats adopted an egocentric strategy to resolve the task, swimming slower and further, and taking longer to locate the sunken platform. While probe trials revealed that aged animals could recall the platform position, these animals spent more time exploring incorrect quadrants than young rats. An increase in spine density was observed after task performance in both young and aged rats, but aging provoked a decrease in the density of thin spines. In addition, there was an increase in the density of mushroom and wide spines in aged animals after task performance as compared with the untested aged counterparts. Moreover, in aged animals there were fewer thin spines and more wide spines after task performance than in the young tested animals. These findings support the view that aging attenuates but does not abolish spatial memory, a process that may be associated with plastic changes in the type of dendritic spines on aged hippocampal CA1 neurons.

  20. Cux1 and Cux2 regulate dendritic branching, spine morphology and synapses of the upper layer neurons of the cortex

    PubMed Central

    Cubelos, Beatriz; Sebastián-Serrano, Alvaro; Beccari, Leonardo; Calcagnotto, Maria Elisa; Cisneros, Elsa; Kim, Seonhee; Dopazo, Ana; Alvarez-Dolado, Manuel; Redondo, Juan Miguel; Bovolenta, Paola; Walsh, Christopher A.; Nieto, Marta

    2010-01-01

    Summary Dendrite branching and spine formation determines the function of morphologically distinct and specialized neuronal subclasses. However, little is known about the programs instructing specific branching patterns in vertebrate neurons and whether such programs influence dendritic spines and synapses. Using knockout and knockdown studies combined with morphological, molecular and electrophysiological analysis we show that the homeobox Cux1 and Cux2 are intrinsic and complementary regulators of dendrite branching, spine development and synapse formation in layer II–III neurons of the cerebral cortex. Cux genes control the number and maturation of dendritic spines partly through direct regulation of the expression of Xlr3b and Xlr4b, chromatin remodeling genes previously implicated in cognitive defects. Accordingly, abnormal dendrites and synapses in Cux2−/− mice correlate with reduced synaptic function and defects in working memory. These demonstrate critical roles of Cux in dendritogenesis and highlight novel subclass-specific mechanisms of synapse regulation that contribute to the establishment of cognitive circuits. PMID:20510857

  1. Stress-induced alterations in prefrontal dendritic spines: Implications for post-traumatic stress disorder.

    PubMed

    Moench, Kelly M; Wellman, Cara L

    2015-08-01

    The medial prefrontal cortex (mPFC) is involved in a variety of important functions including emotional regulation, HPA axis regulation, and working memory. It also demonstrates remarkable plasticity in an experience-dependent manner. There is extensive evidence that stressful experiences can produce profound changes in the morphology of neurons within mPFC with a variety of behavioral consequences. The deleterious behavioral outcomes associated with mPFC dysfunction have been implicated in multiple psychopathologies, including post-traumatic stress disorder (PTSD). Given the prevalence of these disorders, a deeper understanding of the cellular mechanisms underlying stress-induced morphological changes in mPFC is critical, and could lead to improved therapeutic treatments. Here we give a brief review of recent studies examining the mechanisms underlying changes in mPFC pyramidal neuron dendritic spines - the primary sites of excitatory input in cortical pyramidal neurons. We begin with an overview of the effects of chronic stress on mPFC dendritic spine density and morphology followed by proposed mechanisms for these changes. We then discuss the time course of stress effects on mPFC as well as potential intercellular influences. Given that many psychopathologies, including PTSD, have different prevalence rates among men and women, we end with a discussion of the sex differences that have been observed in morphological changes in mPFC. Future directions and implications for PTSD are discussed throughout.

  2. Control of Ca2+ Influx and Calmodulin Activation by SK-Channels in Dendritic Spines

    PubMed Central

    Griffith, Thom; Tsaneva-Atanasova, Krasimira; Mellor, Jack R.

    2016-01-01

    The key trigger for Hebbian synaptic plasticity is influx of Ca2+ into postsynaptic dendritic spines. The magnitude of [Ca2+] increase caused by NMDA-receptor (NMDAR) and voltage-gated Ca2+ -channel (VGCC) activation is thought to determine both the amplitude and direction of synaptic plasticity by differential activation of Ca2+ -sensitive enzymes such as calmodulin. Ca2+ influx is negatively regulated by Ca2+ -activated K+ channels (SK-channels) which are in turn inhibited by neuromodulators such as acetylcholine. However, the precise mechanisms by which SK-channels control the induction of synaptic plasticity remain unclear. Using a 3-dimensional model of Ca2+ and calmodulin dynamics within an idealised, but biophysically-plausible, dendritic spine, we show that SK-channels regulate calmodulin activation specifically during neuron-firing patterns associated with induction of spike timing-dependent plasticity. SK-channel activation and the subsequent reduction in Ca2+ influx through NMDARs and L-type VGCCs results in an order of magnitude decrease in calmodulin (CaM) activation, providing a mechanism for the effective gating of synaptic plasticity induction. This provides a common mechanism for the regulation of synaptic plasticity by neuromodulators. PMID:27232631

  3. D1 dopamine receptor immunoreactivity in human and monkey cerebral cortex: predominant and extrasynaptic localization in dendritic spines.

    PubMed Central

    Smiley, J F; Levey, A I; Ciliax, B J; Goldman-Rakic, P S

    1994-01-01

    Antibodies to the D1 dopamine receptor were used to localize this protein in several areas of human and monkey cerebral cortex with light and electron microscopy. In addition to cell body labeling in monkeys, all areas of humans and monkeys had a neuropil label with a laminar distribution predicted by previous D1 receptor autoradiography studies. Using electron microscopy, this neuropil label was seen in numerous dendritic spines, in dendritic shafts, and in occasional axon terminals. While labeled spines were common, they represented only a subset of all cortical spines. Serial sectioning through labeled spines showed that the diaminobenzidine reaction product was usually not at postsynaptic densities but instead was displaced to the side of the large asymmetric (presumed glutamatergic) synapse. Furthermore, most labeled spines did not receive synapses with dopaminergic features, suggesting that many D1 receptors are at extrasynaptic sites, possibly receiving dopamine via diffusion in the neuropil. Similarly, double labeling failed to reveal D1 labeling at synapses of tyrosine hydroxylase immunoreactive axons. Localization to numerous dendritic spines suggests that a primary role of D1 receptors is modulation of glutamatergic input to cortical pyramidal cells. Images PMID:7911245

  4. Super resolution microscopy is poised to reveal new insights into the formation and maturation of dendritic spines

    PubMed Central

    Robinson, Cristina M.; Patel, Mikin R.; Webb, Donna J.

    2016-01-01

    Dendritic spines and synapses are critical for neuronal communication, and they are perturbed in many neurological disorders; however, the study of these structures in living cells has been hindered by their small size. Super resolution microscopy, unlike conventional light microscopy, is diffraction unlimited and thus is well suited for imaging small structures, such as dendritic spines and synapses. Super resolution microscopy has already revealed important new information about spine and synapse morphology, actin remodeling, and nanodomain composition in both healthy cells and diseased states. In this review, we highlight the advancements in probes that make super resolution more amenable to live-cell imaging of spines and synapses. We also discuss recent data obtained by super resolution microscopy that has advanced our knowledge of dendritic spine and synapse structure, organization, and dynamics in both healthy and diseased contexts. Finally, we propose a series of critical questions for understanding spine and synapse formation and maturation that super resolution microscopy is poised to answer. PMID:27408691

  5. Single-Molecule Discrimination within Dendritic Spines of Discrete Perisynaptic Sites of Actin Filament Assembly Driving Postsynaptic Reorganization

    NASA Astrophysics Data System (ADS)

    Blanpied, Thomas A.

    2013-03-01

    In the brain, the strength of synaptic transmission between neurons is principally set by the organization of proteins within the receptive, postsynaptic cell. Synaptic strength at an individual site of contact can remain remarkably stable for months or years. However, it also can undergo diverse forms of plasticity which change the strength at that contact independent of changes to neighboring synapses. Such activity-triggered neural plasticity underlies memory storage and cognitive development, and is disrupted in pathological physiology such as addiction and schizophrenia. Much of the short-term regulation of synaptic plasticity occurs within the postsynaptic cell, in small subcompartments surrounding the synaptic contact. Biochemical subcompartmentalization necessary for synapse-specific plasticity is achieved in part by segregation of synapses to micron-sized protrusions from the cell called dendritic spines. Dendritic spines are heavily enriched in the actin cytoskeleton, and regulation of actin polymerization within dendritic spines controls both basal synaptic strength and many forms of synaptic plasticity. However, understanding the mechanism of this control has been difficult because the submicron dimensions of spines limit examination of actin dynamics in the spine interior by conventional confocal microscopy. To overcome this, we developed single-molecule tracking photoactivated localization microscopy (smtPALM) to measure the movement of individual actin molecules within living spines. This revealed inward actin flow from broad areas of the spine plasma membrane, as well as a dense central core of heterogeneous filament orientation. The velocity of single actin molecules along filaments was elevated in discrete regions within the spine, notably near the postsynaptic density but surprisingly not at the endocytic zone which is involved in some forms of plasticity. We conclude that actin polymerization is initiated at many well-separated foci within

  6. Glutamatergic regulation prevents hippocampal-dependent age-related cognitive decline through dendritic spine clustering

    PubMed Central

    Pereira, Ana C.; Lambert, Hilary K.; Grossman, Yael S.; Dumitriu, Dani; Waldman, Rachel; Jannetty, Sophia K.; Calakos, Katina; Janssen, William G.; McEwen, Bruce S.; Morrison, John H.

    2014-01-01

    The dementia of Alzheimer’s disease (AD) results primarily from degeneration of neurons that furnish glutamatergic corticocortical connections that subserve cognition. Although neuron death is minimal in the absence of AD, age-related cognitive decline does occur in animals as well as humans, and it decreases quality of life for elderly people. Age-related cognitive decline has been linked to synapse loss and/or alterations of synaptic proteins that impair function in regions such as the hippocampus and prefrontal cortex. These synaptic alterations are likely reversible, such that maintenance of synaptic health in the face of aging is a critically important therapeutic goal. Here, we show that riluzole can protect against some of the synaptic alterations in hippocampus that are linked to age-related memory loss in rats. Riluzole increases glutamate uptake through glial transporters and is thought to decrease glutamate spillover to extrasynaptic NMDA receptors while increasing synaptic glutamatergic activity. Treated aged rats were protected against age-related cognitive decline displayed in nontreated aged animals. Memory performance correlated with density of thin spines on apical dendrites in CA1, although not with mushroom spines. Furthermore, riluzole-treated rats had an increase in clustering of thin spines that correlated with memory performance and was specific to the apical, but not the basilar, dendrites of CA1. Clustering of synaptic inputs is thought to allow nonlinear summation of synaptic strength. These findings further elucidate neuroplastic changes in glutamatergic circuits with aging and advance therapeutic development to prevent and treat age-related cognitive decline. PMID:25512503

  7. Cathepsin B-like proteolysis and MARCKS degradation in sub-lethal NMDA-induced collapse of dendritic spines.

    PubMed

    Graber, S; Maiti, S; Halpain, Shelley

    2004-10-01

    Sub-lethal excitotoxic injury to dendrites can elicit loss or shrinkage of dendritic spines. Here, we used a cell culture model of sub-lethal NMDA-induced injury to investigate a role for proteolysis in spine collapse. Transient incubation with NMDA-induced spine collapse and spine F-actin loss within 10 min, an effect not mimicked by the actin assembly inhibitor latrunculin A. NMDA-induced spine collapse was significantly attenuated by preincubation with broad-spectrum cysteine protease inhibitors. Results obtained using several class-specific protease inhibitors suggested that this protective effect was due to specific blockade of cathepsin B/L type protease activity, since selective inhibitors of only these proteases significantly attenuated spine loss. Cathepsin B-like immunoreactivity was observed at synaptic sites, but lysosomes were not. Immunoblot analysis showed that MARCKS (myristoylated-alanine-rich C-kinase substrate), a known substrate of cathepsin B, was specifically degraded in response to intense NMDA receptor stimulation. This effect was blocked by preincubation with a cathepsin B-selective inhibitor. Together these data suggest a model in which NMDA-induced spine collapse involves cathepsin B-like proteolysis of MARCKS, and possibly other proteins that regulate the actin-based cytoskeleton.

  8. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C

    2016-09-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons.

  9. Wnt-5a/Frizzled9 Receptor Signaling through the Gαo-Gβγ Complex Regulates Dendritic Spine Formation.

    PubMed

    Ramírez, Valerie T; Ramos-Fernández, Eva; Henríquez, Juan Pablo; Lorenzo, Alfredo; Inestrosa, Nibaldo C

    2016-09-01

    Wnt ligands play crucial roles in the development and regulation of synapse structure and function. Specifically, Wnt-5a acts as a secreted growth factor that regulates dendritic spine formation in rodent hippocampal neurons, resulting in postsynaptic development that promotes the clustering of the PSD-95 (postsynaptic density protein 95). Here, we focused on the early events occurring after the interaction between Wnt-5a and its Frizzled receptor at the neuronal cell surface. Additionally, we studied the role of heterotrimeric G proteins in Wnt-5a-dependent synaptic development. We report that FZD9 (Frizzled9), a Wnt receptor related to Williams syndrome, is localized in the postsynaptic region, where it interacts with Wnt-5a. Functionally, FZD9 is required for the Wnt-5a-mediated increase in dendritic spine density. FZD9 forms a precoupled complex with Gαo under basal conditions that dissociates after Wnt-5a stimulation. Accordingly, we found that G protein inhibition abrogates the Wnt-5a-dependent pathway in hippocampal neurons. In particular, the activation of Gαo appears to be a key factor controlling the Wnt-5a-induced dendritic spine density. In addition, we found that Gβγ is required for the Wnt-5a-mediated increase in cytosolic calcium levels and spinogenesis. Our findings reveal that FZD9 and heterotrimeric G proteins regulate Wnt-5a signaling and dendritic spines in cultured hippocampal neurons. PMID:27402827

  10. Involvement of diacylglycerol kinase β in the spine formation at distal dendrites of striatal medium spiny neurons.

    PubMed

    Hozumi, Yasukazu; Kakefuda, Kenichi; Yamasaki, Miwako; Watanabe, Masahiko; Hara, Hideaki; Goto, Kaoru

    2015-01-12

    Spine formation, a salient feature underlying neuronal plasticity to adapt to a changing environment, is regulated by complex machinery involving membrane signal transduction. The diacylglycerol kinase (DGK) family, which is involved in membrane lipid metabolism, catalyzes the phosphorylation of a lipid second messenger, diacylglycerol (DG). Of the DGKs, DGKβ is characterized by predominant expression in a specific brain region: the striatum. We previously demonstrated that DGKβ is expressed selectively in medium spiny neurons (MSNs) and that it is highly enriched in the perisynaptic membrane on dendritic spines contacted with excitatory terminals. Moreover, DGKβ regulates spinogenesis through actin-based remodeling in an activity-dependent manner. However, the detailed mechanisms of spinogenesis regulation and its functional significance remain unclear. To address these issues, we performed Golgi-Cox staining to examine morphological aspects of MSNs in the striatum of DGKβ-knockout (KO) mice. Results show that striatal MSNs of DGKβ-KO mice exhibited lower dendritic spine density at distal dendrites than wild-type mice did. We also sought protein targets that interact with DGKβ and identified the GluA2 AMPA receptor subunit as a novel DGKβ binding partner. In addition, DGKβ-deficient brain exhibits significant reduction of TARP γ-8, which represents a transmembrane AMPA receptor regulatory protein. These findings suggest that DGKβ regulates the spine formation at distal dendrites in MSNs.

  11. ERK1/2 Activation Is Necessary for BDNF to Increase Dendritic Spine Density in Hippocampal CA1 Pyramidal Neurons

    ERIC Educational Resources Information Center

    Alonso, Mariana; Medina, Jorge H.; Pozzo-Miller, Lucas

    2004-01-01

    Brain-derived neurotrophic factor (BDNF) is a potent modulator of synaptic transmission and plasticity in the CNS, acting both pre- and postsynaptically. We demonstrated recently that BDNF/TrkB signaling increases dendritic spine density in hippocampal CA1 pyramidal neurons. Here, we tested whether activation of the prominent ERK (MAPK) signaling…

  12. The role of heparan sulfate deficiency in autistic phenotype: potential involvement of Slit/Robo/srGAPs-mediated dendritic spine formation.

    PubMed

    Pérez, Christine; Sawmiller, Darrell; Tan, Jun

    2016-01-01

    Autism Spectrum Disorders (ASD) are the second most common developmental cause of disability in the United States. ASDs are accompanied with substantial economic and emotional cost. The brains of ASD patients have marked structural abnormalities, in the form of increased dendritic spines and decreased long distance connections. These structural differences may be due to deficiencies in Heparin Sulfate (HS), a proteoglycan involved in a variety of neurodevelopmental processes. Of particular interest is its role in the Slit/Robo pathway. The Slit/Robo pathway is known to be involved in the regulation of axonal guidance and dendritic spine formation. HS mediates the Slit/Robo interaction; without its presence Slit's repulsive activity is abrogated. Slit/Robo regulates dendritic spine formation through its interaction with srGAPs (slit-robo GTPase Activating Proteins), which leads to downstream signaling, actin cytoskeleton depolymerization and dendritic spine collapse. Through interference with this pathway, HS deficiency can lead to excess spine formation. PMID:27089953

  13. Loss of Prestin Does Not Alter the Development of Auditory Cortical Dendritic Spines

    PubMed Central

    Bogart, L. J.; Levy, A. D.; Gladstone, M.; Allen, P. D.; Zettel, M.; Ison, J. R.; Luebke, A. E.; Majewska, A. K.

    2011-01-01

    Disturbance of sensory input during development can have disastrous effects on the development of sensory cortical areas. To examine how moderate perturbations of hearing can impact the development of primary auditory cortex, we examined markers of excitatory synapses in mice who lacked prestin, a protein responsible for somatic electromotility of cochlear outer hair cells. While auditory brain stem responses of these mice show an approximately 40 dB increase in threshold, we found that loss of prestin produced no changes in spine density or morphological characteristics on apical dendrites of cortical layer 5 pyramidal neurons. PSD-95 immunostaining also showed no changes in overall excitatory synapse density. Surprisingly, behavioral assessments of auditory function using the acoustic startle response showed only modest changes in prestin KO animals. These results suggest that moderate developmental hearing deficits produce minor changes in the excitatory connectivity of layer 5 neurons of primary auditory cortex and surprisingly mild auditory behavioral deficits in the startle response. PMID:21773053

  14. Early Increase and Late Decrease of Purkinje Cell Dendritic Spine Density in Prion-Infected Organotypic Mouse Cerebellar Cultures

    PubMed Central

    Campeau, Jody L.; Wu, Gengshu; Bell, John R.; Rasmussen, Jay; Sim, Valerie L.

    2013-01-01

    Prion diseases are infectious neurodegenerative diseases associated with the accumulation of protease-resistant prion protein, neuronal loss, spongiform change and astrogliosis. In the mouse model, the loss of dendritic spines is one of the earliest pathological changes observed in vivo, occurring 4–5 weeks after the first detection of protease-resistant prion protein in the brain. While there are cell culture models of prion infection, most do not recapitulate the neuropathology seen in vivo. Only the recently developed prion organotypic slice culture assay has been reported to undergo neuronal loss and the development of some aspects of prion pathology, namely small vacuolar degeneration and tubulovesicular bodies. Given the rapid replication of prions in this system, with protease-resistant prion protein detectable by 21 days, we investigated whether the dendritic spine loss and altered dendritic morphology seen in prion disease might also develop within the lifetime of this culture system. Indeed, six weeks after first detection of protease-resistant prion protein in tga20 mouse cerebellar slice cultures infected with RML prion strain, we found a statistically significant loss of Purkinje cell dendritic spines and altered dendritic morphology in infected cultures, analogous to that seen in vivo. In addition, we found a transient but statistically significant increase in Purkinje cell dendritic spine density during infection, at the time when protease-resistant prion protein was first detectable in culture. Our findings support the use of this slice culture system as one which recapitulates prion disease pathology and one which may facilitate study of the earliest stages of prion disease pathogenesis. PMID:24312586

  15. Intraneuronal APP and extracellular Aβ independently cause dendritic spine pathology in transgenic mouse models of Alzheimer's disease.

    PubMed

    Zou, Chengyu; Montagna, Elena; Shi, Yuan; Peters, Finn; Blazquez-Llorca, Lidia; Shi, Song; Filser, Severin; Dorostkar, Mario M; Herms, Jochen

    2015-06-01

    Alzheimer's disease (AD) is thought to be caused by accumulation of amyloid-β protein (Aβ), which is a cleavage product of amyloid precursor protein (APP). Transgenic mice overexpressing APP have been used to recapitulate amyloid-β pathology. Among them, APP23 and APPswe/PS1deltaE9 (deltaE9) mice are extensively studied. APP23 mice express APP with Swedish mutation and develop amyloid plaques late in their life, while cognitive deficits are observed in young age. In contrast, deltaE9 mice with mutant APP and mutant presenilin-1 develop amyloid plaques early but show typical cognitive deficits in old age. To unveil the reasons for different progressions of cognitive decline in these commonly used mouse models, we analyzed the number and turnover of dendritic spines as important structural correlates for learning and memory. Chronic in vivo two-photon imaging in apical tufts of layer V pyramidal neurons revealed a decreased spine density in 4-5-month-old APP23 mice. In age-matched deltaE9 mice, in contrast, spine loss was only observed on cortical dendrites that were in close proximity to amyloid plaques. In both cases, the reduced spine density was caused by decreased spine formation. Interestingly, the patterns of alterations in spine morphology differed between these two transgenic mouse models. Moreover, in APP23 mice, APP was found to accumulate intracellularly and its content was inversely correlated with the absolute spine density and the relative number of mushroom spines. Collectively, our results suggest that different pathological mechanisms, namely an intracellular accumulation of APP or extracellular amyloid plaques, may lead to spine abnormalities in young adult APP23 and deltaE9 mice, respectively. These distinct features, which may represent very different mechanisms of synaptic failure in AD, have to be taken into consideration when translating results from animal studies to the human disease. PMID:25862638

  16. Dopamine facilitates dendritic spine formation by cultured striatal medium spiny neurons through both D1 and D2 dopamine receptors.

    PubMed

    Fasano, Caroline; Bourque, Marie-Josée; Lapointe, Gabriel; Leo, Damiana; Thibault, Dominic; Haber, Michael; Kortleven, Christian; Desgroseillers, Luc; Murai, Keith K; Trudeau, Louis-Éric

    2013-04-01

    Variations of dopamine (DA) levels induced by drugs of abuse or in the context of Parkinson's disease modulate the number of dendritic spines in medium spiny neurons (MSNs) of the striatum, showing that DA plays a major role in the structural plasticity of MSNs. However, little is presently known regarding early spine development in MSNs occurring before the arrival of cortical inputs and in particular about the role of DA and D1 (D1R) and D2 (D2R) DA receptors. A cell culture model reconstituting early cellular interactions between MSNs, intrinsic cholinergic interneurons and DA neurons was used to study the role of DA in spine formation. After 5 or 10 days in vitro, the presence of DA neurons increased the number of immature spine-like protrusions. In MSN monocultures, chronic activation of D1R or D2R also increased the number of spines and spinophilin expression in MSNs, suggesting a direct role for these receptors. In DA-MSN cocultures, chronic blockade of D1R or D2R reduced the number of dendritic spines. Interestingly, the combined activation or blockade of both D1R and D2R failed to elicit more extensive spine formation, suggesting that both receptors act through a mechanism that is not additive. Finally, we found increased ionotropic glutamate receptor responsiveness and miniature excitatory postsynaptic current (EPSC) frequency in DA-MSN co-cultures, in parallel with a higher number of spines containing PSD-95, suggesting that the newly formed spines present functional post-synaptic machinery preparing the MSNs to receive additional glutamatergic contacts. These results represent a first step in the understanding of how dopamine neurons promote the structural plasticity of MSNs during the development of basal ganglia circuits.

  17. Cocaine alters dendritic spine density in cortical and subcortical brain regions of the postpartum and virgin female rat

    PubMed Central

    Frankfurt, Maya; Salas-Ramirez, Kaliris; Friedman, Eitan; Luine, Victoria

    2011-01-01

    Cocaine use during pregnancy induces profound neural and behavioral deficits in both mother and offspring. The present study was designed to compare the effects of cocaine exposure on spine density of postpartum and virgin female rat brains. Timed, pregnant, primiparous rats were injected with either cocaine (30 mg/kg) or saline, once daily, from gestational day 8–20. Twenty four hours after giving birth, dam brains were processed for Golgi-impregnation. Since cocaine effects in female rats have not been determined, virgin females were also injected with the same dose of cocaine or saline for 12 days and sacrificed 24h after the last injection for comparison. Pregnant rats had significantly greater spine density in the medial amygdala (MeA) and medial preoptic area (MPOA) and lower spine density in CA1 than virgin females independent of cocaine treatment. Cocaine significantly increased dendritic spine density on the apical branch of pyramidal cells in the prefrontal cortex (PFC, 15%), both apical (13%) and basal (14.8%) branches of CA1 and cells in the MeA (28%) of pregnant rats. In the MPOA, cocaine administration resulted in a decrease in dendritic spine density (14%) in pregnant rats. In virgin females, cocaine had fewer effects but did increase dendritic spine density on both branches of CA1 neurons and in the MeA. The present study is the first to demonstrate that spine density differs between pregnant and virgin females and that pregnancy makes the brain more vulnerable to cocaine, which has important clinical implications. PMID:21480383

  18. Integration of multiscale dendritic spine structure and function data into systems biology models

    PubMed Central

    Mancuso, James J.; Cheng, Jie; Yin, Zheng; Gilliam, Jared C.; Xia, Xiaofeng; Li, Xuping; Wong, Stephen T. C.

    2014-01-01

    Comprising 1011 neurons with 1014 synaptic connections the human brain is the ultimate systems biology puzzle. An increasing body of evidence highlights the observation that changes in brain function, both normal and pathological, consistently correlate with dynamic changes in neuronal anatomy. Anatomical changes occur on a full range of scales from the trafficking of individual proteins, to alterations in synaptic morphology both individually and on a systems level, to reductions in long distance connectivity and brain volume. The major sites of contact for synapsing neurons are dendritic spines, which provide an excellent metric for the number and strength of signaling connections between elements of functional neuronal circuits. A comprehensive model of anatomical changes and their functional consequences would be a holy grail for the field of systems neuroscience but its realization appears far on the horizon. Various imaging technologies have advanced to allow for multi-scale visualization of brain plasticity and pathology, but computational analysis of the big data sets involved forms the bottleneck toward the creation of multiscale models of brain structure and function. While a full accounting of techniques and progress toward a comprehensive model of brain anatomy and function is beyond the scope of this or any other single paper, this review serves to highlight the opportunities for analysis of neuronal spine anatomy and function provided by new imaging technologies and the high-throughput application of older technologies while surveying the strengths and weaknesses of currently available computational analytical tools and room for future improvement. PMID:25429262

  19. The Endosome Localized Arf-GAP AGAP1 Modulates Dendritic Spine Morphology Downstream of the Neurodevelopmental Disorder Factor Dysbindin

    PubMed Central

    Arnold, Miranda; Cross, Rebecca; Singleton, Kaela S.; Zlatic, Stephanie; Chapleau, Christopher; Mullin, Ariana P.; Rolle, Isaiah; Moore, Carlene C.; Theibert, Anne; Pozzo-Miller, Lucas; Faundez, Victor; Larimore, Jennifer

    2016-01-01

    AGAP1 is an Arf1 GTPase activating protein that interacts with the vesicle-associated protein complexes adaptor protein 3 (AP-3) and Biogenesis of Lysosome Related Organelles Complex-1 (BLOC-1). Overexpression of AGAP1 in non-neuronal cells results in an accumulation of endosomal cargoes, which suggests a role in endosome-dependent traffic. In addition, AGAP1 is a candidate susceptibility gene for two neurodevelopmental disorders, autism spectrum disorder (ASD) and schizophrenia (SZ); yet its localization and function in neurons have not been described. Here, we describe that AGAP1 localizes to axons, dendrites, dendritic spines and synapses, colocalizing preferentially with markers of early and recycling endosomes. Functional studies reveal overexpression and down-regulation of AGAP1 affects both neuronal endosomal trafficking and dendritic spine morphology, supporting a role for AGAP1 in the recycling endosomal trafficking involved in their morphogenesis. Finally, we determined the sensitivity of AGAP1 expression to mutations in the DTNBP1 gene, which is associated with neurodevelopmental disorder, and found that AGAP1 mRNA and protein levels are selectively reduced in the null allele of the mouse ortholog of DTNBP1. We postulate that endosomal trafficking contributes to the pathogenesis of neurodevelopmental disorders affecting dendritic spine morphology, and thus excitatory synapse structure and function. PMID:27713690

  20. Robust 3D-2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation

    NASA Astrophysics Data System (ADS)

    Otake, Yoshito; Wang, Adam S.; Webster Stayman, J.; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A. Jay; Gokaslan, Ziya L.; Siewerdsen, Jeffrey H.

    2013-12-01

    We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with ‘success’ defined as PDE <5 mm) using 1,718 664 ± 96 582 function evaluations computed in 54.0 ± 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., ±5 mm, assuming a robust initial

  1. Robust 3D-2D image registration: application to spine interventions and vertebral labeling in the presence of anatomical deformation.

    PubMed

    Otake, Yoshito; Wang, Adam S; Webster Stayman, J; Uneri, Ali; Kleinszig, Gerhard; Vogt, Sebastian; Khanna, A Jay; Gokaslan, Ziya L; Siewerdsen, Jeffrey H

    2013-12-01

    We present a framework for robustly estimating registration between a 3D volume image and a 2D projection image and evaluate its precision and robustness in spine interventions for vertebral localization in the presence of anatomical deformation. The framework employs a normalized gradient information similarity metric and multi-start covariance matrix adaptation evolution strategy optimization with local-restarts, which provided improved robustness against deformation and content mismatch. The parallelized implementation allowed orders-of-magnitude acceleration in computation time and improved the robustness of registration via multi-start global optimization. Experiments involved a cadaver specimen and two CT datasets (supine and prone) and 36 C-arm fluoroscopy images acquired with the specimen in four positions (supine, prone, supine with lordosis, prone with kyphosis), three regions (thoracic, abdominal, and lumbar), and three levels of geometric magnification (1.7, 2.0, 2.4). Registration accuracy was evaluated in terms of projection distance error (PDE) between the estimated and true target points in the projection image, including 14 400 random trials (200 trials on the 72 registration scenarios) with initialization error up to ±200 mm and ±10°. The resulting median PDE was better than 0.1 mm in all cases, depending somewhat on the resolution of input CT and fluoroscopy images. The cadaver experiments illustrated the tradeoff between robustness and computation time, yielding a success rate of 99.993% in vertebral labeling (with 'success' defined as PDE <5 mm) using 1,718 664 ± 96 582 function evaluations computed in 54.0 ± 3.5 s on a mid-range GPU (nVidia, GeForce GTX690). Parameters yielding a faster search (e.g., fewer multi-starts) reduced robustness under conditions of large deformation and poor initialization (99.535% success for the same data registered in 13.1 s), but given good initialization (e.g., ±5 mm, assuming a robust initial run) the

  2. Automatic localization of target vertebrae in spine surgery using fast CT-to-fluoroscopy (3D-2D) image registration

    NASA Astrophysics Data System (ADS)

    Otake, Y.; Schafer, S.; Stayman, J. W.; Zbijewski, W.; Kleinszig, G.; Graumann, R.; Khanna, A. J.; Siewerdsen, J. H.

    2012-02-01

    Localization of target vertebrae is an essential step in minimally invasive spine surgery, with conventional methods relying on "level counting" - i.e., manual counting of vertebrae under fluoroscopy starting from readily identifiable anatomy (e.g., the sacrum). The approach requires an undesirable level of radiation, time, and is prone to counting errors due to the similar appearance of vertebrae in projection images; wrong-level surgery occurs in 1 of every ~3000 cases. This paper proposes a method to automatically localize target vertebrae in x-ray projections using 3D-2D registration between preoperative CT (in which vertebrae are preoperatively labeled) and intraoperative fluoroscopy. The registration uses an intensity-based approach with a gradient-based similarity metric and the CMA-ES algorithm for optimization. Digitally reconstructed radiographs (DRRs) and a robust similarity metric are computed on GPU to accelerate the process. Evaluation in clinical CT data included 5,000 PA and LAT projections randomly perturbed to simulate human variability in setup of mobile intraoperative C-arm. The method demonstrated 100% success for PA view (projection error: 0.42mm) and 99.8% success for LAT view (projection error: 0.37mm). Initial implementation on GPU provided automatic target localization within about 3 sec, with further improvement underway via multi-GPU. The ability to automatically label vertebrae in fluoroscopy promises to streamline surgical workflow, improve patient safety, and reduce wrong-site surgeries, especially in large patients for whom manual methods are time consuming and error prone.

  3. Dysfunctional epileptic neuronal circuits and dysmorphic dendritic spines are mitigated by platelet-activating factor receptor antagonism

    PubMed Central

    Musto, Alberto E.; Rosencrans, Robert F.; Walker, Chelsey P.; Bhattacharjee, Surjyadipta; Raulji, Chittalsinh M.; Belayev, Ludmila; Fang, Zhide; Gordon, William C.; Bazan, Nicolas G.

    2016-01-01

    Temporal lobe epilepsy or limbic epilepsy lacks effective therapies due to a void in understanding the cellular and molecular mechanisms that set in motion aberrant neuronal network formations during the course of limbic epileptogenesis (LE). Here we show in in vivo rodent models of LE that the phospholipid mediator platelet-activating factor (PAF) increases in LE and that PAF receptor (PAF-r) ablation mitigates its progression. Synthetic PAF-r antagonists, when administered intraperitoneally in LE, re-establish hippocampal dendritic spine density and prevent formation of dysmorphic dendritic spines. Concomitantly, hippocampal interictal spikes, aberrant oscillations, and neuronal hyper-excitability, evaluated 15–16 weeks after LE using multi-array silicon probe electrodes implanted in the dorsal hippocampus, are reduced in PAF-r antagonist-treated mice. We suggest that over-activation of PAF-r signaling induces aberrant neuronal plasticity in LE and leads to chronic dysfunctional neuronal circuitry that mediates epilepsy. PMID:27444269

  4. Traveling waves in the Baer and Rinzel model of spine studded dendritic tissue

    NASA Astrophysics Data System (ADS)

    Lord, G. J.; Coombes, S.

    2002-01-01

    The Baer and Rinzel model of dendritic spines uniformly distributed along a dendritic cable is shown to admit a variety of regular traveling wave solutions including solitary pulses, multiple pulses and periodic waves. We investigate numerically the speed of these waves and their propagation failure as functions of the system parameters by numerical continuation. Multiple pulse waves are shown to occur close to the primary pulse, except in certain exceptional regions of parameter space, which we identify. The propagation failure of solitary and multiple pulse waves is shown to be associated with the destruction of a saddle-node bifurcation of periodic orbits. The system also supports many types of irregular wave trains. These include waves which may be regarded as connections to periodics and bursting patterns in which pulses can cluster together in well-defined packets. The behavior and properties of both these irregular spike-trains is explained within a kinematic framework that is based on the times of wave pulses. The dispersion curve for periodic waves is important for such a description and is obtained in a straightforward manner using the numerical scheme developed for the study of the speed of a periodic wave. Stability of periodic waves within the kinematic theory is given in terms of the derivative of the dispersion curve and provides a weak form of stability that may be applied to solutions of the traveling wave equations. The kinematic theory correctly predicts the conditions for period doubling bifurcations and the generation of bursting states. Moreover, it also accurately describes the shape and speed of the traveling front that connects waves with two different periods.

  5. RanBP9 Overexpression Accelerates Loss of Dendritic Spines in a Mouse Model of Alzheimer's Disease

    PubMed Central

    Wang, Ruizhi; Palavicini, Juan Pablo; Wang, Hongjie; Maiti, Panchanan; Bianchi, Elisabetta; Xu, Shaohua; Lloyd, BN; Dawson-Scully, Ken; Kang, David E; Lakshmana, Madepalli K.

    2014-01-01

    We previously demonstrated that RanBP9 overexpression increased Aβ generation and amyloid plaque burden, subsequently leading to robust reductions in the levels of several synaptic proteins as well as deficits in the learning and memory skills in a mouse model of Alzheimer's disease (AD). In the present study, we found striking reduction of spinophilin-immunoreactive puncta (52%, p<0.001) and spinophilin area (62.5%, p<0.001) in the primary cortical neurons derived from RanBP9 transgenic mice (RanBP9-Tg) compared to wild-type (WT) neurons. Similar results were confirmed in WT cortical neurons transfected with EGFP-RanBP9. At 6-months of age, the total spine density in the cortex of RanBP9 single transgenic, APΔE9 double transgenic and APΔE9/RanBP9 triple transgenic mice were similar to WT mice. However, in the hippocampus the spine density was significantly reduced (27%, p<0.05) in the triple transgenic mice compared to WT mice due to reduced number of thin spines (33%, p<0.05) and mushroom spines (22%, p<0.05). This suggests that RanBP9 overexpression in the APΔE9 mice accelerates loss of spines and that hippocampus is more vulnerable. At 12-months of age, cortex showed significant reductions in total spine density in the RanBP9 (22%, p<0.05), APΔE9 (19%, p<0.05) and APΔE9/RanBP9 (33%, p<0.01) mice compared to WT controls due to reductions in mushroom and thin spines. Similarly, in the hippocampus the total spine density was reduced in the RanBP9 (23%, p<0.05), APΔE9 (26%, p<0.05) and APΔE9/RanBP9 (39%, p<0.01) mice due to reductions in thin and mushroom spines. Most importantly, RanBP9 overexpression in the APΔE9 mice further exacerbated the reductions in spine density in both the cortex (14%, p<0.05) and the hippocampus (16%, p<0.05). Because dendritic spines are considered physical traces of memory, loss of spines due to RanBP9 provided the physical basis for the learning and memory deficits. Since RanBP9 protein levels are increased in AD brains, Ran

  6. RanBP9 overexpression accelerates loss of dendritic spines in a mouse model of Alzheimer's disease.

    PubMed

    Wang, Ruizhi; Palavicini, Juan Pablo; Wang, Hongjie; Maiti, Panchanan; Bianchi, Elisabetta; Xu, Shaohua; Lloyd, B N; Dawson-Scully, Ken; Kang, David E; Lakshmana, Madepalli K

    2014-09-01

    We previously demonstrated that RanBP9 overexpression increased Aβ generation and amyloid plaque burden, subsequently leading to robust reductions in the levels of several synaptic proteins as well as deficits in the learning and memory skills in a mouse model of Alzheimer's disease (AD). In the present study, we found striking reduction of spinophilin-immunoreactive puncta (52%, p<0.001) and spinophilin area (62.5%, p<0.001) in the primary cortical neurons derived from RanBP9 transgenic mice (RanBP9-Tg) compared to wild-type (WT) neurons. Similar results were confirmed in WT cortical neurons transfected with EGFP-RanBP9. At 6-months of age, the total spine density in the cortex of RanBP9 single transgenic, APΔE9 double transgenic and APΔE9/RanBP9 triple transgenic mice was similar to WT mice. However, in the hippocampus the spine density was significantly reduced (27%, p<0.05) in the triple transgenic mice compared to WT mice due to reduced number of thin spines (33%, p<0.05) and mushroom spines (22%, p<0.05). This suggests that RanBP9 overexpression in the APΔE9 mice accelerates loss of spines and that the hippocampus is more vulnerable. At 12-months of age, the cortex showed significant reductions in total spine density in the RanBP9 (22%, p<0.05), APΔE9 (19%, p<0.05) and APΔE9/RanBP9 (33%, p<0.01) mice compared to WT controls due to reductions in mushroom and thin spines. Similarly, in the hippocampus the total spine density was reduced in the RanBP9 (23%, p<0.05), APΔE9 (26%, p<0.05) and APΔE9/RanBP9 (39%, p<0.01) mice due to reductions in thin and mushroom spines. Most importantly, RanBP9 overexpression in the APΔE9 mice further exacerbated the reductions in spine density in both the cortex (14%, p<0.05) and the hippocampus (16%, p<0.05). Because dendritic spines are considered physical traces of memory, loss of spines due to RanBP9 provided the physical basis for the learning and memory deficits. Since RanBP9 protein levels are increased in AD

  7. Lesion-induced and activity-dependent structural plasticity of Purkinje cell dendritic spines in cerebellar vermis and hemisphere.

    PubMed

    Gelfo, Francesca; Florenzano, Fulvio; Foti, Francesca; Burello, Lorena; Petrosini, Laura; De Bartolo, Paola

    2016-09-01

    Neuroplasticity allows the brain to encode experience and learn behaviors, and also to re-acquire lost functions after damage. The cerebellum is a suitable structure to address this topic because of its strong involvement in learning processes and compensation of lesion-induced deficits. This study was aimed to characterize the effects of a hemicerebellectomy (HCb) combined or not with the exposition to environmental enrichment (EE) on dendritic spine density and size in Purkinje cell proximal and distal compartments of cerebellar vermian and hemispherical regions. Male Wistar rats were housed in enriched or standard environments from the 21st post-natal day (pnd) onwards. At the 75th pnd, rats were submitted to HCb or sham lesion. Neurological symptoms and spatial performance in the Morris water maze were evaluated. At the end of testing, morphological analyses assessed dendritic spine density, area, length, and head diameter on vermian and hemispherical Purkinje cells. All hemicerebellectomized (HCbed) rats showed motor compensation, but standard-reared HCbed animals exhibited cognitive impairment that was almost completely compensated in enriched HCbed rats. The standard-reared HCbed rats showed decreased density with augmented size of Purkinje cell spines in the vermis, and augmented both density and size in the hemisphere. Enriched HCbed rats almost completely maintained the spine density and size induced by EE. Both lesion-induced and activity-dependent cerebellar plastic changes may be interpreted as "beneficial" brain reactions, aimed to support behavioral performance rescuing. PMID:26420278

  8. Opposite Effects of mGluR1a and mGluR5 Activation on Nucleus Accumbens Medium Spiny Neuron Dendritic Spine Density.

    PubMed

    Gross, Kellie S; Brandner, Dieter D; Martinez, Luis A; Olive, M Foster; Meisel, Robert L; Mermelstein, Paul G

    2016-01-01

    The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density. PMID:27618534

  9. Opposite Effects of mGluR1a and mGluR5 Activation on Nucleus Accumbens Medium Spiny Neuron Dendritic Spine Density

    PubMed Central

    Gross, Kellie S.; Brandner, Dieter D.; Martinez, Luis A.; Olive, M. Foster; Meisel, Robert L.

    2016-01-01

    The group I metabotropic glutamate receptors (mGluR1a and mGluR5) are important modulators of neuronal structure and function. Although these receptors share common signaling pathways, they are capable of having distinct effects on cellular plasticity. We investigated the individual effects of mGluR1a or mGluR5 activation on dendritic spine density in medium spiny neurons in the nucleus accumbens (NAc), which has become relevant with the potential use of group I mGluR based therapeutics in the treatment of drug addiction. We found that systemic administration of mGluR subtype-specific positive allosteric modulators had opposite effects on dendritic spine densities. Specifically, mGluR5 positive modulation decreased dendritic spine densities in the NAc shell and core, but was without effect in the dorsal striatum, whereas increased spine densities in the NAc were observed with mGluR1a positive modulation. Additionally, direct activation of mGluR5 via CHPG administration into the NAc also decreased the density of dendritic spines. These data provide insight on the ability of group I mGluRs to induce structural plasticity in the NAc and demonstrate that the group I mGluRs are capable of producing not just distinct, but opposing, effects on dendritic spine density. PMID:27618534

  10. Distinct dendritic spine and nuclear phases of calcineurin activation after exposure to Amyloid β revealed by a novel FRET assay

    PubMed Central

    Wu, Hai-Yan; Hudry, Eloise; Hashimoto, Tadafumi; Uemura, Kengo; Fan, Zhan-Yun; Berezovska, Oksana; Grosskreutz, Cynthia L.; Bacskai, Brian J.; Hyman, Bradley T

    2012-01-01

    Calcineurin (CaN) activation is critically involved in the regulation of spine morphology in response to oligomeric amyloid β (Aβ) as well as in synaptic plasticity in normal memory, but no existing techniques can monitor the spatiotemporal pattern of CaN activity. Here we use a spectral Fluorescence Resonance Energy Transfer (FRET) approach to monitor CaN activation dynamics in real time with subcellular resolution. When oligomeric Aβ derived from Tg2576 murine transgenic neurons or human AD brains were applied to wild-type murine primary cortical neurons, we observe a dynamic progression of CaN activation within minutes, first in dendritic spines, then in the cytoplasm and, in hours, in the nucleus. CaN activation in spines leads to rapid but reversible morphological changes in spines and in postsynaptic proteins; longer exposure leads to NFAT translocation to the nucleus and frank spine loss. These results provide a framework for understanding calcineurin’s role in synaptic alterations associated with AD pathogenesis. PMID:22496575

  11. Chronic Lead Exposure and Mixed Factors of Gender×Age×Brain Regions Interactions on Dendrite Growth, Spine Maturity and NDR Kinase

    PubMed Central

    Xue, Weizhen; Yang, Qian-Qian; Wang, Shuang; Xu, Yi; Wang, Hui-Li

    2015-01-01

    NDR1/2 kinase is essential in dendrite morphology and spine formation, which is regulated by cellular Ca2+. Lead (Pb) is a potent blocker of L-type calcium channel and our recent work showed Pb exposure impairs dendritic spine outgrowth in hippocampal neurons in rats. But the sensitivity of Pb-induced spine maturity with mixed factors (gender×age×brain regions) remains unknown. This study aimed to systematically investigate the effect of Pb exposure on spine maturity in rat brain with three factors (gender×age×brain regions), as well as the NDR1/2 kinase expression. Sprague–Dawley rats were exposed to Pb from parturition to postnatal day 30, 60, 90, respectively. Golgi-Cox staining was used to examine spine maturity. Western blot assay was applied to measure protein expression and real-time fluorescence quantitative PCR assay was used to examine mRNA levels. The results showed chronic Pb exposure significantly decreased dendritic length and impaired spine maturity in both rat hippocampus and medial prefrontal cortex. The impairment of dendritic length induced by Pb exposure tended to adolescence > adulthood, hippocampus > medial prefrontal cortex and female > male. Pb exposure induced significant damage in spine maturity during adolescence and early adult while little damage during adult in male rat brain and female medial prefrontal cortex. Besides, there was sustained impairment from adolescence to adulthood in female hippocampus. Interestingly, impairment of spine maturity followed by Pb exposure was correlated with NDR1/2 kinase. The reduction of NDR1/2 kinase protein expression after Pb exposure was similar to the result of spine maturity. In addition, NDR2 and their substrate Rabin3 mRNA levels were significantly decreased by Pb exposure in developmental rat brain. Taken together, Pb exposure impaired dendrite growth and maturity which was subject to gender×age×brain regions effects and related to NDR1/2 signal expression. PMID:26368815

  12. Super-resolution 2-photon microscopy reveals that the morphology of each dendritic spine correlates with diffusive but not synaptic properties

    PubMed Central

    Takasaki, Kevin; Sabatini, Bernardo L.

    2014-01-01

    The structure of dendritic spines suggests a specialized function in compartmentalizing synaptic signals near active synapses. Indeed, theoretical and experimental analyses indicate that the diffusive resistance of the spine neck is sufficient to effectively compartmentalize some signaling molecules in a spine for the duration of their activated lifetime. Here we describe the application of 2-photon microscopy combined with stimulated emission depletion (STED-2P) to the biophysical study of the relationship between synaptic signals and spine morphology, demonstrating the utility of combining STED-2P with modern optical and electrophysiological techniques. Morphological determinants of fluorescence recovery time were identified and evaluated within the context of a simple compartmental model describing diffusive transfer between spine and dendrite. Correlations between the neck geometry and the amplitude of synaptic potentials and calcium transients evoked by 2-photon glutamate uncaging were also investigated. PMID:24847215

  13. Torso and hip muscle activity and resulting spine load and stability while using the ProFitter 3-D Cross Trainer.

    PubMed

    Banerjee, Priyanka; Brown, Stephen H M; Howarth, Samuel J; McGill, Stuart M

    2009-02-01

    The ProFitter 3-D Cross Trainer is a labile surface device used in the clinic and claimed to train spine stability. The purpose of this study was to quantify the spine mechanics (compression and shear forces and stability), together with muscle activation mechanics (surface electromyography) of the torso and hip, during three ProFitter exercises. Trunk muscle activity was relatively low while exercising on the device (<25%MVC). Gluteus medius activity was phasic with the horizontal sliding position, especially for an experienced participant. Sufficient spinal stability was achieved in all three exercise conditions. Peak spinal compression values were below 3400 N (maximum 3188 N) and peak shear values were correspondingly low (under 500 N). The exercises challenge whole-body dynamic balance while producing very conservative spine loads. The motion simultaneously integrates hip and torso muscles in a way that appears to ensure stabilizing motor patterns in the spine. This information will assist with clinical decision making about the utility of the device and exercise technique in rehabilitation and training programs.

  14. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model.

    PubMed

    Arroyo, Ana I; Camoletto, Paola G; Morando, Laura; Sassoe-Pognetto, Marco; Giustetto, Maurizio; Van Veldhoven, Paul P; Schuchman, Edward H; Ledesma, Maria D

    2014-03-01

    Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions.

  15. Two-color super-resolution imaging of dendritic spines of hippocampal neurons using a custom STED microscope

    NASA Astrophysics Data System (ADS)

    Meyer, Stephanie; Woolfrey, Kevin; Ozbay, Baris; Restrepo, Diego; Dell'Acqua, Mark; Gibson, Emily

    2014-03-01

    We built a 2-color STED microscope and imaged dendritic spines in mouse hippocampal neurons at sub-diffraction limit resolution. The microscope is designed similar to one developed by Johanna Bückers, et. al. (Opt. Exp. 2011) in the lab of Dr. Stefan Hell. The STED microscope images at Atto590/Atto647N wavelengths and is capable of doing so simultaneously. We characterized the resolution of the system by imaging 40nm fluorescent beads as ~58nm (Atto590) and ~44 nm (Atto647N). The microscope is part of the UC Denver Advanced Light Microscopy Core, primarily for use by neuroscientists. We then performed 2-color STED imaging on hippocampal neurons immuno-labeled at PSD-95 (a postsynaptic density marker) along with either the GluA1-subunit of the AMPA-type glutamate receptor or the signaling scaffold protein AKAP150 in order to visualize nm-scale compartmentalization of these proteins within single postsynaptic dendritic spines. Importantly, for both GluA1 and AKAP150, STED imaging visualized sub-diffraction dimension clusters in spines located at both synaptic (overlapping or proximal to PSD-95) and extrasynaptic locations. In the future 2-color STED imaging should be useful for studying changes in the localization of these proteins during synaptic plasticity. NIH Shared Instrumentation Grant Program.

  16. Distinct Ca2+ sources in dendritic spines of hippocampal CA1 neurons couple to SK and Kv4 channels

    PubMed Central

    Wang, Kang; Lin, Mike T.; Adelman, John P.; Maylie, James

    2013-01-01

    SUMMARY Ca2+-activated SK channels and voltage-gated A-type Kv4 channels shape dendritic excitatory postsynaptic potentials (EPSPs) in hippocampal CA1 pyramidal neurons. Synaptically evoked Ca2+ influx through N-methyl-D-aspartate receptors (NMDARs) activates spine SK channels, reducing EPSPs and the associated spine head Ca2+ transient. However, results using glutamate uncaging implicated Ca2+ influx through SNX-482 (SNX) sensitive Cav2.3 (R-type) Ca2+ channels as the Ca2+ source for SK channel activation. The present findings show that using Schaffer collateral stimulation the effects of SNX and apamin are not mutually exclusive and SNX increases EPSPs independent of SK channel activity. Dialysis with 1,2-bis(o-aminophenoxy)ethane-N’N’N’-tetraacetic acid (BAPTA), application of 4-Aminopyridine (4-AP), expression of a Kv4.2 dominant negative subunit, and dialysis with a KChIPs antibody occluded the SNX-induced increase of EPSPs. The results suggest two distinct Ca2+ signaling pathways within dendritic spines, that links Ca2+ influx through NMDARs to SK channels and Ca2+ influx through R-type Ca2+ channels to Kv4.2-containing channels. PMID:24462100

  17. Pharmacological reversion of sphingomyelin-induced dendritic spine anomalies in a Niemann Pick disease type A mouse model

    PubMed Central

    Arroyo, Ana I; Camoletto, Paola G; Morando, Laura; Sassoe-Pognetto, Marco; Giustetto, Maurizio; Van Veldhoven, Paul P; Schuchman, Edward H; Ledesma, Maria D

    2014-01-01

    Understanding the role of lipids in synapses and the aberrant molecular mechanisms causing the cognitive deficits that characterize most lipidosis is necessary to develop therapies for these diseases. Here we describe sphingomyelin (SM) as a key modulator of the dendritic spine actin cytoskeleton. We show that increased SM levels in neurons of acid sphingomyelinase knock out mice (ASMko), which mimic Niemann Pick disease type A (NPA), result in reduced spine number and size and low levels of filamentous actin. Mechanistically, SM accumulation decreases the levels of metabotropic glutamate receptors type I (mGluR1/5) at the synaptic membrane impairing membrane attachment and activity of RhoA and its effectors ROCK and ProfilinIIa. Pharmacological enhancement of the neutral sphingomyelinase rescues the aberrant molecular and morphological phenotypes in vitro and in vivo and improves motor and memory deficits in ASMko mice. Altogether, these data demonstrate the influence of SM and its catabolic enzymes in dendritic spine physiology and contribute to our understanding of the cognitive deficits of NPA patients, opening new perspectives for therapeutic interventions. Subject Categories Genetics, Gene Therapy & Genetic Disease; Neuroscience PMID:24448491

  18. Fatigue reversibly reduced cortical and hippocampal dendritic spines concurrent with compromise of motor endurance and spatial memory.

    PubMed

    Chen, J-R; Wang, T-J; Huang, H-Y; Chen, L-J; Huang, Y-S; Wang, Y-J; Tseng, G-F

    2009-07-21

    Fatigue could be induced following forced exercise, sickness, heat stroke or sleep disturbance and impaired brain-related functions such as concentration, attention and memory. Here we investigated whether fatigue altered the dendrites of central neurons. Central fatigue was induced by housing rats in cage with 1.5-cm deep water for 1-5 days. Three days of sleep deprivation seriously compromised rats' performance in weight-loaded forced swimming and spatial learning tests, and 5 days of treatment worsened it further. Combinations of intracellular dye injection and three-dimensional analysis revealed that dendritic spines on retrograde tracer-identified corticospinal neurons and Cornu Ammonis (CA)1 and CA3 pyramidal neurons were significantly reduced while the shape or length of the dendritic arbors was not altered. Three days of rest restored the spine loss and the degraded spatial learning and weight-loaded forced swimming performances to control levels. In conclusion, although we could not rule out additional non-hypothalamic-pituitary-adrenal stress, the apparent fatigue induced following a few days of sleep deprivation could change brain structurally and functionally and the effects were reversible with a few days of rest.

  19. Combination of finite element modeling and optimization for the study of lumbar spine biomechanics considering the 3D thorax-pelvis orientation.

    PubMed

    Ezquerro, Francisco; Simón, Antonio; Prado, María; Pérez, Ana

    2004-01-01

    A model of the lumbar spine capable of taking into account realistic loads derived from human activity would be of great benefit in studying its normal biomechanical functioning as well as its in vivo behavior in injured and surgically altered states. This paper proposes a method to analyze the mechanical response of the lumbar spine subjected to loads derived from human activity, combining a non-linear finite element model (FEM) and an optimization-based force predicting algorithm. Loads borne by the lumbar spine at the T12-L1 level (joint loads) are first predicted with the optimization algorithm and then applied to the FEM, while a boundary condition prescribing the relative L1-sacrum rotation is imposed onto the FEM to account for three-dimensional physiological thorax-pelvis orientation. The prescribed rotation is achieved through the application of moments on L1. To account for the effect of these moments on lumbar joint loads, an iteration between the optimization technique and the FEM computation has been carried out. This method provides two main benefits over previous studies: first, it allows for the application of any 3D loading condition while considering the real 3D rotation measured between the thorax and the pelvis, and second, it makes it possible to estimate the moments that must be applied on L1 in order to maintain this rotation, taking them into account when predicting joint loads. As an example application of the method, results are presented for the lumbar spine mechanical response at the time of peak T12-L1 joint force during walking.

  20. Activity-dependent regulation of synapse and dendritic spine morphology in developing barrel cortex requires phospholipase C-beta1 signalling.

    PubMed

    Spires, Tara L; Molnár, Zoltán; Kind, Peter C; Cordery, Patricia M; Upton, A Louise; Blakemore, Colin; Hannan, Anthony J

    2005-04-01

    The phospholipase C-beta1 (PLC-beta1) signalling pathway, activated via metabotropic glutamate receptors (mGluRs), is implicated in activity-dependent development of the cerebral cortex, as both PLC-beta1 and mGluR5 knockout mice exhibit disrupted barrel formation in somatosensory cortex. To characterize the effects of this signalling system on development of synaptic circuitry in barrel cortex, we have examined neuronal ultrastructure, synapse formation and dendritic spine morphology in PLC-beta1 knockout mice. Qualitative ultrastructure of neurons and synapse density in layers 2-4 of barrel cortex were unchanged in PLC-beta1 knockout mice during development [postnatal day (P) 5] and in mature cortex (P19-21). We found a decrease in the proportion of synapses with symmetric morphology at P5 that was gone by P19-21, indicating a transient imbalance in excitatory and inhibitory circuitry. We also investigated dendritic spines by back-labelling layer 5 pyramidal neurons with carbocyanine. We observed normal dendritic spine densities on apical dendrites as they passed through layer 4 of barrel cortex, but spine morphology was altered in PLC-beta1 knockout mice at P9. These observations indicate that the PLC-beta1 signalling pathway plays a role in the development of normal cortical circuitry. Interrupting this regulation leads to changes in synapse and dendritic spine morphology, possibly altering post-synaptic integration of signal.

  1. Drebrin depletion alters neurotransmitter receptor levels in protein complexes, dendritic spine morphogenesis and memory-related synaptic plasticity in the mouse hippocampus.

    PubMed

    Jung, Gangsoo; Kim, Eun-Jung; Cicvaric, Ana; Sase, Sunetra; Gröger, Marion; Höger, Harald; Sialana, Fernando Jayson; Berger, Johannes; Monje, Francisco J; Lubec, Gert

    2015-07-01

    Drebrin an actin-bundling key regulator of dendritic spine genesis and morphology, has been recently proposed as a regulator of hippocampal glutamatergic activity which is critical for memory formation and maintenance. Here, we examined the effects of genetic deletion of drebrin on dendritic spine and on the level of complexes containing major brain receptors. To this end, homozygous and heterozygous drebrin knockout mice generated in our laboratory and related wild-type control animals were studied. Level of protein complexes containing dopamine receptor D1/dopamine receptor D2, 5-hydroxytryptamine receptor 1A (5-HT1(A)R), and 5-hydroxytryptamine receptor 7 (5-HT7R) were significantly reduced in hippocampus of drebrin knockout mice whereas no significant changes were detected for GluR1, 2, and 3 and NR1 as examined by native gel-based immunoblotting. Drebrin depletion also altered dendritic spine formation, morphology, and reduced levels of dopamine receptor D1 in dendritic spines as evaluated using immunohistochemistry/confocal microscopy. Electrophysiological studies further showed significant reduction in memory-related hippocampal synaptic plasticity upon drebrin depletion. These findings provide unprecedented experimental support for a role of drebrin in the regulation of memory-related synaptic plasticity and neurotransmitter receptor signaling, offer relevant information regarding the interpretation of previous studies and help in the design of future studies on dendritic spines.

  2. Neuronal IP3 3-Kinase is an F-actin–bundling Protein: Role in Dendritic Targeting and Regulation of Spine Morphology

    PubMed Central

    Johnson, Hong W.

    2009-01-01

    The actin microstructure in dendritic spines is involved in synaptic plasticity. Inositol trisphosphate 3-kinase A (ITPKA) terminates Ins(1,4,5)P3 signals emanating from spines and also binds filamentous actin (F-actin) through its amino terminal region (amino acids 1-66, N66). Here we investigated how ITPKA, independent of its kinase activity, regulates dendritic spine F-actin microstructure. We show that the N66 region of the protein mediates F-actin bundling. An N66 fusion protein bundled F-actin in vitro, and the bundling involved N66 dimerization. By mutagenesis we identified a point mutation in a predicted helical region that eliminated both F-actin binding and bundling, rendering the enzyme cytosolic. A fusion protein containing a minimal helical region (amino acids 9-52, N9-52) bound F-actin in vitro and in cells, but had lower affinity. In hippocampal neurons, GFP-tagged N66 expression was highly polarized, with targeting of the enzyme predominantly to spines. By contrast, N9-52-GFP expression occurred in actin-rich structures in dendrites and growth cones. Expression of N66-GFP tripled the length of dendritic protrusions, induced longer dendritic spine necks, and induced polarized actin motility in time-lapse assays. These results suggest that, in addition to its ability to regulate intracellular Ca2+ via Ins(1,4,5)P3 metabolism, ITPKA regulates structural plasticity. PMID:19846664

  3. Deletion of KIBRA, protein expressed in kidney and brain, increases filopodial-like long dendritic spines in neocortical and hippocampal neurons in vivo and in vitro.

    PubMed

    Blanque, Anja; Repetto, Daniele; Rohlmann, Astrid; Brockhaus, Johannes; Duning, Kerstin; Pavenstädt, Hermann; Wolff, Ilka; Missler, Markus

    2015-01-01

    Spines are small protrusions arising from dendrites that receive most excitatory synaptic input in the brain. Dendritic spines represent dynamic structures that undergo activity-dependent adaptations, for example, during synaptic plasticity. Alterations of spine morphology, changes of spine type ratios or density have consequently been found in paradigms of learning and memory, and accompany many neuropsychiatric disorders. Polymorphisms in the gene encoding KIBRA, a protein present in kidney and brain, are linked to memory performance and cognition in humans and mouse models. Deletion of KIBRA impairs long-term synaptic plasticity and postsynaptic receptor recycling but no information is available on the morphology of dendritic spines in null-mutant mice. Here, we directly examine the role of KIBRA in spinous synapses using knockout mice. Since KIBRA is normally highly expressed in neocortex and hippocampus at juvenile age, we analyze synapse morphology in intact tissue and in neuronal cultures from these brain regions. Quantification of different dendritic spine types in Golgi-impregnated sections and in transfected neurons coherently reveal a robust increase of filopodial-like long protrusions in the absence of KIBRA. While distribution of pre- and postsynaptic marker proteins, overall synapse ultrastructure and density of asymmetric contacts were remarkably normal, electron microscopy additionally uncovered less perforated synapses and spinules in knockout neurons. Thus, our results indicate that KIBRA is involved in the maintenance of normal ratios of spinous synapses, and may thus provide a structural correlate of altered cognitive functions when this memory-associated molecule is mutated. PMID:25750616

  4. Myosin II ATPase activity mediates the long-term potentiation-induced exodus of stable F-actin bound by drebrin A from dendritic spines.

    PubMed

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca(2+) influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement.

  5. Myosin II ATPase Activity Mediates the Long-Term Potentiation-Induced Exodus of Stable F-Actin Bound by Drebrin A from Dendritic Spines

    PubMed Central

    Mizui, Toshiyuki; Sekino, Yuko; Yamazaki, Hiroyuki; Ishizuka, Yuta; Takahashi, Hideto; Kojima, Nobuhiko; Kojima, Masami; Shirao, Tomoaki

    2014-01-01

    The neuronal actin-binding protein drebrin A forms a stable structure with F-actin in dendritic spines. NMDA receptor activation causes an exodus of F-actin bound by drebrin A (DA-actin) from dendritic spines, suggesting a pivotal role for DA-actin exodus in synaptic plasticity. We quantitatively assessed the extent of DA-actin localization to spines using the spine-dendrite ratio of drebrin A in cultured hippocampal neurons, and found that (1) chemical long-term potentiation (LTP) stimulation induces rapid DA-actin exodus and subsequent DA-actin re-entry in dendritic spines, (2) Ca2+ influx through NMDA receptors regulates the exodus and the basal accumulation of DA-actin, and (3) the DA-actin exodus is blocked by myosin II ATPase inhibitor, but is not blocked by myosin light chain kinase (MLCK) or Rho-associated kinase (ROCK) inhibitors. These results indicate that myosin II mediates the interaction between NMDA receptor activation and DA-actin exodus in LTP induction. Furthermore, myosin II seems to be activated by a rapid actin-linked mechanism rather than slow MLC phosphorylation. Thus the myosin-II mediated DA-actin exodus might be an initial event in LTP induction, triggering actin polymerization and spine enlargement. PMID:24465547

  6. Novel Song-Stimulated Dendritic Spine Formation and Arc/Arg 3.1 Expression in Zebra Finch Auditory Telencephalon are Disrupted by Cannabinoid Agonism

    PubMed Central

    Gilbert, Marcoita T; Soderstrom, Ken

    2013-01-01

    Cannabinoids are well-established to alter processes of sensory perception; however neurophysiological mechanisms responsible remain unclear. Arc, an immediate-early gene (IEG) product involved in dendritic spine dynamics and necessary for plasticity changes such as long-term potentiation, is rapidly induced within zebra finch caudal medial nidopallium (NCM) following novel song exposure, a response that habituates after repeated stimuli. Arc appears unique in its rapid postsynaptic dendritic expression following excitatory input. Previously, we found that vocal development-altering cannabinoid treatments are associated with elevated dendritic spine densities in motor- (HVC) and learning-related (Area X) song regions of zebra finch telencephalon. Given Arc’s dendritic morphological role, we hypothesized that cannabinoid-altered spine densities may involve Arc-related signaling. To test this, we examined the ability of the cannabinoid agonist WIN55212-2 (WIN) to: (1) acutely disrupt song-induced Arc expression; (2) interfere with habituation to auditory stimuli and; (3) alter dendritic spine densities in auditory regions. We found that WIN (3 mg/kg) acutely reduced Arc expression within both NCM and Field L2 in an antagonist-reversible manner. WIN did not alter Arc expression in thalamic auditory relay Nucleus Ovoidalis (Ov), suggesting cannabinoid signaling selectively alters responses to auditory stimulation. Novel song stimulation rapidly increased dendritic spine densities within auditory telencephalon, an effect blocked by WIN pretreatments. Taken together, cannabinoid inhibition of both Arc induction and its habituation to repeated stimuli, combined with prevention of rapid increases in dendritic spine densities, implicates cannabinoid signaling in modulation of physiological processes important to auditory responsiveness and memory. PMID:24134952

  7. Dendritic Spine Loss and Chronic White Matter Inflammation in a Mouse Model of Highly Repetitive Head Trauma.

    PubMed

    Winston, Charisse N; Noël, Anastasia; Neustadtl, Aidan; Parsadanian, Maia; Barton, David J; Chellappa, Deepa; Wilkins, Tiffany E; Alikhani, Andrew D; Zapple, David N; Villapol, Sonia; Planel, Emmanuel; Burns, Mark P

    2016-03-01

    Mild traumatic brain injury (mTBI) is an emerging risk for chronic behavioral, cognitive, and neurodegenerative conditions. Athletes absorb several hundred mTBIs each year; however, rodent models of repeat mTBI (rmTBI) are often limited to impacts in the single digits. Herein, we describe the effects of 30 rmTBIs, examining structural and pathological changes in mice up to 365 days after injury. We found that single mTBI causes a brief loss of consciousness and a transient reduction in dendritic spines, reflecting a loss of excitatory synapses. Single mTBI does not cause axonal injury, neuroinflammation, or cell death in the gray or white matter. Thirty rmTBIs with a 1-day interval between each mTBI do not cause dendritic spine loss; however, when the interinjury interval is increased to 7 days, dendritic spine loss is reinstated. Thirty rmTBIs cause white matter pathology characterized by positive silver and Fluoro-Jade B staining, and microglial proliferation and activation. This pathology continues to develop through 60 days, and is still apparent at 365 days, after injury. However, rmTBIs did not increase β-amyloid levels or tau phosphorylation in the 3xTg-AD mouse model of Alzheimer disease. Our data reveal that single mTBI causes a transient loss of synapses, but that rmTBIs habituate to repetitive injury within a short time period. rmTBI causes the development of progressive white matter pathology that continues for months after the final impact. PMID:26857506

  8. An in vitro reproduction of stress-induced memory defects: Effects of corticoids on dendritic spine dynamics

    PubMed Central

    Saito, Shinichi; Kimura, Satoshi; Adachi, Naoki; Numakawa, Tadahiro; Ogura, Akihiko; Tominaga-Yoshino, Keiko

    2016-01-01

    Previously, in organotypic slice culture of rodent hippocampus we found that three repeated inductions of LTP, but not a single induction, led to a slow-developing long-lasting enhancement of synaptic strength coupled with synapse formation. Naming this structural plasticity RISE (repetitive LTP-induced synaptic enhancement) and assuming it to be a potential in vitro reproduction of repetition-dependent memory consolidation, we are analyzing its cellular mechanisms. Here, we applied a glucocorticoid to the culture to mimic acute excess stress and demonstrated its blockade of RISE. Since excess stress interferes with behavioral memory consolidation, the parallelism between RISE in vitro and memory consolidation in vivo is supported. We recently reported that RISE developed after stochastic processes. Here we found that the glucocorticoid interfered with RISE by suppressing the increment of dendritic spine fluctuation that precedes a net increase in spine density. The present study provides clues for understanding the mechanism of stress-induced memory defects. PMID:26765339

  9. Dendritic spines and development: towards a unifying model of spinogenesis--a present day review of Cajal's histological slides and drawings.

    PubMed

    García-López, Pablo; García-Marín, Virginia; Freire, Miguel

    2010-01-01

    Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC), obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development.

  10. Dendritic Spines and Development: Towards a Unifying Model of Spinogenesis—A Present Day Review of Cajal's Histological Slides and Drawings

    PubMed Central

    García-López, Pablo; García-Marín, Virginia; Freire, Miguel

    2010-01-01

    Dendritic spines receive the majority of excitatory connections in the central nervous system, and, thus, they are key structures in the regulation of neural activity. Hence, the cellular and molecular mechanisms underlying their generation and plasticity, both during development and in adulthood, are a matter of fundamental and practical interest. Indeed, a better understanding of these mechanisms should provide clues to the development of novel clinical therapies. Here, we present original results obtained from high-quality images of Cajal's histological preparations, stored at the Cajal Museum (Instituto Cajal, CSIC), obtained using extended focus imaging, three-dimensional reconstruction, and rendering. Based on the data available in the literature regarding the formation of dendritic spines during development and our results, we propose a unifying model for dendritic spine development. PMID:21584262

  11. Spatio-temporal filtering properties of a dendritic cable with active spines: a modeling study in the spike-diffuse-spike framework.

    PubMed

    Timofeeva, Yulia; Lord, Gabriel J; Coombes, Stephen

    2006-12-01

    The spike-diffuse-spike (SDS) model describes a passive dendritic tree with active dendritic spines. Spine-head dynamics is modeled with a simple integrate-and-fire process, whilst communication between spines is mediated by the cable equation. In this paper we develop a computational framework that allows the study of multiple spiking events in a network of such spines embedded on a simple one-dimensional cable. In the first instance this system is shown to support saltatory waves with the same qualitative features as those observed in a model with Hodgkin-Huxley kinetics in the spine-head. Moreover, there is excellent agreement with the analytically calculated speed for a solitary saltatory pulse. Upon driving the system with time-varying external input we find that the distribution of spines can play a crucial role in determining spatio-temporal filtering properties. In particular, the SDS model in response to periodic pulse train shows a positive correlation between spine density and low-pass temporal filtering that is consistent with the experimental results of Rose and Fortune [1999, 'Mechanisms for generating temporal filters in the electrosensory system,' The Journal of Experimental Biology 202: 1281-1289]. Further, we demonstrate the robustness of observed wave properties to natural sources of noise that arise both in the cable and the spine-head, and highlight the possibility of purely noise induced waves and coherent oscillations.

  12. Spatial training preserves associative memory capacity with augmentation of dendrite ramification and spine generation in Tg2576 mice.

    PubMed

    Jiang, Xia; Chai, Gao-Shang; Wang, Zhi-Hao; Hu, Yu; Li, Xiao-Guang; Ma, Zhi-Wei; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2015-03-30

    Alzheimer's disease (AD) is the most common neurodegenerative disorder and there is currently no efficient cure for this devastating disease. Cognitive stimulation can delay memory loss during aging and in patients with mild cognitive impairment. In 3 × Tg-AD mice, training decreased the neuropathologies with transient amelioration of memory decline. However, the neurobiological mechanisms underlying the learning-improved memory capacity are poorly understood. Here, we found in Tg2576 mice spatial training in Morris water maze (MWM) remarkably improved the subsequent associative memory acquisition detected by contextual fear conditioning. We also found that spatial training enhanced long term potentiation, dendrite ramification and spine generation in hippocampal dentate gyrus (DG) and CA1 neurons at 24 h after the training. In the molecular level, the MWM training remarkably activated calcium/calmodulin-dependent protein kinase II (CaMKII) with elevation of glutamate AMPA receptor GluA1 subunit (GluA1), postsynaptic density protein 93 (PSD93) and postsynaptic density protein 95 (PSD95) in the hippocampus. Finally, the training also significantly ameliorated AD-like tau and amyloid pathologies. We conclude that spatial training in MWM preserves associative memory capacity in Tg2576 mice, and the mechanisms involve augmentation of dendrite ramification and spine generation in hippocampus.

  13. Plastic changes to dendritic spines on layer V pyramidal neurons are involved in the rectifying role of the prefrontal cortex during the fast period of motor learning.

    PubMed

    González-Tapia, David; Martínez-Torres, Nestor I; Hernández-González, Marisela; Guevara, Miguel Angel; González-Burgos, Ignacio

    2016-02-01

    The prefrontal cortex participates in the rectification of information related to motor activity that favors motor learning. Dendritic spine plasticity is involved in the modifications of motor patterns that underlie both motor activity and motor learning. To study this association in more detail, adult male rats were trained over six days in an acrobatic motor learning paradigm and they were subjected to a behavioral evaluation on each day of training. Also, a Golgi-based morphological study was carried out to determine the spine density and the proportion of the different spine types. In the learning paradigm, the number of errors diminished as motor training progressed. Concomitantly, spine density increased on days 1 and 3 of training, particularly reflecting an increase in the proportion of thin (day 1), stubby (day 1) and branched (days 1, 2 and 5) spines. Conversely, mushroom spines were less prevalent than in the control rats on days 5 and 6, as were stubby spines on day 6, together suggesting that this plasticity might enhance motor learning. The increase in stubby spines on day 1 suggests a regulation of excitability related to the changes in synaptic input to the prefrontal cortex. The plasticity to thin spines observed during the first 3 days of training could be related to the active rectification induced by the information relayed to the prefrontal cortex -as the behavioral findings indeed showed-, which in turn could be linked to the lower proportion of mushroom and stubby spines seen in the last days of training.

  14. Enhanced dendritic spine number of neurons of the prefrontal cortex, hippocampus and nucleus accumbens in old rats after chronic donepezil administration

    PubMed Central

    Alcantara-Gonzalez, Faviola; Juarez, Ismael; Solis, Oscar; Martinez-Tellez, Isaura; Camacho-Abrego, Israel; Masliah, Eliezer; Mena, Raul; Flores, Gonzalo

    2010-01-01

    In Alzheimer's disease brains morphological changes in the dendrites of pyramidal neurons of the prefrontal cortex (PFC) and hippocampus have been observed. These changes are particularly reflected in the decrement of both the dendritic tree and spine number. Donepezil is a potent and selective acetylcholinesterase inhibitor used in the treatment of Alzheimer's disease. We have studied the effect of oral administration of this drug on the morphology of neuronal cells from the brain of aged rats. We examined dendrites of pyramidal neurons of the PFC, dorsal or ventral hippocampus and medium spiny neurons of the nucleus accumbens (NAcc). Donepezil (1 mg/Kg, vo) was administrated every day for 60 days to rats aged 10 and 18 months. Dendritic morphology was studied by the Golgi-Cox stain procedure followed by Sholl analysis at 12 and 20 months ages, respectively. In all Donepezil treated-rats a significant increment of the dendritic spines number in pyramidal neurons of the PFC, dorsal hippocampus was observed. However, pyramidal neurons of the ventral hippocampus and medium spiny cells of the NAcc only showed an increase in the number of their spines in 12 months old-rats. Our results suggest that Donepezil prevents the alterations of the neuronal dendrite morphology caused by aging. PMID:20336627

  15. Stress during pregnancy alters dendritic spine density and gene expression in the brain of new-born lambs.

    PubMed

    Petit, Bérengère; Boissy, Alain; Zanella, Adroaldo; Chaillou, Elodie; Andanson, Stéphane; Bes, Sébastien; Lévy, Frédéric; Coulon, Marjorie

    2015-09-15

    Rodent studies show how prenatal stress (PS) can alter morphology in the cortico-limbic structures that support emotional and cognitive functions. PS-induced alteration is less well described in species with a gyrencephalic brain and complex earlier fetal development, and never in sheep at birth to rule out postnatal environment effects or influences of maternal behavior. This study aimed to assess the consequences of a mild chronic stress in pregnant ewes on the neurobiological development of their lambs at birth. During the last third of gestation, 7 ewes were exposed daily to various unpredictable and negative routine management-based challenges (stressed group), while 7 other ewes were housed without any additional perturbation (control group). For each group, a newborn from each litter was sacrificed at birth to collect its brain and analyze its expression levels of genes involved in neuronal dendritic morphology (Dlg4, Rac1, RhoA, Doc2b), synaptic transmission (Nr1, Grin2A, Grin2B) and glucocorticoid receptor (Nr3C1) in hippocampus (HPC), prefrontal cortex (PFC) and amygdala (AMYG). Results revealed that lambs from stressed dam (PS lambs) showed under-expression of Rac1 and Nr1 in PFC and overexpression of Dlg4 in AMYG compared to controls. To assess the morphological consequences of gene dysregulations, the dendritic morphology of pyramidal neurons was explored by Golgi-Cox staining in HPC and PFC. PS lambs had higher dendritic spine density in both structures and more stubby-type spines in the CA1 area of HPC than controls. This is the first demonstration in sheep that PS alters fetal brain, possibly reflecting functional changes in synaptic transmission to cope with adversity experienced in fetal life.

  16. Synaptic pruning in the female hippocampus is triggered at puberty by extrasynaptic GABAA receptors on dendritic spines

    PubMed Central

    Afroz, Sonia; Parato, Julie; Shen, Hui; Smith, Sheryl Sue

    2016-01-01

    Adolescent synaptic pruning is thought to enable optimal cognition because it is disrupted in certain neuropathologies, yet the initiator of this process is unknown. One factor not yet considered is the α4βδ GABAA receptor (GABAR), an extrasynaptic inhibitory receptor which first emerges on dendritic spines at puberty in female mice. Here we show that α4βδ GABARs trigger adolescent pruning. Spine density of CA1 hippocampal pyramidal cells decreased by half post-pubertally in female wild-type but not α4 KO mice. This effect was associated with decreased expression of kalirin-7 (Kal7), a spine protein which controls actin cytoskeleton remodeling. Kal7 decreased at puberty as a result of reduced NMDAR activation due to α4βδ-mediated inhibition. In the absence of this inhibition, Kal7 expression was unchanged at puberty. In the unpruned condition, spatial re-learning was impaired. These data suggest that pubertal pruning requires α4βδ GABARs. In their absence, pruning is prevented and cognition is not optimal. DOI: http://dx.doi.org/10.7554/eLife.15106.001 PMID:27136678

  17. Hippocampal dendritic spines remodeling and fear memory are modulated by GABAergic signaling within the basolateral amygdala complex.

    PubMed

    Giachero, Marcelo; Calfa, Gaston D; Molina, Victor A

    2015-05-01

    GABAergic signaling in the basolateral amygdala complex (BLA) plays a crucial role on the modulation of the stress influence on fear memory. Moreover, accumulating evidence suggests that the dorsal hippocampus (DH) is a downstream target of BLA neurons in contextual fear. Given that hippocampal structural plasticity is proposed to provide a substrate for the storage of long-term memories, the main aim of this study is to evaluate the modulation of GABA neurotransmission in the BLA on spine density in the DH following stress on contextual fear learning. The present findings show that prior stressful experience promoted contextual fear memory and enhanced spine density in the DH. Intra-BLA infusion of midazolam, a positive modulator of GABAa sites, prevented the facilitating influence of stress on both fear retention and hippocampal dendritic spine remodeling. Similarly to the stress-induced effects, the blockade of GABAa sites within the BLA ameliorated fear memory emergence and induced structural remodeling in the DH. These findings suggest that GABAergic transmission in BLA modulates the structural changes in DH associated to the influence of stress on fear memory.

  18. Elimination of dendritic spines with long-term memory is specific to active circuits

    PubMed Central

    Sanders, Jeff; Cowansage, Kiriana; Baumgärtel, Karsten; Mayford, Mark

    2012-01-01

    Structural changes in brain circuits active during learning are thought to be important for long-term memory storage. If these changes support long-term information storage they might be expected to be present at distant timepoints after learning, as well as specific to the circuit activated with learning, and sensitive to the contingencies of the behavioral paradigm. Here, we show such changes in the hippocampus as a result of contextual fear conditioning. There were significantly fewer spines specifically on active neurons of fear-conditioned mice. This spine loss did not occur in homecage mice or in mice exposed to the training context alone. Mice exposed to unpaired shocks showed a generalized reduction in spines. These learning-related changes in spine density could reflect a direct mechanism of encoding or alternately could reflect a compensatory adaptation to previously described enhancement in transmission due to glutamate receptor insertion. PMID:22956846

  19. GPU accelerated registration of a statistical shape model of the lumbar spine to 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Khallaghi, Siavash; Abolmaesumi, Purang; Gong, Ren Hui; Chen, Elvis; Gill, Sean; Boisvert, Jonathan; Pichora, David; Borschneck, Dan; Fichtinger, Gabor; Mousavi, Parvin

    2011-03-01

    We present a parallel implementation of a statistical shape model registration to 3D ultrasound images of the lumbar vertebrae (L2-L4). Covariance Matrix Adaptation Evolution Strategy optimization technique, along with Linear Correlation of Linear Combination similarity metric have been used, to improve the robustness and capture range of the registration approach. Instantiation and ultrasound simulation have been implemented on a graphics processing unit for a faster registration. Phantom studies show a mean target registration error of 3.2 mm, while 80% of all the cases yield target registration error of below 3.5 mm.

  20. Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D nanoribbon/wires for high performance concurrent photocatalytic membrane water purification.

    PubMed

    Bai, Hongwei; Liu, Lei; Liu, Zhaoyang; Sun, Darren Delai

    2013-08-01

    Hierarchical 3D dendritic TiO2 nanospheres building with ultralong 1D TiO2 nanoribbon/wires were hydrothermally synthesized via controlling the hydrolysis rate of precursor by EG. It is found that the EG and Cl(-) in the precursor solution are the dominant factors in controlling the hydrolysis rate of Ti(4+) from TTIP, and the growing direction of 1D TiO2, respectively. Through optimizing the molar ratio of TTIP:EG, hierarchical 3D dendritic TiO2 nanospheres building with long 1D nanoribbons (TiO2 nanoribbon spheres) were synthesized at a molar ratio of TTIP:EG = 1:2. And hierarchical 3D dendritic TiO2 nanospheres building with even longer and thinner 1D TiO2 nanowires (TiO2 nanowire spheres) were synthesized via further reducing the hydrolysis rate of Ti(4+) by increasing the content of EG at a molar ratio of TTIP:EG = 1:3. The hierarchical 3D dendritic TiO2 nanoribbon/wire spheres were well characterized by a variety of techniques such as FESEM, TEM, XRD, N2 adsorption/desorption, UV-vis spectra, etc. A "win-win" strategy was developed to integrate the hierarchical TiO2 nanoribbon/wire spheres and membrane for high performance photocatalytic membrane water purification through maximizing the advantages of TiO2 photocatalysis and membrane, while minimizing their disadvantages. Hierarchical TiO2 nanoribbon/wire spheres exhibited high performance for water purification in terms of high flux, low fouling, high removal rate of pollutants, and long lifespan of membrane, both in concurrent dead end and cross flow membrane system. The rationale behind this phenomenon lies in that the hierarchical TiO2 nanoribbon/wire spheres in the concurrent system possess the advantages of mitigating the membrane fouling via photocatalytic degrading the organic pollutants relying on their high photocatalytic activities; and keeping high water flux owing to the porous functional layer favorable for water pass through. The experimental results demonstrated that the hierarchical TiO2

  1. Effect of behavioral testing on spine density of basal dendrites in the CA1 region of the hippocampus modulated by (56)Fe irradiation.

    PubMed

    Raber, Jacob; Allen, Antiño R; Weber, Sydney; Chakraborti, Ayanabha; Sharma, Sourabh; Fike, John R

    2016-04-01

    A unique feature of the space radiation environment is the presence of high-energy charged particles, including (56)Fe ions, which can present a significant hazard to space flight crews during and following a mission. (56)Fe irradiation-induced cognitive changes often involve alterations in hippocampal function. These alterations might involve changes in spine morphology and density. In addition to irradiation, performing a cognitive task can also affect spine morphology. Therefore, it is often hard to determine whether changes in spine morphology and density are due to an environmental challenge or group differences in performance on cognitive tests. In this study, we tested the hypothesis that the ability of exploratory behavior to increase specific measures of hippocampal spine morphology and density is affected by (56)Fe irradiation. In sham-irradiated mice, exploratory behavior increased basal spine density in the CA1 region of the hippocampus and the enclosed blade of the dentate gyrus. These effects were not seen in irradiated mice. In addition, following exploratory behavior, there was a trend toward a decrease in the percent stubby spines on apical dendrites in the CA3 region of the hippocampus in (56)Fe-irradiated, but not sham-irradiated, mice. Other hippocampal regions and spine measures affected by (56)Fe irradiation showed comparable radiation effects in behaviorally naïve and cognitively tested mice. Thus, the ability of exploratory behavior to alter spine density and morphology in specific hippocampal regions is affected by (56)Fe irradiation. PMID:26801826

  2. Disruption of Arp2/3 Results in Asymmetric Structural Plasticity of Dendritic Spines and Progressive Synaptic and Behavioral Abnormalities

    PubMed Central

    Kim, Il Hwan; Racz, Bence; Wang, Hong; Burianek, Lauren; Weinberg, Richard; Yasuda, Ryohei; Wetsel, William C.; Soderling, Scott H.

    2013-01-01

    Despite evidence for a strong genetic contribution to several major psychiatric disorders, individual candidate genes account for only a small fraction of these disorders, leading to the suggestion that multigenetic pathways may be involved. Several known genetic risk factors for psychiatric disease are related to the regulation of actin polymerization, which plays a key role in synaptic plasticity. To gain insight into and test the possible pathogenetic role of this pathway, we designed a conditional knockout of the Arp2/3 complex, a conserved final output for actin signaling pathways that orchestrates de novo actin polymerization. Here we report that postnatal loss of the Arp2/3 subunit ArpC3 in forebrain excitatory neurons leads to an asymmetric structural plasticity of dendritic spines, followed by a progressive loss of spine synapses. This progression of synaptic deficits corresponds with an evolution of distinct cognitive, psychomotor, and social disturbances as the mice age. Together these results point to the dysfunction of actin signaling, specifically that which converges to regulate Arp2/3, as an important cellular pathway that may contribute to the etiology of complex psychiatric disorders. PMID:23554489

  3. Disruption of Arp2/3 results in asymmetric structural plasticity of dendritic spines and progressive synaptic and behavioral abnormalities.

    PubMed

    Kim, Il Hwan; Racz, Bence; Wang, Hong; Burianek, Lauren; Weinberg, Richard; Yasuda, Ryohei; Wetsel, William C; Soderling, Scott H

    2013-04-01

    Despite evidence for a strong genetic contribution to several major psychiatric disorders, individual candidate genes account for only a small fraction of these disorders, leading to the suggestion that multigenetic pathways may be involved. Several known genetic risk factors for psychiatric disease are related to the regulation of actin polymerization, which plays a key role in synaptic plasticity. To gain insight into and test the possible pathogenetic role of this pathway, we designed a conditional knock-out of the Arp2/3 complex, a conserved final output for actin signaling pathways that orchestrates de novo actin polymerization. Here we report that postnatal loss of the Arp2/3 subunit ArpC3 in forebrain excitatory neurons leads to an asymmetric structural plasticity of dendritic spines, followed by a progressive loss of spine synapses. This progression of synaptic deficits corresponds with an evolution of distinct cognitive, psychomotor, and social disturbances as the mice age. Together, these results point to the dysfunction of actin signaling, specifically that which converges to regulate Arp2/3, as an important cellular pathway that may contribute to the etiology of complex psychiatric disorders.

  4. MiR-130a regulates neurite outgrowth and dendritic spine density by targeting MeCP2.

    PubMed

    Zhang, Yunjia; Chen, Mengmeng; Qiu, Zilong; Hu, Keping; McGee, Warren; Chen, Xiaoping; Liu, Jianghong; Zhu, Li; Wu, Jane Y

    2016-07-01

    MicroRNAs (miRNAs) are critical for both development and function of the central nervous system. Significant evidence suggests that abnormal expression of miRNAs is associated with neurodevelopmental disorders. MeCP2 protein is an epigenetic regulator repressing or activating gene transcription by binding to methylated DNA. Both loss-of-function and gain-of-function mutations in the MECP2 gene lead to neurodevelopmental disorders such as Rett syndrome, autism and MECP2 duplication syndrome. In this study, we demonstrate that miR-130a inhibits neurite outgrowth and reduces dendritic spine density as well as dendritic complexity. Bioinformatics analyses, cell cultures and biochemical experiments indicate that miR-130a targets MECP2 and down-regulates MeCP2 protein expression. Furthermore, expression of the wild-type MeCP2, but not a loss-of-function mutant, rescues the miR-130a-induced phenotype. Our study uncovers the MECP2 gene as a previous unknown target for miR-130a, supporting that miR-130a may play a role in neurodevelopment by regulating MeCP2. Together with data from other groups, our work suggests that a feedback regulatory mechanism involving both miR-130a and MeCP2 may serve to ensure their appropriate expression and function in neural development. PMID:27245166

  5. Three-Dimensional Analysis of Spiny Dendrites Using Straightening and Unrolling Transforms

    PubMed Central

    Morales, Juan; Benavides-Piccione, Ruth; Pastor, Luis; Yuste, Rafael; DeFelipe, Javier

    2014-01-01

    Current understanding of the synaptic organization of the brain depends to a large extent on knowledge about the synaptic inputs to the neurons. Indeed, the dendritic surfaces of pyramidal cells (the most common neuron in the cerebral cortex) are covered by thin protrusions named dendritic spines. These represent the targets of most excitatory synapses in the cerebral cortex and therefore, dendritic spines prove critical in learning, memory and cognition. This paper presents a new method that facilitates the analysis of the 3D structure of spine insertions in dendrites, providing insight on spine distribution patterns. This method is based both on the implementation of straightening and unrolling transformations to move the analysis process to a planar, unfolded arrangement, and on the design of DISPINE, an interactive environment that supports the visual analysis of 3D patterns. PMID:22644869

  6. Reelin Supplementation Enhances Cognitive Ability, Synaptic Plasticity, and Dendritic Spine Density

    ERIC Educational Resources Information Center

    Rogers, Justin T.; Rusiana, Ian; Trotter, Justin; Zhao, Lisa; Donaldson, Erika; Pak, Daniel T.S.; Babus, Lenard W.; Peters, Melinda; Banko, Jessica L.; Chavis, Pascale; Rebeck, G. William; Hoe, Hyang-Sook; Weeber, Edwin J.

    2011-01-01

    Apolipoprotein receptors belong to an evolutionarily conserved surface receptor family that has intimate roles in the modulation of synaptic plasticity and is necessary for proper hippocampal-dependent memory formation. The known lipoprotein receptor ligand Reelin is important for normal synaptic plasticity, dendritic morphology, and cognitive…

  7. Ag Nanoparticles Decorated Cactus-Like Ag Dendrites/Si Nanoneedles as Highly Efficient 3D Surface-Enhanced Raman Scattering Substrates toward Sensitive Sensing.

    PubMed

    Huang, Jian; Ma, Dayan; Chen, Feng; Bai, Min; Xu, Kewei; Zhao, Yongxi

    2015-10-20

    Surface-enhanced Raman scattering (SERS) has been considered as a promising sensing technique to detect low-level analytes. However, its practical application was hindered owing to the lack of uniform SERS substrates for ultrasensitive and reproducible assay. Herein, inspired by the natural cactus structure, we developed a cactus-like 3D nanostructure with uniform and high-density hotspots for highly efficient SERS sensing by both grafting the silicon nanoneedles onto Ag dendrites and subsequent decoration with Ag nanoparticles. The hierarchical scaffolds and high-density hotspots throughout the whole substrate result in great amplification of SERS signal. A high Raman enhancement factor of crystal violet up to 6.6 × 10(7) was achieved. Using malachite green (MG) as a model target, the fabricated SERS substrates exhibited good reproducibility (RSD ∼ 9.3%) and pushed the detection limit down to 10(-13) M with a wide linear range of 10(-12) M to 10(-7) M. Excellent selectivity was also demonstrated by facilely distinguishing MG from its derivative, some organics, and coexistent metal ions. Finally, the practicality and reliability of the 3D SERS substrates were confirmed by the quantitative analysis of spiked MG in environmental water with high recoveries (91.2% to 109.6%). By virtue of the excellent performance (good reproducibility, high sensitivity, and selectivity), the cactus-like 3D SERS substrate has great potential to become a versatile sensing platform in environmental monitoring, food safety, and medical diagnostics. PMID:26406111

  8. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons.

    PubMed

    Castañeda, Patricia; Muñoz, Mauricio; García-Rojo, Gonzalo; Ulloa, José L; Bravo, Javier A; Márquez, Ruth; García-Pérez, M Alexandra; Arancibia, Damaris; Araneda, Karina; Rojas, Paulina S; Mondaca-Ruff, David; Díaz-Véliz, Gabriela; Mora, Sergio; Aliaga, Esteban; Fiedler, Jenny L

    2015-10-01

    Chronic stress promotes cognitive impairment and dendritic spine loss in hippocampal neurons. In this animal model of depression, spine loss probably involves a weakening of the interaction between pre- and postsynaptic cell adhesion molecules, such as N-cadherin, followed by disruption of the cytoskeleton. N-cadherin, in concert with catenin, stabilizes the cytoskeleton through Rho-family GTPases. Via their effector LIM kinase (LIMK), RhoA and ras-related C3 botulinum toxin substrate 1 (RAC) GTPases phosphorylate and inhibit cofilin, an actin-depolymerizing molecule, favoring spine growth. Additionally, RhoA, through Rho kinase (ROCK), inactivates myosin phosphatase through phosphorylation of the myosin-binding subunit (MYPT1), producing actomyosin contraction and probable spine loss. Some micro-RNAs negatively control the translation of specific mRNAs involved in Rho GTPase signaling. For example, miR-138 indirectly activates RhoA, and miR-134 reduces LIMK1 levels, resulting in spine shrinkage; in contrast, miR-132 activates RAC1, promoting spine formation. We evaluated whether N-cadherin/β-catenin and Rho signaling is sensitive to chronic restraint stress. Stressed rats exhibit anhedonia, impaired associative learning, and immobility in the forced swim test and reduction in N-cadherin levels but not β-catenin in the hippocampus. We observed a reduction in spine number in the apical dendrites of CA1 pyramidal neurons, with no effect on the levels of miR-132 or miR-134. Although the stress did not modify the RAC-LIMK-cofilin signaling pathway, we observed increased phospho-MYPT1 levels, probably mediated by RhoA-ROCK activation. Furthermore, chronic stress raises the levels of miR-138 in accordance with the observed activation of the RhoA-ROCK pathway. Our findings suggest that a dysregulation of RhoA-ROCK activity by chronic stress could potentially underlie spine loss in hippocampal neurons. PMID:26010004

  9. Association of N-cadherin levels and downstream effectors of Rho GTPases with dendritic spine loss induced by chronic stress in rat hippocampal neurons.

    PubMed

    Castañeda, Patricia; Muñoz, Mauricio; García-Rojo, Gonzalo; Ulloa, José L; Bravo, Javier A; Márquez, Ruth; García-Pérez, M Alexandra; Arancibia, Damaris; Araneda, Karina; Rojas, Paulina S; Mondaca-Ruff, David; Díaz-Véliz, Gabriela; Mora, Sergio; Aliaga, Esteban; Fiedler, Jenny L

    2015-10-01

    Chronic stress promotes cognitive impairment and dendritic spine loss in hippocampal neurons. In this animal model of depression, spine loss probably involves a weakening of the interaction between pre- and postsynaptic cell adhesion molecules, such as N-cadherin, followed by disruption of the cytoskeleton. N-cadherin, in concert with catenin, stabilizes the cytoskeleton through Rho-family GTPases. Via their effector LIM kinase (LIMK), RhoA and ras-related C3 botulinum toxin substrate 1 (RAC) GTPases phosphorylate and inhibit cofilin, an actin-depolymerizing molecule, favoring spine growth. Additionally, RhoA, through Rho kinase (ROCK), inactivates myosin phosphatase through phosphorylation of the myosin-binding subunit (MYPT1), producing actomyosin contraction and probable spine loss. Some micro-RNAs negatively control the translation of specific mRNAs involved in Rho GTPase signaling. For example, miR-138 indirectly activates RhoA, and miR-134 reduces LIMK1 levels, resulting in spine shrinkage; in contrast, miR-132 activates RAC1, promoting spine formation. We evaluated whether N-cadherin/β-catenin and Rho signaling is sensitive to chronic restraint stress. Stressed rats exhibit anhedonia, impaired associative learning, and immobility in the forced swim test and reduction in N-cadherin levels but not β-catenin in the hippocampus. We observed a reduction in spine number in the apical dendrites of CA1 pyramidal neurons, with no effect on the levels of miR-132 or miR-134. Although the stress did not modify the RAC-LIMK-cofilin signaling pathway, we observed increased phospho-MYPT1 levels, probably mediated by RhoA-ROCK activation. Furthermore, chronic stress raises the levels of miR-138 in accordance with the observed activation of the RhoA-ROCK pathway. Our findings suggest that a dysregulation of RhoA-ROCK activity by chronic stress could potentially underlie spine loss in hippocampal neurons.

  10. Targeting of ribosomal protein S6 to dendritic spines by in vivo high frequency stimulation to induce long-term potentiation in the dentate gyrus

    PubMed Central

    Nihonmatsu, Itsuko; Ohkawa, Noriaki; Saitoh, Yoshito; Inokuchi, Kaoru

    2015-01-01

    ABSTRACT Late phase long-term potentiation (L-LTP) in the hippocampus is believed to be the cellular basis of long-term memory. Protein synthesis is required for persistent forms of synaptic plasticity, including L-LTP. Neural activity is thought to enhance local protein synthesis in dendrites, and one of the mechanisms required to induce or maintain the long-lasting synaptic plasticity is protein translation in the dendrites. One regulator of translational processes is ribosomal protein S6 (rpS6), a component of the small 40S ribosomal subunit. Although polyribosomes containing rpS6 are observed in dendritic spines, it remains unclear whether L-LTP induction triggers selective targeting of the translational machinery to activated synapses in vivo. Therefore, we investigated synaptic targeting of the translational machinery by observing rpS6 immunoreactivity during high frequency stimulation (HFS) for L-LTP induction in vivo. Immunoelectron microscopic analysis revealed a selective but transient increase in rpS6 immunoreactivity occurring as early as 15 min after the onset of HFS in dendritic spine heads at synaptic sites receiving HFS. Concurrently, levels of the rpS6 protein rapidly declined in somata of granule cells, as determined using immunofluorescence microscopy. These results suggest that the translational machinery is rapidly targeted to activated spines and that this targeting mechanism may contribute to the establishment of L-LTP. PMID:26432888

  11. CYFIP1 Coordinates mRNA Translation and Cytoskeleton Remodeling to Ensure Proper Dendritic Spine Formation

    PubMed Central

    De Rubeis, Silvia; Pasciuto, Emanuela; Li, Ka Wan; Fernández, Esperanza; Di Marino, Daniele; Buzzi, Andrea; Ostroff, Linnaea E.; Klann, Eric; Zwartkruis, Fried J.T.; Komiyama, Noboru H.; Grant, Seth G.N.; Poujol, Christel; Choquet, Daniel; Achsel, Tilmann; Posthuma, Danielle; Smit, August B.; Bagni, Claudia

    2013-01-01

    Summary The CYFIP1/SRA1 gene is located in a chromosomal region linked to various neurological disorders, including intellectual disability, autism, and schizophrenia. CYFIP1 plays a dual role in two apparently unrelated processes, inhibiting local protein synthesis and favoring actin remodeling. Here, we show that brain-derived neurotrophic factor (BDNF)-driven synaptic signaling releases CYFIP1 from the translational inhibitory complex, triggering translation of target mRNAs and shifting CYFIP1 into the WAVE regulatory complex. Active Rac1 alters the CYFIP1 conformation, as demonstrated by intramolecular FRET, and is key in changing the equilibrium of the two complexes. CYFIP1 thus orchestrates the two molecular cascades, protein translation and actin polymerization, each of which is necessary for correct spine morphology in neurons. The CYFIP1 interactome reveals many interactors associated with brain disorders, opening new perspectives to define regulatory pathways shared by neurological disabilities characterized by spine dysmorphogenesis. PMID:24050404

  12. Beyond counts and shapes: studying pathology of dendritic spines in the context of the surrounding neuropil through serial section electron microscopy.

    PubMed

    Kuwajima, M; Spacek, J; Harris, K M

    2013-10-22

    Because dendritic spines are the sites of excitatory synapses, pathological changes in spine morphology should be considered as part of pathological changes in neuronal circuitry in the forms of synaptic connections and connectivity strength. In the past, spine pathology has usually been measured by changes in their number or shape. A more complete understanding of spine pathology requires visualization at the nanometer level to analyze how the changes in number and size affect their presynaptic partners and associated astrocytic processes, as well as organelles and other intracellular structures. Currently, serial section electron microscopy (ssEM) offers the best approach to address this issue because of its ability to image the volume of brain tissue at the nanometer resolution. Renewed interest in ssEM has led to recent technological advances in imaging techniques and improvements in computational tools indispensable for three-dimensional analyses of brain tissue volumes. Here we consider the small but growing literature that has used ssEM analysis to unravel ultrastructural changes in neuropil including dendritic spines. These findings have implications in altered synaptic connectivity and cell biological processes involved in neuropathology, and serve as anatomical substrates for understanding changes in network activity that may underlie clinical symptoms.

  13. 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch

    NASA Astrophysics Data System (ADS)

    De Silva, T.; Uneri, A.; Ketcha, M. D.; Reaungamornrat, S.; Kleinszig, G.; Vogt, S.; Aygun, N.; Lo, S.-F.; Wolinsky, J.-P.; Siewerdsen, J. H.

    2016-04-01

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE  <  6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1-2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of  >14% however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved

  14. 3D-2D image registration for target localization in spine surgery: investigation of similarity metrics providing robustness to content mismatch.

    PubMed

    De Silva, T; Uneri, A; Ketcha, M D; Reaungamornrat, S; Kleinszig, G; Vogt, S; Aygun, N; Lo, S-F; Wolinsky, J-P; Siewerdsen, J H

    2016-04-21

    In image-guided spine surgery, robust three-dimensional to two-dimensional (3D-2D) registration of preoperative computed tomography (CT) and intraoperative radiographs can be challenged by the image content mismatch associated with the presence of surgical instrumentation and implants as well as soft-tissue resection or deformation. This work investigates image similarity metrics in 3D-2D registration offering improved robustness against mismatch, thereby improving performance and reducing or eliminating the need for manual masking. The performance of four gradient-based image similarity metrics (gradient information (GI), gradient correlation (GC), gradient information with linear scaling (GS), and gradient orientation (GO)) with a multi-start optimization strategy was evaluated in an institutional review board-approved retrospective clinical study using 51 preoperative CT images and 115 intraoperative mobile radiographs. Registrations were tested with and without polygonal masks as a function of the number of multistarts employed during optimization. Registration accuracy was evaluated in terms of the projection distance error (PDE) and assessment of failure modes (PDE  >  30 mm) that could impede reliable vertebral level localization. With manual polygonal masking and 200 multistarts, the GC and GO metrics exhibited robust performance with 0% gross failures and median PDE < 6.4 mm (±4.4 mm interquartile range (IQR)) and a median runtime of 84 s (plus upwards of 1-2 min for manual masking). Excluding manual polygonal masks and decreasing the number of multistarts to 50 caused the GC-based registration to fail at a rate of >14%; however, GO maintained robustness with a 0% gross failure rate. Overall, the GI, GC, and GS metrics were susceptible to registration errors associated with content mismatch, but GO provided robust registration (median PDE  =  5.5 mm, 2.6 mm IQR) without manual masking and with an improved runtime (29.3 s). The GO metric improved

  15. Adenosine triphosphate released from HIV-infected macrophages regulates glutamatergic tone and dendritic spine density on neurons

    PubMed Central

    Tovar-y-Romo, Luis B.; Kolson, Dennis L.; Bandaru, Veera Venkata Ratnam; Drewes, Julia; Graham, David R.; Haughey, Norman J.

    2013-01-01

    Despite wide spread use of combination antiretroviral therapy (cART) in developed countries, approximately half of HIV-infected patients will develop impairments in cognitive function. Accumulating evidence suggests that neuronal dysfunction can be precipitated by HIV-infection of macrophages by mechanisms that involve alterations in innate and adaptive immune responses. HIV-infection of macrophages is known to increase the release of soluble neurotoxins. However, the composition of products released from infected macrophages is complex and not fully known. In this study we provide evidence that ATP and other immuno-/neuromodulatory nucleotides are exported from HIV-infected macrophages and modify neuronal structure. Supernatants collected from HIV-infected macrophages (HIV/MDM) contained large amounts of ATP, ADP, AMP and small amounts of adenosine, in addition to glutamate. Dilutions of these supernatants that were sub-threshold for glutamate receptor activation evoked rapid calcium flux in neurons that were completely inhibited by the enzymatic degradation of ATP, or by blockade of calcium permeable purinergic receptors. Applications of these high-dilution HIV/MDM onto neuronal cultures increased the amount of extracellular glutamate by mechanisms dependent on purinergic receptor activation, and downregulated spine density on neurons by mechanisms dependent on purinergic and glutamate receptor activation. We conclude from these data that ATP released from HIV-infected macrophages downregulates dendritic spine density on neurons by a mechanism that involves purinergic receptor mediated modulation of glutamatergic tone. These data suggest that neuronal function may be depressed in HIV infected individuals by mechanisms that involve macrophage release of ATP that triggers secondary effects on glutamate handling. PMID:23686368

  16. FGF21 improves cognition by restored synaptic plasticity, dendritic spine density, brain mitochondrial function and cell apoptosis in obese-insulin resistant male rats.

    PubMed

    Sa-Nguanmoo, Piangkwan; Tanajak, Pongpan; Kerdphoo, Sasiwan; Satjaritanun, Pattarapong; Wang, Xiaojie; Liang, Guang; Li, Xiaokun; Jiang, Chao; Pratchayasakul, Wasana; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2016-09-01

    Fibroblast growth factor 21 (FGF21) is an endocrine hormone which exerts beneficial effects on metabolic regulation in obese and diabetic models. However, the effect of FGF21 on cognition in obese-insulin resistant rats has not been investigated. We hypothesized that FGF21 prevented cognitive decline in obese-insulin resistant rats by improving hippocampal synaptic plasticity, dendritic spine density, brain mitochondrial function and brain FGF21 signaling as well as decreasing brain cell apoptosis. Eighteen male Wistar rats were divided into two groups, and received either a normal diet (ND) (n=6) or a high fat diet (HFD) (n=12) for 12weeks. At week 13, the HFD-fed rats were subdivided into two subgroups (n=6/subgroup) to receive either vehicle or recombinant human FGF21 (0.1mg/kg/day) for four weeks. ND-fed rats were given vehicle for four weeks. At the end of the treatment, cognitive function, metabolic parameters, pro-inflammatory markers, brain mitochondrial function, cell apoptosis, hippocampal synaptic plasticity, dendritic spine density and brain FGF21 signaling were determined. The results showed that vehicle-treated HFD-fed rats developed obese-insulin resistance and cognitive decline with impaired hippocampal synaptic plasticity, decreased dendritic spine density, brain mitochondrial dysfunction and increased brain cell apoptosis. Impaired brain FGF 21 signaling was found in these obese-insulin resistant rats. FGF21-treated obese-insulin resistant rats had improved peripheral insulin sensitivity, increased hippocampal synaptic plasticity, increased dendritic spine density, restored brain mitochondrial function, attenuated brain cells apoptosis and increased brain FGF21 signaling, leading to a prevention of cognitive decline. These findings suggest that FGF21 treatment exerts neuroprotection in obese-insulin resistant rats. PMID:27566237

  17. Xanthoceras sorbifolia extracts ameliorate dendritic spine deficiency and cognitive decline via upregulation of BDNF expression in a rat model of Alzheimer's disease.

    PubMed

    Li, Yinjie; Xu, Jikai; Xu, Pu; Song, Shijie; Liu, Peng; Chi, Tianyan; Ji, Xuefei; Jin, Ge; Qiu, Shimeng; Hou, Yapeng; Zheng, Chen; Wang, Lili; Meng, Dali; Zou, Libo

    2016-08-26

    Xanthoceras sorbifolia, a traditional Chinese folk medicine with anti-inflammatory effects, has been used for a long time in China, especially in the Inner Mongolian area for the treatment of rheumatism. Inflammation is one of the main causes of Alzheimer's disease (AD). AD is characterized by aggregation of amyloid β-peptide (Aβ) plaques, neurofibrillary tangle formation, synaptic dysfunction and neuronal loss. To investigate whether Xanthoceras sorbifolia extracts (XSE) improve cognition and protect dendritic spines, we performed behavioral tests to investigate learning and memory in an Aβ25-35-induced dementia animal model of AD as well as Golgi staining to observe dendritic spine formation in CA1 pyramidal neurons and western blots to test the expression levels of PSD95, BDNF and downstream signaling pathways. Our results indicated that oral treatment with XSE significantly reduced cognitive impairments in behavioral tests (passive avoidance test, novel object recognition test, Y-maze test and Morris water maze test). Golgi staining results revealed that XSE ameliorated dendritic spine density deficits in CA1 pyramidal neurons in the hippocampus. Western blot analysis suggested that XSE upregulated PSD95, which is the major scaffolding protein in synapses. BDNF levels and the ratio of p-TrkB/TrkB increased, and the expression of the RhoA, a member of the Rho-GTPase family, and its downstream target protein ROCK2 decreased in the dementia animal model following treatment with XSE. Therefore, the cognition-improving effects of XSE probably resulted from dendritic spine protection effects through regulation of BDNF signaling pathways. PMID:27412235

  18. Chronic treatment with valproic acid or sodium butyrate attenuates novel object recognition deficits and hippocampal dendritic spine loss in a mouse model of autism.

    PubMed

    Takuma, Kazuhiro; Hara, Yuta; Kataoka, Shunsuke; Kawanai, Takuya; Maeda, Yuko; Watanabe, Ryo; Takano, Erika; Hayata-Takano, Atsuko; Hashimoto, Hitoshi; Ago, Yukio; Matsuda, Toshio

    2014-11-01

    We recently showed that prenatal exposure to valproic acid (VPA) in mice causes autism-like behavioral abnormalities, including social interaction deficits, anxiety-like behavior and spatial learning disability, in male offspring. In the present study, we examined the effect of prenatal VPA on cognitive function and whether the effect is improved by chronic treatment with VPA and sodium butyrate, histone deacetylase inhibitors. In addition, we examined whether the cognitive dysfunction is associated with hippocampal dendritic morphological changes. Mice given prenatal exposure to VPA exhibited novel object recognition deficits at 9 weeks of age, and that the impairment was blocked by chronic (5-week) treatment with VPA (30 mg/kg/d, i.p.) or sodium butyrate (1.2g/kg/d, i.p.) starting at 4 weeks of age. In agreement with the behavioral findings, the mice prenatally exposed to VPA showed a decrease in dendritic spine density in the hippocampal CA1 region, and the spine loss was attenuated by chronic treatment with sodium butyrate or VPA. Furthermore, acute treatment with sodium butyrate, but not VPA, significantly increased acetylation of histone H3 in the hippocampus at 30 min, suggesting the difference in the mechanism for the effects of chronic VPA and sodium butyrate. These findings suggest that prenatal VPA-induced cognitive dysfunction is associated with changes in hippocampal dendritic spine morphology.

  19. CaMKII-dependent dendrite ramification and spine generation promote spatial training-induced memory improvement in a rat model of sporadic Alzheimer's disease.

    PubMed

    Jiang, Xia; Chai, Gao-Shang; Wang, Zhi-Hao; Hu, Yu; Li, Xiao-Guang; Ma, Zhi-Wei; Wang, Qun; Wang, Jian-Zhi; Liu, Gong-Ping

    2015-02-01

    Participation in cognitively stimulating activities can preserve memory capacities in patients with Alzheimer's disease (AD), but the mechanism is not fully understood. Here, we used a rat model with hyperhomocysteinemia, an independent risk factor of AD, to study whether spatial training could remodel the synaptic and/or dendritic plasticity and the key molecular target(s) involved. We found that spatial training in water maze remarkably improved the subsequent short-term and long-term memory performance in contextual fear conditioning and Barnes maze. The trained rats showed an enhanced dendrite ramification, spine generation and plasticity in dentate gyrus (DG) neurons, and stimulation of long-term potentiation between perforant path and DG circuit. Spatial training also increased the levels of postsynaptic GluA1, GluN2A, GluN2B, and PSD93 with selective activation of calcium/calmodulin-dependent protein kinase II (CaMKII), although inhibition of CaMKII by stereotaxic injection of KN93 into hippocampal DG, abolished the training-induced cognitive improvement, dendrite ramification, and spine generation. We conclude that spatial training can preserve the cognitive function by CaMKII-dependent remodeling of dendritic plasticity in hyperhomocysteinemia-induced sporadic AD-like rats.

  20. Satb1 Ablation Alters Temporal Expression of Immediate Early Genes and Reduces Dendritic Spine Density during Postnatal Brain Development

    PubMed Central

    Balamotis, Michael A.; Tamberg, Nele; Woo, Young Jae; Li, Jingchuan; Davy, Brian

    2012-01-01

    Complex behaviors, such as learning and memory, are associated with rapid changes in gene expression of neurons and subsequent formation of new synaptic connections. However, how external signals are processed to drive specific changes in gene expression is largely unknown. We found that the genome organizer protein Satb1 is highly expressed in mature neurons, primarily in the cerebral cortex, dentate hilus, and amygdala. In Satb1-null mice, cortical layer morphology was normal. However, in postnatal Satb1-null cortical pyramidal neurons, we found a substantial decrease in the density of dendritic spines, which play critical roles in synaptic transmission and plasticity. Further, we found that in the cerebral cortex, Satb1 binds to genomic loci of multiple immediate early genes (IEGs) (Fos, Fosb, Egr1, Egr2, Arc, and Bdnf) and other key neuronal genes, many of which have been implicated in synaptic plasticity. Loss of Satb1 resulted in greatly alters timing and expression levels of these IEGs during early postnatal cerebral cortical development and also upon stimulation in cortical organotypic cultures. These data indicate that Satb1 is required for proper temporal dynamics of IEG expression. Based on these findings, we propose that Satb1 plays a critical role in cortical neurons to facilitate neuronal plasticity. PMID:22064485

  1. A Mouse Model of Visual Perceptual Learning Reveals Alterations in Neuronal Coding and Dendritic Spine Density in the Visual Cortex

    PubMed Central

    Wang, Yan; Wu, Wei; Zhang, Xian; Hu, Xu; Li, Yue; Lou, Shihao; Ma, Xiao; An, Xu; Liu, Hui; Peng, Jing; Ma, Danyi; Zhou, Yifeng; Yang, Yupeng

    2016-01-01

    Visual perceptual learning (VPL) can improve spatial vision in normally sighted and visually impaired individuals. Although previous studies of humans and large animals have explored the neural basis of VPL, elucidation of the underlying cellular and molecular mechanisms remains a challenge. Owing to the advantages of molecular genetic and optogenetic manipulations, the mouse is a promising model for providing a mechanistic understanding of VPL. Here, we thoroughly evaluated the effects and properties of VPL on spatial vision in C57BL/6J mice using a two-alternative, forced-choice visual water task. Briefly, the mice underwent prolonged training at near the individual threshold of contrast or spatial frequency (SF) for pattern discrimination or visual detection for 35 consecutive days. Following training, the contrast-threshold trained mice showed an 87% improvement in contrast sensitivity (CS) and a 55% gain in visual acuity (VA). Similarly, the SF-threshold trained mice exhibited comparable and long-lasting improvements in VA and significant gains in CS over a wide range of SFs. Furthermore, learning largely transferred across eyes and stimulus orientations. Interestingly, learning could transfer from a pattern discrimination task to a visual detection task, but not vice versa. We validated that this VPL fully restored VA in adult amblyopic mice and old mice. Taken together, these data indicate that mice, as a species, exhibit reliable VPL. Intrinsic signal optical imaging revealed that mice with perceptual training had higher cut-off SFs in primary visual cortex (V1) than those without perceptual training. Moreover, perceptual training induced an increase in the dendritic spine density in layer 2/3 pyramidal neurons of V1. These results indicated functional and structural alterations in V1 during VPL. Overall, our VPL mouse model will provide a platform for investigating the neurobiological basis of VPL. PMID:27014004

  2. Sequential Elution Interactome Analysis of the Mind Bomb 1 Ubiquitin Ligase Reveals a Novel Role in Dendritic Spine Outgrowth*

    PubMed Central

    Mertz, Joseph; Tan, Haiyan; Pagala, Vishwajeeth; Bai, Bing; Chen, Ping-Chung; Li, Yuxin; Cho, Ji-Hoon; Shaw, Timothy; Wang, Xusheng; Peng, Junmin

    2015-01-01

    The mind bomb 1 (Mib1) ubiquitin ligase is essential for controlling metazoan development by Notch signaling and possibly the Wnt pathway. It is also expressed in postmitotic neurons and regulates neuronal morphogenesis and synaptic activity by mechanisms that are largely unknown. We sought to comprehensively characterize the Mib1 interactome and study its potential function in neuron development utilizing a novel sequential elution strategy for affinity purification, in which Mib1 binding proteins were eluted under different stringency and then quantified by the isobaric labeling method. The strategy identified the Mib1 interactome with both deep coverage and the ability to distinguish high-affinity partners from low-affinity partners. A total of 817 proteins were identified during the Mib1 affinity purification, including 56 high-affinity partners and 335 low-affinity partners, whereas the remaining 426 proteins are likely copurified contaminants or extremely weak binding proteins. The analysis detected all previously known Mib1-interacting proteins and revealed a large number of novel components involved in Notch and Wnt pathways, endocytosis and vesicle transport, the ubiquitin-proteasome system, cellular morphogenesis, and synaptic activities. Immunofluorescence studies further showed colocalization of Mib1 with five selected proteins: the Usp9x (FAM) deubiquitinating enzyme, alpha-, beta-, and delta-catenins, and CDKL5. Mutations of CDKL5 are associated with early infantile epileptic encephalopathy-2 (EIEE2), a severe form of mental retardation. We found that the expression of Mib1 down-regulated the protein level of CDKL5 by ubiquitination, and antagonized CDKL5 function during the formation of dendritic spines. Thus, the sequential elution strategy enables biochemical characterization of protein interactomes; and Mib1 analysis provides a comprehensive interactome for investigating its role in signaling networks and neuronal development. PMID:25931508

  3. The aetiology behind torticollis and variable spine defects in patients with Müllerian duct/renal aplasia-cervicothoracic somite dysplasia syndrome: 3D CT scan analysis.

    PubMed

    Al Kaissi, Ali; Ganger, Rudolf; Hofstaetter, Jochen G; Klaushofer, Klaus; Grill, Franz

    2011-10-01

    The aim of the article is fourfold; firstly, to detect the aetiology of torticollis in patients with Müllerian duct/renal aplasia-cervicothoracic somite dysplasia syndrome; secondly, spine pathology in Müllerian duct/renal aplasia-cervicothoracic somite dysplasia syndrome varies considerably from one patient to another and there are remarkable differences in severity and localization; thirdly, mismanagement of congenital spine pathology is a frequent cause of morbid/fatal outcome; and fourthly, the application of prophylactic surgical treatment to balance the growth of the spine at an early stage is mandatory. Reformatted CT scans helped in exploring the craniocervical and the entire spine in these patients. The reason behind torticollis ranged between aplasia of the posterior arch of the atlas, assimilation of the atlas and extensive fusion of the lower cervical vertebrae (bilateral failure of segmentation) in four patients; in one patient, in addition to the hypoplastic posterior arch of the atlas, we observed ossification of the anterior and the posterior longitudinal spinal ligaments giving rise to a block vertebrae-like suggestive of early senile ankylosing vertebral hyperostosis (Forestier disease). Scoliosis at different spine levels was attributable to variable spine defects. Pelvic ultrasound showed the classical renal agenesis in four patients; whereas in one patient, the MRI showed pelvic cake kidney (renal fused ectopia) associated with ovarian, uterine and vaginal abnormalities. This is the first exploratory study on the craniocervical and the entire spine in a group of patients with MURCS association.

  4. Effects of daily environmental enrichment on behavior and dendritic spine density in hippocampus following neonatal hypoxia-ischemia in the rat.

    PubMed

    Rojas, Joseane Jiménez; Deniz, Bruna Ferrary; Miguel, Patrícia Maidana; Diaz, Ramiro; Hermel, Erica do Espírito-Santo; Achaval, Matilde; Netto, Carlos Alexandre; Pereira, Lenir Orlandi

    2013-03-01

    Hypoxia-ischemia (HI) is the main cause of mortality in the perinatal period and morbidity, in survivors, which is characterized by neurological disabilities. The immature brain is highly susceptible to hypoxic-ischemic insult and is responsive to environmental stimuli, such as environmental enrichment (EE). Previous results indicate that EE recovered memory deficits in adult rats without reversing hippocampal atrophy related to HI. The aim of this study was to investigate behavioral performance in the open field and rota-rod apparatuses, in object recognition and inhibitory avoidance tasks, as well as dendritic spine density in the hippocampus, in rats undergoing HI and exposed to EE. Seven-day old male rats were submitted to the HI procedure and divided into 4 groups: control maintained in standard environment (CTSE), controls submitted to EE (CTEE), HI in standard environment (HISE) and HI in EE (HIEE). Behavioral and morphological parameters were evaluated 9 weeks after the environmental stimulation. Results indicate impairment in the object recognition task after HI that was recovered by enrichment; however the aversive memory impairment in the inhibitory avoidance task shown by hypoxic-ischemic rats was independent of the environment condition. Hypoxic-ischemic groups showed more crossing responses during the first minute in the open field, when compared to controls, but no differences were found between experimental groups in the rota-rod test. Dendritic spine density in the CA1 subfield of the right hippocampus (ipsilateral to the artery occlusion) was decreased after the HI insult, and increased in enriched controls; interestingly enriched HI rats did not differ from CTSE. In conclusion, EE was effective in recovering declarative memory impairment in object recognition and preserved hippocampal dendritic spine density loss after neonatal HI injury.

  5. The Shank3 Interaction Partner ProSAPiP1 Regulates Postsynaptic SPAR Levels and the Maturation of Dendritic Spines in Hippocampal Neurons

    PubMed Central

    Reim, Dominik; Weis, Tobias M.; Halbedl, Sonja; Delling, Jan Philipp; Grabrucker, Andreas M.; Boeckers, Tobias M.; Schmeisser, Michael J.

    2016-01-01

    The postsynaptic density or PSD is a submembranous compartment containing a wide array of proteins that contribute to both morphology and function of excitatory glutamatergic synapses. In this study, we have analyzed functional aspects of the Fezzin ProSAP-interacting protein 1 (ProSAPiP1), an interaction partner of the well-known PSD proteins Shank3 and SPAR. Using lentiviral-mediated overexpression and knockdown of ProSAPiP1, we found that this protein is dispensable for the formation of both pre- and postsynaptic specializations per se. We further show that ProSAPiP1 regulates SPAR levels at the PSD and the maturation of dendritic spines. In line with previous findings on the ProSAPiP1 homolog PSD-Zip70, we conclude that Fezzins essentially contribute to the maturation of excitatory spine synapses. PMID:27252646

  6. Constellation of HCN channels and cAMP regulating proteins in dendritic spines of the primate prefrontal cortex: potential substrate for working memory deficits in schizophrenia.

    PubMed

    Paspalas, Constantinos D; Wang, Min; Arnsten, Amy F T

    2013-07-01

    Schizophrenia associates with impaired prefrontal cortical (PFC) function and alterations in cyclic AMP (cAMP) signaling pathways. These include genetic insults to disrupted-in-schizophrenia (DISC1) and phosphodiesterases (PDE4s) regulating cAMP hydrolysis, and increased dopamine D1 receptor (D1R) expression that elevates cAMP. We used immunoelectron microscopy to localize DISC1, PDE4A, PDE4B, and D1R in monkey PFC and to view spatial interactions with hyperpolarization-activated cyclic nucleotide-gated (HCN) channels that gate network inputs when opened by cAMP. Physiological interactions between PDE4s and HCN channels were tested in recordings of PFC neurons in monkeys performing a spatial working memory task. The study reveals a constellation of cAMP-related proteins (DISC1, PDE4A, and D1R) and HCN channels next to excitatory synapses and the spine neck in thin spines of superficial PFC, where working memory microcircuits interconnect and spine loss is most evident in schizophrenia. In contrast, channels in dendrites were distant from synapses and cAMP-related proteins, and were associated with endosomal trafficking. The data suggest that a cAMP signalplex is selectively positioned in the spines to gate PFC pyramidal cell microcircuits. Single-unit recordings confirmed physiological interactions between cAMP and HCN channels, consistent with gating actions. These data may explain why PFC networks are especially vulnerable to genetic insults that dysregulate cAMP signaling.

  7. Single-cell genetic expression of mutant GABAA receptors causing Human genetic epilepsy alters dendritic spine and GABAergic bouton formation in a mutation-specific manner

    PubMed Central

    Lachance-Touchette, Pamela; Choudhury, Mayukh; Stoica, Ana; Di Cristo, Graziella; Cossette, Patrick

    2014-01-01

    Mutations in genes encoding for GABAA receptor subunits is a well-established cause of genetic generalized epilepsy. GABA neurotransmission is implicated in several developmental processes including neurite outgrowth and synapse formation. Alteration in excitatory/inhibitory synaptic activities plays a critical role in epilepsy, thus here we investigated whether mutations in α1 subunit of GABAA receptor may affect dendritic spine and GABAergic bouton formation. In particular, we examined the effects of three mutations of the GABRA1 gene (D219N, A322D and K353delins18X) that were found in a cohort of French Canadian families with genetic generalized epilepsy. We used a novel single-cell genetic approach, by preparing cortical organotypic cultures from GABRA1flox/flox mice and simultaneously inactivating endogenous GABRA1 and transfecting mutant α1 subunits in single glutamatergic pyramidal cells and basket GABAergic interneurons by biolistic transfection. We found that GABRA1−/− GABAergic cells showed reduced innervation field, which was rescued by co-expressing α1-A322D and α1-WT but not α1-D219N. We further found that the expression of the most severe GABRA1 missense mutation (α1-A322D) induced a striking increase of spine density in pyramidal cells along with an increase in the number of mushroom-like spines. In addition, α1-A322D expression in GABAergic cells slightly increased perisomatic bouton density, whereas other mutations did not alter bouton formation. All together, these results suggest that the effects of different GABAAR mutations on GABAergic bouton and dendritic spine formation are specific to the mutation and cannot be always explained by a simple loss-of-function gene model. The use of single cell genetic manipulation in organotypic cultures may provide a better understanding of the specific and distinct neural circuit alterations caused by different GABAA receptor subunit mutations and will help define the pathophysiology of genetic

  8. Molecular mechanisms of dendrite stability

    PubMed Central

    Koleske, Anthony J.

    2014-01-01

    In the developing brain, dendrite branches and dendritic spines form and turn over dynamically. By contrast, most dendrite arbors and dendritic spines in the adult brain are stable for months, years and possibly even decades. Emerging evidence reveals that dendritic spine and dendrite arbor stability have crucial roles in the correct functioning of the adult brain and that loss of stability is associated with psychiatric disorders and neurodegenerative diseases. Recent findings have provided insights into the molecular mechanisms that underlie long-term dendrite stabilization, how these mechanisms differ from those used to mediate structural plasticity and how they are disrupted in disease. PMID:23839597

  9. Environmental enrichment reveals effects of genotype on hippocampal spine morphologies in the mouse model of Fragile X Syndrome.

    PubMed

    Lauterborn, Julie C; Jafari, Matiar; Babayan, Alex H; Gall, Christine M

    2015-02-01

    Fragile X Syndrome (FXS) and the Fmr1 knockout (KO) mouse model of this disorder exhibit abnormal dendritic spines in neocortex, but the degree of spine disturbances in hippocampus is not clear. The present studies tested if the mutation influences dendritic branching and spine measures for CA1 pyramidal cells in Fmr1 KO and wild-type (WT) mice provided standard or enriched environment (EE) housing. Automated measures from 3D reconstructions of green fluorescent protein (GFP)-labeled cells showed that spine head volumes were ∼ 40% lower in KOs when compared with WTs in both housing conditions. With standard housing, average spine length was greater in KOs versus WTs but there was no genotype difference in dendritic branching, numbers of spines, or spine length distribution. However, with EE rearing, significant effects of genotype emerged including greater dendritic branching in WTs, greater spine density in KOs, and greater numbers of short thin spines in KOs when compared with WTs. Thus, EE rearing revealed greater effects of the Fmr1 mutation on hippocampal pyramidal cell morphology than was evident with standard housing, suggesting that environmental enrichment allows for fuller appreciation of the impact of the mutation and better representation of abnormalities likely to be present in human FXS.

  10. Differential emotional experience induces elevated spine densities on basal dendrites of pyramidal neurons in the anterior cingulate cortex of Octodon degus.

    PubMed

    Helmeke, C; Poeggel, G; Braun, K

    2001-01-01

    It appears likely that, in analogy to the synaptic development of sensory and motor cortices, which critically depends on sensory or motor stimulation (Rosenzweig and Bennett, 1996), the synaptic development of limbic cortical regions are modulated by early postnatal cognitive and emotional experiences. The very first postnatal experience, which takes place in a confined and stable familial environment, is the interaction of the newborn individual with the parents and siblings (Gray, 1958). The aim of this quantitative morphological study was to analyze the impact of different degrees of juvenile emotional experience on the synaptic development in a limbic cortical area, the dorsal anterior cingulate cortex, a region which is involved in the perception and regulation of emotions. We study the precocious trumpet-tailed rat (Octodon degus) as the animal model, because, like human babies, this species is born with functional visual and acoustic systems and the pups are therefore capable of detecting even subtle environmental changes immediately after birth (Reynolds and Wright, 1979; Poeggel and Braun, 1996; Braun et al., 2000; Ovtscharoff and Braun, 2001). The results demonstrate that already a subtle disturbance of the familial environment such as handling induced significantly elevated spine densities on the basal dendrites of layer III cortical pyramidal neurons. More severe disturbances of the emotional environment, such as periodic parental deprivation with or without subsequent chronic social isolation, resulted in an elevation of spine densities of similar magnitude as seen after handling and in addition, altered spine densities confined to specific dendritic segments were observed in these groups. These observations unveil the remarkable sensitivity of the dorsal anterior cingulate cortex towards environmental influences and behavioral experiences during phases of postnatal development. The behavioral consequences of these experience-induced synaptic changes

  11. Developmental expression profiles of axon guidance signaling and the immune system in the marmoset cortex: potential molecular mechanisms of pruning of dendritic spines during primate synapse formation in late infancy and prepuberty (I).

    PubMed

    Sasaki, Tetsuya; Oga, Tomofumi; Nakagaki, Keiko; Sakai, Kazuhisa; Sumida, Kayo; Hoshino, Kohei; Miyawaki, Izuru; Saito, Koichi; Suto, Fumikazu; Ichinohe, Noritaka

    2014-02-14

    The synapse number and the related dendritic spine number in the cerebral cortex of primates shows a rapid increase after birth. Depending on the brain region and species, the number of synapses reaches a peak before adulthood, and pruning takes place after this peak (overshoot-type synaptic formation). Human mental disorders, such as autism and schizophrenia, are hypothesized to be a result of either too weak or excessive pruning after the peak is reached. Thus, it is important to study the molecular mechanisms underlying overshoot-type synaptic formation, particularly the pruning phase. To examine the molecular mechanisms, we used common marmosets (Callithrix jacchus). Microarray analysis of the marmoset cortex was performed in the ventrolateral prefrontal, inferior temporal, and primary visual cortices, where changes in the number of dendritic spines have been observed. The spine number of all the brain regions above showed a peak at 3 months (3 M) after birth and gradually decreased (e.g., at 6 M and in adults). In this study, we focused on genes that showed differential expression between ages of 3 M and 6 M and on the differences whose fold change (FC) was greater than 1.2. The selected genes were subjected to canonical pathway analysis, and in this study, we describe axon guidance signaling, which had high plausibility. The results showed a large number of genes belonging to subsystems within the axon guidance signaling pathway, macrophages/immune system, glutamate system, and others. We divided the data and discussion of these results into 2 papers, and this is the first paper, which deals with the axon guidance signaling and macrophage/immune system. Other systems will be described in the next paper. Many components of subsystems within the axon guidance signaling underwent changes in gene expression from 3 M to 6 M so that the synapse/dendritic spine number would decrease at 6 M. Thus, axon guidance signaling probably contributes to the decrease in

  12. Adolescent social isolation enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in the basolateral amygdala of adult mice.

    PubMed

    Gan, J O; Bowline, E; Lourenco, F S; Pickel, V M

    2014-01-31

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation manifested by abnormalities in adult behaviors that require emotional processing. The affected brain regions may include the basolateral amygdala (BLA), where plasticity of glutamatergic synapses in principal neurons plays a role in conditioned emotional responses. This plasticity is dependent on NMDA receptor trafficking denoted by intracellular mobilization of the obligatory NR1 NMDA subunit. We tested the hypothesis that the psychosocial stress of adolescent social isolation (ASI) produces a lasting change in NMDA receptor distribution in principal neurons in the BLA of adults that express maladaptive emotional responses to sensory cues. For this, we used behavioral testing and dual electron microscopic immunolabeling of NR1 and calcium calmodulin-dependent protein kinase II (CaMKII), a protein predominantly expressed in principal neurons of the BLA in adult C57Bl/6 mice housed in isolation or in social groups from post-weaning day 22 until adulthood (∼3 months of age). The isolates showed persistent deficits in sensorimotor gating evidenced by altered prepulse inhibition (PPI) of acoustic startle and hyperlocomotor activity in a novel environment. Immunogold-silver labeling for NR1 alone or together with CaMKII was seen in many somatodendritic profiles in the BLA of all mice irrespective of rearing conditions. However, isolates compared with group-reared mice had a significantly lower cytoplasmic (4.72 ± 0.517 vs 6.31 ± 0.517) and higher plasmalemmal (0.397 ± 0.0779 vs 0.216 ± 0.026) density of NR1 immunogold particles in CaMKII-containing dendritic spines. There was no rearing-dependent difference in the size or number of these spines or those of other dendritic profiles within the neuropil, which also failed to show an impact of ASI on NR1 immunogold labeling. These results provide the first evidence that ASI enhances the surface trafficking of NMDA receptors

  13. Adolescent social isolation enhances the plasmalemmal density of NMDA NR1 subunits in dendritic spines of principal neurons in the basolateral amygdala of adult mice

    PubMed Central

    Gan, Jerylin O.; Bowline, Everett; Lourenco, Frederico S.; Pickel, Virginia M.

    2014-01-01

    Social isolation during the vulnerable period of adolescence produces emotional dysregulation manifested by abnormalities in adult behaviors that require emotional processing. The affected brain regions may include the basolateral amygdala (BLA), where plasticity of glutamatergic synapses in principal neurons plays a role in conditioned emotional responses. This plasticity is dependent on NMDA receptor trafficking denoted by intracellular mobilization of the obligatory NR1 NMDA subunit. We tested the hypothesis that the psychosocial stress of adolescent social isolation (ASI) produces a lasting change in NMDA receptor distribution in principal neurons in the BLA of adults that express maladaptive emotional responses to sensory cues. For this, we used behavioral testing and dual electron microscopic immunolabeling of NR1 and CaMKII, a protein predominantly expressed in principal neurons of the BLA in adult C57Bl/6 mice housed in isolation or in social groups from post-weaning day 22 until adulthood (~3 months of age). The isolates showed persistent deficits in sensorimotor gating evidenced by altered prepulse inhibition (PPI) of acoustic startle and hyperlocomotor activity in a novel environment. Immunogold-silver labeling for NR1 alone or together with CaMKII was seen in many somatodendritic profiles in the BLA of all mice irrespective of rearing conditions. However, isolates compared with group-reared mice had a significantly lower cytoplasmic (4.72±0.517 vs 6.31 ± 0.517) and higher plasmalemmal (0.397±0.0779 vs 0.216±0.026) density of NR1 immunogold particles in CaMKII-containing dendritic spines. There were no rearing-dependent difference is the size or number of these spines or those of other dendritic profiles within the neuropil, which also failed to show an impact of ASI on NR1 immunogold labeling. These results provide the first evidence that ASI enhances the surface trafficking of NMDA receptors in dendritic spines of principal neurons in the BLA of

  14. Marked changes in dendritic structure and spine density precede significant neuronal death in vulnerable cortical pyramidal neuron populations in the SOD1(G93A) mouse model of amyotrophic lateral sclerosis.

    PubMed

    Fogarty, Matthew J; Mu, Erica W H; Noakes, Peter G; Lavidis, Nickolas A; Bellingham, Mark C

    2016-01-01

    Amyotrophic lateral sclerosis (ALS) is characterised by the death of upper (corticospinal) and lower motor neurons (MNs) with progressive muscle weakness. This incurable disease is clinically heterogeneous and its aetiology remains unknown. Increased excitability of corticospinal MNs has been observed prior to symptoms in human and rodent studies. Increased excitability has been correlated with structural changes in neuronal dendritic arbors and spines for decades. Here, using a modified Golgi-Cox staining method, we have made the first longitudinal study examining the dendrites of pyramidal neurons from the motor cortex, medial pre-frontal cortex, somatosensory cortex and entorhinal cortex of hSOD1(G93A) (SOD1) mice compared to wild-type (WT) littermate controls at postnatal (P) days 8-15, 28-35, 65-75 and 120. Progressive decreases in dendritic length and spine density commencing at pre-symptomatic ages (P8-15 or P28-35) were observed in layer V pyramidal neurons within the motor cortex and medial pre-frontal cortex of SOD1 mice compared to WT mice. Spine loss without concurrent dendritic pathology was present in the pyramidal neurons of the somatosensory cortex from disease-onset (P65-75). Our results from the SOD1 model suggest that dendritic and dendritic spine changes foreshadow and underpin the neuromotor phenotypes present in ALS and may contribute to the varied cognitive, executive function and extra-motor symptoms commonly seen in ALS patients. Determining if these phenomena are compensatory or maladaptive may help explain differential susceptibility of neurons to degeneration in ALS. PMID:27488828

  15. A Direct Role for FMRP in Activity-Dependent Dendritic mRNA Transport Links Filopodial-Spine Morphogenesis to Fragile X Syndrome

    PubMed Central

    Dictenberg, Jason B.; Swanger, Sharon A.; Antar, Laura N.; Singer, Robert H.; Bassell, Gary J.

    2008-01-01

    The function of local protein synthesis in synaptic plasticity and its dysregulation in fragile X syndrome (FSX) is well studied, however the contribution of regulated mRNA transport to this function remains unclear. We report a function for the fragile X mental retardation protein (FMRP) in the rapid, activity-regulated transport of mRNAs important for synaptogenesis and plasticity. mRNAs were deficient in glutamatergic signaling-induced dendritic localization in neurons from FMRP KO mice, and single mRNA particle dynamics in live neurons revealed diminished kinesis. Motor-dependent translocation of FMRP and cognate mRNAs involved the C-terminus of FMRP and kinesin light chain, and KO brain showed reduced kinesin-associated mRNAs. Acute suppression of FMRP and target mRNA transport in WT neurons resulted in altered filopodia-spine morphology that mimicked the FXS phenotype. These findings highlight a mechanism for stimulus-induced dendritic mRNA transport and link its impairment in a mouse model of FXS to altered developmental morphologic plasticity. PMID:18539120

  16. Dendrite development: a surprising origin.

    PubMed

    Ehlers, Michael D

    2005-08-15

    Neurons extend elaborate dendrites studded with spines. Unexpectedly, this cellular sculpting is regulated by the origin recognition complex -- the core machinery for initiating DNA replication. PMID:16103221

  17. Post-synaptic Density-95 (PSD-95) Binding Capacity of G-protein-coupled Receptor 30 (GPR30), an Estrogen Receptor That Can Be Identified in Hippocampal Dendritic Spines*

    PubMed Central

    Akama, Keith T.; Thompson, Louisa I.; Milner, Teresa A.; McEwen, Bruce S.

    2013-01-01

    The estrogen 17β-estradiol (E2) modulates dendritic spine plasticity in the cornu ammonis 1 (CA1) region of the hippocampus, and GPR30 (G-protein coupled estrogen receptor 1 (GPER1)) is an estrogen-sensitive G-protein-coupled receptor (GPCR) that is expressed in the mammalian brain and in specific subregions that are responsive to E2, including the hippocampus. The subcellular localization of hippocampal GPR30, however, remains unclear. Here, we demonstrate that GPR30 immunoreactivity is detected in dendritic spines of rat CA1 hippocampal neurons in vivo and that GPR30 protein can be found in rat brain synaptosomes. GPR30 immunoreactivity is identified at the post-synaptic density (PSD) and in the adjacent peri-synaptic zone, and GPR30 can associate with the spine scaffolding protein PSD-95 both in vitro and in vivo. This PSD-95 binding capacity of GPR30 is specific and determined by the receptor C-terminal tail that is both necessary and sufficient for PSD-95 interaction. The interaction with PSD-95 functions to increase GPR30 protein levels residing at the plasma membrane surface. GPR30 associates with the N-terminal tandem pair of PDZ domains in PSD-95, suggesting that PSD-95 may be involved in clustering GPR30 with other receptors in the hippocampus. We demonstrate that GPR30 has the potential to associate with additional post-synaptic GPCRs, including the membrane progestin receptor, the corticotropin releasing hormone receptor, and the 5HT1a serotonin receptor. These data demonstrate that GPR30 is well positioned in the dendritic spine compartment to integrate E2 sensitivity directly onto multiple inputs on synaptic activity and might begin to provide a molecular explanation as to how E2 modulates dendritic spine plasticity. PMID:23300088

  18. 3D dendritic α-Fe{sub 2}O{sub 3} nano-architectures: Synthesis and its application on electrochemical non-enzymatic H{sub 2}O{sub 2} sensing

    SciTech Connect

    Majumder, S.

    2015-06-24

    In this manuscript we have successfully synthesized a large scale 3D dendritic α-Fe{sub 2}O{sub 3} hierarchical structure via a hydrothermal reaction. The crystallinity, composition, purity, morphology of the synthesized α-Fe{sub 2}O{sub 3} are characterized by powder X-ray diffraction (PXRD), field emission scanning electron microscopic (FESEM), energy dispersive X-ray spectroscopic (EDS). FESEM image reveals that the individual α-Fe{sub 2}O{sub 3} dendrite consists of a long central trunk with secondary and tertiary branches. For electrochemical H{sub 2}O{sub 2} sensing we have carried out cyclic voltammetry (CV), amperometric i-t measurement. It has been found that the current density vs. H{sub 2}O{sub 2} concentration calibration curve is linear in nature. The present study reveals that the dendritic α-Fe{sub 2}O{sub 3} hierarchical structure exhibits very sensitive electrochemical sensing capability towards H{sub 2}O{sub 2} reduction.

  19. Inhibition of the Motor Protein Eg5/Kinesin-5 in Amyloid β-Mediated Impairment of Hippocampal Long-Term Potentiation and Dendritic Spine Loss.

    PubMed

    Freund, Ronald K; Gibson, Emily S; Potter, Huntington; Dell'Acqua, Mark L

    2016-05-01

    Alzheimer's disease (AD) is characterized by neurofibrillary tangles, amyloid plaques, and neurodegeneration. However, this pathology is preceded by increased soluble amyloid beta (Aβ) 1-42 oligomers that interfere with the glutamatergic synaptic plasticity required for learning and memory, includingN-methyl-d-aspartate receptor (NMDAR)-dependent long-term potentiation (LTP). In particular, soluble Aβ(1-42) acutely inhibits LTP and chronically causes synapse loss. Many mechanisms have been proposed for Aβ-induced synaptic dysfunction, but we recently found that Aβ(1-42) inhibits the microtubule motor protein Eg5/kinesin-5. Here we compared the impacts of Aβ(1-42) and monastrol, a small-molecule Eg5 inhibitor, on LTP in hippocampal slices and synapse loss in neuronal cultures. Acute (20-minute) treatment with monastrol, like Aβ, completely inhibited LTP at doses >100 nM. In addition, 1 nM Aβ(1-42) or 50 nM monastrol inhibited LTP #x223c;50%, and when applied together caused complete LTP inhibition. At concentrations that impaired LTP, neither Aβ(1-42) nor monastrol inhibited NMDAR synaptic responses until #x223c;60 minutes, when only #x223c;25% inhibition was seen for monastrol, indicating that NMDAR inhibition was not responsible for LTP inhibition by either agent when applied for only 20 minutes. Finally, 48 hours of treatment with either 0.5-1.0μM Aβ(1-42) or 1-5μM monastrol reduced the dendritic spine/synapse density in hippocampal cultures up to a maximum of #x223c;40%, and when applied together at maximal concentrations, no additional spine loss resulted. Thus, monastrol can mimic and in some cases occlude the impact of Aβon LTP and synapse loss, suggesting that Aβinduces acute and chronic synaptic dysfunction in part through inhibiting Eg5.

  20. Preferential localization of muscarinic M1 receptor on dendritic shaft and spine of cortical pyramidal cells and its anatomical evidence for volume transmission.

    PubMed

    Yamasaki, Miwako; Matsui, Minoru; Watanabe, Masahiko

    2010-03-24

    Acetylcholine (ACh) plays important roles for higher brain functions, including arousal, attention, and cognition. These effects are mediated largely by muscarinic acetylcholine receptors (mAChRs). However, it remains inconclusive whether the mode of ACh-mAChR signaling is synaptic, so-called "wired," transmission mediated by ACh released into the synaptic cleft, or nonsynaptic, so-called "volume," transmission by ambient ACh. To address this issue, we examined cellular and subcellular distribution of M(1), the most predominant mAChR subtype in the cerebral cortex and hippocampus, and pursued its anatomical relationship with cholinergic varicosities in these regions of adult mice. M(1) was highly expressed in glutamatergic pyramidal neurons, whereas it was low or undetectable in various GABAergic interneuron subtypes. M(1) was preferentially distributed on the extrasynaptic membrane of pyramidal cell dendrites and spines. Cholinergic varicosities often made direct contact to pyramidal cell dendrites and synapses. At such contact sites, however, synapse-like specialization was infrequent, and no particular accumulation was found at around contact sites for both M(1) and presynpatic active zone protein Bassoon. These features contrasted with those of the glutamatergic system, in which AMPA receptor GluA2 and metabotropic receptor mGluR5 were recruited to the synaptic or perisynaptic membrane, respectively, and Bassoon was highly accumulated in the presynaptic terminals. These results suggest that M(1) is so positioned to sense ambient ACh released from cholinergic varicosities at variable distances, and to enhance the synaptic efficacy and excitability of pyramidal cells. These molecular-anatomical arrangements will provide the evidence for volume transmission, at least in M(1)-mediated cortical cholinergic signaling.

  1. In-vivo administration of clozapine affects behaviour but does not reverse dendritic spine deficits in the 14-3-3ζ KO mouse model of schizophrenia-like disorders.

    PubMed

    Jaehne, Emily J; Ramshaw, Hayley; Xu, Xiangjun; Saleh, Eiman; Clark, Scott R; Schubert, Klaus Oliver; Lopez, Angel; Schwarz, Quenten; Baune, Bernhard T

    2015-11-01

    Clozapine is an atypical antipsychotic drug used in the treatment of schizophrenia, which has been shown to reverse behavioural and dendritic spine deficits in mice. It has recently been shown that deficiency of 14-3-3ζ has an association with schizophrenia, and that a mouse model lacking this protein displays several schizophrenia-like behavioural deficits. To test the effect of clozapine in this mouse model, 14-3-3ζ KO mice were administered clozapine (5mg/kg) for two weeks prior to being analysed in a test battery of cognition, anxiety, and despair (depression-like) behaviours. Following behavioural testing brain samples were collected for analysis of specific anatomical defects and dendritic spine formation. We found that clozapine reduced despair behaviour of 14-3-3ζ KO mice in the forced swim test (FST) and altered the behaviour of wild types and 14-3-3ζ KO mice in the Y-maze task. In contrast, clozapine had no effects on hippocampal laminar defects or decreased dendritic spine density observed in 14-3-3ζ KO mice. Our results suggest that clozapine may have beneficial effects on clinical behaviours associated with deficiencies in the 14-3-3ζ molecular pathway, despite having no effects on morphological defects. These findings may provide mechanistic insight to the action of this drug.

  2. Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines

    PubMed Central

    Pfeiffer, Thomas; Avignone, Elena; Nägerl, U. Valentin

    2016-01-01

    Recently microglia, the resident immune cells of the brain, have been recognized as multi-tasking talents that are not only essential in the diseased brain, but also actively contribute to synaptic circuit remodeling during normal brain development. It is well established that microglia dynamically scan their environment and thereby establish transient physical contacts with neuronal synapses, which may allow them to sense and influence synaptic function. However, it is unknown whether and how the morphological dynamics of microglia and their physical interactions with synapses are affected by the induction of synaptic plasticity in the adult brain. To this end, we characterized the morphological dynamics of microglia and their interactions with synapses before and after the induction of synaptic plasticity (LTP) in the hippocampus by time-lapse two-photon imaging and electrophysiological recordings in acute brain slices. We demonstrate that during hippocampal LTP microglia alter their morphological dynamics by increasing the number of their processes and by prolonging their physical contacts with dendritic spines. These effects were absent in the presence of an NMDA receptor antagonist. Taken together, this altered behavior could reflect an active microglial involvement in circuit remodeling during activity-dependent synaptic plasticity in the healthy adult brain. PMID:27604518

  3. Defects in dendrite and spine maturation and synaptogenesis associated with an anxious-depressive-like phenotype of GABAA receptor-deficient mice.

    PubMed

    Ren, Zhen; Sahir, Nadia; Murakami, Shoko; Luellen, Beth A; Earnheart, John C; Lal, Rachnanjali; Kim, Ju Young; Song, Hongjun; Luscher, Bernhard

    2015-01-01

    Mice that were rendered heterozygous for the γ2 subunit of GABAA receptors (γ2(+/-) mice) have been characterized extensively as a model for major depressive disorder. The phenotype of these mice includes behavior indicative of heightened anxiety, despair, and anhedonia, as well as defects in hippocampus-dependent pattern separation, HPA axis hyperactivity and increased responsiveness to antidepressant drugs. The γ2(+/-) model thereby provides strong support for the GABAergic deficit hypothesis of major depressive disorder. Here we show that γ2(+/-) mice additionally exhibit specific defects in late stage survival of adult-born hippocampal granule cells, including reduced complexity of dendritic arbors and impaired maturation of synaptic spines. Moreover, cortical γ2(+/-) neurons cultured in vitro show marked deficits in GABAergic innervation selectively when grown under competitive conditions that may mimic the environment of adult-born hippocampal granule cells. Finally, brain extracts of γ2(+/-) mice show a numerical but insignificant trend (p = 0.06) for transiently reduced expression of brain derived neurotrophic factor (BDNF) at three weeks of age, which might contribute to the previously reported developmental origin of the behavioral phenotype of γ2(+/-) mice. The data indicate increasing congruence of the GABAergic, glutamatergic, stress-based and neurotrophic deficit hypotheses of major depressive disorder.

  4. Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats

    PubMed Central

    Castillo-Gómez, Esther; Varea, Emilio; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nacher, Juan

    2016-01-01

    Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal neurons, two additional features affected in schizophrenia. To evaluate these parameters, we have chronically treated adult rats with PPHT (a D2R agonist) after enzymatic removal of PSA with Endo-N. Both treatments decreased spine density in apical dendrites of pyramidal neurons without affecting their inhibitory innervation. Endo-N also reduced the expression of vesicular glutamate transporter-1. These results indicate that D2R and PSA-NCAM are important players in the regulation of the structural plasticity of mPFC excitatory neurons. This is relevant to our understanding of the neurobiological basis of schizophrenia, in which structural alterations of pyramidal neurons and altered expression of D2R and PSA-NCAM have been found. PMID:27110404

  5. Effects of Chronic Dopamine D2R Agonist Treatment and Polysialic Acid Depletion on Dendritic Spine Density and Excitatory Neurotransmission in the mPFC of Adult Rats.

    PubMed

    Castillo-Gómez, Esther; Varea, Emilio; Blasco-Ibáñez, José Miguel; Crespo, Carlos; Nacher, Juan

    2016-01-01

    Dopamine D2 receptors (D2R) in the medial prefrontal cortex (mPFC) are key players in the etiology and therapeutics of schizophrenia. The overactivation of these receptors contributes to mPFC dysfunction. Chronic treatment with D2R agonists modifies the expression of molecules implicated in neuronal structural plasticity, synaptic function, and inhibitory neurotransmission, which are also altered in schizophrenia. These changes are dependent on the expression of the polysialylated form of the neural cell adhesion molecule (PSA-NCAM), a plasticity-related molecule, but nothing is known about the effects of D2R and PSA-NCAM on excitatory neurotransmission and the structure of mPFC pyramidal neurons, two additional features affected in schizophrenia. To evaluate these parameters, we have chronically treated adult rats with PPHT (a D2R agonist) after enzymatic removal of PSA with Endo-N. Both treatments decreased spine density in apical dendrites of pyramidal neurons without affecting their inhibitory innervation. Endo-N also reduced the expression of vesicular glutamate transporter-1. These results indicate that D2R and PSA-NCAM are important players in the regulation of the structural plasticity of mPFC excitatory neurons. This is relevant to our understanding of the neurobiological basis of schizophrenia, in which structural alterations of pyramidal neurons and altered expression of D2R and PSA-NCAM have been found. PMID:27110404

  6. Induction of hippocampal long-term potentiation increases the morphological dynamics of microglial processes and prolongs their contacts with dendritic spines.

    PubMed

    Pfeiffer, Thomas; Avignone, Elena; Nägerl, U Valentin

    2016-01-01

    Recently microglia, the resident immune cells of the brain, have been recognized as multi-tasking talents that are not only essential in the diseased brain, but also actively contribute to synaptic circuit remodeling during normal brain development. It is well established that microglia dynamically scan their environment and thereby establish transient physical contacts with neuronal synapses, which may allow them to sense and influence synaptic function. However, it is unknown whether and how the morphological dynamics of microglia and their physical interactions with synapses are affected by the induction of synaptic plasticity in the adult brain. To this end, we characterized the morphological dynamics of microglia and their interactions with synapses before and after the induction of synaptic plasticity (LTP) in the hippocampus by time-lapse two-photon imaging and electrophysiological recordings in acute brain slices. We demonstrate that during hippocampal LTP microglia alter their morphological dynamics by increasing the number of their processes and by prolonging their physical contacts with dendritic spines. These effects were absent in the presence of an NMDA receptor antagonist. Taken together, this altered behavior could reflect an active microglial involvement in circuit remodeling during activity-dependent synaptic plasticity in the healthy adult brain. PMID:27604518

  7. Adolescent nicotine-induced dendrite remodeling in the nucleus accumbens is rapid, persistent, and D1-dopamine receptor dependent.

    PubMed

    Ehlinger, D G; Bergstrom, H C; Burke, J C; Fernandez, G M; McDonald, C G; Smith, R F

    2016-01-01

    Chronic nicotine exposure during adolescence induces dendritic remodeling of medium spiny neurons (MSNs) in the nucleus accumbens (NAcc) shell. While nicotine-induced dendritic remodeling has frequently been described as persistent, the trajectory of dendrite remodeling is unknown. Specifically, no study to date has characterized the structural plasticity of dendrites in the NAcc immediately following chronic nicotine, leaving open the possibility that dendrite remodeling emerges gradually over time. Further, the neuropharmacological mechanisms through which nicotine induces dendrite remodeling are not well understood. To address these questions, rats were co-administered chronic nicotine (0.5 mg/kg) and the D1-dopamine receptor (D1DR) antagonist SCH-23390 (0.05 mg/kg) subcutaneously every other day during adolescence. Brains were then processed for Golgi-Cox staining either 1 day or 21 days following drug exposure and dendrites from MSNs in the NAcc shell digitally reconstructed in 3D. Spine density was also measured at both time points. Our morphometric results show (1) the formation of new dendritic branches and spines 1 day following nicotine exposure, (2) new dendritic branches, but not spine density, remains relatively stable for at least 21 days, (3) the co-administration of SCH-23390 completely blocked nicotine-induced dendritic remodeling of MSNs at both early and late time points, suggesting the formation of new dendritic branches in response to nicotine is D1DR-dependent, and (4) SCH-23390 failed to block nicotine-induced increases in spine density. Overall this study provides new insight into how nicotine influences the normal trajectory of adolescent brain development and demonstrates a persistent form of nicotine-induced neuroplasticity in the NAcc shell that develops rapidly and is D1DR dependent.

  8. An integrated molecular landscape implicates the regulation of dendritic spine formation through insulin-related signalling in obsessive–compulsive disorder

    PubMed Central

    van de Vondervoort, Ilse; Poelmans, Geert; Aschrafi, Armaz; Pauls, David L.; Buitelaar, Jan K.; Glennon, Jeffrey C.; Franke, Barbara

    2016-01-01

    Background Obsessive–compulsive disorder (OCD) is a neuropsychiatric disorder with onset in childhood and is characterized by obsessions (recurrent, intrusive, persistent thoughts, impulses and/or ideas that often cause anxiety or distress) and compulsions (ritualized and stereotypic behaviours or mental acts that are often performed to relieve anxiety or distress associated with obsessions). Although OCD is a heritable disorder, its complex molecular etiology is poorly understood. Methods We combined enrichment analyses and an elaborate literature review of the top-ranked genes emerging from the 2 published genome-wide association studies of OCD and candidate genes implicated through other evidence in order to identify biological processes that, when dysregulated, increase the risk for OCD. Results The resulting molecular protein landscape was enriched for proteins involved in regulating postsynaptic dendritic spine formation — and hence synaptic plasticity — through insulin-dependent molecular signalling cascades. Limitations This study is a first attempt to integrate molecuar information from different sources in order to identify biological mechanisms underlying OCD etiology. Our findings are constrained by the limited information from hypothesis-free studies and the incompleteness and existing limitations of the OCD literature and the gene function annotations of gene enrichment tools. As this study was solely based on in silico analyses, experimental validation of the provided hypotheses is warranted. Conclusion Our work suggests a key role for insulin and insulin-related signalling in OCD etiology and — if confirmed by independent studies — could eventually pave the way for the development of novel OCD treatments. PMID:26854754

  9. Inhibition of the Ras/Raf/ERK1/2 Signaling Pathway Restores Cultured Spinal Cord-Injured Neuronal Migration, Adhesion, and Dendritic Spine Development.

    PubMed

    Xu, Dongdong; Cao, Fujiang; Sun, Shiwei; Liu, Tao; Feng, Shiqing

    2016-08-01

    The Ras/Raf/ERK1/2 signaling pathway plays an important role in central and peripheral neurons in functions such as dendritic arborization, neuronal polarity, and axon assembly. However, emerging evidence also shows that up-regulation of this signaling pathway may lead to the development of spinal cord injury. The present study aimed to determine the effects of Ras/Raf/ERK1/2 signaling pathway inhibition on properties of spinal cord-injured neurons. First, neurons from spinal cord-injured C57BL/6 J mouse pups and sham-operated C57BL/6 J mouse pups were harvested. Then, immunofluorescence, western blotting, cell adhesion and cell migration assays, and DiI labeling were employed to investigate the effect of Ras/Raf/ERK1/2 signaling pathway inhibition on spinal cord-injured neurons. Immunofluorescence results of synapse formation indicated that the experimental spinal cord injury model was successfully established. Western blot results identified upregulated Erk phosphorylation in the spinal cord-injured neurons, and also showed that U0126 inhibited phosphorylation of Erk, which is a downstream kinase in the Ras/Raf signaling pathway. Additionally, cell migration and adhesion was significantly increased in the spinal cord-injured neurons. DiI labeling results also showed an increased formation of mature spines after inhibition of Ras/Raf/ERK1/2 signaling. Taken together, these results suggested that the Ras/Raf/ERK1/2 signaling pathway could serve as an effective treatment target for spinal cord injury.

  10. Biochemical computation for spine structural plasticity

    PubMed Central

    Nishiyama, Jun; Yasuda, Ryohei

    2015-01-01

    The structural plasticity of dendritic spines is considered to be essential for various forms of synaptic plasticity, learning and memory. The process is mediated by a complex signaling network consisting of numerous species of molecules. Furthermore, the spatiotemporal dynamics of the biochemical signaling is regulated in a complicated manner due to geometrical restrictions from the unique morphology of the dendritic branches and spines. Recent advances in optical techniques have enabled the exploration of the spatiotemporal aspects of the signal regulations in spines and dendrites and have provided many insights into the principle of the biochemical computation that underlies spine structural plasticity. PMID:26139370

  11. A resource from 3D electron microscopy of hippocampal neuropil for user training and tool development

    PubMed Central

    Harris, Kristen M.; Spacek, Josef; Bell, Maria Elizabeth; Parker, Patrick H.; Lindsey, Laurence F.; Baden, Alexander D.; Vogelstein, Joshua T.; Burns, Randal

    2015-01-01

    Resurgent interest in synaptic circuitry and plasticity has emphasized the importance of 3D reconstruction from serial section electron microscopy (3DEM). Three volumes of hippocampal CA1 neuropil from adult rat were imaged at X-Y resolution of ~2 nm on serial sections of ~50–60 nm thickness. These are the first densely reconstructed hippocampal volumes. All axons, dendrites, glia, and synapses were reconstructed in a cube (~10 μm3) surrounding a large dendritic spine, a cylinder (~43 μm3) surrounding an oblique dendritic segment (3.4 μm long), and a parallelepiped (~178 μm3) surrounding an apical dendritic segment (4.9 μm long). The data provide standards for identifying ultrastructural objects in 3DEM, realistic reconstructions for modeling biophysical properties of synaptic transmission, and a test bed for enhancing reconstruction tools. Representative synapses are quantified from varying section planes, and microtubules, polyribosomes, smooth endoplasmic reticulum, and endosomes are identified and reconstructed in a subset of dendrites. The original images, traces, and Reconstruct software and files are freely available and visualized at the Open Connectome Project (Data Citation 1). PMID:26347348

  12. Amyloid β-peptide oligomers stimulate RyR-mediated Ca2+ release inducing mitochondrial fragmentation in hippocampal neurons and prevent RyR-mediated dendritic spine remodeling produced by BDNF.

    PubMed

    Paula-Lima, Andrea C; Adasme, Tatiana; SanMartín, Carol; Sebollela, Adriano; Hetz, Claudio; Carrasco, M Angélica; Ferreira, Sergio T; Hidalgo, Cecilia

    2011-04-01

    Soluble amyloid β-peptide oligomers (AβOs), increasingly recognized as causative agents of Alzheimer's disease (AD), disrupt neuronal Ca(2+) homeostasis and synaptic function. Here, we report that AβOs at sublethal concentrations generate prolonged Ca(2+) signals in primary hippocampal neurons; incubation in Ca(2+)-free solutions, inhibition of ryanodine receptors (RyRs) or N-methyl-d-aspartate receptors (NMDARs), or preincubation with N-acetyl-l-cysteine abolished these signals. AβOs decreased (6 h) RyR2 and RyR3 mRNA and RyR2 protein, and promoted mitochondrial fragmentation after 24 h. NMDAR inhibition abolished the RyR2 decrease, whereas RyR inhibition prevented significantly the RyR2 protein decrease and mitochondrial fragmentation induced by AβOs. Incubation with AβOs (6 h) eliminated the RyR2 increase induced by brain-derived nerve factor (BDNF) and the dendritic spine remodeling induced within minutes by BDNF or the RyR agonist caffeine. Addition of BDNF to neurons incubated with AβOs for 24 h, which had RyR2 similar to and slightly higher RyR3 protein content than those of controls, induced dendritic spine growth but at slower rates than in controls. These combined effects of sublethal AβOs concentrations (which include redox-sensitive stimulation of RyR-mediated Ca(2+) release, decreased RyR2 protein expression, mitochondrial fragmentation, and prevention of RyR-mediated spine remodeling) may contribute to impairing the synaptic plasticity in AD. PMID:20712397

  13. Effects of exposure to moderate levels of ethanol during prenatal brain development on dendritic length, branching, and spine density in the nucleus accumbens and dorsal striatum of adult rats.

    PubMed

    Rice, James P; Suggs, Lisa E; Lusk, Alexandra V; Parker, Matthew O; Candelaria-Cook, Felicha T; Akers, Katherine G; Savage, Daniel D; Hamilton, Derek A

    2012-09-01

    Reductions in measures of dendritic morphology in the agranular insular cortex have been identified as consequences of prenatal exposure to moderate levels of ethanol in the rat. Motivated by the strong connectivity between this region of frontal cortex and the striatum and a growing body of data linking specific components of the mesocortical/limbic system to effects of ethanol and ethanol self-administration, the current study investigated the effects of moderate fetal ethanol exposure on the dendritic morphology of medium spiny neurons (MSNs) in several regions of the striatum. Throughout gestation, pregnant rat dams either consumed a saccharin solution (control) or achieved average daily blood ethanol concentrations of 84 mg% via voluntary consumption of a 5% ethanol solution. The brains of adult male offspring were extracted and processed for Golgi-Cox staining. MSNs from the dorsomedial striatum, dorsolateral striatum and the nucleus accumbens core and shell were sampled for analysis. Relative to saccharin controls, robust reductions in dendritic length and branching, but not spine density, were observed in the shell of the nucleus accumbens in fetal-ethanol-exposed rats. No significant prenatal ethanol effects were found in the other regions of the striatum. These findings suggest that exposure to moderate levels of ethanol in utero can have profound effects on brain regions related to reward processing and provide possible clues relevant to understanding increased self-administration of drugs of abuse in animals exposed to ethanol during brain development.

  14. Nectin-1 spots as a novel adhesion apparatus that tethers mitral cell lateral dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

    PubMed

    Inoue, Takahito; Fujiwara, Takeshi; Rikitake, Yoshiyuki; Maruo, Tomohiko; Mandai, Kenji; Kimura, Kazushi; Kayahara, Tetsuro; Wang, Shujie; Itoh, Yu; Sai, Kousyoku; Mori, Masahiro; Mori, Kensaku; Mizoguchi, Akira; Takai, Yoshimi

    2015-08-15

    Mitral cells project lateral dendrites that contact the lateral and primary dendrites of other mitral cells and granule cell dendrites in the external plexiform layer (EPL) of the olfactory bulb. These dendritic structures are critical for odor information processing, but it remains unknown how they are formed. In immunofluorescence microscopy, the immunofluorescence signal for the cell adhesion molecule nectin-1 was concentrated on mitral cell lateral dendrites in the EPL of the developing mouse olfactory bulb. In electron microscopy, the immunogold particles for nectin-1 were symmetrically localized on the plasma membranes at the contacts between mitral cell lateral dendrites, which showed bilateral darkening without dense cytoskeletal undercoats characteristic of puncta adherentia junctions. We named the contacts where the immunogold particles for nectin-1 were symmetrically accumulated "nectin-1 spots." The nectin-1 spots were 0.21 μm in length on average and the distance between the plasma membranes was 20.8 nm on average. In 3D reconstruction of serial sections, clusters of the nectin-1 spots formed a disc-like structure. In the mitral cell lateral dendrites of nectin-1-knockout mice, the immunogold particles for nectin-1 were undetectable and the plasma membrane darkening was electron-microscopically normalized, but the plasma membranes were partly separated from each other. The nectin-1 spots were further identified between mitral cell lateral and primary dendrites and between mitral cell lateral dendrites and granule cell dendritic spine necks. These results indicate that the nectin-1 spots constitute a novel adhesion apparatus that tethers mitral cell dendrites in a dendritic meshwork structure of the developing mouse olfactory bulb.

  15. Spatial and Working Memory Is Linked to Spine Density and Mushroom Spines

    PubMed Central

    Aher, Yogesh D.; Sase, Ajinkya; Gröger, Marion; Mokhtar, Maher; Höger, Harald; Lubec, Gert

    2015-01-01

    Background Changes in synaptic structure and efficacy including dendritic spine number and morphology have been shown to underlie neuronal activity and size. Moreover, the shapes of individual dendritic spines were proposed to correlate with their capacity for structural change. Spine numbers and morphology were reported to parallel memory formation in the rat using a water maze but, so far, there is no information on spine counts or shape in the radial arm maze (RAM), a frequently used paradigm for the evaluation of complex memory formation in the rodent. Methods 24 male Sprague-Dawley rats were divided into three groups, 8 were trained, 8 remained untrained in the RAM and 8 rats served as cage controls. Dendritic spine numbers and individual spine forms were counted in CA1, CA3 areas and dentate gyrus of hippocampus using a DIL dye method with subsequent quantification by the Neuronstudio software and the image J program. Results Working memory errors (WME) and latency in the RAM were decreased along the training period indicating that animals performed the task. Total spine density was significantly increased following training in the RAM as compared to untrained rats and cage controls. The number of mushroom spines was significantly increased in the trained as compared to untrained and cage controls. Negative significant correlations between spine density and WME were observed in CA1 basal dendrites and in CA3 apical and basal dendrites. In addition, there was a significant negative correlation between spine density and latency in CA3 basal dendrites. Conclusion The study shows that spine numbers are significantly increased in the trained group, an observation that may suggest the use of this method representing a morphological parameter for memory formation studies in the RAM. Herein, correlations between WME and latency in the RAM and spine density revealed a link between spine numbers and performance in the RAM. PMID:26469788

  16. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  17. Modification of dendritic development.

    PubMed

    Feria-Velasco, Alfredo; del Angel, Alma Rosa; Gonzalez-Burgos, Ignacio

    2002-01-01

    Since 1890 Ramón y Cajal strongly defended the theory that dendrites and their processes and spines had a function of not just nutrient transport to the cell body, but they had an important conductive role in neural impulse transmission. He extensively discussed and supported this theory in the Volume 1 of his extraordinary book Textura del Sistema Nervioso del Hombre y de los Vertebrados. Also, Don Santiago significantly contributed to a detailed description of the various neural components of the hippocampus and cerebral cortex during development. Extensive investigation has been done in the last Century related to the functional role of these complex brain regions, and their association with learning, memory and some limbic functions. Likewise, the organization and expression of neuropsychological qualities such as memory, exploratory behavior and spatial orientation, among others, depend on the integrity and adequate functional activity of the cerebral cortex and hippocampus. It is known that brain serotonin synthesis and release depend directly and proportionally on the availability of its precursor, tryptophan (TRY). By using a chronic TRY restriction model in rats, we studied their place learning ability in correlation with the dendritic spine density of pyramidal neurons in field CA1 of the hippocampus during postnatal development. We have also reported alterations in the maturation pattern of the ability for spontaneous alternation and task performance evaluating short-term memory, as well as adverse effects on the density of dendritic spines of hippocampal CA1 field pyramidal neurons and on the dendritic arborization and the number of dendritic spines of pyramidal neurons from the third layer of the prefrontal cortex using the same model of TRY restriction. The findings obtained in these studies employing a modified Golgi method, can be interpreted as a trans-synaptic plastic response due to understimulation of serotoninergic receptors located in the

  18. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  19. 3d-3d correspondence revisited

    NASA Astrophysics Data System (ADS)

    Chung, Hee-Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-01

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d {N}=2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. We also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  20. 3d-3d correspondence revisited

    DOE PAGESBeta

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; Sułkowski, Piotr

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  1. Essential role of GluD1 in dendritic spine development and GluN2B to GluN2A NMDAR subunit switch in the cortex and hippocampus reveals ability of GluN2B inhibition in correcting hyperconnectivity

    PubMed Central

    Gupta, Subhash C.; Yadav, Roopali; Pavuluri, Ratnamala; Morley, Barbara J.; Stairs, Dustin J.; Dravid, Shashank M.

    2015-01-01

    The glutamate delta-1 (GluD1) receptor is highly expressed in the forebrain. We have previously shown that loss of GluD1 leads to social and cognitive deficits in mice, however, its role in synaptic development and neurotransmission remains poorly understood. Here we report that GluD1 is enriched in the medial prefrontal cortex (mPFC) and GluD1 knockout mice exhibit a higher dendritic spine number, greater excitatory neurotransmission as well as higher number of synapses in mPFC. In addition abnormalities in the LIMK1-cofilin signaling, which regulates spine dynamics, and a lower ratio of GluN2A/GluN2B expression was observed in the mPFC in GluD1 knockout mice. Analysis of the GluD1 knockout CA1 hippocampus similarly indicated the presence of higher spine number and synapses and altered LIMK1-cofilin signaling. We found that systemic administration of an N-methyl-d-aspartate (NMDA) receptor partial agonist d-cycloserine (DCS) at a high-dose, but not at a low-dose, and a GluN2B-selective inhibitor Ro-25-6981 partially normalized the abnormalities in LIMK1-cofilin signaling and reduced excess spine number in mPFC. The molecular effects of high-dose DCS and GluN2B inhibitor correlated with their ability to reduce the higher stereotyped behavior and depression-like behavior in GluD1 knockout mice. Together these findings demonstrate a critical requirement for GluD1 in normal spine development in the cortex and hippocampus. Moreover, these results identify inhibition of GluN2Bcontaining receptors as a mechanism for reducing excess dendritic spines and stereotyped behavior which may have therapeutic value in certain neurodevelopmental disorders. PMID:25721396

  2. Recording stereoscopic 3D neurosurgery with a head-mounted 3D camera system.

    PubMed

    Lee, Brian; Chen, Brian R; Chen, Beverly B; Lu, James Y; Giannotta, Steven L

    2015-06-01

    Stereoscopic three-dimensional (3D) imaging can present more information to the viewer and further enhance the learning experience over traditional two-dimensional (2D) video. Most 3D surgical videos are recorded from the operating microscope and only feature the crux, or the most important part of the surgery, leaving out other crucial parts of surgery including the opening, approach, and closing of the surgical site. In addition, many other surgeries including complex spine, trauma, and intensive care unit procedures are also rarely recorded. We describe and share our experience with a commercially available head-mounted stereoscopic 3D camera system to obtain stereoscopic 3D recordings of these seldom recorded aspects of neurosurgery. The strengths and limitations of using the GoPro(®) 3D system as a head-mounted stereoscopic 3D camera system in the operating room are reviewed in detail. Over the past several years, we have recorded in stereoscopic 3D over 50 cranial and spinal surgeries and created a library for education purposes. We have found the head-mounted stereoscopic 3D camera system to be a valuable asset to supplement 3D footage from a 3D microscope. We expect that these comprehensive 3D surgical videos will become an important facet of resident education and ultimately lead to improved patient care.

  3. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  4. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  5. Loss of GluN2B-containing NMDA receptors in CA1 hippocampus and cortex impairs long-term depression, reduces dendritic spine density and disrupts learning

    PubMed Central

    Brigman, Jonathan L.; Wright, Tara; Talani, Giuseppe; Prasad-Mulcare, Shweta; Jinde, Seiichiro; Seabold, Gail K.; Mathur, Poonam; Davis, Margaret I.; Bock, Roland; Gustin, Richard M.; Colbran, Roger J.; Alvarez, Veronica A.; Nakazawa, Kazu; Delpire, Eric; Lovinger, David M.; Holmes, Andrew

    2010-01-01

    N-methyl-D-aspartate receptors (NMDARs) are key mediators of certain forms of synaptic plasticity and learning. NMDAR complexes are heteromers composed of an obligatory GluN1 subunit and one or more GluN2 (GluN2A- GluN2D) subunits. Different subunits confer distinct physiological and molecular properties to NMDARs, but their contribution to synaptic plasticity and learning in the adult brain remains uncertain. Here, we generated mice lacking GluN2B in pyramidal neurons of cortex and CA1 subregion of hippocampus. We found that hippocampal principal neurons of adult GluN2B mutants had faster decaying NMDAR-mediated excitatory postsynaptic currents (EPSCs) than non-mutant controls, and were insensitive to GluN2B but not NMDAR antagonism. A sub-saturating form of hippocampal long-term potentiation (LTP) was impaired in the mutants, whereas a saturating form of LTP was intact. A NMDAR-dependent form of long-term depression (LTD) produced by low-frequency stimulation combined with glutamate transporter inhibition was abolished in the mutants. Additionally, mutants exhibited decreased dendritic spine density in CA1 hippocampal neurons as compared to controls. On multiple assays for corticohippocampal-mediated learning and memory (hidden platform Morris water maze, T-maze spontaneous alternation, Pavlovian trace fear conditioning), mutants were impaired. These data further demonstrate the importance of GluN2B for synaptic plasticity in the adult hippocampus and suggest a particularly critical role in LTD, at least the form studied here. The finding that loss of GluN2B was sufficient to cause learning deficits illustrates the contribution of GluN2B-mediated forms of plasticity to memory formation, with implications for elucidating NMDAR-related dysfunction in disease-related cognitive impairment. PMID:20357110

  6. Osteoporosis and Your Spine

    MedlinePlus

    ... Movement › Osteoporosis and Your Spine Osteoporosis and Your Spine Your spine is made up of small bones ... called kyphosis. Kyphosis and Bone Breaks in the Spine The bones in the spine are called vertebrae. ...

  7. Patterned illumination for analysing neuronal function in 3D

    NASA Astrophysics Data System (ADS)

    Go, Mary Ann; Stricker, Christian; Redman, Steve; Bachor, Hans; Daria, Vincent R.

    2012-06-01

    We use patterned 3D multi-spot illumination to perform neuronal multi-site stimulation in rat brain tissue. Using a spatial light modulator, we holograpically project 3D light fields for multi-site two-photon photolysis of caged neurotransmitters to generate synaptic inputs to a neuron. Controlled photostimulation of multiple synapses from various locations in the dendritic tree provides a way to analyze how neurons integrate multiple inputs. Our holographic projection setup is incorporated into a two-photon 3D imaging microscope for visualization and for accurate positioning of specific uncaging sites along the neuron's dendritic tree. We show two-photon images and the neuron's response to holographic photostimulation of synapses along dendrites.

  8. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  9. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  10. Bootstrapping 3D fermions

    DOE PAGESBeta

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  11. Venus in 3D

    NASA Astrophysics Data System (ADS)

    Plaut, J. J.

    1993-08-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  12. 3D reservoir visualization

    SciTech Connect

    Van, B.T.; Pajon, J.L.; Joseph, P. )

    1991-11-01

    This paper shows how some simple 3D computer graphics tools can be combined to provide efficient software for visualizing and analyzing data obtained from reservoir simulators and geological simulations. The animation and interactive capabilities of the software quickly provide a deep understanding of the fluid-flow behavior and an accurate idea of the internal architecture of a reservoir.

  13. The Transfection of BDNF to Dopamine Neurons Potentiates the Effect of Dopamine D3 Receptor Agonist Recovering the Striatal Innervation, Dendritic Spines and Motor Behavior in an Aged Rat Model of Parkinson’s Disease

    PubMed Central

    Razgado-Hernandez, Luis F.; Espadas-Alvarez, Armando J.; Reyna-Velazquez, Patricia; Sierra-Sanchez, Arturo; Anaya-Martinez, Veronica; Jimenez-Estrada, Ismael; Bannon, Michael J.; Martinez-Fong, Daniel; Aceves-Ruiz, Jorge

    2015-01-01

    The progressive degeneration of the dopamine neurons of the pars compacta of substantia nigra and the consequent loss of the dopamine innervation of the striatum leads to the impairment of motor behavior in Parkinson’s disease. Accordingly, an efficient therapy of the disease should protect and regenerate the dopamine neurons of the substantia nigra and the dopamine innervation of the striatum. Nigral neurons express Brain Derived Neurotropic Factor (BDNF) and dopamine D3 receptors, both of which protect the dopamine neurons. The chronic activation of dopamine D3 receptors by their agonists, in addition, restores, in part, the dopamine innervation of the striatum. Here we explored whether the over-expression of BDNF by dopamine neurons potentiates the effect of the activation of D3 receptors restoring nigrostriatal innervation. Twelve-month old Wistar rats were unilaterally injected with 6-hydroxydopamine into the striatum. Five months later, rats were treated with the D3 agonist 7-hydroxy-N,N-di-n-propy1-2-aminotetralin (7-OH-DPAT) administered i.p. during 4½ months via osmotic pumps and the BDNF gene transfection into nigral cells using the neurotensin-polyplex nanovector (a non-viral transfection) that selectively transfect the dopamine neurons via the high-affinity neurotensin receptor expressed by these neurons. Two months after the withdrawal of 7-OH-DPAT when rats were aged (24 months old), immunohistochemistry assays were made. The over-expression of BDNF in rats receiving the D3 agonist normalized gait and motor coordination; in addition, it eliminated the muscle rigidity produced by the loss of dopamine. The recovery of motor behavior was associated with the recovery of the nigral neurons, the dopamine innervation of the striatum and of the number of dendritic spines of the striatal neurons. Thus, the over-expression of BDNF in dopamine neurons associated with the chronic activation of the D3 receptors appears to be a promising strategy for restoring

  14. 3D rapid mapping

    NASA Astrophysics Data System (ADS)

    Isaksson, Folke; Borg, Johan; Haglund, Leif

    2008-04-01

    In this paper the performance of passive range measurement imaging using stereo technique in real time applications is described. Stereo vision uses multiple images to get depth resolution in a similar way as Synthetic Aperture Radar (SAR) uses multiple measurements to obtain better spatial resolution. This technique has been used in photogrammetry for a long time but it will be shown that it is now possible to do the calculations, with carefully designed image processing algorithms, in e.g. a PC in real time. In order to get high resolution and quantitative data in the stereo estimation a mathematical camera model is used. The parameters to the camera model are settled in a calibration rig or in the case of a moving camera the scene itself can be used for calibration of most of the parameters. After calibration an ordinary TV camera has an angular resolution like a theodolite, but to a much lower price. The paper will present results from high resolution 3D imagery from air to ground. The 3D-results from stereo calculation of image pairs are stitched together into a large database to form a 3D-model of the area covered.

  15. Taming supersymmetric defects in 3d-3d correspondence

    NASA Astrophysics Data System (ADS)

    Gang, Dongmin; Kim, Nakwoo; Romo, Mauricio; Yamazaki, Masahito

    2016-07-01

    We study knots in 3d Chern-Simons theory with complex gauge group {SL}(N,{{C}}), in the context of its relation with 3d { N }=2 theory (the so-called 3d-3d correspondence). The defect has either co-dimension 2 or co-dimension 4 inside the 6d (2,0) theory, which is compactified on a 3-manifold \\hat{M}. We identify such defects in various corners of the 3d-3d correspondence, namely in 3d {SL}(N,{{C}}) CS theory, in 3d { N }=2 theory, in 5d { N }=2 super Yang-Mills theory, and in the M-theory holographic dual. We can make quantitative checks of the 3d-3d correspondence by computing partition functions at each of these theories. This Letter is a companion to a longer paper [1], which contains more details and more results.

  16. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  17. Potential Synaptic Connectivity of Different Neurons onto Pyramidal Cells in a 3D Reconstruction of the Rat Hippocampus

    PubMed Central

    Ropireddy, Deepak; Ascoli, Giorgio A.

    2011-01-01

    Most existing connectomic data and ongoing efforts focus either on individual synapses (e.g., with electron microscopy) or on regional connectivity (tract tracing). An individual pyramidal cell (PC) extends thousands of synapses over macroscopic distances (∼cm). The contrasting requirements of high-resolution and large field of view make it too challenging to acquire the entire synaptic connectivity for even a single typical cortical neuron. Light microscopy can image whole neuronal arbors and resolve dendritic branches. Analyzing connectivity in terms of close spatial appositions between axons and dendrites could thus bridge the opposite scales, from synaptic level to whole systems. In the mammalian cortex, structural plasticity of spines and boutons makes these “potential synapses” functionally relevant to learning capability and memory capacity. To date, however, potential synapses have only been mapped in the surrounding of a neuron and relative to its local orientation rather than in a system-level anatomical reference. Here we overcome this limitation by estimating the potential connectivity of different neurons embedded into a detailed 3D reconstruction of the rat hippocampus. Axonal and dendritic trees were oriented with respect to hippocampal cytoarchitecture according to longitudinal and transversal curvatures. We report the potential connectivity onto PC dendrites from the axons of a dentate granule cell, three CA3 PCs, one CA2 PC, and 13 CA3b interneurons. The numbers, densities, and distributions of potential synapses were analyzed in each sub-region (e.g., CA3 vs. CA1), layer (e.g., oriens vs. radiatum), and septo-temporal location (e.g., dorsal vs. ventral). The overall ratio between the numbers of actual and potential synapses was ∼0.20 for the granule and CA3 PCs. All potential connectivity patterns are strikingly dependent on the anatomical location of both pre-synaptic and post-synaptic neurons. PMID:21779242

  18. Roller Coaster Scanning reveals spontaneous triggering of dendritic spikes in CA1 interneurons.

    PubMed

    Katona, Gergely; Kaszás, Attila; Turi, Gergely F; Hájos, Norbert; Tamás, Gábor; Vizi, E Sylvester; Rózsa, Balázs

    2011-02-01

    Inhibitory interneurons are considered to be the controlling units of neural networks, despite their sparse number and unique morphological characteristics compared with excitatory pyramidal cells. Although pyramidal cell dendrites have been shown to display local regenerative events--dendritic spikes (dSpikes)--evoked by artificially patterned stimulation of synaptic inputs, no such studies exist for interneurons or for spontaneous events. In addition, imaging techniques have yet to attain the required spatial and temporal resolution for the detection of spontaneously occurring events that trigger dSpikes. Here we describe a high-resolution 3D two-photon laser scanning method (Roller Coaster Scanning) capable of imaging long dendritic segments resolving individual spines and inputs with a temporal resolution of a few milliseconds. By using this technique, we found that local, NMDA receptor-dependent dSpikes can be observed in hippocampal CA1 stratum radiatum interneurons during spontaneous network activities in vitro. These NMDA spikes appear when approximately 10 spatially clustered inputs arrive synchronously and trigger supralinear integration in dynamic interaction zones. In contrast to the one-to-one relationship between computational subunits and dendritic branches described in pyramidal cells, here we show that interneurons have relatively small (∼14 μm) sliding interaction zones. Our data suggest a unique principle as to how interneurons integrate synaptic information by local dSpikes. PMID:21224413

  19. Monitoring synaptic and neuronal activity in 3D with synthetic and genetic indicators using a compact acousto-optic lens two-photon microscope☆

    PubMed Central

    Fernández-Alfonso, Tomás; Nadella, K.M. Naga Srinivas; Iacaruso, M. Florencia; Pichler, Bruno; Roš, Hana; Kirkby, Paul A.; Silver, R. Angus

    2014-01-01

    Background Two-photon microscopy is widely used to study brain function, but conventional microscopes are too slow to capture the timing of neuronal signalling and imaging is restricted to one plane. Recent development of acousto-optic-deflector-based random access functional imaging has improved the temporal resolution, but the utility of these technologies for mapping 3D synaptic activity patterns and their performance at the excitation wavelengths required to image genetically encoded indicators have not been investigated. New method Here, we have used a compact acousto-optic lens (AOL) two-photon microscope to make high speed [Ca2+] measurements from spines and dendrites distributed in 3D with different excitation wavelengths (800–920 nm). Results We show simultaneous monitoring of activity from many synaptic inputs distributed over the 3D arborisation of a neuronal dendrite using both synthetic as well as genetically encoded indicators. We confirm the utility of AOL-based imaging for fast in vivo recordings by measuring, simultaneously, visually evoked responses in 100 neurons distributed over a 150 μm focal depth range. Moreover, we explore ways to improve the measurement of timing of neuronal activation by choosing specific regions within the cell soma. Comparison with existing methods These results establish that AOL-based 3D random access two-photon microscopy has a wider range of neuroscience applications than previously shown. Conclusions Our findings show that the compact AOL microscope design has the speed, spatial resolution, sensitivity and wavelength flexibility to measure 3D patterns of synaptic and neuronal activity on individual trials. PMID:24200507

  20. Sex-specific effects of early life stress on social interaction and prefrontal cortex dendritic morphology in young rats.

    PubMed

    Farrell, M R; Holland, F H; Shansky, R M; Brenhouse, H C

    2016-09-01

    Early life stress has been linked to depression, anxiety, and behavior disorders in adolescence and adulthood. The medial prefrontal cortex (mPFC) is implicated in stress-related psychopathology, is a target for stress hormones, and mediates social behavior. The present study investigated sex differences in early-life stress effects on juvenile social interaction and adolescent mPFC dendritic morphology in rats using a maternal separation (MS) paradigm. Half of the rat pups of each sex were separated from their mother for 4h a day between postnatal days 2 and 21, while the other half remained with their mother in the animal facilities and were exposed to minimal handling. At postnatal day 25 (P25; juvenility), rats underwent a social interaction test with an age and sex matched conspecific. Distance from conspecific, approach and avoidance behaviors, nose-to-nose contacts, and general locomotion were measured. Rats were euthanized at postnatal day 40 (P40; adolescence), and randomly selected infralimbic pyramidal neurons were filled with Lucifer yellow using iontophoretic microinjections, imaged in 3D, and then analyzed for dendritic arborization, spine density, and spine morphology. Early-life stress increased the latency to make nose-to-nose contact at P25 in females but not males. At P40, early-life stress increased infralimbic apical dendritic branch number and length and decreased thin spine density in stressed female rats. These results indicate that MS during the postnatal period influenced juvenile social behavior and mPFC dendritic arborization in a sex-specific manner.

  1. Spine loss in primary somatosensory cortex during trace eyeblink conditioning.

    PubMed

    Joachimsthaler, Bettina; Brugger, Dominik; Skodras, Angelos; Schwarz, Cornelius

    2015-03-01

    Classical conditioning that involves mnemonic processing, that is, a "trace" period between conditioned and unconditioned stimulus, requires awareness of the association to be formed and is considered a simple model paradigm for declarative learning. Barrel cortex, the whisker representation of primary somatosensory cortex, is required for the learning of a tactile variant of trace eyeblink conditioning (TTEBC) and undergoes distinct map plasticity during learning. To investigate the cellular mechanism underpinning TTEBC and concurrent map plasticity, we used two-photon imaging of dendritic spines in barrel cortex of awake mice while being conditioned. Monitoring layer 5 neurons' apical dendrites in layer 1, we show that one cellular expression of barrel cortex plasticity is a substantial spine count reduction of ∼15% of the dendritic spines present before learning. The number of eliminated spines and their time of elimination are tightly related to the learning success. Moreover, spine plasticity is highly specific for the principal barrel column receiving the main signals from the stimulated vibrissa. Spines located in other columns, even those directly adjacent to the principal column, are unaffected. Because layer 1 spines integrate signals from associative thalamocortical circuits, their column-specific elimination suggests that this spine plasticity may be the result of an association of top-down signals relevant for declarative learning and spatially precise ascending tactile signals.

  2. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  3. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  4. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    This area of terrain near the Sagan Memorial Station was taken on Sol 3 by the Imager for Mars Pathfinder (IMP). 3D glasses are necessary to identify surface detail.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.' It stands 1.8 meters above the Martian surface, and has a resolution of two millimeters at a range of two meters.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. Convection Effects in Three-dimensional Dendritic Growth

    NASA Technical Reports Server (NTRS)

    Lu, Yili; Beckermann, C.; Karma, A.

    2003-01-01

    A phase-field model is developed to simulate free dendritic growth coupled with fluid flow for a pure material in three dimensions. The preliminary results presented here illustrate the strong influence of convection on the three-dimensional (3D) dendrite growth morphology. The detailed knowledge of the flow and temperature fields in the melt around the dendrite from the simulations allows for a detailed understanding of the convection effects on dendritic growth.

  6. Sisyphi Spine

    NASA Technical Reports Server (NTRS)

    2006-01-01

    26 June 2006 This Mars Global Surveyor (MGS) Mars Orbiter Camera (MOC) image shows a spine of material exposed in the Sisyphi Planum region of Mars. Gullies can be seen on the deeply-shadowed ridge slope. Mass movement (landsliding) has contributed to the erosion of this ridge and the creation of the apron of talus that surrounds it.

    Location near: 70.7oS, 357.0oW Image width: 3 km (1.9 mi) Illumination from: upper left Season: Southern Summer

  7. L-DOPA Oppositely Regulates Synaptic Strength and Spine Morphology in D1 and D2 Striatal Projection Neurons in Dyskinesia

    PubMed Central

    Suarez, Luz M; Solis, Oscar; Aguado, Carolina; Lujan, Rafael; Moratalla, Rosario

    2016-01-01

    Dopamine depletion in Parkinson's disease (PD) produces dendritic spine loss in striatal medium spiny neurons (MSNs) and increases their excitability. However, the synaptic changes that occur in MSNs in PD, in particular those induced by chronic L-3,4-dihydroxyphenylalanine (L-DOPA) treatment, are still poorly understood. We exposed BAC-transgenic D1-tomato and D2-eGFP mice to PD and dyskinesia model paradigms, enabling cell type-specific assessment of changes in synaptic physiology and morphology. The distinct fluorescence markers allowed us to identify D1 and D2 MSNs for analysis using intracellular sharp electrode recordings, electron microscopy, and 3D reconstructions with single-cell Lucifer Yellow injections. Dopamine depletion induced spine pruning in both types of MSNs, affecting mushroom and thin spines equally. Dopamine depletion also increased firing rate in both D1- and D2-MSNs, but reduced evoked-EPSP amplitude selectively in D2-MSNs. L-DOPA treatment that produced dyskinesia differentially affected synaptic properties in D1- and D2-MSNs. In D1-MSNs, spine density remained reduced but the remaining spines were enlarged, with bigger heads and larger postsynaptic densities. These morphological changes were accompanied by facilitation of action potential firing triggered by synaptic inputs. In contrast, although L-DOPA restored the number of spines in D2-MSNs, it resulted in shortened postsynaptic densities. These changes in D2-MSNs correlated with a decrease in synaptic transmission. Our findings indicate that L-DOPA-induced dyskinesia is associated with abnormal spine morphology, modified synaptic transmission, and altered EPSP-spike coupling, with distinct effects in D1- and D2-MSNs. PMID:27613437

  8. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-01-01

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  9. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  10. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  11. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  12. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  13. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  14. [3-D ultrasound in gastroenterology].

    PubMed

    Zoller, W G; Liess, H

    1994-06-01

    Three-dimensional (3D) sonography represents a development of noninvasive diagnostic imaging by real-time two-dimensional (2D) sonography. The use of transparent rotating scans, comparable to a block of glass, generates a 3D effect. The objective of the present study was to optimate 3D presentation of abdominal findings. Additional investigations were made with a new volumetric program to determine the volume of selected findings of the liver. The results were compared with the estimated volumes of 2D sonography and 2D computer tomography (CT). For the processing of 3D images, typical parameter constellations were found for the different findings, which facilitated processing of 3D images. In more than 75% of the cases examined we found an optimal 3D presentation of sonographic findings with respect to the evaluation criteria developed by us for the 3D imaging of processed data. Great differences were found for the estimated volumes of the findings of the liver concerning the three different techniques applied. 3D ultrasound represents a valuable method to judge morphological appearance in abdominal findings. The possibility of volumetric measurements enlarges its potential diagnostic significance. Further clinical investigations are necessary to find out if definite differentiation between benign and malign findings is possible.

  15. Computed Tomography (CT) - Spine

    MedlinePlus

    ... News Physician Resources Professions Site Index A-Z Computed Tomography (CT) - Spine Computed tomography (CT) of the spine is a diagnostic imaging ... Spine? What is CT Scanning of the Spine? Computed tomography, more commonly known as a CT or CAT ...

  16. 3D reconstruction of tensors and vectors

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  17. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  18. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery. PMID:26657435

  19. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  20. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  1. Effect of Associative Learning on Memory Spine Formation in Mouse Barrel Cortex

    PubMed Central

    Jasinska, Malgorzata; Siucinska, Ewa; Jasek, Ewa; Litwin, Jan A.; Pyza, Elzbieta; Kossut, Malgorzata

    2016-01-01

    Associative fear learning, in which stimulation of whiskers is paired with mild electric shock to the tail, modifies the barrel cortex, the functional representation of sensory receptors involved in the conditioning, by inducing formation of new inhibitory synapses on single-synapse spines of the cognate barrel hollows and thus producing double-synapse spines. In the barrel cortex of conditioned, pseudoconditioned, and untreated mice, we analyzed the number and morphological features of dendritic spines at various maturation and stability levels: sER-free spines, spines containing smooth endoplasmic reticulum (sER), and spines containing spine apparatus. Using stereological analysis of serial sections examined by transmission electron microscopy, we found that the density of double-synapse spines containing spine apparatus was significantly increased in the conditioned mice. Learning also induced enhancement of the postsynaptic density area of inhibitory synapses as well as increase in the number of polyribosomes in such spines. In single-synapse spines, the effects of conditioning were less pronounced and included increase in the number of polyribosomes in sER-free spines. The results suggest that fear learning differentially affects single- and double-synapse spines in the barrel cortex: it promotes maturation and stabilization of double-synapse spines, which might possibly contribute to permanent memory formation, and upregulates protein synthesis in single-synapse spines. PMID:26819780

  2. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  3. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  4. Longitudinal Effects of Ketamine on Dendritic Architecture In Vivo in the Mouse Medial Frontal Cortex123

    PubMed Central

    Phoumthipphavong, Victoria; Barthas, Florent; Hassett, Samantha

    2016-01-01

    Abstract A single subanesthetic dose of ketamine, an NMDA receptor antagonist, leads to fast-acting antidepressant effects. In rodent models, systemic ketamine is associated with higher dendritic spine density in the prefrontal cortex, reflecting structural remodeling that may underlie the behavioral changes. However, turnover of dendritic spines is a dynamic process in vivo, and the longitudinal effects of ketamine on structural plasticity remain unclear. The purpose of the current study is to use subcellular resolution optical imaging to determine the time course of dendritic alterations in vivo following systemic ketamine administration in mice. We used two-photon microscopy to visualize repeatedly the same set of dendritic branches in the mouse medial frontal cortex (MFC) before and after a single injection of ketamine or saline. Compared to controls, ketamine-injected mice had higher dendritic spine density in MFC for up to 2 weeks. This prolonged increase in spine density was driven by an elevated spine formation rate, and not by changes in the spine elimination rate. A fraction of the new spines following ketamine injection was persistent, which is indicative of functional synapses. In a few cases, we also observed retraction of distal apical tuft branches on the day immediately after ketamine administration. These results indicate that following systemic ketamine administration, certain dendritic inputs in MFC are removed immediately, while others are added gradually. These dynamic structural modifications are consistent with a model of ketamine action in which the net effect is a rebalancing of synaptic inputs received by frontal cortical neurons. PMID:27066532

  5. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  6. Spatially resolved 3D noise

    NASA Astrophysics Data System (ADS)

    Haefner, David P.; Preece, Bradley L.; Doe, Joshua M.; Burks, Stephen D.

    2016-05-01

    When evaluated with a spatially uniform irradiance, an imaging sensor exhibits both spatial and temporal variations, which can be described as a three-dimensional (3D) random process considered as noise. In the 1990s, NVESD engineers developed an approximation to the 3D power spectral density (PSD) for noise in imaging systems known as 3D noise. In this correspondence, we describe how the confidence intervals for the 3D noise measurement allows for determination of the sampling necessary to reach a desired precision. We then apply that knowledge to create a smaller cube that can be evaluated spatially across the 2D image giving the noise as a function of position. The method presented here allows for both defective pixel identification and implements the finite sampling correction matrix. In support of the reproducible research effort, the Matlab functions associated with this work can be found on the Mathworks file exchange [1].

  7. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  8. Accepting the T3D

    SciTech Connect

    Rich, D.O.; Pope, S.C.; DeLapp, J.G.

    1994-10-01

    In April, a 128 PE Cray T3D was installed at Los Alamos National Laboratory`s Advanced Computing Laboratory as part of the DOE`s High-Performance Parallel Processor Program (H4P). In conjunction with CRI, the authors implemented a 30 day acceptance test. The test was constructed in part to help them understand the strengths and weaknesses of the T3D. In this paper, they briefly describe the H4P and its goals. They discuss the design and implementation of the T3D acceptance test and detail issues that arose during the test. They conclude with a set of system requirements that must be addressed as the T3D system evolves.

  9. An Efficient 3D Stochastic Model for Predicting the Columnar-to-Equiaxed Transition in Alloy 718

    NASA Astrophysics Data System (ADS)

    Nastac, L.

    2015-06-01

    A three-dimensional (3D) stochastic model for simulating the evolution of dendritic crystals during the solidification of alloys was developed. The model includes time-dependent computations for temperature distribution, solute redistribution in the liquid and solid phases, curvature, and growth anisotropy. The 3D model can run on PCs with reasonable amount of RAM and CPU time. 3D stochastic mesoscopic simulations at the dendrite tip length scale were performed to simulate the evolution of the columnar-to-equiaxed transition in alloy 718. Comparisons between simulated microstructures and segregation patterns obtained with 2D and 3D stochastic models are also presented.

  10. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  11. Dendrite inhibitor

    DOEpatents

    Miller, W.E.

    1988-06-07

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid. 2 figs.

  12. Dendrite inhibitor

    DOEpatents

    Miller, William E.

    1989-01-01

    An apparatus for removing dendrites or other crystalline matter from the surface of a liquid in a matter transport process, and an electrolytic cell including such an apparatus. A notch may be provided to allow continuous exposure of the liquid surface, and a bore may be further provided to permit access to the liquid.

  13. Reaction-subdiffusion front propagation in a comblike model of spiny dendrites.

    PubMed

    Iomin, A; Méndez, V

    2013-07-01

    Fractional reaction-diffusion equations are derived by exploiting the geometrical similarities between a comb structure and a spiny dendrite. In the framework of the obtained equations, two scenarios of reaction transport in spiny dendrites are explored, where both a linear reaction in spines and nonlinear Fisher-Kolmogorov-Petrovskii-Piskunov reactions along dendrites are considered. In the framework of fractional subdiffusive comb model, we develop a Hamilton-Jacobi approach to estimate the overall velocity of the reaction front propagation. One of the main effects observed is the failure of the front propagation for both scenarios due to either the reaction inside the spines or the interaction of the reaction with the spines. In the first case the spines are the source of reactions, while in the latter case, the spines are a source of a damping mechanism. PMID:23944491

  14. LASTRAC.3d: Transition Prediction in 3D Boundary Layers

    NASA Technical Reports Server (NTRS)

    Chang, Chau-Lyan

    2004-01-01

    Langley Stability and Transition Analysis Code (LASTRAC) is a general-purpose, physics-based transition prediction code released by NASA for laminar flow control studies and transition research. This paper describes the LASTRAC extension to general three-dimensional (3D) boundary layers such as finite swept wings, cones, or bodies at an angle of attack. The stability problem is formulated by using a body-fitted nonorthogonal curvilinear coordinate system constructed on the body surface. The nonorthogonal coordinate system offers a variety of marching paths and spanwise waveforms. In the extreme case of an infinite swept wing boundary layer, marching with a nonorthogonal coordinate produces identical solutions to those obtained with an orthogonal coordinate system using the earlier release of LASTRAC. Several methods to formulate the 3D parabolized stability equations (PSE) are discussed. A surface-marching procedure akin to that for 3D boundary layer equations may be used to solve the 3D parabolized disturbance equations. On the other hand, the local line-marching PSE method, formulated as an easy extension from its 2D counterpart and capable of handling the spanwise mean flow and disturbance variation, offers an alternative. A linear stability theory or parabolized stability equations based N-factor analysis carried out along the streamline direction with a fixed wavelength and downstream-varying spanwise direction constitutes an efficient engineering approach to study instability wave evolution in a 3D boundary layer. The surface-marching PSE method enables a consistent treatment of the disturbance evolution along both streamwise and spanwise directions but requires more stringent initial conditions. Both PSE methods and the traditional LST approach are implemented in the LASTRAC.3d code. Several test cases for tapered or finite swept wings and cones at an angle of attack are discussed.

  15. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  16. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  17. Remote 3D Medical Consultation

    NASA Astrophysics Data System (ADS)

    Welch, Greg; Sonnenwald, Diane H.; Fuchs, Henry; Cairns, Bruce; Mayer-Patel, Ketan; Yang, Ruigang; State, Andrei; Towles, Herman; Ilie, Adrian; Krishnan, Srinivas; Söderholm, Hanna M.

    Two-dimensional (2D) video-based telemedical consultation has been explored widely in the past 15-20 years. Two issues that seem to arise in most relevant case studies are the difficulty associated with obtaining the desired 2D camera views, and poor depth perception. To address these problems we are exploring the use of a small array of cameras to synthesize a spatially continuous range of dynamic three-dimensional (3D) views of a remote environment and events. The 3D views can be sent across wired or wireless networks to remote viewers with fixed displays or mobile devices such as a personal digital assistant (PDA). The viewpoints could be specified manually or automatically via user head or PDA tracking, giving the remote viewer virtual head- or hand-slaved (PDA-based) remote cameras for mono or stereo viewing. We call this idea remote 3D medical consultation (3DMC). In this article we motivate and explain the vision for 3D medical consultation; we describe the relevant computer vision/graphics, display, and networking research; we present a proof-of-concept prototype system; and we present some early experimental results supporting the general hypothesis that 3D remote medical consultation could offer benefits over conventional 2D televideo.

  18. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  19. Chronic Ampakine Treatments Stimulate Dendritic Growth and Promote Learning in Middle-Aged Rats

    PubMed Central

    Lauterborn, Julie C.; Palmer, Linda C.; Jia, Yousheng; Pham, Danielle T.; Hou, Bowen; Wang, Weisheng; Trieu, Brian H.; Cox, Conor D.; Kantorovich, Svetlana

    2016-01-01

    Positive allosteric modulators of AMPA-type glutamate receptors (ampakines) have been shown to rescue synaptic plasticity and reduce neuropathology in rodent models of cognitive disorders. Here we tested whether chronic ampakine treatment offsets age-related dendritic retraction in middle-aged (MA) rats. Starting at 10 months of age, rats were housed in an enriched environment and given daily treatment with a short half-life ampakine or vehicle for 3 months. Dendritic branching and spine measures were collected from 3D reconstructions of Lucifer yellow-filled CA1 pyramidal cells. There was a substantial loss of secondary branches, relative to enriched 2.5-month-old rats, in apical and basal dendritic fields of vehicle-treated, but not ampakine-treated, 13-month-old rats. Baseline synaptic responses in CA1 were only subtly different between the two MA groups, but long-term potentiation was greater in ampakine-treated rats. Unsupervised learning of a complex environment was used to assess treatment effects on behavior. Vehicle- and drug-treated rats behaved similarly during a first 30 min session in the novel environment but differed markedly on subsequent measures of long-term memory. Markov sequence analysis uncovered a clear increase in the predictability of serial movements between behavioral sessions 2 and 3 in the ampakine, but not vehicle, group. These results show that a surprising degree of dendritic retraction occurs by middle age and that this can be mostly offset by pharmacological treatments without evidence for unwanted side effects. The functional consequences of rescue were prominent with regard to memory but also extended to self-organization of behavior. SIGNIFICANCE STATEMENT Brain aging is characterized by a progressive loss of dendritic arbors and the emergence of impairments to learning-related synaptic plasticity. The present studies show that dendritic losses are evident by middle age despite housing in an enriched environment and can be

  20. 3D-Printed Microfluidics.

    PubMed

    Au, Anthony K; Huynh, Wilson; Horowitz, Lisa F; Folch, Albert

    2016-03-14

    The advent of soft lithography allowed for an unprecedented expansion in the field of microfluidics. However, the vast majority of PDMS microfluidic devices are still made with extensive manual labor, are tethered to bulky control systems, and have cumbersome user interfaces, which all render commercialization difficult. On the other hand, 3D printing has begun to embrace the range of sizes and materials that appeal to the developers of microfluidic devices. Prior to fabrication, a design is digitally built as a detailed 3D CAD file. The design can be assembled in modules by remotely collaborating teams, and its mechanical and fluidic behavior can be simulated using finite-element modeling. As structures are created by adding materials without the need for etching or dissolution, processing is environmentally friendly and economically efficient. We predict that in the next few years, 3D printing will replace most PDMS and plastic molding techniques in academia.

  1. Lumbar spine chordoma

    PubMed Central

    Hatem, M.A.

    2015-01-01

    Chordoma is a rare tumor arising from notochord remnants in the spine. It is slow-growing, which makes it difficult to diagnose and difficult to follow up after treatment. Typically, it occurs in the base of the skull and sacrococcygeal spine; it rarely occurs in other parts of the spine. CT-guided biopsy of a suspicious mass enabled diagnosis of lumbar spine chordoma. PMID:27186250

  2. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  3. Dendrite Model

    NASA Technical Reports Server (NTRS)

    1999-01-01

    Dr. Donald Gilles, the Discipline Scientist for Materials Science in NASA's Microgravity Materials Science and Applications Department, demonstrates to Carl Dohrman a model of dendrites, the branch-like structures found in many metals and alloys. Dohrman was recently selected by the American Society for Metals International as their 1999 ASM International Foundation National Merit Scholar. The University of Illinois at Urbana-Champaign freshman recently toured NASA's materials science facilities at the Marshall Space Flight Center.

  4. Coexistence of glutamatergic spine synapses and shaft synapses in substantia nigra dopamine neurons

    PubMed Central

    Jang, Miae; Bum Um, Ki; Jang, Jinyoung; Jin Kim, Hyun; Cho, Hana; Chung, Sungkwon; Kyu Park, Myoung

    2015-01-01

    Dopamine neurons of the substantia nigra have long been believed to have multiple aspiny dendrites which receive many glutamatergic synaptic inputs from several regions of the brain. But, here, using high-resolution two-photon confocal microscopy in the mouse brain slices, we found a substantial number of common dendritic spines in the nigral dopamine neurons including thin, mushroom, and stubby types of spines. However, the number of dendritic spines of the dopamine neurons was approximately five times lower than that of CA1 pyramidal neurons. Immunostaining and morphological analysis revealed that glutamatergic shaft synapses were present two times more than spine synapses. Using local two-photon glutamate uncaging techniques, we confirmed that shaft synapses and spine synapses had both AMPA and NMDA receptors, but the AMPA/NMDA current ratios differed. The evoked postsynaptic potentials of spine synapses showed lower amplitudes but longer half-widths than those of shaft synapses. Therefore, we provide the first evidence that the midbrain dopamine neurons have two morphologically and functionally distinct types of glutamatergic synapses, spine synapses and shaft synapses, on the same dendrite. This peculiar organization could be a new basis for unraveling many physiological and pathological functions of the midbrain dopamine neurons. PMID:26435058

  5. Impairments in dendrite morphogenesis as etiology for neurodevelopmental disorders and implications for therapeutic treatments.

    PubMed

    Copf, Tijana

    2016-09-01

    Dendrite morphology is pivotal for neural circuitry functioning. While the causative relationship between small-scale dendrite morphological abnormalities (shape, density of dendritic spines) and neurodevelopmental disorders is well established, such relationship remains elusive for larger-scale dendrite morphological impairments (size, shape, branching pattern of dendritic trees). Here, we summarize published data on dendrite morphological irregularities in human patients and animal models for neurodevelopmental disorders, with focus on autism and schizophrenia. We next discuss high-risk genes for these disorders and their role in dendrite morphogenesis. We finally overview recent developments in therapeutic attempts and we discuss how they relate to dendrite morphology. We find that both autism and schizophrenia are accompanied by dendritic arbor morphological irregularities, and that majority of their high-risk genes regulate dendrite morphogenesis. Thus, we present a compelling argument that, along with smaller-scale morphological impairments in dendrites (spines and synapse), irregularities in larger-scale dendrite morphology (arbor shape, size) may be an important part of neurodevelopmental disorders' etiology. We suggest that this should not be ignored when developing future therapeutic treatments. PMID:27143622

  6. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  7. SNL3dFace

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial featuresmore » of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.« less

  8. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  9. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  10. Nanoscopy of filamentous actin in cortical dendrites of a living mouse.

    PubMed

    Willig, Katrin I; Steffens, Heinz; Gregor, Carola; Herholt, Alexander; Rossner, Moritz J; Hell, Stefan W

    2014-01-01

    We demonstrate superresolution fluorescence microscopy (nanoscopy) of protein distributions in a mammalian brain in vivo. Stimulated emission depletion microscopy reveals the morphology of the filamentous actin in dendritic spines down to 40 μm in the molecular layer of the visual cortex of an anesthetized mouse. Consecutive recordings at 43-70 nm resolution reveal dynamical changes in spine morphology.

  11. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  12. SpineLab: tool for three-dimensional reconstruction of neuronal cell morphology

    NASA Astrophysics Data System (ADS)

    Jungblut, Daniel; Vlachos, Andreas; Schuldt, Gerlind; Zahn, Nadine; Deller, Thomas; Wittum, Gabriel

    2012-07-01

    SpineLab is a software tool developed for reconstructing neuronal feature skeletons from three-dimensional single- or multi-photon image stacks. These images often suffer from limited resolution and a low signal-to-noise ratio, making the extraction of morphometric information difficult. To overcome this limitation, we have developed a software tool that offers the possibility to create feature skeletons in various modes--automatically as well as with manual interaction. We have named this novel tool SpineLab. In a first step, an investigator adjusts a set of parameters for automatic analysis in an interactive manner, i.e., with online visual feedback, followed by a second step, in which the neuronal feature skeleton can be modified by hand. We validate the ability of SpineLab to reconstruct the entire dendritic tree of identified GFP-expressing neurons and evaluate the accuracy of dendritic spine detection. We report that SpineLab is capable of significantly facilitating the reconstruction of dendrites and spines. Moreover, the automatic approach appears sufficient to detect spine density changes in time-lapse imaging experiments. Taken together, we conclude that SpineLab is an ideal software tool for partially automatic reconstruction of neural cell morphology.

  13. Effect of the environment on the dendritic morphology of the rat auditory cortex

    PubMed Central

    Bose, Mitali; Muñoz-Llancao, Pablo; Roychowdhury, Swagata; Nichols, Justin A.; Jakkamsetti, Vikram; Porter, Benjamin; Byrapureddy, Rajasekhar; Salgado, Humberto; Kilgard, Michael P.; Aboitiz, Francisco; Dagnino-Subiabre, Alexies; Atzori, Marco

    2010-01-01

    The present study aimed to identify morphological correlates of environment-induced changes at excitatory synapses of the primary auditory cortex (A1). We used the Golgi-Cox stain technique to compare pyramidal cells dendritic properties of Sprague-Dawley rats exposed to different environmental manipulations. Sholl analysis, dendritic length measures, and spine density counts were used to monitor the effects of sensory deafness and an auditory version of environmental enrichment (EE). We found that deafness decreased apical dendritic length leaving basal dendritic length unchanged, whereas EE selectively increased basal dendritic length without changing apical dendritic length. On the contrary, deafness decreased while EE increased spine density in both basal and apical dendrites of A1 layer 2/3 (LII/III) neurons. To determine whether stress contributed to the observed morphological changes in A1, we studied neural morphology in a restraint-induced model that lacked behaviorally relevant acoustic cues. We found that stress selectively decreased apical dendritic length in the auditory but not in the visual primary cortex. Similar to the acoustic manipulation, stress-induced changes in dendritic length possessed a layer specific pattern displaying LII/III neurons from stressed animals with normal apical dendrites but shorter basal dendrites, while infragranular neurons (layers V and VI) displayed shorter apical dendrites but normal basal dendrites. The same treatment did not induce similar changes in the visual cortex, demonstrating that the auditory cortex is an exquisitely sensitive target of neocortical plasticity, and that prolonged exposure to different acoustic as well as emotional environmental manipulation may produce specific changes in dendritic shape and spine density. PMID:19771593

  14. Plan to procedure: combining 3D templating with rapid prototyping to enhance pedicle screw placement

    NASA Astrophysics Data System (ADS)

    Augustine, Kurt E.; Stans, Anthony A.; Morris, Jonathan M.; Huddleston, Paul M.; Matsumoto, Jane M.; Holmes, David R., III; Robb, Richard A.

    2010-02-01

    Spinal fusion procedures involving the implantation of pedicle screws have steadily increased over the past decade because of demonstrated improvement in biomechanical stability of the spine. However, current methods of spinal fusion carries a risk of serious vascular, visceral, and neurological injury caused by inaccurate placement or inappropriately sized instrumentation, which may lead to patient paralysis or even fatality. 3D spine templating software developed by the Biomedical Imaging Resource (BIR) at Mayo Clinic allows the surgeon to virtually place pedicle screws using pre-operative 3D CT image data. With the template plan incorporated, a patient-specific 3D anatomic model is produced using a commercial rapid prototyping system. The pre-surgical plan and the patient-specific model then are used in the procedure room to provide real-time visualization and quantitative guidance for accurate placement of each pedicle screw, significantly reducing risk of injury. A pilot study was conducted at Mayo Clinic by the Department of Radiology, the Department of Orthopedics, and the BIR, involving seven complicated pediatric spine cases. In each case, pre-operative 3D templating was carried out and patient specific models were generated. The plans and the models were used intra-operatively, providing precise pedicle screw starting points and trajectories. Postoperative assessment by the surgeon confirmed all seven operations were successful. Results from the study suggest that patient-specific, 3D anatomic models successfully acquired from 3D templating tools are valuable for planning and conducting pedicle screw insertion procedures.

  15. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  16. 3D Printable Graphene Composite.

    PubMed

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-08

    In human being's history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today's personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite's linear thermal coefficient is below 75 ppm·°C(-1) from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  17. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  18. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  19. 3D light scanning macrography.

    PubMed

    Huber, D; Keller, M; Robert, D

    2001-08-01

    The technique of 3D light scanning macrography permits the non-invasive surface scanning of small specimens at magnifications up to 200x. Obviating both the problem of limited depth of field inherent to conventional close-up macrophotography and the metallic coating required by scanning electron microscopy, 3D light scanning macrography provides three-dimensional digital images of intact specimens without the loss of colour, texture and transparency information. This newly developed technique offers a versatile, portable and cost-efficient method for the non-invasive digital and photographic documentation of small objects. Computer controlled device operation and digital image acquisition facilitate fast and accurate quantitative morphometric investigations, and the technique offers a broad field of research and educational applications in biological, medical and materials sciences. PMID:11489078

  20. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  1. [Real time 3D echocardiography].

    PubMed

    Bauer, F; Shiota, T; Thomas, J D

    2001-07-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients. PMID:11494630

  2. [Modeling the spine and spinal cord].

    PubMed

    Dubousset, Jean; Lavaste, Françoise; Skalli, Wafa; Lafage, Virginie

    2011-11-01

    3D reconstruction of the spine may cover morphological, mechanical and functional aspects, among others. Since the computer era, rapid progress has been made in the development of practical applications, as well in the analysis of spinal pathophysiology during growth and aging. This technology is particularly usefulfor the planning, simulation and execution of corrective surgery, invention of new procedures, and therapeutic follow-up. PMID:22844745

  3. DYNA3D. Explicit 3-d Hydrodynamic FEM Program

    SciTech Connect

    Whirley, R.G.; Englemann, B.E. )

    1993-11-30

    DYNA3D is an explicit, three-dimensional, finite element program for analyzing the large deformation dynamic response of inelastic solids and structures. DYNA3D contains 30 material models and 10 equations of state (EOS) to cover a wide range of material behavior. The material models implemented are: elastic, orthotropic elastic, kinematic/isotropic plasticity, thermoelastoplastic, soil and crushable foam, linear viscoelastic, Blatz-Ko rubber, high explosive burn, hydrodynamic without deviatoric stresses, elastoplastic hydrodynamic, temperature-dependent elastoplastic, isotropic elastoplastic, isotropic elastoplastic with failure, soil and crushable foam with failure, Johnson/Cook plasticity model, pseudo TENSOR geological model, elastoplastic with fracture, power law isotropic plasticity, strain rate dependent plasticity, rigid, thermal orthotropic, composite damage model, thermal orthotropic with 12 curves, piecewise linear isotropic plasticity, inviscid two invariant geologic cap, orthotropic crushable model, Moonsy-Rivlin rubber, resultant plasticity, closed form update shell plasticity, and Frazer-Nash rubber model. The hydrodynamic material models determine only the deviatoric stresses. Pressure is determined by one of 10 equations of state including linear polynomial, JWL high explosive, Sack Tuesday high explosive, Gruneisen, ratio of polynomials, linear polynomial with energy deposition, ignition and growth of reaction in HE, tabulated compaction, tabulated, and TENSOR pore collapse. DYNA3D generates three binary output databases. One contains information for complete states at infrequent intervals; 50 to 100 states is typical. The second contains information for a subset of nodes and elements at frequent intervals; 1,000 to 10,000 states is typical. The last contains interface data for contact surfaces.

  4. GPU-Accelerated Denoising in 3D (GD3D)

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer themore » second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.« less

  5. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  6. Automated generation of curved planar reformations from MR images of the spine

    NASA Astrophysics Data System (ADS)

    Vrtovec, Tomaz; Ourselin, Sébastien; Gomes, Lavier; Likar, Boštjan; Pernuš, Franjo

    2007-05-01

    A novel method for automated curved planar reformation (CPR) of magnetic resonance (MR) images of the spine is presented. The CPR images, generated by a transformation from image-based to spine-based coordinate system, follow the structural shape of the spine and allow the whole course of the curved anatomy to be viewed in individual cross-sections. The three-dimensional (3D) spine curve and the axial vertebral rotation, which determine the transformation, are described by polynomial functions. The 3D spine curve passes through the centres of vertebral bodies, while the axial vertebral rotation determines the rotation of vertebrae around the axis of the spinal column. The optimal polynomial parameters are obtained by a robust refinement of the initial estimates of the centres of vertebral bodies and axial vertebral rotation. The optimization framework is based on the automatic image analysis of MR spine images that exploits some basic anatomical properties of the spine. The method was evaluated on 21 MR images from 12 patients and the results provided a good description of spine anatomy, with mean errors of 2.5 mm and 1.7° for the position of the 3D spine curve and axial rotation of vertebrae, respectively. The generated CPR images are independent of the position of the patient in the scanner while comprising both anatomical and geometrical properties of the spine.

  7. A 3-D biomechanical skeleton model for posture and movement analysis.

    PubMed

    D'Amico, Moreno; D'Amico, Gabriele; Roncoletta, Piero

    2006-01-01

    A project to merge into a full 3D reliable and detailed human skeleton representation various segmental biomechanical models presented in literature has been undertaken by our group. The obtained 3D skeleton model is fully parametric and can so be fitted to each subject anthropometric characteristics. A non-ionizing approach based on 3D opto-electronic measurements of body landmarks labelled by passive markers has been chosen to build the 3D parametric biomechanical skeleton model. To this aim various protocols involving different body labelling (and so different related anthropometric data) have been established for different analyses. To analyse human posture and spinal related pathologies, a 27 markers protocol has been set for static analysis, while 49 markers protocol has been set for gait and movement analysis. A special focus has been devoted to identify and model the spine with a correct degree of accuracy and reliability. To this aim complex signal processing and optimisation procedures have been tested. The model is able to fully integrate information deriving from other measurements devices as force platform data, surface EMG, foot pressure maps. The presented model is the first proposed in literature, to authors knowledge, able to process such multifactorial information to perform a full kinematic and kinetic analysis with particular focus on the spine. Several hundreds of patients have been already analysed and followed up with this methodology that proved to be useful for various posture and spine related pathologies (in particular spine deformities, low-back pain etc.).

  8. Accommodating lithium into 3D current collectors with a submicron skeleton towards long-life lithium metal anodes

    PubMed Central

    Yang, Chun-Peng; Yin, Ya-Xia; Zhang, Shuai-Feng; Li, Nian-Wu; Guo, Yu-Guo

    2015-01-01

    Lithium metal is one of the most attractive anode materials for electrochemical energy storage. However, the growth of Li dendrites during electrochemical deposition, which leads to a low Coulombic efficiency and safety concerns, has long hindered the application of rechargeable Li-metal batteries. Here we show that a 3D current collector with a submicron skeleton and high electroactive surface area can significantly improve the electrochemical deposition behaviour of Li. Li anode is accommodated in the 3D structure without uncontrollable Li dendrites. With the growth of Li dendrites being effectively suppressed, the Li anode in the 3D current collector can run for 600 h without short circuit and exhibits low voltage hysteresis. The exceptional electrochemical performance of the Li-metal anode in the 3D current collector highlights the importance of rational design of current collectors and reveals a new avenue for developing Li anodes with a long lifespan. PMID:26299379

  9. Cactus spine injuries.

    PubMed

    Lindsey, D; Lindsey, W E

    1988-07-01

    Cactus spines produce injuries whose clinical significance is loosely in inverse proportion to the dimensions of the spine. Long and medium spines of saguaro and barrel cacti seldom result in embedded fragments, but when they do they are difficult to locate and remove. Other medium spines, those of prickly pear and cholla, are a nuisance but they can be removed readily by traction, as can the smaller spines (glochids) of the prickly pear. The very small spines (also glochids) of the polka dot or bunny's ear cactus (Opuntia microdasys) and the beavertail cactus (Opuntia basilaris) offer the most frustrating problem of all, but can be peeled off with a dried film of a professional facial gel. PMID:3390256

  10. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  11. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  12. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  13. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  14. Real-time 3D imaging of microstructure growth in battery cells using indirect MRI.

    PubMed

    Ilott, Andrew J; Mohammadi, Mohaddese; Chang, Hee Jung; Grey, Clare P; Jerschow, Alexej

    2016-09-27

    Lithium metal is a promising anode material for Li-ion batteries due to its high theoretical specific capacity and low potential. The growth of dendrites is a major barrier to the development of high capacity, rechargeable Li batteries with lithium metal anodes, and hence, significant efforts have been undertaken to develop new electrolytes and separator materials that can prevent this process or promote smooth deposits at the anode. Central to these goals, and to the task of understanding the conditions that initiate and propagate dendrite growth, is the development of analytical and nondestructive techniques that can be applied in situ to functioning batteries. MRI has recently been demonstrated to provide noninvasive imaging methodology that can detect and localize microstructure buildup. However, until now, monitoring dendrite growth by MRI has been limited to observing the relatively insensitive metal nucleus directly, thus restricting the temporal and spatial resolution and requiring special hardware and acquisition modes. Here, we present an alternative approach to detect a broad class of metallic dendrite growth via the dendrites' indirect effects on the surrounding electrolyte, allowing for the application of fast 3D (1)H MRI experiments with high resolution. We use these experiments to reconstruct 3D images of growing Li dendrites from MRI, revealing details about the growth rate and fractal behavior. Radiofrequency and static magnetic field calculations are used alongside the images to quantify the amount of the growing structures.

  15. Particle Acceleration at Reconnecting 3D Null Points

    NASA Astrophysics Data System (ADS)

    Stanier, A.; Browning, P.; Gordovskyy, M.; Dalla, S.

    2012-12-01

    Hard X-ray observations from the RHESSI spacecraft indicate that a significant fraction of solar flare energy release is in non-thermal energetic particles. A plausible acceleration mechanism for these are the strong electric fields associated with reconnection, a process that can be particularly efficient when particles become unmagnetised near to null points. This mechanism has been well studied in 2D, at X-points within reconnecting current sheets; however, 3D reconnection models show significant qualitative differences and it is not known whether these new models are efficient for particle acceleration. We place test particles in analytic model fields (eg. Craig and Fabling 1996) and numerical solutions to the the resistive magnetohydrodynamic (MHD) equations near reconnecting 3D nulls. We compare the behaviour of these test particles with previous results for test particle acceleration in ideal MHD models (Dalla and Browning 2005). We find that the fan model is very efficient due to an increasing "guide field" that stabilises particles against ejection from the current sheet. However, the spine model, which was the most promising in the ideal case, gives weak acceleration as the reconnection electric field is localised to a narrow cylinder about the spine axis.

  16. Chronic cannabinoid agonist (WIN 55,212-2) exposure alters hippocampal dentate gyrus spine density in adult rats

    PubMed Central

    Candelaria-Cook, Felicha Teresa; Hamilton, Derek Alexander

    2013-01-01

    Chronic abuse of drugs can result in vast negative repercussions on behavioral and biological systems by altering underlying neurocircuitry. Long-term cannabinoid administration in rats leads to detrimental cellular and dendritic morphology changes. Previous studies have found that chronic treatment with delta-9-THC selectively decreases dendritic morphology and spine density in the dentate gyrus of young rats (Rubino et al., 2009), however, whether these changes are specific to a particular developmental age is not known. The present study evaluated the effects of chronic exposure (7 or 21 days) to WIN 55, 212-2 (i.p., 3.7 mg/kg), a potent cannabinoid agonist, on dendritic morphology of dentate gyrus neurons in adult rats. Upon completion of treatment brains were processed for Golgi-Cox staining. No significant effects of WIN 55, 212-2 exposure were observed for dendritic branching or length. Spine density was quantified in the inner (proximal), middle, and outer (distal) thirds of the dendritic fields selected to approximate the spatial loci of afferents comprising the associational-commissural pathway, medial perforant path, and lateral perforant path, respectively. Compared to vehicle controls there was a significant reduction in spine density (~1 spine/10μm) in the inner and middle dendritic segments. The spine density reduction was significant in inner segments following 7 days of treatment. These results suggest that chronic cannabinoid treatment specifically alters spine density in the dendritic targets of the associational-commissural afferents and medial perforant path projections, but not lateral perforant path. The resulting loss of dendritic spine density may be an important factor underlying cannabinoid induced memory impairments. PMID:24183783

  17. Dendritic integration in pyramidal neurons during network activity and disease.

    PubMed

    Palmer, Lucy M

    2014-04-01

    Neurons have intricate dendritic morphologies which come in an array of shapes and sizes. Not only do they give neurons their unique appearance, but dendrites also endow neurons with the ability to receive and transform synaptic inputs. We now have a wealth of information about the functioning of dendrites which suggests that the integration of synaptic inputs is highly dependent on both dendritic properties and neuronal input patterns. It has been shown that dendrites can perform non-linear processing, actively transforming synaptic input into Na(+) spikes, Ca(2+) plateau spikes and NMDA spikes. These membrane non-linearities can have a large impact on the neuronal output and have been shown to be regulated by numerous factors including synaptic inhibition. Many neuropathological diseases involve changes in how dendrites receive and package synaptic input by altering dendritic spine characteristics, ion channel expression and the inhibitory control of dendrites. This review focuses on the role of dendrites in integrating and transforming input and what goes wrong in the case of neuropathological diseases.

  18. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  19. Tropomodulin isoforms utilize specific binding functions to modulate dendrite development.

    PubMed

    Gray, Kevin T; Suchowerska, Alexandra K; Bland, Tyler; Colpan, Mert; Wayman, Gary; Fath, Thomas; Kostyukova, Alla S

    2016-06-01

    Tropomodulins (Tmods) cap F-actin pointed ends and have altered expression in the brain in neurological diseases. The function of Tmods in neurons has been poorly studied and their role in neurological diseases is entirely unknown. In this article, we show that Tmod1 and Tmod2, but not Tmod3, are positive regulators of dendritic complexity and dendritic spine morphology. Tmod1 increases dendritic branching distal from the cell body and the number of filopodia/thin spines. Tmod2 increases dendritic branching proximal to the cell body and the number of mature dendritic spines. Tmods utilize two actin-binding sites and two tropomyosin (Tpm)-binding sites to cap F-actin. Overexpression of Tmods with disrupted Tpm-binding sites indicates that Tmod1 and Tmod2 differentially utilize their Tpm- and actin-binding sites to affect morphology. Disruption of Tmod1's Tpm-binding sites abolished the overexpression phenotype. In contrast, overexpression of the mutated Tmod2 caused the same phenotype as wild type overexpression. Proximity ligation assays indicate that the mutated Tmods are shuttled similarly to wild type Tmods. Our data begins to uncover the roles of Tmods in neural development and the mechanism by which Tmods alter neural morphology. These observations in combination with altered Tmod expression found in several neurological diseases also suggest that dysregulation of Tmod expression may be involved in the pathology of these diseases. © 2016 Wiley Periodicals, Inc. PMID:27126680

  20. 3D acoustic atmospheric tomography

    NASA Astrophysics Data System (ADS)

    Rogers, Kevin; Finn, Anthony

    2014-10-01

    This paper presents a method for tomographically reconstructing spatially varying 3D atmospheric temperature profiles and wind velocity fields based. Measurements of the acoustic signature measured onboard a small Unmanned Aerial Vehicle (UAV) are compared to ground-based observations of the same signals. The frequency-shifted signal variations are then used to estimate the acoustic propagation delay between the UAV and the ground microphones, which are also affected by atmospheric temperature and wind speed vectors along each sound ray path. The wind and temperature profiles are modelled as the weighted sum of Radial Basis Functions (RBFs), which also allow local meteorological measurements made at the UAV and ground receivers to supplement any acoustic observations. Tomography is used to provide a full 3D reconstruction/visualisation of the observed atmosphere. The technique offers observational mobility under direct user control and the capacity to monitor hazardous atmospheric environments, otherwise not justifiable on the basis of cost or risk. This paper summarises the tomographic technique and reports on the results of simulations and initial field trials. The technique has practical applications for atmospheric research, sound propagation studies, boundary layer meteorology, air pollution measurements, analysis of wind shear, and wind farm surveys.

  1. Gravitation in 3D Spacetime

    NASA Astrophysics Data System (ADS)

    Laubenstein, John; Cockream, Kandi

    2009-05-01

    3D spacetime was developed by the IWPD Scale Metrics (SM) team using a coordinate system that translates n dimensions to n-1. 4-vectors are expressed in 3D along with a scaling factor representing time. Time is not orthogonal to the three spatial dimensions, but rather in alignment with an object's axis-of-motion. We have defined this effect as the object's ``orientation'' (X). The SM orientation (X) is equivalent to the orientation of the 4-velocity vector positioned tangent to its worldline, where X-1=θ+1 and θ is the angle of the 4-vector relative to the axis-of -motion. Both 4-vectors and SM appear to represent valid conceptualizations of the relationship between space and time. Why entertain SM? Scale Metrics gravity is quantized and may suggest a path for the full unification of gravitation with quantum theory. SM has been tested against current observation and is in agreement with the age of the universe, suggests a physical relationship between dark energy and dark matter, is in agreement with the accelerating expansion rate of the universe, contributes to the understanding of the fine-structure constant and provides a physical explanation of relativistic effects.

  2. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  3. 3D medical thermography device

    NASA Astrophysics Data System (ADS)

    Moghadam, Peyman

    2015-05-01

    In this paper, a novel handheld 3D medical thermography system is introduced. The proposed system consists of a thermal-infrared camera, a color camera and a depth camera rigidly attached in close proximity and mounted on an ergonomic handle. As a practitioner holding the device smoothly moves it around the human body parts, the proposed system generates and builds up a precise 3D thermogram model by incorporating information from each new measurement in real-time. The data is acquired in motion, thus it provides multiple points of view. When processed, these multiple points of view are adaptively combined by taking into account the reliability of each individual measurement which can vary due to a variety of factors such as angle of incidence, distance between the device and the subject and environmental sensor data or other factors influencing a confidence of the thermal-infrared data when captured. Finally, several case studies are presented to support the usability and performance of the proposed system.

  4. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  5. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  6. 3D Printable Graphene Composite

    NASA Astrophysics Data System (ADS)

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-07-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C-1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process.

  7. LOTT RANCH 3D PROJECT

    SciTech Connect

    Larry Lawrence; Bruce Miller

    2004-09-01

    The Lott Ranch 3D seismic prospect located in Garza County, Texas is a project initiated in September of 1991 by the J.M. Huber Corp., a petroleum exploration and production company. By today's standards the 126 square mile project does not seem monumental, however at the time it was conceived it was the most intensive land 3D project ever attempted. Acquisition began in September of 1991 utilizing GEO-SEISMIC, INC., a seismic data contractor. The field parameters were selected by J.M. Huber, and were of a radical design. The recording instruments used were GeoCor IV amplifiers designed by Geosystems Inc., which record the data in signed bit format. It would not have been practical, if not impossible, to have processed the entire raw volume with the tools available at that time. The end result was a dataset that was thought to have little utility due to difficulties in processing the field data. In 1997, Yates Energy Corp. located in Roswell, New Mexico, formed a partnership to further develop the project. Through discussions and meetings with Pinnacle Seismic, it was determined that the original Lott Ranch 3D volume could be vastly improved upon reprocessing. Pinnacle Seismic had shown the viability of improving field-summed signed bit data on smaller 2D and 3D projects. Yates contracted Pinnacle Seismic Ltd. to perform the reprocessing. This project was initiated with high resolution being a priority. Much of the potential resolution was lost through the initial summing of the field data. Modern computers that are now being utilized have tremendous speed and storage capacities that were cost prohibitive when this data was initially processed. Software updates and capabilities offer a variety of quality control and statics resolution, which are pertinent to the Lott Ranch project. The reprocessing effort was very successful. The resulting processed data-set was then interpreted using modern PC-based interpretation and mapping software. Production data, log data

  8. Controlled architectural and chemotactic studies of 3D cell migration

    PubMed Central

    Tayalia, Prakriti; Mazur, Eric; Mooney, David

    2010-01-01

    Chemotaxis plays a critical role in tissue development and wound repair, and is widely studied using ex vivo model systems in applications such as immunotherapy. However, typical chemotactic models employ 2D systems that are less physiologically relevant or use end-point assays, that reveal little about the stepwise dynamics of the migration process. To overcome these limitations, we developed a new model system using microfabrication techniques, sustained drug delivery approaches, and theoretical modeling of chemotactic agent diffusion. This model system allows us to study the effects of 3D architecture and chemotactic agent gradient on immune cell migration in real time. We find that dendritic cell migration is characterized by a strong interplay between matrix architecture and chemotactic gradients, and migration is also influenced dramatically by the cell activation state. Our results indicate that Lipopolysaccharide-activated dendritic cells studied in a traditional transwell system actually exhibit anomalous migration behavior. Such a 3D ex vivo system lends itself for analyzing cell migratory behavior in response to single or multiple competitive cues and could prove useful in vaccine development. PMID:21237507

  9. Thoracic spine x-ray

    MedlinePlus

    Vertebral radiography; X-ray - spine; Thoracic x-ray; Spine x-ray; Thoracic spine films; Back films ... care provider's office. You will lie on the x-ray table in different positions. If the x-ray ...

  10. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  11. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-01

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction. PMID:26861680

  12. Ultrastructure of spines and associated terminals on brainstem neurons controlling auditory input

    PubMed Central

    Brown, M. Christian; Lee, Daniel J.; Benson, Thane E.

    2013-01-01

    Spines are unique cellular appendages that isolate synaptic input to neurons and play a role in synaptic plasticity. Using the electron microscope, we studied spines and their associated synaptic terminals on three groups of brainstem neurons: tensor tympani motoneurons, stapedius motoneurons, and medial olivocochlear neurons, all of which exert reflexive control of processes in the auditory periphery. These spines are generally simple in shape; they are infrequent and found on the somata as well as the dendrites. Spines do not differ in volume among the three groups of neurons. In all cases, the spines are associated with a synaptic terminal that engulfs the spine rather than abuts its head. The positions of the synapses are variable, and some are found at a distance from the spine, suggesting that the isolation of synaptic input is of diminished importance for these spines. Each group of neurons receives three common types of synaptic terminals. The type of terminal associated with spines of the motoneurons contains pleomorphic vesicles, whereas the type associated with spines of olivocochlear neurons contains large round vesicles. Thus, spine-associated terminals in the motoneurons appear to be associated with inhibitory processes but in olivocochlear neurons they are associated with excitatory processes. PMID:23602963

  13. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  14. 3D Elastic Wavefield Tomography

    NASA Astrophysics Data System (ADS)

    Guasch, L.; Warner, M.; Stekl, I.; Umpleby, A.; Shah, N.

    2010-12-01

    Wavefield tomography, or waveform inversion, aims to extract the maximum information from seismic data by matching trace by trace the response of the solid earth to seismic waves using numerical modelling tools. Its first formulation dates from the early 80's, when Albert Tarantola developed a solid theoretical basis that is still used today with little change. Due to computational limitations, the application of the method to 3D problems has been unaffordable until a few years ago, and then only under the acoustic approximation. Although acoustic wavefield tomography is widely used, a complete solution of the seismic inversion problem requires that we account properly for the physics of wave propagation, and so must include elastic effects. We have developed a 3D tomographic wavefield inversion code that incorporates the full elastic wave equation. The bottle neck of the different implementations is the forward modelling algorithm that generates the synthetic data to be compared with the field seismograms as well as the backpropagation of the residuals needed to form the direction update of the model parameters. Furthermore, one or two extra modelling runs are needed in order to calculate the step-length. Our approach uses a FD scheme explicit time-stepping by finite differences that are 4th order in space and 2nd order in time, which is a 3D version of the one developed by Jean Virieux in 1986. We chose the time domain because an explicit time scheme is much less demanding in terms of memory than its frequency domain analogue, although the discussion of wich domain is more efficient still remains open. We calculate the parameter gradients for Vp and Vs by correlating the normal and shear stress wavefields respectively. A straightforward application would lead to the storage of the wavefield at all grid points at each time-step. We tackled this problem using two different approaches. The first one makes better use of resources for small models of dimension equal

  15. Conducting Polymer 3D Microelectrodes

    PubMed Central

    Sasso, Luigi; Vazquez, Patricia; Vedarethinam, Indumathi; Castillo-León, Jaime; Emnéus, Jenny; Svendsen, Winnie E.

    2010-01-01

    Conducting polymer 3D microelectrodes have been fabricated for possible future neurological applications. A combination of micro-fabrication techniques and chemical polymerization methods has been used to create pillar electrodes in polyaniline and polypyrrole. The thin polymer films obtained showed uniformity and good adhesion to both horizontal and vertical surfaces. Electrodes in combination with metal/conducting polymer materials have been characterized by cyclic voltammetry and the presence of the conducting polymer film has shown to increase the electrochemical activity when compared with electrodes coated with only metal. An electrochemical characterization of gold/polypyrrole electrodes showed exceptional electrochemical behavior and activity. PC12 cells were finally cultured on the investigated materials as a preliminary biocompatibility assessment. These results show that the described electrodes are possibly suitable for future in-vitro neurological measurements. PMID:22163508

  16. ShowMe3D

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from themore » displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.« less

  17. 3D printing technology using high viscous materials - Synthesis of functional materials and fabrication of 3D metal structure

    NASA Astrophysics Data System (ADS)

    Hong, Seongik

    In the 3D printing technology, the research for using various materials has been performing. In this research work, 3D printable high viscous materials are suggested as one of the solutions for problems in the traditional 3D printing technology. First, Cu-Ag coreshell was synthesized as a functional material. In terms of the reaction rate, reaction rate limiting step was defined as a fundamental research, and then prepared Cu-Ag coreshell was printed and analyzed. Second, the high viscous Cu paste was prepared and then metal 3D printed structure was fabricated by using new printing method. In the synthesis of Cu-Ag coreshell, different sizes of Cu particle, 2μm and 100nm were used, and when 2μm Cu was applied, the reaction rate was limited by film diffusion control. However, when 100nm Cu was applied, reaction rate was controlled by CuO film and the rate of the reaction, which includes removing CuO film in the solution, is limited by chemical reaction control. The shape of Cu-Ag particle is spherical in the 2μm Cu condition and dendrite shape in the 100nm Cu condition respectively. The conductivity of Cu-Ag coreshell paste increased as increasing content of coreshell particle in the paste and sintering temperature. In order to print high viscous metal paste, the high viscous Cu paste was printed by using screw extruder, and the viscosity of Cu paste was measured as a fundamental research. As increasing wt.% of Cu in the paste, the viscosity also increased. In addition, the shrinkage factor was reduced by increasing wt.% of Cu in the paste. An optimized printing condition for the high viscous material was obtained, and by using this condition, 3D metal structure was fabricated. The final product was heat treated and polished. Through these processes, a fine quality of metal 3D structure was printed.

  18. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  19. Anterior thalamic lesions reduce spine density in both hippocampal CA1 and retrosplenial cortex, but enrichment rescues CA1 spines only.

    PubMed

    Harland, Bruce C; Collings, David A; McNaughton, Neil; Abraham, Wickliffe C; Dalrymple-Alford, John C

    2014-10-01

    Injury to the anterior thalamic nuclei (ATN) may affect both hippocampus and retrosplenial cortex thus explaining some parallels between diencephalic and medial temporal lobe amnesias. We found that standard-housed rats with ATN lesions, compared with standard-housed controls, showed reduced spine density in hippocampal CA1 neurons (basal dendrites, -11.2%; apical dendrites, -9.6%) and in retrospenial granular b cortex (Rgb) neurons (apical dendrites, -20.1%) together with spatial memory deficits on cross maze and radial-arm maze tasks. Additional rats with ATN lesions were also shown to display a severe deficit on spatial working memory in the cross-maze, but subsequent enriched housing ameliorated their performance on both this task and the radial-arm maze. These enriched rats with ATN lesions also showed recovery of both basal and apical CA1 spine density to levels comparable to that of the standard-housed controls, but no recovery of Rgb spine density. Inspection of spine types in the CA1 neurons showed that ATN lesions reduced the density of thin spines and mushroom spines, but not stubby spines; while enrichment promoted recovery of thin spines. Comparison with enriched rats that received pseudo-training, which provided comparable task-related experience, but no explicit spatial memory training, suggested that basal CA1 spine density in particular was associated with spatial learning and memory performance. Distal pathology in terms of reduced integrity of hippocampal and retrosplenial microstructure provides clear support for the influence of the ATN lesions on the extended hippocampal system. The reversal by postoperative enrichment of this deficit in the hippocampus but not the retrosplenial cortex may indicate region-specific mechanisms of recovery after ATN injury.

  20. Tumors of the spine

    PubMed Central

    Ciftdemir, Mert; Kaya, Murat; Selcuk, Esref; Yalniz, Erol

    2016-01-01

    Spine tumors comprise a small percentage of reasons for back pain and other symptoms originating in the spine. The majority of the tumors involving the spinal column are metastases of visceral organ cancers which are mostly seen in older patients. Primary musculoskeletal system sarcomas involving the spinal column are rare. Benign tumors and tumor-like lesions of the musculoskeletal system are mostly seen in young patients and often cause instability and canal compromise. Optimal diagnosis and treatment of spine tumors require a multidisciplinary approach and thorough knowledge of both spine surgery and musculoskeletal tumor surgery. Either primary or metastatic tumors involving the spine are demanding problems in terms of diagnosis and treatment. Spinal instability and neurological compromise are the main and critical problems in patients with tumors of the spinal column. In the past, only a few treatment options aiming short-term control were available for treatment of primary and metastatic spine tumors. Spine surgeons adapted their approach for spine tumors according to orthopaedic oncologic principles in the last 20 years. Advances in imaging, surgical techniques and implant technology resulted in better diagnosis and surgical treatment options, especially for primary tumors. Also, modern chemotherapy drugs and regimens with new radiotherapy and radiosurgery options caused moderate to long-term local and systemic control for even primary sarcomas involving the spinal column. PMID:26925382

  1. The ageing spine

    SciTech Connect

    Hukins, D.W.L. Nelson, M.A.

    1987-01-01

    This book contain 15 selections. Some of the titles are: Effects of age on the appearance of magnetic resonance images of the spine; Potential for image analysis in quantitative magnetic resonance imaging of the aging spine; Potential of x-ray diffraction computed tomography for discriminating between normal and osteoporotic bone; and Spinal fusion in the elderly.

  2. Tuberculosis of spine

    PubMed Central

    Agrawal, Vinod; Patgaonkar, P. R.; Nagariya, S. P.

    2010-01-01

    Tuberculosis of the spine is one of the most common spine pathology in India. Over last 4 decades a lot has changed in the diagnosis, medical treatment and surgical procedures to treat this disorder. Further developments in diagnosis using molecular genetic techniques, more effective antibiotics and more aggressive surgical protocols have become essential with emergence of multidrug resistant TB. Surgical procedures such as single stage anterior and posterior stabilization, extrapleral dorsal spine anterior stabilization and endoscopic thoracoscopic surgeries have reduced the mortality and morbidity of the surgical procedures. is rapidly progressing. It is a challenge to treat MDR-TB Spine with late onset paraplegia and progressive deformity. Physicians must treat tuberculosis of spine on the basis of Culture and sensitivity. PMID:21572628

  3. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  4. Spine synapse remodeling in the pathophysiology and treatment of depression

    PubMed Central

    Duman, Catharine H.; Duman, Ronald S.

    2015-01-01

    Clinical brain imaging and postmortem studies provide evidence of structural and functional abnormalities of key limbic and cortical structures in depressed patients, suggesting that spine synapse connectivity is altered in depression. Characterization of the cellular determinants underlying these changes in patients are limited, but studies in rodent models demonstrate alterations of dendrite complexity and spine density and function that could contribute to the morphological and functional alterations observed in humans. Rodent studies demonstrate region specific effects in chronic stress models of depression, including reductions in dendrite complexity and spine density in the hippocampus and prefrontal cortex (PFC) but increases in the basolateral amygdala and nucleus accumbens. Alterations of spine synapse connectivity in these regions are thought to contribute to the behavioral symptoms of depression, including disruption of cognition, mood, emotion, motivation, and reward. Studies of the mechanisms underlying these effects demonstrate a role for altered brain derived neurotrophic factor (BDNF) signaling that regulates synaptic protein synthesis. In contrast, there is evidence that chronic antidepressant treatment can block or reverse the spine synapse alterations caused by stress. Notably, the new fast acting antidepressant ketamine, which produces rapid therapeutic actions in treatment resistant MDD patients, rapidly increases spine synapse number in the PFC of rodents and reverses the effects of chronic stress. The rapid synaptic and behavioral actions of ketamine occur via increased BDNF regulation of synaptic protein synthesis. Together these studies provide evidence for a neurotophic and synaptogenic hypothesis of depression and treatment response and indicate that spine synapse connectivity in key cortical and limbic brain regions is critical for control of mood and emotion. PMID:25582786

  5. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  6. Spine pruning drives antipsychotic-sensitive locomotion via circuit control of striatal dopamine.

    PubMed

    Kim, Il Hwan; Rossi, Mark A; Aryal, Dipendra K; Racz, Bence; Kim, Namsoo; Uezu, Akiyoshi; Wang, Fan; Wetsel, William C; Weinberg, Richard J; Yin, Henry; Soderling, Scott H

    2015-06-01

    Psychiatric and neurodevelopmental disorders may arise from anomalies in long-range neuronal connectivity downstream of pathologies in dendritic spines. However, the mechanisms that may link spine pathology to circuit abnormalities relevant to atypical behavior remain unknown. Using a mouse model to conditionally disrupt a critical regulator of the dendritic spine cytoskeleton, the actin-related protein 2/3 complex (Arp2/3), we report here a molecular mechanism that unexpectedly reveals the inter-relationship of progressive spine pruning, elevated frontal cortical excitation of pyramidal neurons and striatal hyperdopaminergia in a cortical-to-midbrain circuit abnormality. The main symptomatic manifestations of this circuit abnormality are psychomotor agitation and stereotypical behaviors, which are relieved by antipsychotics. Moreover, this antipsychotic-responsive locomotion can be mimicked in wild-type mice by optogenetic activation of this circuit. Collectively these results reveal molecular and neural-circuit mechanisms, illustrating how diverse pathologies may converge to drive behaviors relevant to psychiatric disorders.

  7. 3D multiplexed immunoplasmonics microscopy.

    PubMed

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-21

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K(+) channel subunit KV1.1) on human cancer CD44(+) EGFR(+) KV1.1(+) MDA-MB-231 cells and reference CD44(-) EGFR(-) KV1.1(+) 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third

  8. NIF Ignition Target 3D Point Design

    SciTech Connect

    Jones, O; Marinak, M; Milovich, J; Callahan, D

    2008-11-05

    We have developed an input file for running 3D NIF hohlraums that is optimized such that it can be run in 1-2 days on parallel computers. We have incorporated increasing levels of automation into the 3D input file: (1) Configuration controlled input files; (2) Common file for 2D and 3D, different types of capsules (symcap, etc.); and (3) Can obtain target dimensions, laser pulse, and diagnostics settings automatically from NIF Campaign Management Tool. Using 3D Hydra calculations to investigate different problems: (1) Intrinsic 3D asymmetry; (2) Tolerance to nonideal 3D effects (e.g. laser power balance, pointing errors); and (3) Synthetic diagnostics.

  9. Palmitoylation of LIM Kinase-1 ensures spine-specific actin polymerization and morphological plasticity

    PubMed Central

    George, Joju; Soares, Cary; Montersino, Audrey; Beique, Jean-Claude; Thomas, Gareth M

    2015-01-01

    Precise regulation of the dendritic spine actin cytoskeleton is critical for neurodevelopment and neuronal plasticity, but how neurons spatially control actin dynamics is not well defined. Here, we identify direct palmitoylation of the actin regulator LIM kinase-1 (LIMK1) as a novel mechanism to control spine-specific actin dynamics. A conserved palmitoyl-motif is necessary and sufficient to target LIMK1 to spines and to anchor LIMK1 in spines. ShRNA knockdown/rescue experiments reveal that LIMK1 palmitoylation is essential for normal spine actin polymerization, for spine-specific structural plasticity and for long-term spine stability. Palmitoylation is critical for LIMK1 function because this modification not only controls LIMK1 targeting, but is also essential for LIMK1 activation by its membrane-localized upstream activator PAK. These novel roles for palmitoylation in the spatial control of actin dynamics and kinase signaling provide new insights into structural plasticity mechanisms and strengthen links between dendritic spine impairments and neuropathological conditions. DOI: http://dx.doi.org/10.7554/eLife.06327.001 PMID:25884247

  10. [Customized 3D radiographic reconstruction of the human pelvis].

    PubMed

    Gauvin, C; Dansereau, J; Petit, Y; De Guise, J A; Labelle, H

    1998-01-01

    The pelvis is an essential element in the study of scoliosis since it constitutes the base of the spine and its orientation may affects postural balance. In order to study the role of the pelvis in the evolution and treatment of this disease, a new technique for the 3D personalised reconstruction of the pelvis was developed. It consists in identifying and digitizing 19 pelvic anatomical landmarks on postero-anterior and lateral x-rays and to reconstruct them in 3D with two techniques: the DLT algorithm developed by Marzan (1976) and, for 6 of the 19 landmarks, an adaptation of it called DLT with confidence coefficients. The latter takes into account the confidence given to the identification of the landmarks on each x-rays. Two methods were used to validate the reconstruction of the pelvis. The first one, used for 11 scoliotic patients and 2 dry pelvis specimens, consists in applying the reconstruction algorithm in an inverse way on the 3D coordinates of the reconstructed landmarks to obtain their 2D retroprojection on the x-ray planes, and thus comparing the retroprojected coordinates with the 2D digitized coordinates. The second method consists in measuring a dry pelvis specimen and comparing the 3D measured landmarks with the ones reconstructed with the x-rays of this specimen. For the first validation, results have shown that the lowest retroprojection errors (less than 2.5 +/- 2.6 mm) for the scoliotic patient group are located on the superior base of the sacrum, on the sacral curve and on the acetabula, while the highest (6.4 +/- 7.2 mm) were on the iliac crests. For the dry specimens, the retroprojection errors were below the millimeter. The second validation method showed 3D differences of 2.4 +/- 1.2 mm between measured and reconstructed landmarks of a dry specimen, which is of the same order of magnitude as what is reported in the literature for vertebrae. The reconstruction of the pelvis is thus considered adequate and its graphical wireframe

  11. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  12. Locomotive wheel 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Guan, Xin; Luo, Zhisheng; Gao, Xiaorong; Wu, Jianle

    2010-08-01

    In the article, a system, which is used to reconstruct locomotive wheels, is described, helping workers detect the condition of a wheel through a direct view. The system consists of a line laser, a 2D camera, and a computer. We use 2D camera to capture the line-laser light reflected by the object, a wheel, and then compute the final coordinates of the structured light. Finally, using Matlab programming language, we transform the coordinate of points to a smooth surface and illustrate the 3D view of the wheel. The article also proposes the system structure, processing steps and methods, and sets up an experimental platform to verify the design proposal. We verify the feasibility of the whole process, and analyze the results comparing to standard date. The test results show that this system can work well, and has a high accuracy on the reconstruction. And because there is still no such application working in railway industries, so that it has practical value in railway inspection system.

  13. 3D ultrafast laser scanner

    NASA Astrophysics Data System (ADS)

    Mahjoubfar, A.; Goda, K.; Wang, C.; Fard, A.; Adam, J.; Gossett, D. R.; Ayazi, A.; Sollier, E.; Malik, O.; Chen, E.; Liu, Y.; Brown, R.; Sarkhosh, N.; Di Carlo, D.; Jalali, B.

    2013-03-01

    Laser scanners are essential for scientific research, manufacturing, defense, and medical practice. Unfortunately, often times the speed of conventional laser scanners (e.g., galvanometric mirrors and acousto-optic deflectors) falls short for many applications, resulting in motion blur and failure to capture fast transient information. Here, we present a novel type of laser scanner that offers roughly three orders of magnitude higher scan rates than conventional methods. Our laser scanner, which we refer to as the hybrid dispersion laser scanner, performs inertia-free laser scanning by dispersing a train of broadband pulses both temporally and spatially. More specifically, each broadband pulse is temporally processed by time stretch dispersive Fourier transform and further dispersed into space by one or more diffractive elements such as prisms and gratings. As a proof-of-principle demonstration, we perform 1D line scans at a record high scan rate of 91 MHz and 2D raster scans and 3D volumetric scans at an unprecedented scan rate of 105 kHz. The method holds promise for a broad range of scientific, industrial, and biomedical applications. To show the utility of our method, we demonstrate imaging, nanometer-resolved surface vibrometry, and high-precision flow cytometry with real-time throughput that conventional laser scanners cannot offer due to their low scan rates.

  14. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  15. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  16. 3-D Perspective Kamchatka Peninsula Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western side of the volcanically active Kamchatka Peninsula in eastern Russia. The image was generated using the first data collected during the Shuttle Radar Topography Mission (SRTM). In the foreground is the Sea of Okhotsk. Inland from the coast, vegetated floodplains and low relief hills rise toward snow capped peaks. The topographic effects on snow and vegetation distribution are very clear in this near-horizontal view. Forming the skyline is the Sredinnyy Khrebet, the volcanic mountain range that makes up the spine of the peninsula. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and to understand the hazards posed by future eruptions. This image was generated using topographic data from SRTM and an enhanced true-color image from the Landsat 7 satellite. This image contains about 2,400 meters (7,880 feet) of total relief. The topographic expression was enhanced by adding artificial shading as calculated from the SRTM elevation model. The Landsat data was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota. SRTM, launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. To collect the 3-D SRTM data, engineers added a 60- meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. SRTM collected three dimensional measurements of nearly 80 percent of the Earth's surface. SRTM is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. Size: 33.3 km (20.6 miles) wide x 136 km (84 miles) coast to skyline. Location: 58.3 deg. North lat., 160 deg. East long. Orientation: Easterly view, 2 degrees

  17. 3-D Perspective View, Kamchatka Peninsula, Russia

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western side of the volcanically active Kamchatka Peninsula in eastern Russia. The image was generated using the first data collected during the Shuttle Radar Topography Mission (SRTM). In the foreground is the Sea of Okhotsk. Inland from the coast, vegetated floodplains and low relief hills rise toward snow capped peaks. The topographic effects on snow and vegetation distribution are very clear in this near-horizontal view. Forming the skyline is the Sredinnyy Khrebet, the volcanic mountain range that makes up the spine of the peninsula. High resolution SRTM topographic data will be used by geologists to study how volcanoes form and to understand the hazards posed by future eruptions.

    This image was generated using topographic data from SRTM and an enhanced true-color image from the Landsat 7 satellite. This image contains about 2,400 meters (7,880 feet) of total relief. The topographic expression was enhanced by adding artificial shading as calculated from the SRTM elevation model. The Landsat data was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.

    SRTM, launched on February 11, 2000, used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar(SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. To collect the 3-D SRTM data, engineers added a 60-meter-long (200-foot) mast, installed additional C-band and X-band antennas, and improved tracking and navigation devices. SRTM collected three-dimensional measurements of nearly 80 percent of the Earth's surface. SRTM is a cooperative project between NASA, the National Imagery and Mapping Agency (NIMA) of the U.S. Department of Defense, and the German and Italian space agencies. It is managed by NASA's Jet Propulsion Laboratory, Pasadena, CA, for NASA's Earth Science Enterprise, Washington, D.C.

    Size: 33.3 km (20.6 miles) wide x

  18. Segmentation of vertebral bodies in CT and MR images based on 3D deterministic models

    NASA Astrophysics Data System (ADS)

    Štern, Darko; Vrtovec, Tomaž; Pernuš, Franjo; Likar, Boštjan

    2011-03-01

    The evaluation of vertebral deformations is of great importance in clinical diagnostics and therapy of pathological conditions affecting the spine. Although modern clinical practice is oriented towards the computed tomography (CT) and magnetic resonance (MR) imaging techniques, as they can provide a detailed 3D representation of vertebrae, the established methods for the evaluation of vertebral deformations still provide only a two-dimensional (2D) geometrical description. Segmentation of vertebrae in 3D may therefore not only improve their visualization, but also provide reliable and accurate 3D measurements of vertebral deformations. In this paper we propose a method for 3D segmentation of individual vertebral bodies that can be performed in CT and MR images. Initialized with a single point inside the vertebral body, the segmentation is performed by optimizing the parameters of a 3D deterministic model of the vertebral body to achieve the best match of the model to the vertebral body in the image. The performance of the proposed method was evaluated on five CT (40 vertebrae) and five T2-weighted MR (40 vertebrae) spine images, among them five are normal and five are pathological. The results show that the proposed method can be used for 3D segmentation of vertebral bodies in CT and MR images and that the proposed model can describe a variety of vertebral body shapes. The method may be therefore used for initializing whole vertebra segmentation or reliably describing vertebral body deformations.

  19. Propagation of CaMKII translocation waves in heterogeneous spiny dendrites.

    PubMed

    Bressloff, Paul C

    2013-06-01

    CaMKII (Ca²⁺-calmodulin-dependent protein kinase II) is a key regulator of glutamatergic synapses and plays an essential role in many forms of synaptic plasticity. It has recently been observed experimentally that stimulating a local region of dendrite not only induces the local translocation of CaMKII from the dendritic shaft to synaptic targets within spines, but also initiates a wave of CaMKII translocation that spreads distally through the dendrite with an average speed of order 1 μm/s. We have previously developed a simple reaction-diffusion model of CaMKII translocation waves that can account for the observed wavespeed and predicts wave propagation failure if the density of spines is too high. A major simplification of our previous model was to treat the distribution of spines as spatially uniform. However, there are at least two sources of heterogeneity in the spine distribution that occur on two different spatial scales. First, spines are discrete entities that are joined to a dendritic branch via a thin spine neck of submicron radius, resulting in spatial variations in spine density at the micron level. The second source of heterogeneity occurs on a much longer length scale and reflects the experimental observation that there is a slow proximal to distal variation in the density of spines. In this paper, we analyze how both sources of heterogeneity modulate the speed of CaMKII translocation waves along a spiny dendrite. We adapt methods from the study of the spread of biological invasions in heterogeneous environments, including homogenization theory of pulsating fronts and Hamilton-Jacobi dynamics of sharp interfaces. PMID:22588358

  20. 3D-printer visualization of neuron models

    PubMed Central

    McDougal, Robert A.; Shepherd, Gordon M.

    2015-01-01

    Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases. PMID:26175684