RHOCUBE: 3D density distributions modeling code
NASA Astrophysics Data System (ADS)
Nikutta, Robert; Agliozzo, Claudia
2016-11-01
RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.
Representativeness of 2D models to simulate 3D unstable variable density flow in porous media
NASA Astrophysics Data System (ADS)
Knorr, Bastian; Xie, Yueqing; Stumpp, Christine; Maloszewski, Piotr; Simmons, Craig T.
2016-11-01
Variable density flow in porous media has been studied primarily using numerical models because it is a semi-chaotic and transient process. Most of these studies have been 2D, owing to the computational restrictions on 3D simulations, and the ability to observe variable density flow in 2D experimentation. However, it is recognised that variable density flow is a three-dimensional process. A 3D system may cause weaker variable density flow than a 2D system due to stronger dispersion, but may also result in bigger fingers and hence stronger variable density flow because of more space for fingers to coalesce. This study aimed to determine the representativeness of 2D modelling to simulate 3D variable density flow. 3D homogeneous sand column experiments were conducted at three different water flow velocities with three different bromide tracer solutions mixed with methanol resulting in different density ratios. Both 2D axisymmetric and 3D numerical simulations were performed to reproduce experimental data. Experimental results showed that the magnitude of variable density flow increases with decreasing flow rates and decreasing density ratios. The shapes of the observed breakthrough curves differed significantly from those produced by 2D axisymmetric and 3D simulations. Compared to 2D simulations, the onset of instabilities was delayed but the growth was more pronounced in 3D simulations. Despite this difference, both 2D axisymmetric and 3D models successfully simulated mass recovery with high efficiency (between 77% and 99%). This study indicates that 2D simulations are sufficient to understand integrated features of variable density flow in homogeneous sand column experiments.
The BGY3dM model for the approximation of solvent densities.
Griebel, Michael; Jager, Lukas
2008-11-07
We present a new approach for the approximation of solvent densities around solutes of arbitrary shape. Our model represents a three-dimensional (3d) Born-Green-Yvon (BGY) equation for an arbitrary solute immersed into a molecular (M) solvent, the BGY3dM model. It comprises the famous Kirkwood approximation as closure relation. The molecules of the solvent are modeled as rigid bodies by taking the limit of an infinite restoring force for the intramolecular interactions. Furthermore, short-range potentials as well as the long-range Coulomb interaction are taken into account. The resulting integro-differential equations are efficiently solved by a Picard iteration and a solution of the linearized equations using Fourier transformations. We compare the results obtained from the presented BGY3dM method with results obtained by extensive molecular dynamics simulations for a HCl-like model solvent. Furthermore, we apply the method to carbon disulfide as solvent. The overall performance of the method is promising.
3D Density Structure and LOS Observations of a Model CME
NASA Astrophysics Data System (ADS)
Manchester, W. B.; Lugaz, N.; Gombosi, T.; de Zeeuw, D.; Sokolov, I.; Toth, G.
2004-12-01
We present synthetic Thomson-scattered white-light images of a simulated coronal mass ejection (CME). The simulations are based on a 3-D MHD model of a CME propagating through a bimodal solar wind characteristic of solar minimum. The CME is driven by a 3-D Gibson-Low flux rope inserted in the helmet streamer of the steady-state corona. Synthetic coronograph images are produced that follow the evolution of the CME to 1 AU from several points of view. The white light images provide a basis for comparison with wide angle coronographs, like those of SMEI or STEREO. We find that a large amount of plasma is swept up from the solar wind by the CME-driven shock wave, which dominates the density structure far from the Sun. We also find that the shape of this compressed plasma is highly distorted by the variation in speed of the ambient solar wind. Comparisons of 2-D integrated images to the 3-D density structure show that the viewing angle severely effects the line-of-sight appearance of the CME, as well as the estimated mass of the CME from such 2D images.
Stephenson, William J.
2007-01-01
INTRODUCTION In support of earthquake hazards and ground motion studies in the Pacific Northwest, three-dimensional P- and S-wave velocity (3D Vp and Vs) and density (3D rho) models incorporating the Cascadia subduction zone have been developed for the region encompassed from about 40.2?N to 50?N latitude, and from about -122?W to -129?W longitude. The model volume includes elevations from 0 km to 60 km (elevation is opposite of depth in model coordinates). Stephenson and Frankel (2003) presented preliminary ground motion simulations valid up to 0.1 Hz using an earlier version of these models. The version of the model volume described here includes more structural and geophysical detail, particularly in the Puget Lowland as required for scenario earthquake simulations in the development of the Seattle Urban Hazards Maps (Frankel and others, 2007). Olsen and others (in press) used the model volume discussed here to perform a Cascadia simulation up to 0.5 Hz using a Sumatra-Andaman Islands rupture history. As research from the EarthScope Program (http://www.earthscope.org) is published, a wealth of important detail can be added to these model volumes, particularly to depths of the upper-mantle. However, at the time of development for this model version, no EarthScope-specific results were incorporated. This report is intended to be a reference for colleagues and associates who have used or are planning to use this preliminary model in their research. To this end, it is intended that these models will be considered a beginning template for a community velocity model of the Cascadia region as more data and results become available.
Gravity Field Analysis and 3D Density Modeling of the Lithosphere Along the Dead Sea Transform
NASA Astrophysics Data System (ADS)
Goetze, H.; Ebbing, J.; Hese, F.; Kollersberger, T.; Schmidt, S.; Rybakov, M.; Hassouneh, M.; Hrahsha, M.; El Kelani, R.
2002-12-01
The gravity field of Dead Sea Rift / Dead Sea Transform was investigated with regard to the isostatic state, the crustal density structure of the orogeny and the rigidity of the lithosphere in the Central Arava Valley. Our multi-national and interdisciplinary gravity group with participants from the Geophysical Institute of Israel, the Natural Resources Authority (Jordan), and the An-Najah National University (Palestine), is aiming to study the crustal density structure, the isostatic state of the lithosphere and mechanical properties of the Dead Sea Rift system under the framework of the international DESERT program which is coordinated by the GeoForschungsZentrum (GFZ, Potsdam, Germany). The study area is located about 100 km away from both the basin of the Dead Sea and the Gulf of Elat/Aqaba basin, respectively. Between March and May 2002 some 800 new gravity observations were recorded at a local (Arava valley) and regional scale (along the DESERT seismic line). Station spacing in the Arava valley was 100 - 300 m and in the nearest neighborhood of the fault 50 m only. The survey of detailed observations covered an area of 10 by 10 km and was completed by a likewise dense survey at the western side of the valley in Israel. All gravity data were tied to the IGSN -71 gravity datum and are terrain-corrected as well. The station complete Bouguer gravity field, Free air anomaly and residual isostatic anomalies (based on both Airy and Vening-Meinesz models) were merged with the existing regional gravity data bases of the region. Constraining information for the 3D density models at regional and local came from recent geophysical field data acquisition and consist of seismic, seismological, electromagnetic, and geologic studies which represent the integrated part of the interdisciplinary research program. Novel methods e.g. curvature techniques, and Euler deconvolution of the gravity fields shed new insight into the structure of upper and lower crust and the causing
An Assimilative 3-D Model of Coronal Density from Multi-Spacecraft Observations
NASA Astrophysics Data System (ADS)
Kamalabadi, F.; Hewett, R.; Butala, M.; Frazin, R. A.
2009-12-01
White-light coronagraph images observed at different solar rotation angles and from multiple perspectives can be combined to produce quantitative three-dimensional (3-D) reconstructions of persistent, large-scale coronal density. In this work, we present a computationally feasible data assimilation framework for the reconstruction of the time-dependent, 3-D electron density in the solar corona. We present quantitative reconstructions computed from simultaneous dual spacecraft measurements from the Solar Terrestrial Relations Observatory (STEREO) and compare the new time-dependent reconstructions of coronal density to a sequence of static reconstructions. We find that our new dynamic reconstructions are more robust at capturing transient features of the corona and are less prone to computational artifacts that result from the static assumption. The assimilation of STEREO COR1 coronagraph measurements poses some new challenges to conventional solar tomography algorithms. The STEREO data have higher spatial resolution and are measured at higher cadence, with new images available from each spacecraft every 5 to 10 minutes. We comment on the scalability of the data assimilation framework and note its suitability for the STEREO data volume and for the much greater data volume soon to be offered by the Solar Dynamics Observatory.
Amabile, Celia; Choisne, Julie; Nérot, Agathe; Pillet, Hélène; Skalli, Wafa
2016-05-03
Body segment parameters (BSP) for each body׳s segment are needed for biomechanical analysis. To provide population-specific BSP, precise estimation of body׳s segments volume and density are needed. Widely used uniform densities, provided by cadavers׳ studies, did not consider the air present in the lungs when determining the thorax density. The purpose of this study was to propose a new uniform thorax density representative of the living population from 3D external body shape modeling. Bi-planar X-ray radiographies were acquired on 58 participants allowing 3D reconstructions of the spine, rib cage and human body shape. Three methods of computing the thorax mass were compared for 48 subjects: (1) the Dempster Uniform Density Method, currently in use for BSPs calculation, using Dempster density data, (2) the Personalized Method using full-description of the thorax based on 3D reconstruction of the rib cage and spine and (3) the Improved Uniform Density Method using a uniform thorax density resulting from the Personalized Method. For 10 participants, comparison was made between the body mass obtained from a force-plate and the body mass computed with each of the three methods. The Dempster Uniform Density Method presented a mean error of 4.8% in the total body mass compared to the force-plate vs 0.2% for the Personalized Method and 0.4% for the Improved Uniform Density Method. The adjusted thorax density found from the 3D reconstruction was 0.74g/cm(3) for men and 0.73g/cm(3) for women instead of the one provided by Dempster (0.92g/cm(3)), leading to a better estimate of the thorax mass and body mass.
NASA Astrophysics Data System (ADS)
Suess, P.; Shaw, J. H.; Komatitsch, D.; Tromp, J.
2001-12-01
We present a 3D velocity model and a 3D density model of the LA basin. The LA basin velocity model was constructed using sonic log and stacking velocity information, provided by oil industry sources and not previously incorporated into southern California velocity models. The density model is based upon a new database of approximately 300 oil industry density logs from across the Los Angeles basin. These logs use gamma ray emissions to determine formation density at samples of about one meter. We have developed an empirical relation between sonic velocity and density by comparing data from approximately 30 wells in which we have both sonic and density logs. For the remaining wells, we have derived relationships between depth and density, and characterized this relationship for the three main stratigraphic sub-divisions of the SCEC Phase 2 model (Quaternary to base Pico Fm., top Repetto Fm. to top Mohnian, and top Mohnian to basement). The density-depth and density-velocity relations will provide independent rules that can be employed to define density and velocity structure in areas where data does not exist, or in other areas with similar lithology to the Los Angeles basin. We use a spectral element method (SEM) for simulation of seismic wave propagation which is currently being implemented on a 156-node Pentium PC cluster at Cal Tech. Preliminary work shows that SEM results using a 1D velocity model for southern California compare very well to discrete-wavenumber results. Both the density structure and velocity structure must be defined in a 3D model for its use in simulations of seismic wave propagation with a spectral element method, to predict the distribution of hazardous ground shaking during large events. Previous work has typically used density values which were predicted by the sonic velocity values; use of our measured density values should provide more accurate ground shaking predictions, and comparison to previous results will provide a useful
NASA Astrophysics Data System (ADS)
Sanchez-Rojas, J.; Palma, M.
2014-11-01
This paper presents a three-dimensional (3-D) interpretation of new gravity and seismicity datasets for northern South America. A 3-D forward density model was constructed on the basis of deep wide-angle seismic refraction sections, Moho depth from receiver functions, and surface geology. Density values were estimated from published borehole data for sediments by using empirical velocity-density functions and considering mineralogical-chemical composition variations under typical pressure-temperature conditions for upper and lower crustal rocks. The modeled 3-D density structure was kept as simple as possible. The continental and oceanic plates were formed by two sedimentary bodies, one crustal body, and one mantle lithosphere body overlying a sub-lithospheric mantle. The Caribbean plate was modeled with an atypical crustal thickness of ~ 18 km (including sediments). The geometry of the Caribbean plate was modeled using a combination of gravity modeling and analyses of the seismicity and focal-mechanism solutions. Intermediate seismicity and the orientation of the T-axes appeared aligned along the predicted position of the slab. As a result, the estimated slab dip angle under Maracaibo and the Mérida Andes was ~ 15° and increases up to ~ 20° after 100 km depth. The model shows two orientations in the slab strike: ~ N150°E ± 5 in western Colombia and southward underneath the Maracaibo block. The modeling results suggest that the northern South American upper and lower crusts are relatively light and the density of the Caribbean crust is typical for an oceanic crust.
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Lu, Bingjuan; Ge, Yunwang; Chen, Wenqing
Numerical electromagnetic field simulations of high-temperature superconductors (HTSC) bulk were carried out to calculate the magnetic force between the HTSC bulk and the permanent magnet railway (PMR). A 3D-modeling numerical calculation method is proposed using the finite element method. The model is formulated with the magnetic field vector (H-method). The resulting code was written with FORTRAN language. The electric field intensity E and the current density J constitutive relation of HTSC were described with E-J power law. The Kim macro-model is used to describe critical current density Jc of HTSC bulk. Two virtual HTSC bulks were used to solve the critical current density Jc anisotropic properties of HTSC materials. A superconducting levitation system composed of one HTSC bulk and PMR is successfully investigated using the proposed method. By this method, the influence of critical current density on magnetic levitation force of the superconducting levitation system is mathematically studied.
Gravity data for a 3-D density model of the Po plain and the surrounding region
NASA Astrophysics Data System (ADS)
Tondi, Rosaria; Borghi, Alessandra; Reguzzoni, Mirko; Vuan, Alessandro; Klin, Peter
2015-04-01
In order to properly localise earthquakes and define, especially in tectonically active areas, the seismic risk, there is the necessity to have reliable earth models. Unfortunately, conventional geophysical tomographic methods face the problem of irregular data coverage over the surface of the studied volume, which can produce irregular image resolution. This problem is difficult to address for each isolated geophysical technique, and it demands an effort for the integration of different geophysical methods into a single inversion scheme. In this work, we show how gravity information is a valuable tool in discriminating among possible models. An appropriate density starting model: a 10 layers 1D model which represents the mean geological structure below the Po plain and the surrounding region ([7.24E-12.80E], [43.78N-46.18N]), is tested upon two different gravity data sets, three different model parametrizations and two different seismic information.. The contribution given by ground based gravity data has been compared to the one, obtained by the combination of the GOCE satellite observation with the Italian terrestrial gravity data. This combination has been performed by means of a frequency analysis, using the very low frequencies from the GOCE data, the low frequency (between 181 and 240 degrees, in term of spherical harmonics) from the integration of the ground data with the GOCE data by least-square collocation, the high frequencies are obtained by residual terrain correction modelling. The 2012 Emilia seismic sequence, together with recent instrumentation deployed within the Po plain, allows to improve the existing crustal models by using a 2-20 s regional surface wave tomography. Isotropic reference S-wave velocity models up to 25 km of depth are calculated from the local dispersion curves for both the Love and Rayleigh fundamental mode using a linearized inversion scheme. Furtherly, seismological models and gravimetric data are exploited in the Sequential
NASA Astrophysics Data System (ADS)
Kaban, Mikhail K.; Stolk, Ward; Tesauro, Magdala; El Khrepy, Sami; Al-Arifi, Nassir; Beekman, Fred; Cloetingh, Sierd A. P. L.
2016-11-01
We construct a new-generation 3D density model of the upper mantle of Asia and its surrounding areas based on a joint interpretation of several data sets. A recent model of the crust combining nearly all available seismic data is employed to calculate the impact of the crust on the gravity anomalies and observed topography and to estimate the residual mantle anomalies and residual topography. These fields are jointly inverted to calculate the density variations in the lithosphere and upper mantle down to 325 km. As an initial approximation, we estimate density variations using a seismic tomography model. Seismic velocity variations are converted into temperatures and then to density variations based on mineral physics constraints. In the Occam-type inversion, we fit both the residual mantle gravity anomalies and residual topography by finding deviations to the initial model. The obtained corrections improve the resolution of the initial model and reflect important features of the mantle structure that are not well resolved by the seismic tomography. The most significant negative corrections of the upper mantle density, found in the Siberian and East European cratons, can be associated with depleted mantle material. The most pronounced positive density anomalies are found beneath the Tarim and South Caspian basins, Barents Sea, and Bay of Bengal. We attribute these anomalies to eclogites in the uppermost mantle, which have substantially affected the evolution of the basins. Furthermore, the obtained results provide evidence for the presence of eclogites in the oceanic subducting mantle lithosphere.
Intrusion versus inversion—a 3D density model of the southern rim of the Northwest German Basin
NASA Astrophysics Data System (ADS)
Bilgili, Filiz; Götze, Hans-Jürgen; Pašteka, Roman; Schmidt, Sabine; Hackney, Ron
2009-04-01
An unsolved problem of regional importance for both the evolution and structure of the Northwest German Basin is the existence or non-existence of the so-called Bramsche Massif. Explaining the nature of this massif and the cause of a related strong, positive Bouguer anomaly (Bramsche Anomaly) is critical. In the study described here, we tested an existing “intrusion model” against a newer “inversion model” in the southern Northwest German Basin. In the intrusion model, the strongly-positive Bouguer anomaly represents the gravity effect of an intrusion at depths between 6 and 10 km. More recent interpretations invoke tectonic inversion rather than intrusion to explain increased burial and the low level of hydrocarbon maturity found in boreholes. We tested these different interpretations by constructing 3D forward density models to 15 km depth. The intrusion model was updated and adjusted to incorporate recent data and we also modelled pre-Zechstein structures using different scenarios. The final model has a very good fit between measured and modelled gravity fields. Based on currently available seismic and structural models, as well as borehole density measurements, we show that the positive Bouguer anomaly cannot be modeled without a high-density, intrusive-like body at depth. However, further in-sight into the crustal structures of the Bramsche region requires more detailed investigations.
3D model of small-scale density cavities in the auroral magnetosphere with field-aligned current
NASA Astrophysics Data System (ADS)
Bespalov, P. A.; Misonova, V. G.; Savina, O. N.
2016-09-01
We propose a 3D model of small-scale density cavities stimulated by an auroral field-aligned current and an oscillating field-aligned current of kinetic Alfvén waves. It is shown that when the field-aligned current increases so that the electron drift velocity exceeds a value of the order of the electron thermal velocity, the plasma becomes unstable to the formation of cavities with low density and strong electric field. The condition of instability is associated with the value of the background magnetic field. In the case of a relatively weak magnetic field (where the electron gyro-radius is greater than the ion acoustic wavelength), the current instability can lead to the formation of one-dimensional cavities along the magnetic field. In the case of a stronger magnetic field (where the ion acoustic wavelength is greater than the electron gyro-radius, but still is less than the ion gyro-radius), the instability can lead to the formation of 3D density cavities. In this case, the spatial scales of the cavity, both along and across the background magnetic field, can be comparable, and at the earlier stage of the cavity formation they are of the order of the ion acoustic wavelength. Rarefactions of the cavity density are accompanied by an increase in the electric field and are limited by the pressure of bipolar electric fields that occur within them. The estimates of typical density cavity characteristics and the results of numerical solutions agree with known experimental data: small-scale structures with a sufficiently strong electric field are observed in the auroral regions with strong field-aligned current.
NUBEAM developments and 3d halo modeling
NASA Astrophysics Data System (ADS)
Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.
2012-10-01
Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.
ERIC Educational Resources Information Center
Manos, Harry
2016-01-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…
NASA Astrophysics Data System (ADS)
Manos, Harry
2016-03-01
Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.
3D-HIM: A 3D High-density Interleaved Memory for Bipolar RRAM Design
2013-05-01
JOURNAL ARTICLE (Post Print ) 3. DATES COVERED (From - To) DEC 2010 – NOV 2012 4. TITLE AND SUBTITLE 3D -HIM: A 3D HIGH-DENSITY INTERLEAVED MEMORY...emerged as one of the promising candidates for large data storage in computing systems. Moreover, building up RRAM in a three dimensional ( 3D ) stacking...brings in the potential reliability issue. To alleviate the situation, we introduce two novel 3D stacking structures built upon bipolar RRAM
Patoul, Judith de; Foullon, Claire; Riley, Pete E-mail: c.foullon@exeter.ac.uk
2015-11-20
Knowledge of the electron density distribution in the solar corona put constraints on the magnetic field configurations for coronal modeling and on initial conditions for solar wind modeling. We work with polarized SOHO/LASCO-C2 images from the last two recent minima of solar activity (1996–1997 and 2008–2010), devoid of coronal mass ejections. The goals are to derive the 4D electron density distributions in the corona by applying a newly developed time-dependent tomographic reconstruction method and to compare the results between the two solar minima and with two magnetohydrodynamic models. First, we confirm that the values of the density distribution in thermodynamic models are more realistic than in polytropic ones. The tomography provides more accurate distributions in the polar regions, and we find that the density in tomographic and thermodynamic solutions varies with the solar cycle in both polar and equatorial regions. Second, we find that the highest-density structures do not always correspond to the predicted large-scale heliospheric current sheet or its helmet streamer but can follow the locations of pseudo-streamers. We deduce that tomography offers reliable density distributions in the corona, reproducing the slow time evolution of coronal structures, without prior knowledge of the coronal magnetic field over a full rotation. Finally, we suggest that the highest-density structures show a differential rotation well above the surface depending on how they are magnetically connected to the surface. Such valuable information on the rotation of large-scale structures could help to connect the sources of the solar wind to their in situ counterparts in future missions such as Solar Orbiter and Solar Probe Plus.
Zhang, Ning; Milleret, Vincent; Thompson-Steckel, Greta; Huang, Ning-Ping; Vörös, János; Simona, Benjamin R; Ehrbar, Martin
2017-03-01
Three-dimensional (3D) cell culture models are gaining increasing interest for use in drug development pipelines due to their closer resemblance to human tissues. Hydrogels are the first-choice class of materials to recreate in vitro the 3D extra-cellular matrix (ECM) environment, important in studying cell-ECM interactions and 3D cellular organization and leading to physiologically relevant in vitro tissue models. Here we propose a novel hydrogel platform consisting of a 96-well plate containing pre-cast synthetic PEG-based hydrogels for the simple establishment of 3D (co-)culture systems without the need for the standard encapsulation method. The in-depth density gradient at the surface of the hydrogel promotes the infiltration of cells deposited on top of it. The ability to decouple hydrogel production and cell seeding is intended to simplify the use of hydrogel-based platforms and thus increase their accessibility. Using this platform, we established 3D cultures relevant for studying stem cell differentiation, angiogenesis, and neural and cancer models.
NASA Astrophysics Data System (ADS)
Nishiyama, Ryuichi; Miyamoto, Seigo; Okubo, Shuhei; Oshima, Hiromitsu; Maekawa, Tokumitsu
2017-03-01
We performed three-dimensional density modeling of Showa-Shinzan lava dome, Usu, Japan, by joint inversion of the gravity anomaly and recently obtained muon radiography data. Our multilayer emulsion muon detector significantly reduces the background noise in our measurements of the muon flux through the dome. The high-quality muon data enables us to more accurately reconstruct the density structure of the lava dome compared with our own previous work. We find that the lava dome consists of a cylindrical column of massive lava with a diameter of 300 m, and that there is no evidence of magma intrusion in the shallow part of the plateau, located east of the dome.
3-D capacitance density imaging system
Fasching, G.E.
1988-03-18
A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved. 7 figs.
Crowdsourcing Based 3d Modeling
NASA Astrophysics Data System (ADS)
Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.
2016-06-01
Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.
NASA Astrophysics Data System (ADS)
Götze, Hans-Jürgen; Choi, Sungchan
2015-04-01
We combined the global gravity dataset EGM2008 and a local terrestrial gravity data survey to conduct constrained 3-D crustal density modeling of a strato-volcanic complex and the surrounding area located close to the border of North Korea and China. The independent geophysical (seismic, seismology, geochemistry) and petrological constraints will be presented together with the preprocessing of data base by curvature analysis and Euler deconvolution. The multiple data base is used to assist a general interpretation of the investigated area, and the 3D density model (modelled by the in-house IGMAS+ software). Mt. Paekdu is characterized by a low of Bouguer anomaly of some -110 × 10-5 m/s2, which is caused by the combined gravity effects of (1) Moho depth of about 40 km, (2) a zone with both lower P-wave velocity and density than the surrounding, (3) low density volcanic rocks at the surface, and (4) the presence of a magma chamber that has not previously been identified. The terrestrial gravity field measured along the seismic profile shows a remarkable anomaly descending from the southern- to the northern flank of the Mt. Paekdu volcano, which should be a typical anomaly pattern generally observed over the active volcanic area in the world (e.g. the Yellow Stone volcano). The trend is interpreted to be caused by a prominent density difference between a serious of high density mid crustal sill beneath the southern flank and a predicted partial melted zone locating in the northern flank. With the help of several geoscientific observations (seismic, electromagnetic, gravity and geochemistry) and the 3D density model we conclude that a high density sill was formed in Pliocene and early Pleistocene after pre-shield plateau-forming eruption. Since the Pliocene, volcanic activity in the Mt. Paekdu region might be migrated from the southeastern of North Korea to the northwest, following the path of NW-SE-trending faults. Recently observed seismic tremors can be explained
NASA Astrophysics Data System (ADS)
Goetze, H. J.; Choi, S.
2014-12-01
In the presentation we get use of the global gravity dataset EGM2008 and a local terrestrial gravity data survey for a constrained 3-D crustal density modeling of a stratovolcano and its surrounding area located close to the border of North Korea and China. The independent geophysical (seismic, seismology, geochemistry) and petrological constraints will be presented together with the preprocessing of data base by curvature analysis and Euler deconvolution. The multiple data base is used to assist a general interpretation of the investigated area in time, and the 3D density model (modelled by the inhouse IGMAS+ software). Mt. Paekdu is characterized by a low of Bouguer anomaly of some -110 ´ 10-5 m/s2, which is caused by the combined gravity effects of (1) Moho depth of about 40 km, (2) a zone with both lower P-wave velocity and density than the surrounding, (3) low density volcanic rocks at the surface, and (4) the presence of a magma chamber that has not previously been identified. The terrestrial gravity field measured along the seismic profile shows a remarkable anomaly descending from the southern- to the northern flank of the Mt. Paekdu volcano, which should be a typical anomaly pattern generally obsered over the active volcanic area in the world (e.g. the Yellow Stone volcano). The trend is interpreted to be caused by a prominent density difference between a serious of high density mid crustal sill beneath the southern flank and a predicted partial melted zone locating in the northern flank. With the help of several geoscientific observations (seismic, electromagnetic, gravity and geochemistry) and the 3D density model we conclude that a high density sill was formed in Pliocene and early Pleistocene after pre-shield plateau-forming eruption. Since the Pliocene, volcanic activity in the Mt. Paekdu region might be migrated from the southeastern of North Korea to the northwest, following the path of NW-SE-trending faults. Recently observed seismic tremors can
NASA Astrophysics Data System (ADS)
Gómez Dacal, María Laura; Tocho, Claudia; Aragón, Eugenio; Sippel, Judith; Scheck-Wenderoth, Magdalena; Ponce, Alexis
2017-03-01
The North Patagonian Massif is an Argentinean plateau that has an average height of 1200 m and stands from 500 to 700 m above the neighboring areas. During Paleogene, it suffered a sudden uplift of more than 1200 m without noticeable internal deformation; thus, it could be related to isostatic disequilibrium. To shed light on the geodynamic development of the area it is necessary to characterize the present-day configuration of the crust. In this study, a lithospheric-scale 3D density model was developed by integrating all the available data of the area with the objective of assessing the depth of the crust-mantle discontinuity (Moho). During the construction of the initial density model, we tested different mantle density scenarios obtained using P- and S-wave velocities from tomographic models, converting them into densities and comparing the conversions with densities obtained from xenoliths. Below the North Patagonian Massif plateau, we have derived a Moho depth between 40 and 50 km which is from 2 to 7 km deeper than its surroundings. There is an evident correlation between high topography and deep Moho that would indicate isostatic equilibrium at present. The model results provide a new approach to the Moho depth in an area where there is no seismic constraining information about this discontinuity. In addition, we found a spatial correlation between the variation of the mean crustal density and the location of the Paleozoic terranes that were proposed to constitute the basement of Argentina.
Probability Density Function at the 3D Anderson Transition
NASA Astrophysics Data System (ADS)
Rodriguez, Alberto; Vasquez, Louella J.; Roemer, Rudolf
2009-03-01
The probability density function (PDF) for the wavefunction amplitudes is studied at the metal-insulator transition of the 3D Anderson model, for very large systems up to L^3=240^3. The implications of the multifractal nature of the state upon the PDF are presented in detail. A formal expression between the PDF and the singularity spectrum f(α) is given. The PDF can be easily used to carry out a numerical multifractal analysis and it appears as a valid alternative to the more usual approach based on the scaling law of the general inverse participation rations.
NASA Astrophysics Data System (ADS)
Lu, Yiyun; Qin, Yujie
2015-09-01
Numerical simulations of thermo-electromagnetic properties of a high temperature superconducting (HTS) bulk levitating over a permanent magnetic guideway (PMG) are performed by resorting to the quasistatic approximation of the H-method coupling with the classical description of the heat conduction equation. The numerical resolving codes are practiced with the help of the finite element program generation system (FEPG) platform using finite element method (FEM). The E-J power law is used to describe the electric current nonlinear characteristics of HTS bulk. The simulation results show that the heat conduction and the critical current density are tightly relative to the thermal effects of the HTS bulk over the PMG. The heat intensity which responds to the heat loss of the HTS bulk is mainly distributed at the two bottom-corners of the bulk sample.
3D Printing of Molecular Models
ERIC Educational Resources Information Center
Gardner, Adam; Olson, Arthur
2016-01-01
Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…
NASA Astrophysics Data System (ADS)
Choubey, Sanjay K.; Mariadasse, Richard; Rajendran, Santhosh; Jeyaraman, Jeyakanthan
2016-12-01
Overexpression of HDAC1, a member of Class I histone deacetylase is reported to be implicated in breast cancer. Epigenetic alteration in carcinogenesis has been the thrust of research for few decades. Increased deacetylation leads to accelerated cell proliferation, cell migration, angiogenesis and invasion. HDAC1 is pronounced as the potential drug target towards the treatment of breast cancer. In this study, the biochemical potential of 6-aminonicotinamide derivatives was rationalized. Five point pharmacophore model with one hydrogen-bond acceptor (A3), two hydrogen-bond donors (D5, D6), one ring (R12) and one hydrophobic group (H8) was developed using 6-aminonicotinamide derivatives. The pharmacophore hypothesis yielded a 3D-QSAR model with correlation-coefficient (r2 = 0.977, q2 = 0.801) and it was externally validated with (r2pred = 0.929, r2cv = 0.850 and r2m = 0.856) which reveals the statistical significance of the model having high predictive power. The model was then employed as 3D search query for virtual screening against compound libraries (Zinc, Maybridge, Enamine, Asinex, Toslab, LifeChem and Specs) in order to identify novel scaffolds which can be experimentally validated to design future drug molecule. Density Functional Theory (DFT) at B3LYP/6-31G* level was employed to explore the electronic features of the ligands involved in charge transfer reaction during receptor ligand interaction. Binding free energy (ΔGbind) calculation was done using MM/GBSA which defines the affinity of ligands towards the receptor.
3D Microperfusion Model of ADPKD
2015-10-01
Stratasys 3D printer . PDMS was cast in the negative molds in order to create permanent biocompatible plastic masters (SmoothCast 310). All goals of task...1 AWARD NUMBER: W81XWH-14-1-0304 TITLE: 3D Microperfusion Model of ADPKD PRINCIPAL INVESTIGATOR: David L. Kaplan CONTRACTING ORGANIZATION...ADDRESS. 1. REPORT DATE October 2015 2. REPORT TYPE Annual Report 3. DATES COVERED 15 Sep 2014 - 14 Sep 2015 4. TITLE AND SUBTITLE 3D
Voss, Clifford I.; Provost, A.M.
2002-01-01
SUTRA (Saturated-Unsaturated Transport) is a computer program that simulates fluid movement and the transport of either energy or dissolved substances in a subsurface environment. This upgraded version of SUTRA adds the capability for three-dimensional simulation to the former code (Voss, 1984), which allowed only two-dimensional simulation. The code employs a two- or three-dimensional finite-element and finite-difference method to approximate the governing equations that describe the two interdependent processes that are simulated: 1) fluid density-dependent saturated or unsaturated ground-water flow; and 2) either (a) transport of a solute in the ground water, in which the solute may be subject to: equilibrium adsorption on the porous matrix, and both first-order and zero-order production or decay; or (b) transport of thermal energy in the ground water and solid matrix of the aquifer. SUTRA may also be used to simulate simpler subsets of the above processes. A flow-direction-dependent dispersion process for anisotropic media is also provided by the code and is introduced in this report. As the primary calculated result, SUTRA provides fluid pressures and either solute concentrations or temperatures, as they vary with time, everywhere in the simulated subsurface system. SUTRA flow simulation may be employed for two-dimensional (2D) areal, cross sectional and three-dimensional (3D) modeling of saturated ground-water flow systems, and for cross sectional and 3D modeling of unsaturated zone flow. Solute-transport simulation using SUTRA may be employed to model natural or man-induced chemical-species transport including processes of solute sorption, production, and decay. For example, it may be applied to analyze ground-water contaminant transport problems and aquifer restoration designs. In addition, solute-transport simulation with SUTRA may be used for modeling of variable-density leachate movement, and for cross sectional modeling of saltwater intrusion in
BEAMS3D Neutral Beam Injection Model
Lazerson, Samuel
2014-04-14
With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.
Modeling cellular processes in 3D.
Mogilner, Alex; Odde, David
2011-12-01
Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated we must address the issue of modeling cellular processes in 3D. Here, we highlight recent advances related to 3D modeling in cell biology. While some processes require full 3D analysis, we suggest that others are more naturally described in 2D or 1D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling.
Choubey, Sanjay K; Jeyaraman, Jeyakanthan
2016-11-01
Deregulated epigenetic activity of Histone deacetylase 1 (HDAC1) in tumor development and carcinogenesis pronounces it as promising therapeutic target for cancer treatment. HDAC1 has recently captured the attention of researchers owing to its decisive role in multiple types of cancer. In the present study a multistep framework combining ligand based 3D-QSAR, molecular docking and Molecular Dynamics (MD) simulation studies were performed to explore potential compound with good HDAC1 binding affinity. Four different pharmacophore hypotheses Hypo1 (AADR), Hypo2 (AAAH), Hypo3 (AAAR) and Hypo4 (ADDR) were obtained. The hypothesis Hypo1 (AADR) with two hydrogen bond acceptors (A), one hydrogen bond donor (D) and one aromatics ring (R) was selected to build 3D-QSAR model on the basis of statistical parameter. The pharmacophore hypothesis produced a statistically significant QSAR model, with co-efficient of correlation r(2)=0.82 and cross validation correlation co-efficient q(2)=0.70. External validation result displays high predictive power with r(2) (o) value of 0.88 and r(2) (m) value of 0.58 to carry out further in silico studies. Virtual screening result shows ZINC70450932 as the most promising lead where HDAC1 interacts with residues Asp99, His178, Tyr204, Phe205 and Leu271 forming seven hydrogen bonds. A high docking score (-11.17kcal/mol) and lower docking energy -37.84kcal/mol) displays the binding efficiency of the ligand. Binding free energy calculation was done using MM/GBSA to access affinity of ligands towards protein. Density Functional Theory was employed to explore electronic features of the ligands describing intramolcular charge transfer reaction. Molecular dynamics simulation studies at 50ns display metal ion (Zn)-ligand interaction which is vital to inhibit the enzymatic activity of the protein.
NASA Astrophysics Data System (ADS)
Agliozzo, C.; Nikutta, R.; Pignata, G.; Phillips, N. M.; Ingallinera, A.; Buemi, C.; Umana, G.; Leto, P.; Trigilio, C.; Noriega-Crespo, A.; Paladini, R.; Bufano, F.; Cavallaro, F.
2017-04-01
We present new observations of the nebula around the Magellanic candidate Luminous Blue Variable S61. These comprise high-resolution data acquired with the Australia Telescope Compact Array (ATCA), the Atacama Large Millimetre/Submillimetre Array (ALMA), and the VLT Imager and Spectrometer for mid Infrared (VISIR) at the Very Large Telescope. The nebula was detected only in the radio, up to 17 GHz. The 17 GHz ATCA map, with 0.8 arcsec resolution, allowed a morphological comparison with the Hα Hubble Space Telescope image. The radio nebula resembles a spherical shell, as in the optical. The spectral index map indicates that the radio emission is due to free-free transitions in the ionized, optically thin gas, but there are hints of inhomogeneities. We present our new public code RHOCUBE to model 3D density distributions and determine via Bayesian inference the nebula's geometric parameters. We applied the code to model the electron density distribution in the S61 nebula. We found that different distributions fit the data, but all of them converge to the same ionized mass, ∼ 0.1 M⊙, which is an order of magnitude smaller than previous estimates. We show how the nebula models can be used to derive the mass-loss history with high-temporal resolution. The nebula was probably formed through stellar winds, rather than eruptions. From the ALMA and VISIR non-detections, plus the derived extinction map, we deduce that the infrared emission observed by space telescopes must arise from extended, diffuse dust within the ionized region.
A Hybrid 3D Indoor Space Model
NASA Astrophysics Data System (ADS)
Jamali, Ali; Rahman, Alias Abdul; Boguslawski, Pawel
2016-10-01
GIS integrates spatial information and spatial analysis. An important example of such integration is for emergency response which requires route planning inside and outside of a building. Route planning requires detailed information related to indoor and outdoor environment. Indoor navigation network models including Geometric Network Model (GNM), Navigable Space Model, sub-division model and regular-grid model lack indoor data sources and abstraction methods. In this paper, a hybrid indoor space model is proposed. In the proposed method, 3D modeling of indoor navigation network is based on surveying control points and it is less dependent on the 3D geometrical building model. This research proposes a method of indoor space modeling for the buildings which do not have proper 2D/3D geometrical models or they lack semantic or topological information. The proposed hybrid model consists of topological, geometrical and semantical space.
3D Imaging of Density Gradients Using Plenoptic BOS
NASA Astrophysics Data System (ADS)
Klemkowsky, Jenna; Clifford, Chris; Fahringer, Timothy; Thurow, Brian
2016-11-01
The combination of background oriented schlieren (BOS) and a plenoptic camera, termed Plenoptic BOS, is explored through two proof-of-concept experiments. The motivation of this work is to provide a 3D technique capable of observing density disturbances. BOS uses the relationship between density and refractive index gradients to observe an apparent shift in a patterned background through image comparison. Conventional BOS systems acquire a single line-of-sight measurement, and require complex configurations to obtain 3D measurements, which are not always conducive to experimental facilities. Plenoptic BOS exploits the plenoptic camera's ability to generate multiple perspective views and refocused images from a single raw plenoptic image during post processing. Using such capabilities, with regards to BOS, provides multiple line-of-sight measurements of density disturbances, which can be collectively used to generate refocused BOS images. Such refocused images allow the position of density disturbances to be qualitatively and quantitatively determined. The image that provides the sharpest density gradient signature corresponds to a specific depth. These results offer motivation to advance Plenoptic BOS with an ultimate goal of reconstructing a 3D density field.
High density 3D printed microfluidic valves, pumps, and multiplexers.
Gong, Hua; Woolley, Adam T; Nordin, Gregory P
2016-07-07
In this paper we demonstrate that 3D printing with a digital light processor stereolithographic (DLP-SLA) 3D printer can be used to create high density microfluidic devices with active components such as valves and pumps. Leveraging our previous work on optical formulation of inexpensive resins (RSC Adv., 2015, 5, 106621), we demonstrate valves with only 10% of the volume of our original 3D printed valves (Biomicrofluidics, 2015, 9, 016501), which were already the smallest that have been reported. Moreover, we show that incorporation of a thermal initiator in the resin formulation along with a post-print bake can dramatically improve the durability of 3D printed valves up to 1 million actuations. Using two valves and a valve-like displacement chamber (DC), we also create compact 3D printed pumps. With 5-phase actuation and a 15 ms phase interval, we obtain pump flow rates as high as 40 μL min(-1). We also characterize maximum pump back pressure (i.e., maximum pressure the pump can work against), maximum flow rate (flow rate when there is zero back pressure), and flow rate as a function of the height of the pump outlet. We further demonstrate combining 5 valves and one DC to create a 3-to-2 multiplexer with integrated pump. In addition to serial multiplexing, we also show that the device can operate as a mixer. Importantly, we illustrate the rapid fabrication and test cycles that 3D printing makes possible by implementing a new multiplexer design to improve mixing, and fabricate and test it within one day.
3D Modeling Engine Representation Summary Report
Steven Prescott; Ramprasad Sampath; Curtis Smith; Timothy Yang
2014-09-01
Computers have been used for 3D modeling and simulation, but only recently have computational resources been able to give realistic results in a reasonable time frame for large complex models. This summary report addressed the methods, techniques, and resources used to develop a 3D modeling engine to represent risk analysis simulation for advanced small modular reactor structures and components. The simulations done for this evaluation were focused on external events, specifically tsunami floods, for a hypothetical nuclear power facility on a coastline.
BEAMS3D Neutral Beam Injection Model
NASA Astrophysics Data System (ADS)
McMillan, Matthew; Lazerson, Samuel A.
2014-09-01
With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.
ERIC Educational Resources Information Center
Bradley, Joan; Farland-Smith, Donna
2010-01-01
Allowing a student to "see" through touch what other students see through a microscope can be a challenging task. Therefore, author Joan Bradley created three-dimensional (3-D) models with one student's visual impairment in mind. They are meant to benefit all students and can be used to teach common high school biology topics, including the…
Constructing Arguments with 3-D Printed Models
ERIC Educational Resources Information Center
McConnell, William; Dickerson, Daniel
2017-01-01
In this article, the authors describe a fourth-grade lesson where 3-D printing technologies were not only a stimulus for engagement but also served as a modeling tool providing meaningful learning opportunities. Specifically, fourth-grade students construct an argument that animals' external structures function to support survival in a particular…
Model-based 3D SAR reconstruction
NASA Astrophysics Data System (ADS)
Knight, Chad; Gunther, Jake; Moon, Todd
2014-06-01
Three dimensional scene reconstruction with synthetic aperture radar (SAR) is desirable for target recognition and improved scene interpretability. The vertical aperture, which is critical to reconstruct 3D SAR scenes, is almost always sparsely sampled due to practical limitations, which creates an underdetermined problem. This papers explores 3D scene reconstruction using a convex model-based approach. The approach developed is demonstrated on 3D scenes, but can be extended to SAR reconstruction of sparsely sampled signals in the spatial and, or, frequency domains. The model-based approach enables knowledge-aided image formation (KAIF) by incorporating spatial, aspect, and sparsity magnitude terms into the image reconstruction. The incorporation of these terms, which are based on prior scene knowledge, will demonstrate improved results compared to traditional image formation algorithms. The SAR image formation problem is formulated as a second order cone program (SOCP) and the results are demonstrated on 3D scenes using simulated data and data from the GOTCHA data collect.1 The model-based results are contrasted against traditional backprojected images.
NASA Astrophysics Data System (ADS)
Zhirov, Dmitry; Glaznev, Victor; Zhirova, Anzhela
2015-04-01
The area considered is located in the central part of the Kola Peninsula and represents a part of tectonically compound terrane, consisting of the AR, PR and PZ geological structures of the East of Fennoscandian shield (NW Russia). The Khibiny massif (PZ) intrudes the Archean complexes (the northern contact) and the Paleoproterozoic volcanogenic-sedimentary Imandra-Varzuga complex (southern and SW-contacts). Moreover this district includes several PGE-bearing layered mafic-ultramafic intrusions, which are related with Neo Archaean ÷ Paleoproterozoic rifting and plume activity (LIP). According to the previous conceptions the shape of the Khibiny multiphase pluton is close to the asymmetrical lopolit, characterized by the steep eastern and northern contacts and the gentler south and west contacts. The results of the 3D seismic and density modelling showed two correlated local high-velocity and high-density anomalies with dimensions of 5 x 10 km approximately in central part of the Khibiny massif (1) and close to contact with Imandra-Varzuga sedimentary-volcanic complex (2). The first anomaly cannot be explained by "substance" factor only (titanomagnetite-apatite ore bodies), as it has a structural disconformity to general structure of the pluton. According to the numerous instrumental measurements the actual values of stress are significantly greater than values calculated by weight of rocks. It is important the main normal axis of compressive stress has usually quasi-horizontal position. Thus, the zone of abnormally high tectonic stress is the best explanation for this anomaly. The quick isostatic uplift of the massif after the digression of the last glacier, during which the rocks did not have time to unload, can be a source of the increased horizontal stress. Based on the properties of typical rocks and geological structure of the region the second anomaly is well interpreted by large layered intrusion of Fedorova-Pana type, subsurface of which is cut by Khibiny
Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing
ERIC Educational Resources Information Center
Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.
2016-01-01
Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…
Debris Dispersion Model Using Java 3D
NASA Technical Reports Server (NTRS)
Thirumalainambi, Rajkumar; Bardina, Jorge
2004-01-01
This paper describes web based simulation of Shuttle launch operations and debris dispersion. Java 3D graphics provides geometric and visual content with suitable mathematical model and behaviors of Shuttle launch. Because the model is so heterogeneous and interrelated with various factors, 3D graphics combined with physical models provides mechanisms to understand the complexity of launch and range operations. The main focus in the modeling and simulation covers orbital dynamics and range safety. Range safety areas include destruct limit lines, telemetry and tracking and population risk near range. If there is an explosion of Shuttle during launch, debris dispersion is explained. The shuttle launch and range operations in this paper are discussed based on the operations from Kennedy Space Center, Florida, USA.
Illustrative visualization of 3D city models
NASA Astrophysics Data System (ADS)
Doellner, Juergen; Buchholz, Henrik; Nienhaus, Marc; Kirsch, Florian
2005-03-01
This paper presents an illustrative visualization technique that provides expressive representations of large-scale 3D city models, inspired by the tradition of artistic and cartographic visualizations typically found in bird"s-eye view and panoramic maps. We define a collection of city model components and a real-time multi-pass rendering algorithm that achieves comprehensible, abstract 3D city model depictions based on edge enhancement, color-based and shadow-based depth cues, and procedural facade texturing. Illustrative visualization provides an effective visual interface to urban spatial information and associated thematic information complementing visual interfaces based on the Virtual Reality paradigm, offering a huge potential for graphics design. Primary application areas include city and landscape planning, cartoon worlds in computer games, and tourist information systems.
Density-tapered spiral arrays for ultrasound 3-D imaging.
Ramalli, Alessandro; Boni, Enrico; Savoia, Alessandro Stuart; Tortoli, Piero
2015-08-01
The current high interest in 3-D ultrasound imaging is pushing the development of 2-D probes with a challenging number of active elements. The most popular approach to limit this number is the sparse array technique, which designs the array layout by means of complex optimization algorithms. These algorithms are typically constrained by a few steering conditions, and, as such, cannot guarantee uniform side-lobe performance at all angles. The performance may be improved by the ungridded extensions of the sparse array technique, but this result is achieved at the expense of a further complication of the optimization process. In this paper, a method to design the layout of large circular arrays with a limited number of elements according to Fermat's spiral seeds and spatial density modulation is proposed and shown to be suitable for application to 3-D ultrasound imaging. This deterministic, aperiodic, and balanced positioning procedure attempts to guarantee uniform performance over a wide range of steering angles. The capabilities of the method are demonstrated by simulating and comparing the performance of spiral and dense arrays. A good trade-off for small vessel imaging is found, e.g., in the 60λ spiral array with 1.0λ elements and Blackman density tapering window. Here, the grating lobe level is -16 dB, the lateral resolution is lower than 6λ the depth of field is 120λ and, the average contrast is 10.3 dB, while the sensitivity remains in a 5 dB range for a wide selection of steering angles. The simulation results may represent a reference guide to the design of spiral sparse array probes for different application fields.
3-D model-based vehicle tracking.
Lou, Jianguang; Tan, Tieniu; Hu, Weiming; Yang, Hao; Maybank, Steven J
2005-10-01
This paper aims at tracking vehicles from monocular intensity image sequences and presents an efficient and robust approach to three-dimensional (3-D) model-based vehicle tracking. Under the weak perspective assumption and the ground-plane constraint, the movements of model projection in the two-dimensional image plane can be decomposed into two motions: translation and rotation. They are the results of the corresponding movements of 3-D translation on the ground plane (GP) and rotation around the normal of the GP, which can be determined separately. A new metric based on point-to-line segment distance is proposed to evaluate the similarity between an image region and an instantiation of a 3-D vehicle model under a given pose. Based on this, we provide an efficient pose refinement method to refine the vehicle's pose parameters. An improved EKF is also proposed to track and to predict vehicle motion with a precise kinematics model. Experimental results with both indoor and outdoor data show that the algorithm obtains desirable performance even under severe occlusion and clutter.
Sensing and compressing 3-D models
Krumm, J.
1998-02-01
The goal of this research project was to create a passive and robust computer vision system for producing 3-D computer models of arbitrary scenes. Although the authors were unsuccessful in achieving the overall goal, several components of this research have shown significant potential. Of particular interest is the application of parametric eigenspace methods for planar pose measurement of partially occluded objects in gray-level images. The techniques presented provide a simple, accurate, and robust solution to the planar pose measurement problem. In addition, the representational efficiency of eigenspace methods used with gray-level features were successfully extended to binary features, which are less sensitive to illumination changes. The results of this research are presented in two papers that were written during the course of this project. The papers are included in sections 2 and 3. The first section of this report summarizes the 3-D modeling efforts.
NASA Astrophysics Data System (ADS)
Mitra, Sunanda
1992-11-01
Different approaches to computational stereo to represent human stereo vision have been developed over the past two decades. The Marr-Poggio theory of human stereo vision is probably the most widely accepted model of the human stereo vision. However, recently developed motion stereo models which use a sequence of images taken by either a moving camera or a moving object provide an alternative method of achieving multi-resolution matching without the use of Laplacian of Gaussian operators. While using image sequences, the baseline between two camera positions for a image pair is changed for the subsequent image pair so as to achieve different resolution for each image pair. Having different baselines also avoids the inherent occlusion problem in stereo vision models. The advantage of using multi-resolution images acquired by camera positioned at different baselines over those acquired by LOG operators is that one does not have to encounter spurious edges often created by zero-crossings in the LOG operated images. Therefore in designing a computer vision system, a motion stereo model is more appropriate than a stereo vision model. However, in some applications where only a stereo pair of images are available, recovery of 3D surfaces of natural scenes are possible in a computationally efficient manner by using cepstrum matching and regularization techniques. Section 2 of this paper describes a motion stereo model using multi-scale cepstrum matching for the detection of disparity between image pairs in a sequence of images and subsequent recovery of 3D surfaces from depth-map obtained by a non convergent triangulation technique. Section 3 presents a 3D surface recovery technique from a stereo pair using cepstrum matching for disparity detection and cubic B-splines for surface smoothing. Section 4 contains the results of 3D surface recovery using both of the techniques mentioned above. Section 5 discusses the merit of 2D cepstrum matching and cubic B
NASA Astrophysics Data System (ADS)
Berchtold, Waldemar; Schäfer, Marcel; Rettig, Michael; Steinebach, Martin
2014-02-01
3D models and applications are of utmost interest in both science and industry. With the increment of their usage, their number and thereby the challenge to correctly identify them increases. Content identification is commonly done by cryptographic hashes. However, they fail as a solution in application scenarios such as computer aided design (CAD), scientific visualization or video games, because even the smallest alteration of the 3D model, e.g. conversion or compression operations, massively changes the cryptographic hash as well. Therefore, this work presents a robust hashing algorithm for 3D mesh data. The algorithm applies several different bit extraction methods. They are built to resist desired alterations of the model as well as malicious attacks intending to prevent correct allocation. The different bit extraction methods are tested against each other and, as far as possible, the hashing algorithm is compared to the state of the art. The parameters tested are robustness, security and runtime performance as well as False Acceptance Rate (FAR) and False Rejection Rate (FRR), also the probability calculation of hash collision is included. The introduced hashing algorithm is kept adaptive e.g. in hash length, to serve as a proper tool for all applications in practice.
Fallon FORGE 3D Geologic Model
Doug Blankenship
2016-03-01
An x,y,z scattered data file for the 3D geologic model of the Fallon FORGE site. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.
Inferential modeling of 3D chromatin structure.
Wang, Siyu; Xu, Jinbo; Zeng, Jianyang
2015-04-30
For eukaryotic cells, the biological processes involving regulatory DNA elements play an important role in cell cycle. Understanding 3D spatial arrangements of chromosomes and revealing long-range chromatin interactions are critical to decipher these biological processes. In recent years, chromosome conformation capture (3C) related techniques have been developed to measure the interaction frequencies between long-range genome loci, which have provided a great opportunity to decode the 3D organization of the genome. In this paper, we develop a new Bayesian framework to derive the 3D architecture of a chromosome from 3C-based data. By modeling each chromosome as a polymer chain, we define the conformational energy based on our current knowledge on polymer physics and use it as prior information in the Bayesian framework. We also propose an expectation-maximization (EM) based algorithm to estimate the unknown parameters of the Bayesian model and infer an ensemble of chromatin structures based on interaction frequency data. We have validated our Bayesian inference approach through cross-validation and verified the computed chromatin conformations using the geometric constraints derived from fluorescence in situ hybridization (FISH) experiments. We have further confirmed the inferred chromatin structures using the known genetic interactions derived from other studies in the literature. Our test results have indicated that our Bayesian framework can compute an accurate ensemble of 3D chromatin conformations that best interpret the distance constraints derived from 3C-based data and also agree with other sources of geometric constraints derived from experimental evidence in the previous studies. The source code of our approach can be found in https://github.com/wangsy11/InfMod3DGen.
A 3-D shape model of Interamnia
NASA Astrophysics Data System (ADS)
Sato, Isao
2015-08-01
A 3-D shape model of the sixth largest of the main belt asteroids, (704) Interamnia, is presented. The model is reproduced from its two stellar occultation observations and six lightcurves between 1969 and 2011. The first stellar occultation was the occultation of TYC 234500183 on 1996 December 17 observed from 13 sites in the USA. An elliptical cross section of (344.6±9.6km)×(306.2±9.1km), for position angle P=73.4±12.5 was fitted. The lightcurve around the occultation shows that the peak-to-peak amplitude was 0.04 mag. and the occultation phase was just before the minimum. The second stellar occultation was the occultation of HIP 036189 on 2003 March 23 observed from 39 sites in Japan and Hawaii. An elliptical cross section of (349.8±0.9km)×(303.7±1.7km), for position angle P=86.0±1.1 was fitted. A companion of 8.5 mag. of the occulted star was discovered whose separation is 12±2 mas (milli-arcseconds), P=148±11 . A combined analysis of rotational lightcurves and occultation chords can return more information than can be obtained with either technique alone. From follow-up photometric observations of the asteroid between 2003 and 2011, its rotation period is determined to be 8.728967167±0.00000007 hours, which is accurate enough to fix the rotation phases at other occultation events. The derived north pole is λ2000=259±8, β2000=-50±5 (retrograde rotation); the lengths of the three principal axes are 2a=361.8±2.8km, 2b=324.4±5.0km, 2c=297.3±3.5km, and the mean diameter is D=326.8±3.0km. Supposing the mass of Interamnia as (3.5±0.9)×10-11 solar masses, the density is then ρ=3.8±1.0 g cm-3.
Meng, Da; Zheng, Bin; Lin, Guang; Sushko, Maria L.
2014-08-29
We have developed efficient numerical algorithms for the solution of 3D steady-state Poisson-Nernst-Planck equations (PNP) with excess chemical potentials described by the classical density functional theory (cDFT). The coupled PNP equations are discretized by finite difference scheme and solved iteratively by Gummel method with relaxation. The Nernst-Planck equations are transformed into Laplace equations through the Slotboom transformation. Algebraic multigrid method is then applied to efficiently solve the Poisson equation and the transformed Nernst-Planck equations. A novel strategy for calculating excess chemical potentials through fast Fourier transforms is proposed which reduces computational complexity from O(N2) to O(NlogN) where N is the number of grid points. Integrals involving Dirac delta function are evaluated directly by coordinate transformation which yields more accurate result compared to applying numerical quadrature to an approximated delta function. Numerical results for ion and electron transport in solid electrolyte for Li ion batteries are shown to be in good agreement with the experimental data and the results from previous studies.
3D Model of Surfactant Replacement Therapy
NASA Astrophysics Data System (ADS)
Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel
2015-11-01
Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.
MOSSFRAC: An anisotropic 3D fracture model
Moss, W C; Levatin, J L
2006-08-14
Despite the intense effort for nearly half a century to construct detailed numerical models of plastic flow and plastic damage accumulation, models for describing fracture, an equally important damage mechanism still cannot describe basic fracture phenomena. Typical fracture models set the stress tensor to zero for tensile fracture and set the deviatoric stress tensor to zero for compressive fracture. One consequence is that the simple case of the tensile fracture of a cylinder under combined compressive radial and tensile axial loads is not modeled correctly. The experimental result is a cylinder that can support compressive radial loads, but no axial load, whereas, the typical numerical result is a cylinder with all stresses equal to zero. This incorrect modeling of fracture locally also has a global effect, because material that is fracturing produces stress release waves, which propagate from the fracture and influence the surrounding material. Consequently, it would be useful to have a model that can describe the stress relief and the resulting anisotropy due to fracture. MOSSFRAC is a material model that simulates three-dimensional tensile and shear fracture in initially isotropic elastic-plastic materials, although its framework is also amenable to initially anisotropic materials. It differs from other models by accounting for the effects of cracks on the constitutive response of the material, so that the previously described experiment, as well as complicated fracture scenarios are simulated more accurately. The model is implemented currently in the LLNL hydrocodes DYNA3D, PARADYN, and ALE3D. The purpose of this technical note is to present a complete qualitative description of the model and quantitative descriptions of salient features.
3D Stratigraphic Modeling of Central Aachen
NASA Astrophysics Data System (ADS)
Dong, M.; Neukum, C.; Azzam, R.; Hu, H.
2010-05-01
Since 1980s, advanced computer hardware and software technologies, as well as multidisciplinary research have provided possibilities to develop advanced three dimensional (3D) simulation software for geosciences application. Some countries, such as USA1) and Canada2) 3), have built up regional 3D geological models based on archival geological data. Such models have played huge roles in engineering geology2), hydrogeology2) 3), geothermal industry1) and so on. In cooperating with the Municipality of Aachen, the Department of Engineering Geology of RWTH Aachen University have built up a computer-based 3D stratigraphic model of 50 meter' depth for the center of Aachen, which is a 5 km by 7 km geologically complex area. The uncorrelated data from multi-resources, discontinuous nature and unconformable connection of the units are main challenges for geological modeling in this area. The reliability of 3D geological models largely depends on the quality and quantity of data. Existing 1D and 2D geological data were collected, including 1) approximately 6970 borehole data of different depth compiled in Microsoft Access database and MapInfo database; 2) a Digital Elevation Model (DEM); 3) geological cross sections; and 4) stratigraphic maps in 1m, 2m and 5m depth. Since acquired data are of variable origins, they were managed step by step. The main processes are described below: 1) Typing errors of borehole data were identified and the corrected data were exported to Variowin2.2 to distinguish duplicate points; 2) The surface elevation of borehole data was compared to the DEM, and differences larger than 3m were eliminated. Moreover, where elevation data missed, it was read from the DEM; 3) Considerable data were collected from municipal constructions, such as residential buildings, factories, and roads. Therefore, many boreholes are spatially clustered, and only one or two representative points were picked out in such areas; After above procedures, 5839 boreholes with -x
SB3D User Manual, Santa Barbara 3D Radiative Transfer Model
O'Hirok, William
1999-01-01
SB3D is a three-dimensional atmospheric and oceanic radiative transfer model for the Solar spectrum. The microphysics employed in the model are the same as used in the model SBDART. It is assumed that the user of SB3D is familiar with SBDART and IDL. SB3D differs from SBDART in that computations are conducted on media in three-dimensions rather than a single column (i.e. plane-parallel), and a stochastic method (Monte Carlo) is employed instead of a numerical approach (Discrete Ordinates) for estimating a solution to the radiative transfer equation. Because of these two differences between SB3D and SBDART, the input and running of SB3D is more unwieldy and requires compromises between model performance and computational expense. Hence, there is no one correct method for running the model and the user must develop a sense to the proper input and configuration of the model.
3D MHD Models of Active Region Loops
NASA Technical Reports Server (NTRS)
Ofman, Leon
2004-01-01
Present imaging and spectroscopic observations of active region loops allow to determine many physical parameters of the coronal loops, such as the density, temperature, velocity of flows in loops, and the magnetic field. However, due to projection effects many of these parameters remain ambiguous. Three dimensional imaging in EUV by the STEREO spacecraft will help to resolve the projection ambiguities, and the observations could be used to setup 3D MHD models of active region loops to study the dynamics and stability of active regions. Here the results of 3D MHD models of active region loops are presented, and the progress towards more realistic 3D MHD models of active regions. In particular the effects of impulsive events on the excitation of active region loop oscillations, and the generation, propagations and reflection of EIT waves are shown. It is shown how 3D MHD models together with 3D EUV observations can be used as a diagnostic tool for active region loop physical parameters, and to advance the science of the sources of solar coronal activity.
Reservoir geology using 3D modelling tools
Dubrule, O.; Samson, P.; Segonds, D.
1996-12-31
The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological {open_quotes}objects{close_quotes} with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.
Reservoir geology using 3D modelling tools
Dubrule, O. ); Samson, P. ); Segonds, D. )
1996-01-01
The last decade has seen tremendous developments in the area of quantitative geological modelling. These developments have a significant impact on the current practice of constructing reservoir models. A structural model can first be constructed on the basis of depth-converted structural interpretations produced on a seismic interpretation workstation. Surfaces and faults can be represented as geological objects, and interactively modified. Once the tectonic framework has been obtained, intermediate stratigraphic surfaces can be constructed between the main structural surfaces. Within each layer, reservoir attributes can be represented using various techniques. Examples show how the distribution of different facies (i.e. from fine to coarse grain) can be represented, or how various depositional units (for instance channels, crevasses and lobes in a turbidite setting) can be modelled as geological [open quotes]objects[close quotes] with complex geometries. Elf Aquitaine, in close co-operation with the GOCAD project in Nancy (France) is investigating how geological models can be made more realistic by developing interactive functionalities. Examples show that, contrary to standard deterministic or geostatistical modelling techniques (which tend to be difficult to control) the use of new 3D tools allows the geologist to interactively modify geological surfaces (including faults) or volumetric properties. Thus, the sensitivity of various economic parameters (oil in place, connected volumes, reserves) to major geological uncertainties can be evaluated. It is argued that future breakthroughs in geological modelling techniques are likely to happen in the development of interactive approaches rather than in the research of new mathematical algorithms.
Scalable 3D GIS environment managed by 3D-XML-based modeling
NASA Astrophysics Data System (ADS)
Shi, Beiqi; Rui, Jianxun; Chen, Neng
2008-10-01
Nowadays, the namely 3D GIS technologies become a key factor in establishing and maintaining large-scale 3D geoinformation services. However, with the rapidly increasing size and complexity of the 3D models being acquired, a pressing needed for suitable data management solutions has become apparent. This paper outlines that storage and exchange of geospatial data between databases and different front ends like 3D models, GIS or internet browsers require a standardized format which is capable to represent instances of 3D GIS models, to minimize loss of information during data transfer and to reduce interface development efforts. After a review of previous methods for spatial 3D data management, a universal lightweight XML-based format for quick and easy sharing of 3D GIS data is presented. 3D data management based on XML is a solution meeting the requirements as stated, which can provide an efficient means for opening a new standard way to create an arbitrary data structure and share it over the Internet. To manage reality-based 3D models, this paper uses 3DXML produced by Dassault Systemes. 3DXML uses opening XML schemas to communicate product geometry, structure and graphical display properties. It can be read, written and enriched by standard tools; and allows users to add extensions based on their own specific requirements. The paper concludes with the presentation of projects from application areas which will benefit from the functionality presented above.
Automated modeling of RNA 3D structure.
Rother, Kristian; Rother, Magdalena; Skiba, Pawel; Bujnicki, Janusz M
2014-01-01
This chapter gives an overview over the current methods for automated modeling of RNA structures, with emphasis on template-based methods. The currently used approaches to RNA modeling are presented with a side view on the protein world, where many similar ideas have been used. Two main programs for automated template-based modeling are presented: ModeRNA assembling structures from fragments and MacroMoleculeBuilder performing a simulation to satisfy spatial restraints. Both approaches have in common that they require an alignment of the target sequence to a known RNA structure that is used as a modeling template. As a way to find promising template structures and to align the target and template sequences, we propose a pipeline combining the ParAlign and Infernal programs on RNA family data from Rfam. We also briefly summarize template-free methods for RNA 3D structure prediction. Typically, RNA structures generated by automated modeling methods require local or global optimization. Thus, we also discuss methods that can be used for local or global refinement of RNA structures.
NASA Astrophysics Data System (ADS)
Ciardi, A.; Chittenden, J. P.; Lebedev, S. V.; Bland, S. N.; Jennings, C. A.
2003-10-01
X-pinch produced plasmas are an intense source of soft x-rays generated by passing a large, fast rising current through two or more thin metallic wires crossed in the shape of <93>an "X". During the current pulse, the plasma is pinched at the crossing point where a dense Z-pinch plasma column develops. Further compression produces micron sized x-ray hot spots with energy densities in excess of ˜10^24 eV cm-3. We present 3D resistive magnetohydrodynamic simulations of two- and four-wire X-pinches for a variety of wire materials. The simulations naturally follow the evolution of the X-pinch: jet-like structures on axis, formation of a Z-pinch and its subsequent rapid evolution and production of x-ray hot spots. The effects of wire material and wire number are studied with particular consideration to the relationship between the magnetic confinement and radiative cooling mechanisms, which ultimately determine the complex behaviour of the X-pinch.
Regional geothermal 3D modelling in Denmark
NASA Astrophysics Data System (ADS)
Poulsen, S. E.; Balling, N.; Bording, T. S.; Nielsen, S. B.
2012-04-01
In the pursuit of sustainable and low carbon emission energy sources, increased global attention has been given to the exploration and exploitation of geothermal resources within recent decades. In 2009 a national multi-disciplinary geothermal research project was established. As a significant part of this project, 3D temperature modelling is to be carried out, with special emphasis on temperatures of potential geothermal reservoirs in the Danish area. The Danish subsurface encompasses low enthalpy geothermal reservoirs of mainly Triassic and Jurassic age. Geothermal plants at Amager (Copenhagen) and Thisted (Northern Jutland) have the capacity of supplying the district heating network with up to 14 MW and 7 MW, respectively, by withdrawing warm pore water from the Gassum (Lower Jurassic/Upper Triassic) and Bunter (Lower Triassic) sandstone reservoirs, respectively. Explorative studies of the subsurface temperature regime typically are based on a combination of observations and modelling. In this study, the open-source groundwater modelling code MODFLOW is modified to simulate the subsurface temperature distribution in three dimensions by taking advantage of the mathematical similarity between saturated groundwater flow (Darcy flow) and heat conduction. A numerical model of the subsurface geology in Denmark is built and parameterized from lithological information derived from joint interpretation of seismic surveys and borehole information. Boundary conditions are constructed from knowledge about the heat flow from the Earth's interior and the shallow ground temperature. Matrix thermal conductivities have been estimated from analysis of high-resolution temperature logs measured in deep wells and porosity-depth relations are included using interpreted main lithologies. The model takes into account the dependency of temperature and pressure on thermal conductivity. Moreover, a transient model based correction of the paleoclimatic thermal disturbance caused by the
3D Modelling of Kizildag Monument
NASA Astrophysics Data System (ADS)
Karauguz, Güngör; Kalayci, İbrahim; Öğütcü, Sermet
2016-10-01
The most important cultural property that the nations possess is their historical accumulation, and bringing these to light, taking measures to preserve them or at least maintain the continuity of transferring them to next generations by means of recent technic and technology, ought to be the business of present generations. Although, nowadays, intensive documentation and archiving studies are done by means of classical techniques, besides studies towards preserving historical objects, modelling one-to-one or scaled modelling were not possible until recently. Computing devices and the on-going reflection of this, which is acknowledged as digital technology, is widely used in many areas and makes it possible to document and archive historical works. Even virtual forms in quantitative environments can be transferred to next generations in a scaled and one-to-one modelled way. Within this scope, every single artefact categorization belonging to any era or civilization present in our country can be considered in separate study areas. Furthermore, any work or likewise can be evaluated in separate categories. Also, it is possible to construct travelable virtual 3D museums that make it possible to visit these artefacts. Under the auspices of these technologies, it is quite possible to construct single virtual indoor museums or also, at the final stage, a 3D travelable open-air museum, a platform or more precisely, to establish a data system that spreads all over the country on a broad spectrum. With a long-termed, significant and extensive study and a substantial organization, such a data system can be established, which also serves as a serious infrastructure for alternative tourism possibilities. Located beside a stepped altar and right above the Kizildag IV inscription, the offering pot is destructed and rolled away a few meters to the south slope of the mould. Every time visiting these artefacts with our undergraduate students, unfortunately, we observe more
3-D physical models of amitosis (cytokinesis).
Cheng, Kang; Zou, Changhua
2005-01-01
Based on Newton's laws, extended Coulomb's law and published biological data, we develop our 3-D physical models of natural and normal amitosis (cytokinesis), for prokaryotes (bacterial cells) in M phase. We propose following hypotheses: Chromosome rings exclusion: No normally and naturally replicated chromosome rings (RCR) can occupy the same prokaryote, a bacterial cell. The RCR produce spontaneous and strong electromagnetic fields (EMF), that can be alternated environmentally, in protoplasm and cortex. The EMF is approximately a repulsive quasi-static electric (slowly variant and mostly electric) field (EF). The EF forces between the RCR are strong enough, and orderly accumulate contractile proteins that divide the procaryotes in the cell cortex of division plane or directly split the cell compartment envelope longitudinally. The radial component of the EF forces could also make furrows or cleavages of procaryotes. The EF distribution controls the protoplasm partition and completes the amitosis (cytokinesis). After the cytokinesis, the spontaneous and strong EF disappear because the net charge accumulation becomes weak, in the protoplasm. The exclusion is because the two sets of informative objects (RCR) have identical DNA codes information and they are electro magnetically identical, therefore they repulse from each other. We also compare divisions among eukaryotes, prokaryotes, mitochondria and chloroplasts and propose our hypothesis: The principles of our models are applied to divisions of mitochondria and chloroplasts of eucaryotes too because these division mechanisms are closer than others in a view of physics. Though we develop our model using 1 division plane (i.e., 1 cell is divided into 2 cells) as an example, the principle of our model is applied to the cases with multiple division planes (i.e., 1 cell is divided into multiple cells) too.
Multi-view and 3D deformable part models.
Pepik, Bojan; Stark, Michael; Gehler, Peter; Schiele, Bernt
2015-11-01
As objects are inherently 3D, they have been modeled in 3D in the early days of computer vision. Due to the ambiguities arising from mapping 2D features to 3D models, 3D object representations have been neglected and 2D feature-based models are the predominant paradigm in object detection nowadays. While such models have achieved outstanding bounding box detection performance, they come with limited expressiveness, as they are clearly limited in their capability of reasoning about 3D shape or viewpoints. In this work, we bring the worlds of 3D and 2D object representations closer, by building an object detector which leverages the expressive power of 3D object representations while at the same time can be robustly matched to image evidence. To that end, we gradually extend the successful deformable part model [1] to include viewpoint information and part-level 3D geometry information, resulting in several different models with different level of expressiveness. We end up with a 3D object model, consisting of multiple object parts represented in 3D and a continuous appearance model. We experimentally verify that our models, while providing richer object hypotheses than the 2D object models, provide consistently better joint object localization and viewpoint estimation than the state-of-the-art multi-view and 3D object detectors on various benchmarks (KITTI [2] , 3D object classes [3] , Pascal3D+ [4] , Pascal VOC 2007 [5] , EPFL multi-view cars[6] ).
James E. Fisher; Cliff B. Davis; Walter L. Weaver
2005-06-01
A compressor model has been implemented in the RELAP5-3D© code. The model is similar to that of the existing pump model, and performs the same function on a gas as the pump performs on a single-phase or two-phase fluid. The compressor component consists of an inlet junction and a control volume, and optionally, an outlet junction. This feature permits cascading compressor components in series. The equations describing the physics of the compressor are derived from first principles. These equations are used to obtain the head, the torque, and the energy dissipation. Compressor performance is specified using a map, specific to the design of the machine, in terms of the ratio of outlet-to-inlet total (or stagnation) pressure and adiabatic efficiency as functions of rotational velocity and flow rate. The input quantities are specified in terms of dimensionless variables, which are corrected to stagnation density and stagnation sound speed. A small correction was formulated for the input of efficiency to account for the error introduced by assumption of constant density when integrating the momentum equation. Comparison of the results of steady-state operation of the compressor model to those of the MIT design calculation showed excellent agreement for both pressure ratio and power.
Modeling Extracellular Matrix Reorganization in 3D Environments
Harjanto, Dewi; Zaman, Muhammad H.
2013-01-01
Extracellular matrix (ECM) remodeling is a key physiological process that occurs in a number of contexts, including cell migration, and is especially important for cellular form and function in three-dimensional (3D) matrices. However, there have been few attempts to computationally model how cells modify their environment in a manner that accounts for both cellular properties and the architecture of the surrounding ECM. To this end, we have developed and validated a novel model to simulate matrix remodeling that explicitly defines cells in a 3D collagenous matrix. In our simulation, cells can degrade, deposit, or pull on local fibers, depending on the fiber density around each cell. The cells can also move within the 3D matrix. Different cell phenotypes can be modeled by varying key cellular parameters. Using the model we have studied how two model cancer cell lines, of differing invasiveness, modify matrices with varying fiber density in their vicinity by tracking the metric of fraction of matrix occupied by fibers. Our results quantitatively demonstrate that in low density environments, cells deposit more collagen to uniformly increase fibril fraction. On the other hand, in higher density environments, the less invasive model cell line reduced the fibril fraction as compared to the highly invasive phenotype. These results show good qualitative and quantitative agreement with existing experimental literature. Our simulation is therefore able to function as a novel platform to provide new insights into the clinically relevant and physiologically critical process of matrix remodeling by helping identify critical parameters that dictate cellular behavior in complex native-like environments. PMID:23341900
3D-GNOME: an integrated web service for structural modeling of the 3D genome.
Szalaj, Przemyslaw; Michalski, Paul J; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz
2016-07-08
Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/.
3D-GNOME: an integrated web service for structural modeling of the 3D genome
Szalaj, Przemyslaw; Michalski, Paul J.; Wróblewski, Przemysław; Tang, Zhonghui; Kadlof, Michal; Mazzocco, Giovanni; Ruan, Yijun; Plewczynski, Dariusz
2016-01-01
Recent advances in high-throughput chromosome conformation capture (3C) technology, such as Hi-C and ChIA-PET, have demonstrated the importance of 3D genome organization in development, cell differentiation and transcriptional regulation. There is now a widespread need for computational tools to generate and analyze 3D structural models from 3C data. Here we introduce our 3D GeNOme Modeling Engine (3D-GNOME), a web service which generates 3D structures from 3C data and provides tools to visually inspect and annotate the resulting structures, in addition to a variety of statistical plots and heatmaps which characterize the selected genomic region. Users submit a bedpe (paired-end BED format) file containing the locations and strengths of long range contact points, and 3D-GNOME simulates the structure and provides a convenient user interface for further analysis. Alternatively, a user may generate structures using published ChIA-PET data for the GM12878 cell line by simply specifying a genomic region of interest. 3D-GNOME is freely available at http://3dgnome.cent.uw.edu.pl/. PMID:27185892
3D fast wavelet network model-assisted 3D face recognition
NASA Astrophysics Data System (ADS)
Said, Salwa; Jemai, Olfa; Zaied, Mourad; Ben Amar, Chokri
2015-12-01
In last years, the emergence of 3D shape in face recognition is due to its robustness to pose and illumination changes. These attractive benefits are not all the challenges to achieve satisfactory recognition rate. Other challenges such as facial expressions and computing time of matching algorithms remain to be explored. In this context, we propose our 3D face recognition approach using 3D wavelet networks. Our approach contains two stages: learning stage and recognition stage. For the training we propose a novel algorithm based on 3D fast wavelet transform. From 3D coordinates of the face (x,y,z), we proceed to voxelization to get a 3D volume which will be decomposed by 3D fast wavelet transform and modeled after that with a wavelet network, then their associated weights are considered as vector features to represent each training face . For the recognition stage, an unknown identity face is projected on all the training WN to obtain a new vector features after every projection. A similarity score is computed between the old and the obtained vector features. To show the efficiency of our approach, experimental results were performed on all the FRGC v.2 benchmark.
Anatomy-based 3D skeleton extraction from femur model.
Gharenazifam, Mina; Arbabi, Ehsan
2014-11-01
Using 3D models of bones can highly improve accuracy and reliability of orthopaedic evaluation. However, it may impose excessive computational load. This article proposes a fully automatic method for extracting a compact model of the femur from its 3D model. The proposed method works by extracting a 3D skeleton based on the clinical parameters of the femur. Therefore, in addition to summarizing a 3D model of the bone, the extracted skeleton would preserve important clinical and anatomical information. The proposed method has been applied on 3D models of 10 femurs and the results have been evaluated for different resolutions of data.
3D PIC Modeling of Microcavity Discharge
NASA Astrophysics Data System (ADS)
Hopkins, Matthew; Manginell, Ronald; Moore, Christopher; Yee, Benjamin; Moorman, Matthew
2015-09-01
We present a number of techniques and challenges in simulating the transient behavior of a microcavity discharge. Our microcavities are typically cylindrical with diameters approximately 50 - 100 μm, heights of 50 - 200 μm, pressure near atmospheric, and operate at a few hundred volts. We employ a fully kinetic simulation methodology, the Particle-in-Cell (PIC) method, with interparticle collisions handled via methods based on direct simulation Monte Carlo (DSMC). In particular, we explicitly include kinetic electrons. Some of the challenges we encounter include variations in number densities, external circuit coupling, and time step resolution constraints. By employing dynamic particle weighting (particle weights vary over time by species and location) we can mitigate some of the challenges modeling systems with 107 variations in number densities. Smoothing mechanisms have been used to attempt to mitigate external circuit response. We perform our simulations on hundreds or thousands of processing cores to accommodate the computational work inherent in using relatively small time step sizes (e.g., 50 fs for a 100 ns calculation). In addition, particle weighting issues inherent to three-dimensional low temperature plasma systems will be mentioned. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy's NNSA under Contract DE-AC04-94AL85000.
Real time 3-D electron density reconstruction over Europe by using TaD profiler
NASA Astrophysics Data System (ADS)
Kutiev, I.; Marinov, P.; Belehaki, A.
2016-07-01
The TaD (Topside Sounder Model (TSM)-assisted Digisonde) profiler, developed on the basis of the Topside Sounder Model (TSM), provides vertical electron density profiles (EDP) over Digisondes from the bottomside ionosphere up to Global Navigation Satellite Systems (GNSS) orbit heights. TaD EDP uses the Digisonde bottomside profile and extends it above the F2 layer peak, representing O+ distribution by α-Chapman formula and H+ distribution by a single exponent. Topside scale height HT and transition height hT are taken from TSM, while the plasmasphere scale height Hp is defined as a function of HT. All profile parameters are adjusted to the current conditions comparing the profile integral with the GNSS vertical total electron content (TEC) retrieved from the European Reference Frame (EUREF) maps. To expand to three dimensions (3-D), European maps of foF2 and hmF2 are produced, based on Digisonde data, with spatial resolution 1°×1° in latitude and longitude, and TaD profiles are calculated at each grid node. Electron density (ED) at any point of the 3-D space is obtained by linear interpolation of TaD parameters between neighbor nodes. Samples of two dimensional (2-D) electron density distribution (EDD) at different cross sections of the 3-D space between 200 km and 1150 km over the mapping area are presented, along with distributions of the electron density along various raypaths of GNSS signals. The modeled 3-D EDD is compared with vertical (vTEC) and slant (sTEC) TEC parameters calculated from individual GNSS receivers. The model error (relative deviation of model from the data), based on 6780 data values, is 10% for sTEC and 6% for vTEC.
3-D capacitance density imaging of fluidized bed
Fasching, George E.
1990-01-01
A three-dimensional capacitance density imaging of a gasified bed or the like in a containment vessel is achieved using a plurality of electrodes provided circumferentially about the bed in levels and along the bed in channels. The electrodes are individually and selectively excited electrically at each level to produce a plurality of current flux field patterns generated in the bed at each level. The current flux field patterns are suitably sensed and a density pattern of the bed at each level determined. By combining the determined density patterns at each level, a three-dimensional density image of the bed is achieved.
3D Modeling Techniques for Print and Digital Media
NASA Astrophysics Data System (ADS)
Stephens, Megan Ashley
In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.
RESEARCH NOTE: Empirical 3-D basis for the internal density of a planet
NASA Astrophysics Data System (ADS)
Chambat, Frédéric; Ricard, Yanick
2005-07-01
Various papers have discussed the forward relationships between internal density anomalies of a planet and its external gravity field. The inverse modelling, i.e. finding the internal density anomalies from the external potential is known to be highly non-unique. In this research note, we explain how a 3-D basis can be built to represent the internal density variations that includes a subset that explicitly spans the kernel of the forward gravity operator. This representation clarifies the origin of the non-uniqueness of the gravity sources and implies the existence of a natural minimal norm inverse for the internal density. We illustrate these ideas by comparing a tomographic model of the mantle to the minimal norm density.
Examination of 1D Solar Cell Model Limitations Using 3D SPICE Modeling: Preprint
McMahon, W. E.; Olson, J. M.; Geisz, J. F.; Friedman, D. J.
2012-06-01
To examine the limitations of one-dimensional (1D) solar cell modeling, 3D SPICE-based modeling is used to examine in detail the validity of the 1D assumptions as a function of sheet resistance for a model cell. The internal voltages and current densities produced by this modeling give additional insight into the differences between the 1D and 3D models.
Elastic wave modelling in 3D heterogeneous media: 3D grid method
NASA Astrophysics Data System (ADS)
Jianfeng, Zhang; Tielin, Liu
2002-09-01
We present a new numerical technique for elastic wave modelling in 3D heterogeneous media with surface topography, which is called the 3D grid method in this paper. This work is an extension of the 2D grid method that models P-SV wave propagation in 2D heterogeneous media. Similar to the finite-element method in the discretization of a numerical mesh, the proposed scheme is flexible in incorporating surface topography and curved interfaces; moreover it satisfies the free-surface boundary conditions of 3D topography naturally. The algorithm, developed from a parsimonious staggered-grid scheme, solves the problem using integral equilibrium around each node, instead of satisfying elastodynamic differential equations at each node as in the conventional finite-difference method. The computational cost and memory requirements for the proposed scheme are approximately the same as those used by the same order finite-difference method. In this paper, a mixed tetrahedral and parallelepiped grid method is presented; and the numerical dispersion and stability criteria on the tetrahedral grid method and parallelepiped grid method are discussed in detail. The proposed scheme is successfully tested against an analytical solution for the 3D Lamb problem and a solution of the boundary method for the diffraction of a hemispherical crater. Moreover, examples of surface-wave propagation in an elastic half-space with a semi-cylindrical trench on the surface and 3D plane-layered model are presented.
The 3D rocket combustor acoustics model
NASA Technical Reports Server (NTRS)
Priem, Richard J.; Breisacher, Kevin J.
1992-01-01
The theory and procedures for determining the characteristics of pressure oscillations in rocket engines with prescribed burning rate oscillations are presented. Analyses including radial and hub baffles and absorbers can be performed in one, two, and three dimensions. Pressure and velocity oscillations calculated using this procedure are presented for the SSME to show the influence of baffles and absorbers on the burning rate oscillations required to achieve neutral stability. Comparisons are made between the results obtained utilizing 1-D, 2-D, and 3-D assumptions with regards to capturing the physical phenomena of interest and computational requirements.
3D modeling based on CityEngine
NASA Astrophysics Data System (ADS)
Jia, Guangyin; Liao, Kaiju
2017-03-01
Currently, there are many 3D modeling softwares, like 3DMAX, AUTOCAD, and more populous BIM softwares represented by REVIT. CityEngine modeling software introduced in this paper can fully utilize the existing GIS data and combine other built models to make 3D modeling on internal and external part of buildings in a rapid and batch manner, so as to improve the 3D modeling efficiency.
NASA Astrophysics Data System (ADS)
Mamtimin, B.; Behrendt, T.; Badawy, M. M.; Wagner, T.; Qi, Y.; Wu, Z.; Meixner, F. X.
2015-01-01
We report on MAX-DOAS observations of NO2 over an oasis-ecotone-desert ecosystem in NW China. There, local ambient NO2 concentrations originate from enhanced biogenic NO emission of intensively managed soils. Our target oasis "Milan" is located at the southern edge of the Taklimakan desert, very remote and well isolated from other potential anthropogenic and biogenic NOx sources. Four observation sites for MAX-DOAS measurements were selected, at the oasis centre, downwind and upwind of the oasis, and in the desert. Biogenic NO emissions in terms of (i) soil moisture and (ii) soil temperature of Milan oasis (iii) different land-cover type sub-units (cotton, Jujube trees, cotton/Jujube mixture, desert) were quantified by laboratory incubation of corresponding soil samples. Net potential NO fluxes were up-scaled to oasis scale by areal distribution and classification of land-cover types derived from satellite images using GIS techniques. A Lagrangian dispersion model (LASAT, Lagrangian Simulation of Aerosol Transport) was used to calculate the dispersion of soil emitted NO into the atmospheric boundary layer over Milan oasis. Three-dimensional (3-D) NO concentrations (30 m horizontal resolution) have been converted to 3-D NO2 concentrations, assuming photostationary state conditions. NO2 column densities were simulated by suitable vertical integration of modelled 3-D NO2 concentrations at those downwind and upwind locations, where the MAX-DOAS measurements were performed. Downwind-upwind differences (a direct measure of Milan oasis' contribution to the areal increase of ambient NO2 concentration) of measured and simulated slant (as well as vertical) NO2 column densities show excellent agreement. This agreement is considered as the first successful attempt to prove the validity of the chosen approach to up-scale laboratory-derived biogenic NO fluxes to ecosystem field conditions, i.e. from the spatial scale of a soil sample (cm2) to the size of an entire agricultural
Single-Tooth Modeling for 3D Dental Model
Yuan, Tianran; Liao, Wenhe; Dai, Ning; Cheng, Xiaosheng; Yu, Qing
2010-01-01
An integrated single-tooth modeling scheme is proposed for the 3D dental model acquired by optical digitizers. The cores of the modeling scheme are fusion regions extraction, single tooth shape restoration, and single tooth separation. According to the “valley” shape-like characters of the fusion regions between two adjoining teeth, the regions of the 3D dental model are analyzed and classified based on the minimum curvatures of the surface. The single tooth shape is restored according to the bioinformation along the hole boundary, which is generated after the fusion region being removed. By using the extracted boundary from the blending regions between the teeth and soft tissues as reference, the teeth can be separated from the 3D dental model one by one correctly. Experimental results show that the proposed method can achieve satisfying modeling results with high-degree approximation of the real tooth and meet the requirements of clinical oral medicine. PMID:20689718
3D tumor models: history, advances and future perspectives.
Benien, Parul; Swami, Archana
2014-05-01
Evaluation of cancer therapeutics by utilizing 3D tumor models, before clinical studies, could be more advantageous than conventional 2D tumor models (monolayer cultures). The 3D systems mimic the tumor microenvironment more closely than 2D systems. The following review discusses the various 3D tumor models present today with the advantages and limitations of each. 3D tumor models replicate the elements of a tumor microenvironment such as hypoxia, necrosis, angiogenesis and cell adhesion. The review introduces application of techniques such as microfluidics, imaging and tissue engineering to improve the 3D tumor models. Despite their tremendous potential to better screen chemotherapeutics, 3D tumor models still have a long way to go before they are used commonly as in vitro tumor models in pharmaceutical industrial research.
Modeling tree crown dynamics with 3D partial differential equations
Beyer, Robert; Letort, Véronique; Cournède, Paul-Henry
2014-01-01
We characterize a tree's spatial foliage distribution by the local leaf area density. Considering this spatially continuous variable allows to describe the spatiotemporal evolution of the tree crown by means of 3D partial differential equations. These offer a framework to rigorously take locally and adaptively acting effects into account, notably the growth toward light. Biomass production through photosynthesis and the allocation to foliage and wood are readily included in this model framework. The system of equations stands out due to its inherent dynamic property of self-organization and spontaneous adaptation, generating complex behavior from even only a few parameters. The density-based approach yields spatially structured tree crowns without relying on detailed geometry. We present the methodological fundamentals of such a modeling approach and discuss further prospects and applications. PMID:25101095
Investigation of surface wave amplitudes in 3-D velocity and 3-D Q models
NASA Astrophysics Data System (ADS)
Ruan, Y.; Zhou, Y.
2010-12-01
It has been long recognized that seismic amplitudes depend on both wave speed structures and anelasticity (Q) structures. However, the effects of lateral heterogeneities in wave speed and Q structures on seismic amplitudes has not been well understood. We investigate the effects of 3-D wave speed and 3-D anelasticity (Q) structures on surface-wave amplitudes based upon wave propagation simulations of twelve globally-distributed earthquakes and 801 stations in Earth models with and without lateral heterogeneities in wave speed and anelasticity using a Spectral Element Method (SEM). Our tomographic-like 3-D Q models are converted from a velocity model S20RTS using a set of reasonable mineralogical parameters, assuming lateral perturbations in both velocity and Q are due to temperature perturbations. Surface-wave amplitude variations of SEM seismograms are measured in the period range of 50--200 s using boxcar taper, cosine taper and Slepian multi-tapers. We calculate ray-theoretical predictions of surface-wave amplitude perturbations due to elastic focusing, attenuation, and anelastic focusing which respectively depend upon the second spatial derivative (''roughness'') of perturbations in phase velocity, 1/Q, and the roughness of perturbations in 1/Q. Both numerical experiments and theoretical calculations show that (1) for short-period (~ 50 s) surface waves, the effects of amplitude attenuation due to 3-D Q structures are comparable with elastic focusing effects due to 3-D wave speed structures; and (2) for long-period (> 100 s) surface waves, the effects of attenuation become much weaker than elastic focusing; and (3) elastic focusing effects are correlated with anelastic focusing at all periods due to the correlation between velocity and Q models; and (4) amplitude perturbations are depend on measurement techniques and therefore cannot be directly compared with ray-theoretical predictions because ray theory does not account for the effects of measurement
3D Face modeling using the multi-deformable method.
Hwang, Jinkyu; Yu, Sunjin; Kim, Joongrock; Lee, Sangyoun
2012-09-25
In this paper, we focus on the problem of the accuracy performance of 3D face modeling techniques using corresponding features in multiple views, which is quite sensitive to feature extraction errors. To solve the problem, we adopt a statistical model-based 3D face modeling approach in a mirror system consisting of two mirrors and a camera. The overall procedure of our 3D facial modeling method has two primary steps: 3D facial shape estimation using a multiple 3D face deformable model and texture mapping using seamless cloning that is a type of gradient-domain blending. To evaluate our method's performance, we generate 3D faces of 30 individuals and then carry out two tests: accuracy test and robustness test. Our method shows not only highly accurate 3D face shape results when compared with the ground truth, but also robustness to feature extraction errors. Moreover, 3D face rendering results intuitively show that our method is more robust to feature extraction errors than other 3D face modeling methods. An additional contribution of our method is that a wide range of face textures can be acquired by the mirror system. By using this texture map, we generate realistic 3D face for individuals at the end of the paper.
Modeling and Processing of Continuous 3D Elastic Wavefield Data
NASA Astrophysics Data System (ADS)
Milkereit, B.; Bohlen, T.
2001-12-01
Continuous seismic wavefields are excited by earthquake clustering, induced seismicity in reservoirs, and mining. In hydrocarbon reservoirs, for example, pore pressure changes and fluid flow (mass transfer) will cause incremental deviatoric stresses sufficient to trigger and sustain seismic activity. Here we address three aspects of seismic wavefields in three-dimensional heterogeneous media triggered by distributed sources in space and time: forward modeling, multichannel data processing, and source location imaging. A power law distribution of seismic sources (such as the Gutenberg-Richter law) is used for the modeling of viscoelastic/elastic wave propagation through a realistic earth model. 3D modeling provides new insight in the interaction of multi-source wavefields and the role of scale-dependend elastic model parameters on transmitted and reflected/back-scattered wavefields. There exists a strong correlation between the spatial properties of the compressional, shear wave and density perturbations and the lateral correlation length of the resulting reflected or transmitted seismic wavefields. Modeling is based on the implementation of 3D elastic/viscoelastic FD codes on massive parallel and/or distributed computing resources using MPI (message passing interface). For parallelization, large grid 3D earth models are decomposed into subvolume processing elements whereby each processing element is updating the wavefield within its portion of the grid. Processing of continuous seismic wavefields excited by multiple distributed sources is based on a combination of crosscorrelated or slowness-transformed array data and Kirchhoff or reverse time migration for source location or source volume imaging. The appearance of slowness in both migration and array data processing suggests the possibility of combining them into a single process. In order to place further constraints on the migration, the directivity properties of 3-component receiver arrays can be included in
NASA Astrophysics Data System (ADS)
Maesano, Francesco E.; D'Ambrogi, Chiara
2017-02-01
We present Vel-IO 3D, a tool for 3D velocity model creation and time-depth conversion, as part of a workflow for 3D model building. The workflow addresses the management of large subsurface dataset, mainly seismic lines and well logs, and the construction of a 3D velocity model able to describe the variation of the velocity parameters related to strong facies and thickness variability and to high structural complexity. Although it is applicable in many geological contexts (e.g. foreland basins, large intermountain basins), it is particularly suitable in wide flat regions, where subsurface structures have no surface expression. The Vel-IO 3D tool is composed by three scripts, written in Python 2.7.11, that automate i) the 3D instantaneous velocity model building, ii) the velocity model optimization, iii) the time-depth conversion. They determine a 3D geological model that is consistent with the primary geological constraints (e.g. depth of the markers on wells). The proposed workflow and the Vel-IO 3D tool have been tested, during the EU funded Project GeoMol, by the construction of the 3D geological model of a flat region, 5700 km2 in area, located in the central part of the Po Plain. The final 3D model showed the efficiency of the workflow and Vel-IO 3D tool in the management of large amount of data both in time and depth domain. A 4 layer-cake velocity model has been applied to a several thousand (5000-13,000 m) thick succession, with 15 horizons from Triassic up to Pleistocene, complicated by a Mesozoic extensional tectonics and by buried thrusts related to Southern Alps and Northern Apennines.
Comparing a quasi-3D to a full 3D nearshore circulation model: SHORECIRC and ROMS
Haas, K.A.; Warner, J.C.
2009-01-01
Predictions of nearshore and surf zone processes are important for determining coastal circulation, impacts of storms, navigation, and recreational safety. Numerical modeling of these systems facilitates advancements in our understanding of coastal changes and can provide predictive capabilities for resource managers. There exists many nearshore coastal circulation models, however they are mostly limited or typically only applied as depth integrated models. SHORECIRC is an established surf zone circulation model that is quasi-3D to allow the effect of the variability in the vertical structure of the currents while maintaining the computational advantage of a 2DH model. Here we compare SHORECIRC to ROMS, a fully 3D ocean circulation model which now includes a three dimensional formulation for the wave-driven flows. We compare the models with three different test applications for: (i) spectral waves approaching a plane beach with an oblique angle of incidence; (ii) monochromatic waves driving longshore currents in a laboratory basin; and (iii) monochromatic waves on a barred beach with rip channels in a laboratory basin. Results identify that the models are very similar for the depth integrated flows and qualitatively consistent for the vertically varying components. The differences are primarily the result of the vertically varying radiation stress utilized by ROMS and the utilization of long wave theory for the radiation stress formulation in vertical varying momentum balance by SHORECIRC. The quasi-3D model is faster, however the applicability of the fully 3D model allows it to extend over a broader range of processes, temporal, and spatial scales. ?? 2008 Elsevier Ltd.
The 3D Stacking Bipolar RRAM for High Density
2011-06-01
ICF International, Fairfax, Virginia, USA. (email: robinson.pino@icfi.com) Copyright (c) 2012 IEEE. Personal use of this material is permitted. However...density as D = 1/(A · T ), where, A and T represent a single memory cell area and memory layer thickness, respectively. Accordingly, we have D3D−conv...SM in the worst-case condition. -- 4x4 8x8 16x16 32x32 64x64 0 20 40 60 80 100 R on =5 kΩ R on =10 kΩ R on =5 kΩ R on =10 kΩ Array size P o rt io
a Fast Method for Measuring the Similarity Between 3d Model and 3d Point Cloud
NASA Astrophysics Data System (ADS)
Zhang, Zongliang; Li, Jonathan; Li, Xin; Lin, Yangbin; Zhang, Shanxin; Wang, Cheng
2016-06-01
This paper proposes a fast method for measuring the partial Similarity between 3D Model and 3D point Cloud (SimMC). It is crucial to measure SimMC for many point cloud-related applications such as 3D object retrieval and inverse procedural modelling. In our proposed method, the surface area of model and the Distance from Model to point Cloud (DistMC) are exploited as measurements to calculate SimMC. Here, DistMC is defined as the weighted distance of the distances between points sampled from model and point cloud. Similarly, Distance from point Cloud to Model (DistCM) is defined as the average distance of the distances between points in point cloud and model. In order to reduce huge computational burdens brought by calculation of DistCM in some traditional methods, we define SimMC as the ratio of weighted surface area of model to DistMC. Compared to those traditional SimMC measuring methods that are only able to measure global similarity, our method is capable of measuring partial similarity by employing distance-weighted strategy. Moreover, our method is able to be faster than other partial similarity assessment methods. We demonstrate the superiority of our method both on synthetic data and laser scanning data.
Visualization of 3D Geological Models on Google Earth
NASA Astrophysics Data System (ADS)
Choi, Y.; Um, J.; Park, M.
2013-05-01
Google Earth combines satellite imagery, aerial photography, thematic maps and various data sets to make a three-dimensional (3D) interactive image of the world. Currently, Google Earth is a popular visualization tool in a variety of fields and plays an increasingly important role not only for private users in daily life, but also for scientists, practitioners, policymakers and stakeholders in research and application. In this study, a method to visualize 3D geological models on Google Earth is presented. COLLAborative Design Activity (COLLADA, an open standard XML schema for establishing interactive 3D applications) was used to represent different 3D geological models such as borehole, fence section, surface-based 3D volume and 3D grid by triangle meshes (a set of triangles connected by their common edges or corners). In addition, we designed Keyhole Markup Language (KML, the XML-based scripting language of Google Earth) codes to import the COLLADA files into the 3D render window of Google Earth. The method was applied to the Grosmont formation in Alberta, Canada. The application showed that the combination of COLLADA and KML enables Google Earth to effectively visualize 3D geological structures and properties.; Visualization of the (a) boreholes, (b) fence sections, (c) 3D volume model and (d) 3D grid model of Grossmont formation on Google Earth
Towards High Density 3-D Memory in Diamond
NASA Astrophysics Data System (ADS)
Henshaw, Jacob; Dhomkar, Siddharth; Meriles, Carlos; Jayakumar, Harishankar
The nitrogen-vacancy (NV) center in diamond is presently the focus of widespread attention for applications ranging from quantum information processing to nanoscale metrology. Of great utility is the ability to optically initialize the NV charge state, which has an immediate impact on the center's light emission properties. Here, we use two-color microscopy in NV-rich, type-1b diamond to demonstrate fluorescence-encoded long-term storage of classical information. As a proof of principle, we write, reset, and rewrite various patterns with 2-D binary bit density comparable to present DVD-ROM technology. The strong fluorescence signal originating from the diffraction-limited bit volume allows us to transition from binary to multi-valued encoding, which translates into a significant storage capacity boost. Finally, we show that our technique preserves information written on different planes of the diamond crystal and thus serves as a platform for three-dimensional storage. Substantial enhancement in the bit density could be achieved with the aid of super resolution microscopy techniques already employed to discriminate between NVs with sub-diffraction, nanometer accuracy, a regime where the storage capacity could exceed 1017 bytes/cm3 We acknowledge support from the National Science Foundation through Grant NSF-1314205.
A 3D Geometry Model Search Engine to Support Learning
ERIC Educational Resources Information Center
Tam, Gary K. L.; Lau, Rynson W. H.; Zhao, Jianmin
2009-01-01
Due to the popularity of 3D graphics in animation and games, usage of 3D geometry deformable models increases dramatically. Despite their growing importance, these models are difficult and time consuming to build. A distance learning system for the construction of these models could greatly facilitate students to learn and practice at different…
[Potentials of 3D-modeling in reconstructive orbital surgery].
Butsan, S B; Khokhlachev, S B; Ĭigitaliev, Sh N; Zaiakin, Ia A
2012-01-01
A technique of bone reconstructive surgery of orbitofrontonasomalar region using 3D-modeling based on multispiral computer tomography data is presented. The efficacy of intraoperative templates created using 3D-modeling was showed for harvesting and modeling of bone calvarial autografts. The steps of reconstructive procedure are explained in details for repair of medial and inferior orbital fractures.
Computational modeling of RNA 3D structures and interactions.
Dawson, Wayne K; Bujnicki, Janusz M
2016-04-01
RNA molecules have key functions in cellular processes beyond being carriers of protein-coding information. These functions are often dependent on the ability to form complex three-dimensional (3D) structures. However, experimental determination of RNA 3D structures is difficult, which has prompted the development of computational methods for structure prediction from sequence. Recent progress in 3D structure modeling of RNA and emerging approaches for predicting RNA interactions with ions, ligands and proteins have been stimulated by successes in protein 3D structure modeling.
NASA Astrophysics Data System (ADS)
Mamtimin, B.; Behrendt, T.; Badawy, M. M.; Wagner, T.; Qi, Y.; Wu, Z.; Meixner, F. X.
2014-07-01
We report on MAX-DOAS observations of NO2 over an oasis-ecotone-desert ecosystem in NW-China. There, local ambient NO2 concentrations originate from enhanced biogenic NO emission of intensively managed soils. Our target oasis "Milan" is located at the southern edge of the Taklimakan desert, very remote and well isolated from other potential anthropogenic and biogenic NOx sources. Four observation sites for MAX-DOAS measurements were selected, at the oasis center, downwind and upwind of the oasis, and in the desert. Biogenic NO emissions in terms of (i) soil moisture and (ii) soil temperature of Milan oasis' (iii) different land-cover type sub-units (cotton, Jujube trees, cotton/Jujube mixture, desert) were quantified by laboratory incubation of corresponding soil samples. Net potential NO fluxes were up-scaled to oasis scale by areal distribution and classification of land-cover types derived from satellite images using GIS techniques. A Lagrangian dispersion model (LASAT, Lagrangian Simulation of Aerosol-Transport) was used to calculate the dispersion of soil emitted NO into the atmospheric boundary layer over Milan oasis. Three dimensional NO concentrations (30 m horizontal resolution) have been converted to 3-D NO2 concentrations, assuming photostationary state conditions. NO2 column densities were simulated by suitable vertical integration of modeled 3-D NO2 concentrations at those downwind and upwind locations, where the MAX-DOAS measurements were performed. Downwind-upwind differences (a direct measure of Milan oasis' contribution to the areal increase of ambient NO2 concentration) of measured and simulated slant (as well as vertical) NO2 column densities show excellent agreement. This agreement is considered as the first successful attempt to prove the validity of the chosen approach to up-scale laboratory derived biogenic NO fluxes to ecosystem field conditions, i.e. from the spatial scale of a soil sample (cm2) to the size of an entire agricultural
San Francisco Bay test case for 3-D model verification
Smith, Peter E.
1994-01-01
This paper describes a field test case for 3-D hydrodynamic model verification using data from Carquinez Strait in San Francisco Bay, California. It will be disseminated by the ASCE Computational Hydraulics task committee on 3-D Free-Surface Hydrodynamic Model Verifications during late 1994.
An Automatic Registration Algorithm for 3D Maxillofacial Model
NASA Astrophysics Data System (ADS)
Qiu, Luwen; Zhou, Zhongwei; Guo, Jixiang; Lv, Jiancheng
2016-09-01
3D image registration aims at aligning two 3D data sets in a common coordinate system, which has been widely used in computer vision, pattern recognition and computer assisted surgery. One challenging problem in 3D registration is that point-wise correspondences between two point sets are often unknown apriori. In this work, we develop an automatic algorithm for 3D maxillofacial models registration including facial surface model and skull model. Our proposed registration algorithm can achieve a good alignment result between partial and whole maxillofacial model in spite of ambiguous matching, which has a potential application in the oral and maxillofacial reparative and reconstructive surgery. The proposed algorithm includes three steps: (1) 3D-SIFT features extraction and FPFH descriptors construction; (2) feature matching using SAC-IA; (3) coarse rigid alignment and refinement by ICP. Experiments on facial surfaces and mandible skull models demonstrate the efficiency and robustness of our algorithm.
Simulation of 3D Global Wave Propagation Through Geodynamic Models
NASA Astrophysics Data System (ADS)
Schuberth, B.; Piazzoni, A.; Bunge, H.; Igel, H.; Steinle-Neumann, G.
2005-12-01
This project aims at a better understanding of the forward problem of global 3D wave propagation. We use the spectral element program "SPECFEM3D" (Komatitsch and Tromp, 2002a,b) with varying input models of seismic velocities derived from mantle convection simulations (Bunge et al., 2002). The purpose of this approach is to obtain seismic velocity models independently from seismological studies. In this way one can test the effects of varying parameters of the mantle convection models on the seismic wave field. In order to obtain the seismic velocities from the temperature field of the geodynamical simulations we follow a mineral physics approach. Assuming a certain mantle composition (e.g. pyrolite with CMASF composition) we compute the stable phases for each depth (i.e. pressure) and temperature by system Gibbs free energy minimization. Elastic moduli and density are calculated from the equations of state of the stable mineral phases. For this we use a mineral physics database derived from calorimetric experiments (enthalphy and entropy of formation, heat capacity) and EOS parameters.
Interactive mapping on 3-D terrain models
NASA Astrophysics Data System (ADS)
Bernardin, T.; Cowgill, E.; Gold, R.; Hamann, B.; Kreylos, O.; Schmitt, A.
2006-10-01
We present an interactive, real-time mapping system for use with digital elevation models and remotely sensed multispectral imagery that aids geoscientists in the creation and interpretation of geologic/neotectonic maps at length scales of 10 m to 1000 km. Our system provides a terrain visualization of the surface of the Earth or other terrestrial planets by displaying a virtual terrain model generated from a digital elevation model overlain by a color texture generated from orthophotos or satellite imagery. We use a quadtree-based, multiresolution display method to render in real time high-resolution virtual terrain models that span large spatial regions. The system allows users to measure the orientations of geologic surfaces and record their observations by drawing lines directly on the virtual terrain model. In addition, interpretive surfaces can be generated from these drawings and displayed to facilitate understanding of the three-dimensional geometry of geologic surfaces. The main strength of our system is the combination of real-time rendering and interactive mapping performed directly on the virtual terrain model with the ability to navigate the scene while changing viewpoints arbitrarily during mapping. User studies and comparisons with commercially available mapping software show that our system improves mapping accuracy and efficiency and also yields observations that cannot be made with existing systems.
Impact of Building Heights on 3d Urban Density Estimation from Spaceborne Stereo Imagery
NASA Astrophysics Data System (ADS)
Peng, Feifei; Gong, Jianya; Wang, Le; Wu, Huayi; Yang, Jiansi
2016-06-01
In urban planning and design applications, visualization of built up areas in three dimensions (3D) is critical for understanding building density, but the accurate building heights required for 3D density calculation are not always available. To solve this problem, spaceborne stereo imagery is often used to estimate building heights; however estimated building heights might include errors. These errors vary between local areas within a study area and related to the heights of the building themselves, distorting 3D density estimation. The impact of building height accuracy on 3D density estimation must be determined across and within a study area. In our research, accurate planar information from city authorities is used during 3D density estimation as reference data, to avoid the errors inherent to planar information extracted from remotely sensed imagery. Our experimental results show that underestimation of building heights is correlated to underestimation of the Floor Area Ratio (FAR). In local areas, experimental results show that land use blocks with low FAR values often have small errors due to small building height errors for low buildings in the blocks; and blocks with high FAR values often have large errors due to large building height errors for high buildings in the blocks. Our study reveals that the accuracy of 3D density estimated from spaceborne stereo imagery is correlated to heights of buildings in a scene; therefore building heights must be considered when spaceborne stereo imagery is used to estimate 3D density to improve precision.
3-D model-based Bayesian classification
Soenneland, L.; Tenneboe, P.; Gehrmann, T.; Yrke, O.
1994-12-31
The challenging task of the interpreter is to integrate different pieces of information and combine them into an earth model. The sophistication level of this earth model might vary from the simplest geometrical description to the most complex set of reservoir parameters related to the geometrical description. Obviously the sophistication level also depend on the completeness of the available information. The authors describe the interpreter`s task as a mapping between the observation space and the model space. The information available to the interpreter exists in observation space and the task is to infer a model in model-space. It is well-known that this inversion problem is non-unique. Therefore any attempt to find a solution depend son constraints being added in some manner. The solution will obviously depend on which constraints are introduced and it would be desirable to allow the interpreter to modify the constraints in a problem-dependent manner. They will present a probabilistic framework that gives the interpreter the tools to integrate the different types of information and produce constrained solutions. The constraints can be adapted to the problem at hand.
Extending 3D city models with legal information
NASA Astrophysics Data System (ADS)
Frank, A. U.; Fuhrmann, T.; Navratil, G.
2012-10-01
3D city models represent existing physical objects and their topological and functional relations. In everyday life the rights and responsibilities connected to these objects, primarily legally defined rights and obligations but also other socially and culturally established rights, are of importance. The rights and obligations are defined in various laws and it is often difficult to identify the rules applicable for a certain case. The existing 2D cadastres show civil law rights and obligations and plans to extend them to provide information about public law restrictions for land use are in several countries under way. It is tempting to design extensions to the 3D city models to provide information about legal rights in 3D. The paper analyses the different types of information that are needed to reduce conflicts and to facilitate decisions about land use. We identify the role 3D city models augmented with planning information in 3D can play, but do not advocate a general conversion from 2D to 3D for the legal cadastre. Space is not anisotropic and the up/down dimension is practically very different from the two dimensional plane - this difference must be respected when designing spatial information systems. The conclusions are: (1) continue the current regime for ownership of apartments, which is not ownership of a 3D volume, but co-ownership of a building with exclusive use of some rooms; such exclusive use rights could be shown in a 3D city model; (2) ownership of 3D volumes for complex and unusual building situations can be reported in a 3D city model, but are not required everywhere; (3) indicate restrictions for land use and building in 3D city models, with links to the legal sources.
Opportunity Landing Spot Panorama (3-D Model)
NASA Technical Reports Server (NTRS)
2004-01-01
The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.
[figure removed for brevity, see original site] Click on image for larger view
The rocky outcrop traversed by the Mars Exploration Rover Opportunity is visible in this zoomed-in portion of a three-dimensional model of the rover's landing site. Opportunity has acquired close-up images along the way, and scientists are using the rover's instruments to closely examine portions of interest. The white fragments that look crumpled near the center of the image are portions of the airbags. Distant scenery is displayed on a spherical backdrop or 'billboard' for context. Artifacts near the top rim of the crater are a result of the transition between the three-dimensional model and the billboard. Portions of the terrain model lacking sufficient data appear as blank spaces or gaps, colored reddish-brown for better viewing. This image was generated using special software from NASA's Ames Research Center and a mosaic of images taken by the rover's panoramic camera.
Venusian Applications of 3D Convection Modeling
NASA Technical Reports Server (NTRS)
Bonaccorso, Timary Annie
2011-01-01
This study models mantle convection on Venus using the 'cubed sphere' code OEDIPUS, which models one-sixth of the planet in spherical geometry. We are attempting to balance internal heating, bottom mantle viscosity, and temperature difference across Venus' mantle, in order to create a realistic model that matches with current planetary observations. We also have begun to run both lower and upper mantle simulations to determine whether layered (as opposed to whole-mantle) convection might produce more efficient heat transfer, as well as to model coronae formation in the upper mantle. Upper mantle simulations are completed using OEDIPUS' Cartesian counterpart, JOCASTA. This summer's central question has been how to define a mantle plume. Traditionally, we have defined a hot plume the region with temperature at or above 40% of the difference between the maximum and horizontally averaged temperature, and a cold plume as the region with 40% of the difference between the minimum and average temperature. For less viscous cases (1020 Pa?s), the plumes generated by that definition lacked vigor, displaying buoyancies 1/100th of those found in previous, higher viscosity simulations (1021 Pa?s). As the mantle plumes with large buoyancy flux are most likely to produce topographic uplift and volcanism, the low viscosity cases' plumes may not produce observable deformation. In an effort to eliminate the smallest plumes, we experimented with different lower bound parameters and temperature percentages.
Global Magnetospheric Modeling of 3D Reconnection
NASA Technical Reports Server (NTRS)
Spicer, Daniel S.
1999-01-01
A review of approaches to the global modeling of the terrestrial magnetosphere, how these approaches are utilized to interpret satellite data, and how these approaches have been successful at predicting magnetospheric phenomena will be presented. In addition, the importance of the ionospheric boundary and its effect on the globally topology of the magnetospheric magnetic field will be reviewed. In particular, numerical results that are rapidly changing our view of magnetospheric reconnection within the magnetospheric magnetic field will be discussed.
Efficient 3D movement-based kernel density estimator and application to wildlife ecology
Tracey-PR, Jeff; Sheppard, James K.; Lockwood, Glenn K.; Chourasia, Amit; Tatineni, Mahidhar; Fisher, Robert N.; Sinkovits, Robert S.
2014-01-01
We describe an efficient implementation of a 3D movement-based kernel density estimator for determining animal space use from discrete GPS measurements. This new method provides more accurate results, particularly for species that make large excursions in the vertical dimension. The downside of this approach is that it is much more computationally expensive than simpler, lower-dimensional models. Through a combination of code restructuring, parallelization and performance optimization, we were able to reduce the time to solution by up to a factor of 1000x, thereby greatly improving the applicability of the method.
Modeling 3D facial shape from DNA.
Claes, Peter; Liberton, Denise K; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E; Pearson, Laurel N; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A; Yao, Wei; Tang, Hua; Barsh, Gregory S; Absher, Devin M; Puts, David A; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K; Boster, James S; Shriver, Mark D
2014-03-01
Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers.
Modeling 3D Facial Shape from DNA
Claes, Peter; Liberton, Denise K.; Daniels, Katleen; Rosana, Kerri Matthes; Quillen, Ellen E.; Pearson, Laurel N.; McEvoy, Brian; Bauchet, Marc; Zaidi, Arslan A.; Yao, Wei; Tang, Hua; Barsh, Gregory S.; Absher, Devin M.; Puts, David A.; Rocha, Jorge; Beleza, Sandra; Pereira, Rinaldo W.; Baynam, Gareth; Suetens, Paul; Vandermeulen, Dirk; Wagner, Jennifer K.; Boster, James S.; Shriver, Mark D.
2014-01-01
Human facial diversity is substantial, complex, and largely scientifically unexplained. We used spatially dense quasi-landmarks to measure face shape in population samples with mixed West African and European ancestry from three locations (United States, Brazil, and Cape Verde). Using bootstrapped response-based imputation modeling (BRIM), we uncover the relationships between facial variation and the effects of sex, genomic ancestry, and a subset of craniofacial candidate genes. The facial effects of these variables are summarized as response-based imputed predictor (RIP) variables, which are validated using self-reported sex, genomic ancestry, and observer-based facial ratings (femininity and proportional ancestry) and judgments (sex and population group). By jointly modeling sex, genomic ancestry, and genotype, the independent effects of particular alleles on facial features can be uncovered. Results on a set of 20 genes showing significant effects on facial features provide support for this approach as a novel means to identify genes affecting normal-range facial features and for approximating the appearance of a face from genetic markers. PMID:24651127
Modelling Polymer Deformation during 3D Printing
NASA Astrophysics Data System (ADS)
McIlroy, Claire; Olmsted, Peter
Three-dimensional printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The fused deposition modelling technique involves melting a thermoplastic, followed by layer-by-layer extrusion to fabricate an object. The key to ensuring strength at the weld between layers is successful inter-diffusion. However, prior to welding, both the extrusion process and the cooling temperature profile can significantly deform the polymer micro-structure and, consequently, how well the polymers are able to ``re-entangle'' across the weld. In particular, polymer alignment in the flow can cause de-bonding of the layers and create defects. We have developed a simple model of the non-isothermal extrusion process to explore the effects that typical printing conditions and material rheology have on the conformation of a polymer melt. In particular, we incorporate both stretch and orientation using the Rolie-Poly constitutive equation to examine the melt structure as it flows through the nozzle, the subsequent alignment with the build plate and the resulting deformation due to the fixed nozzle height, which is typically less than the nozzle radius.
Image based 3D city modeling : Comparative study
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2014-06-01
3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing rapidly for various engineering and non-engineering applications. Generally four main image based approaches were used for virtual 3D city models generation. In first approach, researchers were used Sketch based modeling, second method is Procedural grammar based modeling, third approach is Close range photogrammetry based modeling and fourth approach is mainly based on Computer Vision techniques. SketchUp, CityEngine, Photomodeler and Agisoft Photoscan are the main softwares to represent these approaches respectively. These softwares have different approaches & methods suitable for image based 3D city modeling. Literature study shows that till date, there is no complete such type of comparative study available to create complete 3D city model by using images. This paper gives a comparative assessment of these four image based 3D modeling approaches. This comparative study is mainly based on data acquisition methods, data processing techniques and output 3D model products. For this research work, study area is the campus of civil engineering department, Indian Institute of Technology, Roorkee (India). This 3D campus acts as a prototype for city. This study also explains various governing parameters, factors and work experiences. This research work also gives a brief introduction, strengths and weakness of these four image based techniques. Some personal comment is also given as what can do or what can't do from these softwares. At the last, this study shows; it concluded that, each and every software has some advantages and limitations. Choice of software depends on user requirements of 3D project. For normal visualization project, SketchUp software is a good option. For 3D documentation record, Photomodeler gives good result. For Large city
NoSQL Based 3D City Model Management System
NASA Astrophysics Data System (ADS)
Mao, B.; Harrie, L.; Cao, J.; Wu, Z.; Shen, J.
2014-04-01
To manage increasingly complicated 3D city models, a framework based on NoSQL database is proposed in this paper. The framework supports import and export of 3D city model according to international standards such as CityGML, KML/COLLADA and X3D. We also suggest and implement 3D model analysis and visualization in the framework. For city model analysis, 3D geometry data and semantic information (such as name, height, area, price and so on) are stored and processed separately. We use a Map-Reduce method to deal with the 3D geometry data since it is more complex, while the semantic analysis is mainly based on database query operation. For visualization, a multiple 3D city representation structure CityTree is implemented within the framework to support dynamic LODs based on user viewpoint. Also, the proposed framework is easily extensible and supports geoindexes to speed up the querying. Our experimental results show that the proposed 3D city management system can efficiently fulfil the analysis and visualization requirements.
Modeling cell migration in 3D: Status and challenges.
Rangarajan, Rajagopal; Zaman, Muhammad H
2008-01-01
Cell migration is a multi-scale process that integrates signaling, mechanics and biochemical reaction kinetics. Various mathematical models accurately predict cell migration on 2D surfaces, but are unable to capture the complexities of 3D migration. Additionally, quantitative 3D cell migration models have been few and far between. In this review we look and characterize various mathematical models available in literature to predict cell migration in 3D matrices and analyze their strengths and possible changes to these models that could improve their predictive capabilities.
NASA Astrophysics Data System (ADS)
Przyborska, Anna; Kosecki, Szymon; Jakacki, Jaromir
2014-05-01
Kongsfjorden is a West Svalbard fjord with a surface area of about 210 km2. It is obvious that the depths of the outer and central basins are influenced by the open sea, under influence of West Spitsbergen Current (WSC), which curry out warm Atlantic water and cold East Spitsbergen Current, while the shallower, inner basin has a large glacial outflow and its maximum depths do not exceed 100 m. Freshwater stored in Spitsbergen glaciers have strong influence on local hydrology and physical fjord conditions. Both, local and shelf conditions have impact on state of the fjord. External forces like tides, velocities at the boundary and atmospheric forces together with sources of cold and dens fresh water in the fjords will give reliable representation of physical conditions in Kongsfjorden. Modeling could help to solve this problem and we have hope that we find answer which one is the most important for local conditions in fjord. Calculations of balances between cold fresh water and warm and salt will provide additional information that could help to answer the main question of the GAME (Growing of the Arctic Marine Ecosystem) project - what is the reaction of physically controlled Arctic marine ecosystem to temperature rise.
3D model retrieval method based on mesh segmentation
NASA Astrophysics Data System (ADS)
Gan, Yuanchao; Tang, Yan; Zhang, Qingchen
2012-04-01
In the process of feature description and extraction, current 3D model retrieval algorithms focus on the global features of 3D models but ignore the combination of global and local features of the model. For this reason, they show less effective performance to the models with similar global shape and different local shape. This paper proposes a novel algorithm for 3D model retrieval based on mesh segmentation. The key idea is to exact the structure feature and the local shape feature of 3D models, and then to compares the similarities of the two characteristics and the total similarity between the models. A system that realizes this approach was built and tested on a database of 200 objects and achieves expected results. The results show that the proposed algorithm improves the precision and the recall rate effectively.
Yang, Renhuan; Li, Xu; Liu, Jun; He, Bin
2011-01-01
It is of importance to image electrical activity and properties of biological tissues. Recently hybrid imaging modality combing ultrasound scanning and source imaging through the acousto-electric (AE) effect has generated considerable interest. Such modality has the potential to provide high spatial resolution current density imaging by utilizing the pressure induced AE resistivity change confined at the ultrasound focus. In this study, we investigate a novel 3-dimensional (3D) ultrasound current source density imaging (UCSDI) approach using unipolar ultrasound pulses. Utilizing specially designed unipolar ultrasound pulses and by combining AE signals associated to the local resistivity changes at the focusing point, we are able to reconstruct the 3D current density distribution with the boundary voltage measurements obtained while performing a 3D ultrasound scan. We have shown in computer simulation that using the present method, it is feasible to image with high spatial resolution an arbitrary 3D current density distribution in an inhomogeneous conductive media. PMID:21628774
High Resolution 3d Modeling of the Behaim Globe
NASA Astrophysics Data System (ADS)
Menna, F.; Rizzi, A.; Nocerino, E.; Remondino, F.; Gruen, A.
2012-07-01
The article describes the 3D surveying and modeling of the Behaim globe, the oldest still existing and intact globe of the earth, preserved at the German National Museum of Nuremberg, Germany. The work is primarily performed using high-resolution digital images and automatic photogrammetric techniques. Triangulation-based laser scanning is also employed to fill some gaps in the derived image-based 3D geometry and perform geometric comparisons. Major problems are encountered in texture mapping. The 3D modeling project and the creation of high-resolution map-projections is performed for scientific, conservation, visualization and education purposes.
3D-model building of the jaw impression
NASA Astrophysics Data System (ADS)
Ahmed, Moumen T.; Yamany, Sameh M.; Hemayed, Elsayed E.; Farag, Aly A.
1997-03-01
A novel approach is proposed to obtain a record of the patient's occlusion using computer vision. Data acquisition is obtained using intra-oral video cameras. The technique utilizes shape from shading to extract 3D information from 2D views of the jaw, and a novel technique for 3D data registration using genetic algorithms. The resulting 3D model can be used for diagnosis, treatment planning, and implant purposes. The overall purpose of this research is to develop a model-based vision system for orthodontics to replace traditional approaches. This system will be flexible, accurate, and will reduce the cost of orthodontic treatments.
Summary on several key techniques in 3D geological modeling.
Mei, Gang
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized.
Summary on Several Key Techniques in 3D Geological Modeling
2014-01-01
Several key techniques in 3D geological modeling including planar mesh generation, spatial interpolation, and surface intersection are summarized in this paper. Note that these techniques are generic and widely used in various applications but play a key role in 3D geological modeling. There are two essential procedures in 3D geological modeling: the first is the simulation of geological interfaces using geometric surfaces and the second is the building of geological objects by means of various geometric computations such as the intersection of surfaces. Discrete geometric surfaces that represent geological interfaces can be generated by creating planar meshes first and then spatially interpolating; those surfaces intersect and then form volumes that represent three-dimensional geological objects such as rock bodies. In this paper, the most commonly used algorithms of the key techniques in 3D geological modeling are summarized. PMID:24772029
Formal representation of 3D structural geological models
NASA Astrophysics Data System (ADS)
Wang, Zhangang; Qu, Honggang; Wu, Zixing; Yang, Hongjun; Du, Qunle
2016-05-01
The development and widespread application of geological modeling methods has increased demands for the integration and sharing services of three dimensional (3D) geological data. However, theoretical research in the field of geological information sciences is limited despite the widespread use of Geographic Information Systems (GIS) in geology. In particular, fundamental research on the formal representations and standardized spatial descriptions of 3D structural models is required. This is necessary for accurate understanding and further applications of geological data in 3D space. In this paper, we propose a formal representation method for 3D structural models using the theory of point set topology, which produces a mathematical definition for the major types of geological objects. The spatial relationships between geologic boundaries, structures, and units are explained in detail using the 9-intersection model. Reasonable conditions for describing the topological space of 3D structural models are also provided. The results from this study can be used as potential support for the standardized representation and spatial quality evaluation of 3D structural models, as well as for specific needs related to model-based management, query, and analysis.
Vehicle Surveillance with a Generic, Adaptive, 3D Vehicle Model.
Leotta, Matthew J; Mundy, Joseph L
2011-07-01
In automated surveillance, one is often interested in tracking road vehicles, measuring their shape in 3D world space, and determining vehicle classification. To address these tasks simultaneously, an effective approach is the constrained alignment of a prior model of 3D vehicle shape to images. Previous 3D vehicle models are either generic but overly simple or rigid and overly complex. Rigid models represent exactly one vehicle design, so a large collection is needed. A single generic model can deform to a wide variety of shapes, but those shapes have been far too primitive. This paper uses a generic 3D vehicle model that deforms to match a wide variety of passenger vehicles. It is adjustable in complexity between the two extremes. The model is aligned to images by predicting and matching image intensity edges. Novel algorithms are presented for fitting models to multiple still images and simultaneous tracking while estimating shape in video. Experiments compare the proposed model to simple generic models in accuracy and reliability of 3D shape recovery from images and tracking in video. Standard techniques for classification are also used to compare the models. The proposed model outperforms the existing simple models at each task.
3D Modeling from Photos Given Topological Information.
Kim, Young Min; Cho, Junghyun; Ahn, Sang Chul
2016-09-01
Reconstructing 3D models given a single-view 2D information is inherently an ill-posed problem and requires additional information such as shape prior or user input.We introduce a method to generate multiple 3D models of a particular category given corresponding photographs when the topological information is known. While there is a wide range of shapes for an object of a particular category, the basic topology usually remains constant.In consequence, the topological prior needs to be provided only once for each category and can be easily acquired by consulting an existing database of 3D models or by user input. The input of topological description is only connectivity information between parts; this is in contrast to previous approaches that have required users to interactively mark individual parts. Given the silhouette of an object and the topology, our system automatically finds a skeleton and generates a textured 3D model by jointly fitting multiple parts. The proposed method, therefore, opens the possibility of generating a large number of 3D models by consulting a massive number of photographs. We demonstrate examples of the topological prior and reconstructed 3D models using photos.
Performance Evaluation of 3d Modeling Software for Uav Photogrammetry
NASA Astrophysics Data System (ADS)
Yanagi, H.; Chikatsu, H.
2016-06-01
UAV (Unmanned Aerial Vehicle) photogrammetry, which combines UAV and freely available internet-based 3D modeling software, is widely used as a low-cost and user-friendly photogrammetry technique in the fields such as remote sensing and geosciences. In UAV photogrammetry, only the platform used in conventional aerial photogrammetry is changed. Consequently, 3D modeling software contributes significantly to its expansion. However, the algorithms of the 3D modelling software are black box algorithms. As a result, only a few studies have been able to evaluate their accuracy using 3D coordinate check points. With this motive, Smart3DCapture and Pix4Dmapper were downloaded from the Internet and commercial software PhotoScan was also employed; investigations were performed in this paper using check points and images obtained from UAV.
Automatic Texture Mapping of Architectural and Archaeological 3d Models
NASA Astrophysics Data System (ADS)
Kersten, T. P.; Stallmann, D.
2012-07-01
Today, detailed, complete and exact 3D models with photo-realistic textures are increasingly demanded for numerous applications in architecture and archaeology. Manual texture mapping of 3D models by digital photographs with software packages, such as Maxon Cinema 4D, Autodesk 3Ds Max or Maya, still requires a complex and time-consuming workflow. So, procedures for automatic texture mapping of 3D models are in demand. In this paper two automatic procedures are presented. The first procedure generates 3D surface models with textures by web services, while the second procedure textures already existing 3D models with the software tmapper. The program tmapper is based on the Multi Layer 3D image (ML3DImage) algorithm and developed in the programming language C++. The studies showing that the visibility analysis using the ML3DImage algorithm is not sufficient to obtain acceptable results of automatic texture mapping. To overcome the visibility problem the Point Cloud Painter algorithm in combination with the Z-buffer-procedure will be applied in the future.
Quasi-3D Algorithm in Multi-scale Modeling Framework
NASA Astrophysics Data System (ADS)
Jung, J.; Arakawa, A.
2008-12-01
As discussed in the companion paper by Arakawa and Jung, the Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic vector vorticity equation model (VVM) applied to a Q3D network of horizontal grid points. This paper presents an outline of the recently revised Q3D algorithm and a highlight of the results obtained by application of the algorithm to an idealized model setting. The Q3D network of grid points consists of two sets of grid-point arrays perpendicular to each other. For a scalar variable, for example, each set consists of three parallel rows of grid points. Principal and supplementary predictions are made on the central and the two adjacent rows, respectively. The supplementary prediction is to allow the principal prediction be three-dimensional at least to the second-order accuracy. To accommodate a higher-order accuracy and to make the supplementary predictions formally three-dimensional, a few rows of ghost points are added at each side of the array. Values at these ghost points are diagnostically determined by a combination of statistical estimation and extrapolation. The basic structure of the estimation algorithm is determined in view of the global stability of Q3D advection. The algorithm is calibrated using the statistics of past data at and near the intersections of the two sets of grid- point arrays. Since the CRM in the Q3D MMF extends beyond individual GCM boxes, the CRM can be a GCM by itself. However, it is better to couple the CRM with the GCM because (1) the CRM is a Q3D CRM based on a highly anisotropic network of grid points and (2) coupling with a GCM makes it more straightforward to inherit our experience with the conventional GCMs. In the coupled system we have selected, prediction of thermdynamic variables is almost entirely done by the Q3D CRM with no direct forcing by the GCM. The coupling of the dynamics between the two components is through mutual
The USGS 3D Seismic Velocity Model for Northern California
NASA Astrophysics Data System (ADS)
Brocher, T. M.; Aagaard, B.; Simpson, R. W.; Jachens, R. C.
2006-12-01
We present a new regional 3D seismic velocity model for Northern California for use in strong motion simulations of the 1906 San Francisco and other earthquakes. The model includes compressional-wave velocity (Vp), shear-wave velocity (Vs), density, and intrinsic attenuation (Qp, Qs). These properties were assigned for each rock type in a 3D geologic model derived from surface outcrops, boreholes, gravity and magnetic data, and seismic reflection, refraction, and tomography studies. A detailed description of the model, USGS Bay Area Velocity Model 05.1.0, is available online [http://www.sf06simulation.org/geology/velocitymodel]. For ground motion simulations Vs and Qs are more important parameters than Vp and Qp because the strongest ground motions are generated chiefly by shear and surface wave arrivals. Because Vp data are more common than Vs data, however, we first developed Vp versus depth relations for each rock type and then converted these to Vs versus depth relations. For the most important rock types in Northern California we compiled measurements of Vp versus depth using borehole logs, laboratory measurements on hand samples, seismic refraction profiles, and tomography models. These rock types include Salinian and Sierran granitic rocks, metagraywackes and greenstones of the Franciscan Complex, Tertiary and Mesozoic sedimentary and volcanic rocks, and Quaternary and Holocene deposits (Brocher, USGS OFR 05-1317, 2005). Vp versus depth curves were converted to Vs versus depth curves using new empirical nonlinear relations between Vs and Vp (Brocher, BSSA, 2005). These relations, showing that Poisson's ratio is a nonlinear function of Vp, were similarly based on compilations of diverse Vs and Vp measurements on a large suite of rock types, mainly from California and the Pacific Northwest. The model is distributed in a discretized form with routines to query the model using C++, C, and Fortran 77 programming languages. The geologic model was discretized at
Gis-Based Smart Cartography Using 3d Modeling
NASA Astrophysics Data System (ADS)
Malinverni, E. S.; Tassetti, A. N.
2013-08-01
3D City Models have evolved to be important tools for urban decision processes and information systems, especially in planning, simulation, analysis, documentation and heritage management. On the other hand existing and in use numerical cartography is often not suitable to be used in GIS because not geometrically and topologically correctly structured. The research aim is to 3D structure and organize a numeric cartography for GIS and turn it into CityGML standardized features. The work is framed around a first phase of methodological analysis aimed to underline which existing standard (like ISO and OGC rules) can be used to improve the quality requirement of a cartographic structure. Subsequently, from this technical specifics, it has been investigated the translation in formal contents, using an owner interchange software (SketchUp), to support some guide lines implementations to generate a GIS3D structured in GML3. It has been therefore predisposed a test three-dimensional numerical cartography (scale 1:500, generated from range data captured by 3D laser scanner), tested on its quality according to the previous standard and edited when and where necessary. Cad files and shapefiles are converted into a final 3D model (Google SketchUp model) and then exported into a 3D city model (CityGML LoD1/LoD2). The GIS3D structure has been managed in a GIS environment to run further spatial analysis and energy performance estimate, not achievable in a 2D environment. In particular geometrical building parameters (footprint, volume etc.) are computed and building envelop thermal characteristics are derived from. Lastly, a simulation is carried out to deal with asbestos and home renovating charges and show how the built 3D city model can support municipal managers with risk diagnosis of the present situation and development of strategies for a sustainable redevelop.
Combined registration of 3D tibia and femur implant models in 3D magnetic resonance images
NASA Astrophysics Data System (ADS)
Englmeier, Karl-Hans; Siebert, Markus; von Eisenhart-Rothe, Ruediger; Graichen, Heiko
2008-03-01
The most frequent reasons for revision of total knee arthroplasty are loosening and abnormal axial alignment leading to an unphysiological kinematic of the knee implant. To get an idea about the postoperative kinematic of the implant, it is essential to determine the position and orientation of the tibial and femoral prosthesis. Therefore we developed a registration method for fitting 3D CAD-models of knee joint prostheses into an 3D MR image. This rigid registration is the basis for a quantitative analysis of the kinematics of knee implants. Firstly the surface data of the prostheses models are converted into a voxel representation; a recursive algorithm determines all boundary voxels of the original triangular surface data. Secondly an initial preconfiguration of the implants by the user is still necessary for the following step: The user has to perform a rough preconfiguration of both remaining prostheses models, so that the fine matching process gets a reasonable starting point. After that an automated gradient-based fine matching process determines the best absolute position and orientation: This iterative process changes all 6 parameters (3 rotational- and 3 translational parameters) of a model by a minimal amount until a maximum value of the matching function is reached. To examine the spread of the final solutions of the registration, the interobserver variability was measured in a group of testers. This variability, calculated by the relative standard deviation, improved from about 50% (pure manual registration) to 0.5% (rough manual preconfiguration and subsequent fine registration with the automatic fine matching process).
NASA Astrophysics Data System (ADS)
Junk, S.
2016-08-01
Today the methods of numerical simulation of sheet metal forming offer a great diversity of possibilities for optimization in product development and in process design. However, the results from simulation are only available as virtual models. Because there are any forming tools available during the early stages of product development, physical models that could serve to represent the virtual results are therefore lacking. Physical 3D-models can be created using 3D-printing and serve as an illustration and present a better understanding of the simulation results. In this way, the results from the simulation can be made more “comprehensible” within a development team. This paper presents the possibilities of 3D-colour printing with particular consideration of the requirements regarding the implementation of sheet metal forming simulation. Using concrete examples of sheet metal forming, the manufacturing of 3D colour models will be expounded upon on the basis of simulation results.
Amoeboid migration mode adaption in quasi-3D spatial density gradients of varying lattice geometry
NASA Astrophysics Data System (ADS)
Gorelashvili, Mari; Emmert, Martin; Hodeck, Kai F.; Heinrich, Doris
2014-07-01
Cell migration processes are controlled by sensitive interaction with external cues such as topographic structures of the cell’s environment. Here, we present systematically controlled assays to investigate the specific effects of spatial density and local geometry of topographic structure on amoeboid migration of Dictyostelium discoideum cells. This is realized by well-controlled fabrication of quasi-3D pillar fields exhibiting a systematic variation of inter-pillar distance and pillar lattice geometry. By time-resolved local mean-squared displacement analysis of amoeboid migration, we can extract motility parameters in order to elucidate the details of amoeboid migration mechanisms and consolidate them in a two-state contact-controlled motility model, distinguishing directed and random phases. Specifically, we find that directed pillar-to-pillar runs are found preferably in high pillar density regions, and cells in directed motion states sense pillars as attractive topographic stimuli. In contrast, cell motion in random probing states is inhibited by high pillar density, where pillars act as obstacles for cell motion. In a gradient spatial density, these mechanisms lead to topographic guidance of cells, with a general trend towards a regime of inter-pillar spacing close to the cell diameter. In locally anisotropic pillar environments, cell migration is often found to be damped due to competing attraction by different pillars in close proximity and due to lack of other potential stimuli in the vicinity of the cell. Further, we demonstrate topographic cell guidance reflecting the lattice geometry of the quasi-3D environment by distinct preferences in migration direction. Our findings allow to specifically control amoeboid cell migration by purely topographic effects and thus, to induce active cell guidance. These tools hold prospects for medical applications like improved wound treatment, or invasion assays for immune cells.
3D Bioprinting of Tissue/Organ Models.
Pati, Falguni; Gantelius, Jesper; Svahn, Helene Andersson
2016-04-04
In vitro tissue/organ models are useful platforms that can facilitate systematic, repetitive, and quantitative investigations of drugs/chemicals. The primary objective when developing tissue/organ models is to reproduce physiologically relevant functions that typically require complex culture systems. Bioprinting offers exciting prospects for constructing 3D tissue/organ models, as it enables the reproducible, automated production of complex living tissues. Bioprinted tissues/organs may prove useful for screening novel compounds or predicting toxicity, as the spatial and chemical complexity inherent to native tissues/organs can be recreated. In this Review, we highlight the importance of developing 3D in vitro tissue/organ models by 3D bioprinting techniques, characterization of these models for evaluating their resemblance to native tissue, and their application in the prioritization of lead candidates, toxicity testing, and as disease/tumor models.
3D WHOLE-PROMINENCE FINE STRUCTURE MODELING
Gunár, Stanislav; Mackay, Duncan H.
2015-04-20
We present the first 3D whole-prominence fine structure model. The model combines a 3D magnetic field configuration of an entire prominence obtained from nonlinear force-free field simulations, with a detailed description of the prominence plasma. The plasma is located in magnetic dips in hydrostatic equilibrium and is distributed along multiple fine structures within the 3D magnetic model. Through the use of a novel radiative transfer visualization technique for the Hα line such plasma-loaded magnetic field model produces synthetic images of the modeled prominence comparable with high-resolution observations. This allows us for the first time to use a single technique to consistently study, in both emission on the limb and absorption against the solar disk, the fine structures of prominences/filaments produced by a magnetic field model.
3D web visualization of huge CityGML models
NASA Astrophysics Data System (ADS)
Prandi, F.; Devigili, F.; Soave, M.; Di Staso, U.; De Amicis, R.
2015-08-01
Nowadays, rapid technological development into acquiring geo-spatial information; joined to the capabilities to process these data in a relative short period of time, allows the generation of detailed 3D textured city models that will become an essential part of the modern city information infrastructure (Spatial Data Infrastructure) and, can be used to integrate various data from different sources for public accessible visualisation and many other applications. One of the main bottlenecks, which at the moment limit the use of these datasets to few experts, is a lack on efficient visualization systems through the web and interoperable frameworks that allow standardising the access to the city models. The work presented in this paper tries to satisfy these two requirements developing a 3D web-based visualization system based on OGC standards and effective visualization concepts. The architectural framework, based on Services Oriented Architecture (SOA) concepts, provides the 3D city data to a web client designed to support the view process in a very effective way. The first part of the work is to design a framework compliant to the 3D Portrayal Service drafted by the of the Open Geospatial Consortium (OGC) 3D standardization working group. The latter is related to the development of an effective web client able to render in an efficient way the 3D city models.
3D microstructure modeling of compressed fiber-based materials
NASA Astrophysics Data System (ADS)
Gaiselmann, Gerd; Tötzke, Christian; Manke, Ingo; Lehnert, Werner; Schmidt, Volker
2014-07-01
A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model compresses the system of fibers in a uniaxial direction for arbitrary compression rates. The basic idea is to translate the fibers in the direction of compression according to a vector field which depends on the rate of compression and on the locations of fibers within the material. In order to apply the model to experimental 3D image data of fiber-based materials given for several compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D image data of non-woven GDL in PEMFC gained by synchrotron tomography for different compression rates. The compression model is validated by comparing structural characteristics computed for experimentally compressed and virtually compressed microstructures, where two kinds of compression - using a flat stamp and a stamp with a flow-field profile - are applied. For both stamps types, a good agreement is found. Furthermore, the compression model is combined with a stochastic 3D microstructure model for uncompressed fiber-based materials. This allows to efficiently generate compressed fiber-based microstructures in arbitrary volumes.
Calaminici, Patrizia; Janetzko, Florian; Köster, Andreas M; Mejia-Olvera, Roberto; Zuniga-Gutierrez, Bernardo
2007-01-28
Density functional theory optimized basis sets for gradient corrected functionals for 3d transition metal atoms are presented. Double zeta valence polarization and triple zeta valence polarization basis sets are optimized with the PW86 functional. The performance of the newly optimized basis sets is tested in atomic and molecular calculations. Excitation energies of 3d transition metal atoms, as well as electronic configurations, structural parameters, dissociation energies, and harmonic vibrational frequencies of a large number of molecules containing 3d transition metal elements, are presented. The obtained results are compared with available experimental data as well as with other theoretical data from the literature.
Perception-based shape retrieval for 3D building models
NASA Astrophysics Data System (ADS)
Zhang, Man; Zhang, Liqiang; Takis Mathiopoulos, P.; Ding, Yusi; Wang, Hao
2013-01-01
With the help of 3D search engines, a large number of 3D building models can be retrieved freely online. A serious disadvantage of most rotation-insensitive shape descriptors is their inability to distinguish between two 3D building models which are different at their main axes, but appear similar when one of them is rotated. To resolve this problem, we present a novel upright-based normalization method which not only correctly rotates such building models, but also greatly simplifies and accelerates the abstraction and the matching of building models' shape descriptors. Moreover, the abundance of architectural styles significantly hinders the effective shape retrieval of building models. Our research has shown that buildings with different designs are not well distinguished by the widely recognized shape descriptors for general 3D models. Motivated by this observation and to further improve the shape retrieval quality, a new building matching method is introduced and analyzed based on concepts found in the field of perception theory and the well-known Light Field descriptor. The resulting normalized building models are first classified using the qualitative shape descriptors of Shell and Unevenness which outline integral geometrical and topological information. These models are then put in on orderly fashion with the help of an improved quantitative shape descriptor which we will term as Horizontal Light Field Descriptor, since it assembles detailed shape characteristics. To accurately evaluate the proposed methodology, an enlarged building shape database which extends previous well-known shape benchmarks was implemented as well as a model retrieval system supporting inputs from 2D sketches and 3D models. Various experimental performance evaluation results have shown that, as compared to previous methods, retrievals employing the proposed matching methodology are faster and more consistent with human recognition of spatial objects. In addition these performance
Shape: A 3D Modeling Tool for Astrophysics.
Steffen, Wolfgang; Koning, Nicholas; Wenger, Stephan; Morisset, Christophe; Magnor, Marcus
2011-04-01
We present a flexible interactive 3D morpho-kinematical modeling application for astrophysics. Compared to other systems, our application reduces the restrictions on the physical assumptions, data type, and amount that is required for a reconstruction of an object's morphology. It is one of the first publicly available tools to apply interactive graphics to astrophysical modeling. The tool allows astrophysicists to provide a priori knowledge about the object by interactively defining 3D structural elements. By direct comparison of model prediction with observational data, model parameters can then be automatically optimized to fit the observation. The tool has already been successfully used in a number of astrophysical research projects.
Eck, Simon; Wörz, Stefan; Müller-Ott, Katharina; Hahn, Matthias; Biesdorf, Andreas; Schotta, Gunnar; Rippe, Karsten; Rohr, Karl
2016-08-01
The genome is partitioned into regions of euchromatin and heterochromatin. The organization of heterochromatin is important for the regulation of cellular processes such as chromosome segregation and gene silencing, and their misregulation is linked to cancer and other diseases. We present a model-based approach for automatic 3D segmentation and 3D shape analysis of heterochromatin foci from 3D confocal light microscopy images. Our approach employs a novel 3D intensity model based on spherical harmonics, which analytically describes the shape and intensities of the foci. The model parameters are determined by fitting the model to the image intensities using least-squares minimization. To characterize the 3D shape of the foci, we exploit the computed spherical harmonics coefficients and determine a shape descriptor. We applied our approach to 3D synthetic image data as well as real 3D static and real 3D time-lapse microscopy images, and compared the performance with that of previous approaches. It turned out that our approach yields accurate 3D segmentation results and performs better than previous approaches. We also show that our approach can be used for quantifying 3D shape differences of heterochromatin foci.
3D Printing of Biomolecular Models for Research and Pedagogy.
Da Veiga Beltrame, Eduardo; Tyrwhitt-Drake, James; Roy, Ian; Shalaby, Raed; Suckale, Jakob; Pomeranz Krummel, Daniel
2017-03-13
The construction of physical three-dimensional (3D) models of biomolecules can uniquely contribute to the study of the structure-function relationship. 3D structures are most often perceived using the two-dimensional and exclusively visual medium of the computer screen. Converting digital 3D molecular data into real objects enables information to be perceived through an expanded range of human senses, including direct stereoscopic vision, touch, and interaction. Such tangible models facilitate new insights, enable hypothesis testing, and serve as psychological or sensory anchors for conceptual information about the functions of biomolecules. Recent advances in consumer 3D printing technology enable, for the first time, the cost-effective fabrication of high-quality and scientifically accurate models of biomolecules in a variety of molecular representations. However, the optimization of the virtual model and its printing parameters is difficult and time consuming without detailed guidance. Here, we provide a guide on the digital design and physical fabrication of biomolecule models for research and pedagogy using open source or low-cost software and low-cost 3D printers that use fused filament fabrication technology.
Potential of 3D City Models to assess flood vulnerability
NASA Astrophysics Data System (ADS)
Schröter, Kai; Bochow, Mathias; Schüttig, Martin; Nagel, Claus; Ross, Lutz; Kreibich, Heidi
2016-04-01
Vulnerability, as the product of exposure and susceptibility, is a key factor of the flood risk equation. Furthermore, the estimation of flood loss is very sensitive to the choice of the vulnerability model. Still, in contrast to elaborate hazard simulations, vulnerability is often considered in a simplified manner concerning the spatial resolution and geo-location of exposed objects as well as the susceptibility of these objects at risk. Usually, area specific potential flood loss is quantified on the level of aggregated land-use classes, and both hazard intensity and resistance characteristics of affected objects are represented in highly simplified terms. We investigate the potential of 3D City Models and spatial features derived from remote sensing data to improve the differentiation of vulnerability in flood risk assessment. 3D City Models are based on CityGML, an application scheme of the Geography Markup Language (GML), which represents the 3D geometry, 3D topology, semantics and appearance of objects on different levels of detail. As such, 3D City Models offer detailed spatial information which is useful to describe the exposure and to characterize the susceptibility of residential buildings at risk. This information is further consolidated with spatial features of the building stock derived from remote sensing data. Using this database a spatially detailed flood vulnerability model is developed by means of data-mining. Empirical flood damage data are used to derive and to validate flood susceptibility models for individual objects. We present first results from a prototype application in the city of Dresden, Germany. The vulnerability modeling based on 3D City Models and remote sensing data is compared i) to the generally accepted good engineering practice based on area specific loss potential and ii) to a highly detailed representation of flood vulnerability based on a building typology using urban structure types. Comparisons are drawn in terms of
3D head model classification using optimized EGI
NASA Astrophysics Data System (ADS)
Tong, Xin; Wong, Hau-san; Ma, Bo
2006-02-01
With the general availability of 3D digitizers and scanners, 3D graphical models have been used widely in a variety of applications. This has led to the development of search engines for 3D models. Especially, 3D head model classification and retrieval have received more and more attention in view of their many potential applications in criminal identifications, computer animation, movie industry and medical industry. This paper addresses the 3D head model classification problem using 2D subspace analysis methods such as 2D principal component analysis (2D PCA[3]) and 2D fisher discriminant analysis (2DLDA[5]). It takes advantage of the fact that the histogram is a 2D image, and we can extract the most useful information from these 2D images to get a good result accordingingly. As a result, there are two main advantages: First, we can perform less calculation to obtain the same rate of classification; second, we can reduce the dimensionality more than PCA to obtain a higher efficiency.
NASA Astrophysics Data System (ADS)
Wilcox, R. S.; Schafer, M. W.; Canik, J. M.; Unterberg, E. A.; Wingen, A.; Ferraro, N. M.; McKee, G. R.; Zeng, L.; Rhodes, T. L.
2016-10-01
Significant 3D variation in broadband density fluctuations is observed using beam emission spectroscopy and Doppler backscattering near the boundary of weakly 3D plasmas in DIII-D when non-axisymmetric fields are applied to suppress ELMs. The increase in fluctuations is concomitant with an increase in the density gradient measured using profile reflectometry, suggesting that this toroidally localized density gradient could be a mechanism for turbulence destabilization in localized flux tubes. Although changes to magnetic surface topology are shown to be too small to affect turbulence stability directly, two-fluid M3D-C1 simulations find that there is a significant 3D variation of density within flux surfaces in the pedestal. These modeled local density changes modify the local pressure- and density- gradient scale lengths, and measured turbulence is shown to increase on flux tubes with larger gradients. Work supported by the US DOE under contracts DE-AC05-00OR22725, DE-AC02-09CH11466, DE-FG02-08ER54999 and DE-FG02-08ER54984.
3D model of amphioxus steroid receptor complexed with estradiol
Baker, Michael E.; Chang, David J.
2009-08-28
The origins of signaling by vertebrate steroids are not fully understood. An important advance was the report that an estrogen-binding steroid receptor [SR] is present in amphioxus, a basal chordate with a similar body plan as vertebrates. To investigate the evolution of estrogen-binding to steroid receptors, we constructed a 3D model of amphioxus SR complexed with estradiol. This 3D model indicates that although the SR is activated by estradiol, some interactions between estradiol and human ER{alpha} are not conserved in the SR, which can explain the low affinity of estradiol for the SR. These differences between the SR and ER{alpha} in the steroid-binding domain are sufficient to suggest that another steroid is the physiological regulator of the SR. The 3D model predicts that mutation of Glu-346 to Gln will increase the affinity of testosterone for amphioxus SR and elucidate the evolution of steroid-binding to nuclear receptors.
Air Pollution Modeling Using A 3-d Hemispheric Nested Model
NASA Astrophysics Data System (ADS)
Frohn, L. M.; Christensen, J. H.; Brandt, J.; Hertel, O.
A 3-D Eulerian transport-chemistry model based on modules and parameterisations from models developed over the last decade at the National Environmental Research Institute (DREAM, DEHM, ACDEP and DEOM) has been developed. The model is hemispheric with currently two nests implemented. The horizontal resolution in the mother domain is 150 km x 150 km. First nest covers the European area wit,h a 50 km x 50 km resolution, second covers the Scandinavian area with a resolution of 16.67 km x 16.67 km. The model employs a chemical scheme (originally 53 species) which has been modified to include a detailed description of the nitrogen chemistry. The concentration of air pollutants, such as sulfur and nitrogen in various forms, has been calculated with the model, applying no nesting as well as one and two nests. The calculated values have been validated by comparison to measurements from more than 200 EMEP monitoring stations. Furthermore deposition of nitrogen to marine waters has been estimated with the model. The goal is to obtain an improved description of spatial and temporal variations in the nutrient deposition to the marine environment. In the presentation the physics and chemistry of the model will be shortly described. Validations of the model calculations by comparison to EMEP measurements will be shown and discussed together with the results of the deposition calculations.
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.
Xia, Yong; Wang, Kuanquan; Zhang, Henggui
2015-01-01
Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.
Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU
Xia, Yong; Wang, Kuanquan; Zhang, Henggui
2015-01-01
Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957
Geospatial Modelling Approach for 3d Urban Densification Developments
NASA Astrophysics Data System (ADS)
Koziatek, O.; Dragićević, S.; Li, S.
2016-06-01
With growing populations, economic pressures, and the need for sustainable practices, many urban regions are rapidly densifying developments in the vertical built dimension with mid- and high-rise buildings. The location of these buildings can be projected based on key factors that are attractive to urban planners, developers, and potential buyers. Current research in this area includes various modelling approaches, such as cellular automata and agent-based modelling, but the results are mostly linked to raster grids as the smallest spatial units that operate in two spatial dimensions. Therefore, the objective of this research is to develop a geospatial model that operates on irregular spatial tessellations to model mid- and high-rise buildings in three spatial dimensions (3D). The proposed model is based on the integration of GIS, fuzzy multi-criteria evaluation (MCE), and 3D GIS-based procedural modelling. Part of the City of Surrey, within the Metro Vancouver Region, Canada, has been used to present the simulations of the generated 3D building objects. The proposed 3D modelling approach was developed using ESRI's CityEngine software and the Computer Generated Architecture (CGA) language.
3D Model Generation From the Engineering Drawing
NASA Astrophysics Data System (ADS)
Vaský, Jozef; Eliáš, Michal; Bezák, Pavol; Červeňanská, Zuzana; Izakovič, Ladislav
2010-01-01
The contribution deals with the transformation of engineering drawings in a paper form into a 3D computer representation. A 3D computer model can be further processed in CAD/CAM system, it can be modified, archived, and a technical drawing can be then generated from it as well. The transformation process from paper form to the data one is a complex and difficult one, particularly owing to the different types of drawings, forms of displayed objects and encountered errors and deviations from technical standards. The algorithm for 3D model generating from an orthogonal vector input representing a simplified technical drawing of the rotational part is described in this contribution. The algorithm was experimentally implemented as ObjectARX application in the AutoCAD system and the test sample as the representation of the rotational part was used for verificaton.
Space Partitioning for Privacy Enabled 3D City Models
NASA Astrophysics Data System (ADS)
Filippovska, Y.; Wichmann, A.; Kada, M.
2016-10-01
Due to recent technological progress, data capturing and processing of highly detailed (3D) data has become extensive. And despite all prospects of potential uses, data that includes personal living spaces and public buildings can also be considered as a serious intrusion into people's privacy and a threat to security. It becomes especially critical if data is visible by the general public. Thus, a compromise is needed between open access to data and privacy requirements which can be very different for each application. As privacy is a complex and versatile topic, the focus of this work particularly lies on the visualization of 3D urban data sets. For the purpose of privacy enabled visualizations of 3D city models, we propose to partition the (living) spaces into privacy regions, each featuring its own level of anonymity. Within each region, the depicted 2D and 3D geometry and imagery is anonymized with cartographic generalization techniques. The underlying spatial partitioning is realized as a 2D map generated as a straight skeleton of the open space between buildings. The resulting privacy cells are then merged according to the privacy requirements associated with each building to form larger regions, their borderlines smoothed, and transition zones established between privacy regions to have a harmonious visual appearance. It is exemplarily demonstrated how the proposed method generates privacy enabled 3D city models.
3-D world modeling for an autonomous robot
Goldstein, M.; Pin, F.G.; Weisbin, C.R.
1987-08-01
This paper presents a methodology for a concise representation of the 3-D world model for a mobile robot, using range data. The process starts with the segmentation of the scene into ''objects'' that are given a unique label, based on principles of range continuity. Then the external surface of each object is partitioned into homogeneous surface patches. Contours of surface patches in 3-D space are identified by estimating the normal and curvature associated with each pixel. The resulting surface patches are then classified as planar, convex or concave. Since the world model uses a volumetric representation for the 3-D environment, planar surfaces are represented by thin volumetric polyhedra. Spherical and cylindrical surfaces are extracted and represented by appropriate volumetric primitives. All other surfaces are represented using the boolean union of spherical volumes (as described in a separate paper by the same authors). The result is a general, concise representation of the external 3-D world, which allows for efficient and robust 3-D object recognition. 20 refs., 14 figs.
Added Value of 3D Proton-Density Weighted Images in Diagnosis of Intracranial Arterial Dissection
Kim, Jin Woo; Kim, Young Dae; Lee, Seung-Koo; Lim, Soo Mee; Oh, Se Won
2016-01-01
Background An early and reliable diagnosis of intracranial arterial dissection is important to reduce the risk of neurological complication. The purpose of this study was to assess the clinical usefulness of three-dimensional high-resolution MRI (3D-HR-MRI) including pre- and post-contrast T1-weighted volumetric isotropic turbo spin echo acquisition with improved motion-sensitized driven equilibrium preparation (3D-iMSDE-T1) and proton-density weighted image (3D-PD) in detecting dissection and to evaluate the added value of 3D-PD in diagnosing intracranial arterial dissection. Methods We retrospectively recruited patients who underwent 3D-HR-MRI with clinical suspicion of arterial dissection. Among them, we selected patients who were diagnosed with definite dissection according to the Spontaneous Cervicocephalic Arterial Dissections Study criteria. For each patient, the presence of intimal flap, intramural hematoma, and vessel dilatation were evaluated independently by two neuroradiologists on each sequence. Interobserver agreement was assessed. Results Seventeen patients (mean age: 41 ± 10 [SD] years; 13 men) were diagnosed with definite dissection. The intimal flaps were more frequently detected on 3D-PD (88.2%, 15/17) than on 3D-iMSDE-T1 (29.4%, 5/17), and post-contrast 3D-iMSDE-T1 (35.3%, 6/17; P = 0.006 and P = 0.004, respectively). No significant difference was found in the detection rate of intramural hematomas (59–71%) and vascular dilatations (47%) on each sequence. Interobserver agreement for detection of dissection findings showed almost perfect agreement (k = 0.84–1.00), except for detection of intimal flaps on pre-contrast 3D-iMSDE-T1 (k = 0.62). After addition of 3D-PD to pre- and post-contrast 3D-iMSDE-T1, more patients were diagnosed with definite dissection with the initial MRI (88.2% vs. 47.1%; P = 0.039). Conclusions The intimal flap might be better visualized on the 3D-PD sequence than the 3D-iMSDE-T1 sequences, allowing diagnosis of
Coronal roots of solar wind streams: 3-D MHD modeling
NASA Technical Reports Server (NTRS)
Pisanko, Yu. V.
1995-01-01
Weak (discontinuous) solutions of the 3-D MHD equations look like a promising tool to model the transonic solar wind with structural elements: current sheets, coronal plumes etc. Using the observational information about various coronal emissions one can include these structural elements into the 3-D MHD solar wind model by embedding the discontinuities of given type. Such 3-D MHD structured solar wind is calculated self-consistently: variants are examined via numerical experiments. In particular, the behavior of coronal plumes in the transonic solar wind flow, is modeled. The input information for numerical modeling (for example, the magnetic field map at the very base of the solar corona) can be adjusted so that fast stream arises over the center of the coronal hole, over the coronal hole boundaries and, even, over the region with closed magnetic topology. 3-D MHD equations have the analytical solution which can serve as a model of supersonic trans-alfvenic solar wind in the (5-20) solar radii heliocentric distance interval. The transverse, nonradial total (gas + magnetic field) pressure balance in the flow is the corner-stone of this solution. The solution describes the filamentation (ray-like structure of the solar corona) and streaming (formation of high-speed streams with velocities up to 800 km/sec) as a consequence of the magnetic field spatial inhomogeneous structure and trans-alfvenic character of the flow. The magnetic field works in the model as a 'controller' for the solar wind streaming and filamentation.
3D modeling of dual-gate FinFET.
Mil'shtein, Samson; Devarakonda, Lalitha; Zanchi, Brian; Palma, John
2012-11-13
The tendency to have better control of the flow of electrons in a channel of field-effect transistors (FETs) did lead to the design of two gates in junction field-effect transistors, field plates in a variety of metal semiconductor field-effect transistors and high electron mobility transistors, and finally a gate wrapping around three sides of a narrow fin-shaped channel in a FinFET. With the enhanced control, performance trends of all FETs are still challenged by carrier mobility dependence on the strengths of the electrical field along the channel. However, in cases when the ratio of FinFET volume to its surface dramatically decreases, one should carefully consider the surface boundary conditions of the device. Moreover, the inherent non-planar nature of a FinFET demands 3D modeling for accurate analysis of the device performance. Using the Silvaco modeling tool with quantization effects, we modeled a physical FinFET described in the work of Hisamoto et al. (IEEE Tran. Elec. Devices 47:12, 2000) in 3D. We compared it with a 2D model of the same device. We demonstrated that 3D modeling produces more accurate results. As 3D modeling results came close to experimental measurements, we made the next step of the study by designing a dual-gate FinFET biased at Vg1 >Vg2. It is shown that the dual-gate FinFET carries higher transconductance than the single-gate device.
3D shape decomposition and comparison for gallbladder modeling
NASA Astrophysics Data System (ADS)
Huang, Weimin; Zhou, Jiayin; Liu, Jiang; Zhang, Jing; Yang, Tao; Su, Yi; Law, Gim Han; Chui, Chee Kong; Chang, Stephen
2011-03-01
This paper presents an approach to gallbladder shape comparison by using 3D shape modeling and decomposition. The gallbladder models can be used for shape anomaly analysis and model comparison and selection in image guided robotic surgical training, especially for laparoscopic cholecystectomy simulation. The 3D shape of a gallbladder is first represented as a surface model, reconstructed from the contours segmented in CT data by a scheme of propagation based voxel learning and classification. To better extract the shape feature, the surface mesh is further down-sampled by a decimation filter and smoothed by a Taubin algorithm, followed by applying an advancing front algorithm to further enhance the regularity of the mesh. Multi-scale curvatures are then computed on the regularized mesh for the robust saliency landmark localization on the surface. The shape decomposition is proposed based on the saliency landmarks and the concavity, measured by the distance from the surface point to the convex hull. With a given tolerance the 3D shape can be decomposed and represented as 3D ellipsoids, which reveal the shape topology and anomaly of a gallbladder. The features based on the decomposed shape model are proposed for gallbladder shape comparison, which can be used for new model selection. We have collected 19 sets of abdominal CT scan data with gallbladders, some shown in normal shape and some in abnormal shapes. The experiments have shown that the decomposed shapes reveal important topology features.
Enhanced visualization of angiograms using 3D models
NASA Astrophysics Data System (ADS)
Marovic, Branko S.; Duckwiler, Gary R.; Villablanca, Pablo; Valentino, Daniel J.
1999-05-01
The 3D visualization of intracranial vasculature can facilitate the planning of endovascular therapy and the evaluation of interventional result. To create 3D visualizations, volumetric datasets from x-ray computed tomography angiography (CTA) and magnetic resonance angiography (MRA) are commonly rendered using maximum intensity projection (MIP), volume rendering, or surface rendering techniques. However, small aneurysms and mild stenoses are very difficult to detect using these methods. Furthermore, the instruments used during endovascular embolization or surgical treatment produce artifacts that typically make post-intervention CTA inapplicable, and the presence of magnetic material prohibits the use of MRA. Therefore, standard digital angiography is typically used. In order to address these problems, we developed a visualization and modeling system that displays 2D and 3D angiographic images using a simple Web-based interface. Polygonal models of vasculature were generated from CT and MR data using 3D segmentation of bones and vessels and polygonal surface extraction and simplification. A web-based 3D environment was developed for interactive examination of reconstructed surface models, creation of oblique cross- sections and maximum intensity projections, and distance measurements and annotations. This environment uses a multi- tier client/server approach employing VRML and Java. The 3D surface model and angiographic images can be aligned and displayed simultaneously to permit better perception of complex vasculature and to determine optical viewing positions and angles before starting an angiographic sessions. Polygonal surface reconstruction allows interactive display of complex spatial structures on inexpensive platforms such as personal computers as well as graphic workstations. The aneurysm assessment procedure demonstrated the utility of web-based technology for clinical visualization. The resulting system facilitated the treatment of serious vascular
3-D QSAutogrid/R: an alternative procedure to build 3-D QSAR models. Methodologies and applications.
Ballante, Flavio; Ragno, Rino
2012-06-25
Since it first appeared in 1988 3-D QSAR has proved its potential in the field of drug design and activity prediction. Although thousands of citations now exist in 3-D QSAR, its development was rather slow with the majority of new 3-D QSAR applications just extensions of CoMFA. An alternative way to build 3-D QSAR models, based on an evolution of software, has been named 3-D QSAutogrid/R and has been developed to use only software freely available to academics. 3-D QSAutogrid/R covers all the main features of CoMFA and GRID/GOLPE with implementation by multiprobe/multiregion variable selection (MPGRS) that improves the simplification of interpretation of the 3-D QSAR map. The methodology is based on the integration of the molecular interaction fields as calculated by AutoGrid and the R statistical environment that can be easily coupled with many free graphical molecular interfaces such as UCSF-Chimera, AutoDock Tools, JMol, and others. The description of each R package is reported in detail, and, to assess its validity, 3-D QSAutogrid/R has been applied to three molecular data sets of which either CoMFA or GRID/GOLPE models were reported in order to compare the results. 3-D QSAutogrid/R has been used as the core engine to prepare more that 240 3-D QSAR models forming the very first 3-D QSAR server ( www.3d-qsar.com ) with its code freely available through R-Cran distribution.
NASA Astrophysics Data System (ADS)
Sharkawi, K.-H.; Abdul-Rahman, A.
2013-09-01
Cities and urban areas entities such as building structures are becoming more complex as the modern human civilizations continue to evolve. The ability to plan and manage every territory especially the urban areas is very important to every government in the world. Planning and managing cities and urban areas based on printed maps and 2D data are getting insufficient and inefficient to cope with the complexity of the new developments in big cities. The emergence of 3D city models have boosted the efficiency in analysing and managing urban areas as the 3D data are proven to represent the real world object more accurately. It has since been adopted as the new trend in buildings and urban management and planning applications. Nowadays, many countries around the world have been generating virtual 3D representation of their major cities. The growing interest in improving the usability of 3D city models has resulted in the development of various tools for analysis based on the 3D city models. Today, 3D city models are generated for various purposes such as for tourism, location-based services, disaster management and urban planning. Meanwhile, modelling 3D objects are getting easier with the emergence of the user-friendly tools for 3D modelling available in the market. Generating 3D buildings with high accuracy also has become easier with the availability of airborne Lidar and terrestrial laser scanning equipments. The availability and accessibility to this technology makes it more sensible to analyse buildings in urban areas using 3D data as it accurately represent the real world objects. The Open Geospatial Consortium (OGC) has accepted CityGML specifications as one of the international standards for representing and exchanging spatial data, making it easier to visualize, store and manage 3D city models data efficiently. CityGML able to represents the semantics, geometry, topology and appearance of 3D city models in five well-defined Level-of-Details (LoD), namely LoD0
Hu, Sile; Zhou, Hang; Guo, Jing; Jin, Li; Tang, Kun
2013-01-01
Human facial morphology is a combination of many complex traits. Little is known about the genetic basis of common facial morphological variation. Existing association studies have largely used simple landmark-distances as surrogates for the complex morphological phenotypes of the face. However, this can result in decreased statistical power and unclear inference of shape changes. In this study, we applied a new image registration approach that automatically identified the salient landmarks and aligned the sample faces using high density pixel points. Based on this high density registration, three different phenotype data schemes were used to test the association between the common facial morphological variation and 10 candidate SNPs, and their performances were compared. The first scheme used traditional landmark-distances; the second relied on the geometric analysis of 15 landmarks and the third used geometric analysis of a dense registration of ∼30,000 3D points. We found that the two geometric approaches were highly consistent in their detection of morphological changes. The geometric method using dense registration further demonstrated superiority in the fine inference of shape changes and 3D face modeling. Several candidate SNPs showed potential associations with different facial features. In particular, one SNP, a known risk factor of non-syndromic cleft lips/palates, rs642961 in the IRF6 gene, was validated to strongly predict normal lip shape variation in female Han Chinese. This study further demonstrated that dense face registration may substantially improve the detection and characterization of genetic association in common facial variation. PMID:24339768
Enhanced LOD Concepts for Virtual 3d City Models
NASA Astrophysics Data System (ADS)
Benner, J.; Geiger, A.; Gröger, G.; Häfele, K.-H.; Löwner, M.-O.
2013-09-01
Virtual 3D city models contain digital three dimensional representations of city objects like buildings, streets or technical infrastructure. Because size and complexity of these models continuously grow, a Level of Detail (LoD) concept effectively supporting the partitioning of a complete model into alternative models of different complexity and providing metadata, addressing informational content, complexity and quality of each alternative model is indispensable. After a short overview on various LoD concepts, this paper discusses the existing LoD concept of the CityGML standard for 3D city models and identifies a number of deficits. Based on this analysis, an alternative concept is developed and illustrated with several examples. It differentiates between first, a Geometric Level of Detail (GLoD) and a Semantic Level of Detail (SLoD), and second between the interior building and its exterior shell. Finally, a possible implementation of the new concept is demonstrated by means of an UML model.
Teaching the geological subsurface with 3D models
NASA Astrophysics Data System (ADS)
Thorpe, Steve; Ward, Emma
2014-05-01
3D geological models have great potential as a resource when teaching geological concepts as it allows the student to visualise and interrogate UK geology. They are especially useful when dealing with the conversion of 2D field, map and GIS outputs into three dimensional geological units, which is a common problem for many students. Today's earth science students use a variety of skills and processes during their learning experience including spatial thinking, image construction, detecting patterns, making predictions and deducing the orientation of themselves. 3D geological models can reinforce spatial thinking strategies and encourage students to think about processes and properties, in turn helping the student to recognise pre-learnt geological principles in the field and to convert what they see at the surface into a picture of what is going on at depth. The British Geological Survey (BGS) has been producing digital 3D geological models for over 10 years. The models produced are revolutionising the working practices, data standards and products of the BGS. Sharing our geoscience information with academia is highlighted throughout the BGS strategy as is instilling practical skills in future geoscience professionals, such as model building and interpretation. In 2009 a project was launched to investigate the potential of the models as a teaching resource. The study included justifying if and how the models help students to learn, how models have been used historically, and how other forms of modelling are being used today. BGS now produce 3D geological models for use by anyone teaching or learning geoscience. They incorporate educational strategies that will develop geospatial skills and alleviate potential problems that some students experience. They are contained within contemporary case studies and show standard geological concepts, structures, sedimentary rocks, cross sections and field techniques. 3D geological models of the Isle of Wight and Ingleborough
3D Geological Model for "LUSI" - a Deep Geothermal System
NASA Astrophysics Data System (ADS)
Sohrabi, Reza; Jansen, Gunnar; Mazzini, Adriano; Galvan, Boris; Miller, Stephen A.
2016-04-01
Geothermal applications require the correct simulation of flow and heat transport processes in porous media, and many of these media, like deep volcanic hydrothermal systems, host a certain degree of fracturing. This work aims to understand the heat and fluid transport within a new-born sedimentary hosted geothermal system, termed Lusi, that began erupting in 2006 in East Java, Indonesia. Our goal is to develop conceptual and numerical models capable of simulating multiphase flow within large-scale fractured reservoirs such as the Lusi region, with fractures of arbitrary size, orientation and shape. Additionally, these models can also address a number of other applications, including Enhanced Geothermal Systems (EGS), CO2 sequestration (Carbon Capture and Storage CCS), and nuclear waste isolation. Fractured systems are ubiquitous, with a wide-range of lengths and scales, making difficult the development of a general model that can easily handle this complexity. We are developing a flexible continuum approach with an efficient, accurate numerical simulator based on an appropriate 3D geological model representing the structure of the deep geothermal reservoir. Using previous studies, borehole information and seismic data obtained in the framework of the Lusi Lab project (ERC grant n°308126), we present here the first 3D geological model of Lusi. This model is calculated using implicit 3D potential field or multi-potential fields, depending on the geological context and complexity. This method is based on geological pile containing the geological history of the area and relationship between geological bodies allowing automatic computation of intersections and volume reconstruction. Based on the 3D geological model, we developed a new mesh algorithm to create hexahedral octree meshes to transfer the structural geological information for 3D numerical simulations to quantify Thermal-Hydraulic-Mechanical-Chemical (THMC) physical processes.
Modeling the Properties of 3D Woven Composites
NASA Technical Reports Server (NTRS)
Cox, Brian N.
1995-01-01
An extensive study has been completed of the internal geometry, the mechanisms of failure, and the micromechanics of local failure events in graphite/epoxy composites with three dimensional (3D) woven reinforcement. This work has led to the development of models for predicting elastic constants, strength, notch sensitivity, and fatigue life. A summary is presented here.
Performance and Cognitive Assessment in 3-D Modeling
ERIC Educational Resources Information Center
Fahrer, Nolan E.; Ernst, Jeremy V.; Branoff, Theodore J.; Clark, Aaron C.
2011-01-01
The purpose of this study was to investigate identifiable differences between performance and cognitive assessment scores in a 3-D modeling unit of an engineering drafting course curriculum. The study aimed to provide further investigation of the need of skill-based assessments in engineering/technical graphics courses to potentially increase…
Coarse-grained modeling of RNA 3D structure.
Dawson, Wayne K; Maciejczyk, Maciej; Jankowska, Elzbieta J; Bujnicki, Janusz M
2016-07-01
Functional RNA molecules depend on three-dimensional (3D) structures to carry out their tasks within the cell. Understanding how these molecules interact to carry out their biological roles requires a detailed knowledge of RNA 3D structure and dynamics as well as thermodynamics, which strongly governs the folding of RNA and RNA-RNA interactions as well as a host of other interactions within the cellular environment. Experimental determination of these properties is difficult, and various computational methods have been developed to model the folding of RNA 3D structures and their interactions with other molecules. However, computational methods also have their limitations, especially when the biological effects demand computation of the dynamics beyond a few hundred nanoseconds. For the researcher confronted with such challenges, a more amenable approach is to resort to coarse-grained modeling to reduce the number of data points and computational demand to a more tractable size, while sacrificing as little critical information as possible. This review presents an introduction to the topic of coarse-grained modeling of RNA 3D structures and dynamics, covering both high- and low-resolution strategies. We discuss how physics-based approaches compare with knowledge based methods that rely on databases of information. In the course of this review, we discuss important aspects in the reasoning process behind building different models and the goals and pitfalls that can result.
Assessment of 3D Models Used in Contours Studies
ERIC Educational Resources Information Center
Alvarez, F. J. Ayala; Parra, E. B. Blazquez; Tubio, F. Montes
2015-01-01
This paper presents an experimental research focusing on the view of first year students. The aim is to check the quality of implementing 3D models integrated in the curriculum. We search to determine students' preference between the various means facilitated in order to understand the given subject. Students have been respondents to prove the…
Tracking people and cars using 3D modeling and CCTV.
Edelman, Gerda; Bijhold, Jurrien
2010-10-10
The aim of this study was to find a method for the reconstruction of movements of people and cars using CCTV footage and a 3D model of the environment. A procedure is proposed, in which video streams are synchronized and displayed in a 3D model, by using virtual cameras. People and cars are represented by cylinders and boxes, which are moved in the 3D model, according to their movements as shown in the video streams. The procedure was developed and tested in an experimental setup with test persons who logged their GPS coordinates as a recording of the ground truth. Results showed that it is possible to implement this procedure and to reconstruct movements of people and cars from video recordings. The procedure was also applied to a forensic case. In this work we experienced that more situational awareness was created by the 3D model, which made it easier to track people on multiple video streams. Based on all experiences from the experimental set up and the case, recommendations are formulated for use in practice.
NASA Astrophysics Data System (ADS)
Esposti Ongaro, T.; Neri, A.; Menconi, G.; de'Michieli Vitturi, M.; Marianelli, P.; Cavazzoni, C.; Erbacci, G.; Baxter, P. J.
2008-12-01
Numerical simulations of column collapse and pyroclastic density current (PDC) scenarios at Vesuvius were carried out using a transient 3D flow model based on multiphase transport laws. The model describes the dynamics of the collapse as well as the effects of the 3D topography of the volcano on PDC propagation. Source conditions refer to a medium-scale sub-Plinian event and consider a pressure-balanced jet. Simulation results provide new insights into the complex dynamics of these phenomena. In particular: 1) column collapse can be characterized by different regimes, from incipient collapse to partial or nearly total collapse, thus confirming the possibility of a transitional field of behaviour of the column characterized by the contemporaneous and/or intermittent occurrence of ash fallout and PDCs; 2) the collapse regime can be characterized by its fraction of eruptive mass reaching the ground and generating PDCs; 3) within the range of the investigated source conditions, the propagation and hazard potential of PDCs appear to be directly correlated with the flow-rate of the mass collapsing to the ground, rather than to the collapse height of the column (this finding is in contrast with predictions based on the energy-line concept, which simply correlates the PDC runout and kinetic energy with the collapse height of the column); 4) first-order values of hazard variables associated with PDCs (i.e., dynamic pressure, temperature, airborne ash concentration) can be derived from simulation results, thereby providing initial estimates for the quantification of damage scenarios; 5) for scenarios assuming a location of the central vent coinciding with that of the present Gran Cono, Mount Somma significantly influences the propagation of PDCs, largely reducing their propagation in the northern sector, and diverting mass toward the west and southeast, accentuating runouts and hazard variables for these sectors; 6) the 2D modelling approximation can force an artificial
Robust 3D reconstruction system for human jaw modeling
NASA Astrophysics Data System (ADS)
Yamany, Sameh M.; Farag, Aly A.; Tazman, David; Farman, Allan G.
1999-03-01
This paper presents a model-based vision system for dentistry that will replace traditional approaches used in diagnosis, treatment planning and surgical simulation. Dentistry requires accurate 3D representation of the teeth and jaws for many diagnostic and treatment purposes. For example orthodontic treatment involves the application of force systems to teeth over time to correct malocclusion. In order to evaluate tooth movement progress, the orthodontists monitors this movement by means of visual inspection, intraoral measurements, fabrication of plastic models, photographs and radiographs, a process which is both costly and time consuming. In this paper an integrate system has been developed to record the patient's occlusion using computer vision. Data is acquired with an intraoral video camera. A modified shape from shading (SFS) technique, using perspective projection and camera calibration, is used to extract accurate 3D information from a sequence of 2D images of the jaw. A new technique for 3D data registration, using a Grid Closest Point transform and genetic algorithms, is used to register the SFS output. Triangulization is then performed, and a solid 3D model is obtained via a rapid prototype machine.
3D Geological modelling - towards a European level infrastructure
NASA Astrophysics Data System (ADS)
Lee, Kathryn A.; van der Krogt, Rob; Busschers, Freek S.
2013-04-01
The joint European Geological Surveys are preparing the ground for a "European Geological Data Infrastructure" (EGDI), under the framework of the FP7-project EGDI-Scope. This scoping study, started in June 2012, for a pan-European e-Infrastructure is based on the successes of earlier joint projects including 'OneGeology-Europe' and aims to provide the backbone for serving interoperable, geological data currently held by European Geological Surveys. Also data from past, ongoing and future European projects will be incorporated. The scope will include an investigation of the functional and technical requirements for serving 3D geological models and will look to research the potential for providing a framework to integrate models at different scales, and form a structure for enabling the development of new and innovative model delivery mechanisms. The EGDI-scope project encourages pan-European inter-disciplinary collaboration between all European Geological Surveys. It aims to enhance emerging web based technologies that will facilitate the delivery of geological data to user communities involved in European policy making and international industry, but also to geoscientific research communities and the general public. Therefore, stakeholder input and communication is imperative to the success, as is the collaboration with all the Geological Surveys of Europe. The most important functional and technical requirements for delivery of such information at pan-European level will be derived from exchanges with relevant European stakeholder representatives and providers of geological data. For handling and delivering 3D geological model data the project will need to address a number of strategic issues: • Which are the most important issues and queries for the relevant stakeholders, requiring 3D geological models? How can this be translated to functional requirements for development and design of an integrated European application? • How to handle the very large
3D-Laser-Scanning Technique Applied to Bulk Density Measurements of Apollo Lunar Samples
NASA Technical Reports Server (NTRS)
Macke, R. J.; Kent, J. J.; Kiefer, W. S.; Britt, D. T.
2015-01-01
In order to better interpret gravimetric data from orbiters such as GRAIL and LRO to understand the subsurface composition and structure of the lunar crust, it is import to have a reliable database of the density and porosity of lunar materials. To this end, we have been surveying these physical properties in both lunar meteorites and Apollo lunar samples. To measure porosity, both grain density and bulk density are required. For bulk density, our group has historically utilized sub-mm bead immersion techniques extensively, though several factors have made this technique problematic for our work with Apollo samples. Samples allocated for measurement are often smaller than optimal for the technique, leading to large error bars. Also, for some samples we were required to use pure alumina beads instead of our usual glass beads. The alumina beads were subject to undesirable static effects, producing unreliable results. Other investigators have tested the use of 3d laser scanners on meteorites for measuring bulk volumes. Early work, though promising, was plagued with difficulties including poor response on dark or reflective surfaces, difficulty reproducing sharp edges, and large processing time for producing shape models. Due to progress in technology, however, laser scanners have improved considerably in recent years. We tested this technique on 27 lunar samples in the Apollo collection using a scanner at NASA Johnson Space Center. We found it to be reliable and more precise than beads, with the added benefit that it involves no direct contact with the sample, enabling the study of particularly friable samples for which bead immersion is not possible
Quasi-3D Multi-scale Modeling Framework Development
NASA Astrophysics Data System (ADS)
Arakawa, A.; Jung, J.
2008-12-01
When models are truncated in or near an energetically active range of the spectrum, model physics must be changed as the resolution changes. The model physics of GCMs and that of CRMs are, however, quite different from each other and at present there is no unified formulation of model physics that automatically provides transition between these model physics. The Quasi-3D (Q3D) Multi-scale Modeling Framework (MMF) is an attempt to bridge this gap. Like the recently proposed Heterogeneous Multiscale Method (HMM) (E and Engquist 2003), MMF combines a macroscopic model, GCM, and a microscopic model, CRM. Unlike the traditional multiscale methods such as the multi-grid and adapted mesh refinement techniques, HMM and MMF are for solving multi-physics problems. They share the common objective "to design combined macroscopic-microscopic computational methods that are much more efficient than solving the full microscopic model and at the same time give the information we need" (E et al. 2008). The question is then how to meet this objective in practice, which can be highly problem dependent. In HHM, the efficiency is gained typically by localization of the microscale problem. Following the pioneering work by Grabowski and Smolarkiewicz (1999) and Grabowski (2001), MMF takes advantage of the fact that 2D CRMs are reasonably successful in simulating deep clouds. In this approach, the efficiency is gained by sacrificing the three-dimensionality of cloud-scale motion. It also "localizes" the algorithm through embedding a CRM in each GCM grid box using cyclic boundary condition. The Q3D MMF is an attempt to reduce the expense due to these constraints by partially including the cloud-scale 3D effects and extending the CRM beyond individual GCM grid boxes. As currently formulated, the Q3D MMF is a 4D estimation/prediction framework that combines a GCM with a 3D anelastic cloud-resolving vector vorticity equation model (VVM) applied to a network of horizontal grids. The network
Grid cells in 3-D: Reconciling data and models.
Horiuchi, Timothy K; Moss, Cynthia F
2015-12-01
It is well documented that place cells and grid cells in echolocating bats show properties similar to those described in rodents, and yet, continuous theta-frequency oscillations, proposed to play a central role in grid/place cell formation, are not present in bat recordings. These comparative neurophysiological data have raised many questions about the role of theta-frequency oscillations in spatial memory and navigation. Additionally, spatial navigation in three-dimensions poses new challenges for the representation of space in neural models. Inspired by the literature on space representation in the echolocating bat, we have developed a nonoscillatory model of 3-D grid cell creation that shares many of the features of existing oscillatory-interference models. We discuss the model in the context of current knowledge of 3-D space representation and highlight directions for future research.
RNA and protein 3D structure modeling: similarities and differences.
Rother, Kristian; Rother, Magdalena; Boniecki, Michał; Puton, Tomasz; Bujnicki, Janusz M
2011-09-01
In analogy to proteins, the function of RNA depends on its structure and dynamics, which are encoded in the linear sequence. While there are numerous methods for computational prediction of protein 3D structure from sequence, there have been very few such methods for RNA. This review discusses template-based and template-free approaches for macromolecular structure prediction, with special emphasis on comparison between the already tried-and-tested methods for protein structure modeling and the very recently developed "protein-like" modeling methods for RNA. We highlight analogies between many successful methods for modeling of these two types of biological macromolecules and argue that RNA 3D structure can be modeled using "protein-like" methodology. We also highlight the areas where the differences between RNA and proteins require the development of RNA-specific solutions.
Stereoscopic display of 3D models for design visualization
NASA Astrophysics Data System (ADS)
Gilson, Kevin J.
2006-02-01
Advances in display technology and 3D design visualization applications have made real-time stereoscopic visualization of architectural and engineering projects a reality. Parsons Brinkerhoff (PB) is a transportation consulting firm that has used digital visualization tools from their inception and has helped pioneer the application of those tools to large scale infrastructure projects. PB is one of the first Architecture/Engineering/Construction (AEC) firms to implement a CAVE- an immersive presentation environment that includes stereoscopic rear-projection capability. The firm also employs a portable stereoscopic front-projection system, and shutter-glass systems for smaller groups. PB is using commercial real-time 3D applications in combination with traditional 3D modeling programs to visualize and present large AEC projects to planners, clients and decision makers in stereo. These presentations create more immersive and spatially realistic presentations of the proposed designs. This paper will present the basic display tools and applications, and the 3D modeling techniques PB is using to produce interactive stereoscopic content. The paper will discuss several architectural and engineering design visualizations we have produced.
Parallel 3-D viscoelastic finite difference seismic modelling
NASA Astrophysics Data System (ADS)
Bohlen, Thomas
2002-10-01
Computational power has advanced to a state where we can begin to perform wavefield simulations for realistic (complex) 3-D earth models at frequencies of interest to both seismologists and engineers. On serial platforms, however, 3-D calculations are still limited to small grid sizes and short seismic wave traveltimes. To make use of the efficiency of network computers a parallel 3-D viscoelastic finite difference (FD) code is implemented which allows to distribute the work on several PCs or workstations connected via standard ethernet in an in-house network. By using the portable message passing interface standard (MPI) for the communication between processors, running times can be reduced and grid sizes can be increased significantly. Furthermore, the code shows good performance on massive parallel supercomputers which makes the computation of very large grids feasible. This implementation greatly expands the applicability of the 3-D elastic/viscoelastic finite-difference modelling technique by providing an efficient, portable and practical C-program.
3-D HYDRODYNAMIC MODELING IN A GEOSPATIAL FRAMEWORK
Bollinger, J; Alfred Garrett, A; Larry Koffman, L; David Hayes, D
2006-08-24
3-D hydrodynamic models are used by the Savannah River National Laboratory (SRNL) to simulate the transport of thermal and radionuclide discharges in coastal estuary systems. Development of such models requires accurate bathymetry, coastline, and boundary condition data in conjunction with the ability to rapidly discretize model domains and interpolate the required geospatial data onto the domain. To facilitate rapid and accurate hydrodynamic model development, SRNL has developed a pre- and post-processor application in a geospatial framework to automate the creation of models using existing data. This automated capability allows development of very detailed models to maximize exploitation of available surface water radionuclide sample data and thermal imagery.
Modeling of 3D Woven Composites Containing Multiple Delaminations
2012-08-20
researchers 3D woven composites shows better damage tolerance than laminated textile composites without z-yarns such as plain woven composites even...modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were used in regions where transverse cracks and...Title ABSTRACT In this paper we present FE modeling of quasi-static short beam shear test of plain woven laminated composites. Cohesive elements were
Stratified shear flow in an inclined duct: near-instantaneous 3D velocity and density measurements
NASA Astrophysics Data System (ADS)
Partridge, Jamie; Lefauve, Adrien; Dalziel, Stuart; Linden, Paul
2016-11-01
We present results from a new experimental setup to study the exchange flow in an inclined square duct between two reservoirs containing fluids of different densities. This system can exhibit stratified shear wave motions, and has a distinct parameter threshold above which turbulence is triggered and progressively fills a larger fraction of the duct. To probe these intrinsically 3D flows, we introduce a new setup in which a traversing laser sheet allows us to obtain near-instantaneous 3D velocity and density fields. Three components of velocity are measured on successive 2D planes using stereo particle image velocimetry (PIV) with density information obtained simultaneously using laser induced fluorescence (LIF). Supported by EPSRC Programme Grant EP/K034529/1 entitled "Mathematical Underpinnings of Stratified Turbulence".
Geometric and Colour Data Fusion for Outdoor 3D Models
Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo
2012-01-01
This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields. PMID:22969327
A method for building 3D models of barchan dunes
NASA Astrophysics Data System (ADS)
Nai, Yang; Li-lan, Su; Lin, Wan; Jie, Yang; Shi-yi, Chen; Wei-lu, Hu
2016-01-01
The distributions of barchan dunes are usually represented by digital terrain models (DTMs) overlaid with digital orthophoto maps. Given that most regions with barchan dues have low relief, a 3D map obtained from a DTM may ineffectively show the stereoscopic shape of each dune. The method of building 3D models of barchan dunes using existing modeling software seldom considers the geographical environment. As a result, barchan dune models are often inconsistent with actual DTMs and incompletely express the morphological characteristics of dunes. Manual construction of barchan dune models is also costly and time consuming. Considering these problems, the morphological characteristics of barchan dunes and the mathematical relationships between the morphological parameters of the dunes, such as length, height, and width, are analyzed in this study. The methods of extracting the morphological feature points of barchan dunes, calculating their morphological parameters and building dune outlines and skeleton lines based on the medial axes, are also presented. The dune outlines, skeleton lines, and part of the medial axes of dunes are used to construct a constrained triangulated irregular network. C# and ArcEngine are employed to build 3D models of barchan dunes automatically. Experimental results of a study conducted in Tengger Desert show that the method can be used to approximate the morphological characteristics of barchan dunes and is less time consuming than manual methods.
Geometric and colour data fusion for outdoor 3D models.
Merchán, Pilar; Adán, Antonio; Salamanca, Santiago; Domínguez, Vicente; Chacón, Ricardo
2012-01-01
This paper deals with the generation of accurate, dense and coloured 3D models of outdoor scenarios from scanners. This is a challenging research field in which several problems still remain unsolved. In particular, the process of 3D model creation in outdoor scenes may be inefficient if the scene is digitalized under unsuitable technical (specific scanner on-board camera) and environmental (rain, dampness, changing illumination) conditions. We address our research towards the integration of images and range data to produce photorealistic models. Our proposal is based on decoupling the colour integration and geometry reconstruction stages, making them independent and controlled processes. This issue is approached from two different viewpoints. On the one hand, given a complete model (geometry plus texture), we propose a method to modify the original texture provided by the scanner on-board camera with the colour information extracted from external images taken at given moments and under specific environmental conditions. On the other hand, we propose an algorithm to directly assign external images onto the complete geometric model, thus avoiding tedious on-line calibration processes. We present the work conducted on two large Roman archaeological sites dating from the first century A.D., namely, the Theatre of Segobriga and the Fori Porticus of Emerita Augusta, both in Spain. The results obtained demonstrate that our approach could be useful in the digitalization and 3D modelling fields.
Towards a 3d Spatial Urban Energy Modelling Approach
NASA Astrophysics Data System (ADS)
Bahu, J.-M.; Koch, A.; Kremers, E.; Murshed, S. M.
2013-09-01
Today's needs to reduce the environmental impact of energy use impose dramatic changes for energy infrastructure and existing demand patterns (e.g. buildings) corresponding to their specific context. In addition, future energy systems are expected to integrate a considerable share of fluctuating power sources and equally a high share of distributed generation of electricity. Energy system models capable of describing such future systems and allowing the simulation of the impact of these developments thus require a spatial representation in order to reflect the local context and the boundary conditions. This paper describes two recent research approaches developed at EIFER in the fields of (a) geo-localised simulation of heat energy demand in cities based on 3D morphological data and (b) spatially explicit Agent-Based Models (ABM) for the simulation of smart grids. 3D city models were used to assess solar potential and heat energy demand of residential buildings which enable cities to target the building refurbishment potentials. Distributed energy systems require innovative modelling techniques where individual components are represented and can interact. With this approach, several smart grid demonstrators were simulated, where heterogeneous models are spatially represented. Coupling 3D geodata with energy system ABMs holds different advantages for both approaches. On one hand, energy system models can be enhanced with high resolution data from 3D city models and their semantic relations. Furthermore, they allow for spatial analysis and visualisation of the results, with emphasis on spatially and structurally correlations among the different layers (e.g. infrastructure, buildings, administrative zones) to provide an integrated approach. On the other hand, 3D models can benefit from more detailed system description of energy infrastructure, representing dynamic phenomena and high resolution models for energy use at component level. The proposed modelling strategies
3-D model-based tracking for UAV indoor localization.
Teulière, Céline; Marchand, Eric; Eck, Laurent
2015-05-01
This paper proposes a novel model-based tracking approach for 3-D localization. One main difficulty of standard model-based approach lies in the presence of low-level ambiguities between different edges. In this paper, given a 3-D model of the edges of the environment, we derive a multiple hypotheses tracker which retrieves the potential poses of the camera from the observations in the image. We also show how these candidate poses can be integrated into a particle filtering framework to guide the particle set toward the peaks of the distribution. Motivated by the UAV indoor localization problem where GPS signal is not available, we validate the algorithm on real image sequences from UAV flights.
Parallel tempering and 3D spin glass models
NASA Astrophysics Data System (ADS)
Papakonstantinou, T.; Malakis, A.
2014-03-01
We review parallel tempering schemes and examine their main ingredients for accuracy and efficiency. We discuss two selection methods of temperatures and some alternatives for the exchange of replicas, including all-pair exchange methods. We measure specific heat errors and round-trip efficiency using the two-dimensional (2D) Ising model, and also test the efficiency for the ground state production in 3D spin glass models. We find that the optimization of the GS problem is highly influenced by the choice of the temperature range of the PT process. Finally, we present numerical evidence concerning the universality aspects of an anisotropic case of the 3D spin-glass model.
Modeling Images of Natural 3D Surfaces: Overview and Potential Applications
NASA Technical Reports Server (NTRS)
Jalobeanu, Andre; Kuehnel, Frank; Stutz, John
2004-01-01
Generative models of natural images have long been used in computer vision. However, since they only describe the of 2D scenes, they fail to capture all the properties of the underlying 3D world. Even though such models are sufficient for many vision tasks a 3D scene model is when it comes to inferring a 3D object or its characteristics. In this paper, we present such a generative model, incorporating both a multiscale surface prior model for surface geometry and reflectance, and an image formation process model based on realistic rendering, the computation of the posterior model parameter densities, and on the critical aspects of the rendering. We also how to efficiently invert the model within a Bayesian framework. We present a few potential applications, such as asteroid modeling and Planetary topography recovery, illustrated by promising results on real images.
3D Multispectral Light Propagation Model For Subcutaneous Veins Imaging
Paquit, Vincent C; Price, Jeffery R; Meriaudeau, Fabrice; Tobin Jr, Kenneth William
2008-01-01
In this paper, we describe a new 3D light propagation model aimed at understanding the effects of various physiological properties on subcutaneous vein imaging. In particular, we build upon the well known MCML (Monte Carlo Multi Layer) code and present a tissue model that improves upon the current state-of-the-art by: incorporating physiological variation, such as melanin concentration, fat content, and layer thickness; including veins of varying depth and diameter; using curved surfaces from real arm shapes; and modeling the vessel wall interface. We describe our model, present results from the Monte Carlo modeling, and compare these results with those obtained with other Monte Carlo methods.
3D printed elastic honeycombs with graded density for tailorable energy absorption
NASA Astrophysics Data System (ADS)
Bates, Simon R. G.; Farrow, Ian R.; Trask, Richard S.
2016-04-01
This work describes the development and experimental analysis of hyperelastic honeycombs with graded densities, for the purpose of energy absorption. Hexagonal arrays are manufactured from thermoplastic polyurethane (TPU) via fused filament fabrication (FFF) 3D printing and the density graded by varying cell wall thickness though the structures. Manufactured samples are subject to static compression tests and their energy absorbing potential analysed via the formation of energy absorption diagrams. It is shown that by grading the density through the structure, the energy absorption profile of these structures can be manipulated such that a wide range of compression energies can be efficiently absorbed.
Generation and use of human 3D-CAD models
NASA Astrophysics Data System (ADS)
Grotepass, Juergen; Speyer, Hartmut; Kaiser, Ralf
2002-05-01
Individualized Products are one of the ten mega trends of the 21st Century with human modeling as the key issue for tomorrow's design and product development. The use of human modeling software for computer based ergonomic simulations within the production process increases quality while reducing costs by 30- 50 percent and shortening production time. This presentation focuses on the use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production. Today, the entire production chain can be designed, individualized models generated and analyzed in 3D computer environments. Anthropometric design for ergonomics is matched to human needs, thus preserving health. Ergonomic simulation includes topics as human vision, reachability, kinematics, force and comfort analysis and international design capabilities. In German more than 17 billions of Mark are moved to other industries, because clothes do not fit. Individual clothing tailored to the customer's preference means surplus value, pleasure and perfect fit. The body scanning technology is the key to generation and use of human 3D-CAD models for both, the ergonomic design of working environments and made to measure garment production.
Method for modeling post-mortem biometric 3D fingerprints
NASA Astrophysics Data System (ADS)
Rajeev, Srijith; Shreyas, Kamath K. M.; Agaian, Sos S.
2016-05-01
Despite the advancements of fingerprint recognition in 2-D and 3-D domain, authenticating deformed/post-mortem fingerprints continue to be an important challenge. Prior cleansing and reconditioning of the deceased finger is required before acquisition of the fingerprint. The victim's finger needs to be precisely and carefully operated by a medium to record the fingerprint impression. This process may damage the structure of the finger, which subsequently leads to higher false rejection rates. This paper proposes a non-invasive method to perform 3-D deformed/post-mortem finger modeling, which produces a 2-D rolled equivalent fingerprint for automated verification. The presented novel modeling method involves masking, filtering, and unrolling. Computer simulations were conducted on finger models with different depth variations obtained from Flashscan3D LLC. Results illustrate that the modeling scheme provides a viable 2-D fingerprint of deformed models for automated verification. The quality and adaptability of the obtained unrolled 2-D fingerprints were analyzed using NIST fingerprint software. Eventually, the presented method could be extended to other biometric traits such as palm, foot, tongue etc. for security and administrative applications.
3D cartographic modeling of the Alpine arc
NASA Astrophysics Data System (ADS)
Vouillamoz, Naomi; Sue, Christian; Champagnac, Jean-Daniel; Calcagno, Philippe
2012-12-01
We built a 3D cartography of the Alpine arc, a highly non-cylindrical mountain belt, using the 3D GeoModeller of the BRGM (French geological survey). The model allows to handle the large-scale 3D structure of seventeen major crustal units of the belt (from the lower crust to the sedimentary cover nappes), and two main discontinuities (the Insubric Line and the Crustal Penninic Front). It provides a unique document to better understand their structural relationships and to produce new sections. The study area comprises the western Alpine arc, from the Jura to the Northwest, up to the Bergell granite intrusion and the Lepontine Dome to the East, and is limited to the South by the Ligurian basin. The model is limited vertically 10 km above sea level at the top, and the moho interface at the bottom. We discarded the structural relationships between the Alps sensus stricto and the surrounding geodynamic systems such as the Rhine graben or the connection with the Apennines. The 3D-model is based on the global integration of various data such as the DEM of the Alps, the moho isobaths, the simplified geological and tectonic maps of the belt, the crustal cross-sections ECORS-CROP and NFP-20, and complementary cross-sections specifically built to precise local complexities. The database has first been integrated in a GIS-project to prepare their implementation in the GeoModeller, by homogenizing the different spatial referencing systems. The global model is finally interpolated from all these data, using the potential field method. The final document is a new tri-dimensional cartography that would be used as input for further alpine studies.
Explicit 3D continuum fracture modeling with smooth particle hydrodynamics
NASA Technical Reports Server (NTRS)
Benz, W.; Asphaug, E.
1993-01-01
Impact phenomena shaped our solar system. As usual for most solar system processes, the scales are far different than we can address directly in the laboratory. Impact velocities are often much higher than we can achieve, sizes are often vastly larger, and most impacts take place in an environment where the only gravitational force is the mutual pull of the impactors. The Smooth Particle Hydrodynamics (SPH) technique has been applied in the past to the simulations of giant impacts. In these simulations, the colliding objects were so massive (at least a sizeable fraction of the Earth's mass) that material strength was negligible compared to gravity. This assumption can no longer be made when the bodies are much smaller. To this end, we have developed a 3D SPH code that includes a strength model to which we have added a von Mises yielding relation for stresses beyond the Hugoniot Elastic Limit. At the lower stresses associated with brittle failure, we use a rate-dependent strength based on the nucleation of incipient flaws whose number density is given by a Weibull distribution. Following Grady and Kipp and Melosh et al., we introduce a state variable D ('damage'), 0 less than D less than 1, which expresses the local reduction in strength due to crack growth under tensile loading. Unfortunately for the hydrodynamics, Grady and Kipp's model predicts which fragments are the most probable ones and not the ones that are really formed. This means, for example, that if a given laboratory experiment is modeled, the fragment distribution obtained from the Grady-Kipp theory would be equivalent to a ensemble average over many realizations of the experiment. On the other hand, the hydrodynamics itself is explicit and evolves not an ensemble average but very specific fragments. Hence, there is a clear incompatibility with the deterministic nature of the hydrodynamics equations and the statistical approach of the Grady-Kipp dynamical fracture model. We remedy these shortcomings
Geometric and Textural Blending for 3D Model Stylization.
Huang, YiJheng; Lin, Wen-Chieh; Yeh, I-Cheng; Lee, Tong-Yee
2017-01-25
Stylizing a 3D model with characteristic shapes or appearances is common in product design, particularly in the design of 3D model merchandise, such as souvenirs, toys, furniture, and stylized items. A model stylization approach is proposed in this study. The approach combines base and style models while preserving user-specified shape features of the base model and the attractive features of the style model with limited assistance from a user. The two models are first combined at the topological level. A tree-growing technique is utilized to search for all possible combinations of the two models. Second, the models are combined at textural and geometric levels by employing a morphing technique. Results show that the proposed approach generates various appealing models and allows users to control the diversity of the output models and adjust the blending degree between the base and style models. The results of this work are also experimentally compared with those of a recent work through a user study. The comparison indicates that our results are more appealing, feature-preserving, and reasonable than those of the compared previous study. The proposed system allows product designers to easily explore design possibilities and assists novice users in creating their own stylized models.
CityGML - Interoperable semantic 3D city models
NASA Astrophysics Data System (ADS)
Gröger, Gerhard; Plümer, Lutz
2012-07-01
CityGML is the international standard of the Open Geospatial Consortium (OGC) for the representation and exchange of 3D city models. It defines the three-dimensional geometry, topology, semantics and appearance of the most relevant topographic objects in urban or regional contexts. These definitions are provided in different, well-defined Levels-of-Detail (multiresolution model). The focus of CityGML is on the semantical aspects of 3D city models, its structures, taxonomies and aggregations, allowing users to employ virtual 3D city models for advanced analysis and visualization tasks in a variety of application domains such as urban planning, indoor/outdoor pedestrian navigation, environmental simulations, cultural heritage, or facility management. This is in contrast to purely geometrical/graphical models such as KML, VRML, or X3D, which do not provide sufficient semantics. CityGML is based on the Geography Markup Language (GML), which provides a standardized geometry model. Due to this model and its well-defined semantics and structures, CityGML facilitates interoperable data exchange in the context of geo web services and spatial data infrastructures. Since its standardization in 2008, CityGML has become used on a worldwide scale: tools from notable companies in the geospatial field provide CityGML interfaces. Many applications and projects use this standard. CityGML is also having a strong impact on science: numerous approaches use CityGML, particularly its semantics, for disaster management, emergency responses, or energy-related applications as well as for visualizations, or they contribute to CityGML, improving its consistency and validity, or use CityGML, particularly its different Levels-of-Detail, as a source or target for generalizations. This paper gives an overview of CityGML, its underlying concepts, its Levels-of-Detail, how to extend it, its applications, its likely future development, and the role it plays in scientific research. Furthermore, its
gEMfitter: a highly parallel FFT-based 3D density fitting tool with GPU texture memory acceleration.
Hoang, Thai V; Cavin, Xavier; Ritchie, David W
2013-11-01
Fitting high resolution protein structures into low resolution cryo-electron microscopy (cryo-EM) density maps is an important technique for modeling the atomic structures of very large macromolecular assemblies. This article presents "gEMfitter", a highly parallel fast Fourier transform (FFT) EM density fitting program which can exploit the special hardware properties of modern graphics processor units (GPUs) to accelerate both the translational and rotational parts of the correlation search. In particular, by using the GPU's special texture memory hardware to rotate 3D voxel grids, the cost of rotating large 3D density maps is almost completely eliminated. Compared to performing 3D correlations on one core of a contemporary central processor unit (CPU), running gEMfitter on a modern GPU gives up to 26-fold speed-up. Furthermore, using our parallel processing framework, this speed-up increases linearly with the number of CPUs or GPUs used. Thus, it is now possible to use routinely more robust but more expensive 3D correlation techniques. When tested on low resolution experimental cryo-EM data for the GroEL-GroES complex, we demonstrate the satisfactory fitting results that may be achieved by using a locally normalised cross-correlation with a Laplacian pre-filter, while still being up to three orders of magnitude faster than the well-known COLORES program.
Lattice percolation approach to 3D modeling of tissue aging
NASA Astrophysics Data System (ADS)
Gorshkov, Vyacheslav; Privman, Vladimir; Libert, Sergiy
2016-11-01
We describe a 3D percolation-type approach to modeling of the processes of aging and certain other properties of tissues analyzed as systems consisting of interacting cells. Lattice sites are designated as regular (healthy) cells, senescent cells, or vacancies left by dead (apoptotic) cells. The system is then studied dynamically with the ongoing processes including regular cell dividing to fill vacant sites, healthy cells becoming senescent or dying, and senescent cells dying. Statistical-mechanics description can provide patterns of time dependence and snapshots of morphological system properties. The developed theoretical modeling approach is found not only to corroborate recent experimental findings that inhibition of senescence can lead to extended lifespan, but also to confirm that, unlike 2D, in 3D senescent cells can contribute to tissue's connectivity/mechanical stability. The latter effect occurs by senescent cells forming the second infinite cluster in the regime when the regular (healthy) cell's infinite cluster still exists.
The 3D model control of image processing
NASA Technical Reports Server (NTRS)
Nguyen, An H.; Stark, Lawrence
1989-01-01
Telerobotics studies remote control of distant robots by a human operator using supervisory or direct control. Even if the robot manipulators has vision or other senses, problems arise involving control, communications, and delay. The communication delays that may be expected with telerobots working in space stations while being controlled from an Earth lab have led to a number of experiments attempting to circumvent the problem. This delay in communication is a main motivating factor in moving from well understood instantaneous hands-on manual control to less well understood supervisory control; the ultimate step would be the realization of a fully autonomous robot. The 3-D model control plays a crucial role in resolving many conflicting image processing problems that are inherent in resolving in the bottom-up approach of most current machine vision processes. The 3-D model control approach is also capable of providing the necessary visual feedback information for both the control algorithms and for the human operator.
Modeling 3D faces from samplings via compressive sensing
NASA Astrophysics Data System (ADS)
Sun, Qi; Tang, Yanlong; Hu, Ping
2013-07-01
3D data is easier to acquire for family entertainment purpose today because of the mass-production, cheapness and portability of domestic RGBD sensors, e.g., Microsoft Kinect. However, the accuracy of facial modeling is affected by the roughness and instability of the raw input data from such sensors. To overcome this problem, we introduce compressive sensing (CS) method to build a novel 3D super-resolution scheme to reconstruct high-resolution facial models from rough samples captured by Kinect. Unlike the simple frame fusion super-resolution method, this approach aims to acquire compressed samples for storage before a high-resolution image is produced. In this scheme, depth frames are firstly captured and then each of them is measured into compressed samples using sparse coding. Next, the samples are fused to produce an optimal one and finally a high-resolution image is recovered from the fused sample. This framework is able to recover 3D facial model of a given user from compressed simples and this can reducing storage space as well as measurement cost in future devices e.g., single-pixel depth cameras. Hence, this work can potentially be applied into future applications, such as access control system using face recognition, and smart phones with depth cameras, which need high resolution and little measure time.
NASA Technical Reports Server (NTRS)
Urbancic, N.; Ghent, R.; Stanley, S,; Johnson, C. L.; Carroll, K. A.; Hatch, D.; Williamson, M. C.; Garry, W. B.; Talwani, M.
2016-01-01
Surface gravity surveys can detect subsurface density variations that can reveal subsurface geologic features. In 1972, the Apollo 17 (A17) mission conducted the Traverse Gravimeter Experiment (TGE) using a gravimeter that measured the local gravity field near Taurus Littrow Valley (TLV), located on the south-eastern rim of the Serenitatis basin. TLV is hypothesized to be a basaltfilled radial graben resulting from the impact that formed Mare Serenitatis. It is bounded by both the North and South Massifs (NM and SM) as well as other smaller mountains to the East that are thought to be mainly composed of brecciated highland material. The TGE is the first and only successful gravity survey on the surface of the Moon. Other more recent satellite surveys, such as NASA's Gravity Recovery and Interior Laboratory (GRAIL) mission (2011- 2012), have produced the best global gravity field to date (approx. 13km resolution). However, these satellite surveys are not sensitive enough to detect fine-scale (<1km) lunar subsurface structures. This underscores the value of the data collected at the surface by A17. In the original analysis of the data a 2D forward-modelling approach was used to derive a thickness of the subsurface basalt layer of 1.0 km by assuming a simple flat-faced rectangular geometry and using densities derived from Apollo lunar samples. We are investigating whether modern 3D modelling techniques in combination with high-resolution topographical and image datasets can reveal additional fine-scale subsurface structure in TLV.
3D modelling of the Black Sea ecosystem
NASA Astrophysics Data System (ADS)
Capet, A.; Gregoire, M.; Beckers, J.-M.; Joassin, P.; Naithani, J.; Soetart, K.
2009-04-01
A coupled physical-biogeochemical model has been developed to simulate the ecosystem of the Black Sea at the end of the 80's when eutrophication and invasion by gelatinous organisms seriously affected the stability and dynamics of the system. The biogeochemical model describes the cycle of carbon, nitrogen, silicate, oxygen and phosphorus through the foodweb from bacteria to gelatinous carnivores and explicitly represents processes in the anoxic layer down to the bottom. For calibration and analyses purposes, the coupled model has first been run in 1D at several places in the Black Sea. The biogeochemical model involves some hundred parameters which have been first calibrated by hand using published values. Then, an identifiability analysis has been performed in order to determine a subset of 15 identifiable parameters. An automatic calibration subroutine has been used to fine tune these parameters. In 1D, the model solution exhibits a complex dynamics with several years of transient adjustment. This complexity is imparted by the explicit modelling of top predators. The model has been calibrated and validated using a large set of data available in the Black Sea TU Ocean Base. The calibrated biogeochemical model is implemented in a 3D hydrodynamical model of the Black Sea. Results of these 3D simulations will be presented and compared with maps of in-situ data reconstructed from available data base using the software DIVA (Data Interpolation and Variational analysis).
West Flank Coso, CA FORGE 3D geologic model
Doug Blankenship
2016-03-01
This is an x,y,z file of the West Flank FORGE 3D geologic model. Model created in Earthvision by Dynamic Graphic Inc. The model was constructed with a grid spacing of 100 m. Geologic surfaces were extrapolated from the input data using a minimum tension gridding algorithm. The data file is tabular data in a text file, with lithology data associated with X,Y,Z grid points. All the relevant information is in the file header (the spatial reference, the projection etc.) In addition all the fields in the data file are identified in the header.
NASA Astrophysics Data System (ADS)
Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.
2009-02-01
Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.
Furdová, Alena; Sramka, Miron; Thurzo, Andrej; Furdová, Adriana
2017-01-01
Objective The objective of this study was to determine the use of 3D printed model of an eye with intraocular tumor for linear accelerator-based stereotactic radiosurgery. Methods The software for segmentation (3D Slicer) created virtual 3D model of eye globe with tumorous mass based on tissue density from computed tomography and magnetic resonance imaging data. A virtual model was then processed in the slicing software (Simplify3D®) and printed on 3D printer using fused deposition modeling technology. The material that was used for printing was polylactic acid. Results In 2015, stereotactic planning scheme was optimized with the help of 3D printed model of the patient’s eye with intraocular tumor. In the period 2001–2015, a group of 150 patients with uveal melanoma (139 choroidal melanoma and 11 ciliary body melanoma) were treated. The median tumor volume was 0.5 cm3 (0.2–1.6 cm3). The radiation dose was 35.0 Gy by 99% of dose volume histogram. Conclusion The 3D printed model of eye with tumor was helpful in planning the process to achieve the optimal scheme for irradiation which requires high accuracy of defining the targeted tumor mass and critical structures. PMID:28203052
3D-printer visualization of neuron models.
McDougal, Robert A; Shepherd, Gordon M
2015-01-01
Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases.
3D-printer visualization of neuron models
McDougal, Robert A.; Shepherd, Gordon M.
2015-01-01
Neurons come in a wide variety of shapes and sizes. In a quest to understand this neuronal diversity, researchers have three-dimensionally traced tens of thousands of neurons; many of these tracings are freely available through online repositories like NeuroMorpho.Org and ModelDB. Tracings can be visualized on the computer screen, used for statistical analysis of the properties of different cell types, used to simulate neuronal behavior, and more. We introduce the use of 3D printing as a technique for visualizing traced morphologies. Our method for generating printable versions of a cell or group of cells is to expand dendrite and axon diameters and then to transform the tracing into a 3D object with a neuronal surface generating algorithm like Constructive Tessellated Neuronal Geometry (CTNG). We show that 3D printed cells can be readily examined, manipulated, and compared with other neurons to gain insight into both the biology and the reconstruction process. We share our printable models in a new database, 3DModelDB, and encourage others to do the same with cells that they generate using our code or other methods. To provide additional context, 3DModelDB provides a simulatable version of each cell, links to papers that use or describe it, and links to associated entries in other databases. PMID:26175684
Northern California Seismic Attenuation: 3-D Qp and Qs models
NASA Astrophysics Data System (ADS)
Eberhart-Phillips, D. M.
2015-12-01
The northern California crust exhibits a wide range of rock types and deformation processes which produce pronounced heterogeneity in regional attenuation. Using local earthquakes, 3-D Qp and Qs crustal models have been obtained for this region which includes the San Andreas fault system, the Central Valley, the Sierra Nevada batholith, and the Mendocino subduction volcanic system. Path attenuation t* values were determined from P and S spectra of 959 spatially distributed earthquakes, magnitude 2.5-6.0 from 2005-2014, using 1254 stations from NCEDC networks and IRIS Mendocino and Sierra Nevada temporary arrays. The t* data were used in Q inversions, using existing hypocenters and 3-D velocity models, with basic 10-km node spacing. The uneven data coverage was accounted for with linking of nodes into larger areas in order to provide useful Q images across the 3-D volume. The results at shallow depth (< 2 km) show very low Q in the Sacramento Delta, the Eureka area, and parts of the Bay Area. In the brittle crust, fault zones that have high seismicity exhibit low Q. In the lower crust, low Q is observed along fault zones that have large cumulative displacement and have experienced grain size reduction. Underlying active volcanic areas, low Q features are apparent below 20-km depth. Moderately high Q is associated with igneous rocks of the Sierra Nevada and Salinian block, while the Franciscan subduction complex shows moderately low Q. The most prominent high Q feature is related to the Great Valley Ophiolite.
Right approach to 3D modeling using CAD tools
NASA Astrophysics Data System (ADS)
Baddam, Mounica Reddy
The thesis provides a step-by-step methodology to enable an instructor dealing with CAD tools to optimally guide his/her students through an understandable 3D modeling approach which will not only enhance their knowledge about the tool's usage but also enable them to achieve their desired result in comparatively lesser time. In the known practical field, there is particularly very little information available to apply CAD skills to formal beginners' training sessions. Additionally, advent of new software in 3D domain cumulates updating into a more difficult task. Keeping up to the industry's advanced requirements emphasizes the importance of more skilled hands in the field of CAD development, rather than just prioritizing manufacturing in terms of complex software features. The thesis analyses different 3D modeling approaches specified to the varieties of CAD tools currently available in the market. Utilizing performance-time databases, learning curves have been generated to measure their performance time, feature count etc. Based on the results, improvement parameters have also been provided for (Asperl, 2005).
Effective 3-D surface modeling for geographic information systems
NASA Astrophysics Data System (ADS)
Yüksek, K.; Alparslan, M.; Mendi, E.
2016-01-01
In this work, we propose a dynamic, flexible and interactive urban digital terrain platform with spatial data and query processing capabilities of geographic information systems, multimedia database functionality and graphical modeling infrastructure. A new data element, called Geo-Node, which stores image, spatial data and 3-D CAD objects is developed using an efficient data structure. The system effectively handles data transfer of Geo-Nodes between main memory and secondary storage with an optimized directional replacement policy (DRP) based buffer management scheme. Polyhedron structures are used in digital surface modeling and smoothing process is performed by interpolation. The experimental results show that our framework achieves high performance and works effectively with urban scenes independent from the amount of spatial data and image size. The proposed platform may contribute to the development of various applications such as Web GIS systems based on 3-D graphics standards (e.g., X3-D and VRML) and services which integrate multi-dimensional spatial information and satellite/aerial imagery.
Boosting Power Density of Microbial Fuel Cells with 3D Nitrogen-Doped Graphene Aerogel Electrode.
Yang, Yang; Liu, Tianyu; Zhu, Xun; Zhang, Feng; Ye, Dingding; Liao, Qiang; Li, Yat
2016-08-01
A 3D nitrogen-doped graphene aerogel (N-GA) as an anode material for microbial fuel cells (MFCs) is reported. Electron microscopy images reveal that the N-GA possesses hierarchical porous structure that allows efficient diffusion of both bacterial cells and electron mediators in the interior space of 3D electrode, and thus, the colonization of bacterial communities. Electrochemical impedance spectroscopic measurements further show that nitrogen doping considerably reduces the charge transfer resistance and internal resistance of GA, which helps to enhance the MFC power density. Importantly, the dual-chamber milliliter-scale MFC with N-GA anode yields an outstanding volumetric power density of 225 ± 12 W m(-3) normalized to the total volume of the anodic chamber (750 ± 40 W m(-3) normalized to the volume of the anode). These power densities are the highest values report for milliliter-scale MFCs with similar chamber size (25 mL) under the similar measurement conditions. The 3D N-GA electrode shows great promise for improving the power generation of MFC devices.
Boosting Power Density of Microbial Fuel Cells with 3D Nitrogen‐Doped Graphene Aerogel Electrode
Yang, Yang; Liu, Tianyu; Zhang, Feng; Ye, Dingding; Liao, Qiang
2016-01-01
A 3D nitrogen‐doped graphene aerogel (N‐GA) as an anode material for microbial fuel cells (MFCs) is reported. Electron microscopy images reveal that the N‐GA possesses hierarchical porous structure that allows efficient diffusion of both bacterial cells and electron mediators in the interior space of 3D electrode, and thus, the colonization of bacterial communities. Electrochemical impedance spectroscopic measurements further show that nitrogen doping considerably reduces the charge transfer resistance and internal resistance of GA, which helps to enhance the MFC power density. Importantly, the dual‐chamber milliliter‐scale MFC with N‐GA anode yields an outstanding volumetric power density of 225 ± 12 W m−3 normalized to the total volume of the anodic chamber (750 ± 40 W m−3 normalized to the volume of the anode). These power densities are the highest values report for milliliter‐scale MFCs with similar chamber size (25 mL) under the similar measurement conditions. The 3D N‐GA electrode shows great promise for improving the power generation of MFC devices. PMID:27818911
Underwater 3d Modeling: Image Enhancement and Point Cloud Filtering
NASA Astrophysics Data System (ADS)
Sarakinou, I.; Papadimitriou, K.; Georgoula, O.; Patias, P.
2016-06-01
This paper examines the results of image enhancement and point cloud filtering on the visual and geometric quality of 3D models for the representation of underwater features. Specifically it evaluates the combination of effects from the manual editing of images' radiometry (captured at shallow depths) and the selection of parameters for point cloud definition and mesh building (processed in 3D modeling software). Such datasets, are usually collected by divers, handled by scientists and used for geovisualization purposes. In the presented study, have been created 3D models from three sets of images (seafloor, part of a wreck and a small boat's wreck) captured at three different depths (3.5m, 10m and 14m respectively). Four models have been created from the first dataset (seafloor) in order to evaluate the results from the application of image enhancement techniques and point cloud filtering. The main process for this preliminary study included a) the definition of parameters for the point cloud filtering and the creation of a reference model, b) the radiometric editing of images, followed by the creation of three improved models and c) the assessment of results by comparing the visual and the geometric quality of improved models versus the reference one. Finally, the selected technique is tested on two other data sets in order to examine its appropriateness for different depths (at 10m and 14m) and different objects (part of a wreck and a small boat's wreck) in the context of an ongoing research in the Laboratory of Photogrammetry and Remote Sensing.
3D Geologic Model of the San Diego Area
NASA Astrophysics Data System (ADS)
Danskin, W. R.; Cromwell, G.; Glockhoff, C.; Martin, D.
2015-12-01
Prior geologic studies of the San Diego area, including northern Baja California, Mexico, focused on site investigations, characterization of rock formations, or earthquake hazards. No comprehensive, quantitative model characterizing the three-dimensional (3D) geology of the entire area has been developed. The lack of such a model limits understanding of large-scale processes, such as development of ancient landforms, and groundwater movement and availability. To evaluate these regional processes, the United States Geological Survey (USGS) conducted a study to better understand the geologic structure of the San Diego area. A cornerstone of this study is the installation and analysis of 77 wells at 12 multiple-depth monitoring-well sites. Geologic information from these wells was combined with lithologic data from 81 oil exploration wells and municipal and private water wells, gravity and seismic interpretations, and paleontological interpretations. These data were analyzed in conjunction with geologic maps and digital elevation models to develop a 3D geologic model of the San Diego area, in particular of the San Diego embayment. Existing interpretations of regional surficial geology, faulting, and tectonic history provided the framework for this model, which was refined by independent evaluation of subsurface geology. Geologic formations were simplified into five sedimentary units (Quaternary, Plio-Pleistocene, Oligocene, Eocene and Cretaceous ages), and one basal crystalline unit (primarily Cretaceous and Jurassic). Complex fault systems are represented in the model by ten fault strands that maintain overall displacement. The 3D geologic model corroborates existing geologic concepts of the San Diego area, refines the extent of subsurface geology, and allows users to holistically evaluate subsurface structures and regional hydrogeology.
3D flare particle model for ShipIR/NTCS
NASA Astrophysics Data System (ADS)
Ramaswamy, Srinivasan; Vaitekunas, David A.
2016-05-01
A key component in any soft-kill response to an incoming guided missile is the flare /chaff decoy used to distract or seduce the seeker homing system away from the naval platform. This paper describes a new 3D flare particle model in the naval threat countermeasure simulator (NTCS) of the NATO-standard ship signature model (ShipIR), which provides independent control over the size and radial distribution of its signature. The 3D particles of each flare sub-munition are modelled stochastically and rendered using OpenGL z-buffering, 2D projection, and alpha-blending to produce a unique and time varying signature. A sensitivity analysis on each input parameter provides the data and methods needed to synthesize a model from an IR measurement of a decoy. The new model also eliminated artifacts and deficiencies in our previous model which prevented reliable tracks from the adaptive track gate algorithm already presented by Ramaswamy and Vaitekunas (2015). A sequence of scenarios are used to test and demonstrate the new flare model during a missile engagement.
NASA Astrophysics Data System (ADS)
Norajitra, Tobias; Meinzer, Hans-Peter; Maier-Hein, Klaus H.
2015-03-01
During image segmentation, 3D Statistical Shape Models (SSM) usually conduct a limited search for target landmarks within one-dimensional search profiles perpendicular to the model surface. In addition, landmark appearance is modeled only locally based on linear profiles and weak learners, altogether leading to segmentation errors from landmark ambiguities and limited search coverage. We present a new method for 3D SSM segmentation based on 3D Random Forest Regression Voting. For each surface landmark, a Random Regression Forest is trained that learns a 3D spatial displacement function between the according reference landmark and a set of surrounding sample points, based on an infinite set of non-local randomized 3D Haar-like features. Landmark search is then conducted omni-directionally within 3D search spaces, where voxelwise forest predictions on landmark position contribute to a common voting map which reflects the overall position estimate. Segmentation experiments were conducted on a set of 45 CT volumes of the human liver, of which 40 images were randomly chosen for training and 5 for testing. Without parameter optimization, using a simple candidate selection and a single resolution approach, excellent results were achieved, while faster convergence and better concavity segmentation were observed, altogether underlining the potential of our approach in terms of increased robustness from distinct landmark detection and from better search coverage.
Digital 3D Borobudur - Integration of 3D surveying and modeling techniques
NASA Astrophysics Data System (ADS)
Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.
2015-08-01
The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.
3-D modelling of seamount topography from satellite altimetry
Baudry, N. ); Calmant, S. )
1991-06-01
The authors develop a complete set of algorithms to perform 3D modelling of seamount bathymetry from satellite altimetry. The first stage of the data processing consists in gridding the geoid: to account for the long wavelength errors geoid heights are first bias-adjusted at cross-overs. Then a collocation on a regular grid is performed, accounting for the altimeter errors. In a second stage, geoid heights are converted into bathymetry. No simplifying assumption on the shape and location of the bathymetry highs is necessary. Bathymetric uncertainties due to the data sampling and the parameters of the mechanical and crustal models are evaluated.
3D Numerical Simulations of the Breakout Model
NASA Astrophysics Data System (ADS)
Choe, G. S.; Cheng, C. Z.; Lee, J.; Lynch, B. J.; Antiochos, S. K.; DeVore, C. R.; Zurbuchen, T. H.
2005-05-01
We present the continuing progress of the numerical simulations of the breakout model for coronal mass ejection initiation. To validate the 3D spherical ARMS code we have run the 2.5D breakout problem and compare the eruption to the published 2D results. The ARMS 2.5D CME also forms a large magnetic island ahead of the erupting plasmoid due to the code's excellent maintenance of equatorial symmetry. Progress on the fully 3D breakout problem is also discussed. To build up enough magnetic free energy for an eruption the active region field must be strong with a steep gradient near the polarity inversion line and the shear must be highly concentrated there. This requires adaptive griding techniques. In the current simulation, the active region to background field ratio is 20-to-1 and the neutral line is long compared to the active region width. We present the evolution of this topology under Br-conserving shearing flow and discuss implications for a 3D eruption. This work is supported by NASA and ONR. BJL is supported by NASA GSRP grant NGT5-50453.
Discrete Method of Images for 3D Radio Propagation Modeling
NASA Astrophysics Data System (ADS)
Novak, Roman
2016-09-01
Discretization by rasterization is introduced into the method of images (MI) in the context of 3D deterministic radio propagation modeling as a way to exploit spatial coherence of electromagnetic propagation for fine-grained parallelism. Traditional algebraic treatment of bounding regions and surfaces is replaced by computer graphics rendering of 3D reflections and double refractions while building the image tree. The visibility of reception points and surfaces is also resolved by shader programs. The proposed rasterization is shown to be of comparable run time to that of the fundamentally parallel shooting and bouncing rays. The rasterization does not affect the signal evaluation backtracking step, thus preserving its advantage over the brute force ray-tracing methods in terms of accuracy. Moreover, the rendering resolution may be scaled back for a given level of scenario detail with only marginal impact on the image tree size. This allows selection of scene optimized execution parameters for faster execution, giving the method a competitive edge. The proposed variant of MI can be run on any GPU that supports real-time 3D graphics.
3-D density imaging with muon flux measurements from underground galleries
NASA Astrophysics Data System (ADS)
Lesparre, N.; Cabrera, J.; Marteau, J.
2017-03-01
Atmospheric muon flux measurements provide information on subsurface density distribution. In this study, muon flux was measured underground, in the Tournemire experimental platform (France). The objective was to image the medium between the galleries and the surface and evaluate the feasibility to detect the presence of discontinuities, for example, produced by secondary subvertical faults or by karstic networks. Measurements were performed from three different sites with a partial overlap of muon trajectories, offering the possibility to seek density variations at different depths. The conversion of the measured muon flux to average density values showed global variations further analysed through a 3-D nonlinear inversion procedure. Main results are the presence of a very low density region at the level of the upper aquifer, compatible with the presence of a karstic network hosting local cavities, and the absence of secondary faults. We discuss the validity of the present results and propose different strategies to improve the accuracy of such measurements and analysis.
Modeling the GFR with RELAP5-3D
Cliff B. Davis; Theron D. Marshall; K. D. Weaver
2005-09-01
Significant improvements have been made to the RELAP5-3D computer code for analysis of the Gas Fast Reactor (GFR). These improvements consisted of adding carbon dioxide as a working fluid, improving the turbine component, developing a compressor model, and adding the Gnielinski heat transfer correlation. The code improvements were validated, generally through comparisons with independent design calculations. A model of the power conversion unit of the GFR was developed. The model of the power conversion unit was coupled to a reactor model to develop a complete model of the GFR system. The RELAP5 model of the GFR was used to simulate two transients, one initiated by a reactor trip and the other initiated by a loss of load.
Testing Mercury Porosimetry with 3D Printed Porosity Models
NASA Astrophysics Data System (ADS)
Hasiuk, F.; Ewing, R. P.; Hu, Q.
2014-12-01
Mercury intrusion porosimetry is one of the most widely used techniques to study the porous nature of a geological and man-made materials. In the geosciences, it is commonly used to describe petroleum reservoir and seal rocks as well as to grade aggregates for the design of asphalt and portland cement concretes. It's wide utility stems from its ability to characterize a wide range of pore throat sizes (from nanometers to around a millimeter). The fundamental physical model underlying mercury intrusion porosimetry, the Washburn Equation, is based on the assumption that rock porosity can be described as a bundle of cylindrical tubes. 3D printing technology, also known as rapid prototyping, allows the construction of intricate and accurate models, exactly what is required to build models of rock porosity. We evaluate the applicability of the Washburn Equation by comparing properties (like porosity, pore and pore throat size distribution, and surface area) computed on digital porosity models (built from CT data, CAD designs, or periodic geometries) to properties measured via mercury intrusion porosimetry on 3D printed versions of the same digital porosity models.
DYNA3D Material Model 71 - Solid Element Test Problem
Zywicz, E
2008-01-24
A general phenomenological-based elasto-plastic nonlinear isotropic strain hardening material model was implemented in DYNA3D for use in solid, beam, truss, and shell elements. The constitutive model, Model 71, is based upon conventional J2 plasticity and affords optional temperature and rate dependence (visco-plasticity). The expressions for strain hardening, temperature dependence, and rate dependence allow it to represent a wide variety of material responses. Options to capture temperature changes due to adiabatic heating and thermal straining are incorporated into the constitutive framework as well. The verification problem developed for this constitutive model consists of four uni-axial right cylinders subject to constant true strain-rate boundary conditions. Three of the specimens have different constant strain rates imposed, while the fourth specimen is subjected to several strain rate jumps. The material parameters developed by Fehlmann (2005) for 21-6-9 Nitronic steel are utilized. As demonstrated below, the finite element (FE) simulations are in excellent agreement with the theoretical responses and indicated the model is functioning as desired. Consequently, this problem serves as both a verification problem and regression test problem for DYNA3D.
Modeling radiative transfer in heterogeneous 3D vegetation canopies
NASA Astrophysics Data System (ADS)
Gastellu-Etchegorry, J. P.; Demarez, V.; Pinel, Veronique; Zagolski, Francis
1995-01-01
The DART (discrete anisotropic radiative transfer) model simulates radiative transfer in heterogeneous 3-D scenes; here, a forest plantation. Similarly to Kimes model, the scene is divided into a rectangular cell matrix, i.e., a building block for simulating larger scenes. Cells are parallelipipedic. The scene encompasses different landscape features (i.e., trees with leaves and trunks, grass, water, and soil) with specific optical (reflectance, transmittance) and structural (LAI, LAD) characteristics. Radiation directions are subdivided into contiguous sectors with possibly uneven spacing. Topography, hot spot, and multiple interactions (scattering, attenuation) within cells are modeled. Two major steps are distinguished: (1) Illumination of cells by direct sun radiation. Actual locations of within cell scattering are determined for optimizing scattering computation. (2) Interception and scattering of previously scattered radiation. Diffuse atmospheric radiation is input at this level. Multiple scattering is represented with a spherical harmonic decomposition, for reducing data volume. The model iterates on step 2 for all cells, and stops with the energetic equilibrium. This model predicts the bi-directional reflectance factors of 3D canopies, with each scene component contribution; it was successfully tested with homogeneous covers. It gives also the radiation regime with canopies, and consequently some information about volume distribution of photosynthesis rates and primary production.
Complex tephra dispersion from 3D plume modeling using ATHAM
NASA Astrophysics Data System (ADS)
Nicholson, B. C.; Kobs-Nawotniak, S. E.
2014-12-01
Most volcanic hazard assessments are based on a classic inversion tool for tephra deposits that relies on a simple integral model to explain the eruption plume. While this tool is adequate for first-order predictions of tephra deposition under no-wind conditions, the simplifying assumptions make it unreliable for ambient winds >10 m/s. Advances in computational power now make it possible to improve the inversion tool using 3D fluid dynamics. We do this with the physics-based Active Tracer High-resolution Atmospheric Model (ATHAM) to model tephra dispersion and deposition from volcanic eruption columns. The model, when run in 3D, is able to capture the complex morphology of bent plumes. Tephra distributions produced by these morphologies differ significantly from distributions created by idealized advection solutions, reflecting the effects of counter-rotating vortex pairs, puffing modes, or plume bifurcation. The modeled tephra deposition better captures the complex effects of wind-plume interaction, allowing us to update classic inversion tools with more realistic weak plume conditions consistent with typical historical explosive eruptions.
3-D physical modeling of a complex salt canopy
Wiley, R.W.; Sekharan, K.K.
1996-12-31
Recent drilling has confirmed both significant reservoir potential and the presence of commercial hydrocarbons below salt structures in the Gulf of Mexico. Obtaining definitive seismic images with standard processing schemes beneath these salt structures is very difficult if not impossible. Because of the complicated seismic behavior of these structures, full volume 3-D prestack depth migration is required. Unfortunately, carrying out the multitude of calculations needed to create a proper image requires the largest and fastest supercomputers and rather complex numerical algorithms. Furthermore, developing and testing the imaging algorithms is quite involved and requires appropriate test data sets. To better understand the problems and issues of subsalt imaging, Marathon Oil Company and Louisiana Land and Exploration Company contracted with the University of Houston`s Allied Geophysical Laboratories (AGL) to construct a salt canopy physical model. The model is patterned after the SEG/EAEG Salt Model and is made from synthetic materials. It is a full three-dimensional model with an irregularly shaped, lateral salt structure embedded in five distinct sedimentary layers. The model was used to acquire a multi-offset 3-D marine-style survey. These data are being used to address problems of subsalt imaging. In addition to standard processing techniques, the authors investigate algorithms for multiple removal and prestack depth migration.
Exploiting Textured 3D Models for Developing Serious Games
NASA Astrophysics Data System (ADS)
Kontogianni, G.; Georgopoulos, A.
2015-08-01
Digital technologies have affected significantly many fields of computer graphics such as Games and especially the field of the Serious Games. These games are usually used for educational proposes in many fields such as Health Care, Military applications, Education, Government etc. Especially Digital Cultural Heritage is a scientific area that Serious Games are applied and lately many applications appear in the related literature. Realistic 3D textured models which have been produced using different photogrammetric methods could be a useful tool for the creation of Serious Game applications in order to make the final result more realistic and close to the reality. The basic goal of this paper is how 3D textured models which are produced by photogrammetric methods can be useful for developing a more realistic environment of a Serious Game. The application of this project aims at the creation of an educational game for the Ancient Agora of Athens. The 3D models used vary not only as far as their production methods (i.e. Time of Flight laser scanner, Structure from Motion, Virtual historical reconstruction etc.) is concerned, but also as far as their era as some of them illustrated according to their existing situation and some others according to how these monuments looked like in the past. The Unity 3D® game developing environment was used for creating this application, in which all these models were inserted in the same file format. For the application two diachronic virtual tours of the Athenian Agora were produced. The first one illustrates the Agora as it is today and the second one at the 2nd century A.D. Finally the future perspective for the evolution of this game is presented which includes the addition of some questions that the user will be able to answer. Finally an evaluation is scheduled to be performed at the end of the project.
3D model tools for architecture and archaeology reconstruction
NASA Astrophysics Data System (ADS)
Vlad, Ioan; Herban, Ioan Sorin; Stoian, Mircea; Vilceanu, Clara-Beatrice
2016-06-01
The main objective of architectural and patrimonial survey is to provide a precise documentation of the status quo of the surveyed objects (monuments, buildings, archaeological object and sites) for preservation and protection, for scientific studies and restoration purposes, for the presentation to the general public. Cultural heritage documentation includes an interdisciplinary approach having as purpose an overall understanding of the object itself and an integration of the information which characterize it. The accuracy and the precision of the model are directly influenced by the quality of the measurements realized on field and by the quality of the software. The software is in the process of continuous development, which brings many improvements. On the other side, compared to aerial photogrammetry, close range photogrammetry and particularly architectural photogrammetry is not limited to vertical photographs with special cameras. The methodology of terrestrial photogrammetry has changed significantly and various photographic acquisitions are widely in use. In this context, the present paper brings forward a comparative study of TLS (Terrestrial Laser Scanner) and digital photogrammetry for 3D modeling. The authors take into account the accuracy of the 3D models obtained, the overall costs involved for each technology and method and the 4th dimension - time. The paper proves its applicability as photogrammetric technologies are nowadays used at a large scale for obtaining the 3D model of cultural heritage objects, efficacious in their assessment and monitoring, thus contributing to historic conservation. Its importance also lies in highlighting the advantages and disadvantages of each method used - very important issue for both the industrial and scientific segment when facing decisions such as in which technology to invest more research and funds.
The Engelbourg's ruins: from 3D TLS point cloud acquisition to 3D virtual and historic models
NASA Astrophysics Data System (ADS)
Koehl, Mathieu; Berger, Solveig; Nobile, Sylvain
2014-05-01
The Castle of Engelbourg was built at the beginning of the 13th century, at the top of the Schlossberg. It is situated on the territory of the municipality of Thann (France), at the crossroads of Alsace and Lorraine, and dominates the outlet of the valley of Thur. Its strategic position was one of the causes of its systematic destructions during the 17th century, and Louis XIV finished his fate by ordering his demolition in 1673. Today only few vestiges remain, of which a section of the main tower from about 7m of diameter and 4m of wide laying on its slice, unique characteristic in the regional castral landscape. It is visible since the valley, was named "the Eye of the witch", and became a key attraction of the region. The site, which extends over approximately one hectare, is for several years the object of numerous archaeological studies and is at the heart of a project of valuation of the vestiges today. It was indeed a key objective, among the numerous planned works, to realize a 3D model of the site in its current state, in other words, a virtual model "such as seized", exploitable as well from a cultural and tourist point of view as by scientists and in archaeological researches. The team of the ICube/INSA lab had in responsibility the realization of this model, the acquisition of the data until the delivery of the virtual model, thanks to 3D TLS and topographic surveying methods. It was also planned to integrate into this 3D model, data of 2D archives, stemming from series of former excavations. The objectives of this project were the following ones: • Acquisition of 3D digital data of the site and 3D modelling • Digitization of the 2D archaeological data and integration in the 3D model • Implementation of a database connected to the 3D model • Virtual Visit of the site The obtained results allowed us to visualize every 3D object individually, under several forms (point clouds, 3D meshed objects and models, etc.) and at several levels of detail
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; Kyle, Matt R.
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the accelerating frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.
Modeling moving systems with RELAP5-3D
Mesina, G. L.; Aumiller, David L.; Buschman, Francis X.; ...
2015-12-04
RELAP5-3D is typically used to model stationary, land-based reactors. However, it can also model reactors in other inertial and accelerating frames of reference. By changing the magnitude of the gravitational vector through user input, RELAP5-3D can model reactors on a space station or the moon. The field equations have also been modified to model reactors in a non-inertial frame, such as occur in land-based reactors during earthquakes or onboard spacecraft. Transient body forces affect fluid flow in thermal-fluid machinery aboard accelerating crafts during rotational and translational accelerations. It is useful to express the equations of fluid motion in the acceleratingmore » frame of reference attached to the moving craft. However, careful treatment of the rotational and translational kinematics is required to accurately capture the physics of the fluid motion. Correlations for flow at angles between horizontal and vertical are generated via interpolation where no experimental studies or data exist. The equations for three-dimensional fluid motion in a non-inertial frame of reference are developed. As a result, two different systems for describing rotational motion are presented, user input is discussed, and an example is given.« less
Fisheye Lenses for 3d Modeling: Evaluations and Considerations
NASA Astrophysics Data System (ADS)
Barazzetti, L.; Previtali, M.; Roncoroni, F.
2017-02-01
Fisheye lenses are becoming more popular in complete image-based modelling projects of small and narrow spaces. The growing interest in fisheye lenses is confirmed by the availability of different commercial software incorporating a fisheye camera model. Such software are now able to carry out the steps of the image processing pipeline in a fully automated way, from camera calibration and orientation to dense matching, surface generation, and orthophoto production. This paper highlights the advantages (and disadvantages) of fisheye lenses when used for 3D modelling projects through different commercial software. The goal is not only a comparison of commercial software, but also an analysis of the additional issues that arise when a fisheye lens is used for 3D modelling. Results confirm that a fisheye lens is suitable for accurate metric documentation, especially when limited space is available. On the other hand, additional issues where found during the camera calibration/image orientation step as well as the texture generation and orthophoto production phases, for which particular attention is required.
3-d Periodic Packaging: Sodalite, a Model System
1992-05-15
to 05-31-92 4. TITLE AND SUBTITLE S. FUNDING NUMBERS 3-d Periodic Packaging: N00014-90-J-1159 Sodalite , A Model System 6. AUTHOR(S) G.D. Stucky, V.I...assembly of confined atomic and molecular arrays. Sodalite , one of the simplest zeolite analogue structures with a 60 atom cage can be synthesized with...structure of both the frameworks and the clusters within the cages of sodalite structural analogues can be precisely determined. In addition to new
3-D Periodic Packaging: Sodalite, a Model System
1992-05-15
hfww 05-15-92 Technical 06-1-91 o 05-31-92 ,mA AMU SUBSTIl SI. FUNDING NUMBUS 3-d Periodic Packaging: Sodalite , A Model System N00014-81-K-0598 AUTNO(S...considerable latitude in the assembly of confined atomic and molecular arrays. Sodalite , one of the simplest zeolite analogue structures with a 60 atom...framework electric field. The structure of both the fiameworks and the clusters within the cages of sodalite structural analogues can be precisely
NASA Astrophysics Data System (ADS)
Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G.
2017-02-01
3D models of tree geometry are important for numerous studies, such as for urban planning or agricultural studies. In climatology, tree models can be necessary for simulating the cooling effect of trees by estimating their evapotranspiration. The literature shows that the more accurate the 3D structure of a tree is, the more accurate microclimate models are. This is the reason why, since 2013, we have been developing an algorithm for the reconstruction of trees from terrestrial laser scanner (TLS) data, which we call TreeArchitecture. Meanwhile, new promising algorithms dedicated to tree reconstruction have emerged in the literature. In this paper, we assess the capacity of our algorithm and of two others -PlantScan3D and SimpleTree- to reconstruct the 3D structure of trees. The aim of this reconstruction is to be able to characterize the geometric complexity of trees, with different heights, sizes and shapes of branches. Based on a specific surveying workflow with a TLS, we have acquired dense point clouds of six different urban trees, with specific architectures, before reconstructing them with each algorithm. Finally, qualitative and quantitative assessments of the models are performed using reference tree reconstructions and field measurements. Based on this assessment, the advantages and the limits of every reconstruction algorithm are highlighted. Anyway, very satisfying results can be reached for 3D reconstructions of tree topology as well as of tree volume.
Geometric-model-free tracking of extended targets using 3D lidar measurements
NASA Astrophysics Data System (ADS)
Steinemann, Philipp; Klappstein, Jens; Dickmann, Juergen; von Hundelshausen, Felix; Wünsche, Hans-Joachim
2012-06-01
Tracking of extended targets in high definition, 360-degree 3D-LIDAR (Light Detection and Ranging) measurements is a challenging task and a current research topic. It is a key component in robotic applications, and is relevant to path planning and collision avoidance. This paper proposes a new method without a geometric model to simultaneously track and accumulate 3D-LIDAR measurements of an object. The method itself is based on a particle filter and uses an object-related local 3D grid for each object. No geometric object hypothesis is needed. Accumulation allows coping with occlusions. The prediction step of the particle filter is governed by a motion model consisting of a deterministic and a probabilistic part. Since this paper is focused on tracking ground vehicles, a bicycle model is used for the deterministic part. The probabilistic part depends on the current state of each particle. A function for calculating the current probability density function for state transition is developed. It is derived in detail and based on a database consisting of vehicle dynamics measurements over several hundreds of kilometers. The adaptive probability density function narrows down the gating area for measurement data association. The second part of the proposed method addresses weighting the particles with a cost function. Different 3D-griddependent cost functions are presented and evaluated. Evaluations with real 3D-LIDAR measurements show the performance of the proposed method. The results are also compared to ground truth data.
Computational model of mesenchymal migration in 3D under chemotaxis
Ribeiro, F. O.; Gómez-Benito, M. J.; Folgado, J.; Fernandes, P. R.; García-Aznar, J. M.
2017-01-01
Abstract Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell–matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices – collagen and fibrin – and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL−1 a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency. PMID:27336322
Computational model of mesenchymal migration in 3D under chemotaxis.
Ribeiro, F O; Gómez-Benito, M J; Folgado, J; Fernandes, P R; García-Aznar, J M
2017-01-01
Cell chemotaxis is an important characteristic of cellular migration, which takes part in crucial aspects of life and development. In this work, we propose a novel in silico model of mesenchymal 3D migration with competing protrusions under a chemotactic gradient. Based on recent experimental observations, we identify three main stages that can regulate mesenchymal chemotaxis: chemosensing, dendritic protrusion dynamics and cell-matrix interactions. Therefore, each of these features is considered as a different module of the main regulatory computational algorithm. The numerical model was particularized for the case of fibroblast chemotaxis under a PDGF-bb gradient. Fibroblasts migration was simulated embedded in two different 3D matrices - collagen and fibrin - and under several PDGF-bb concentrations. Validation of the model results was provided through qualitative and quantitative comparison with in vitro studies. Our numerical predictions of cell trajectories and speeds were within the measured in vitro ranges in both collagen and fibrin matrices. Although in fibrin, the migration speed of fibroblasts is very low, because fibrin is a stiffer and more entangling matrix. Testing PDGF-bb concentrations, we noticed that an increment of this factor produces a speed increment. At 1 ng mL(-1) a speed peak is reached after which the migration speed diminishes again. Moreover, we observed that fibrin exerts a dampening behavior on migration, significantly affecting the migration efficiency.
Image sequence coding using 3D scene models
NASA Astrophysics Data System (ADS)
Girod, Bernd
1994-09-01
The implicit and explicit use of 3D models for image sequence coding is discussed. For implicit use, a 3D model can be incorporated into motion compensating prediction. A scheme that estimates the displacement vector field with a rigid body motion constraint by recovering epipolar lines from an unconstrained displacement estimate and then repeating block matching along the epipolar line is proposed. Experimental results show that an improved displacement vector field can be obtained with a rigid body motion constraint. As an example for explicit use, various results with a facial animation model for videotelephony are discussed. A 13 X 16 B-spline mask can be adapted automatically to individual faces and is used to generate facial expressions based on FACS. A depth-from-defocus range camera suitable for real-time facial motion tracking is described. Finally, the real-time facial animation system `Traugott' is presented that has been used to generate several hours of broadcast video. Experiments suggest that a videophone system based on facial animation might require a transmission bitrate of 1 kbit/s or below.
Pose invariant face recognition: 3D model from single photo
NASA Astrophysics Data System (ADS)
Napoléon, Thibault; Alfalou, Ayman
2017-02-01
Face recognition is widely studied in the literature for its possibilities in surveillance and security. In this paper, we report a novel algorithm for the identification task. This technique is based on an optimized 3D modeling allowing to reconstruct faces in different poses from a limited number of references (i.e. one image by class/person). Particularly, we propose to use an active shape model to detect a set of keypoints on the face necessary to deform our synthetic model with our optimized finite element method. Indeed, in order to improve our deformation, we propose a regularization by distances on graph. To perform the identification we use the VanderLugt correlator well know to effectively address this task. On the other hand we add a difference of Gaussian filtering step to highlight the edges and a description step based on the local binary patterns. The experiments are performed on the PHPID database enhanced with our 3D reconstructed faces of each person with an azimuth and an elevation ranging from -30° to +30°. The obtained results prove the robustness of our new method with 88.76% of good identification when the classic 2D approach (based on the VLC) obtains just 44.97%.
Heralding a new paradigm in 3D tumor modeling.
Fong, Eliza L S; Harrington, Daniel A; Farach-Carson, Mary C; Yu, Hanry
2016-11-01
Numerous studies to date have contributed to a paradigm shift in modeling cancer, moving from the traditional two-dimensional culture system to three-dimensional (3D) culture systems for cancer cell culture. This led to the inception of tumor engineering, which has undergone rapid advances over the years. In line with the recognition that tumors are not merely masses of proliferating cancer cells but rather, highly complex tissues consisting of a dynamic extracellular matrix together with stromal, immune and endothelial cells, significant efforts have been made to better recapitulate the tumor microenvironment in 3D. These approaches include the development of engineered matrices and co-cultures to replicate the complexity of tumor-stroma interactions in vitro. However, the tumor engineering and cancer biology fields have traditionally relied heavily on the use of cancer cell lines as a cell source in tumor modeling. While cancer cell lines have contributed to a wealth of knowledge in cancer biology, the use of this cell source is increasingly perceived as a major contributing factor to the dismal failure rate of oncology drugs in drug development. Backing this notion is the increasing evidence that tumors possess intrinsic heterogeneity, which predominantly homogeneous cancer cell lines poorly reflect. Tumor heterogeneity contributes to therapeutic resistance in patients. To overcome this limitation, cancer cell lines are beginning to be replaced by primary tumor cell sources, in the form of patient-derived xenografts and organoids cultures. Moving forward, we propose that further advances in tumor engineering would require that tumor heterogeneity (tumor variants) be taken into consideration together with tumor complexity (tumor-stroma interactions). In this review, we provide a comprehensive overview of what has been achieved in recapitulating tumor complexity, and discuss the importance of incorporating tumor heterogeneity into 3D in vitro tumor models. This
ERIC Educational Resources Information Center
Rowe, Jeremy; Razdan, Anshuman
The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…
Canada in 3D - Toward a Sustainable 3D Model for Canadian Geology from Diverse Data Sources
NASA Astrophysics Data System (ADS)
Brodaric, B.; Pilkington, M.; Snyder, D. B.; St-Onge, M. R.; Russell, H.
2015-12-01
Many big science issues span large areas and require data from multiple heterogeneous sources, for example climate change, resource management, and hazard mitigation. Solutions to these issues can significantly benefit from access to a consistent and integrated geological model that would serve as a framework. However, such a model is absent for most large countries including Canada, due to the size of the landmass and the fragmentation of the source data into institutional and disciplinary silos. To overcome these barriers, the "Canada in 3D" (C3D) pilot project was recently launched by the Geological Survey of Canada. C3D is designed to be evergreen, multi-resolution, and inter-disciplinary: (a) it is to be updated regularly upon acquisition of new data; (b) portions vary in resolution and will initially consist of four layers (surficial, sedimentary, crystalline, and mantle) with intermediary patches of higher-resolution fill; and (c) a variety of independently managed data sources are providing inputs, such as geophysical, 3D and 2D geological models, drill logs, and others. Notably, scalability concerns dictate a decentralized and interoperable approach, such that only key control objects, denoting anchors for the modeling process, are imported into the C3D database while retaining provenance links to original sources. The resultant model is managed in the database, contains full modeling provenance as well as links to detailed information on rock units, and is to be visualized in desktop and online environments. It is anticipated that C3D will become the authoritative state of knowledge for the geology of Canada at a national scale.
3-D physical models of mitosis (with asters) and cytokinesis.
Cheng, Kang; Zou, Changhua
2004-01-01
First, we define new concepts of Life Objects, Informative Objects and Virtual Objects, Discrete Chromosome Rings (DCR); we introduce a mathematical concept of meridian plane (MP) in a three dimensional (3-D) cylindrical coordinate system (CCS). Based on these concepts, classic mechanics, classic electromagnetism and published biological data, we develop our 3-D physical models of natural and normal mitosis (with asters) and cytokinesis, for animal cells in M phase. We propose following hypotheses: Chromosomes Exclusion: No normally and naturally replicated chromosomes can occupy the same nucleus without growing sizes of the nucleus and the cell. Spontaneous and strong electromagnetic fields (EMF) forces among chromosomes, centrosomes and microtubules split the nucleus and separate the two sets of sister chromatids when they are strong enough. Nuclei Exclusion: No normally and naturally doubled nuclei can occupy the same cell if the doubled size of nuclei is not far smaller than size of the cell. The spontaneous and strong EMF forces in protoplasm (or cortex), separate two sets of chromosomes, spindles and poles, drive contractile proteins to the equator in cell cortex, and continue to guide and to transport free charged objects until complete the cytokinesis. Centrioles Exclusion: No naturally and normally doubled centrioles can occupy the same centrosome. The spontaneous and strong repulsive EMF forces are the primary cause for the exclusions. The principles of our models are also applied to mitosis and cytokinesis for lower plant cells, to that of multiple nuclei or mutant chromosomes, and to meiosis, for both animal cells and lower plant cells.
High-resolution 3D digital models of artworks
NASA Astrophysics Data System (ADS)
Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Pampaloni, Enrico; Pezzati, Luca; Scopigno, Roberto
2003-10-01
The measurement of the shape of an artwork usually requires a high-resolution instrumentation, in order to catch small details such as chisel marks, sculptural relieves, surface cracks, etc. 3D scanning techniques, together with new modeling software tools, allow a high fidelity reproduction of an artwork: these can be applied either to support and document its repair or for the realization of 3D archives and virtual museums. Starting from a high-resolution digital model of an object, a further step could be its reproduction by means of fast-prototyping techniques like stereo-lithography or electro-erosion. This work is aimed at showing the performance of a high-resolution laser scanner devoted to Cultural Heritage applications. The device is portable and very versatile, in order to allow in situ applications, accurate and reliable, so to capture intricate details. This laser profilometer has been used in a few surveys, the most significant of which are the monitoring the various phases of the restoration process of an ellenistic bronze (the Minerva of Arezzo, Florence), the cataloguing of some archaeological findings (from the Grotta della Poesia, Lecce) and the documenting of wooden panels surface conditions (the "Madonna del Cardellino" by Raffaello and "La Tebaide" by Beato Angelico).
In Silico 3D Modeling of Binding Activities.
Moro, Stefano; Sturlese, Mattia; Ciancetta, Antonella; Floris, Matteo
2016-01-01
In silico three-dimensional (3D) molecular modeling tools based upon the receptor/enzyme-ligand docking simulation in protein crystal structures and/or homology modeling of receptors have been reliably used in pharmacological research and development for decades. Molecular docking methodologies are helpful for revealing facets of activation and inactivation, thus improving mechanistic understanding and predicting molecular ligand binding activity, and they can have a high level of accuracy, and have also been explored and applied in chemical risk assessment. This computational approach is, however, only applicable for chemical hazard identification situations where the specific target receptor for a given chemical is known and the crystal structure/homology model of the receptor is available.
Dynamic deformable models for 3D MRI heart segmentation
NASA Astrophysics Data System (ADS)
Zhukov, Leonid; Bao, Zhaosheng; Gusikov, Igor; Wood, John; Breen, David E.
2002-05-01
Automated or semiautomated segmentation of medical images decreases interstudy variation, observer bias, and postprocessing time as well as providing clincally-relevant quantitative data. In this paper we present a new dynamic deformable modeling approach to 3D segmentation. It utilizes recently developed dynamic remeshing techniques and curvature estimation methods to produce high-quality meshes. The approach has been implemented in an interactive environment that allows a user to specify an initial model and identify key features in the data. These features act as hard constraints that the model must not pass through as it deforms. We have employed the method to perform semi-automatic segmentation of heart structures from cine MRI data.
Stochastic Modeling of Calcium in 3D Geometry
Mazel, Tomáš; Raymond, Rebecca; Raymond-Stintz, Mary; Jett, Stephen; Wilson, Bridget S.
2009-01-01
Release of inflammatory mediators by mast cells in type 1 immediate-hypersensitivity allergic reactions relies on antigen-dependent increases in cytosolic calcium. Here, we used a series of electron microscopy images to build a 3D reconstruction representing a slice through a rat tumor mast cell, which then served as a basis for stochastic modeling of inositol-trisphosphate-mediated calcium responses. The stochastic approach was verified by reaction-diffusion modeling within the same geometry. Local proximity of the endoplasmic reticulum to either the plasma membrane or mitochondria is predicted to differentially impact local inositol trisphosphate receptor transport. The explicit consideration of organelle spatial relationships represents an important step toward building a comprehensive, realistic model of cellular calcium dynamics. PMID:19254531
Impact of Level of Details in the 3d Reconstruction of Trees for Microclimate Modeling
NASA Astrophysics Data System (ADS)
Bournez, E.; Landes, T.; Saudreau, M.; Kastendeuch, P.; Najjar, G.
2016-06-01
In the 21st century, urban areas undergo specific climatic conditions like urban heat islands which frequency and intensity increase over the years. Towards the understanding and the monitoring of these conditions, vegetation effects on urban climate are studied. It appears that a natural phenomenon, the evapotranspiration of trees, generates a cooling effect in urban environment. In this work, a 3D microclimate model is used to quantify the evapotranspiration of trees in relation with their architecture, their physiology and the climate. These three characteristics are determined with field measurements and data processing. Based on point clouds acquired with terrestrial laser scanner (TLS), the 3D reconstruction of the tree wood architecture is performed. Then the 3D reconstruction of leaves is carried out from the 3D skeleton of vegetative shoots and allometric statistics. With the aim of extending the simulation on several trees simultaneously, it is necessary to apply the 3D reconstruction process on each tree individually. However, as well for the acquisition as for the processing, the 3D reconstruction approach is time consuming. Mobile laser scanners could provide point clouds in a faster way than static TLS, but this implies a lower point density. Also the processing time could be shortened, but under the assumption that a coarser 3D model is sufficient for the simulation. In this context, the criterion of level of details and accuracy of the tree 3D reconstructed model must be studied. In this paper first tests to assess their impact on the determination of the evapotranspiration are presented.
High-Resolution Variable-Density 3D Cones Coronary MRA
Addy, Nii Okai; Ingle, R. Reeve; Wu, Holden H.; Hu, Bob S.; Nishimura, Dwight G.
2015-01-01
Purpose To improve the spatial/temporal resolution of whole-heart coronary MR angiography (CMRA) by developing a variable-density (VD) 3D cones acquisition suitable for image reconstruction with parallel imaging and compressed sensing techniques. Methods A VD 3D cones trajectory design incorporates both radial and spiral trajectory undersampling techniques to achieve higher resolution. This design is used to generate a VD cones trajectory with 0.8 mm/66 ms isotropic spatial/temporal resolution, using a similar number of readouts as our previous fully sampled cones trajectory (1.2 mm/100 ms). Scans of volunteers and patients are performed to evaluate the performance of the VD trajectory, using non-Cartesian L1-ESPIRiT for high-resolution image reconstruction. Results With gridding reconstruction, the high-resolution scans experience an expected drop in signal-to-noise and contrast-to-noise ratios, but with L1-ESPIRiT, the apparent noise is substantially reduced. Compared to 1.2 mm images, in each volunteer, the L1-ESPIRiT 0.8 mm images exhibit higher vessel sharpness values in the right and left anterior descending arteries. Conclusion CMRA with isotropic sub-millimeter spatial resolution and high temporal resolution can be performed with VD 3D cones to improve the depiction of coronary arteries. PMID:26172829
Development of an aquifer management model AQMAN3D
Puig, Juan Carlos; Rolon-Collazo, L. I.; Pagan-Trinidad, Ishmael; Krishna, J.H.; Quinones-Aponte, Vicente; Gomez-Gomez, Fernando; Morris, G.L.
1990-01-01
A computer code that enables the use of the USGS Modular groundwater flow model for aquifermanagement modeling has been developed. Aquifermanagement techniques integrate groundwater flow modeling with linear quadratic optimization methods for the solution of various aquifer management problems. The model AQMAN3D, is a modified version of a previously developed two-dimensional AQMAN model. The idea of coupling the AQMAN model with the MODULAR model arose because actual groundwater flow systems behave in a three dimensional manner, therefore requiring treatment as such, and due to the widespread use of MODULAR. The use of the AQMAN3D model permits the implementation of the technique known as aquifer managementmodeling. A generalized approach to obtain an optimal solution to an aquifer management problem is proposed, and a sample test problem is presented to illustrate the use of the model. Even though the model provides the hydrologist with a new and powerful investigative tool, its applicability is limited to confined or quasiconfined systems.
Geomorphological maps and 3d models in cave research
NASA Astrophysics Data System (ADS)
Ballesteros, Daniel; Jiménez-Sánchez, Montserrat; José Domínguez-Cuesta, María
2013-04-01
Cave geomorphological processes and features can be studied by geomorphological maps although topographic maps, aerial photos and GPS are not available. Methods in cave geomorphological mapping are conditioned by cave environment configuration, the need of using speleological techniques, and limitations arising from the projection of the 3D data from the cave to a 2D plan. Some of our previous works in the Cantabrian Mountains and Cantabrian Coast (NW Spain) established the approach of the design of cave geomorphological maps and its legend. Today we are improving the display of cave process combining geomorphological maps and 3d models based on the experience obtained from the research of one cave from the Cantabrian Coast and four caves in the Picos de Europa National Park (funded by GEOCAVE project, Spanish National Parks Agency). The five caves are developed in Carboniferous limestone affected by faults and thrusts. The method of work includes: 1) the elaboration of the cave survey at 1:50 to 1:500 scale; 2) the check of the cave survey of three caves by closed loops; 3) the mapping of cave features based on the performed survey; 4) the 3d modeling of the caves approximating each survey shoot by an octagonal prism; and 5) the implementation and management of the survey and geomorphological map in a Geographic Information System. Based on the survey, the cavities are small caves to deep alpine shafts with 281 to 4,438 m length and up to 738 m deep. The precision of the cave maps only could be estimated in two caves at a cavity scale, displaying both of them a 2.49 % error. The prisms of the 3d model was classified into four groups according to the morphology of the cave passage: 1) canyons, 2) phreatic and epiphreatic tubes, 3) soutirage conduits, 4) mixed forms composed by phreatic and epiphreatic tubes modified by fluvial incision, 5) pitches and 6) irregular passages enlarged strongly by gravity process. According to our previous works geomorphological
A 3D gravity and thermal model for the Barents Sea and Kara Sea
NASA Astrophysics Data System (ADS)
Klitzke, Peter; Sippel, Judith; Faleide, Jan Inge; Scheck-Wenderoth, Magdalena
2016-08-01
In the frame of this study, we investigate the lithosphere-scale 3D physical state of the Barents Sea and Kara Sea region. Therefore, we test an existing 3D structural model against the gravitational field by considering the heterogeneous upper mantle to further assess the structural and density configuration of the continental crystalline crust. The resulting 3D density configuration of the crust is discussed in terms of its relationships with the spatial distribution of tectonically different domains. In addition, it provides the base for a lithology-controlled parameterisation of the crust with thermal properties to calculate the 3D conductive thermal field. The deeper thermal field is controlled by the depth configuration of the lithosphere-asthenosphere boundary. Accordingly, deeper isotherms such as the 450 °C isotherm deepen from below the rifted SW Barents Sea towards the intracratonic basins of the eastern Barents Sea and Kara Sea, indicating an increase of the lithospheric strength in the same direction. Temperature measurements of the upper 800 m below the SW Barents Sea reveal an increased thermal gradient which cannot be reproduced by a steady-state 3D conductive model alone. Beside fault-induced fluid flow to be active there, an alternative scenario could involve a phase of subsidence long enough to increase the temperature of the upper 800 m, followed by an uplift and erosion phase that prevented the positive thermal anomaly to propagate towards larger depths. The final lithosphere-scale 3D model is the first to integrate the geological, density and thermal configuration of the entire Barents Sea and Kara Sea region and hence provides an ideal base for future thermomechanical studies addressing, for instance, questions on the present-day, past and future relationships between lithospheric strength and deformation.
Geographic Video 3d Data Model And Retrieval
NASA Astrophysics Data System (ADS)
Han, Z.; Cui, C.; Kong, Y.; Wu, H.
2014-04-01
Geographic video includes both spatial and temporal geographic features acquired through ground-based or non-ground-based cameras. With the popularity of video capture devices such as smartphones, the volume of user-generated geographic video clips has grown significantly and the trend of this growth is quickly accelerating. Such a massive and increasing volume poses a major challenge to efficient video management and query. Most of the today's video management and query techniques are based on signal level content extraction. They are not able to fully utilize the geographic information of the videos. This paper aimed to introduce a geographic video 3D data model based on spatial information. The main idea of the model is to utilize the location, trajectory and azimuth information acquired by sensors such as GPS receivers and 3D electronic compasses in conjunction with video contents. The raw spatial information is synthesized to point, line, polygon and solid according to the camcorder parameters such as focal length and angle of view. With the video segment and video frame, we defined the three categories geometry object using the geometry model of OGC Simple Features Specification for SQL. We can query video through computing the spatial relation between query objects and three categories geometry object such as VFLocation, VSTrajectory, VSFOView and VFFovCone etc. We designed the query methods using the structured query language (SQL) in detail. The experiment indicate that the model is a multiple objective, integration, loosely coupled, flexible and extensible data model for the management of geographic stereo video.
Measurement of Laser Weld Temperatures for 3D Model Input
Dagel, Daryl; Grossetete, Grant; Maccallum, Danny O.
2016-10-01
Laser welding is a key joining process used extensively in the manufacture and assembly of critical components for several weapons systems. Sandia National Laboratories advances the understanding of the laser welding process through coupled experimentation and modeling. This report summarizes the experimental portion of the research program, which focused on measuring temperatures and thermal history of laser welds on steel plates. To increase confidence in measurement accuracy, researchers utilized multiple complementary techniques to acquire temperatures during laser welding. This data serves as input to and validation of 3D laser welding models aimed at predicting microstructure and the formation of defects and their impact on weld-joint reliability, a crucial step in rapid prototyping of weapons components.
3D Tissue-Engineered Model of Ewing Sarcoma
Lamhamedi-Cherradi, Salah-Eddine; Santoro, Marco; Ramammoorthy, Vandhana; Menegaz, Brian A.; Bartholomeusz, Geoffrey; Iles, Lakesla R.; Amin, Hesham M.; Livingston, Andrew J.; Mikos, Antonios G.; Ludwig, Joseph A.
2015-01-01
Despite longstanding reliance upon monolayer culture for studying cancer cells, and numerous advantages from both a practical and experimental standpoint, a growing body of evidence suggests more complex three-dimensional (3D) models are necessary to properly mimic many of the critical hallmarks associated with the oncogenesis, maintenance and spread of Ewing sarcoma (ES), the second most common pediatric bone tumor. And as clinicians increasingly turn to biologically-targeted therapies that exert their effects not only on the tumor cells themselves, but also on the surrounding extracellular matrix, it is especially important that preclinical models evolve in parallel to reliably measure antineoplastic effects and possible mechanisms of de novo and acquired drug resistance. Herein, we highlight a number of innovative methods used to fabricate biomimetic ES tumors, encompassing both the surrounding cellular milieu and extracellular matrix (ECM), and suggest potential applications to advance our understanding of ES biology, preclinical drug testing, and personalized medicine. PMID:25109853
3D Model of the Eta Carinae Little Homunculus Nebula
NASA Astrophysics Data System (ADS)
Steffen, Wolfgang; Teodoro, Mairan; Madura, Thomas; Groh, Jose H.; Gull, Theodore R.; Corcoran, Michael F.; Damineli, Augusto; Hamaguchi, Kenji
2015-01-01
We extend our morpho-kinematic 3D modeling of the Homunculus nebula (Steffen et al., 2014) to the interior nested Little Homunculus. The model is based on spectroscopic observations from HST/STIS. We find that the structure of the interior Little Homunculus is rather flat in the polar regions and interacts with the main Homunculus nebula only on one side, towards the periastron direction of the binary orbit. Furthermore, the two lobes of the LH are misaligned, also towards the periastron direction. As an explanation for the misalignment we propose that, in both cases, shortly after the eruptions that created the bipolar nebulae from the primary star, the off-center wind of the secondary has pushed the ejecta towards the periastron directions, since the secondary is most of the time near the apastron. Future hydrodynamic simulations are warranted to confirm this scenario.
Plasticized protein for 3D printing by fused deposition modeling
NASA Astrophysics Data System (ADS)
Chaunier, Laurent; Leroy, Eric; Della Valle, Guy; Lourdin, Denis
2016-10-01
The developments of Additive Manufacturing (AM) by Fused Deposition Modeling (FDM) now target new 3D printable materials, leading to novel properties like those given by biopolymers such as proteins: degradability, biocompatibility and edibility. Plasticized materials from zein, a storage protein issued from corn, present interesting thermomechanical and rheological properties, possibly matching with AM-FDM specifications. Thus commercial zein plasticized with 20% glycerol has a glass transition temperature (Tg) at about 42°C, after storage at intermediate relative humidity (RH=59%). Its principal mechanical relaxation at Tα ≈ 50°C leads to a drop of the elastic modulus from about 1.1 GPa, at ambient temperature, to 0.6 MPa at Tα+100°C. These values are in the same range as values obtained in the case of standard polymers for AM-FDM processing, as PLA and ABS, although relaxation mechanisms are likely different in these materials. Such results lead to the setting up of zein-based compositions printable by AM-FDM and allow processing bioresorbable printed parts, with designed 3D geometry and structure.
Gene3D: modelling protein structure, function and evolution.
Yeats, Corin; Maibaum, Michael; Marsden, Russell; Dibley, Mark; Lee, David; Addou, Sarah; Orengo, Christine A
2006-01-01
The Gene3D release 4 database and web portal (http://cathwww.biochem.ucl.ac.uk:8080/Gene3D) provide a combined structural, functional and evolutionary view of the protein world. It is focussed on providing structural annotation for protein sequences without structural representatives--including the complete proteome sets of over 240 different species. The protein sequences have also been clustered into whole-chain families so as to aid functional prediction. The structural annotation is generated using HMM models based on the CATH domain families; CATH is a repository for manually deduced protein domains. Amongst the changes from the last publication are: the addition of over 100 genomes and the UniProt sequence database, domain data from Pfam, metabolic pathway and functional data from COGs, KEGG and GO, and protein-protein interaction data from MINT and BIND. The website has been rebuilt to allow more sophisticated querying and the data returned is presented in a clearer format with greater functionality. Furthermore, all data can be downloaded in a simple XML format, allowing users to carry out complex investigations at their own computers.
3D in vitro modeling of the central nervous system
Hopkins, Amy M.; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L.
2015-01-01
There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here. PMID:25461688
3D in vitro modeling of the central nervous system.
Hopkins, Amy M; DeSimone, Elise; Chwalek, Karolina; Kaplan, David L
2015-02-01
There are currently more than 600 diseases characterized as affecting the central nervous system (CNS) which inflict neural damage. Unfortunately, few of these conditions have effective treatments available. Although significant efforts have been put into developing new therapeutics, drugs which were promising in the developmental phase have high attrition rates in late stage clinical trials. These failures could be circumvented if current 2D in vitro and in vivo models were improved. 3D, tissue-engineered in vitro systems can address this need and enhance clinical translation through two approaches: (1) bottom-up, and (2) top-down (developmental/regenerative) strategies to reproduce the structure and function of human tissues. Critical challenges remain including biomaterials capable of matching the mechanical properties and extracellular matrix (ECM) composition of neural tissues, compartmentalized scaffolds that support heterogeneous tissue architectures reflective of brain organization and structure, and robust functional assays for in vitro tissue validation. The unique design parameters defined by the complex physiology of the CNS for construction and validation of 3D in vitro neural systems are reviewed here.
Modeling approaches for ligand-based 3D similarity.
Tresadern, Gary; Bemporad, Daniele
2010-10-01
3D ligand-based similarity approaches are widely used in the early phases of drug discovery for tasks such as hit finding by virtual screening or compound design with quantitative structure-activity relationships. Here in we review widely used software for performing such tasks. Some techniques are based on relatively mature technology, shape-based similarity for instance. Typically, these methods remained in the realm of the expert user, the experienced modeler. However, advances in implementation and speed have improved usability and allow these methods to be applied to databases comprising millions of compounds. There are now many reports of such methods impacting drug-discovery projects. As such, the medicinal chemistry community has become the intended market for some of these new tools, yet they may consider the wide array and choice of approaches somewhat disconcerting. Each method has subtle differences and is better suited to certain tasks than others. In this article we review some of the widely used computational methods via application, provide straightforward background on the underlying theory and provide examples for the interested reader to pursue in more detail. In the new era of preclinical drug discovery there will be ever more pressure to move faster and more efficiently, and computational approaches based on 3D ligand similarity will play an increasing role in in this process.
Yoon, Ki-Hyuk; Ju, Heongkyu; Kwon, Hyunkyung; Park, Inkyu; Kim, Sung-Kyu
2016-02-22
We present optical characteristics of view image provided by a high-density multi-view autostereoscopic 3D display (HD-MVA3D) with a parallax barrier (PB). Diffraction effects that become of great importance in such a display system that uses a PB, are considered in an one-dimensional model of the 3D display, in which the numerical simulation of light from display panel pixels through PB slits to viewing zone is performed. The simulation results are then compared to the corresponding experimental measurements with discussion. We demonstrate that, as a main parameter for view image quality evaluation, the Fresnel number can be used to determine the PB slit aperture for the best performance of the display system. It is revealed that a set of the display parameters, which gives the Fresnel number of ∼ 0.7 offers maximized brightness of the view images while that corresponding to the Fresnel number of 0.4 ∼ 0.5 offers minimized image crosstalk. The compromise between the brightness and crosstalk enables optimization of the relative magnitude of the brightness to the crosstalk and lead to the choice of display parameter set for the HD-MVA3D with a PB, which satisfies the condition where the Fresnel number lies between 0.4 and 0.7.
Polygonal Shapes Detection in 3d Models of Complex Architectures
NASA Astrophysics Data System (ADS)
Benciolini, G. B.; Vitti, A.
2015-02-01
A sequential application of two global models defined on a variational framework is proposed for the detection of polygonal shapes in 3D models of complex architectures. As a first step, the procedure involves the use of the Mumford and Shah (1989) 1st-order variational model in dimension two (gridded height data are processed). In the Mumford-Shah model an auxiliary function detects the sharp changes, i.e., the discontinuities, of a piecewise smooth approximation of the data. The Mumford-Shah model requires the global minimization of a specific functional to simultaneously produce both the smooth approximation and its discontinuities. In the proposed procedure, the edges of the smooth approximation derived by a specific processing of the auxiliary function are then processed using the Blake and Zisserman (1987) 2nd-order variational model in dimension one (edges are processed in the plane). This second step permits to describe the edges of an object by means of piecewise almost-linear approximation of the input edges themselves and to detects sharp changes of the first-derivative of the edges so to detect corners. The Mumford-Shah variational model is used in two dimensions accepting the original data as primary input. The Blake-Zisserman variational model is used in one dimension for the refinement of the description of the edges. The selection among all the boundaries detected by the Mumford-Shah model of those that present a shape close to a polygon is performed by considering only those boundaries for which the Blake-Zisserman model identified discontinuities in their first derivative. The output of the procedure are hence shapes, coming from 3D geometric data, that can be considered as polygons. The application of the procedure is suitable for, but not limited to, the detection of objects such as foot-print of polygonal buildings, building facade boundaries or windows contours. v The procedure is applied to a height model of the building of the Engineering
Enhanced Visual-Attention Model for Perceptually Improved 3D Object Modeling in Virtual Environments
NASA Astrophysics Data System (ADS)
Chagnon-Forget, Maude; Rouhafzay, Ghazal; Cretu, Ana-Maria; Bouchard, Stéphane
2016-12-01
Three-dimensional object modeling and interactive virtual environment applications require accurate, but compact object models that ensure real-time rendering capabilities. In this context, the paper proposes a 3D modeling framework employing visual attention characteristics in order to obtain compact models that are more adapted to human visual capabilities. An enhanced computational visual attention model with additional saliency channels, such as curvature, symmetry, contrast and entropy, is initially employed to detect points of interest over the surface of a 3D object. The impact of the use of these supplementary channels is experimentally evaluated. The regions identified as salient by the visual attention model are preserved in a selectively-simplified model obtained using an adapted version of the QSlim algorithm. The resulting model is characterized by a higher density of points in the salient regions, therefore ensuring a higher perceived quality, while at the same time ensuring a less complex and more compact representation for the object. The quality of the resulting models is compared with the performance of other interest point detectors incorporated in a similar manner in the simplification algorithm. The proposed solution results overall in higher quality models, especially at lower resolutions. As an example of application, the selectively-densified models are included in a continuous multiple level of detail (LOD) modeling framework, in which an original neural-network solution selects the appropriate size and resolution of an object.
Advanced prior modeling for 3D bright field electron tomography
NASA Astrophysics Data System (ADS)
Sreehari, Suhas; Venkatakrishnan, S. V.; Drummy, Lawrence F.; Simmons, Jeffrey P.; Bouman, Charles A.
2015-03-01
Many important imaging problems in material science involve reconstruction of images containing repetitive non-local structures. Model-based iterative reconstruction (MBIR) could in principle exploit such redundancies through the selection of a log prior probability term. However, in practice, determining such a log prior term that accounts for the similarity between distant structures in the image is quite challenging. Much progress has been made in the development of denoising algorithms like non-local means and BM3D, and these are known to successfully capture non-local redundancies in images. But the fact that these denoising operations are not explicitly formulated as cost functions makes it unclear as to how to incorporate them in the MBIR framework. In this paper, we formulate a solution to bright field electron tomography by augmenting the existing bright field MBIR method to incorporate any non-local denoising operator as a prior model. We accomplish this using a framework we call plug-and-play priors that decouples the log likelihood and the log prior probability terms in the MBIR cost function. We specifically use 3D non-local means (NLM) as the prior model in the plug-and-play framework, and showcase high quality tomographic reconstructions of a simulated aluminum spheres dataset, and two real datasets of aluminum spheres and ferritin structures. We observe that streak and smear artifacts are visibly suppressed, and that edges are preserved. Also, we report lower RMSE values compared to the conventional MBIR reconstruction using qGGMRF as the prior model.
Pseudo-3D PIC modeling of drift-induced spatial inhomogeneities in planar magnetron plasmas
NASA Astrophysics Data System (ADS)
Revel, A.; Minea, T.; Tsikata, S.
2016-10-01
A pseudo-3D modeling approach, based on a particle-in-cell (PIC)-Monte Carlo collisions algorithm, has been developed for the study of large- and short-scale organization of the plasma in a planar magnetron. This extension of conventional PIC modeling permits the observation of spontaneous organization of the magnetron plasma, under the influence of crossed electric and magnetic fields, into the well-known, large-scale regions of enhanced ionization and density known as spokes. The nature of complex three-dimensional electron trajectories around such structures, and non-uniform ionization within them, is revealed. This modeling provides direct numerical evidence for the existence of high-amplitude internal spoke electric fields, proposed in earlier works. A 3D phenomenological model, consistent with numerical results, is proposed. Electron density fluctuations in the megahertz range, with characteristics similar to the electron cyclotron drift instability experimentally identified in a recent Letter, are also found.
NASA Astrophysics Data System (ADS)
Kerschke, Dorit; Schilling, Maik; Simon, Andreas; Wächter, Joachim
2014-05-01
The Energiewende and the increasing scarcity of raw materials will lead to an intensified utilization of the subsurface in Germany. Within this context, geological 3D modeling is a fundamental approach for integrated decision and planning processes. Initiated by the development of the European Geospatial Infrastructure INSPIRE, the German State Geological Offices started digitizing their predominantly analog archive inventory. Until now, a comprehensive 3D subsurface model of Brandenburg did not exist. Therefore the project B3D strived to develop a new 3D model as well as a subsequent infrastructure node to integrate all geological and spatial data within the Geodaten-Infrastruktur Brandenburg (Geospatial Infrastructure, GDI-BB) and provide it to the public through an interactive 2D/3D web application. The functionality of the web application is based on a client-server architecture. Server-sided, all available spatial data is published through GeoServer. GeoServer is designed for interoperability and acts as the reference implementation of the Open Geospatial Consortium (OGC) Web Feature Service (WFS) standard that provides the interface that allows requests for geographical features. In addition, GeoServer implements, among others, the high performance certified compliant Web Map Service (WMS) that serves geo-referenced map images. For publishing 3D data, the OGC Web 3D Service (W3DS), a portrayal service for three-dimensional geo-data, is used. The W3DS displays elements representing the geometry, appearance, and behavior of geographic objects. On the client side, the web application is solely based on Free and Open Source Software and leans on the JavaScript API WebGL that allows the interactive rendering of 2D and 3D graphics by means of GPU accelerated usage of physics and image processing as part of the web page canvas without the use of plug-ins. WebGL is supported by most web browsers (e.g., Google Chrome, Mozilla Firefox, Safari, and Opera). The web
Faceless identification: a model for person identification using the 3D shape and 3D motion as cues
NASA Astrophysics Data System (ADS)
Klasen, Lena M.; Li, Haibo
1999-02-01
Person identification by using biometric methods based on image sequences, or still images, often requires a controllable and cooperative environment during the image capturing stage. In the forensic case the situation is more likely to be the opposite. In this work we propose a method that makes use of the anthropometry of the human body and human actions as cues for identification. Image sequences from surveillance systems are used, which can be seen as monocular image sequences. A 3D deformable wireframe body model is used as a platform to handle the non-rigid information of the 3D shape and 3D motion of the human body from the image sequence. A recursive method for estimating global motion and local shape variations is presented, using two recursive feedback systems.
Stochastic microstructure modeling and electrochemical simulation of lithium-ion cell anodes in 3D
NASA Astrophysics Data System (ADS)
Hein, Simon; Feinauer, Julian; Westhoff, Daniel; Manke, Ingo; Schmidt, Volker; Latz, Arnulf
2016-12-01
Thermodynamically consistent transport theory is used to compare 3D images of real anode microstructures from lithium-ion batteries to virtual ones created by a parametric stochastic 3D microstructure model. Half-cell simulations in 3D with spatially resolved microstructures at different applied currents show that for low currents the deviations between various electrochemical quantities like current density or overpotential are negligibly small. For larger currents small differences become more pronounced. Qualitative and quantitative differences of these features are discussed with respect to the microstructure and it is shown that the real and virtual structures behave similar during electrochemical simulations. Extensions of the stochastic microstructure model, which overcome small differences in electrochemical behavior, are proposed.
High power density microbial fuel cell with flexible 3D graphene-nickel foam as anode.
Wang, Hanyu; Wang, Gongming; Ling, Yichuan; Qian, Fang; Song, Yang; Lu, Xihong; Chen, Shaowei; Tong, Yexiang; Li, Yat
2013-11-07
The structure and electrical conductivity of anode play a significant role in the power generation of microbial fuel cells (MFCs). In this study, we developed a three-dimensional (3D) reduced graphene oxide-nickel (denoted as rGO-Ni) foam as an anode for MFC through controlled deposition of rGO sheets onto the nickel foam substrate. The loading amount of rGO sheets and electrode surface area can be controlled by the number of rGO loading cycles. 3D rGO-Ni foam anode provides not only a large accessible surface area for microbial colonization and electron mediators, but also a uniform macro-porous scaffold for effective mass diffusion of the culture medium. Significantly, at a steady state of the power generation, the MFC device with flexible rGO-Ni electrodes produced an optimal volumetric power density of 661 W m(-3) calculated based on the volume of anode material, or 27 W m(-3) based on the volume of the anode chamber. These values are substantially higher than that of plain nickel foam, and other conventional carbon based electrodes (e.g., carbon cloth, carbon felt, and carbon paper) measured in the same conditions. To our knowledge, this is the highest volumetric power density reported for mL-scale MFC device with a pure strain of Shewanella oneidensis MR-1. We also demonstrated that the MFC device can be operated effectively in a batch-mode at least for a week. These new 3D rGO-Ni electrodes show great promise for improving the power generation of MFC devices.
A 3D Bubble Merger Model for RTI Mixing
NASA Astrophysics Data System (ADS)
Cheng, Baolian
2015-11-01
In this work we present a model for the merger processes of bubbles at the edge of an unstable acceleration driven mixing layer. Steady acceleration defines a self-similar mixing process, with a time-dependent inverse cascade of structures of increasing size. The time evolution is itself a renormalization group evolution. The model predicts the growth rate of a Rayleigh-Taylor chaotic fluid-mixing layer. The 3-D model differs from the 2-D merger model in several important ways. Beyond the extension of the model to three dimensions, the model contains one phenomenological parameter, the variance of the bubble radii at fixed time. The model also predicts several experimental numbers: the bubble mixing rate, the mean bubble radius, and the bubble height separation at the time of merger. From these we also obtain the bubble height to the radius aspect ratio, which is in good agreement with experiments. Applications to recent NIF and Omega experiments will be discussed. This work was performed under the auspices of the U.S. Department of Energy by the Los Alamos National Laboratory under Contract No. W-7405-ENG-36.
Quality assessment of watermarked 3D polygonal models
NASA Astrophysics Data System (ADS)
Funk, Wolfgang; Prasiswa, Jennifer
2006-02-01
In this paper, we present the design and results of subjective tests for evaluating the perceptibility of digital watermarks in 3D polygonal models. Based on the results we investigate different types of metrics with respect to their usefulness as predictors for the perceived visual quality of models that have been modified using a specific watermarking algorithm. We describe two experiments with models that have been watermarked using controlled free form deformations. The first experiment was conducted in supervised mode with still images of rendered models as stimuli and used the Two Alternative Forced Choice (2AFC) method. The second experiment was based on animated sequences and run in 2AFC mode with additional ratings of the perceived differences, but without assistance by the experimenter. We present a transparency analysis of the results and investigate the ability of image-based and geometry-based metrics to predict the perceived quality of the watermarked models. Our results show that the effectiveness of prediction depends on the type of model and in particular on the feature positions selected by the watermarking algorithm. The results of previous experiments with simplified polygonal models are confirmed, in that geometric measures are good predictors of quality ratings. We found that the symmetric Haussdorf distance is a promising candidate to evaluate the visual impact of the watermarking algorithm used in our experiments.
Handheld camera 3D modeling system using multiple reference panels
NASA Astrophysics Data System (ADS)
Fujimura, Kouta; Oue, Yasuhiro; Terauchi, Tomoya; Emi, Tetsuichi
2002-03-01
A novel 3D modeling system in which a target object is easily captured and modeled by using a hand-held camera with several reference panels is presented in this paper. The reference panels are designed to be able to obtain the camera position and discriminate between each other. A conventional 3D modeling system using a reference panel has several restrictions regarding the target object, specifically the size and its location. Our system uses multiple reference panels, which are set around the target object to remove these restrictions. The main features of this system are as follows: 1) The whole shape and photo-realistic textures of the target object can be digitized based on several still images or a movie captured by using a hand-held camera; as well as each location of the camera that can be calculated using the reference panels. 2) Our system can be provided as a software product only. That means there are no special requirements for hardware; even the reference panels , because they can be printed from image files or software. 3) This system can be applied to digitize a larger object. In the experiments, we developed and used an interactive region selection tool to detect the silhouette on each image instead of using the chroma -keying method. We have tested our system with a toy object. The calculation time is about 10 minutes (except for the capturing the images and extracting the silhouette by using our tool) on a personal computer with a Pentium-III processor (600MHz) and 320MB memory. However, it depends on how complex the images are and how many images you use. Our future plan is to evaluate the system with various kind of objects, specifically, large ones in outdoor environments.
3-D numerical modeling of plume-induced subduction initiation
NASA Astrophysics Data System (ADS)
Baes, Marzieh; Gerya, taras; Sobolev, Stephan
2016-04-01
Investigation of mechanisms involved in formation of a new subduction zone can help us to better understand plate tectonics. Despite numerous previous studies, it is still unclear how and where an old oceanic plate starts to subduct beneath the other plate. One of the proposed scenarios for nucleation of subduction is plume-induced subduction initiation, which was investigated in detail, using 2-D models, by Ueda et al. (2008). Recently. Gerya et al. (2015), using 3D numerical models, proposed that plume-lithosphere interaction in the Archean led to the subduction initiation and onset of plate tectonic. In this study, we aim to pursue work of Ueda et al. (2008) by incorporation of 3-D thermo-mechanical models to investigate conditions leading to oceanic subduction initiation as a result of thermal-chemical mantle plume-lithosphere interaction in the modern earth. Results of our experiments show four different deformation regimes in response to plume-lithosphere interaction, that are a) self-sustaining subduction initiation where subduction becomes self-sustained, b) freezing subduction initiation where subduction stops at shallow depths, c) slab break-off where subducting circular slab breaks off soon after formation and d) plume underplating where plume does not pass through the lithosphere but spreads beneath it (failed subduction initiation). These different regimes depend on several parameters such as plume's size, composition and temperature, lithospheric brittle/plastic strength, age of the oceanic lithosphere and presence/absence of lithospheric heterogeneities. Results show that subduction initiates and becomes self-sustained when lithosphere is older than 10 Myr and non-dimensional ratio of the plume buoyancy force and lithospheric strength above the plume is higher than 2.
3D model generation using an airborne swarm
NASA Astrophysics Data System (ADS)
Clark, R. A.; Punzo, G.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Macdonald, M.; Bolton, G.
2015-03-01
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm's computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
3D model generation using an airborne swarm
Clark, R. A.; Punzo, G.; Macdonald, M.; Dobie, G.; MacLeod, C. N.; Summan, R.; Pierce, G.; Bolton, G.
2015-03-31
Using an artificial kinematic field to provide co-ordination between multiple inspection UAVs, the authors herein demonstrate full 3D modelling capability based on a photogrammetric system. The operation of the system is demonstrated by generating a full 3D surface model of an intermediate level nuclear waste storage drum. Such drums require periodic inspection to ensure that drum distortion or corrosion is carefully monitored. Performing this inspection with multiple airborne platforms enables rapid inspection of structures that are inaccessible to on-surface remote vehicles and are in human-hazardous environments. A three-dimensional surface-meshed model of the target can then be constructed in post-processing through photogrammetry analysis of the visual inspection data. The inspection environment uses a tracking system to precisely monitor the position of each aerial vehicle within the enclosure. The vehicles used are commercially available Parrot AR. Drone quadcopters, controlled through a computer interface connected over an IEEE 802.11n (WiFi) network, implementing a distributed controller for each vehicle. This enables the autonomous and distributed elements of the control scheme to be retained, while alleviating the vehicles of the control algorithm’s computational load. The control scheme relies on a kinematic field defined with the target at its centre. This field defines the trajectory for all the drones in the volume relative to the central target, enabling the drones to circle the target at a set radius while avoiding drone collisions. This function enables complete coverage along the height of the object, which is assured by transitioning to another inspection band only after completing circumferential coverage. Using a swarm of vehicles, the time until complete coverage can be significantly reduced.
Chen, Jeon-Hor; Lee, Yan-Wei; Chan, Si-Wa; Yeh, Dah-Cherng; Chang, Ruey-Feng
2016-05-01
In this study, a semi-automatic breast segmentation method was proposed on the basis of the rib shadow to extract breast regions from 3-D automated whole-breast ultrasound (ABUS) images. The density results were correlated with breast density values acquired with 3-D magnetic resonance imaging (MRI). MRI images of 46 breasts were collected from 23 women without a history of breast disease. Each subject also underwent ABUS. We used Otsu's thresholding method on ABUS images to obtain local rib shadow information, which was combined with the global rib shadow information (extracted from all slice projections) and integrated with the anatomy's breast tissue structure to determine the chest wall line. The fuzzy C-means classifier was used to extract the fibroglandular tissues from the acquired images. Whole-breast volume (WBV) and breast percentage density (BPD) were calculated in both modalities. Linear regression was used to compute the correlation of density results between the two modalities. The consistency of density measurement was also analyzed on the basis of intra- and inter-operator variation. There was a high correlation of density results between MRI and ABUS (R(2) = 0.798 for WBV, R(2) = 0.825 for PBD). The mean WBV from ABUS images was slightly smaller than the mean WBV from MR images (MRI: 342.24 ± 128.08 cm(3), ABUS: 325.47 ± 136.16 cm(3), p < 0.05). In addition, the BPD calculated from MR images was smaller than the BPD from ABUS images (MRI: 24.71 ± 15.16%, ABUS: 28.90 ± 17.73%, p < 0.05). The intra-operator and inter-operator variant analysis results indicated that there was no statistically significant difference in breast density measurement variation between the two modalities. Our results revealed a high correlation in WBV and BPD between MRI and ABUS. Our study suggests that ABUS provides breast density information useful in the assessment of breast health.
Crashworthiness analysis using advanced material models in DYNA3D
Logan, R.W.; Burger, M.J.; McMichael, L.D.; Parkinson, R.D.
1993-10-22
As part of an electric vehicle consortium, LLNL and Kaiser Aluminum are conducting experimental and numerical studies on crashworthy aluminum spaceframe designs. They have jointly explored the effect of heat treat on crush behavior and duplicated the experimental behavior with finite-element simulations. The major technical contributions to the state of the art in numerical simulation arise from the development and use of advanced material model descriptions for LLNL`s DYNA3D code. Constitutive model enhancements in both flow and failure have been employed for conventional materials such as low-carbon steels, and also for lighter weight materials such as aluminum and fiber composites being considered for future vehicles. The constitutive model enhancements are developed as extensions from LLNL`s work in anisotropic flow and multiaxial failure modeling. Analysis quality as a function of level of simplification of material behavior and mesh is explored, as well as the penalty in computation cost that must be paid for using more complex models and meshes. The lightweight material modeling technology is being used at the vehicle component level to explore the safety implications of small neighborhood electric vehicles manufactured almost exclusively from these materials.
Energy flow in passive and active 3D cochlear model
Wang, Yanli; Steele, Charles; Puria, Sunil
2015-12-31
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Energy flow in passive and active 3D cochlear model
NASA Astrophysics Data System (ADS)
Wang, Yanli; Puria, Sunil; Steele, Charles
2015-12-01
Energy flow in the cochlea is an important characteristic of the cochlear traveling wave, and many investigators, such as von Békésy and Lighthill, have discussed this phenomenon. Particularly after the discovery of the motility of the outer hair cells (OHCs), the nature of the power gain of the cochlea has been a fundamental research question. In the present work, direct three-dimensional (3D) calculations of the power on cross sections of the cochlea and on the basilar membrane are performed based on a box model of the mouse cochlea. The distributions of the fluid pressure and fluid velocity in the scala vestibuli are presented. The power output from the OHCs and the power loss due to fluid viscous damping are calculated along the length of the cochlea. This work provides a basis for theoretical calculations of the power gain of the OHCs from mechanical considerations.
Appearance-based color face recognition with 3D model
NASA Astrophysics Data System (ADS)
Wang, Chengzhang; Bai, Xiaoming
2013-03-01
Appearance-based face recognition approaches explore color cues of face images, i.e. grey or color information for recognition task. They first encode color face images, and then extract facial features for classification. Similar to conventional singular value decomposition, hypercomplex matrix also exists singular value decomposition on hypercomplex field. In this paper, a novel color face recognition approach based on hypercomplex singular value decomposition is proposed. The approach employs hypercomplex to encode color face information of different channels simultaneously. Hypercomplex singular value decomposition is utilized then to compute the basis vectors of the color face subspace. To improve learning efficiency of the algorithm, 3D active deformable model is exploited to generate virtual face images. Color face samples are projected onto the subspace and projection coefficients are utilized as facial features. Experimental results on CMU PIE face database verify the effectiveness of the proposed approach.
3D Model of the San Emidio Geothermal Area
James E. Faulds
2013-12-31
The San Emidio geothermal system is characterized by a left-step in a west-dipping normal fault system that bounds the western side of the Lake Range. The 3D geologic model consists of 5 geologic units and 55 faults. Overlying Jurrassic-Triassic metasedimentary basement is a ~500 m-1000 m thick section of the Miocene lower Pyramid sequence, pre- syn-extensional Quaternary sedimentary rocks and post-extensional Quaternary rocks. 15-30º eastward dip of the stratigraphy is controlled by the predominant west-dipping fault set. Both geothermal production and injection are concentrated north of the step over in an area of closely spaced west dipping normal faults.
3D Model of the Neal Hot Springs Geothermal Area
Faulds, James E.
2013-12-31
The Neal Hot Springs geothermal system lies in a left-step in a north-striking, west-dipping normal fault system, consisting of the Neal Fault to the south and the Sugarloaf Butte Fault to the north (Edwards, 2013). The Neal Hot Springs 3D geologic model consists of 104 faults and 13 stratigraphic units. The stratigraphy is sub-horizontal to dipping <10 degrees and there is no predominant dip-direction. Geothermal production is exclusively from the Neal Fault south of, and within the step-over, while geothermal injection is into both the Neal Fault to the south of the step-over and faults within the step-over.
3D model atmospheres and the solar photospheric oxygen abundance
NASA Astrophysics Data System (ADS)
Caffau, E.; Ludwig, H.-G.
2008-10-01
In recent years the photospheric solar oxygen abundance experienced a significant downward revision. However, a low photospheric abundance is incompatible with the value in the solar interior inferred from helioseismology. For contributing to the dispute whether the solar oxygen abundance is “high” or “low”, we re-derived its photospheric abundance independently of previous analyses. We applied 3D (CO5BOLD) as well as 1D model atmospheres. We considered standard disc-centre and disc-integrated spectral atlases, as well as newly acquired solar intensity spectra at different heliocentric angles. We determined the oxygen abundances from equivalent width and/or line profile fitting of a number of atomic lines. As preliminary result, we find an oxygen abundance in the range 8.73 8.79, encompassing the value obtained by Holweger (2001), and somewhat higher than the value obtained by Asplund et al. (2005).
Towards Automatic Semantic Labelling of 3D City Models
NASA Astrophysics Data System (ADS)
Rook, M.; Biljecki, F.; Diakité, A. A.
2016-10-01
The lack of semantic information in many 3D city models is a considerable limiting factor in their use, as a lot of applications rely on semantics. Such information is not always available, since it is not collected at all times, it might be lost due to data transformation, or its lack may be caused by non-interoperability in data integration from other sources. This research is a first step in creating an automatic workflow that semantically labels plain 3D city model represented by a soup of polygons, with semantic and thematic information, as defined in the CityGML standard. The first step involves the reconstruction of the topology, which is used in a region growing algorithm that clusters upward facing adjacent triangles. Heuristic rules, embedded in a decision tree, are used to compute a likeliness score for these regions that either represent the ground (terrain) or a RoofSurface. Regions with a high likeliness score, to one of the two classes, are used to create a decision space, which is used in a support vector machine (SVM). Next, topological relations are utilised to select seeds that function as a start in a region growing algorithm, to create regions of triangles of other semantic classes. The topological relationships of the regions are used in the aggregation of the thematic building features. Finally, the level of detail is detected to generate the correct output in CityGML. The results show an accuracy between 85 % and 99 % in the automatic semantic labelling on four different test datasets. The paper is concluded by indicating problems and difficulties implying the next steps in the research.
3D Model of the Tuscarora Geothermal Area
Faulds, James E.
2013-12-31
The Tuscarora geothermal system sits within a ~15 km wide left-step in a major west-dipping range-bounding normal fault system. The step over is defined by the Independence Mountains fault zone and the Bull Runs Mountains fault zone which overlap along strike. Strain is transferred between these major fault segments via and array of northerly striking normal faults with offsets of 10s to 100s of meters and strike lengths of less than 5 km. These faults within the step over are one to two orders of magnitude smaller than the range-bounding fault zones between which they reside. Faults within the broad step define an anticlinal accommodation zone wherein east-dipping faults mainly occupy western half of the accommodation zone and west-dipping faults lie in the eastern half of the accommodation zone. The 3D model of Tuscarora encompasses 70 small-offset normal faults that define the accommodation zone and a portion of the Independence Mountains fault zone, which dips beneath the geothermal field. The geothermal system resides in the axial part of the accommodation, straddling the two fault dip domains. The Tuscarora 3D geologic model consists of 10 stratigraphic units. Unconsolidated Quaternary alluvium has eroded down into bedrock units, the youngest and stratigraphically highest bedrock units are middle Miocene rhyolite and dacite flows regionally correlated with the Jarbidge Rhyolite and modeled with uniform cumulative thickness of ~350 m. Underlying these lava flows are Eocene volcanic rocks of the Big Cottonwood Canyon caldera. These units are modeled as intracaldera deposits, including domes, flows, and thick ash deposits that change in thickness and locally pinch out. The Paleozoic basement of consists metasedimenary and metavolcanic rocks, dominated by argillite, siltstone, limestone, quartzite, and metabasalt of the Schoonover and Snow Canyon Formations. Paleozoic formations are lumped in a single basement unit in the model. Fault blocks in the eastern
A new 3D dynamical biomechanical tongue model
NASA Astrophysics Data System (ADS)
Gerard, Jean-Michel; Perrier, Pascal; Payan, Yohan; Wilhelms-Tricarico, Reiner
2004-05-01
A new dynamical biomechanical tongue model is being developed to study speech motor control. In spite of its computational complexity, a 3D representation was chosen in order to account for various contacts between tongue and external structures such as teeth, palate, and vocal tract walls. A fair representation of tongue muscle anatomy is provided, by designing the finite element mesh from the visible human data set (female subject). Model geometry was then matched to a human speaker, so that simulations can be quantitatively compared to experimental MRI data. A set of 11 muscles is modeled, whose role in speech gestures is well established. Each muscle is defined by a set of elements whose elastic properties change with muscle activation. Muscles forces are applied to the tongue model via macrofibers defined within the mesh by muscle specific sets of nodes. These forces are currently specified as step functions. Boundary conditions are set using zero-displacement nodes simulating attachments of tongue on bony structures. The nonlinear mechanical properties of tongue soft tissues are modeled using a hyperelastic material. Three-dimensional tongue deformations generated by each muscle, using FEM software ANSYS for computation, will be presented. Implications for speech motor control will be proposed.
A new 3D dynamical biomechanical tongue model
NASA Astrophysics Data System (ADS)
Gerard, Jean-Michel; Perrier, Pascal; Payan, Yohan; Wilhelms-Tricarico, Reiner
2001-05-01
A new dynamical biomechanical tongue model is being developed to study speech motor control. In spite of its computational complexity, a 3D representation was chosen in order to account for various contacts between tongue and external structures such as teeth, palate, and vocal tract walls. A fair representation of tongue muscle anatomy is provided, by designing the finite element mesh from the visible human data set (female subject). Model geometry was then matched to a human speaker, so that simulations can be quantitatively compared to experimental MRI data. A set of 11 muscles is modeled, whose role in speech gestures is well established. Each muscle is defined by a set of elements whose elastic properties change with muscle activation. Muscles forces are applied to the tongue model via macrofibers defined within the mesh by muscle specific sets of nodes. These forces are currently specified as step functions. Boundary conditions are set using zero-displacement nodes simulating attachments of tongue on bony structures. The nonlinear mechanical properties of tongue soft tissues are modeled using a hyperelastic material. Three-dimensional tongue deformations generated by each muscle, using FEM software ANSYS for computation, will be presented. Implications for speech motor control will be proposed.
3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups
ERIC Educational Resources Information Center
Scalfani, Vincent F.; Vaid, Thomas P.
2014-01-01
Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…
BioMEA: a versatile high-density 3D microelectrode array system using integrated electronics.
Charvet, Guillaume; Rousseau, Lionel; Billoint, Olivier; Gharbi, Sadok; Rostaing, Jean-Pierre; Joucla, Sébastien; Trevisiol, Michel; Bourgerette, Alain; Chauvet, Philippe; Moulin, Céline; Goy, François; Mercier, Bruno; Colin, Mikael; Spirkovitch, Serge; Fanet, Hervé; Meyrand, Pierre; Guillemaud, Régis; Yvert, Blaise
2010-04-15
Microelectrode arrays (MEAs) offer a powerful tool to both record activity and deliver electrical microstimulations to neural networks either in vitro or in vivo. Microelectronics microfabrication technologies now allow building high-density MEAs containing several hundreds of microelectrodes. However, dense arrays of 3D micro-needle electrodes, providing closer contact with the neural tissue than planar electrodes, are not achievable using conventional isotropic etching processes. Moreover, increasing the number of electrodes using conventional electronics is difficult to achieve into compact devices addressing all channels independently for simultaneous recording and stimulation. Here, we present a full modular and versatile 256-channel MEA system based on integrated electronics. First, transparent high-density arrays of 3D-shaped microelectrodes were realized by deep reactive ion etching techniques of a silicon substrate reported on glass. This approach allowed achieving high electrode aspect ratios, and different shapes of tip electrodes. Next, we developed a dedicated analog 64-channel Application Specific Integrated Circuit (ASIC) including one amplification stage and one current generator per channel, and analog output multiplexing. A full modular system, called BIOMEA, has been designed, allowing connecting different types of MEAs (64, 128, or 256 electrodes) to different numbers of ASICs for simultaneous recording and/or stimulation on all channels. Finally, this system has been validated experimentally by recording and electrically eliciting low-amplitude spontaneous rhythmic activity (both LFPs and spikes) in the developing mouse CNS. The availability of high-density MEA systems with integrated electronics will offer new possibilities for both in vitro and in vivo studies of large neural networks.
3D Modeling of Antenna Driven Slow Waves Excited by Antennas Near the Plasma Edge
NASA Astrophysics Data System (ADS)
Smithe, David; Jenkins, Thomas
2016-10-01
Prior work with the 3D finite-difference time-domain (FDTD) plasma and sheath model used to model ICRF antennas in fusion plasmas has highlighted the possibility of slow wave excitation at the very low end of the SOL density range, and thus the prudent need for a slow-time evolution model to treat SOL density modifications due to the RF itself. At higher frequency, the DIII-D helicon antenna has much easier access to a parasitic slow wave excitation, and in this case the Faraday screen provides the dominant means of controlling the content of the launched mode, with antenna end-effects remaining a concern. In both cases, the danger is the same, with the slow-wave propagating into a lower-hybrid resonance layer a short distance ( cm) away from the antenna, which would parasitically absorb power, transferring energy to the SOL edge plasma, primarily through electron-neutral collisions. We will present 3D modeling of antennas at both ICRF and helicon frequencies. We've added a slow-time evolution capability for the SOL plasma density to include ponderomotive force driven rarefaction from the strong fields in the vicinity of the antenna, and show initial application to NSTX antenna geometry and plasma configurations. The model is based on a Scalar Ponderomotive Potential method, using self-consistently computed local field amplitudes from the 3D simulation.
A multipurpose 3-D grid of stellar models
NASA Astrophysics Data System (ADS)
Maíz Apellániz, J.
2013-05-01
The last two decades have produced a proliferation of stellar atmosphere grids, evolutionary tracks, and isochrones which are available to the astronomical community from different internet services. However, it is not straightforward (at least for an inexperienced user) to manipulate those models to answer questions of the type: What is the spectral energy distribution of a 9000 K giant? What about its J-band magnitude for different metallicities? What can I tell about the mass of a star if I know that its unreddened B-V color is -0.05 and its luminosity in solar units is 10^5? The answers to those questions are indeed in the models but a series of transformations and combinations involving different variables and models are required to obtain them. To make the available knowledge more user friendly, I have combined a number of state-of-the-art sources to create a 3-D (effective temperature, luminosity, and metallicity) grid of stellar models for which I provide calibrated SEDs and magnitudes as well as auxiliary variables such as mass and age. Furthermore, I have generated a grid of extinguished magnitudes using the recent Maíz Apellániz et al. (2012) extinction laws and incorporated them into the Bayesian code CHORIZOS (Maíz Apellániz 2004).
3-D Eutrophication Modeling for Lake Simcoe, Canada
NASA Astrophysics Data System (ADS)
Lu, Q.; Duckett, F.; Nairn, R.; Brunton, A.
2006-12-01
The Lake Simcoe Region Conservation Authority (LSRCA) and the Province of Ontario are undertaking a series of studies to facilitate management of the pressures of population growth in the Lake Simcoe watershed. With rapid population growth and urban development comes additional land clearing, storm water runoff and the discharge of treated sewage, all of which are sources of increased phosphorus loading to Lake Simcoe. Depressed oxygen levels were linked to phosphorous enrichment of the lake, with the resultant stimulation of algal growth in the sunlit upper waters of the lake, and its subsequent senescence and settling into the hypolimnion where bacterial decomposition consumes oxygen from the stratified waters. This poster describes a 3-D hydrodynamic, thermal and water quality model of Lake Simcoe developed using the Danish Hydraulics Institute (DHI) MIKE3 model. The hydrodynamic module includes wind-driven circulation, temperature variation, development of the thermocline and thermal stratification, and hydraulic forcing from inflowing tributaries. This is linked to the water quality module which simulates the eutrophication processes in the response of the lake to loadings of phosphorus, such as algal growth, the growth of aquatic plants and subsequent oxygen consumption. The model has been calibrated against Acoustic Doppler Current Profiler velocity data, plus measured temperature and water quality data at MOE stations in the lake and water intakes. The model is an important assessment tool for the management of the lake and its watersheds, allowing assessment of the impacts of the urban growth and land use change on the water quality in Lake Simcoe.
3-D GRACE gravity model for the 2011 Japan earthquake
NASA Astrophysics Data System (ADS)
Sastry, Rambhatla G.; Sonker, Mahendra K.
2017-02-01
The GRACE mission has contributed to the seismic characterization of major earthquakes in offshore regions of the world. Here, we isolate satellite gravity signal (μGal range) for the Japan Earthquake of 2011 using a difference method. Contrary to the existing gravity models, we propose a unit vertical pyramid based five-layer 3-D thrust fault model, which extends to the hypocenter and honors the ocean water layer and sea floor upheaval also. Our model partly uses existing seismological information (hypocenter depth of 32 km, rupture length of 300 km and vertical slip of 4 m), provides a snapshot of episodic subduction of the Pacific Plate below the Atlantic Plate and its gravity response closely matches the observed gravity (RMS error of 3.4012×10-13μGal), fully accounting for co-seismic mass redistribution including sea surface deformation. Our inferred rupture length, rupture velocity, average seismic moment magnitude and momentum, respectively, are 300 km, 4.49 km/s, 1.152×1021-1.8816×1021 N m and 2.319×106 GNs, which fairly agree with the literature. Further, our model inferred momentum at the sea floor corresponds to an area pulse that led to Tsunami generation.
Automatic paper sliceform design from 3D solid models.
Le-Nguyen, Tuong-Vu; Low, Kok-Lim; Ruiz, Conrado; Le, Sang N
2013-11-01
A paper sliceform or lattice-style pop-up is a form of papercraft that uses two sets of parallel paper patches slotted together to make a foldable structure. The structure can be folded flat, as well as fully opened (popped-up) to make the two sets of patches orthogonal to each other. Automatic design of paper sliceforms is still not supported by existing computational models and remains a challenge. We propose novel geometric formulations of valid paper sliceform designs that consider the stability, flat-foldability and physical realizability of the designs. Based on a set of sufficient construction conditions, we also present an automatic algorithm for generating valid sliceform designs that closely depict the given 3D solid models. By approximating the input models using a set of generalized cylinders, our method significantly reduces the search space for stable and flat-foldable sliceforms. To ensure the physical realizability of the designs, the algorithm automatically generates slots or slits on the patches such that no two cycles embedded in two different patches are interlocking each other. This guarantees local pairwise assembility between patches, which is empirically shown to lead to global assembility. Our method has been demonstrated on a number of example models, and the output designs have been successfully made into real paper sliceforms.
3D numerical modeling of India-Asia-like collision
NASA Astrophysics Data System (ADS)
-Erika Püsök, Adina; Kaus, Boris; Popov, Anton
2013-04-01
above a strong mantle lithosphere - the jelly sandwich model (Burov and Watts, 2006). 3D models are thus needed to investigate these hypotheses. However, fully 3D models of the dynamics of continent collision zones have only been developed very recently, and presently most research groups have relied on certain explicit assumptions for their codes. Here, we employ the parallel 3D code LaMEM (Lithosphere and Mantle Evolution Model), with a finite difference staggered grid solver, which is capable of simulating lithospheric deformation while simultaneously taking mantle flow and a free surface into account. We here report on first lithospheric and upper-mantle scale simulations in which the Indian lithosphere is indented into Asia. Acknowledgements. Funding was provided by the European Research Council under the European Community's Seventh Framework Program (FP7/2007-2013) / ERC Grant agreement #258830. Numerical computations have been performed on JUQUEEN of the Jülich high-performance computing center. • Beaumont, C., Jamieson, R.A., Nguyen, M.H., Medvedev, S.E., 2004. Crustal channel flows: 1. Numerical models with applications to the tectonics of the Himalayan-Tibetan orogeny. J. Geophys. Res. 109, B06406. • Burov, E. & Watts, W.S., 2006. The long-term strength of continental lithosphere: "jelly sandwich" or "crème brûlée"?. GSA Today, 16, doi: 10.1130/1052-5173(2006)1016<1134:TLTSOC>1132.1130.CO;1132. • England P., Houseman, G., 1986. Finite strain calculations of continental deformation. 2. Comparison with the India-Asia collision zone. J. Geophys. Res.- Solid Earth and Planets 91 (B3), 3664-3676. • Jackson, J., 2002. Strength of the continental lithosphere: time to abandon the jelly sandwich?. GSA Today, September, 4-10. • Lechmann, S.M., May, D.A., Kaus, B.J.P., Schmalholz, S.M., 2011. Comparing thin-sheet models with 3D multilayer models for continental collision. Geophy. Int. J. doi: 10.1111/j.1365-246X.2011.05164.x • Royden, L.H., Burchfiel, B
3D Printing of Molecular Potential Energy Surface Models
ERIC Educational Resources Information Center
Lolur, Phalgun; Dawes, Richard
2014-01-01
Additive manufacturing, commonly known as 3D printing, is gaining popularity in a variety of applications and has recently become routinely available. Today, 3D printing services are not only found in engineering design labs and through online companies, but also in university libraries offering student access. In addition, affordable options for…
Equilibrium Reconstructions with V3FIT and Current Evolution Modeling for 3-D Stellarator Plasmas
NASA Astrophysics Data System (ADS)
Schmitt, J. C.; Cianciosa, M.; Geiger, J.; Lazerson, S.
2016-10-01
V3FIT is a powerful equilibrium reconstruction tool for magnetic confinement fusion experiments which are inherently 3-D in nature (i.e. stellarators) or have 3-D components (tokamaks with 3-D shaping, reversed field pinches with helical states, etc). Here, we present details of the diagnostic modeling, constraints and the user interface for reconstructions of W7-X plasmas. For typical discharges during the OP1.1 run campaign of W7-X, the net toroidal current and current density profile do not reach steady-state. When modeling the current evolution in 3-D plasmas, both poloidal and toroidal currents are linked with both poloidal and toroidal fluxes. In contrast, in toroidally axisymmetric plasmas, the poloidal flux is linked only with the toroidal current and the toroidal current is linked only with the poloidal flux. Compared to an equivalently-sized axisymmetric configuration, the current diffusion in 3-D plasmas is enhanced, leading to a faster relaxation of the current profile to its steady-state. Implications for the time-evolution of the current and rotational transform profiles in stellarator plasmas are discussed. This work is supported by DoE Grant DE-SC00014529.
3D-Digital soil property mapping by geoadditive models
NASA Astrophysics Data System (ADS)
Papritz, Andreas
2016-04-01
In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to
Automatic pole-like object modeling via 3D part-based analysis of point cloud
NASA Astrophysics Data System (ADS)
He, Liu; Yang, Haoxiang; Huang, Yuchun
2016-10-01
Pole-like objects, including trees, lampposts and traffic signs, are indispensable part of urban infrastructure. With the advance of vehicle-based laser scanning (VLS), massive point cloud of roadside urban areas becomes applied in 3D digital city modeling. Based on the property that different pole-like objects have various canopy parts and similar trunk parts, this paper proposed the 3D part-based shape analysis to robustly extract, identify and model the pole-like objects. The proposed method includes: 3D clustering and recognition of trunks, voxel growing and part-based 3D modeling. After preprocessing, the trunk center is identified as the point that has local density peak and the largest minimum inter-cluster distance. Starting from the trunk centers, the remaining points are iteratively clustered to the same centers of their nearest point with higher density. To eliminate the noisy points, cluster border is refined by trimming boundary outliers. Then, candidate trunks are extracted based on the clustering results in three orthogonal planes by shape analysis. Voxel growing obtains the completed pole-like objects regardless of overlaying. Finally, entire trunk, branch and crown part are analyzed to obtain seven feature parameters. These parameters are utilized to model three parts respectively and get signal part-assembled 3D model. The proposed method is tested using the VLS-based point cloud of Wuhan University, China. The point cloud includes many kinds of trees, lampposts and other pole-like posters under different occlusions and overlaying. Experimental results show that the proposed method can extract the exact attributes and model the roadside pole-like objects efficiently.
A 3D Model of the Thermoelectric Microwave Power Sensor by MEMS Technology
Yi, Zhenxiang; Liao, Xiaoping
2016-01-01
In this paper, a novel 3D model is proposed to describe the temperature distribution of the thermoelectric microwave power sensor. In this 3D model, the heat flux density decreases from the upper surface to the lower surface of the GaAs substrate while it was supposed to be a constant in the 2D model. The power sensor is fabricated by a GaAs monolithic microwave integrated circuit (MMIC) process and micro-electro-mechanical system (MEMS) technology. The microwave performance experiment shows that the S11 is less than −26 dB over the frequency band of 1–10 GHz. The power response experiment demonstrates that the output voltage increases from 0 mV to 27 mV, while the incident power varies from 1 mW to 100 mW. The measured sensitivity is about 0.27 mV/mW, and the calculated result from the 3D model is 0.28 mV/mW. The relative error has been reduced from 7.5% of the 2D model to 3.7% of the 3D model. PMID:27338395
3D Finite Difference Modelling of Basaltic Region
NASA Astrophysics Data System (ADS)
Engell-Sørensen, L.
2003-04-01
The main purpose of the work was to generate realistic data to be applied for testing of processing and migration tools for basaltic regions. The project is based on the three - dimensional finite difference code (FD), TIGER, made by Sintef. The FD code was optimized (parallelized) by the author, to run on parallel computers. The parallel code enables us to model large-scale realistic geological models and to apply traditional seismic and micro seismic sources. The parallel code uses multiple processors in order to manipulate subsets of large amounts of data simultaneously. The general anisotropic code uses 21 elastic coefficients. Eight independent coefficients are needed as input parameters for the general TI medium. In the FD code, the elastic wave field computation is implemented by a higher order FD solution to the elastic wave equation and the wave fields are computed on a staggered grid, shifted half a node in one or two directions. The geological model is a gridded basalt model, which covers from 24 km to 37 km of a real shot line in horizontal direction and from the water surface to the depth of 3.5 km. The 2frac {1}{2}D model has been constructed using the compound modeling software from Norsk Hydro. The vertical parameter distribution is obtained from observations in two wells. At The depth of between 1100 m to 1500 m, a basalt horizon covers the whole sub surface layers. We have shown that it is possible to simulate a line survey in realistic (3D) geological models in reasonable time by using high performance computers. The author would like to thank Norsk Hydro, Statoil, GEUS, and SINTEF for very helpful discussions and Parallab for being helpful with the new IBM, p690 Regatta system.
Predicted 3D Model of the Rabies Virus Glycoprotein Trimer.
Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura
2016-01-01
The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained.
3D finite element modeling of sliding wear
NASA Astrophysics Data System (ADS)
Buentello Hernandez, Rodolfo G.
Wear is defined as "the removal of material volume through some mechanical process between two surfaces". There are many mechanical situations that can induce wear and each can involve many wear mechanisms. This research focuses on the mechanical wear due to dry sliding between two surfaces. Currently there is a need to identify and compare materials that would endure sliding wear under severe conditions such as high velocities. The high costs associated with the field experimentation of systems subject to high-speed sliding, has prevented the collection of the necessary data required to fully characterize this phenomena. Simulating wear through Finite Elements (FE) would enable its prediction under different scenarios and would reduce experimentation costs. In the aerospace, automotive and weapon industries such a model can aid in material selection, design and/or testing of systems subjected to wear in bearings, gears, brakes, gun barrels, slippers, locomotive wheels, or even rocket test tracks. The 3D wear model presented in this dissertation allows one to reasonably predict high-speed sliding mechanical wear between two materials. The model predictions are reasonable, when compared against those measured on a sled slipper traveling over the Holloman High Speed Tests Track. This slipper traveled a distance of 5,816 meters in 8.14 seconds and reached a maximum velocity of 1,530 m/s.
Predicted 3D Model of the Rabies Virus Glycoprotein Trimer
Fernando, Bastida-González; Yersin, Celaya-Trejo; José, Correa-Basurto; Paola, Zárate-Segura
2016-01-01
The RABVG ectodomain is a homotrimer, and trimers are often called spikes. They are responsible for the attachment of the virus through the interaction with nicotinic acetylcholine receptors, neural cell adhesion molecule (NCAM), and the p75 neurotrophin receptor (p75NTR). This makes them relevant in viral pathogenesis. The antigenic structure differs significantly between the trimers and monomers. Surfaces rich in hydrophobic amino acids are important for trimer stabilization in which the C-terminal of the ectodomain plays an important role; to understand these interactions between the G proteins, a mechanistic study of their functions was performed with a molecular model of G protein in its trimeric form. This verified its 3D conformation. The molecular modeling of G protein was performed by a I-TASSER server and was evaluated via a Rachamandran plot and ERRAT program obtained 84.64% and 89.9% of the residues in the favorable regions and overall quality factor, respectively. The molecular dynamics simulations were carried out on RABVG trimer at 310 K. From these theoretical studies, we retrieved the RMSD values from Cα atoms to assess stability. Preliminary model of G protein of rabies virus stable at 12 ns with molecular dynamics was obtained. PMID:27294109
NASA Astrophysics Data System (ADS)
Gallagher, A. J.; Caffau, E.; Bonifacio, P.; Ludwig, H.-G.; Steffen, M.; Homeier, D.; Plez, B.
2017-02-01
Context. Tighter constraints on metal-poor stars we observe are needed to better understand the chemical processes of the early Universe. Computing a stellar spectrum in 3D allows one to model complex stellar behaviours, which cannot be replicated in 1D. Aims: We examine the effect that the intrinsic CNO abundances have on a 3D model structure and the resulting 3D spectrum synthesis. Methods: Model atmospheres were computed in 3D for three distinct CNO chemical compositions using the CO5BOLD model atmosphere code, and their internal structures were examined. Synthetic spectra were computed from these models using Linfor3D and they were compared. New 3D abundance corrections for the G-band and a selection of UV OH lines were also computed. Results: The varying CNO abundances change the metal content of the 3D models. This had an effect on the model structure and the resulting synthesis. However, it was found that the C/O ratio had a larger effect than the overall metal content of a model. Conclusions: Our results suggest that varying the C/O ratio has a substantial impact on the internal structure of the 3D model, even in the hot turn-off star models explored here. This suggests that bespoke 3D models, for specific CNO abundances should be sought. Such effects are not seen in 1D at these temperature regimes.
Geological, isothermal, and isobaric 3-D model construction in early stage of geothermal exploration
NASA Astrophysics Data System (ADS)
Saputra, M. P.; Suryantini; Catigtig, D.; Regandara, R.; Asnin, S. N.; Pratama, A. B.
2016-09-01
Construction of geology, thermal anomaly and pressure distribution of a geothermal system in the early stage of exploration where data is limited is described using a 3-D software, Leapfrog Geothermal. The geological 3-D model was developed from a topographic map (derived from DEM data), geological map and literature studies reported in an early geological survey. The isothermal 3-D model was constructed using reservoir temperature estimation from geothermometry calculated from chemical analyses on surface manifestations, available shallow gradient temperature hole data and the normal gradient temperature (3°C/100m) for a nonthermal area. The isobaric 3-D model was built using hydrostatic pressure where the hydrostatic pressure is determined by the product of the fluid density, acceleration due to gravity, and depth. Fluid density is given by saturated liquid density as a function of temperature. There are some constraints on the modelling result such as (1) within the predicted reservoir, the geothermal gradient is not constant but continues to increase, thus, creating an anomalously high temperature at depth, and (2) the lithology model is made by interpolating and extrapolating cross-sections whereas usually only two to three geology sections were available for this study. Hence, the modeller must understand the geology. An additional cross section was developed by the modeller which may not be as suitable as the geologist constructed sections. The results of this study can be combined with geophysical data such as gravity, geomagnetic, micro-tremor and resistivity data. The combination of geological, geochemical, isothermal, isobaric and geophysical data could be used in (1) estimating the geometry and size of the geothermal reservoir, (2) predicting the depth of top reservoir, and (3) creating well prognosis for exploration and production wells.
Detailed 3D representations for object recognition and modeling.
Zia, M Zeeshan; Stark, Michael; Schiele, Bernt; Schindler, Konrad
2013-11-01
Geometric 3D reasoning at the level of objects has received renewed attention recently in the context of visual scene understanding. The level of geometric detail, however, is typically limited to qualitative representations or coarse boxes. This is linked to the fact that today's object class detectors are tuned toward robust 2D matching rather than accurate 3D geometry, encouraged by bounding-box-based benchmarks such as Pascal VOC. In this paper, we revisit ideas from the early days of computer vision, namely, detailed, 3D geometric object class representations for recognition. These representations can recover geometrically far more accurate object hypotheses than just bounding boxes, including continuous estimates of object pose and 3D wireframes with relative 3D positions of object parts. In combination with robust techniques for shape description and inference, we outperform state-of-the-art results in monocular 3D pose estimation. In a series of experiments, we analyze our approach in detail and demonstrate novel applications enabled by such an object class representation, such as fine-grained categorization of cars and bicycles, according to their 3D geometry, and ultrawide baseline matching.
The 3D heat flux density distribution on a novel parabolic trough wavy absorber
NASA Astrophysics Data System (ADS)
Demagh, Yassine; Kabar, Yassine; Bordja, Lyes; Noui, Samira
2016-05-01
The non-uniform concentrated solar flux distribution on the outer surface of the absorber pipe can lead to large circumferential gradient temperature and high concentrated temperature of the absorber pipe wall, which is one of the primary causes of parabolic trough solar receiver breakdown. In this study, a novel shape of the parabolic trough absorber pipe is proposed as a solution to well homogenize the solar flux distribution, as well as, the temperature in the absorber wall. The conventional straight absorber located along the focal line of the parabola is replaced by wavy one (invention patent by Y. Demagh [1]) for which the heat flux density distribution on the outer surface varies in both axial and azimuthal directions (3D) while it varies only in the azimuthal direction on the former (2D). As far as we know, there is not previous study which has used a longitudinally wavy pipe as an absorber into the parabolic trough collector unit.
Exploring the surface reactivity of 3d metal endofullerenes: a density-functional theory study.
Estrada-Salas, Rubén E; Valladares, Ariel A
2009-09-24
Changes in the preferential sites of electrophilic, nucleophilic, and radical attacks on the pristine C60 surface with endohedral doping using 3d transition metal atoms were studied via two useful reactivity indices, namely the Fukui functions and the molecular electrostatic potential. Both of these were calculated at the density functional BPW91 level of theory with the DNP basis set. Our results clearly show changes in the preferential reactivity sites on the fullerene surface when it is doped with Mn, Fe, Co, or Ni atoms, whereas there are no significant changes in the preferential reactivity sites on the C60 surface upon endohedral doping with Cu and Zn atoms. Electron affinities (EA), ionization potentials (IP), and HOMO-LUMO gaps (Eg) were also calculated to complete the study of the endofullerene's surface reactivity. These findings provide insight into endofullerene functionalization, an important issue in their application.
A stereo matching model observer for stereoscopic viewing of 3D medical images
NASA Astrophysics Data System (ADS)
Wen, Gezheng; Markey, Mia K.; Muralidlhar, Gautam S.
2014-03-01
Stereoscopic viewing of 3D medical imaging data has the potential to increase the detection of abnormalities. We present a new stereo model observer inspired by the characteristics of stereopsis in human vision. Given a stereo pair of images of an object (i.e., left and right images separated by a small displacement), the model observer rst nds the corresponding points between the two views, and then fuses them together to create a 2D cyclopean view. Assuming that the cyclopean view has extracted most of the 3D information presented in the stereo pair, a channelized Hotelling observer (CHO) can be utilized to make decisions. We conduct a simulation study that attempts to mimic the detection of breast lesions on stereoscopic viewing of breast tomosynthesis projection images. We render voxel datasets that contain random 3D power-law noise to model normal breast tissues with various breast densities. 3D Gaussian signal is added to some of the datasets to model the presence of a breast lesion. By changing the separation angle between the two views, multiple stereo pairs of projection images are generated for each voxel dataset. The performance of the model is evaluated in terms of the accuracy of binary decisions on the presence of the simulated lesions.
Pros and Cons of ID vs. 3D Modeling
NASA Technical Reports Server (NTRS)
Klimchuk, James A.
2012-01-01
Advances in computing capability have led to tremendous improvements in 3D modeling. Entire active regions are being simulated in what might be described as a first principles way, in which plasma heating is treated self consistently rather than through the specification of heating functions. There are limitations to this approach, however, as actual heating mechanisms on the Sun involve spatial scales orders of magnitude smaller than what these simulations can resolve. Other simulations begin to resolve these scales, but they only treat a tiny volume and do not include the all important coupling with larger scales or with other parts of the atmosphere, and so cannot be readily compared with observations. Finally, ID hydrodynamic models capture the field-aligned evolution of the plasma extremely well and are ideally suited for data comparison, but they treat the heating in a totally ad hoc manner. All of these approaches have important contributions to make, but we must be aware of their limitations. I will highlight some of the strengths. and weaknesses of each.
A 3D world model builder with a mobile robot
Zhang, Z.; Faugeras, O. )
1992-08-01
This article describes a system to incrementally build a world model with a mobile robot in an unknown environment. The model is, for the moment, segment based. A trinocular stereo system is used to build a local map about the environment. A global map is obtained by integrating a sequence of stereo frames taken when the robot navigates in the environment. The emphasis of this article is on the representation of the uncertainty of 3D segments from stereo and on the integration of segments from multiple views. The proposed representation is simple and very convenient to characterize the uncertainty of segment. A Kalman filter is used to merge matched line segments. An important characteristic of this integration strategy is that a segment observed by the stereo system corresponds only to one part of the segment in space, so the union of the different observations gives a better estimate on the segment in space. The authors have succeeded in integrating 35 stereo frames taken in their robot room.
Modelling Polymer Deformation and Welding Behaviour during 3D Printing
NASA Astrophysics Data System (ADS)
McIlroy, Claire; Olmsted, Peter
2016-11-01
3D printing has the potential to transform manufacturing processes, yet improving the strength of printed parts, to equal that of traditionally-manufactured parts, remains an underlying issue. The most common method, fused deposition modelling, involves melting a thermoplastic, followed by layer-by-layer extrusion of the material to fabricate a three-dimensional object. The key to the ensuring strength at the weld between these layers is successful inter-diffusion. However, as the printed layer cools towards the glass transition temperature, the time available for diffusion is limited. In addition, the extrusion process significantly deforms the polymer micro-structure prior to welding and consequently affects how the polymers "re-entangle" across the weld. We have developed a simple model of the non-isothermal printing process to explore the effects that typical printing conditions and amorphous polymer rheology have on the ultimate weld structure. In particular, we incorporate both the stretch and orientation of the polymer using the Rolie-Poly constitutive equation to examine how the melt flows through the nozzle and is deposited onto the build plate. We then address how this deformation relaxes and contributes to the thickness and structure of the weld. National Institute for Standards and Technology (NIST) and Georgetown University.
A novel mechanotactic 3D modeling of cell morphology
NASA Astrophysics Data System (ADS)
Jamaleddin Mousavi, Seyed; Hamdy Doweidar, Mohamed
2014-08-01
Cell morphology plays a critical role in many biological processes, such as cell migration, tissue development, wound healing and tumor growth. Recent investigations demonstrate that, among other stimuli, cells adapt their shapes according to their substrate stiffness. Until now, the development of this process has not been clear. Therefore, in this work, a new three-dimensional (3D) computational model for cell morphology has been developed. This model is based on a previous cell migration model presented by the same authors. The new model considers that during cell-substrate interaction, cell shape is governed by internal cell deformation, which leads to an accurate prediction of the cell shape according to the mechanical characteristic of its surrounding micro-environment. To study this phenomenon, the model has been applied to different numerical cases. The obtained results, which are qualitatively consistent with well-known related experimental works, indicate that cell morphology not only depends on substrate stiffness but also on the substrate boundary conditions. A cell located within an unconstrained soft substrate (several kPa) with uniform stiffness is unable to adhere to its substrate or to send out pseudopodia. When the substrate stiffness increases to tens of kPa (intermediate and rigid substrates), the cell can adequately adhere to its substrate. Subsequently, as the traction forces exerted by the cell increase, the cell elongates and its shape changes. Within very stiff (hard) substrates, the cell cannot penetrate into its substrate or send out pseudopodia. On the other hand, a cell is found to be more elongated within substrates with a constrained surface. However, this elongation decreases when the cell approaches it. It can be concluded that the higher the net traction force, the greater the cell elongation, the larger the cell membrane area, and the less random the cell alignment.
Fitting a 3-D analytic model of the coronal mass ejection to observations
NASA Technical Reports Server (NTRS)
Gibson, S. E.; Biesecker, D.; Fisher, R.; Howard, R. A.; Thompson, B. J.
1997-01-01
The application of an analytic magnetohydrodynamic model is presented to observations of the time-dependent explusion of 3D coronal mass ejections (CMEs) out of the solar corona. This model relates the white-light appearance of the CME to its internal magnetic field, which takes the form of a closed bubble, filled with a partly anchored, twisted magnetic flux rope and embedded in an otherwise open background field. The density distribution frozen into the expanding CME expanding field is fully 3D, and can be integrated along the line of sight to reproduce observations of scattered white light. The model is able to reproduce the three conspicuous features often associated with CMEs as observed with white-light coronagraphs: a surrounding high-density region, an internal low-density cavity, and a high-density core. The model also describes the self-similar radial expansion of these structures. By varying the model parameters, the model can be fitted directly to observations of CMEs. It is shown how the model can quantitatively match the polarized brightness contrast of a dark cavity emerging through the lower corona as observed by the HAO Mauna Loa K-coronameter to within the noise level of the data.
Numerical model of sonic boom in 3D kinematic turbulence
NASA Astrophysics Data System (ADS)
Coulouvrat, François; Luquet, David; Marchiano, Régis
2015-10-01
stratified wind superimposed to a 3D random turbulent realization. Propagation is performed either in the case of a shadow zone or of an atmospheric waveguide. To model the turbulent ABL, the mean flow and the fluctuations are handled separately. The wind fluctuations are generated using the Random Fluctuations Generation method assuming a von Kármán spectrum and a homogeneous and isotropic turbulence. The mean stratified wind is modeled based on the Monin-Obhukov Similarity Theory (MOST). To illustrate the method, the typical case of a sunny day with a strong wind has been chosen. Statistics are obtained on several parameters. It shows the importance of turbulence, which leads to an increase of the mean maximum peak pressure in the shadow zone and to its decrease in the waveguide. Moreover, the formation of random caustics that can lead to an increase of the noise perceived locally is outlined.
Methods for Geometric Data Validation of 3d City Models
NASA Astrophysics Data System (ADS)
Wagner, D.; Alam, N.; Wewetzer, M.; Pries, M.; Coors, V.
2015-12-01
Geometric quality of 3D city models is crucial for data analysis and simulation tasks, which are part of modern applications of the data (e.g. potential heating energy consumption of city quarters, solar potential, etc.). Geometric quality in these contexts is however a different concept as it is for 2D maps. In the latter case, aspects such as positional or temporal accuracy and correctness represent typical quality metrics of the data. They are defined in ISO 19157 and should be mentioned as part of the metadata. 3D data has a far wider range of aspects which influence their quality, plus the idea of quality itself is application dependent. Thus, concepts for definition of quality are needed, including methods to validate these definitions. Quality on this sense means internal validation and detection of inconsistent or wrong geometry according to a predefined set of rules. A useful starting point would be to have correct geometry in accordance with ISO 19107. A valid solid should consist of planar faces which touch their neighbours exclusively in defined corner points and edges. No gaps between them are allowed, and the whole feature must be 2-manifold. In this paper, we present methods to validate common geometric requirements for building geometry. Different checks based on several algorithms have been implemented to validate a set of rules derived from the solid definition mentioned above (e.g. water tightness of the solid or planarity of its polygons), as they were developed for the software tool CityDoctor. The method of each check is specified, with a special focus on the discussion of tolerance values where they are necessary. The checks include polygon level checks to validate the correctness of each polygon, i.e. closeness of the bounding linear ring and planarity. On the solid level, which is only validated if the polygons have passed validation, correct polygon orientation is checked, after self-intersections outside of defined corner points and edges
Object-oriented urban 3D spatial data model organization method
NASA Astrophysics Data System (ADS)
Li, Jing-wen; Li, Wen-qing; Lv, Nan; Su, Tao
2015-12-01
This paper combined the 3d data model with object-oriented organization method, put forward the model of 3d data based on object-oriented method, implemented the city 3d model to quickly build logical semantic expression and model, solved the city 3d spatial information representation problem of the same location with multiple property and the same property with multiple locations, designed the space object structure of point, line, polygon, body for city of 3d spatial database, and provided a new thought and method for the city 3d GIS model and organization management.
3D Loop Models and the CPn-1 Sigma Model
NASA Astrophysics Data System (ADS)
Nahum, Adam; Chalker, J. T.; Serna, P.; Ortuño, M.; Somoza, A. M.
2011-09-01
Many statistical mechanics problems can be framed in terms of random curves; we consider a class of three-dimensional loop models that are prototypes for such ensembles. The models show transitions between phases with infinite loops and short-loop phases. We map them to CPn-1 sigma models, where n is the loop fugacity. Using Monte Carlo simulations, we find continuous transitions for n=1, 2, 3, and first order transitions for n≥5. The results are relevant to line defects in random media, as well as to Anderson localization and (2+1)-dimensional quantum magnets.
EM modeling for GPIR using 3D FDTD modeling codes
Nelson, S.D.
1994-10-01
An analysis of the one-, two-, and three-dimensional electrical characteristics of structural cement and concrete is presented. This work connects experimental efforts in characterizing cement and concrete in the frequency and time domains with the Finite Difference Time Domain (FDTD) modeling efforts of these substances. These efforts include Electromagnetic (EM) modeling of simple lossless homogeneous materials with aggregate and targets and the modeling dispersive and lossy materials with aggregate and complex target geometries for Ground Penetrating Imaging Radar (GPIR). Two- and three-dimensional FDTD codes (developed at LLNL) where used for the modeling efforts. Purpose of the experimental and modeling efforts is to gain knowledge about the electrical properties of concrete typically used in the construction industry for bridges and other load bearing structures. The goal is to optimize the performance of a high-sample-rate impulse radar and data acquisition system and to design an antenna system to match the characteristics of this material. Results show agreement to within 2 dB of the amplitudes of the experimental and modeled data while the frequency peaks correlate to within 10% the differences being due to the unknown exact nature of the aggregate placement.
West Flank Coso, CA FORGE 3D temperature model
Doug Blankenship
2016-03-01
x,y,z data of the 3D temperature model for the West Flank Coso FORGE site. Model grid spacing is 250m. The temperature model for the Coso geothermal field used over 100 geothermal production sized wells and intermediate-depth temperature holes. At the near surface of this model, two boundary temperatures were assumed: (1) areas with surface manifestations, including fumaroles along the northeast striking normal faults and northwest striking dextral faults with the hydrothermal field, a temperature of ~104ËšC was applied to datum at +1066 meters above sea level elevation, and (2) a near-surface temperature at about 10 meters depth, of 20ËšC was applied below the diurnal and annual conductive temperature perturbations. These assumptions were based on heat flow studies conducted at the CVF and for the Mojave Desert. On the edges of the hydrothermal system, a 73ËšC/km (4ËšF/100â€™) temperature gradient contour was established using conductive gradient data from shallow and intermediate-depth temperature holes. This contour was continued to all elevation datums between the 20ËšC surface and -1520 meters below mean sea level. Because the West Flank is outside of the geothermal field footprint, during Phase 1, the three wells inside the FORGE site were incorporated into the preexisting temperature model. To ensure a complete model was built based on all the available data sets, measured bottom-hole temperature gradients in certain wells were downward extrapolated to the next deepest elevation datum (or a maximum of about 25% of the well depth where conductive gradients are evident in the lower portions of the wells). After assuring that the margins of the geothermal field were going to be adequately modelled, the data was contoured using the Kriging method algorithm. Although the extrapolated temperatures and boundary conditions are not rigorous, the calculated temperatures are anticipated to be within ~6ËšC (20ËšF), or one contour interval, of the
Detecting and estimating errors in 3D restoration methods using analog models.
NASA Astrophysics Data System (ADS)
José Ramón, Ma; Pueyo, Emilio L.; Briz, José Luis
2015-04-01
Some geological scenarios may be important for a number of socio-economic reasons, such as water or energy resources, but the available underground information is often limited, scarce and heterogeneous. A truly 3D reconstruction, which is still necessary during the decision-making process, may have important social and economic implications. For this reason, restoration methods were developed. By honoring some geometric or mechanical laws, they help build a reliable image of the subsurface. Pioneer methods were firstly applied in 2D (balanced and restored cross-sections) during the sixties and seventies. Later on, and due to the improvements of computational capabilities, they were extended to 3D. Currently, there are some academic and commercial restoration solutions; Unfold by the Université de Grenoble, Move by Midland Valley Exploration, Kine3D (on gOcad code) by Paradigm, Dynel3D by igeoss-Schlumberger. We have developed our own restoration method, Pmag3Drest (IGME-Universidad de Zaragoza), which is designed to tackle complex geometrical scenarios using paleomagnetic vectors as a pseudo-3D indicator of deformation. However, all these methods have limitations based on the assumptions they need to establish. For this reason, detecting and estimating uncertainty in 3D restoration methods is of key importance to trust the reconstructions. Checking the reliability and the internal consistency of every method, as well as to compare the results among restoration tools, is a critical issue never tackled so far because of the impossibility to test out the results in Nature. To overcome this problem we have developed a technique using analog models. We built complex geometric models inspired in real cases of superposed and/or conical folding at laboratory scale. The stratigraphic volumes were modeled using EVA sheets (ethylene vinyl acetate). Their rheology (tensile and tear strength, elongation, density etc) and thickness can be chosen among a large number of values
Liang, Yi-Ran; Zhu, Li-Na; Gao, Jie; Zhao, Hong-Xia; Zhu, Ying; Ye, Sheng; Fang, Qun
2017-03-23
Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20-100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.
Prediction models from CAD models of 3D objects
NASA Astrophysics Data System (ADS)
Camps, Octavia I.
1992-11-01
In this paper we present a probabilistic prediction based approach for CAD-based object recognition. Given a CAD model of an object, the PREMIO system combines techniques of analytic graphics and physical models of lights and sensors to predict how features of the object will appear in images. In nearly 4,000 experiments on analytically-generated and real images, we show that in a semi-controlled environment, predicting the detectability of features of the image can successfully guide a search procedure to make informed choices of model and image features in its search for correspondences that can be used to hypothesize the pose of the object. Furthermore, we provide a rigorous experimental protocol that can be used to determine the optimal number of correspondences to seek so that the probability of failing to find a pose and of finding an inaccurate pose are minimized.
3D Simulation Modeling of the Tooth Wear Process.
Dai, Ning; Hu, Jian; Liu, Hao
2015-01-01
Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation.
3D Simulation Modeling of the Tooth Wear Process
Dai, Ning; Hu, Jian; Liu, Hao
2015-01-01
Severe tooth wear is the most common non-caries dental disease, and it can seriously affect oral health. Studying the tooth wear process is time-consuming and difficult, and technological tools are frequently lacking. This paper presents a novel method of digital simulation modeling that represents a new way to study tooth wear. First, a feature extraction algorithm is used to obtain anatomical feature points of the tooth without attrition. Second, after the alignment of non-attrition areas, the initial homogeneous surface is generated by means of the RBF (Radial Basic Function) implicit surface and then deformed to the final homogeneous by the contraction and bounding algorithm. Finally, the method of bilinear interpolation based on Laplacian coordinates between tooth with attrition and without attrition is used to inversely reconstruct the sequence of changes of the 3D tooth morphology during gradual tooth wear process. This method can also be used to generate a process simulation of nonlinear tooth wear by means of fitting an attrition curve to the statistical data of attrition index in a certain region. The effectiveness and efficiency of the attrition simulation algorithm are verified through experimental simulation. PMID:26241942
NASA Astrophysics Data System (ADS)
Gerzen, Tatjana; Wilken, Volker; Jakowski, Norbert; Hoque, Mainul M.
2013-04-01
New methods to generate maps of the F2 layer peak electron density of the ionosphere (NmF2) and to reconstruct the ionospheric 3D electron density distribution will be presented. For validation, reconstructed NmF2 maps will be compared with peak electron density measurements from independent ionosonde stations. The ionosphere is the ionized part of the upper Earth's atmosphere lying between about 50 km and 1000 km above the Earth's surface. From the applications perspective the electron density, Ne, is certainly one of the most important parameters of the ionosphere because of its strong impact on radio signal propagation. Especially the critical frequency, foF2, which is related to the F2 layer peak electron density, NmF2, according to the equation NmF2-m3 = 1.24 ? 1010(foF2-MHz)2 and builds the lower limit for the maximum usable frequency MUF, is of particular interest with regard to the HF radio communication applications. In a first order approximation the ionospheric delay of transionospheric radio waves of frequency f is proportional to 1-f2 and to the integral of the electron density (total electron content - TEC) along the ray path. Thus, the information about the total electron content along the receiver-to-satellite ray path can be obtained from the dual frequency measurements permanently transmitted by GNSS satellites. As data base for our reconstruction approaches we use the vertical sounding measurements of the ionosonde stations providing foF2 and routinely generated TEC maps in SWACI (http://swaciweb.dlr.de) at DLR Neustrelitz. The basic concept of our approach is the following one: To reconstruct NmF2 maps we assimilate the ionosonde data into the global Neustrelitz F2 layer Peak electron Density Model (NPDM) by means of a successive corrections method. The TEC maps are produced by assimilating actual ground based GPS measurements providing TEC into an operational version of Neustrelitz TEC Model (NTCM). Finally, the derived NmF2 and TEC maps in
Brien, Dianne L.; Reid, Mark E.
2007-01-01
Landslides are a common problem on coastal bluffs throughout the world. Along the coastal bluffs of the Puget Sound in Seattle, Washington, landslides range from small, shallow failures to large, deep-seated landslides. Landslides of all types can pose hazards to human lives and property, but deep-seated landslides are of significant concern because their large areal extent can cause extensive property damage. Although many geomorphic processes shape the coastal bluffs of Seattle, we focus on large (greater than 3,000 m3), deepseated, rotational landslides that occur on the steep bluffs along Puget Sound. Many of these larger failures occur in advance outwash deposits of the Vashon Drift (Qva); some failures extend into the underlying Lawton Clay Member of the Vashon Drift (Qvlc). The slope stability of coastal bluffs is controlled by the interplay of three-dimensional (3-D) variations in gravitational stress, strength, and pore-water pressure. We assess 3-D slope-stability using SCOOPS (Reid and others, 2000), a computer program that allows us to search a high-resolution digital-elevation model (DEM) to quantify the relative stability of all parts of the landscape by computing the stability and volume of thousands of potential spherical failures. SCOOPS incorporates topography, 3-D strength variations, and 3-D pore pressures. Initially, we use our 3-D analysis methods to examine the effects of topography and geology by using heterogeneous material properties, as defined by stratigraphy, without pore pressures. In this scenario, the least-stable areas are located on the steepest slopes, commonly in Qva or Qvlc. However, these locations do not agree well with observations of deep-seated landslides. Historically, both shallow colluvial landslides and deep-seated landslides have been observed near the contact between Qva and Qvlc, and commonly occur in Qva. The low hydraulic conductivity of Qvlc impedes ground-water flow, resulting in elevated pore pressures at the
Source mask optimization using 3D mask and compact resist models
NASA Astrophysics Data System (ADS)
El-Sewefy, Omar; Chen, Ao; Lafferty, Neal; Meiring, Jason; Chung, Angeline; Foong, Yee Mei; Adam, Kostas; Sturtevant, John
2016-03-01
Source Mask Optimization (SMO) has played an important role in technology setup and ground rule definition since the 2x nm technology node. While improvements in SMO algorithms have produced higher quality and more consistent results, the accuracy of the overall solution is critically linked to how faithfully the entire patterning system is modeled, from mask down to substrate. Fortunately, modeling technology has continued to advance to provide greater accuracy in modeling 3D mask effects, 3D resist behavior, and resist phenomena. Specifically, the Domain Decomposition Method (DDM) approximates the 3D mask response as a superposition of edge-responses.1 The DDM can be applied to a sectorized illumination source based on Hybrid-Hopkins Abbe approximation,2 which provides an accurate and fast solution for the modeling of 3D mask effects and has been widely used in OPC modeling. The implementation of DDM in the SMO flow, however, is more challenging because the shape and intensity of the source, unlike the case in OPC modeling, is evolving along the optimization path. As a result, it gets more complicated. It is accepted that inadequate pupil sectorization results in reduced accuracy in any application, however in SMO the required uniformity and density of pupil sampling is higher than typical OPC and modeling cases. In this paper, we describe a novel method to implement DDM in the SMO flow. The source sectorization is defined by following the universal pixel sizes used in SMO. Fast algorithms are developed to enable computation of edge signals from each fine pixel of the source. In this case, each pixel has accurate information to describe its contribution to imaging and the overall objective function. A more continuous angular spectrum from 3D mask scattering is thus captured, leading to accurate modeling of 3D mask effects throughout source optimization. This method is applied on a 2x nm middle-of-line layer test case. The impact of the 3D mask model accuracy on
Fast Semantic Segmentation of 3d Point Clouds with Strongly Varying Density
NASA Astrophysics Data System (ADS)
Hackel, Timo; Wegner, Jan D.; Schindler, Konrad
2016-06-01
We describe an effective and efficient method for point-wise semantic classification of 3D point clouds. The method can handle unstructured and inhomogeneous point clouds such as those derived from static terrestrial LiDAR or photogammetric reconstruction; and it is computationally efficient, making it possible to process point clouds with many millions of points in a matter of minutes. The key issue, both to cope with strong variations in point density and to bring down computation time, turns out to be careful handling of neighborhood relations. By choosing appropriate definitions of a point's (multi-scale) neighborhood, we obtain a feature set that is both expressive and fast to compute. We evaluate our classification method both on benchmark data from a mobile mapping platform and on a variety of large, terrestrial laser scans with greatly varying point density. The proposed feature set outperforms the state of the art with respect to per-point classification accuracy, while at the same time being much faster to compute.
High Rayleigh Number 3d Spherical Mantle Convection Models
NASA Astrophysics Data System (ADS)
Davies, J. H.
2003-04-01
The geochemical and geophysical evidence related to the mantle can potentially be reconciled by a hypothesis of whole mantle convection where the heterogeneity stems from the continuous recycling of oceanic crust, depleted lithospheric mantle and sediments. The mantle is expected to be well but not perfectly stirred, sampled differently in different tectonic settings, and with components having wide-ranging residence times. We might for example expect very long residence times for some buoyant or dense components that can reside in either the upper (lithosphere) or lower boundary (D''). We have started testing whether such a whole mantle convection hypothesis can satisfy wide ranging first order geophysical observations, such as plate velocities, stability of upwellings, geometry of downwellings, etc. The model parameters, including the mantle's viscosity structure, are guided by extensive earlier community work. We use TERRA to model compressible convection in a 3D spherical mantle shell with a depth dependent viscosity structure, where the lower mantle is 40 times more viscous than the upper mantle. A chondritic rate of internal heating of 6 x 10^-12 W/Kg was assumed, leading to Ra(H) = 3.4x10^8. A realistic depth dependent thermal expansivity and Murnaghan equation of state was assumed, with free slip b.c.. The evolution of the system was followed for 2 Billion years. The RMS surface velocity varied from around 4 - 7cm/yr, very similar to recent plate velocities. The structures in the lower mantle are relatively stable and larger length scale in comparison to the upper mantle features. The downwellings and upwellings are linear in planform but the upwellings are dominated by stronger upflow at the columns formed at their intersection. The upwelling features embedded in the lower mantle are very stable, and it is reasonable to expect (though yet to be demonstrated) that with temperature-dependent viscosity the upwellings will be dominated by the cylindrical
Verification and Validation of the k-kL Turbulence Model in FUN3D and CFL3D Codes
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.; Carlson, Jan-Renee; Rumsey, Christopher L.
2015-01-01
The implementation of the k-kL turbulence model using multiple computational uid dy- namics (CFD) codes is reported herein. The k-kL model is a two-equation turbulence model based on Abdol-Hamid's closure and Menter's modi cation to Rotta's two-equation model. Rotta shows that a reliable transport equation can be formed from the turbulent length scale L, and the turbulent kinetic energy k. Rotta's equation is well suited for term-by-term mod- eling and displays useful features compared to other two-equation models. An important di erence is that this formulation leads to the inclusion of higher-order velocity derivatives in the source terms of the scale equations. This can enhance the ability of the Reynolds- averaged Navier-Stokes (RANS) solvers to simulate unsteady ows. The present report documents the formulation of the model as implemented in the CFD codes Fun3D and CFL3D. Methodology, veri cation and validation examples are shown. Attached and sepa- rated ow cases are documented and compared with experimental data. The results show generally very good comparisons with canonical and experimental data, as well as matching results code-to-code. The results from this formulation are similar or better than results using the SST turbulence model.
The modelling of VLF Trimpis using both finite element and 3D Born Modelling
NASA Astrophysics Data System (ADS)
Baba, K.; Nunn, D.; Hayakawa, M.
This paper investigates the numerical modelling of VLF Trimpis produced by a D region inhomogeneity on the Great Circle Path. Two different codes are used. The first is a 2D finite element method (FEM) code, whose solutions are valid in the non-Born limit. The second is a 3D model that invokes the Born approximation. The predicted Trimpis from these codes compare closely, thus confirming the validity of both models. The modal scattering matrices have a comparable structure, and indicate strong scattering between the dominant TM modes. Analysis of the scattering matrix from the FEM code delineates the Born regime. For a LIE with a radius of 100kms, the Born approximation becomes invalid at an electron density perturbation of about 8 el/cc.
Quasi-3D modeling of surface potential and threshold voltage of Triple Metal Quadruple Gate MOSFETs
NASA Astrophysics Data System (ADS)
Gupta, Santosh Kumar; Shah, Mihir Kumar P.
2017-01-01
In this paper we present electrostatic model of 3D Triple Metal Quadruple Gate (TMQG) MOSFET of rectangular cross-section based on quasi-3D method. The analytical equations for channel potential and characteristic length have been derived by decomposing TMQG into two 2D perpendicular cross-sections (triple metal double gate, TMDG) and the effective characteristic length of TMQG is found using equivalent number of gates (ENG) method. For each of the TMDG, 2D Poisson's equation is solved by parabolic approximation and proper boundary conditions to calculate channel potential. The threshold voltage expression is developed using inversion carrier charge sheet density method. The developed models for channel potential and threshold voltage are validated using numerical simulations of TMQG. The developed model provides the design guidelines for TMQG with improved HCEs and SCEs.
Yang, Renhuan; Li, Xu; Song, Aiguo; He, Bin; Yan, Ruqiang
2013-05-01
Hybrid imaging modality combining ultrasound scanning and electrical current density imaging through the acoustoelectric (AE) effect may potentially provide solutions to imaging electrical activities and properties of biological tissues with high spatial resolution. In this study, a 3-D reconstruction solution to ultrasound current source density imaging (UCSDI) by means of Wiener deconvolution is proposed and evaluated through computer simulations. As compared to previous 2-D UCSDI problem, in a 3-D volume conductor with broadly distributed current density field, the AE signal becomes a 3-D convolution between the electric field and the acoustic field, and effective 3-D reconstruction algorithm has not been developed so far. In the proposed method, a 3-D ultrasound scanning is performed while the corresponding AE signals are collected from multiple electrode pairs attached on the surface of the imaging object. From the collected AE signals, the acoustic field and electric field were first decoupled by Wiener deconvolution. Then, the current density distribution was reconstructed by inverse projection. Our simulations using artificial current fields in homogeneous phantoms suggest that the proposed method is feasible and robust against noise. It is also shown that using the proposed method, it is feasible to reconstruct 3-D current density distribution in an inhomogeneous conductive medium.
NASA Astrophysics Data System (ADS)
Celli, Jonathan P.; Rizvi, Imran; Blanden, Adam R.; Massodi, Iqbal; Glidden, Michael D.; Pogue, Brian W.; Hasan, Tayyaba
2014-01-01
While it is increasingly recognized that three-dimensional (3D) cell culture models recapitulate drug responses of human cancers with more fidelity than monolayer cultures, a lack of quantitative analysis methods limit their implementation for reliable and routine assessment of emerging therapies. Here, we introduce an approach based on computational analysis of fluorescence image data to provide high-content readouts of dose-dependent cytotoxicity, growth inhibition, treatment-induced architectural changes and size-dependent response in 3D tumour models. We demonstrate this approach in adherent 3D ovarian and pancreatic multiwell extracellular matrix tumour overlays subjected to a panel of clinically relevant cytotoxic modalities and appropriately designed controls for reliable quantification of fluorescence signal. This streamlined methodology reads out the high density of information embedded in 3D culture systems, while maintaining a level of speed and efficiency traditionally achieved with global colorimetric reporters in order to facilitate broader implementation of 3D tumour models in therapeutic screening.
Numerical Results of 3-D Modeling of Moon Accumulation
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod; Antipin, Alexandr
2014-05-01
For the last time for the model of the Moon usually had been used the model of mega impact in which the forming of the Earth and its sputnik had been the consequence of the Earth's collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,2] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al26,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone and additionally change the content of Moon forming to silicates. Only after the increasing of the gravitational radius of the Earth, the growing area of the future Earth's core can save also the silicate envelope fragments [3]. For understanding the further system Earth-Moon evolution it is significant to trace the origin and evolution of heterogeneities, which occur on its accumulation stage.In that paper we are modeling the changing of temperature,pressure,velocity of matter flowing in a block of 3d spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach.The numerical algorithm of the problem solution in velocity
Induction Heating Process: 3D Modeling and Optimisation
NASA Astrophysics Data System (ADS)
Naar, R.; Bay, F.
2011-05-01
An increasing number of problems in mechanics and physics involves multiphysics coupled problems. Among these problems, we can often find electromagnetic coupled problems. Electromagnetic couplings may be involved through the use of direct or induced currents for thermal purposes—in order to generate heat inside a work piece in order to get either a prescribed temperature field or some given mechanical or metallurgical properties through an accurate control of temperature evolution with respect to time-, or for solid or fluid mechanics purposes—in order to create magnetic forces such as in fluid mechanics (electromagnetic stirring,…) or solid mechanics (magnetoforming,…). Induction heat treatment processes is therefore quite difficult to control; trying for instance to minimize distortions generated by such a process is not easy. In order to achieve these objectives, we have developed a computational tool which includes an optimsation stage. A 3D finite element modeling tool for local quenching after induction heating processes has already been developed in our laboratory. The modeling of such a multiphysics coupled process needs taking into account electromagnetic, thermal, mechanical and metallurgical phenomenon—as well as their mutual interactions during the whole process: heating and quenching. The model developed is based on Maxwell equations, heat transfer equation, mechanical equilibrium computations, Johnson-Mehl-Avrami and Koistinen-Marburger laws. All these equations and laws may be coupled but some coupling may be neglected. In our study, we will also focus on induction heating process aiming at optimising the Heat Affected Zone (HAZ). Thus problem is formalized as an optimization problem—minimizing a cost function which measures the difference between computed and optimal temperatures—along with some constraints on process parameters. The optimization algorithms may be of two kinds—either zero-order or first-order algorithms. First
3D thermal modeling of TRISO fuel coupled with neutronic simulation
Hu, Jianwei; Uddin, Rizwan
2010-01-01
The Very High Temperature Gas Reactor (VHTR) is widely considered as one of the top candidates identified in the Next Generation Nuclear Power-plant (NGNP) Technology Roadmap under the U.S . Depanment of Energy's Generation IV program. TRlSO particle is a common element among different VHTR designs and its performance is critical to the safety and reliability of the whole reactor. A TRISO particle experiences complex thermo-mechanical changes during reactor operation in high temperature and high burnup conditions. TRISO fuel performance analysis requires evaluation of these changes on micro scale. Since most of these changes are temperature dependent, 3D thermal modeling of TRISO fuel is a crucial step of the whole analysis package. In this paper, a 3D numerical thermal model was developed to calculate temperature distribution inside TRISO and pebble under different scenarios. 3D simulation is required because pebbles or TRISOs are always subjected to asymmetric thermal conditions since they are randomly packed together. The numerical model was developed using finite difference method and it was benchmarked against ID analytical results and also results reported from literature. Monte-Carlo models were set up to calculate radial power density profile. Complex convective boundary condition was applied on the pebble outer surface. Three reactors were simulated using this model to calculate temperature distribution under different power levels. Two asymmetric boundary conditions were applied to the pebble to test the 3D capabilities. A gas bubble was hypothesized inside the TRISO kernel and 3D simulation was also carried out under this scenario. Intuition-coherent results were obtained and reported in this paper.
Orbiter/External Tank Mate 3-D Solid Modeling
NASA Technical Reports Server (NTRS)
Godfrey, G. S.; Brandt, B.; Rorden, D.; Kapr, F.
2004-01-01
This research and development project presents an overview of the work completed while attending a summer 2004 American Society of Engineering Education/National Aeronautics and Space Administration (ASEE/NASA) Faculty Fellowship. This fellowship was completed at the Kennedy Space Center, Florida. The scope of the project was to complete parts, assemblies, and drawings that could be used by Ground Support Equipment (GSE) personnel to simulate situations and scenarios commonplace to the space shuttle Orbiter/External Tank (ET) Mate (50004). This mate takes place in the Vehicle Assembly Building (VAB). These simulations could then be used by NASA engineers as decision-making tools. During the summer of 2004, parts were created that defined the Orbiter/ET structural interfaces. Emphasis was placed upon assemblies that included the Orbiter/ET forward attachment (EO-1), aft left thrust strut (EO-2), aft right tripod support structure (EO-3), and crossbeam and aft feedline/umbilical supports. These assemblies are used to attach the Orbiter to the ET. The Orbiter/ET Mate assembly was then used to compare and analyze clearance distances using different Orbiter hang angles. It was found that a 30-minute arc angle change in Orbiter hang angle affected distance at the bipod strut to Orbiter yoke fitting 8.11 inches. A 3-D solid model library was established as a result of this project. This library contains parts, assemblies, and drawings translated into several formats. This library contains a collection of the following files: sti for sterolithography, stp for neutral file work, shrinkwrap for compression. tiff for photoshop work, jpeg for Internet use, and prt and asm for Pro/Engineer use. This library was made available to NASA engineers so that they could access its contents to make angle, load, and clearance analysis studies. These decision-making tools may be used by Pro/Engineer users and non-users.
Automated robust generation of compact 3D statistical shape models
NASA Astrophysics Data System (ADS)
Vrtovec, Tomaz; Likar, Bostjan; Tomazevic, Dejan; Pernus, Franjo
2004-05-01
Ascertaining the detailed shape and spatial arrangement of anatomical structures is important not only within diagnostic settings but also in the areas of planning, simulation, intraoperative navigation, and tracking of pathology. Robust, accurate and efficient automated segmentation of anatomical structures is difficult because of their complexity and inter-patient variability. Furthermore, the position of the patient during image acquisition, the imaging device and protocol, image resolution, and other factors induce additional variations in shape and appearance. Statistical shape models (SSMs) have proven quite successful in capturing structural variability. A possible approach to obtain a 3D SSM is to extract reference voxels by precisely segmenting the structure in one, reference image. The corresponding voxels in other images are determined by registering the reference image to each other image. The SSM obtained in this way describes statistically plausible shape variations over the given population as well as variations due to imperfect registration. In this paper, we present a completely automated method that significantly reduces shape variations induced by imperfect registration, thus allowing a more accurate description of variations. At each iteration, the derived SSM is used for coarse registration, which is further improved by describing finer variations of the structure. The method was tested on 64 lumbar spinal column CT scans, from which 23, 38, 45, 46 and 42 volumes of interest containing vertebra L1, L2, L3, L4 and L5, respectively, were extracted. Separate SSMs were generated for each vertebra. The results show that the method is capable of reducing the variations induced by registration errors.
Inductively Driven, 3D Liner Compression of a Magnetized Plasma to Megabar Energy Densities
Slough, John
2015-02-01
modules. The additional energy and switching capability proposed will thus provide for optimal utilization of the liner energy. The following tasks were outlined for the three year effort: (1) Design and assemble the foil liner compression test structure and chamber including the compression bank and test foils [Year 1]. (2) Perform foil liner compression experiments and obtain performance data over a range on liner dimensions and bank parameters [Year 2]. (3) Carry out compression experiments of the FRC plasma to Megagauss fields and measure key fusion parameters [Year 3]. (4) Develop numerical codes and analyze experimental results, and determine the physics and scaling for future work [Year 1-3]. The principle task of the project was to design and assemble the foil liner FRC formation chamber, the full compression test structure and chamber including the compression bank. This task was completed successfully. The second task was to test foils in the test facility constructed in year one and characterize the performance obtained from liner compression. These experimental measurements were then compared with analytical predictions, and numerical code results. The liner testing was completed and compared with both the analytical results as well as the code work performed with the 3D structural dynamics package of ANSYS Metaphysics®. This code is capable of modeling the dynamic behavior of materials well into the non-linear regime (e.g. a bullet hit plate glass). The liner dynamic behavior was found to be remarkably close to that predicted by the 3D structural dynamics results. Incorporating a code that can also include the magnetics and plasma physics has also made significant progress at the UW. The remaining test bed construction and assembly task is was completed, and the FRC formation and merging experiments were carried out as planned. The liner compression of the FRC to Megagauss fields was not performed due to not obtaining a sufficiently long lived FRC during the
3D Geological Model of Nihe ore deposit Constrained by Gravity and Magnetic Modeling
NASA Astrophysics Data System (ADS)
Qi, Guang; Yan, Jiayong; Lv, Qingtan; Zhao, Jinhua
2016-04-01
We present a case study on using integrated geologic model in mineral exploration at depth. Nihe ore deposit in Anhui Province, is deep hidden ore deposit which was discovered in recent years, this finding is the major driving force of deep mineral exploration work in Luzong. Building 3D elaborate geological model has the important significance for prospecting to deep or surround in this area, and can help us better understand the metallogenic law and ore-controlling regularity. A 3D geological model, extending a depth from +200m to -1500m in Nihe ore deposit, has been compiled from surface geological map, cross-section, borehole logs and amounts of geological inference. And then the 3D geological models have been given physical property parameter for calculating the potential field. Modelling the potential response is proposed as means of evaluating the viability of the 3D geological models, and the evidence of making small changes to the uncertain parts of the original 3D geological models. It is expected that the final models not only reproduce supplied prior geological knowledge, but also explain the observed geophysical data. The workflow used to develop the 3D geologic model in this study includes the three major steps, as follows: (1) Determine the basic information of Model: Defining the 3D limits of the model area, the basic geological and structural unit, and the tectonic contact relations and the sedimentary sequences between these units. (2) 3D model construction: Firstly, a series of 2D geological cross sections over the model area are built by using all kinds of prior information, including surface geology, borehole data, seismic sections, and local geologists' knowledge and intuition. Lastly, we put these sections into a 3D environment according to their profile locations to build a 3D model by using geostatistics method. (3) 3D gravity and magnetic modeling: we calculate the potential field responses of the 3D model, and compare the predicted and
3D Radiative Transfer models of Planetary Nebulae with CRONOS and CLOUDY
NASA Astrophysics Data System (ADS)
Niederwanger, F.; Öttl, Silvia; Kimeswenger, S.; Kissmann, R.; Reitberger, K.
2014-04-01
We present our ideas about a new setup for a full 3D radiative transfer hydrodynamic (RT-HD) computation for planetary nebulae (PNe). The setup is based on the 3D MHD code CRONOS, using low dissipative conservation numerical schemes for hydrodynamics and MHD (Kissmann et al. 2009), and on CLOUDY (Ferland et al. 2013). New to our ideas is the implementation of CLOUDY for the radiative terms. While in previous works internal cooling was calculated using analytical cooling curves from Dalgarno&McCray (1972) for the lower temperatures and from Gerritsen&Icke (1997) for the high temperature regime, we intend to use the sophisticated physics of CLOUDY in a similar way as for CLOUDY 3D (Morisset, 2011). The hydrodynamic calculations provide the density and velocity structure. Repeatedly, a CLOUDY model is calculated to derive cooling, absorption and radiative pressure acceleration terms for the hydro code. We show the feasibility of this setup for symmetric and asymmetric geometries of PNe. Euclidean grids are used to avoid imprinting. We present first tests for this setup and first results on the numerical stability. These simulations were run using different geometries, like e.g. disks. Another group is working on 3D models of particle acceleration in radiatively driven colliding winds of massive star binary systems. Although this is a completely different energy regime, binary systems are of great interest for asymmetric PNe as well. The setup allows us simulations using any arbitrary geometry.
Hot deformation characterization of duplex low-density steel through 3D processing map development
Mohamadizadeh, A.; Zarei-Hanzaki, A.; Abedi, H.R.; Mehtonen, S.; Porter, D.
2015-09-15
The high temperature deformation behavior of duplex low-density Fe–18Mn–8Al–0.8C steel was investigated at temperatures in the range of 600–1000 °C. The primary constitutive analysis indicated that the Zener–Hollomon parameter, which represents the coupled effects of temperature and strain rate, significantly varies with the amount of deformation. Accordingly, the 3D processing maps were developed considering the effect of strain and were used to determine the safe and unsafe deformation conditions in association with the microstructural evolution. The deformation at efficiency domain I (900–1100 °C\\10{sup −} {sup 2}–10{sup −} {sup 3} s{sup −} {sup 1}) was found to be safe at different strains due to the occurrence of dynamic recrystallization in austenite. The safe efficiency domain II (700–900 °C\\1–10{sup −} {sup 1} s{sup −} {sup 1}), which appeared at logarithmic strain of 0.4, was characterized by deformation induced ferrite formation. Scanning electron microscopy revealed that the microband formation and crack initiation at ferrite\\austenite interphases were the main causes of deformation instability at 600–800 °C\\10{sup −} {sup 2}–10{sup −} {sup 3} s{sup −} {sup 1}. The degree of instability was found to decrease by increasing the strain due to the uniformity of microbanded structure obtained at higher strains. The shear band formation at 900–1100 °C\\1–10{sup −} {sup 1} s{sup −} {sup 1} was verified by electron backscattered diffraction. The local dynamic recrystallization of austenite and the deformation induced ferrite formation were observed within shear-banded regions as the results of flow localization. - Graphical abstract: Display Omitted - Highlights: • The 3D processing map is developed for duplex low-density Fe–Mn–Al–C steel. • The efficiency domains shrink, expand or appear with increasing strain. • The occurrence of DRX and DIFF increases the power efficiency. • Crack initiation
Low-Amplitude Craniofacial EMG Power Spectral Density and 3D Muscle Reconstruction from MRI
Wiedemann, Lukas; Chaberova, Jana; Edmunds, Kyle; Einarsdóttir, Guðrún; Ramon, Ceon
2015-01-01
Improving EEG signal interpretation, specificity, and sensitivity is a primary focus of many current investigations, and the successful application of EEG signal processing methods requires a detailed knowledge of both the topography and frequency spectra of low-amplitude, high-frequency craniofacial EMG. This information remains limited in clinical research, and as such, there is no known reliable technique for the removal of these artifacts from EEG data. The results presented herein outline a preliminary investigation of craniofacial EMG high-frequency spectra and 3D MRI segmentation that offers insight into the development of an anatomically-realistic model for characterizing these effects. The data presented highlights the potential for confounding signal contribution from around 60 to 200 Hz, when observed in frequency space, from both low and high-amplitude EMG signals. This range directly overlaps that of both low Î³ (30-50 Hz) and high Î³ (50-80 Hz) waves, as defined traditionally in standatrd EEG measurements, and mainly with waves presented in dense-array EEG recordings. Likewise, average EMG amplitude comparisons from each condition highlights the similarities in signal contribution of low-activity muscular movements and resting, control conditions. In addition to the FFT analysis performed, 3D segmentation and reconstruction of the craniofacial muscles whose EMG signals were measured was successful. This recapitulation of the relevant EMG morphology is a crucial first step in developing an anatomical model for the isolation and removal of confounding low-amplitude craniofacial EMG signals from EEG data. Such a model may be eventually applied in a clinical setting to ultimately help to extend the use of EEG in various clinical roles. PMID:26913150
A 3D Hydrodynamic Model for Cytokinesis of Eukaryotic Cells
2014-08-01
remark that more features can be added to the model by augmenting the corresponding free energy . 2.2 Transport equations for biomass Given the...density for component i, i = 1, 2, 3. For incompress- ible materials, we enforce ϕ1 + ϕ2 + ϕ3 = 1. (2) 2.1 Thermodynamic free energy We denote the domain...in which the cell resides together with the buffer fluid as Ω. The free energy of this mixture system is proposed as follows, F = ∫ Ω fdx, (3) where f
Modeling Computer Communication Networks in a Realistic 3D Environment
2010-03-01
visualization in OPNET . . . . . . . . . . . . 13 6. Sample NetViz visualization . . . . . . . . . . . . . . . . . . . 15 7. Realistic 3D terrains...scenario in OPNET . . . 19 10. OPNET 3DNV only displays connectivity . . . . . . . . . . . . 29 11. The digitally connected battlefield...confirmation tool 12 OPNET Optimized Network Evaluation Tool . . . . . . . . . . . . 13 NetViz Network Visualization
3D genome structure modeling by Lorentzian objective function.
Trieu, Tuan; Cheng, Jianlin
2016-11-29
The 3D structure of the genome plays a vital role in biological processes such as gene interaction, gene regulation, DNA replication and genome methylation. Advanced chromosomal conformation capture techniques, such as Hi-C and tethered conformation capture, can generate chromosomal contact data that can be used to computationally reconstruct 3D structures of the genome. We developed a novel restraint-based method that is capable of reconstructing 3D genome structures utilizing both intra-and inter-chromosomal contact data. Our method was robust to noise and performed well in comparison with a panel of existing methods on a controlled simulated data set. On a real Hi-C data set of the human genome, our method produced chromosome and genome structures that are consistent with 3D FISH data and known knowledge about the human chromosome and genome, such as, chromosome territories and the cluster of small chromosomes in the nucleus center with the exception of the chromosome 18. The tool and experimental data are available at https://missouri.box.com/v/LorDG.
Using 3D Geometric Models to Teach Spatial Geometry Concepts.
ERIC Educational Resources Information Center
Bertoline, Gary R.
1991-01-01
An explanation of 3-D Computer Aided Design (CAD) usage to teach spatial geometry concepts using nontraditional techniques is presented. The software packages CADKEY and AutoCAD are described as well as their usefulness in solving space geometry problems. (KR)
Beyond optical molasses: 3D raman sideband cooling of atomic cesium to high phase-space density
Kerman; Vuletic; Chin; Chu
2000-01-17
We demonstrate a simple, general purpose method to cool neutral atoms. A sample containing 3x10(8) cesium atoms prepared in a magneto-optical trap is cooled and simultaneously spin polarized in 10 ms at a density of 1.1x10(11) cm (-3) to a phase space density nlambda(3)(dB) = 1/500, which is almost 3 orders of magnitude higher than attainable in free space with optical molasses. The technique is based on 3D degenerate Raman sideband cooling in optical lattices and remains efficient even at densities where the mean lattice site occupation is close to unity.
Quasi-Facial Communication for Online Learning Using 3D Modeling Techniques
ERIC Educational Resources Information Center
Wang, Yushun; Zhuang, Yueting
2008-01-01
Online interaction with 3D facial animation is an alternative way of face-to-face communication for distance education. 3D facial modeling is essential for virtual educational environments establishment. This article presents a novel 3D facial modeling solution that facilitates quasi-facial communication for online learning. Our algorithm builds…
Numerical Results of Earth's Core Accumulation 3-D Modelling
NASA Astrophysics Data System (ADS)
Khachay, Yurie; Anfilogov, Vsevolod
2013-04-01
For a long time as a most convenient had been the model of mega impact in which the early forming of the Earth's core and mantle had been the consequence of formed protoplanet collision with the body of Mercurial mass. But all dynamical models of the Earth's accumulation and the estimations after the Pb-Pb system, lead to the conclusion that the duration of the planet accumulation was about 1 milliard years. But isotopic results after the W-Hf system testify about a very early (5-10) million years, dividing of the geochemical reservoirs of the core and mantle. In [1,3] it is shown, that the account of energy dissipating by the decay of short living radioactive elements and first of all Al,it is sufficient for heating even small bodies with dimensions about (50-100) km up to the iron melting temperature and can be realized a principal new differentiation mechanism. The inner parts of the melted preplanets can join and they are mainly of iron content, but the cold silicate fragments return to the supply zone. Only after the increasing of the gravitational radius, the growing area of the future core can save also the silicate envelope fragments. All existing dynamical accumulation models are constructed by using a spherical-symmetrical model. Hence for understanding the further planet evolution it is significant to trace the origin and evolution of heterogeneities, which occur on the planet accumulation stage. In that paper we are modeling distributions of temperature, pressure, velocity of matter flowing in a block of 3D- spherical body with a growing radius. The boundary problem is solved by the finite-difference method for the system of equations, which include equations which describe the process of accumulation, the Safronov equation, the equation of impulse balance, equation Navier-Stocks, equation for above litho static pressure and heat conductivity in velocity-pressure variables using the Businesque approach. The numerical algorithm of the problem solution in
Howard Barker; Jason Cole
2012-05-17
Utilization of cloud-resolving models and multi-dimensional radiative transfer models to investigate the importance of 3D radiation effects on the numerical simulation of cloud fields and their properties.
Navier-Stokes Neutral and Plasma Fluid Modelling in 3D
Riemann, J; Borchardt, M; Schneider, R; Mutzke, A; Rognlien, T; Umansky, M
2004-05-17
The 3D finite volume transport code BoRiS is applied to a system of coupled plasma and neutral fluid equations in a slab. Demonstrating easy implementation of new equations, a new parallel BoRiS version is tested on three different models for the neutral fluid - diffusive, parallel Navier-Stokes and full Navier-Stokes - and the results are compared to each other. Typical effects like density enhancement by ionization of recycled neutrals in front of a target plate can be seen and differences are linked to the neutral models in use.
Fast, Automated, 3D Modeling of Building Interiors
2012-10-30
of thermographies with laser scanning point clouds [6]. Given the heterogeneous nature of the two modalities, we propose a feature-based approach...extract 2D lines from thermographies , and 3D lines are extracted through segmentation of the point cloud. Feature- matching and the relative pose between... thermographies and point cloud are obtained from an iterative procedure applied to detect and reject outliers; this includes rotation matrix and
Kinetic modeling of 3D equilibria in a tokamak
NASA Astrophysics Data System (ADS)
Albert, C. G.; Heyn, M. F.; Kasilov, S. V.; Kernbichler, W.; Martitsch, A. F.; Runov, A. M.
2016-11-01
External resonant magnetic perturbations (RMPs) can modify the magnetic topology in a tokamak. In this case the magnetic field cannot generally be described by ideal MHD equilibrium equations in the vicinity of resonant magnetic surfaces where parallel and perpendicular relaxation timescales are comparable. Usually, resistive MHD models are used to describe these regions. In the present work, a kinetic model is used for this purpose. Within this model, plasma response, current and charge density are computed with help of a Monte Carlo method, where guiding center orbit equations are solved using a semianalytical geometrical integrator. Besides its higher efficiency in comparison to usual integrators this method is not sensitive to noise in field quantities. The computed charges and currents are used to calculate the electromagnetic field with help of a finite element solver. A preconditioned iterative scheme is applied to search for a self-consistent solution. The discussed method is aimed at the nonlinear kinetic description of RMPs in experiments on Edge Localized Mode (ELM) mitigation by external perturbation coil systems without simplification of the device geometry.
Role of head of turbulent 3-D density currents in mixing during slumping regime
NASA Astrophysics Data System (ADS)
Bhaganagar, Kiran
2017-02-01
A fundamental study was conducted to shed light on entrainment and mixing in buoyancy-driven Boussinesq density currents. Large-eddy simulation was performed on lock-exchange (LE) release density currents—an idealized test bed to generate density currents. As dense fluid was released over a sloping surface into an ambient lighter fluid, the dense fluid slumps to the bottom and forms a characteristic head of the current. The dynamics of the head dictated the mixing processes in LE currents. The key contribution of this study is to resolve an ongoing debate on mixing: We demonstrate that substantial mixing occurs in the early stages of evolution in an LE experiment and that entrainment is highly inhomogeneous and unsteady during the slumping regime. Guided by the flow physics, entrainment is calculated using two different but related perspectives. In the first approach, the entrainment parameter (E) is defined as the fraction of ambient fluid displaced by the head that entrains into the current. It is an indicator of the efficiency in which ambient fluid is displaced into the current and it serves as an important metric to compare the entrainment of dense currents over different types of surfaces, e.g., roughness configuration. In the second approach, E measures the net entrainment in the current at an instantaneous time t over the length of the current. Net entrainment coefficient is a metric to compare the effects of flow dynamical conditions, i.e., lock-aspect ratio that dictates the fraction of buoyancy entering the head, and also the effect of the sloping angle. Together, the entrainment coefficient and the net entrainment coefficient provide an insight into the entrainment process. The "active" head of the current acts as an engine that mixes the ambient fluid with the existing dense fluid, the 3-D lobes and clefts on the frontal end of the current causes recirculation of the ambient fluid into the current, and Kelvin-Helmholtz rolls are the mixers that
Romano, Nicole H.; Lampe, Kyle J.; Xu, Hui; Ferreira, Meghaan M.
2015-01-01
The density of integrin-binding ligands in an extracellular matrix (ECM) is known to regulate cell migration speed by imposing a balance of traction forces between the leading and trailing edges of the cell, but the effect of cell-adhesive ligands on neurite chemoattraction is not well understood. We present a platform that combines gradient-generating microfluidic devices with three-dimensional (3D) protein-engineered hydrogels to study the effect of RGD ligand density on neurite pathfinding from chick dorsal root ganglia-derived spheroids. Spheroids are encapsulated in elastin-like polypeptide (ELP) hydrogels presenting either 3.2 or 1.6 mM RGD ligands and exposed to a microfluidic gradient of nerve growth factor (NGF). While the higher ligand density matrix enhanced neurite initiation and persistence of neurite outgrowth, the lower ligand density matrix significantly improved neurite pathfinding and increased the frequency of growth cone turning up the NGF gradient. The apparent trade-off between neurite extension and neurite guidance is reminiscent of the well-known parabolic relationship between cell adhesion and migration speed, implying that a similar matrix-mediated balance of forces regulate neurite elongation and growth cone turning. These results have implications in the design of engineered materials for in vitro models of neural tissue and in vivo nerve guidance channels. PMID:25315156
3D-modeling of Callisto's sputtered surface-exosphere environment
NASA Astrophysics Data System (ADS)
Lammer, Helmut; Pfleger, Martin; Lindqvist, Jesper; Lichtenegger, Herbert; Holmström, Mats; Vorburger, Audrey; Wurz, Peter; Barabash, Stas
2016-04-01
We study the stoichiometrical release of various surface elements caused by plasma sputtering from an assumed icy and non-icy (i.e., chondritic) surface into the exosphere of the Jovian satellite Callisto. We apply a 3D plasma planetary interaction hybrid model that is used for the evaluation of precipitation maps of magnetospheric H+, O+ and S+ sputter agents onto Callisto's surface. The obtained precipitation maps are then applied to the assumed surface compositions where the related sputter yields are calculated by means of the 2013 SRIM code and are coupled with a 3D exosphere model. Sputtered surface particles are followed on their individual trajectories until they either escape Callisto's gravitational attraction or return to the surface. We study also the effect of collisions between sputter species and ambient O2 molecules which form a tiny atmosphere near the satellite's surface and compare the exosphere densities that are obtained from the 3D model with and without a background gaseous envelope with recent 1D model results. Finally we discuss if the Neutral gas and Ion Mass (NIM) spectrometer, that is part of the Particle Environment Package (PEP) on board of the JUICE mission will be able to detect sputtered particles from Callisto's icy and non-icy surface.
Global gyrokinetic models for energetic particle driven Alfvén instabilities in 3D equilibria
NASA Astrophysics Data System (ADS)
Spong, Don; Holod, Ihor
2015-11-01
The GTC global gyrokinetic PIC model has been adapted to 3D VMEC equilibria and provides a new method for the analysis of Alfvénic instabilities in stellarators, 3D tokamaks, and helical RFP states. The gyrokinetic orderings (k||/k⊥ << 1, ω/Ωci << 1, ρEP/L << 1) are applicable to a range of energetic particle driven instabilities that have been observed in 3D configurations. Applications of this model to stellarators have indicated that a variety of different Alfvén instabilities can be excited, depending on the toroidal mode number, fast ion average energy and fast ion density profile. Both an LHD discharge where bursting n = 1 Alfvén activity in the TAE gap was observed and a W7-X case have been examined. TAE,/EAE/GAE modes have been found in the simulations, depending on the mode family and fast ion profiles used. The dynamical evolution of the instabilities shows the field period coupling between n and n + Nfp expected for a stellarator. The development of gyrofluid reduced models that can capture relevant physics aspects of the gyrokinetic models will also be discussed. Research sponsored by the U.S. Department of Energy under Contract DE-AC05-00OR22725 with UT-Battelle, LLC and the GSEP SciDAC Center.
Computational methods for constructing protein structure models from 3D electron microscopy maps.
Esquivel-Rodríguez, Juan; Kihara, Daisuke
2013-10-01
Protein structure determination by cryo-electron microscopy (EM) has made significant progress in the past decades. Resolutions of EM maps have been improving as evidenced by recently reported structures that are solved at high resolutions close to 3Å. Computational methods play a key role in interpreting EM data. Among many computational procedures applied to an EM map to obtain protein structure information, in this article we focus on reviewing computational methods that model protein three-dimensional (3D) structures from a 3D EM density map that is constructed from two-dimensional (2D) maps. The computational methods we discuss range from de novo methods, which identify structural elements in an EM map, to structure fitting methods, where known high resolution structures are fit into a low-resolution EM map. A list of available computational tools is also provided.
LATIS3D: The Gold Standard for Laser-Tissue-Interaction Modeling
London, R.A.; Makarewicz, A.M.; Kim, B.M.; Gentile, N.A.; Yang, Y.B.; Brlik, M.; Vincent, L.
2000-02-29
The goal of this LDRD project has been to create LATIS3D--the world's premier computer program for laser-tissue interaction modeling. The development was based on recent experience with the 2D LATIS code and the ASCI code, KULL. With LATIS3D, important applications in laser medical therapy were researched including dynamical calculations of tissue emulsification and ablation, photothermal therapy, and photon transport for photodynamic therapy. This project also enhanced LLNL's core competency in laser-matter interactions and high-energy-density physics by pushing simulation codes into new parameter regimes and by attracting external expertise. This will benefit both existing LLNL programs such as ICF and SBSS and emerging programs in medical technology and other laser applications.
Strain estimation in 3D by fitting linear and planar data to the March model
NASA Astrophysics Data System (ADS)
Mulchrone, Kieran F.; Talbot, Christopher J.
2016-08-01
The probability density function associated with the March model is derived and used in a maximum likelihood method to estimate the best fit distribution and 3D strain parameters for a given set of linear or planar data. Typically it is assumed that in the initial state (pre-strain) linear or planar data are uniformly distributed on the sphere which means the number of strain parameters estimated needs to be reduced so that the numerical technique succeeds. Essentially this requires that the data are rotated into a suitable reference frame prior to analysis. The method has been applied to a suitable example from the Dalradian of SW Scotland and results obtained are consistent with those from an independent method of strain analysis. Despite March theory having been incorporated deep into the fabric of geological strain analysis, its full potential as a simple direct 3D strain analytical tool has not been achieved. The method developed here may help remedy this situation.
Voxel-Based 3-D Tree Modeling from Lidar Images for Extracting Tree Structual Information
NASA Astrophysics Data System (ADS)
Hosoi, F.
2014-12-01
Recently, lidar (light detection and ranging) has been used to extracting tree structural information. Portable scanning lidar systems can capture the complex shape of individual trees as a 3-D point-cloud image. 3-D tree models reproduced from the lidar-derived 3-D image can be used to estimate tree structural parameters. We have proposed the voxel-based 3-D modeling for extracting tree structural parameters. One of the tree parameters derived from the voxel modeling is leaf area density (LAD). We refer to the method as the voxel-based canopy profiling (VCP) method. In this method, several measurement points surrounding the canopy and optimally inclined laser beams are adopted for full laser beam illumination of whole canopy up to the internal. From obtained lidar image, the 3-D information is reproduced as the voxel attributes in the 3-D voxel array. Based on the voxel attributes, contact frequency of laser beams on leaves is computed and LAD in each horizontal layer is obtained. This method offered accurate LAD estimation for individual trees and woody canopy trees. For more accurate LAD estimation, the voxel model was constructed by combining airborne and portable ground-based lidar data. The profiles obtained by the two types of lidar complemented each other, thus eliminating blind regions and yielding more accurate LAD profiles than could be obtained by using each type of lidar alone. Based on the estimation results, we proposed an index named laser beam coverage index, Ω, which relates to the lidar's laser beam settings and a laser beam attenuation factor. It was shown that this index can be used for adjusting measurement set-up of lidar systems and also used for explaining the LAD estimation error using different types of lidar systems. Moreover, we proposed a method to estimate woody material volume as another application of the voxel tree modeling. In this method, voxel solid model of a target tree was produced from the lidar image, which is composed of
Numerical modelling of gravel unconstrained flow experiments with the DAN3D and RASH3D codes
NASA Astrophysics Data System (ADS)
Sauthier, Claire; Pirulli, Marina; Pisani, Gabriele; Scavia, Claudio; Labiouse, Vincent
2015-12-01
Landslide continuum dynamic models have improved considerably in the last years, but a consensus on the best method of calibrating the input resistance parameter values for predictive analyses has not yet emerged. In the present paper, numerical simulations of a series of laboratory experiments performed at the Laboratory for Rock Mechanics of the EPF Lausanne were undertaken with the RASH3D and DAN3D numerical codes. They aimed at analysing the possibility to use calibrated ranges of parameters (1) in a code different from that they were obtained from and (2) to simulate potential-events made of a material with the same characteristics as back-analysed past-events, but involving a different volume and propagation path. For this purpose, one of the four benchmark laboratory tests was used as past-event to calibrate the dynamic basal friction angle assuming a Coulomb-type behaviour of the sliding mass, and this back-analysed value was then used to simulate the three other experiments, assumed as potential-events. The computational findings show good correspondence with experimental results in terms of characteristics of the final deposits (i.e., runout, length and width). Furthermore, the obtained best fit values of the dynamic basal friction angle for the two codes turn out to be close to each other and within the range of values measured with pseudo-dynamic tilting tests.
Virtual and Printed 3D Models for Teaching Crystal Symmetry and Point Groups
ERIC Educational Resources Information Center
Casas, Lluís; Estop, Euge`nia
2015-01-01
Both, virtual and printed 3D crystal models can help students and teachers deal with chemical education topics such as symmetry and point groups. In the present paper, two freely downloadable tools (interactive PDF files and a mobile app) are presented as examples of the application of 3D design to study point-symmetry. The use of 3D printing to…
Analysis of 3D Modeling Software Usage Patterns for K-12 Students
ERIC Educational Resources Information Center
Wu, Yi-Chieh; Liao, Wen-Hung; Chi, Ming-Te; Li, Tsai-Yen
2016-01-01
In response to the recent trend in maker movement, teachers are learning 3D techniques actively and bringing 3D printing into the classroom to enhance variety and creativity in designing lectures. This study investigates the usage pattern of a 3D modeling software, Qmodel Creator, which is targeted at K-12 students. User logs containing…
ODTLES : a model for 3D turbulent flow based on one-dimensional turbulence modeling concepts.
McDermott, Randy; Kerstein, Alan R.; Schmidt, Rodney Cannon
2005-01-01
This report describes an approach for extending the one-dimensional turbulence (ODT) model of Kerstein [6] to treat turbulent flow in three-dimensional (3D) domains. This model, here called ODTLES, can also be viewed as a new LES model. In ODTLES, 3D aspects of the flow are captured by embedding three, mutually orthogonal, one-dimensional ODT domain arrays within a coarser 3D mesh. The ODTLES model is obtained by developing a consistent approach for dynamically coupling the different ODT line sets to each other and to the large scale processes that are resolved on the 3D mesh. The model is implemented computationally and its performance is tested and evaluated by performing simulations of decaying isotropic turbulence, a standard turbulent flow benchmarking problem.
Cloud-resolving component in the quasi-3D multi-scale modeling framework
NASA Astrophysics Data System (ADS)
Jung, Joon-Hee; Arakawa, Akio
2010-05-01
A quasi-3D multi-scale modeling framework (Q3D MMF), which combines a GCM with a Q3D CRM, is an attempt to include three dimensional cloud effects in a GCM without necessarily using a global cloud-resolving model. The horizontal domain of the Q3D CRM consists of two perpendicular sets of channels crossing at the center of a GCM grid box, each of which includes two grid-point arrays. Through coupling this structure with a GCM, the whole system of the Q3D MMF can converge to a fully 3D global CRM as the GCM's resolution is refined. Consequently, the horizontal resolution of the GCM can be freely chosen depending on the objective of application. However, due to the use of very narrow channels for the cloud-resolving component, its prediction algorithm must be specially designed. As a step in developing a Q3D MMF, we have first constructed a prediction algorithm for the Q3D CRM applying a 3D anelastic vector vorticity equation model to the Q3D network of grid points. Preliminary tests of the Q3D CRM have been performed for an idealized small domain. Comparing the results with those of the straightforward application of a 3D CRM, it is concluded that the Q3D CRM can reproduce most of the important statistics of the 3D solutions and the MMF based on the Q3D CRM will be a useful framework for climate modeling. This paper presents an outline of the Q3D algorithm and highlights of the results.
3D In Vitro Model for Breast Cancer Research Using Magnetic Levitation and Bioprinting Method.
Leonard, Fransisca; Godin, Biana
2016-01-01
Tumor microenvironment composition and architecture are known as a major factor in orchestrating the tumor growth and its response to various therapies. In this context, in vivo studies are necessary to evaluate the responses. However, while tumor cells can be of human origin, tumor microenvironment in the in vivo models is host-based. On the other hand, in vitro studies in a flat monoculture of tumor cells (the most frequently used in vitro tumor model) are unable to recapitulate the complexity of tumor microenvironment. Three-dimensional (3D) in vitro cell cultures of tumor cells have been proven to be an important experimental tool in understanding mechanisms of tumor growth, response to therapeutics, and transport of nutrients/drugs. We have recently described a novel tool to create 3D co-cultures of tumor cells and cells in the tumor microenvironment. Our method utilizes magnetic manipulation/levitation of the specific ratios of tumor cells and cells in the tumor microenvironment (from human or animal origin) aiding in the formation of tumor spheres with defined cellular composition and density, as quickly as within 24 h. This chapter describes the experimental protocols developed to model the 3D structure of the cancer environment using the above method.
3D in vitro model for breast cancer research using magnetic levitation and bioprinting method
Leonard, Fransisca; Godin, Biana
2016-01-01
Summary Tumor microenvironment composition and architecture are known as a major factor in orchestrating the tumor growth and its response to various therapies. In this context, in vivo studies are necessary to evaluate the responses. However, while tumor cells can be of human origin, tumor microenvironment in the in vivo models is host-based. On the other hand, in vitro studies in a flat monoculture of tumor cells (the most frequently used in vitro tumor model) are unable to recapitulate the complexity of tumor microenvironment. Three-dimensional (3D) in vitro cell cultures of tumor cells have been proven to be an important experimental tool in understanding mechanisms of tumor growth, response to therapeutics and transport of nutrients/drugs. We have recently described a novel tool to create 3D co-cultures of tumor cells and cells in the tumor microenvironment. Our method utilizes magnetic manipulation/levitation of the specific ratios of tumor cells and cells in the tumor microenvironment (from human or animal origin) aiding in the formation of tumor spheres with defined cellular composition and density, as quickly as within 24 hours. This chapter describes the experimental protocols developed to model the 3D structure of the cancer environment using the above method. PMID:26820961
The performance of semilocal and hybrid density functionals in 3d transition-metal chemistry
NASA Astrophysics Data System (ADS)
Furche, Filipp; Perdew, John P.
2006-01-01
We investigate the performance of contemporary semilocal and hybrid density functionals for bond energetics, structures, dipole moments, and harmonic frequencies of 3d transition-metal (TM) compounds by comparison with gas-phase experiments. Special attention is given to the nonempirical metageneralized gradient approximation (meta-GGA) of Tao, Perdew, Staroverov, and Scuseria (TPSS) [Phys. Rev. Lett. 91, 146401 (2003)], which has been implemented in TURBOMOLE for the present work. Trends and error patterns for classes of homologous compounds are analyzed, including dimers, monohydrides, mononitrides, monoxides, monofluorides, polyatomic oxides and halogenides, carbonyls, and complexes with organic π ligands such as benzene and cyclopentadienyl. Weakly bound systems such as Ca2, Mn2, and Zn2 are discussed. We propose a reference set of reaction energies for benchmark purposes. Our all-electron results with quadruple zeta valence basis sets validate semilocal density-functional theory as the workhorse of computational TM chemistry. Typical errors in bond energies are substantially larger than in (organic) main group chemistry, however. The Becke-Perdew'86 [Phys. Rev. A 38, 3098 (1988); Phys. Rev. B 33, 8822 (1986)] GGA and the TPSS meta-GGA have the best price/performance ratio, while the TPSS hybrid functional achieves a slightly lower mean absolute error in bond energies. The popular Becke three-parameter hybrid B3LYP underbinds significantly and tends to overestimate bond distances; we give a possible explanation for this. We further show that hybrid mixing does not reduce the width of the error distribution on our reference set. The error of a functional for the s-d transfer energy of a TM atom does not predict its error for TM bond energies and bond lengths. For semilocal functionals, self-interaction error in one- and three-electron bonds appears to be a major source of error in TM reaction energies. Nevertheless, TPSS predicts the correct ground
TOPICAL REVIEW: Computational approaches to 3D modeling of RNA
NASA Astrophysics Data System (ADS)
Laing, Christian; Schlick, Tamar
2010-07-01
Many exciting discoveries have recently revealed the versatility of RNA and its importance in a variety of functions within the cell. Since the structural features of RNA are of major importance to their biological function, there is much interest in predicting RNA structure, either in free form or in interaction with various ligands, including proteins, metabolites and other molecules. In recent years, an increasing number of researchers have developed novel RNA algorithms for predicting RNA secondary and tertiary structures. In this review, we describe current experimental and computational advances and discuss recent ideas that are transforming the traditional view of RNA folding. To evaluate the performance of the most recent RNA 3D folding algorithms, we provide a comparative study in order to test the performance of available 3D structure prediction algorithms for an RNA data set of 43 structures of various lengths and motifs. We find that the algorithms vary widely in terms of prediction quality across different RNA lengths and topologies; most predictions have very large root mean square deviations from the experimental structure. We conclude by outlining some suggestions for future RNA folding research.
Improvements to the ICRH antenna time-domain 3D plasma simulation model
NASA Astrophysics Data System (ADS)
Smithe, David N.; Jenkins, Thomas G.; King, J. R.
2015-12-01
We present a summary of ongoing improvements to the 3D time-domain plasma modeling software that has been used to look at ICRH antennas on Alcator C-Mod, NSTX, and ITER [1]. Our past investigations have shown that in low density cases where the slow wave is propagating, strong amplitude lower hybrid resonant fields can occur. Such a scenario could result in significant parasitic power loss in the SOL. The primary resonance broadening in this case is likely collisions with neutral gas, and thus we are upgrading the model to include realistic neutral gas in the SOL, in order to provide a better understanding of energy balance in these situations. Related to this, we are adding a temporal variation capability to the local plasma density in front of the antenna in order to investigate whether the near fields of the antenna could modify the local density sufficiently to initiate a low density situation. We will start with a simple scalar ponderomotive potential density expulsion model [2] for the density evolution, but are also looking to eventually couple to a more complex fluid treatment that would include tensor pressures and convective physics and sources of neutrals and ionization. We also review continued benchmarking efforts, and ongoing and planned improvements to the computational algorithms, resulting from experience gained during our recent supercomputing runs on the Titan supercomputer, including GPU operations.
Realistic microwave breast models through T1-weighted 3-D MRI data.
Tunçay, Ahmet Hakan; Akduman, Ibrahim
2015-02-01
In this paper we present an effective method for developing realistic numerical three-dimensional (3-D) microwave breast models of different shape, size, and tissue density. These models are especially convenient for microwave breast cancer imaging applications and numerical analysis of human breast-microwave interactions. As in the recent studies on this area, anatomical information of the breast tissue is collected from T1-weighted 3-D MRI data of different patients' in prone position. The method presented in this paper offers significant improvements including efficient noise reduction and tissue segmentation, nonlinear mapping of electromagnetic properties, realistically asymmetric phantom shape, and a realistic classification of breast phantoms. Our method contains a five-step approach where each MRI voxel is classified and mapped to the appropriate dielectric properties. In the first step, the MRI data are denoised by estimating and removing the bias field from each slice, after which the voxels are segmented into two main tissues as fibro-glandular and adipose. Using the distribution of the voxel intensities in MRI histogram, two nonlinear mapping functions are generated for dielectric permittivity and conductivity profiles, which allow each MRI voxel to map to its proper dielectric properties. Obtained dielectric profiles are then converted into 3-D numerical breast phantoms using several image processing techniques, including morphologic operations, filtering. Resultant phantoms are classified according to their adipose content, which is a critical parameter that affects penetration depth during microwave breast imaging.
NASA Astrophysics Data System (ADS)
Przybycin, Anna M.; Scheck-Wenderoth, Magdalena; Schneider, Michael
2014-05-01
The North Alpine Foreland Basin is situated in the northern front of the European Alps and extends over parts of France, Switzerland, Germany and Austria. It formed as a wedge shaped depression since the Tertiary in consequence of the Euro - Adriatic continental collision and the Alpine orogeny. The basin is filled with clastic sediments, the Molasse, originating from erosional processes of the Alps and underlain by Mesozoic sedimentary successions and a Paleozoic crystalline crust. For our study we have focused on the German part of the basin. To investigate the deep structure, the isostatic state and the load distribution of this region we have constructed a 3D structural model of the basin and the Alpine area using available depth and thickness maps, regional scale 3D structural models as well as seismic and well data for the sedimentary part. The crust (from the top Paleozoic down to the Moho (Grad et al. 2008)) has been considered as two-parted with a lighter upper crust and a denser lower crust; the partition has been calculated following the approach of isostatic equilibrium of Pratt (1855). By implementing a seismic Lithosphere-Asthenosphere-Boundary (LAB) (Tesauro 2009) the crustal scale model has been extended to the lithospheric-scale. The layer geometry and the assigned bulk densities of this starting model have been constrained by means of 3D gravity modelling (BGI, 2012). Afterwards the 3D load distribution has been calculated using a 3D finite element method. Our results show that the North Alpine Foreland Basin is not isostatically balanced and that the configuration of the crystalline crust strongly controls the gravity field in this area. Furthermore, our results show that the basin area is influenced by varying lateral load differences down to a depth of more than 150 km what allows a first order statement of the required compensating horizontal stress needed to prevent gravitational collapse of the system. BGI (2012). The International
Lithosphere-scale 3D gravity modelling of the Barents Sea and Kara Sea
NASA Astrophysics Data System (ADS)
Klitzke, P.; Faleide, J.; Sippel, J.; Scheck-Wenderoth, M.
2013-12-01
The Barents - Kara Sea region covers the major part of the European Arctic shelf. Its northern and western boundaries are young passive margins which originate from early Paleocene-Eocene opening of the Eurasia Basin and the Norwegian-Greenland Sea. In contrast, the basement of the Barents and Kara shelves has been consolidated much earlier, during three major late Precambrian to Permian orogenies. Additionally, the shelf experienced multiple episodes of localised subsidence which resulted in the formation of ultra-deep sedimentary basins varying strongly in their geometry between different subregions. Consequently, the preserved sedimentary record is interrupted by major megasequence boundaries that are well-described in the western Barents Sea. Using this subdivision for the sedimentary record, we traced four major megasequence boundaries across the Barents and Kara shelves by analysing interpreted seismic refraction and reflection data, geological maps and previously published 3D-models. We integrate this shallow information into a 3D geological model and complement the latter downward with the top crystalline crust, the Moho and a new lithosphere-asthenosphere boundary. The sedimentary units have been assigned physical properties considering the respective lithology to calculate a depth-dependent density distribution. Thereby, the obtained bulk densities also account for late Cenozoic uplift/erosion and the maximum Pleistocene ice sheet thickness. For the lithospheric mantle, the density distribution is constrained by an earlier published velocity model (Levshin et al., 2007). On the base of isostatic calculations and 3D gravity modelling the density configuration of the crystalline crust and the geometry of potential high-density bodies is investigated. Finally, we correlate preserved sediment maxima and reconstructed erosion maps with subsedimentary velocity and density variations to gain new insights into the development of Barents and Kara Sea basins
Procedural 3d Modelling for Traditional Settlements. The Case Study of Central Zagori
NASA Astrophysics Data System (ADS)
Kitsakis, D.; Tsiliakou, E.; Labropoulos, T.; Dimopoulou, E.
2017-02-01
Over the last decades 3D modelling has been a fast growing field in Geographic Information Science, extensively applied in various domains including reconstruction and visualization of cultural heritage, especially monuments and traditional settlements. Technological advances in computer graphics, allow for modelling of complex 3D objects achieving high precision and accuracy. Procedural modelling is an effective tool and a relatively novel method, based on algorithmic modelling concept. It is utilized for the generation of accurate 3D models and composite facade textures from sets of rules which are called Computer Generated Architecture grammars (CGA grammars), defining the objects' detailed geometry, rather than altering or editing the model manually. In this paper, procedural modelling tools have been exploited to generate the 3D model of a traditional settlement in the region of Central Zagori in Greece. The detailed geometries of 3D models derived from the application of shape grammars on selected footprints, and the process resulted in a final 3D model, optimally describing the built environment of Central Zagori, in three levels of Detail (LoD). The final 3D scene was exported and published as 3D web-scene which can be viewed with 3D CityEngine viewer, giving a walkthrough the whole model, same as in virtual reality or game environments. This research work addresses issues regarding textures' precision, LoD for 3D objects and interactive visualization within one 3D scene, as well as the effectiveness of large scale modelling, along with the benefits and drawbacks that derive from procedural modelling techniques in the field of cultural heritage and more specifically on 3D modelling of traditional settlements.
A Deformable Generic 3D Model of Haptoral Anchor of Monogenean
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation. PMID:24204903
A deformable generic 3D model of haptoral anchor of Monogenean.
Teo, Bee Guan; Dhillon, Sarinder Kaur; Lim, Lee Hong Susan
2013-01-01
In this paper, a digital 3D model which allows for visualisation in three dimensions and interactive manipulation is explored as a tool to help us understand the structural morphology and elucidate the functions of morphological structures of fragile microorganisms which defy live studies. We developed a deformable generic 3D model of haptoral anchor of dactylogyridean monogeneans that can subsequently be deformed into different desired anchor shapes by using direct manipulation deformation technique. We used point primitives to construct the rectangular building blocks to develop our deformable 3D model. Point primitives are manually marked on a 2D illustration of an anchor on a Cartesian graph paper and a set of Cartesian coordinates for each point primitive is manually extracted from the graph paper. A Python script is then written in Blender to construct 3D rectangular building blocks based on the Cartesian coordinates. The rectangular building blocks are stacked on top or by the side of each other following their respective Cartesian coordinates of point primitive. More point primitives are added at the sites in the 3D model where more structural variations are likely to occur, in order to generate complex anchor structures. We used Catmull-Clark subdivision surface modifier to smoothen the surface and edge of the generic 3D model to obtain a smoother and more natural 3D shape and antialiasing option to reduce the jagged edges of the 3D model. This deformable generic 3D model can be deformed into different desired 3D anchor shapes through direct manipulation deformation technique by aligning the vertices (pilot points) of the newly developed deformable generic 3D model onto the 2D illustrations of the desired shapes and moving the vertices until the desire 3D shapes are formed. In this generic 3D model all the vertices present are deployed for displacement during deformation.
NASA Astrophysics Data System (ADS)
Ekinci, Yunus Levent; Ertekin, Can
2015-04-01
Concern about sedimentary basins is generally related to their genetic and economic significance. Analysis of sedimentary basins requires the acquisition of data through outcrop studies and subsurface investigations that encompass drilling and geophysics. These data are commonly analysed by computer-assisted techniques. One of these methods is based on analysing gravity anomalies to compute the depth of sedimentary basin-basement rock interface. Sedimentary basins produce negative gravity anomalies, because they have mostly lower densities than that of the surrounding basement rocks. Density variations in a sedimentary fill increase rapidly at shallower depths then gradually reach the density of surrounding basement rocks due to the geostatic pressure i.e. compaction. The decrease of the density contrast can be easily estimated by a quadratic function. Hence, if the densities are chosen properly and the regional background is removed correctly, the topographical relief of the sedimentary basin-basement rock interface might be estimated by the inversion of the gravity data using an exponential density-depth relation. Three dimensional forward modelling procedure can be carried out by introducing a Cartesian coordinate system, and placing vertical prisms just below observation points on the grid plane. Depth to the basement, namely depths to the bottom of the vertical prisms are adjusted in an iterative manner by minimizing the differences between measured and calculated residual gravity anomalies. In this study, we present a MATLAB-based inversion code for the interpretation of sedimentary basins by approximating the topographical relief of sedimentary basin-basement rock interfaces. For a given gridded residual gravity anomaly map, the procedure estimates the bottom depths of vertical prisms by considering some published formulas and assumptions. The utility of the developed inversion code was successfully tested on theoretically produced gridded gravity data set
Large scale 3-D modeling by integration of resistivity models and borehole data through inversion
NASA Astrophysics Data System (ADS)
Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.
2014-02-01
We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing for geological models or as direct input to groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay-units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity dataset and the borehole dataset in one variable. Finally, we use k means clustering to generate a 3-D model of the subsurface structures. We apply the concept to the Norsminde survey in Denmark integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high resistive materials from information held in resistivity model and borehole observations respectively.
Large-scale 3-D modeling by integration of resistivity models and borehole data through inversion
NASA Astrophysics Data System (ADS)
Foged, N.; Marker, P. A.; Christansen, A. V.; Bauer-Gottwein, P.; Jørgensen, F.; Høyer, A.-S.; Auken, E.
2014-11-01
We present an automatic method for parameterization of a 3-D model of the subsurface, integrating lithological information from boreholes with resistivity models through an inverse optimization, with the objective of further detailing of geological models, or as direct input into groundwater models. The parameter of interest is the clay fraction, expressed as the relative length of clay units in a depth interval. The clay fraction is obtained from lithological logs and the clay fraction from the resistivity is obtained by establishing a simple petrophysical relationship, a translator function, between resistivity and the clay fraction. Through inversion we use the lithological data and the resistivity data to determine the optimum spatially distributed translator function. Applying the translator function we get a 3-D clay fraction model, which holds information from the resistivity data set and the borehole data set in one variable. Finally, we use k-means clustering to generate a 3-D model of the subsurface structures. We apply the procedure to the Norsminde survey in Denmark, integrating approximately 700 boreholes and more than 100 000 resistivity models from an airborne survey in the parameterization of the 3-D model covering 156 km2. The final five-cluster 3-D model differentiates between clay materials and different high-resistivity materials from information held in the resistivity model and borehole observations, respectively.
NASA Astrophysics Data System (ADS)
Whitmarsh, Tristan; Humbert, Ludovic; De Craene, Mathieu; del Río Barquero, Luis M.; Fritscher, Karl; Schubert, Rainer; Eckstein, Felix; Link, Thomas; Frangi, Alejandro F.
2010-03-01
Area Bone Mineral Density (aBMD) measured by Dual-energy X-ray Absorptiometry (DXA) is an established criterion in the evaluation of hip fracture risk. The evaluation from these planar images, however, is limited to 2D while it has been shown that proper 3D assessment of both the shape and the Bone Mineral Density (BMD) distribution improves the fracture risk estimation. In this work we present a method to reconstruct both the 3D bone shape and 3D BMD distribution of the proximal femur from a single DXA image. A statistical model of shape and a separate statistical model of the BMD distribution were automatically constructed from a set of Quantitative Computed Tomography (QCT) scans. The reconstruction method incorporates a fully automatic intensity based 3D-2D registration process, maximizing the similarity between the DXA and a digitally reconstructed radiograph of the combined model. For the construction of the models, an in vitro dataset of QCT scans of 60 anatomical specimens was used. To evaluate the reconstruction accuracy, experiments were performed on simulated DXA images from the QCT scans of 30 anatomical specimens. Comparisons between the reconstructions and the same subject QCT scans showed a mean shape accuracy of 1.2mm, and a mean density error of 81mg/cm3. The results show that this method is capable of accurately reconstructing both the 3D shape and 3D BMD distribution of the proximal femur from DXA images used in clinical routine, potentially improving the diagnosis of osteoporosis and fracture risk assessments at a low radiation dose and low cost.
A Quantification of the 3D Modeling Capabilities of the Kinectfusion Algorithm
2014-03-27
A QUANTIFICATION OF THE 3D MODELING CAPABILITIES OF THE KINECTFUSTION ALGORITHM THESIS Jeremy M. Higbee, Captain, USAF AFIT-ENG-14-M-40 DEPARTMENT OF...subject to copyright protection in the United States. AFIT-ENG-14-M-40 A QUANTIFICATION OF THE 3D MODELING CAPABILITIES OF THE KINECTFUSTION ALGORITHM...M-40 A QUANTIFICATION OF THE 3D MODELING CAPABILITIES OF THE KINECTFUSTION ALGORITHM Jeremy M. Higbee, BS Captain, USAF Approved: /signed/ Maj Brian
Cook, Chris B.; Richmond, Marshall C.
2004-12-01
Summer temperatures in the Lower Snake River can be altered by releasing cold waters that originate from deep depths within Dworshak Reservoir. These cold releases are used to lower temperatures in the Clearwater River, a major tributary to the Lower Snake River, and to improve hydrodynamic and water quality conditions for migrating aquatic species. This project monitored the complex three-dimensional density currents at the Clearwater and Snake River confluence and the processes that led to stratification of Lower Granite Reservoir (LGR) during the late spring, summer, and fall of 2002. In addition to monitoring the LGR environment, a three-dimensional hydrodynamic and water quality model was also applied. By utilizing both field data and a numerical model, a more holistic view of the 3-D density currents was discovered than by either method alone. During this process, it was discovered that several predictable stratification patterns would develop depending upon the discharge ratio and the thermal gradient between the two rivers. These results illustrate the complex hydrodynamic structure at the confluence of the Clearwater and Snake Rivers, which has previously been shown by fish biologists to be a difficult passage zone for migrating salmonids of various life stages.
Quenching of the beam-plasma instability by 3-D spectra of large scale density fluctuations
NASA Technical Reports Server (NTRS)
Muschietti, L.; Goldman, M. V.; Newman, D.
1984-01-01
A model is presented to explain the highly variable yet low level of Langmuir waves measured in situ by spacecraft when electron beams associated with Type III solar bursts are passing by; the low level of excited waves allows the propagation of such streams from the Sun to well past 1 AU without catastrophic energy losses. The model is based, first, on the existence of large scale density fluctuations that are able to efficiently diffuse small k beam unstable Langmuir waves in phase space, and, second, on the presence of a significantly isotropic nonthermal tail in the distribution function of the background electron population, which is capable of stabilizing larger k modes. The strength of the model lies in its ability to predict various levels of Langmuir waves depending on the parameters. This feature is consistent with the high variability actually observed in the measurements.
Implementation of algebraic stress models in a general 3-D Navier-Stokes method (PAB3D)
NASA Technical Reports Server (NTRS)
Abdol-Hamid, Khaled S.
1995-01-01
A three-dimensional multiblock Navier-Stokes code, PAB3D, which was developed for propulsion integration and general aerodynamic analysis, has been used extensively by NASA Langley and other organizations to perform both internal (exhaust) and external flow analysis of complex aircraft configurations. This code was designed to solve the simplified Reynolds Averaged Navier-Stokes equations. A two-equation k-epsilon turbulence model has been used with considerable success, especially for attached flows. Accurate predicting of transonic shock wave location and pressure recovery in separated flow regions has been more difficult. Two algebraic Reynolds stress models (ASM) have been recently implemented in the code that greatly improved the code's ability to predict these difficult flow conditions. Good agreement with Direct Numerical Simulation (DNS) for a subsonic flat plate was achieved with ASM's developed by Shih, Zhu, and Lumley and Gatski and Speziale. Good predictions were also achieved at subsonic and transonic Mach numbers for shock location and trailing edge boattail pressure recovery on a single-engine afterbody/nozzle model.
Modeling spatial distribution of oxygen in 3d culture of islet beta-cells.
McReynolds, John; Wen, Yu; Li, Xiaofei; Guan, Jianjun; Jin, Sha
2017-01-01
Three-dimensional (3D) scaffold culture of pancreatic β-cell has been proven to be able to better mimic physiological conditions in the body. However, one critical issue with culturing pancreatic β-cells is that β-cells consume large amounts of oxygen, and hence insufficient oxygen supply in the culture leads to loss of β-cell mass and functions. This becomes more significant when cells are cultured in a 3D scaffold. In this study, in order to understand the effect of oxygen tension inside a cell-laden collagen culture on β-cell proliferation, a culture model with encapsulation of an oxygen-generator was established. The oxygen-generator was made by embedding hydrogen peroxide into nontoxic polydimethylsiloxane to avoid the toxicity of a chemical reaction in the β-cell culture. To examine the effectiveness of the oxygenation enabled 3D culture, the spatial-temporal distribution of oxygen tension inside a scaffold was evaluated by a mathematical modeling approach. Our simulation results indicated that an oxygenation-aided 3D culture would augment the oxygen supply required for the β-cells. Furthermore, we identified that cell seeding density and the capacity of the oxygenator are two critical parameters in the optimization of the culture. Notably, cell-laden scaffold cultures with an in situ oxygen supply significantly improved the β-cells' biological function. These β-cells possess high insulin secretion capacity. The results obtained in this work would provide valuable information for optimizing and encouraging functional β-cell cultures. © 2016 American Institute of Chemical Engineers Biotechnol. Prog., 33:221-228, 2017.
NASA Astrophysics Data System (ADS)
Winiarski, T.; Angulo-Jaramillo, R.; Goutaland, D.; Bievre, G.; Thevenin, L.; Sevestre, J.; Lassabatère, L.; Perrodin, Y.
2008-12-01
The potentially polluted sediments of the French ports, obtained by dredging maintenance operations, have to be disposed by filling-up open quarries why discontinuities can potentially lead to preferential flow. Indeed, flow anisotropy can be created either by: the original quarry structural discontinuities (faults, joints), the material sedimentary bedding or some anthropogenic effect (i.e., cracking induced by the operation of the quarry). The objective of the study is to estimate the role of the quarry heterogeneity on the unsaturated- zone water flow. A conceptual model based on the 3D structural recognition is proposed to study water flow. It is based on the recognition of the 3D geometric structure by using: (1) sedimentary structural geology principles, (2) geophysical measurements (Ground-Penetrating Radar and seismic refraction) performed on a limited but representative zone of the quarry and (3) in-situ Beerkan infiltration tests for soil hydraulic characterization. This new approach has been tested on a small volume (45m x 30m x 8m) of a Cenomanian sandstone quarry on southern France. The hydrogeophysical approach makes it possible to account for stratigraphic discontinuity non visible from the soil surface. GPR resolution is appropriate to resolve the sedimentary structure (direction, dip and bedding density). The seismic refraction completes the analysis by the water table localization. Both capillary retention and hydraulic conductivity curves have been obtained for uniform geometric elements using the BEST algorithm (Beerkan estimation of soil transfer parameters). The resolution of the Richards equation with 3D COMSOL Multiphysics software seems to emphasize the fractures role according to the sandstone initial conditions. Coupling geophysical and hydrodynamic approaches makes it possible to obtain a 3D in-situ realistic block representative of the studied site. Flow modeling on this block makes it possible to evaluate the risk at the quarry scale.
NASA Astrophysics Data System (ADS)
Hu, D.; Ainslie, M. D.; Rush, J. P.; Durrell, J. H.; Zou, J.; Raine, M. J.; Hampshire, D. P.
2015-06-01
The direct current (dc) characterization of high temperature superconducting (HTS) coils is important for applications, such as electric machines, superconducting magnetic energy storage and transformers. In this paper, the dc characterization of a triangular-shaped, epoxy-impregnated HTS coil wound with YBCO coated conductor intended for use in an axial-flux HTS motor is presented. Voltage was measured at several points along the coil to provide detailed information of its dc characteristics. The coil is modelled based on the H -formulation using a new three-dimensional (3D) technique that utilizes the real superconducting layer thickness, and this model allows simulation of the actual geometrical layout of the HTS coil structure. Detailed information on the critical current density’s dependence on the magnitude and orientation of the magnetic flux density, Jc(B,θ), determined from experimental measurement of a short sample of the coated conductor comprising the coil is included directly in the numerical model by a two-variable direct interpolation to avoid developing complicated equations for data fitting and greatly improve the computational speed. Issues related to meshing the finite elements of the real thickness 3D model are also discussed in detail. Based on a comparison of the measurement and simulation results, it is found that non-uniformity along the length exists in the coil, which implies imperfect superconducting properties in the coated conductor, and hence, coil. By evaluating the current-voltage (I-V) curves using the experimental data, and after taking into account a more practical n value and critical current for the non-uniform region, the modelling results show good agreement with the experimental results, validating this model as an appropriate tool to estimate the dc I-V relationship of a superconducting coil. This work provides a further step towards effective and efficient 3D modelling of superconducting devices for large
Developing and Testing a 3d Cadastral Data Model a Case Study in Australia
NASA Astrophysics Data System (ADS)
Aien, A.; Kalantari, M.; Rajabifard, A.; Williamson, I. P.; Shojaei, D.
2012-07-01
Population growth, urbanization and industrialization place more pressure on land use with the need for increased space. To extend the use and functionality of the land, complex infrastructures are being built, both vertically and horizontally, layered and stacked. These three-dimensional (3D) developments affect the interests (Rights, Restrictions, and Responsibilities (RRRs)) attached to the underlying land. A 3D cadastre will assist in managing the effects of 3D development on a particular extent of land. There are many elements that contribute to developing a 3D cadastre, such as existing of 3D property legislations, 3D DBMS, 3D visualization. However, data modelling is one of the most important elements of a successful 3D cadastre. As architectural models of houses and high rise buildings help their users visualize the final product, 3D cadastre data model supports 3D cadastre users to understand the structure or behavior of the system and has a template that guides them to construct and implement the 3D cadastre. Many jurisdictions, organizations and software developers have built their own cadastral data model. Land Administration Domain Model (DIS-ISO 19152, The Netherlands) and ePlan (Intergovernmental Committee on Surveying and Mapping, Australia) are examples of existing data models. The variation between these data models is the result of different attitudes towards cadastres. However, there is a basic common thread among them all. Current cadastral data models use a 2D land-parcel concept and extend it to support 3D requirements. These data models cannot adequately manage and represent the spatial extent of 3D RRRs. Most of the current cadastral data models have been influenced by a very broad understanding of 3D cadastral concepts because better clarity in what needs to be represented and analysed in the cadastre needs to be established. This paper presents the first version of a 3D Cadastral Data Model (3DCDM_Version 1.0). 3DCDM models both the legal
Detection of Disease Symptoms on Hyperspectral 3d Plant Models
NASA Astrophysics Data System (ADS)
Roscher, Ribana; Behmann, Jan; Mahlein, Anne-Katrin; Dupuis, Jan; Kuhlmann, Heiner; Plümer, Lutz
2016-06-01
We analyze the benefit of combining hyperspectral images information with 3D geometry information for the detection of Cercospora leaf spot disease symptoms on sugar beet plants. Besides commonly used one-class Support Vector Machines, we utilize an unsupervised sparse representation-based approach with group sparsity prior. Geometry information is incorporated by representing each sample of interest with an inclination-sorted dictionary, which can be seen as an 1D topographic dictionary. We compare this approach with a sparse representation based approach without geometry information and One-Class Support Vector Machines. One-Class Support Vector Machines are applied to hyperspectral data without geometry information as well as to hyperspectral images with additional pixelwise inclination information. Our results show a gain in accuracy when using geometry information beside spectral information regardless of the used approach. However, both methods have different demands on the data when applied to new test data sets. One-Class Support Vector Machines require full inclination information on test and training data whereas the topographic dictionary approach only need spectral information for reconstruction of test data once the dictionary is build by spectra with inclination.
A new approach towards image based virtual 3D city modeling by using close range photogrammetry
NASA Astrophysics Data System (ADS)
Singh, S. P.; Jain, K.; Mandla, V. R.
2014-05-01
3D city model is a digital representation of the Earth's surface and it's related objects such as building, tree, vegetation, and some manmade feature belonging to urban area. The demand of 3D city modeling is increasing day to day for various engineering and non-engineering applications. Generally three main image based approaches are using for virtual 3D city models generation. In first approach, researchers used Sketch based modeling, second method is Procedural grammar based modeling and third approach is Close range photogrammetry based modeling. Literature study shows that till date, there is no complete solution available to create complete 3D city model by using images. These image based methods also have limitations This paper gives a new approach towards image based virtual 3D city modeling by using close range photogrammetry. This approach is divided into three sections. First, data acquisition process, second is 3D data processing, and third is data combination process. In data acquisition process, a multi-camera setup developed and used for video recording of an area. Image frames created from video data. Minimum required and suitable video image frame selected for 3D processing. In second section, based on close range photogrammetric principles and computer vision techniques, 3D model of area created. In third section, this 3D model exported to adding and merging of other pieces of large area. Scaling and alignment of 3D model was done. After applying the texturing and rendering on this model, a final photo-realistic textured 3D model created. This 3D model transferred into walk-through model or in movie form. Most of the processing steps are automatic. So this method is cost effective and less laborious. Accuracy of this model is good. For this research work, study area is the campus of department of civil engineering, Indian Institute of Technology, Roorkee. This campus acts as a prototype for city. Aerial photography is restricted in many country
NASA Astrophysics Data System (ADS)
van Uytven, Eric Peter
Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal tissue. Commercial Computed Tomography (CT) produces a true 3D image yet has a limited role in mammography due to relatively low resolution and contrast. With the intent of enhancing mammography and breast CT, we have developed an algorithm which can produce 3D electron density images using a single projection. Imaging an object with x rays produces a characteristic scattered photon spectrum at the detector plane. A known incident beam spectrum, beam shape, and arbitrary 3D matrix of electron density values enable a theoretical scattered photon distribution to be calculated. An iterative minimization algorithm is used to make changes to the electron density voxel matrix to reduce regular differences between the theoretical and the experimentally measured distributions. The object is characterized by the converged electron density image. This technique has been validated in simulation using data produced by the EGSnrc Monte Carlo code system. At both mammographic and CT energies, a scanning polychromatic pencil beam was used to image breast tissue phantoms containing lesion-like inhomogeneities. The resulting Monte Carlo data is processed using a Nelder-Mead iterative algorithm (MATLAB) to produce the 3D matrix of electron density values. Resulting images have confirmed the ability of the algorithm to detect various 1x1x2.5 mm3 lesions with calcification content as low as 0.5% (p<0.005) at a dose comparable to mammography.
Van Uytven, Eric; Pistorius, Stephen; Gordon, Richard
2008-10-07
Screening mammography is the current standard in detecting breast cancer. However, its fundamental disadvantage is that it projects a 3D object into a 2D image. Small lesions are difficult to detect when superimposed over layers of normal, heterogeneous tissue. In this work, we examine the potential of single scattered photon electron density imaging in a mammographic environment. Simulating a low-energy (<20 keV) scanning pencil beam, we have developed an algorithm capable of producing 3D electron density images from a single projection. We have tested the algorithm by imaging parts of a simulated mammographic accreditation phantom containing lesions of various sizes. The results indicate that the group of imaged lesions differ significantly from background breast tissue (p<0.005), confirming that electron density imaging may be a useful diagnostic test for the presence of breast cancer.
3D Building Models Segmentation Based on K-Means++ Cluster Analysis
NASA Astrophysics Data System (ADS)
Zhang, C.; Mao, B.
2016-10-01
3D mesh model segmentation is drawing increasing attentions from digital geometry processing field in recent years. The original 3D mesh model need to be divided into separate meaningful parts or surface patches based on certain standards to support reconstruction, compressing, texture mapping, model retrieval and etc. Therefore, segmentation is a key problem for 3D mesh model segmentation. In this paper, we propose a method to segment Collada (a type of mesh model) 3D building models into meaningful parts using cluster analysis. Common clustering methods segment 3D mesh models by K-means, whose performance heavily depends on randomized initial seed points (i.e., centroid) and different randomized centroid can get quite different results. Therefore, we improved the existing method and used K-means++ clustering algorithm to solve this problem. Our experiments show that K-means++ improves both the speed and the accuracy of K-means, and achieve good and meaningful results.
NASA Astrophysics Data System (ADS)
Koehl, M.; Brigand, N.
2012-08-01
The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image
Abbey, Colette A; Bayless, Kayla J
2014-09-01
This study was designed to determine the optimal conditions required for known pro-angiogenic stimuli to elicit successful endothelial sprouting responses. We used an established, quantifiable model of endothelial cell (EC) sprout initiation where ECs were tested for invasion in low (1 mg/mL) and high density (5 mg/mL) 3D collagen matrices. Sphingosine 1-phosphate (S1P) alone, or S1P combined with stromal derived factor-1α (SDF) and phorbol ester (TPA), elicited robust sprouting responses. The ability of these factors to stimulate sprouting was more effective in higher density collagen matrices. S1P stimulation resulted in a significant increase in invasion distance, and with the exception of treatment groups containing phorbol ester, invasion distance was longer in 1mg/mL compared to 5mg/mL collagen matrices. Closer examination of cell morphology revealed that increasing matrix density and supplementing with SDF and TPA enhanced the formation of multicellular structures more closely resembling capillaries. TPA enhanced the frequency and size of lumen formation and correlated with a robust increase in phosphorylation of p42/p44 Erk kinase, while S1P and SDF did not. Also, a higher number of significantly longer extended processes formed in 5mg/mL compared to 1mg/mL collagen matrices. Because collagen matrices at higher density have been reported to be stiffer, we tested for changes in the mechanosensitive protein, zyxin. Interestingly, zyxin phosphorylation levels inversely correlated with matrix density, while levels of total zyxin did not change significantly. Immunofluorescence and localization studies revealed that total zyxin was distributed evenly throughout invading structures, while phosphorylated zyxin was slightly more intense in extended peripheral processes. Silencing zyxin expression increased extended process length and number of processes, while increasing zyxin levels decreased extended process length. Altogether these data indicate that ECs
Synthetic 3D modeling of active regions and simulation of their multi-wavelength emission
NASA Astrophysics Data System (ADS)
Nita, Gelu M.; Fleishman, Gregory; Kuznetsov, Alexey A.; Loukitcheva, Maria A.; Viall, Nicholeen M.; Klimchuk, James A.; Gary, Dale E.
2015-04-01
To facilitate the study of solar active regions, we have created a synthetic modeling framework that combines 3D magnetic structures obtained from magnetic extrapolations with simplified 1D thermal models of the chromosphere, transition region, and corona. To handle, visualize, and use such synthetic data cubes to compute multi-wavelength emission maps and compare them with observations, we have undertaken a major enhancement of our simulation tools, GX_Simulator (ftp://sohoftp.nascom.nasa.gov/solarsoft/packages/gx_simulator/), developed earlier for modeling emission from flaring loops. The greatly enhanced, object-based architecture, which now runs on Windows, Mac, and UNIX platform, offers important new capabilities that include the ability to either import 3D density and temperature distribution models, or to assign to each individual voxel numerically defined coronal or chromospheric temperature and densities, or coronal Differential Emission Measure distributions. Due to these new capabilities, the GX_Simulator can now apply parametric heating models involving average properties of the magnetic field lines crossing a given voxel volume, as well as compute and investigate the spatial and spectral properties of radio (to be compared with VLA or EOVSA data), (sub-)millimeter (ALMA), EUV (AIA/SDO), and X-ray (RHESSI) emission calculated from the model. The application integrates shared-object libraries containing fast free-free, gyrosynchrotron, and gyroresonance emission codes developed in FORTRAN and C++, and soft and hard X-ray and EUV codes developed in IDL. We use this tool to model and analyze an active region and compare the synthetic emission maps obtained in different wavelengths with observations.This work was partially supported by NSF grants AGS-1250374, AGS-1262772, NASA grant NNX14AC87G, the Marie Curie International Research Staff Exchange Scheme "Radiosun" (PEOPLE-2011-IRSES-295272), RFBR grants 14-02-91157, 15-02-01089, 15-02-03717, 15
Comparing thin-sheet models with 3-D multilayer models for continental collision
NASA Astrophysics Data System (ADS)
Lechmann, S. M.; May, D. A.; Kaus, B. J. P.; Schmalholz, S. M.
2011-10-01
Various models have been proposed to explain tectonic deformations during continent collision. A frequently applied model is the thin viscous sheet model which is however not fully 3-D and assumes a priori diffuse thickening as the dominant deformation style. We compare a fully 3-D multilayer numerical model with a corresponding thin viscous sheet numerical model for the scenario of continent indentation. In our comparison we focus on the three basic viscous deformation styles thickening, buckling (folding) and lateral crustal flow. Both numerical models are based on the finite element method (FEM) and employ either a linear or power-law viscous rheology. The 3-D model consists of four layers representing a simplified continental lithosphere: strong upper crust, weak lower crust, strong upper mantle and weak lower mantle. The effective viscosity depth-profile in the 3-D model is used to calculate the depth-averaged effective viscosity used in the thin-sheet model allowing a direct comparison of both models. We quantify the differences in the strain rate and velocity fields, and investigate the evolution of crustal thickening, buckling and crustal flow resulting from the two models for two different phases of deformation: (1) indentation with a constant velocity and (2) gravitational collapse after a decrease of the indenting velocity by a factor of 5. The results indicate that thin-sheet models approximate well the overall large-scale lithospheric deformation, especially during indentation and for a linear viscous rheology. However, in the 3-D model, additional processes such as multilayer buckling and lower crustal flow emerge, which are ignored in the thin-sheet model but dominate the deformation style in the 3-D model within a range of a few hundreds of kilometres around the collision zone and indenter corner. Differences between the 3-D and thin-sheet model are considerably larger for a power-law viscous than for a linear viscous rheology. Buckling and lower
[A 3D FEM model for calculation of electromagnetic fields in transmagnetic stimulation].
Seilwinder, J; Kammer, T; Andrä, W; Bellemann, M E
2002-01-01
We developed a realistic finite elements method (FEM) model of the brain for the calculation of electromagnetic fields in transcranial magnetic stimulation (TMS). A focal butterfly stimulation coil was X-rayed, parameterized, and modeled. The magnetic field components of the TMS coil were calculated and compared for validation to pointwise measurements of the magnetic fields with a Hall sensor. We found a mean deviation of 7.4% at an axial distance of 20 mm to the coil. A 3D brain model with the biological tissues of white and gray matter, bone, and cerebrospinal fluid was developed. At a current sweep of 1000 A in 120 microseconds, the maximum induced current density in gray matter was 177 mA/m2 and the strongest electric field gradient covered an area of 40 mm x 53 mm.
NASA Astrophysics Data System (ADS)
Chen, C.; Saito, A.
2011-12-01
The mid-latitude summer nighttime anomaly (MSNA) is a feature that the nighttime electron density larger than that in the daytime mid-latitude ionosphere. This anomaly was first detected in the southern hemisphere five decades ago and observed in the northern hemisphere recently by ionosondes and satellites. Previous studies presented the electron density structure of MSNA by using COSMIC occultation data and found that MSNA is clearly seen around 300 km altitude during local summer. However, due to lack of observation, the day-to-day variation of MSNA was not investigated. A GPS tomography method by SPEL of Kyoto University using the total electron content (TEC) data measured by the ground-based GPS receiver network is employed in this study. The wide coverage and continuous observation of GPS receivers are suitable for investigating the spatial and day-to-day variations of ionospheric electron densities. The algorithm of the GPS tomography developed by SPEL of Kyoto University use a constraint condition that the gradient of election density tends to be smooth in the horizontal direction and steep in the vicinity of the F2 peak, instead of inputting the initial conditions. Therefore, the algorithm is independent of any ionospheric and plasmaspheric electron density distribution models. The dense ground-based GPS receiver network around European region is used to study the three dimensional (3D) structure of MSNA with GPS tomography. Results show that the MSNA usually appear around the geomagnetic mid-latitude region during local summer nighttime. The feature of MSNA is most obvious at the ionospheric F2-peak altitudes. The result also shows a day-to-day variation in the formation of MSNA, in terms of the occurrence time, intensity, and spatial extent. The tomographic results are compared with the ionosondes, satellites, and radar measurements. A theoretical model simulation, SAMI2, is also used to further discuss the mechanism of MSNA. The comparison with other
Integration of 3D photogrammetric outcrop models in the reservoir modelling workflow
NASA Astrophysics Data System (ADS)
Deschamps, Remy; Joseph, Philippe; Lerat, Olivier; Schmitz, Julien; Doligez, Brigitte; Jardin, Anne
2014-05-01
3D technologies are now widely used in geosciences to reconstruct outcrops in 3D. The technology used for the 3D reconstruction is usually based on Lidar, which provides very precise models. Such datasets offer the possibility to build well-constrained outcrop analogue models for reservoir study purposes. The photogrammetry is an alternate methodology which principles are based in determining the geometric properties of an object from photographic pictures taken from different angles. Outcrop data acquisition is easy, and this methodology allows constructing 3D outcrop models with many advantages such as: - light and fast acquisition, - moderate processing time (depending on the size of the area of interest), - integration of field data and 3D outcrops into the reservoir modelling tools. Whatever the method, the advantages of digital outcrop model are numerous as already highlighted by Hodgetts (2013), McCaffrey et al. (2005) and Pringle et al. (2006): collection of data from otherwise inaccessible areas, access to different angles of view, increase of the possible measurements, attributes analysis, fast rate of data collection, and of course training and communication. This paper proposes a workflow where 3D geocellular models are built by integrating all sources of information from outcrops (surface picking, sedimentological sections, structural and sedimentary dips…). The 3D geomodels that are reconstructed can be used at the reservoir scale, in order to compare the outcrop information with subsurface models: the detailed facies models of the outcrops are transferred into petrophysical and acoustic models, which are used to test different scenarios of seismic and fluid flow modelling. The detailed 3D models are also used to test new techniques of static reservoir modelling, based either on geostatistical approaches or on deterministic (process-based) simulation techniques. A modelling workflow has been designed to model reservoir geometries and properties from
Intriligator, Devrie S.; Detman, Thomas; Fry, Craig D.; Sun Wei; Deehr, Charles; Intriligator, James
2005-08-01
A first-generation 3D kinematic, space weather forecasting solar wind model (HAFv2) has been used to show the importance of solar generated disturbances in Voyager 1 and Voyager 2 observations in the outer heliosphere. We extend this work by using a 3D MHD model (HHMS) that, like HAFv2, incorporates a global, pre-event, inhomogeneous, background solar wind plasma and interplanetary magnetic field. Initial comparisons are made between the two models of the solar wind out to 6 AU and with in-situ observations at the ACE spacecraft before and after the October/November 2003 solar events.
[3-D endocardial surface modelling based on the convex hull algorithm].
Lu, Ying; Xi, Ri-hui; Shen, Hai-dong; Ye, You-li; Zhang, Yong
2006-11-01
In this paper, a method based on the convex hull algorithm is presented for extracting modelling data from the locations of catheter electrodes within a cardiac chamber, so as to create a 3-D model of the heart chamber during diastole and to obtain a good result in the 3-D reconstruction of the chamber based on VTK.
Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session
ERIC Educational Resources Information Center
Ding, Suining
2008-01-01
This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…
3D Modeling from Multi-views Images for Cultural Heritage in Wat-Pho, Thailand
NASA Astrophysics Data System (ADS)
Soontranon, N.; Srestasathiern, P.; Lawawirojwong, S.
2015-08-01
In Thailand, there are several types of (tangible) cultural heritages. This work focuses on 3D modeling of the heritage objects from multi-views images. The images are acquired by using a DSLR camera which costs around 1,500 (camera and lens). Comparing with a 3D laser scanner, the camera is cheaper and lighter than the 3D scanner. Hence, the camera is available for public users and convenient for accessing narrow areas. The acquired images consist of various sculptures and architectures in Wat-Pho which is a Buddhist temple located behind the Grand Palace (Bangkok, Thailand). Wat-Pho is known as temple of the reclining Buddha and the birthplace of traditional Thai massage. To compute the 3D models, a diagram is separated into following steps; Data acquisition, Image matching, Image calibration and orientation, Dense matching and Point cloud processing. For the initial work, small heritages less than 3 meters height are considered for the experimental results. A set of multi-views images of an interested object is used as input data for 3D modeling. In our experiments, 3D models are obtained from MICMAC (open source) software developed by IGN, France. The output of 3D models will be represented by using standard formats of 3D point clouds and triangulated surfaces such as .ply, .off, .obj, etc. To compute for the efficient 3D models, post-processing techniques are required for the final results e.g. noise reduction, surface simplification and reconstruction. The reconstructed 3D models can be provided for public access such as website, DVD, printed materials. The high accurate 3D models can also be used as reference data of the heritage objects that must be restored due to deterioration of a lifetime, natural disasters, etc.
3-D Geometric Modeling for the 21st Century.
ERIC Educational Resources Information Center
Ault, Holly K.
1999-01-01
Describes new geometric computer models used in contemporary computer-aided design (CAD) software including wire frame, surface, solid, and parametric models. Reviews their use in engineering design and discusses the impact of these new technologies on the engineering design graphics curriculum. (Author/CCM)
Computational 3-D Model of the Human Respiratory System
We are developing a comprehensive, morphologically-realistic computational model of the human respiratory system that can be used to study the inhalation, deposition, and clearance of contaminants, while being adaptable for age, race, gender, and health/disease status. The model ...
A topological framework for interactive queries on 3D models in the Web.
Figueiredo, Mauro; Rodrigues, José I; Silvestre, Ivo; Veiga-Pires, Cristina
2014-01-01
Several technologies exist to create 3D content for the web. With X3D, WebGL, and X3DOM, it is possible to visualize and interact with 3D models in a web browser. Frequently, three-dimensional objects are stored using the X3D file format for the web. However, there is no explicit topological information, which makes it difficult to design fast algorithms for applications that require adjacency and incidence data. This paper presents a new open source toolkit TopTri (Topological model for Triangle meshes) for Web3D servers that builds the topological model for triangular meshes of manifold or nonmanifold models. Web3D client applications using this toolkit make queries to the web server to get adjacent and incidence information of vertices, edges, and faces. This paper shows the application of the topological information to get minimal local points and iso-lines in a 3D mesh in a web browser. As an application, we present also the interactive identification of stalactites in a cave chamber in a 3D web browser. Several tests show that even for large triangular meshes with millions of triangles, the adjacency and incidence information is returned in real time making the presented toolkit appropriate for interactive Web3D applications.
3D modelling in salt tectonic context: the Crocodile minibasin in Sivas (Turkey)
NASA Astrophysics Data System (ADS)
Collon, Pauline; Pichat, Alexandre; Kergaravat, Charlie; Botella, Arnaud; Caumon, Guillaume; Favreau, Océane; Fuss, Gaétan; Godefroy, Gabriel; Lerat, Marine; Mazuyer, Antoine; Parquer, Marion; Charreau, Julien; Callot, Jean-Paul; Ringenbach, Jean-Claude
2015-04-01
Impermeable, with a low density and acting as a viscous fluid at the geological time scale, salt plays a unique tectonic role favouring hydrocarbon trap formations. Halokinetic structures are various and difficult to image with classic seismic techniques. Thus, outcrop analogues are precious and sought after. Since the re-interpretation in September 2011 of its evaporite deposits, the Oligo-Miocene basin of Sivas (Turkey) is a new choice analogue for the study of salt tectonic with outstanding outcrops reflecting the variety of salt related structures: minibasins, diapirs, welds... While studying these structures requires an important field work, building 3D models becomes an interesting way to better help understanding the three-dimensional organisation and to further perform numerical simulations (e.g., restoration, potential field measurement campaign simulation). The complex geometries observed in salt tectonic context make these 3D geological models particularly challenging to build, especially when only outcrops data are available. We focus on the Crocodile minibasin (Sivas) and present a modelling strategy using a subtle combination of recently developed techniques. Available data are: a Digital Elevation Model, satellite images and associated interpreted bedding traces on topography, orientation measurements of the strata and a conceptual interpretation. Located on an ancient salt extrusion, this minibasin is filled with lacustrine and sabkha sediments. It is interpreted with a closed synclinal structure on North. On its southern part, a central diapir has risen up, separating two tightened synclinals. The salt surface is modelled first as a triangulated surface using a classical explicit surface patch construction method and a manual post-process mesh improvement. Then, the minibasin sediments are modelled with an implicit approach that considers interfaces as equipotentials of a 3D scalar field. This requires to build a volumetric mesh conformable to the
ERIC Educational Resources Information Center
Lim, Kah Heng Alexander; Loo, Zhou Yaw; Goldie, Stephen J.; Adams, Justin W.; McMenamin, Paul G.
2016-01-01
Three-dimensional (3D) printing is an emerging technology capable of readily producing accurate anatomical models, however, evidence for the use of 3D prints in medical education remains limited. A study was performed to assess their effectiveness against cadaveric materials for learning external cardiac anatomy. A double blind randomized…
NASA Astrophysics Data System (ADS)
Docchio, F.; Sansoni, G.; Trebeschi, M.
2005-06-01
This paper presents the activity carried out to perform the three-dimensional acquisition of the "Vittoria Alata", a 2m-high, bronze statue, symbol of our City, located at the Civici Musei di Arte e Storia (S. Giulia) of Brescia. The acquisition of the statue has been performed by using a three-dimensional vision system based on active triangulation and on the projection of non-coherent light. This system, called OPL-3D, represents one of the research products of our Laboratory, which has been active for years in the development of techniques and systems for the contactless acquisition of free-form, complex shapes. The study, originally motivated by the need to explore a new hypothesis on the origin of the "Vittoria Alata", led to its complete digitization and description in terms of both polygonal and NURBS-based models. A suite of copies of the whole statue has been obtained in the framework of the collaboration between the City Museum and the EOS Electro Optical Systems GmbH, located in Munich, Germany. As a first step, one 30 cm-high replica of the whole statue has been produced using a low-resolution triangle model of the statue (3.5 millions of triangles). As a second step, two 1:1 scale copies of the statue have been produced. For them, the Laboratory has provided the high resolution STL file (16 millions of triangles). The paper discusses in detail the hardware and the software facilities used to implement the whole process, and gives a comprehensive description of the results.
Elastic Properties of 3D-Printed Rock Models: Dry and Saturated Cracks
NASA Astrophysics Data System (ADS)
Huang, L.; Stewart, R.; Dyaur, N.
2014-12-01
Many regions of subsurface interest are, or will be, fractured. In addition, these zones many be subject to varying saturations and stresses. New 3D printing techniques using different materials and structures, provide opportunities to understand porous or fractured materials and fluid effects on their elastic properties. We use a 3D printer (Stratasys Dimension SST 768) to print two rock models: a solid octahedral prism and a porous cube with thousands of penny-shaped cracks. The printing material is ABS thermal plastic with a density of 1.04 g/cm3. After printing, we measure the elastic properties of the models, both dry and 100% saturated with water. Both models exhibit VTI (Vertical Transverse Isotropic) symmetry due to laying (about 0.25 mm thick) of the printing process. The prism has a density of 0.96 g/cm3 before saturation and 1.00 g/cm3 after saturation. Its effective porosity is calculated to be 4 %. We use ultrasonic transducers (500 kHz) to measure both P- and shear-wave velocities, and the raw material has a P-wave velocity of 1.89 km/s and a shear-wave velocity of 0.91 km/s. P-wave velocity in the un-saturated prism increases from 1.81 km/s to 1.84 km/s after saturation in the direction parallel to layering and from 1.73 km/s to 1.81 km/s in the direction perpendicular to layering. The fast shear-wave velocity decreases from 0.88 km/s to 0.87 km/s and the slow shear-wave velocity decreases from 0.82 km/s to 0.81 km/s. The cube, printed with penny-shaped cracks, gives a density of 0.79 g/cm3 and a porosity of 24 %. We measure its P-wave velocity as 1.78 km/s and 1.68 km/s in the direction parallel and perpendicular to the layering, respectively. Its fast shear-wave velocity is 0.88 km/s and slow shear-wave velocity is 0.70 km/s. The penny-shaped cracks have significant influence on the elastic properties of the 3D-printed rock models. To better understand and explain the fluid effects on the elastic properties of the models, we apply the extended
High-Density 3D-Boron Nitride and 3D-Graphene for High-Performance Nano-Thermal Interface Material.
Loeblein, Manuela; Tsang, Siu Hon; Pawlik, Matthieu; Phua, Eric Jian Rong; Yong, Han; Zhang, Xiao Wu; Gan, Chee Lip; Teo, Edwin Hang Tong
2017-02-28
Compression studies on three-dimensional foam-like graphene and h-BN (3D-C and 3D-BN) revealed their high cross-plane thermal conductivity (62-86 W m(-1) K(-1)) and excellent surface conformity, characteristics essential for thermal management needs. Comparative studies to state-of-the-art materials and other materials currently under research for heat dissipation revealed 3D-foam's improved performance (20-30% improved cooling, temperature decrease by ΔT of 44-24 °C).
Assessing a 3D smoothed seismicity model of induced earthquakes
NASA Astrophysics Data System (ADS)
Zechar, Jeremy; Király, Eszter; Gischig, Valentin; Wiemer, Stefan
2016-04-01
As more energy exploration and extraction efforts cause earthquakes, it becomes increasingly important to control induced seismicity. Risk management schemes must be improved and should ultimately be based on near-real-time forecasting systems. With this goal in mind, we propose a test bench to evaluate models of induced seismicity based on metrics developed by the CSEP community. To illustrate the test bench, we consider a model based on the so-called seismogenic index and a rate decay; to produce three-dimensional forecasts, we smooth past earthquakes in space and time. We explore four variants of this model using the Basel 2006 and Soultz-sous-Forêts 2004 datasets to make short-term forecasts, test their consistency, and rank the model variants. Our results suggest that such a smoothed seismicity model is useful for forecasting induced seismicity within three days, and giving more weight to recent events improves forecast performance. Moreover, the location of the largest induced earthquake is forecast well by this model. Despite the good spatial performance, the model does not estimate the seismicity rate well: it frequently overestimates during stimulation and during the early post-stimulation period, and it systematically underestimates around shut-in. In this presentation, we also describe a robust estimate of information gain, a modification that can also benefit forecast experiments involving tectonic earthquakes.
Constructing stable 3D hydrodynamical models of giant stars
NASA Astrophysics Data System (ADS)
Ohlmann, Sebastian T.; Röpke, Friedrich K.; Pakmor, Rüdiger; Springel, Volker
2017-02-01
Hydrodynamical simulations of stellar interactions require stable models of stars as initial conditions. Such initial models, however, are difficult to construct for giant stars because of the wide range in spatial scales of the hydrostatic equilibrium and in dynamical timescales between the core and the envelope of the giant. They are needed for, e.g., modeling the common envelope phase where a giant envelope encompasses both the giant core and a companion star. Here, we present a new method of approximating and reconstructing giant profiles from a stellar evolution code to produce stable models for multi-dimensional hydrodynamical simulations. We determine typical stellar stratification profiles with the one-dimensional stellar evolution code mesa. After an appropriate mapping, hydrodynamical simulations are conducted using the moving-mesh code arepo. The giant profiles are approximated by replacing the core of the giant with a point mass and by constructing a suitable continuation of the profile to the center. Different reconstruction methods are tested that can specifically control the convective behaviour of the model. After mapping to a grid, a relaxation procedure that includes damping of spurious velocities yields stable models in three-dimensional hydrodynamical simulations. Initially convectively stable configurations lead to stable hydrodynamical models while for stratifications that are convectively unstable in the stellar evolution code, simulations recover the convective behaviour of the initial model and show large convective plumes with Mach numbers up to 0.8. Examples are shown for a 2 M⊙ red giant and a 0.67 M⊙ asymptotic giant branch star. A detailed analysis shows that the improved method reliably provides stable models of giant envelopes that can be used as initial conditions for subsequent hydrodynamical simulations of stellar interactions involving giant stars.
Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading
2013-07-11
advanced composites like 3D -OWC. On the other hand, a microscale simulation with resolution of individual fiber filament is impractical due to enormous...REPORT Nonlinear Multiscale Modeling of 3D Woven Fiber Composites under Ballistic Loading 14. ABSTRACT 16. SECURITY CLASSIFICATION OF: The objective of...analysis of 3D woven fiber composites under ballistic loading. Since material behavior is determined by its microstructure, it is essential to
Services Oriented Smart City Platform Based On 3d City Model Visualization
NASA Astrophysics Data System (ADS)
Prandi, F.; Soave, M.; Devigili, F.; Andreolli, M.; De Amicis, R.
2014-04-01
The rapid technological evolution, which is characterizing all the disciplines involved within the wide concept of smart cities, is becoming a key factor to trigger true user-driven innovation. However to fully develop the Smart City concept to a wide geographical target, it is required an infrastructure that allows the integration of heterogeneous geographical information and sensor networks into a common technological ground. In this context 3D city models will play an increasingly important role in our daily lives and become an essential part of the modern city information infrastructure (Spatial Data Infrastructure). The work presented in this paper describes an innovative Services Oriented Architecture software platform aimed at providing smartcities services on top of 3D urban models. 3D city models are the basis of many applications and can became the platform for integrating city information within the Smart-Cites context. In particular the paper will investigate how the efficient visualisation of 3D city models using different levels of detail (LODs) is one of the pivotal technological challenge to support Smart-Cities applications. The goal is to provide to the final user realistic and abstract 3D representations of the urban environment and the possibility to interact with a massive amounts of semantic information contained into the geospatial 3D city model. The proposed solution, using OCG standards and a custom service to provide 3D city models, lets the users to consume the services and interact with the 3D model via Web in a more effective way.
Synthesis of image sequences for Korean sign language using 3D shape model
NASA Astrophysics Data System (ADS)
Hong, Mun-Ho; Choi, Chang-Seok; Kim, Chang-Seok; Jeon, Joon-Hyeon
1995-05-01
This paper proposes a method for offering information and realizing communication to the deaf-mute. The deaf-mute communicates with another person by means of sign language, but most people are unfamiliar with it. This method enables to convert text data into the corresponding image sequences for Korean sign language (KSL). Using a general 3D shape model of the upper body leads to generating the 3D motions of KSL. It is necessary to construct the general 3D shape model considering the anatomical structure of the human body. To obtain a personal 3D shape model, this general model is to adjust to the personal base images. Image synthesis for KSL consists of deforming a personal 3D shape model and texture-mapping the personal images onto the deformed model. The 3D motions for KSL have the facial expressions and the 3D movements of the head, trunk, arms and hands and are parameterized for easily deforming the model. These motion parameters of the upper body are extracted from a skilled signer's motion for each KSL and are stored to the database. Editing the parameters according to the inputs of text data yields to generate the image sequences of 3D motions.
3-D Constraint-Based Modeling: Finding Common Themes.
ERIC Educational Resources Information Center
Wiebe, Eric N.
1999-01-01
Uses Shneiderman's Object-Action Interface model along with the engineering design process as a framework for understanding software interface elements. Provides an educational framework from which instructional materials can be developed. (Author/CCM)
Automated mask creation from a 3D model using Faethm.
Schiek, Richard Louis; Schmidt, Rodney Cannon
2007-11-01
We have developed and implemented a method which given a three-dimensional object can infer from topology the two-dimensional masks needed to produce that object with surface micro-machining. The masks produced by this design tool can be generic, process independent masks, or if given process constraints, specific for a target process. This design tool calculates the two-dimensional mask set required to produce a given three-dimensional model by investigating the vertical topology of the model.
Pluto: Modeling of 3-D Atmosphere-Surface Interactions
NASA Astrophysics Data System (ADS)
Michaels, Timothy I.
2015-11-01
Atmosphere-surface interactions on Pluto are of great importance to creating and maintaining the atmospheric variations and heterogeneous surface that have been observed by New Horizons and two decades' prior work. Publicly released images/data from New Horizons contain numerous fascinating surface features and constrasts. Insights into their origin, maintenance, and/or evolution may be gleaned through multidisciplinary climate modeling. Some results from such modeling will be presented, with an emphasis on shorter-timescale interactions.
A 3D, finite element model for baroclinic circulation on the Vancouver Island continental shelf
Walters, R.A.; Foreman, M.G.G.
1992-01-01
This paper describes the development and application of a 3-dimensional model of the barotropic and baroclinic circulation on the continental shelf west of Vancouver Island, Canada. A previous study with a 2D barotropic model and field data revealed that several tidal constituents have a significant baroclinic component (the K1 in particular). Thus we embarked on another study with a 3D model to study the baroclinic effects on the residual and several selected tidal constituents. The 3D model uses a harmonic expansion in time and a finite element discretization in space. All nonlinear terms are retained, including quadratic bottom stress, advection and wave transport (continuity nonlinearity). The equations are solved as a global and a local problem, where the global problem is the solution of the wave equation formulation of the shallow water equations, and the local problem is the solution of the momentum equation for the vertical velocity profile. These equations are coupled to the advection-diffusion equation for density so that density gradient forcing is included in the momentum equations. However, the study presented here describes diagnostic calculations for the baroclinic residual circulation only. The model is sufficiently efficient that it encourages sensitivity testing with a large number of model runs. In this sense, the model is akin to an extension of analytical solutions to the domain of irregular geometry and bottom topography where this parameter space can be explored in some detail. In particular, the consequences of the sigma coordinate system used by the model are explored. Test cases using an idealized representation of the continental shelf, shelf break and shelf slope, lead to an estimation of the velocity errors caused by interpolation errors inherent in the sigma coordinate system. On the basis of these estimates, the computational grid used in the 2D model is found to have inadequate resolution. Thus a new grid is generated with increased
Computational ocean acoustics: Advances in 3D ocean acoustic modeling
NASA Astrophysics Data System (ADS)
Schmidt, Henrik; Jensen, Finn B.
2012-11-01
The numerical model of ocean acoustic propagation developed in the 1980's are still in widespread use today, and the field of computational ocean acoustics is often considered a mature field. However, the explosive increase in computational power available to the community has created opportunities for modeling phenomena that earlier were beyond reach. Most notably, three-dimensional propagation and scattering problems have been prohibitive computationally, but are now addressed routinely using brute force numerical approaches such as the Finite Element Method, in particular for target scattering problems, where they are being combined with the traditional wave theory propagation models in hybrid modeling frameworks. Also, recent years has seen the development of hybrid approaches coupling oceanographic circulation models with acoustic propagation models, enabling the forecasting of sonar performance uncertainty in dynamic ocean environments. These and other advances made over the last couple of decades support the notion that the field of computational ocean acoustics is far from being mature. [Work supported by the Office of Naval Research, Code 321OA].
Lei, Yuguo; Jeong, Daeun; Xiao, Jifang; Schaffer, David V
2014-06-01
Human pluripotent stem cells (hPSCs) - including embryonic stem cells (hESCs) and induced pluripotent stem cells (hiPSCs) - are very promising candidates for cell therapies, tissue engineering, high throughput pharmacology screens, and toxicity testing. These applications require large numbers of high quality cells; however, scalable production of human pluripotent stem cells and their derivatives at a high density and under well-defined conditions has been a challenge. We recently reported a simple, efficient, fully defined, scalable, and good manufacturing practice (GMP) compatible 3D culture system based on a thermoreversible hydrogel for hPSC expansion and differentiation. Here, we describe additional design rationale and characterization of this system. For instance, we have determined that culturing hPSCs as a suspension in a liquid medium can exhibit lower volumetric yields due to cell agglomeration and possible shear force-induced cell loss. By contrast, using hydrogels as 3D scaffolds for culturing hPSCs reduces aggregation and may insulate from shear forces. Additionally, hydrogel-based 3D culture systems can support efficient hPSC expansion and differentiation at a high density if compatible with hPSC biology. Finally, there are considerable opportunities for future development to further enhance hydrogel-based 3D culture systems for producing hPSCs and their progeny.
Khanmohammadi, M; Darkner, S; Nava, N; Nyengaard, J R; Wegener, G; Popoli, M; Sporring, J
2017-01-01
Behavioural stress has shown to strongly affect neurotransmission within the neocortex. In this study, we analysed the effect of an acute stress model on density and distribution of neurotransmitter-containing vesicles within medial prefrontal cortex. Serial section transmission electron microscopy was employed to compare two groups of male rats: (1) rats subjected to foot-shock stress and (2) rats with sham stress as control group. Two-dimensional (2D) density measures are common in microscopic images and are estimated by following a 2D path in-section. However, this method ignores the slant of the active zone and thickness of the section. In fact, the active zone is a surface in three-dimension (3D) and the 2D measures do not accurately reflect the geometric configuration unless the active zone is perpendicular to the sectioning angle. We investigated synaptic vesicle density as a function of distance from the active zone in 3D. We reconstructed a 3D dataset by estimating the thickness of all sections and by registering all the image sections into a common coordinate system. Finally, we estimated the density as the average number of vesicles per area and volume and modelled the synaptic vesicle distribution by fitting a one-dimensional parametrized distribution that took into account the location uncertainty due to section thickness. Our results showed a clear structural difference in synaptic vesicle density and distribution between stressed and control group with improved separation by 3D measures in comparison to the 2D measures. Our results showed that acute foot-shock stress exposure significantly affected both the spatial distribution and density of the synaptic vesicles within the presynaptic terminal.
Stumpe, Martin C.; Blinov, Nikolay; Wishart, David; Kovalenko, Andriy; Pande, Vijay S.
2010-01-01
Water plays a unique role in all living organisms. Not only is it nature’s ubiquitous solvent, but it also actively takes part in many cellular processes. In particular, the structure and properties of interfacial water near biomolecules like proteins are often related to the function of the respective molecule. It can therefore be highly instructive to study the local water density around solutes in cellular systems, particularly when solvent-mediated forces like the hydrophobic effect are relevant. Computational methods like molecular dynamics (MD) simulations seem well suited to study these systems at the atomic level. However, due to sampling requirements, it is not clear that MD simulations are indeed the method of choice to obtain converged densities at a given level of precision. We here compare the calculation of local water densities with two different methods, MD simulations and the three-dimensional reference interaction site model with the Kovalenko-Hirata closure (3D-RISM-KH). In particular, we investigate the convergence of the local water density to assess the required simulation times for different levels of resolution. Moreover, we provide a quantitative comparison of the densities calculated with MD and with 3D-RISM-KH, and investigate the effect of the choice of the water model for both methods. Our results show that 3D-RISM-KH yields density distributions that are very similar to those from MD up to a 0.5 Å resolution, but for significantly reduced computational cost. The combined use of MD and 3D-RISM-KH emerges as an auspicious perspective for efficient solvent sampling in dynamical systems. PMID:21174421
3D shape modeling by integration visual and tactile cues
NASA Astrophysics Data System (ADS)
Xiong, Hanwei; Xu, Jun; Xu, Chenxi; Pan, Ming
2015-10-01
With the progress in CAD (Computer Aided Design) systems, many mechanical components can be designed efficiently with high precision. But, such a system is unfit for some organic shapes, for example, a toy. In this paper, an easy way to dealing with such shapes is presented, combing visual perception with tangible interaction. The method is divided into three phases: two tangible interaction phases and one visual reconstruction. In the first tangible phase, a clay model is used to represent the raw shape, and the designer can change the shape intuitively with his hands. Then the raw shape is scanned into a digital volume model through a low cost vision system. In the last tangible phase, a desktop haptic device from SensAble is used to refine the scanned volume model and convert it into a surface model. A physical clay model and a virtual clay mode are all used in this method to deal with the main shape and the details respectively, and the vision system is used to bridge the two tangible phases. The vision reconstruction system is only made of a camera to acquire raw shape through shape from silhouettes method. All of the systems are installed on a single desktop, make it convenient for designers. The vision system details and a design example are presented in the papers.