Science.gov

Sample records for 3d diffuser lithography

  1. 3D resolution gray-tone lithography

    NASA Astrophysics Data System (ADS)

    Dumbravescu, Niculae

    2000-04-01

    With the conventional micro machining technologies: isotropic and anisotropic, dry and wet etching, a few shapes can be done. To overcome this limitation, both binary multi- tasking technique or direct EB writing were used, but an inexpensive one-step UV-lithographic method, using a so- called 'gray-tone reticle', seems to be the best choice to produce local intensity modulation during exposure process. Although, by using this method and common technologies in standard IC fabrication it is easy to obtain an arbitrarily 3D shaping of positive thick resists, there are some limitations, too. The maximum number of gray-levels, on projection reticle, achieved by e-beam writing, are only 200. Also, for very thick resists, the limited focus depth of the projection objective gives a poor lateral resolution. These are the reasons why the author prose da new approach to enhance the 3D resolution of gray-tone lithography applied for thick resist. By a high resolution, both for vertical direction, as well as for horizontal direction. Particular emphasis was put on the design, manufacturing and use of halftone transmission masks, required for UV- lithographic step in the fabrication process of mechanical, optical or electronics components. The original design and fabrication method for the gray-tone test reticle were supported by experiments showing the main advantage of this new technology: the 3D structuring of thick resist in a single exposure step and also a very promising aspect ratio obtained of over 9:1. Preliminary experimental results are presented for positive thick resists in SEM micrographs. A future optimization of the lithographic process opens interesting perspectives for application of this high 3D resolution structuring method in the fabrication process of different products, with imposed complex smooth profiles, such as: x-ray LiGA-masks, refractive optics and surface- relief DOEs.

  2. 3D nanostructures fabricated by advanced stencil lithography

    NASA Astrophysics Data System (ADS)

    Yesilkoy, F.; Flauraud, V.; Rüegg, M.; Kim, B. J.; Brugger, J.

    2016-02-01

    This letter reports on a novel fabrication method for 3D metal nanostructures using high-throughput nanostencil lithography. Aperture clogging, which occurs on the stencil membranes during physical vapor deposition, is leveraged to create complex topographies on the nanoscale. The precision of the 3D nanofabrication method is studied in terms of geometric parameters and material types. The versatility of the technique is demonstrated by various symmetric and chiral patterns made of Al and Au.

  3. 3D nanostructures fabricated by advanced stencil lithography.

    PubMed

    Yesilkoy, F; Flauraud, V; Rüegg, M; Kim, B J; Brugger, J

    2016-03-07

    This letter reports on a novel fabrication method for 3D metal nanostructures using high-throughput nanostencil lithography. Aperture clogging, which occurs on the stencil membranes during physical vapor deposition, is leveraged to create complex topographies on the nanoscale. The precision of the 3D nanofabrication method is studied in terms of geometric parameters and material types. The versatility of the technique is demonstrated by various symmetric and chiral patterns made of Al and Au.

  4. Inverse Tomo-Lithography for Making Microscopic 3D Parts

    NASA Technical Reports Server (NTRS)

    White, Victor; Wiberg, Dean

    2003-01-01

    According to a proposal, basic x-ray lithography would be extended to incorporate a technique, called inverse tomography, that would enable the fabrication of microscopic three-dimensional (3D) objects. The proposed inverse tomo-lithographic process would make it possible to produce complex shaped, submillimeter-sized parts that would be difficult or impossible to make in any other way. Examples of such shapes or parts include tapered helices, paraboloids with axes of different lengths, and even Archimedean screws that could serve as rotors in microturbines. The proposed inverse tomo-lithographic process would be based partly on a prior microfabrication process known by the German acronym LIGA (lithographie, galvanoformung, abformung, which means lithography, electroforming, molding). In LIGA, one generates a precise, high-aspect ratio pattern by exposing a thick, x-ray-sensitive resist material to an x-ray beam through a mask that contains the pattern. One can electrodeposit metal into the developed resist pattern to form a precise metal part, then dissolve the resist to free the metal. Aspect ratios of 100:1 and patterns into resist thicknesses of several millimeters are possible.

  5. 3D Stretchable Arch Ribbon Array Fabricated via Grayscale Lithography

    PubMed Central

    Pang, Yu; Shu, Yi; Shavezipur, Mohammad; Wang, Xuefeng; Mohammad, Mohammad Ali; Yang, Yi; Zhao, Haiming; Deng, Ningqin; Maboudian, Roya; Ren, Tian-Ling

    2016-01-01

    Microstructures with flexible and stretchable properties display tremendous potential applications including integrated systems, wearable devices and bio-sensor electronics. Hence, it is essential to develop an effective method for fabricating curvilinear and flexural microstructures. Despite significant advances in 2D stretchable inorganic structures, large scale fabrication of unique 3D microstructures at a low cost remains challenging. Here, we demonstrate that the 3D microstructures can be achieved by grayscale lithography to produce a curved photoresist (PR) template, where the PR acts as sacrificial layer to form wavelike arched structures. Using plasma-enhanced chemical vapor deposition (PECVD) process at low temperature, the curved PR topography can be transferred to the silicon dioxide layer. Subsequently, plasma etching can be used to fabricate the arched stripe arrays. The wavelike silicon dioxide arch microstructure exhibits Young modulus and fracture strength of 52 GPa and 300 MPa, respectively. The model of stress distribution inside the microstructure was also established, which compares well with the experimental results. This approach of fabricating a wavelike arch structure may become a promising route to produce a variety of stretchable sensors, actuators and circuits, thus providing unique opportunities for emerging classes of robust 3D integrated systems. PMID:27345766

  6. 3D Stretchable Arch Ribbon Array Fabricated via Grayscale Lithography

    NASA Astrophysics Data System (ADS)

    Pang, Yu; Shu, Yi; Shavezipur, Mohammad; Wang, Xuefeng; Mohammad, Mohammad Ali; Yang, Yi; Zhao, Haiming; Deng, Ningqin; Maboudian, Roya; Ren, Tian-Ling

    2016-06-01

    Microstructures with flexible and stretchable properties display tremendous potential applications including integrated systems, wearable devices and bio-sensor electronics. Hence, it is essential to develop an effective method for fabricating curvilinear and flexural microstructures. Despite significant advances in 2D stretchable inorganic structures, large scale fabrication of unique 3D microstructures at a low cost remains challenging. Here, we demonstrate that the 3D microstructures can be achieved by grayscale lithography to produce a curved photoresist (PR) template, where the PR acts as sacrificial layer to form wavelike arched structures. Using plasma-enhanced chemical vapor deposition (PECVD) process at low temperature, the curved PR topography can be transferred to the silicon dioxide layer. Subsequently, plasma etching can be used to fabricate the arched stripe arrays. The wavelike silicon dioxide arch microstructure exhibits Young modulus and fracture strength of 52 GPa and 300 MPa, respectively. The model of stress distribution inside the microstructure was also established, which compares well with the experimental results. This approach of fabricating a wavelike arch structure may become a promising route to produce a variety of stretchable sensors, actuators and circuits, thus providing unique opportunities for emerging classes of robust 3D integrated systems.

  7. Fabrication of 2D and 3D photonic structures using laser lithography

    NASA Astrophysics Data System (ADS)

    Gaso, P.; Jandura, D.; Pudis, D.

    2016-12-01

    In this paper we demonstrate possibilities of three-dimensional (3D) printing technology based on two photon polymerization. We used three-dimensional dip-in direct-laser-writing (DLW) optical lithography to fabricate 2D and 3D optical structures for optoelectronics and for optical sensing applications. DLW lithography allows us use a non conventional way how to couple light into the waveguide structure. We prepared ring resonator and we investigated its transmission spectral characteristic. We present 3D inverse opal structure from its design to printing and scanning electron microscope (SEM) imaging. Finally, SEM images of some prepared photonic crystal structures were performed.

  8. Computer numerical control (CNC) lithography: light-motion synchronized UV-LED lithography for 3D microfabrication

    NASA Astrophysics Data System (ADS)

    Kim, Jungkwun; Yoon, Yong-Kyu; Allen, Mark G.

    2016-03-01

    This paper presents a computer-numerical-controlled ultraviolet light-emitting diode (CNC UV-LED) lithography scheme for three-dimensional (3D) microfabrication. The CNC lithography scheme utilizes sequential multi-angled UV light exposures along with a synchronized switchable UV light source to create arbitrary 3D light traces, which are transferred into the photosensitive resist. The system comprises a switchable, movable UV-LED array as a light source, a motorized tilt-rotational sample holder, and a computer-control unit. System operation is such that the tilt-rotational sample holder moves in a pre-programmed routine, and the UV-LED is illuminated only at desired positions of the sample holder during the desired time period, enabling the formation of complex 3D microstructures. This facilitates easy fabrication of complex 3D structures, which otherwise would have required multiple manual exposure steps as in the previous multidirectional 3D UV lithography approach. Since it is batch processed, processing time is far less than that of the 3D printing approach at the expense of some reduction in the degree of achievable 3D structure complexity. In order to produce uniform light intensity from the arrayed LED light source, the UV-LED array stage has been kept rotating during exposure. UV-LED 3D fabrication capability was demonstrated through a plurality of complex structures such as V-shaped micropillars, micropanels, a micro-‘hi’ structure, a micro-‘cat’s claw,’ a micro-‘horn,’ a micro-‘calla lily,’ a micro-‘cowboy’s hat,’ and a micro-‘table napkin’ array.

  9. Formation and properties of 3D metamaterial composites fabricated using nanometer scale laser lithography (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Prokes, Sharka M.; Perkins, Frank K.; Glembocki, Orest J.

    2015-08-01

    Metamaterials designed for the visible or near IR wavelengths require patterning on the nanometer scale. To achieve this, e-beam lithography is used, but it is extremely difficult and can only produce 2D structures. A new alternative technique to produce 2D and 3D structures involves laser fabrication using the Nanoscribe 3D laser lithography system. This is a direct laser writing technique which can form arbitrary 3D nanostructures on the nanometer scale and is based on multi-photon polymerization. We are creating 2D and 3D metamaterials via this technique, and subsequently conformally coating them using Atomic Layer Deposition of oxides and Ag. We will discuss the optical properties of these novel composite structures and their potential for dual resonant metamaterials.

  10. Functionalized 3D Architected Materials via Thiol-Michael Addition and Two-Photon Lithography.

    PubMed

    Yee, Daryl W; Schulz, Michael D; Grubbs, Robert H; Greer, Julia R

    2017-02-20

    Fabrication of functionalized 3D architected materials is achieved by a facile method using functionalized acrylates synthesized via thiol-Michael addition, which are then polymerized using two-photon lithography. A wide variety of functional groups can be attached, from Boc-protected amines to fluoroalkanes. Modification of surface wetting properties and conjugation with fluorescent tags are demonstrated to highlight the potential applications of this technique.

  11. Fabrication of 3D polymer microstructures using electron beam lithography and nanoimprinting technologies

    NASA Astrophysics Data System (ADS)

    Chen, Kuo-Shen; Lin, I.-Kuan; Ko, Fu-Hsang

    2005-10-01

    Recently, with the advancement in bio-MEMS and micro optoelectromechanical systems (MOEMS), 3D microstructures have become increasingly important and efficient fabrication processes are currently being sought. In this paper, a novel 3D fabrication process has been proposed by utilizing the proximity effect of electron beam lithography (EBL) to create 3D microstructures on negative photoresists as the primary molds, which are subsequently transferred to their corresponding negative molds using nanoimprinting lithography (NIL), and to form the final replicas by either electroforming or polymer spin casting to reduce cost. The effect of electron backscattering on the 3D topography is firstly investigated and the relationship among the spatial distribution of electron beam irradiation, the spot size and the dosage level of irradiation is experimentally characterized in SU-8 to establish a dosage kernel distribution function. A mathematical procedure based on linear operation of this kernel function is then proposed to mimic the EBL fabrication process. The subsequent experiments indicate that the predicted surface profiles agree with the experimental results to large extent and the proposed mathematical operations are valid for the purpose of designing the fabrication process. Finally, the SU-8 primary molds are transferred to NEB to form secondary molds via the nanoimprinting process. It shows that the nanoimprinting process can essentially reproduce the shape and geometry of the primary molds. However, due to the nature of polymer-to-polymer contact printing, the elastic restitution of materials induces a slight deviation of the final device size and a further study should be made in the future to minimize such types of error. Although the above problems are reported, nevertheless, the primary experimental results indicate that this proposed fabrication process is capable of creating 3D shape microstructure in the order of 1 µm and should be useful for related

  12. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography

    PubMed Central

    2015-01-01

    Biomimetic functional surfaces are attracting increasing attention for their relevant technological applications. Despite these efforts, inherent limitations of microfabrication techniques prevent the replication of complex hierarchical microstructures. Using a 3D laser lithography technique, we fabricated a 3D patterned surface bioinspired to Salvinia molesta leaves. The artificial hairs, with crownlike heads, were reproduced by scaling down (ca. 100 times smaller) the dimensions of natural features, so that microscale hairs with submicrometric resolution were attained. The micropatterned surface, in analogy with the natural model, shows interesting properties in terms of hydrophobicity and air retention when submerged by water, even if realized with a hydrophilic material. Furthermore, we successfully demonstrated the capability to promote localized condensation of water droplets from moisture in the atmosphere. PMID:26558410

  13. 3D Micropatterned Surface Inspired by Salvinia molesta via Direct Laser Lithography.

    PubMed

    Tricinci, Omar; Terencio, Tercio; Mazzolai, Barbara; Pugno, Nicola M; Greco, Francesco; Mattoli, Virgilio

    2015-11-25

    Biomimetic functional surfaces are attracting increasing attention for their relevant technological applications. Despite these efforts, inherent limitations of microfabrication techniques prevent the replication of complex hierarchical microstructures. Using a 3D laser lithography technique, we fabricated a 3D patterned surface bioinspired to Salvinia molesta leaves. The artificial hairs, with crownlike heads, were reproduced by scaling down (ca. 100 times smaller) the dimensions of natural features, so that microscale hairs with submicrometric resolution were attained. The micropatterned surface, in analogy with the natural model, shows interesting properties in terms of hydrophobicity and air retention when submerged by water, even if realized with a hydrophilic material. Furthermore, we successfully demonstrated the capability to promote localized condensation of water droplets from moisture in the atmosphere.

  14. 3-D patterning of silicon by laser-initiated, liquid-assisted colloidal (LILAC) lithography.

    PubMed

    Ulmeanu, M; Grubb, M P; Jipa, F; Quignon, B; Ashfold, M N R

    2015-06-01

    We report a comprehensive study of laser-initiated, liquid-assisted colloidal (LILAC) lithography, and illustrate its utility in patterning silicon substrates. The method combines single shot laser irradiation (frequency doubled Ti-sapphire laser, 50fs pulse duration, 400nm wavelength) and medium-tuned optical near-field effects around arrays of silica colloidal particles to achieve 3-D surface patterning of silicon. A monolayer (or multilayers) of hexagonal close packed silica colloidal particles act as a mask and offer a route to liquid-tuned optical near field enhancement effects. The resulting patterns are shown to depend on the difference in refractive index of the colloidal particles (ncolloid) and the liquid (nliquid) in which they are immersed. Two different topographies are demonstrated experimentally: (a) arrays of bumps, centred beneath the original colloidal particles, when using liquids with nliquidncolloid - and explained with the aid of complementary Mie scattering simulations. The LILAC lithography technique has potential for rapid, large area, organized 3-D patterning of silicon (and related) substrates.

  15. Directed Self-Assembly of Block Copolymers in 3D Templates Fabricated by Multiphoton Lithography

    NASA Astrophysics Data System (ADS)

    Singer, Jonathan; Thomas, Edwin

    2012-02-01

    Confinement of block-copolymers (BCP) within physical templates has been used as a method to both enhance the microdomain order and manipulate the morphology. Previous investigations have focused on 1D or quasi-2D templates (e.g. trenches, cylindrical pores) patterned at a variety of length scales. We have sought to employ the nearly-arbitrary structural fabrication afforded by multiphoton direct write lithography (MPL) to extend these stereolithographic control techniques to 3D directed assembly. Complex architectures, for example those formed by large scale lithographic techniques such as interference lithography or self-assembly, can be broken down into simplifier component structures: e.g. multibranch junctions, bends, and symmetric or asymmetric connecting pores. By utilizing MPL, we can fabricate model geometries possessing these features written in photoresist at various scales. We then infiltrate these structures with PS-PDMS BCP and observe the resulting morphology by SEM from focused ion beam cross-sections, allowing development of design rules that may be applied towards progressively more complex templates and the fabrication of 3D hierarchical structures with highly ordered and novel domain features spanning from the micron to the 10 nm scale.

  16. A novel lithography process for 3D (three-dimensional) interconnect using an optical direct-writing exposure system

    NASA Astrophysics Data System (ADS)

    Azuma, T.; Sekiguchi, M.; Matsuo, M.; Kawasaki, A.; Hagiwara, K.; Matsui, H.; Kawamura, N.; Kishimoto, K.; Nakamura, A.; Washio, Y.

    2010-03-01

    A novel lithography process for 3D (Three-dimensional) interconnect was developed using an optical direct-writing exposure tool. A reflective IR (Infra-red) alignment system allows a direct detection of alignment marks both on front-side and back-side of wafer, and consequently allows feasible micro-fabrication for 3D interconnect using the reversed wafer. A combination of the optical direct-writing exposure tool of Dainippon Screen MFG. Co., Ltd. with the reflective IR alignment system and a high aspect chemically amplified resist of Tokyo Ohka Kogyo Co., Ltd. provides the lithography process exclusively for 12-inch wafer level 3D interconnect.

  17. Using low-contrast negative-tone PMMA at cryogenic temperatures for 3D electron beam lithography.

    PubMed

    Schnauber, Peter; Schmidt, Ronny; Kaganskiy, Arsenty; Heuser, Tobias; Gschrey, Manuel; Rodt, Sven; Reitzenstein, Stephan

    2016-05-13

    We report on a 3D electron beam lithography (EBL) technique using polymethyl methacrylate (PMMA) in the negative-tone regime as a resist. First, we briefly demonstrate 3D EBL at room temperature. Then we concentrate on cryogenic temperatures where PMMA exhibits a low contrast, which allows for straightforward patterning of 3D nano- and microstructures. However, conventional EBL patterning at cryogenic temperatures is found to cause severe damage to the microstructures. Through an extensive study of lithography parameters, exposure techniques, and processing steps we deduce a hypothesis for the cryogenic PMMA's structural evolution under electron beam irradiation that explains the damage. In accordance with this hypothesis, a two step lithography technique involving a wide-area pre-exposure dose slightly smaller than the onset dose is applied. It enables us to demonstrate a >95% process yield for the low-temperature fabrication of 3D microstructures.

  18. Application of two-photon 3D lithography for the fabrication of embedded ORMOCER waveguides

    NASA Astrophysics Data System (ADS)

    Schmidt, V.; Kuna, L.; Satzinger, V.; Houbertz, R.; Jakopic, G.; Leising, G.

    2007-02-01

    The idea of applying the two-photon 3D lithography (2P-3DL) to an industrial printed wiring board (PWB) fabrication process is quite pioneering. Taking advantage of the unique rapid prototyping properties of 2P-3DL--its particularly inherent true 3D capability and its high flexibility in processing- this lithographic method can be adapted and optimized concerning the direct laser-writing of integrated optical interconnects with tens of microns in diameter. This will push the method forward towards industrial fabrication of next generation PWBs with integrated optical layers, and put it on the leading edge of printed circuit board (PCB) technology. In this context, the concept of a direct laser-written embedded waveguide is based on the local increase of the refractive index of the exposed material, which is triggered by two-photon absorption (TPA) at the laser focus. The laser induced refractive index difference forms the core of the waveguide, whereas the unexposed surrounding material forms the cladding. Thus, only one optical material is required to form the waveguide using true 3D lithographic process compared to other devices, which significantly simplifies processes. The material is subject to stringent requirements concerning the PWB production process: beside its high refractive index change, a low optical loss of the fabricated optical interconnect is required. The integration of the waveguide into the volume of the material also requires thick films up to 500 microns on the PWB substrate, and the material has to withstand the complete PWB fabrication process, where the board is chemically treated and exposed to high temperatures as well as high pressure during the lamination processes of subsequent metal layers. For this application, an inorganic-organic hybrid polymer (ORMOCER) film is applied, casted onto a PWB substrate, and the two-photon 3D lithography system parameters and optics are tuned such that waveguides with a diameter of approx. 30 microns

  19. 3D lithography by rapid curing of the liquid instabilities at nanoscale

    PubMed Central

    Coppola, Sara; Vespini, Veronica; Merola, Francesco; Finizio, Andrea; Ferraro, Pietro

    2011-01-01

    In liquids realm, surface tension and capillarity are the key forces driving the formation of the shapes pervading the nature. The steady dew drops appearing on plant leaves and spider webs result from the minimization of the overall surface energy [Zheng Y, et al. (2010) Nature 463:640–643]. Thanks to the surface tension, the interfaces of such spontaneous structures exhibit extremely good spherical shape and consequently worthy optical quality. Also nanofluidic instabilities generate a variety of fascinating liquid silhouettes, but they are however intrinsically short-lived. Here we show that such unsteady liquid structures, shaped in polymeric liquids by an electrohydrodynamic pressure, can be rapidly cured by appropriate thermal treatments. The fabrication of many solid microstructures exploitable in photonics is demonstrated, thus leading to a new concept in 3D lithography. The applicability of specific structures as optical tweezers and as novel remotely excitable quantum dots–embedded microresonators is presented. PMID:21896720

  20. 3-D adaptive nonlinear complex-diffusion despeckling filter.

    PubMed

    Rodrigues, Pedro; Bernardes, Rui

    2012-12-01

    This work aims to improve the process of speckle noise reduction while preserving edges and other relevant features through filter expansion from 2-D to 3-D. Despeckling is very important for data visual inspection and as a preprocessing step for other algorithms, as they are usually notably influenced by speckle noise. To that intent, a 3-D approach is proposed for the adaptive complex-diffusion filter. This 3-D iterative filter was applied to spectral-domain optical coherence tomography medical imaging volumes of the human retina and a quantitative evaluation of the results was performed to allow a demonstration of the better performance of the 3-D over the 2-D filtering and to choose the best total diffusion time. In addition, we propose a fast graphical processing unit parallel implementation so that the filter can be used in a clinical setting.

  1. Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography.

    PubMed

    Firsov, An; Firsov, A; Loechel, B; Erko, A; Svintsov, A; Zaitsev, S

    2014-11-17

    Here we present an approach for creating full-color digital rainbow holograms based on mixing three basic colors. Much like in a color TV with three luminescent points per single screen pixel, each color pixel of initial image is presented by three (R, G, B) distinct diffractive gratings in a hologram structure. Change of either duty cycle or area of the gratings are used to provide proper R, G, B intensities. Special algorithms allow one to design rather complicated 3D images (that might even be replacing each other with hologram rotation). The software developed ("RainBow") provides stability of colorization of rotated image by means of equalizing of angular blur from gratings responsible for R, G, B basic colors. The approach based on R, G, B color synthesis allows one to fabricate gray-tone rainbow hologram containing white color what is hardly possible in traditional dot-matrix technology. Budgetary electron beam lithography based on SEM column was used to fabricate practical examples of digital rainbow hologram. The results of fabrication of large rainbow holograms from design to imprinting are presented. Advantages of the EBL in comparison to traditional optical (dot-matrix) technology is considered.

  2. 3D Functional Elements Deep Inside Silicon with Nonlinear Laser Lithography

    NASA Astrophysics Data System (ADS)

    Tokel, Onur; Turnali, Ahmet; Ergecen, Emre; Pavlov, Ihor; Ilday, Fatih Omer

    Functional optical and electrical elements fabricated on silicon (Si) constitute fundamental building blocks of electronics and Si-photonics. However, since the highly successful established lithography are geared towards surface processing, elements embedded inside Si simply do not exist. Here, we present a novel direct-laser writing method for positioning buried functional elements inside Si wafers. This new phenomenon is distinct from previous work, in that the surface of Si is not modified. By exploiting nonlinear interactions of a focused laser, permanent refractive index changes are induced inside Si. The imprinted index contrast is then used to demonstrate a plethora of functional elements and capabilities embedded inside Si. In particular, we demonstrate the first functional optical element inside Si, the first information-storage capability inside Si, creation of high-resolution subsurface holograms, buried multilevel structures, and complex 3D architectures in Si, none of which is currently possible with other methods. This new approach complements available techniques by taking advantage of the real estate under Si, and therefore can pave the way for creating entirely new multilevel devices through electronic-photonic integration.

  3. Creating bio-inspired hierarchical 3D-2D photonic stacks via planar lithography on self-assembled inverse opals.

    PubMed

    Burgess, Ian B; Aizenberg, Joanna; Lončar, Marko

    2013-12-01

    Structural hierarchy and complex 3D architecture are characteristics of biological photonic designs that are challenging to reproduce in synthetic materials. Top-down lithography allows for designer patterning of arbitrary shapes, but is largely restricted to planar 2D structures. Self-assembly techniques facilitate easy fabrication of 3D photonic crystals, but controllable defect-integration is difficult. In this paper we combine the advantages of top-down and bottom-up fabrication, developing two techniques to deposit 2D-lithographically-patterned planar layers on top of or in between inverse-opal 3D photonic crystals and creating hierarchical structures that resemble the architecture of the bright green wing scales of the butterfly, Parides sesostris. These fabrication procedures, combining advantages of both top-down and bottom-up fabrication, may prove useful in the development of omnidirectional coloration elements and 3D-2D photonic crystal devices.

  4. Diffusive smoothing of 3D segmented medical data

    PubMed Central

    Patané, Giuseppe

    2014-01-01

    This paper proposes an accurate, computationally efficient, and spectrum-free formulation of the heat diffusion smoothing on 3D shapes, represented as triangle meshes. The idea behind our approach is to apply a (r,r)-degree Padé–Chebyshev rational approximation to the solution of the heat diffusion equation. The proposed formulation is equivalent to solve r sparse, symmetric linear systems, is free of user-defined parameters, and is robust to surface discretization. We also discuss a simple criterion to select the time parameter that provides the best compromise between approximation accuracy and smoothness of the solution. Finally, our experiments on anatomical data show that the spectrum-free approach greatly reduces the computational cost and guarantees a higher approximation accuracy than previous work. PMID:26257940

  5. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors.

    PubMed

    Yuan, Liang Leon; Herman, Peter R

    2016-02-29

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  6. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    NASA Astrophysics Data System (ADS)

    Yuan, Liang (Leon); Herman, Peter R.

    2016-02-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems.

  7. Laser Scanning Holographic Lithography for Flexible 3D Fabrication of Multi-Scale Integrated Nano-structures and Optical Biosensors

    PubMed Central

    Yuan, Liang (Leon); Herman, Peter R.

    2016-01-01

    Three-dimensional (3D) periodic nanostructures underpin a promising research direction on the frontiers of nanoscience and technology to generate advanced materials for exploiting novel photonic crystal (PC) and nanofluidic functionalities. However, formation of uniform and defect-free 3D periodic structures over large areas that can further integrate into multifunctional devices has remained a major challenge. Here, we introduce a laser scanning holographic method for 3D exposure in thick photoresist that combines the unique advantages of large area 3D holographic interference lithography (HIL) with the flexible patterning of laser direct writing to form both micro- and nano-structures in a single exposure step. Phase mask interference patterns accumulated over multiple overlapping scans are shown to stitch seamlessly and form uniform 3D nanostructure with beam size scaled to small 200 μm diameter. In this way, laser scanning is presented as a facile means to embed 3D PC structure within microfluidic channels for integration into an optofluidic lab-on-chip, demonstrating a new laser HIL writing approach for creating multi-scale integrated microsystems. PMID:26922872

  8. Spun-wrapped aligned nanofiber (SWAN) lithography for fabrication of micro/nano-structures on 3D objects

    NASA Astrophysics Data System (ADS)

    Ye, Zhou; Nain, Amrinder S.; Behkam, Bahareh

    2016-06-01

    Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for fabrication of multiscale (nano to microscale) structures on 3D objects without restriction on substrate material and geometry. SWAN lithography combines precise deposition of polymeric nanofiber masks, in aligned single or multilayer configurations, with well-controlled solvent vapor treatment and etching processes to enable high throughput (>10-7 m2 s-1) and large-area fabrication of sub-50 nm to several micron features with high pattern fidelity. Using this technique, we demonstrate whole-surface nanopatterning of bulk and thin film surfaces of cubes, cylinders, and hyperbola-shaped objects that would be difficult, if not impossible to achieve with existing methods. We demonstrate that the fabricated feature size (b) scales with the fiber mask diameter (D) as b1.5 ~ D. This scaling law is in excellent agreement with theoretical predictions using the Johnson, Kendall, and Roberts (JKR) contact theory, thus providing a rational design framework for fabrication of systems and devices that require precisely designed multiscale features.Fabrication of micro/nano-structures on irregularly shaped substrates and three-dimensional (3D) objects is of significant interest in diverse technological fields. However, it remains a formidable challenge thwarted by limited adaptability of the state-of-the-art nanolithography techniques for nanofabrication on non-planar surfaces. In this work, we introduce Spun-Wrapped Aligned Nanofiber (SWAN) lithography, a versatile, scalable, and cost-effective technique for

  9. High speed and flexible PEB 3D diffusion simulation based on Sylvester equation

    NASA Astrophysics Data System (ADS)

    Lin, Pei-Chun; Chen, Charlie Chung-Ping

    2013-04-01

    Post exposure bake (PEB) Diffusion effect is one of the most difficult issues in modeling chemically amplified resists. These model equations result in a system of nonlinear partial differential equations describing the time rate of change reaction and diffusion. Verifying such models are difficult, so numerical simulations are needed to solve the model equations. In this paper, we propose a high speed 3D resist image simulation algorithm based on a novel method to solve the PEB Diffusion equation. Our major discovery is that the matrix formulation of the diffusion equation under the Crank- Nicolson scheme can be derived into a special form, AX+XB=C, where the X matrix is a 3D resist image after diffusion effect, A and B matrices contain the diffusion coefficients and the space relationship between directions x, y and z. These matrices are sparse, symmetric and diagonal dominant. The C matrix is the last time-step resist image. The Sylvester equation can be reduced to another form as (I⊗A + BT⊗I) X =C, in which the operator ⊗ is the Kronecker product notation. Compared with a traditional convolution method, our method is more useful in a way that boundary conditions can be more flexible. From our experimental results, we see that the error of the convolution method can be as high as 30% at borders of the design pattern. Furthermore, since the PEB temperature may not be uniform at multi-zone PEB, the convolution method might not be directly applicable in this scenario. Our method is about 20 times faster than the convolution method for a single time step (2 seconds) as illustrated in the attached figure. To simulate 50 seconds of the flexible PEB diffusion process, our method only takes 210 seconds with a convolution set up for a 1240×1240 working area. We use the typical 45nm immersion lithography in our work. The exposure wavelength is set to 193nm; the NA is 1.3775; and the diffusion coefficient is 1.455×10-17m2/s at PEB temperature 150°C along with PEB

  10. Massively parallel patterning of complex 2D and 3D functional polymer brushes by polymer pen lithography.

    PubMed

    Xie, Zhuang; Chen, Chaojian; Zhou, Xuechang; Gao, Tingting; Liu, Danqing; Miao, Qian; Zheng, Zijian

    2014-08-13

    We report the first demonstration of centimeter-area serial patterning of complex 2D and 3D functional polymer brushes by high-throughput polymer pen lithography. Arbitrary 2D and 3D structures of poly(glycidyl methacrylate) (PGMA) brushes are fabricated over areas as large as 2 cm × 1 cm, with a remarkable throughput being 3 orders of magnitudes higher than the state-of-the-arts. Patterned PGMA brushes are further employed as resist for fabricating Au micro/nanostructures and hard molds for the subsequent replica molding of soft stamps. On the other hand, these 2D and 3D PGMA brushes are also utilized as robust and versatile platforms for the immobilization of bioactive molecules to form 2D and 3D patterned DNA oligonucleotide and protein chips. Therefore, this low-cost, yet high-throughput "bench-top" serial fabrication method can be readily applied to a wide range of fields including micro/nanofabrication, optics and electronics, smart surfaces, and biorelated studies.

  11. Estimation of line dimensions in 3D direct laser writing lithography

    NASA Astrophysics Data System (ADS)

    Guney, M. G.; Fedder, G. K.

    2016-10-01

    Two photon polymerization (TPP) based 3D direct laser writing (3D-DLW) finds application in a wide range of research areas ranging from photonic and mechanical metamaterials to micro-devices. Most common structures are either single lines or formed by a set of interconnected lines as in the case of crystals. In order to increase the fidelity of these structures and reach the ultimate resolution, the laser power and scan speed used in the writing process should be chosen carefully. However, the optimization of these writing parameters is an iterative and time consuming process in the absence of a model for the estimation of line dimensions. To this end, we report a semi-empirical analytic model through simulations and fitting, and demonstrate that it can be used for estimating the line dimensions mostly within one standard deviation of the average values over a wide range of laser power and scan speed combinations. The model delimits the trend in onset of micro-explosions in the photoresist due to over-exposure and of low degree of conversion due to under-exposure. The model guides setting of high-fidelity and robust writing parameters of a photonic crystal structure without iteration and in close agreement with the estimated line dimensions. The proposed methodology is generalizable by adapting the model coefficients to any 3D-DLW setup and corresponding photoresist as a means to estimate the line dimensions for tuning the writing parameters.

  12. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.

    PubMed

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-11-23

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  13. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    PubMed Central

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-01-01

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051

  14. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy

    PubMed Central

    Sartison, Marc; Portalupi, Simone Luca; Gissibl, Timo; Jetter, Michael; Giessen, Harald; Michler, Peter

    2017-01-01

    In the current study, we report on the deterministic fabrication of solid immersion lenses (SILs) on lithographically pre-selected semiconductor quantum dots (QDs). We demonstrate the combination of state-of-the-art low-temperature in-situ photolithography and femtosecond 3D direct laser writing. Several QDs are pre-selected with a localization accuracy of less than 2 nm with low-temperature lithography and three-dimensional laser writing is then used to deterministically fabricate hemispherical lenses on top of the quantum emitter with a submicrometric precision. Due to the printed lenses, the QD light extraction efficiency is enhanced by a factor of 2, the pumping laser is focused more, and the signal-to-noise ratio is increased, leading to an improved localization accuracy of the QD to well below 1 nm. Furthermore, modifications of the QD properties, i.e. strain and variation of internal quantum efficiency induced by the printed lenses, are also reported. PMID:28057941

  15. Combining in-situ lithography with 3D printed solid immersion lenses for single quantum dot spectroscopy

    NASA Astrophysics Data System (ADS)

    Sartison, Marc; Portalupi, Simone Luca; Gissibl, Timo; Jetter, Michael; Giessen, Harald; Michler, Peter

    2017-01-01

    In the current study, we report on the deterministic fabrication of solid immersion lenses (SILs) on lithographically pre-selected semiconductor quantum dots (QDs). We demonstrate the combination of state-of-the-art low-temperature in-situ photolithography and femtosecond 3D direct laser writing. Several QDs are pre-selected with a localization accuracy of less than 2 nm with low-temperature lithography and three-dimensional laser writing is then used to deterministically fabricate hemispherical lenses on top of the quantum emitter with a submicrometric precision. Due to the printed lenses, the QD light extraction efficiency is enhanced by a factor of 2, the pumping laser is focused more, and the signal-to-noise ratio is increased, leading to an improved localization accuracy of the QD to well below 1 nm. Furthermore, modifications of the QD properties, i.e. strain and variation of internal quantum efficiency induced by the printed lenses, are also reported.

  16. Modeling the diffusion of phosphorus in silicon in 3-D

    SciTech Connect

    Baker, K.R.

    1994-12-31

    The use of matrix preconditioning in semiconductor process simulation is examined. The simplified nonlinear single-species model for the diffusion of phosphorus into silicon is considered. The experimental three-dimensional simulator, PEPPER3, which uses finite differences and the numerical method of lines to implement the reaction-diffusion equation is modified to allow NSPCG to be called to solve the linear system in the inner Newton loop. Use of NSPCG allowed various accelerators such as Generalized Minimal Residual (GMRES) and Conjugate Gradient (CG) to be used in conjunction with preconditioners such as Richardson, Jacobi, and Incomplete Cholesky.

  17. 1,2,3-D Diffusion Depletion Multi-Group

    SciTech Connect

    Milgram, Mike

    1992-04-20

    CITATION is designed to solve problems using the finite difference representation of neutron diffusion theory, treating up to three space dimensions with arbitrary group to group scattering. X-y-z, theta-r-z, hexagonal z, and triagonal z geometries may be treated. Depletion problems may be solved and fuel managed for multi-cycle analysis. Extensive first order perturbation results may be obtained given microscopic data and nuclide concentrations. Statics problems may be solved and perturbation results obtained with microscopic data.

  18. 3D printing of soft lithography mold for rapid production of polydimethylsiloxane-based microfluidic devices for cell stimulation with concentration gradients.

    PubMed

    Kamei, Ken-ichiro; Mashimo, Yasumasa; Koyama, Yoshie; Fockenberg, Christopher; Nakashima, Miyuki; Nakajima, Minako; Li, Junjun; Chen, Yong

    2015-04-01

    Three-dimensional (3D) printing is advantageous over conventional technologies for the fabrication of sophisticated structures such as 3D micro-channels for future applications in tissue engineering and drug screening. We aimed to apply this technology to cell-based assays using polydimethylsiloxane (PDMS), the most commonly used material for fabrication of micro-channels used for cell culture experiments. Useful properties of PDMS include biocompatibility, gas permeability and transparency. We developed a simple and robust protocol to generate PDMS-based devices using a soft lithography mold produced by 3D printing. 3D chemical gradients were then generated to stimulate cells confined to a micro-channel. We demonstrate that concentration gradients of growth factors, important regulators of cell/tissue functions in vivo, influence the survival and growth of human embryonic stem cells. Thus, this approach for generation of 3D concentration gradients could have strong implications for tissue engineering and drug screening.

  19. Diffusion of co-sputtered metals as bonding materials for 3D interconnects during thermal treatments.

    PubMed

    Hsu, S Y; Chen, H Y; Chen, K N

    2012-03-01

    Diffusion behaviors of co-sputtered metals during thermal treatments were investigated, where these co-sputtered metals can be used as bonding materials for 3D Interconnects. In this paper, we report the diffusion behaviors and discuss the diffusion mechanisms of co-sputtered metals before and after annealing. Atom and vacancy volume, vacancy formation energy, and activation energy are proposed to explain the diffusion direction and diffusion rate among different co-sputtered metals. Based on the excellent bonding performance of this method, Cu/metal co-sputtering bonding is considered as a potential candidate for advanced bonding technology.

  20. FPGA-based real-time anisotropic diffusion filtering of 3D ultrasound images

    NASA Astrophysics Data System (ADS)

    Castro-Pareja, Carlos R.; Dandekar, Omkar S.; Shekhar, Raj

    2005-02-01

    Three-dimensional ultrasonic imaging, especially the emerging real-time version of it, is particularly valuable in medical applications such as echocardiography, obstetrics and surgical navigation. A known problem with ultrasound images is their high level of speckle noise. Anisotropic diffusion filtering has been shown to be effective in enhancing the visual quality of 3D ultrasound images and as preprocessing prior to advanced image processing. However, due to its arithmetic complexity and the sheer size of 3D ultrasound images, it is not possible to perform online, real-time anisotropic diffusion filtering using standard software implementations. We present an FPGA-based architecture that allows performing anisotropic diffusion filtering of 3D images at acquisition rates, thus enabling the use of this filtering technique in real-time applications, such as visualization, registration and volume rendering.

  1. Design of extended viewing zone at autostereoscopic 3D display based on diffusing optical element

    NASA Astrophysics Data System (ADS)

    Kim, Min Chang; Hwang, Yong Seok; Hong, Suk-Pyo; Kim, Eun Soo

    2012-03-01

    In this paper, to realize a non-glasses type 3D display as next step from the current glasses-typed 3D display, it is suggested that a viewing zone is designed for the 3D display using DOE (Diffusing Optical Element). Viewing zone of proposed method is larger than that of the current parallax barrier method or lenticular method. Through proposed method, it is shown to enable the expansion and adjustment of the area of viewing zone according to viewing distance.

  2. 3-D residual eddy current field characterisation: applied to diffusion weighted magnetic resonance imaging.

    PubMed

    O'Brien, Kieran; Daducci, Alessandro; Kickler, Nils; Lazeyras, Francois; Gruetter, Rolf; Feiweier, Thorsten; Krueger, Gunnar

    2013-08-01

    Clinical use of the Stejskal-Tanner diffusion weighted images is hampered by the geometric distortions that result from the large residual 3-D eddy current field induced. In this work, we aimed to predict, using linear response theory, the residual 3-D eddy current field required for geometric distortion correction based on phantom eddy current field measurements. The predicted 3-D eddy current field induced by the diffusion-weighting gradients was able to reduce the root mean square error of the residual eddy current field to ~1 Hz. The model's performance was tested on diffusion weighted images of four normal volunteers, following distortion correction, the quality of the Stejskal-Tanner diffusion-weighted images was found to have comparable quality to image registration based corrections (FSL) at low b-values. Unlike registration techniques the correction was not hindered by low SNR at high b-values, and results in improved image quality relative to FSL. Characterization of the 3-D eddy current field with linear response theory enables the prediction of the 3-D eddy current field required to correct eddy current induced geometric distortions for a wide range of clinical and high b-value protocols.

  3. Comparing GPU Implementations of Bilateral and Anisotropic Diffusion Filters for 3D Biomedical Datasets

    SciTech Connect

    Howison, Mark

    2010-05-06

    We compare the performance of hand-tuned CUDA implementations of bilateral and anisotropic diffusion filters for denoising 3D MRI datasets. Our tests sweep comparable parameters for the two filters and measure total runtime, memory bandwidth, computational throughput, and mean squared errors relative to a noiseless reference dataset.

  4. High-resolution DTI of a localized volume using 3D single-shot diffusion-weighted STimulated echo-planar imaging (3D ss-DWSTEPI).

    PubMed

    Jeong, Eun-Kee; Kim, Seong-Eun; Kholmovski, Eugene G; Parker, Dennis L

    2006-12-01

    Diffusion tensor MRI (DTI) using conventional single-shot (SS) 2D diffusion-weighted (DW)-EPI is subject to severe susceptibility artifacts. Multishot DW imaging (DWI) techniques can reduce these distortions, but they generally suffer from artifacts caused by motion-induced phase errors. Parallel imaging can also reduce the distortions if the sensitivity profiles of the receiver coils allow a sufficiently high reduction factor for the desired field of view (FOV). A novel 3D DTI technique, termed 3D single-shot STimulated EPI (3D ss-STEPI), was developed to acquire high-resolution DW images of a localized region. The new technique completes k-space acquisition of a limited 3D volume after a single diffusion preparation. Because the DW magnetization is stored in the longitudinal direction until readout, it undergoes T(1) rather than T(2) decay. Inner volume imaging (IVI) is used to limit the imaging volume. This reduces the time required for EPI readout of each complete k(x)-k(y) plane, and hence reduces T(2)(*) decay during the readout and T(1) decay between the readout of each k(z). 3D ss-STEPI images appear to be free of severe susceptibility and motion artifacts. 3D ss-STEPI allows high-resolution DTI of limited volumes of interest, such as localized brain regions, cervical spinal cord, optic nerve, and other extracranial organs.

  5. Anisotropy-resolving models for predicting separation in 3--D asymmetric diffusers

    NASA Astrophysics Data System (ADS)

    Jeyapaul, Elbert; Durbin, Paul

    2011-11-01

    All linear eddy-viscosity models are qualitatively incorrect in predicting separation in 3-D asymmetric diffusers. The failure to predict normal stress and shear stress anisotropy at high production-dissipation ratios is the cause. The Explicit algebraic Reynolds stress model (Wallin and Johansson, 2000) predicts the mean flow field in the diffuser accurately, but not the wall pressure and Reynolds stresses. Recalibrating the coefficients of the rapid part of pressure-strain model improves the wall pressure prediction. Including the convective, diffusive, streamline curvature effects on anisotropy has not been beneficial. The model has been tested using a family of diffusers having the same nominal streamwise pressure gradient, LES data is used as a reference. Professor

  6. Multilayer Spheroids To Quantify Drug Uptake and Diffusion in 3D

    PubMed Central

    2015-01-01

    There is a need for new quantitative in vitro models of drug uptake and diffusion to help assess drug toxicity/efficacy as well as new more predictive models for drug discovery. We report a three-dimensional (3D) multilayer spheroid model and a new algorithm to quantitatively study uptake and inward diffusion of fluorescent calcein via gap junction intercellular communication (GJIC). When incubated with calcein-AM, a substrate of the efflux transporter P-glycoprotein (Pgp), spheroids from a variety of cell types accumulated calcein over time. Accumulation decreased in spheroids overexpressing Pgp (HEK-MDR) and was increased in the presence of Pgp inhibitors (verapamil, loperamide, cyclosporin A). Inward diffusion of calcein was negligible in spheroids that lacked GJIC (OVCAR-3, SK-OV-3) and was reduced in the presence of an inhibitor of GJIC (carbenoxolone). In addition to inhibiting Pgp, verapamil and loperamide, but not cyclosporin A, inhibited inward diffusion of calcein, suggesting that they also inhibit GJIC. The dose response curves of verapamil’s inhibition of Pgp and GJIC were similar (IC50: 8 μM). The method is amenable to many different cell types and may serve as a quantitative 3D model that more accurately replicates in vivo barriers to drug uptake and diffusion. PMID:24641346

  7. Planar Gradient Diffusion System to Investigate Chemotaxis in a 3D Collagen Matrix.

    PubMed

    Stout, David A; Toyjanova, Jennet; Franck, Christian

    2015-06-12

    The importance of cell migration can be seen through the development of human life. When cells migrate, they generate forces and transfer these forces to their surrounding area, leading to cell movement and migration. In order to understand the mechanisms that can alter and/or affect cell migration, one can study these forces. In theory, understanding the fundamental mechanisms and forces underlying cell migration holds the promise of effective approaches for treating diseases and promoting cellular transplantation. Unfortunately, modern chemotaxis chambers that have been developed are usually restricted to two dimensions (2D) and have complex diffusion gradients that make the experiment difficult to interpret. To this end, we have developed, and describe in this paper, a direct-viewing chamber for chemotaxis studies, which allows one to overcome modern chemotaxis chamber obstacles able to measure cell forces and specific concentration within the chamber in a 3D environment to study cell 3D migration. More compelling, this approach allows one to successfully model diffusion through 3D collagen matrices and calculate the coefficient of diffusion of a chemoattractant through multiple different concentrations of collagen, while keeping the system simple and user friendly for traction force microscopy (TFM) and digital volume correlation (DVC) analysis.

  8. Multislice diffusion mapping for 3-D evolution of cerebral ischemia in a rat stroke model.

    PubMed

    Reith, W; Hasegawa, Y; Latour, L L; Dardzinski, B J; Sotak, C H; Fisher, M

    1995-01-01

    Diffusion-weighted magnetic resonance imaging (DWI) can quantitatively demonstrate cerebral ischemia within minutes after the onset of ischemia. The use of a DWI echo-planar multislice technique in this study and the mapping of the apparent diffusion coefficient (ADC) of water, a reliable indicator of ischemic regions, allow for the detection of the three-dimensional (3-D) evolution of ischemia in a rat stroke model. We evaluated 13 time points from 5 to 180 minutes after occlusion of the middle cerebral artery (MCA) and monitored the 3-D spread of ischemia. Within 5 minutes after the onset of ischemia, regions with reduced ADC values occurred. The core of the lesion, with the lowest absolute ADC values, first appeared in the lateral caudoputamen and frontoparietal cortex, then spread to adjacent areas. The volume of ischemic tissue was 224 +/- 48.5 mm3 (mean +/- SEM) after 180 minutes, ranging from 92 to 320 mm3, and this correlated well with the corrected infarct volume at postmortem (194 +/- 23.1 mm3, r = 0.72, p < 0.05). This experiment demonstrated that 3-D multislice diffusion mapping can detect ischemic regions noninvasively 5 minutes after MCA occlusion and follow the development of ischemia. The distribution of changes in absolute ADC values within the ischemic region can be followed over time, giving important information about the evolution of focal ischemia.

  9. A 3D Tissue-Printing Approach for Validation of Diffusion Tensor Imaging in Skeletal Muscle.

    PubMed

    Berry, David B; You, Shangting; Warner, John; Frank, Lawrence R; Chen, Shaochen; Ward, Samuel R

    2017-03-24

    The ability to noninvasively assess skeletal muscle microstructure, which predicts function and disease, would be of significant clinical value. One method that holds this promise is diffusion tensor magnetic resonance imaging (DT-MRI), which is sensitive to the microscopic diffusion of water within tissues and has become ubiquitous in neuroimaging as a way of assessing neuronal structure and damage. However, its application to the assessment of changes in muscle microstructure associated with injury, pathology, or age remains poorly defined, because it is difficult to precisely control muscle microstructural features in vivo. However, recent advances in additive manufacturing technologies allow precision-engineered diffusion phantoms with histology informed skeletal muscle geometry to be manufactured. Therefore, the goal of this study was to develop skeletal muscle phantoms at relevant size scales to relate microstructural features to MRI-based diffusion measurements. A digital light projection based rapid 3D printing method was used to fabricate polyethylene glycol diacrylate based diffusion phantoms with (1) idealized muscle geometry (no geometry; fiber sizes of 30, 50, or 70 μm or fiber size of 50 μm with 40% of walls randomly deleted) or (2) histology-based geometry (normal and after 30-days of denervation) containing 20% or 50% phosphate-buffered saline (PBS). Mean absolute percent error (8%) of the printed phantoms indicated high conformity to templates when "fibers" were >50 μm. A multiple spin-echo echo planar imaging diffusion sequence, capable of acquiring diffusion weighted data at several echo times, was used in an attempt to combine relaxometry and diffusion techniques with the goal of separating intracellular and extracellular diffusion signals. When fiber size increased (30-70 μm) in the 20% PBS phantom, fractional anisotropy (FA) decreased (0.32-0.26) and mean diffusivity (MD) increased (0.44 × 10(-3) mm(2)/s-0.70 × 10(-3) mm

  10. Sharp beveled tip hollow microneedle arrays fabricated by LIGA and 3D soft lithography with polyvinyl alcohol

    NASA Astrophysics Data System (ADS)

    Pérennès, F.; Marmiroli, B.; Matteucci, M.; Tormen, M.; Vaccari, L.; Di Fabrizio, E.

    2006-03-01

    This paper describes a fabrication process of hollow microneedle arrays with a sharp beveled tip for transdermal drug delivery. A master is fabricated through a double deep x-ray lithography process. First, a polymethylmethacrylate (PMMA) sheet is exposed to produce single PMMA parts with a sawtooth profile. The tip angle of each tooth determines the final tip angle of the microneedles. The PMMA parts are assembled and glued on a conductive substrate and then exposed through a second x-ray mask containing an array of hollow triangles as absorbing structures. A metal layer is then electrodeposited around the needles in order to form the future base of the array. A polyvinyl alcohol (PVA) solution is cast on top of the master to form a negative mold of the microneedle array after a low temperature curing and peel-off steps. A liquid PMMA solution is cast on top of the PVA negative mold and after the full PMMA polymerization the PVA is dissolved in water. This fabrication method can be performed in a non-clean room environment and requires little instrumentation. It is therefore compatible with a low-cost mass-fabrication scheme.

  11. [Depiction of the cranial nerves around the cavernous sinus by 3D reversed FISP with diffusion weighted imaging (3D PSIF-DWI)].

    PubMed

    Ishida, Go; Oishi, Makoto; Jinguji, Shinya; Yoneoka, Yuichiro; Sato, Mitsuya; Fujii, Yukihiko

    2011-10-01

    To evaluate the anatomy of cranial nerves running in and around the cavernous sinus, we employed three-dimensional reversed fast imaging with steady-state precession (FISP) with diffusion weighted imaging (3D PSIF-DWI) on 3-T magnetic resonance (MR) system. After determining the proper parameters to obtain sufficient resolution of 3D PSIF-DWI, we collected imaging data of 20-side cavernous regions in 10 normal subjects. 3D PSIF-DWI provided high contrast between the cranial nerves and other soft tissues, fluid, and blood in all subjects. We also created volume-rendered images of 3D PSIF-DWI and anatomically evaluated the reliability of visualizing optic, oculomotor, trochlear, trigeminal, and abducens nerves on 3D PSIF-DWI. All 20 sets of cranial nerves were visualized and 12 trochlear nerves and 6 abducens nerves were partially identified. We also presented preliminary clinical experiences in two cases with pituitary adenomas. The anatomical relationship between the tumor and cranial nerves running in and around the cavernous sinus could be three-dimensionally comprehended by 3D PSIF-DWI and the volume-rendered images. In conclusion, 3D PSIF-DWI has great potential to provide high resolution "cranial nerve imaging", which visualizes the whole length of the cranial nerves including the parts in the blood flow as in the cavernous sinus region.

  12. Fractality in the neuron axonal topography of the human brain based on 3-D diffusion MRI

    NASA Astrophysics Data System (ADS)

    Katsaloulis, P.; Ghosh, A.; Philippe, A. C.; Provata, A.; Deriche, R.

    2012-05-01

    In this work the fractal architecture of the neuron axonal topography of the human brain is evaluated, as derived from 3-D diffusion MRI (dMRI) acquisitions. This is a 3D extension of work performed previously in 2D regions of interest (ROIs), where the fractal dimension of the neuron axonal topography was computed from dMRI data. A group study with 18 subjects is here conducted and the fractal dimensions D f of the entire 3-D volume of the brains is estimated via the box counting, the correlation dimension and the fractal mass dimension methods. The neuron axon data is obtained using tractography algorithms on diffusion tensor imaging of the brain. We find that all three calculations of D f give consistent results across subjects, namely, they demonstrate fractal characteristics in the short and medium length scales: different fractal exponents prevail at different length scales, an indication of multifractality. We surmise that this complexity stems as a collective property emerging when many local brain units, performing different functional tasks and having different local topologies, are recorded together.

  13. Parametric estimation of 3D tubular structures for diffuse optical tomography

    PubMed Central

    Larusson, Fridrik; Anderson, Pamela G.; Rosenberg, Elizabeth; Kilmer, Misha E.; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L.

    2013-01-01

    We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction. PMID:23411913

  14. Charactrisation of particle assemblies by 3D cross correlation light scattering and diffusing wave spectroscopy

    NASA Astrophysics Data System (ADS)

    Scheffold, Frank

    2014-08-01

    To characterize the structural and dynamic properties of soft materials and small particles, information on the relevant mesoscopic length scales is required. Such information is often obtained from traditional static and dynamic light scattering (SLS/DLS) experiments in the single scattering regime. In many dense systems, however, these powerful techniques frequently fail due to strong multiple scattering of light. Here I will discuss some experimental innovations that have emerged over the last decade. New methods such as 3D static and dynamic light scattering (3D LS) as well as diffusing wave spectroscopy (DWS) can cover a much extended range of experimental parameters ranging from dilute polymer solutions, colloidal suspensions to extremely opaque viscoelastic emulsions.

  15. Parametric estimation of 3D tubular structures for diffuse optical tomography.

    PubMed

    Larusson, Fridrik; Anderson, Pamela G; Rosenberg, Elizabeth; Kilmer, Misha E; Sassaroli, Angelo; Fantini, Sergio; Miller, Eric L

    2013-02-01

    We explore the use of diffuse optical tomography (DOT) for the recovery of 3D tubular shapes representing vascular structures in breast tissue. Using a parametric level set method (PaLS) our method incorporates the connectedness of vascular structures in breast tissue to reconstruct shape and absorption values from severely limited data sets. The approach is based on a decomposition of the unknown structure into a series of two dimensional slices. Using a simplified physical model that ignores 3D effects of the complete structure, we develop a novel inter-slice regularization strategy to obtain global regularity. We report on simulated and experimental reconstructions using realistic optical contrasts where our method provides a more accurate estimate compared to an unregularized approach and a pixel based reconstruction.

  16. Benchmarking PET for geoscientific applications: 3D quantitative diffusion coefficient determination in clay rock

    NASA Astrophysics Data System (ADS)

    Lippmann-Pipke, J.; Gerasch, R.; Schikora, J.; Kulenkampff, J.

    2017-04-01

    The 3D diagonal anisotropic effective diffusion coefficient of Na+, Deff=(Dxx, Dyy, Dzz), was quantified in a clay material in one single experiment/simulation. That is possible due to the combination of the non-invasive observation of Na+ diffusion in Opalinus clay by means of GeoPET method (PET: positron emission tomography) followed by quantitative 3D+t data evaluation by means of the finite element numerical modelling (FEM). The extracted anisotropic effective diffusion coefficient parallel (||) and normal (⊥) to the bedding of the clay rock, Deff=(D||, D⊥, D||) are comparable to those obtained on earlier experimental studies in the same clay material but with different methods. We consider this study as benchmark for the long-standing development of our GeoPET method, that explicitly includes a resolute and physics based attenuation and Compton scatter correction algorithm (Kulenkampff, J., M. Gründig, A. Zakhnini and J. Lippmann-Pipke (2016). "Geoscientific process monitoring with positron emission tomography (GeoPET)." Solid Earth 7: 1217-1231). We suggest GeoPET based fluid flow transport visualization combined with computer based process simulation henceforth as a qualified way for the quantification of three-dimensional, effective transport parameters in geosciences.

  17. BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations

    PubMed Central

    Ghaffarizadeh, Ahmadreza; Friedman, Samuel H.; Macklin, Paul

    2016-01-01

    Motivation: Computational models of multicellular systems require solving systems of PDEs for release, uptake, decay and diffusion of multiple substrates in 3D, particularly when incorporating the impact of drugs, growth substrates and signaling factors on cell receptors and subcellular systems biology. Results: We introduce BioFVM, a diffusive transport solver tailored to biological problems. BioFVM can simulate release and uptake of many substrates by cell and bulk sources, diffusion and decay in large 3D domains. It has been parallelized with OpenMP, allowing efficient simulations on desktop workstations or single supercomputer nodes. The code is stable even for large time steps, with linear computational cost scalings. Solutions are first-order accurate in time and second-order accurate in space. The code can be run by itself or as part of a larger simulator. Availability and implementation: BioFVM is written in C ++ with parallelization in OpenMP. It is maintained and available for download at http://BioFVM.MathCancer.org and http://BioFVM.sf.net under the Apache License (v2.0). Contact: paul.macklin@usc.edu. Supplementary information: Supplementary data are available at Bioinformatics online. PMID:26656933

  18. Comparison of 3D Orientation Distribution Functions Measured with Confocal Microscopy and Diffusion MRI

    PubMed Central

    Schilling, Kurt; Janve, Vaibhav; Gao, Yurui; Stepniewska, Iwona; Landman, Bennett A; Anderson, Adam W

    2016-01-01

    The ability of diffusion MRI (dMRI) fiber tractography to non-invasively map three-dimensional (3D) anatomical networks in the human brain has made it a valuable tool in both clinical and research settings. However, there are many assumptions inherent to any tractography algorithm that can limit the accuracy of the reconstructed fiber tracts. Among them is the assumption that the diffusion-weighted images accurately reflect the underlying fiber orientation distribution (FOD) in the MRI voxel. Consequently, validating dMRI’s ability to assess the underlying fiber orientation in each voxel is critical for its use as a biomedical tool. Here, using post-mortem histology and confocal microscopy, we present a method to perform histological validation of orientation functions in 3D, which has previously been limited to two-dimensional analysis of tissue sections. We demonstrate the ability to extract the 3D FOD from confocal z-stacks, and quantify the agreement between the MRI estimates of orientation information obtained using constrained spherical deconvolution (CSD) and the true geometry of the fibers. We find an orientation error of approximately 6° in voxels containing nearly parallel fibers, and 10-11° in crossing fiber regions, and note that CSD was unable to resolve fibers crossing at angles below 60° in our dataset. This is the first time the 3D white matter orientation distribution is calculated from histology and compared to dMRI. Thus, this technique serves as a gold standard for dMRI validation studies - providing the ability to determine the extent to which the dMRI signal is consistent with the histological FOD, and to establish how well different dMRI models can predict the ground truth FOD. PMID:26804781

  19. 3D structure tensor analysis of light microscopy data for validating diffusion MRI

    PubMed Central

    Khan, Ahmad Raza; Cornea, Anda; Leigland, Lindsey A.; Kohama, Steven G.; Jespersen, Sune Nørhøj; Kroenke, Christopher D.

    2015-01-01

    Diffusion magnetic resonance imaging (d-MRI) is a powerful non-invasive and non-destructive technique for characterizing brain tissue on the microscopic scale. However, the lack of validation of d-MRI by independent experimental means poses an obstacle to accurate interpretation of data acquired using this method. Recently, structure tensor analysis has been applied to light microscopy images, and this technique holds promise to be a powerful validation strategy for d-MRI. Advantages of this approach include its similarity to d-MRI in terms of averaging the effects of a large number of cellular structures, and its simplicity, which enables it to be implemented in a high-throughput manner. However, a drawback of previous implementations of this technique arises from it being restricted to 2D. As a result, structure tensor analyses have been limited to tissue sectioned in a direction orthogonal to the direction of interest. Here we describe the analytical framework for extending structure tensor analysis to 3D, and utilize the results to analyze serial image “stacks” acquired with confocal microscopy of rhesus macaque hippocampal tissue. Implementation of 3D structure tensor procedures requires removal of sources of anisotropy introduced in tissue preparation and confocal imaging. This is accomplished with image processing steps to mitigate the effects of anisotropic tissue shrinkage, and the effects of anisotropy in the point spread function (PSF). In order to address the latter confound, we describe procedures for measuring the dependence of PSF anisotropy on distance from the microscope objective within tissue. Prior to microscopy, ex vivo d-MRI measurements performed on the hippocampal tissue revealed three regions of tissue with mutually orthogonal directions of least restricted diffusion that correspond to CA1, alveus and inferior longitudinal fasciculus. We demonstrate the ability of 3D structure tensor analysis to identify structure tensor orientations

  20. Diffuse reflectance optical topography: location of inclusions in 3D and detectability limits

    PubMed Central

    Carbone, N. A.; Baez, G. R.; García, H. A.; Waks Serra, M. V.; Di Rocco, H. O.; Iriarte, D. I.; Pomarico, J. A.; Grosenick, D.; Macdonald, R.

    2014-01-01

    In the present contribution we investigate the images of CW diffusely reflected light for a point-like source, registered by a CCD camera imaging a turbid medium containing an absorbing lesion. We show that detection of μa variations (absorption anomalies) is achieved if images are normalized to background intensity. A theoretical analysis based on the diffusion approximation is presented to investigate the sensitivity and the limitations of our proposal and a novel procedure to find the location of the inclusions in 3D is given and tested. An analysis of the noise and its influence on the detection capabilities of our proposal is provided. Experimental results on phantoms are also given, supporting the proposed approach. PMID:24876999

  1. Intra-retinal layer segmentation of 3D optical coherence tomography using coarse grained diffusion map.

    PubMed

    Kafieh, Raheleh; Rabbani, Hossein; Abramoff, Michael D; Sonka, Milan

    2013-12-01

    Optical coherence tomography (OCT) is a powerful and noninvasive method for retinal imaging. In this paper, we introduce a fast segmentation method based on a new variant of spectral graph theory named diffusion maps. The research is performed on spectral domain (SD) OCT images depicting macular and optic nerve head appearance. The presented approach does not require edge-based image information in localizing most of boundaries and relies on regional image texture. Consequently, the proposed method demonstrates robustness in situations of low image contrast or poor layer-to-layer image gradients. Diffusion mapping applied to 2D and 3D OCT datasets is composed of two steps, one for partitioning the data into important and less important sections, and another one for localization of internal layers. In the first step, the pixels/voxels are grouped in rectangular/cubic sets to form a graph node. The weights of the graph are calculated based on geometric distances between pixels/voxels and differences of their mean intensity. The first diffusion map clusters the data into three parts, the second of which is the area of interest. The other two sections are eliminated from the remaining calculations. In the second step, the remaining area is subjected to another diffusion map assessment and the internal layers are localized based on their textural similarities. The proposed method was tested on 23 datasets from two patient groups (glaucoma and normals). The mean unsigned border positioning errors (mean ± SD) was 8.52 ± 3.13 and 7.56 ± 2.95 μm for the 2D and 3D methods, respectively.

  2. Understanding the mixing process in 3D microfluidic nozzle/diffuser systems: simulations and experiments

    NASA Astrophysics Data System (ADS)

    Sayah, Abdeljalil; Gijs, Martin A. M.

    2016-11-01

    We characterise computationally and experimentally a three-dimensional (3D) microfluidic passive mixer for various Reynolds numbers ranging from 1 to 100, corresponding to primary flow rates of 10-870 µl min-1. The 3D mixing channel is composed of multiple curved segments: circular arcs situated in the substrate plane and curved nozzle/diffuser elements normal to the substrate plane. Numerical simulation provides a detailed understanding of the mixing mechanism resulting from the geometrical topology of the mixer. These Comsol software-based simulations reveal the development of two secondary flows perpendicular to the primary flow: a swirling flow resulting from tangential injection of the flow into the nozzle holes and Dean vortices present in the circular arcs. These phenomena are particularly important at a Reynolds number larger than 30, where mixing occurs by chaotic advection. Experimentally, the 3D mixer is fabricated in a monolithic glass substrate by powder blasting machining, exploiting eroding powder beams at various angles of impact with respect to the substrate plane. Experimental mixing was characterised using two coloured dyes, showing nearly perfect mixing for a microfluidic footprint of the order of a few mm2, in good agreement with the simulations.

  3. 3D choroid neovascularization growth prediction based on reaction-diffusion model

    NASA Astrophysics Data System (ADS)

    Zhu, Shuxia; Chen, Xinjian; Shi, Fei; Xiang, Dehui; Zhu, Weifang; Chen, Haoyu

    2016-03-01

    Choroid neovascularization (CNV) is a kind of pathology from the choroid and CNV-related disease is one important cause of vision loss. It is desirable to predict the CNV growth rate so that appropriate treatment can be planned. In this paper, we seek to find a method to predict the growth of CNV based on 3D longitudinal Optical Coherence Tomography (OCT) images. A reaction-diffusion model is proposed for prediction. The method consists of four phases: pre-processing, meshing, CNV growth modeling and prediction. We not only apply the reaction-diffusion model to the disease region, but also take the surrounding tissues into consideration including outer retinal layer, inner retinal layer and choroid layer. The diffusion in these tissues is considered as isotropic. The finite-element-method (FEM) is used to solve the partial differential equations (PDE) in the diffusion model. The curve of CNV growth with treatment are fitted and then we can predict the CNV status in a future time point. The preliminary results demonstrated that our proposed method is accurate and the validity and feasibility of our model is obvious.

  4. Magnetic Dissipation in Asymmetric Strong Guide 3D Simulations: Examples of Magnetic Diffusion and Reconnection

    NASA Astrophysics Data System (ADS)

    Scudder, J. D.; Karimabadi, H.; Daughton, W. S.

    2013-12-01

    Interpretations of 2D simulations of magnetic reconnection are greatly simplified by using the flux function, usually the out of plane component of the vector potential. This theoretical device is no longer available when simulations are analyzed in 3-D. We illustrate the results of determining the locale rates of flux slippage in simulations by a technique based on Maxwell's equations. The technique recovers the usual results obtained for the flux function in 2D simulations, but remains viable in 3D simulations where there is no flux function. The method has also been successfully tested for full PIC simulations where reconnection is geometrically forbiddden. While such layers possess measurable flux slippages (diffusion) their level is not as strong as recorded in known 2D PIC reconnection sites using the same methodology. This approach will be used to explore the spatial incidence and strength of flux slippages across a 3D, asymmetric, strong guide field run discussed previously in the literature. Regions of diffusive behavior are illustrated where LHDI has been previously identified out on the separatrices, while much stronger flux slippages, typical of the X-regions of 2D simulations, are shown to occur elsewhere throughout the simulation. These results suggest that reconnection requires sufficiently vigorous flux slippage to be self sustaining, while non-zero flux slippage can and does occur without being at the reconnection site. A cross check of this approach is provided by the mixing ratio of tagged simulation particles of known spatial origin discussed by Daughton et al., 2013 (this meeting); they provide an integral measure of flux slippage up to the present point in the simulation. We will discuss the correlations between our Maxwell based flux slippage rates and the inferred rates of change of this mixing ratio (as recorded in the local fluid frame).

  5. Monte carlo simulation of 3-D buffered Ca(2+) diffusion in neuroendocrine cells.

    PubMed Central

    Gil, A; Segura, J; Pertusa, J A; Soria, B

    2000-01-01

    Buffered Ca(2+) diffusion in the cytosol of neuroendocrine cells is a plausible explanation for the slowness and latency in the secretion of hormones. We have developed a Monte Carlo simulation to treat the problem of 3-D diffusion and kinetic reactions of ions and buffers. The 3-D diffusion is modeled as a random walk process that follows the path of each ion and buffer molecule, combined locally with a stochastic treatment of the first-order kinetic reactions involved. Such modeling is able to predict [Ca(2+)] and buffer concentration time courses regardless of how low the calcium influx is, and it is therefore a convenient method for dealing with physiological calcium currents and concentrations. We study the effects of the diffusional and kinetic parameters of the model on the concentration time courses as well as on the local equilibrium of buffers with calcium. An in-mobile and fast endogenous buffer as described by, Biophys. J. 72:674-690) was able to reach local equilibrium with calcium; however, the exogenous buffers considered are displaced drastically from equilibrium at the start of the calcium pulse, particularly below the pores. The versatility of the method also allows the effect of different arrangements of calcium channels on submembrane gradients to be studied, including random distribution of calcium channels and channel clusters. The simulation shows how the particular distribution of channels or clusters can be of relevance for secretion in the case where the distribution of release granules is correlated with the channels or clusters. PMID:10620270

  6. Confocal fluorometer for diffusion tracking in 3D engineered tissue constructs

    NASA Astrophysics Data System (ADS)

    Daly, D.; Zilioli, A.; Tan, N.; Buttenschoen, K.; Chikkanna, B.; Reynolds, J.; Marsden, B.; Hughes, C.

    2016-03-01

    We present results of the development of a non-contacting instrument, called fScan, based on scanning confocal fluorometry for assessing the diffusion of materials through a tissue matrix. There are many areas in healthcare diagnostics and screening where it is now widely accepted that the need for new quantitative monitoring technologies is a major pinch point in patient diagnostics and in vitro testing. With the increasing need to interpret 3D responses this commonly involves the need to track the diffusion of compounds, pharma-active species and cells through a 3D matrix of tissue. Methods are available but to support the advances that are currently only promised, this monitoring needs to be real-time, non-invasive, and economical. At the moment commercial meters tend to be invasive and usually require a sample of the medium to be removed and processed prior to testing. This methodology clearly has a number of significant disadvantages. fScan combines a fiber based optical arrangement with a compact, free space optical front end that has been integrated so that the sample's diffusion can be measured without interference. This architecture is particularly important due to the "wet" nature of the samples. fScan is designed to measure constructs located within standard well plates and a 2-D motion stage locates the required sample with respect to the measurement system. Results are presented that show how the meter has been used to evaluate movements of samples through collagen constructs in situ without disturbing their kinetic characteristics. These kinetics were little understood prior to these measurements.

  7. Implementation of 3D prostrate ring-scanning mechanism for NIR diffuse optical imaging phantom validation

    NASA Astrophysics Data System (ADS)

    Yu, Jhao-Ming; Chen, Liang-Yu; Pan, Min-Cheng; Hsu, Ya-Fen; Pan, Min-Chun

    2015-03-01

    Diffuse optical imaging (DOI) providing functional information of tissues has drawn great attention for the last two decades. Near infrared (NIR) DOI systems composed of scanning bench, opt-electrical measurement module, system control, and data processing and image reconstruction schemes are developed for the screening and diagnosis of breast tumors. Mostly, the scanning bench belonging to fixed source-and-detector configuration limits computed image resolution to an extent. To cope with the issue, we propose, design and implement a 3D prostrate ring-scanning equipment for NIR DOI with flexible combinations of illumination and detection, and with the function of radial, circular and vertical movement without hard compression of breast tissue like the imaging system using or incorporating with X-ray mammographic bench. Especially, a rotation-sliding-and-moving mechanism was designed for the guidance of source- and detection-channel movement. Following the previous justification for synthesized image reconstruction, in the paper the validation using varied phantoms is further conducted and 3D image reconstruction for their absorption and scattering coefficients is illustrated through the computation of our in-house coded schemes. The source and detection NIR data are acquired to reconstruct the 3D images through the operation of scanning bench in the movement of vertical, radial and circular directions. Rather than the fixed configuration, the addressed screening/diagnosing equipment has the flexibility for optical-channel expansion with a compromise among construction cost, operation time, and spatial resolution of reconstructed μa and μs' images.

  8. PFLOW: A 3-D Numerical Modeling Tool for Calculating Fluid-Pressure Diffusion from Coulomb Strain

    NASA Astrophysics Data System (ADS)

    Wolf, L. W.; Lee, M.; Meir, A.; Dyer, G.; Ma, K.; Chan, C.

    2009-12-01

    A new 3D time-dependent pore-pressure diffusion model PFLOW is developed to investigate the response of pore fluids to the crustal deformation generated by strong earthquakes in heterogeneous geologic media. Given crustal strain generated by changes in Coulomb stress, this MATLAB-based code uses Skempton's coefficient to calculate resulting changes fluid pressure. Pore-pressure diffusion can be tracked over time in a user-defined model space with user-prescribed Neumann or Dirchilet boundary conditions and with spatially variable values of permeability. PFLOW employs linear or quadratic finite elements for spatial discretization and first order or second order, explicit or implicit finite difference discretization in time. PFLOW is easily interfaced with output from deformation modeling programs such as Coulomb (Toda et al., 2007) or 3D-DEF (Gomberg and Ellis, 1994). The code is useful for investigating to first-order the evolution of pore pressure changes induced by changes in Coulomb stress and their possible relation to water-level changes in wells or changes in stream discharge. It can also be used for student research and classroom instruction. As an example application, we calculate the coseismic pore pressure changes and diffusion induced by volumetric strain associated with the 1999 Chi-Chi earthquake (Mw = 7.6) in Taiwan. The Chi-Chi earthquake provides an unique opportunity to investigate the spatial and time-dependent poroelastic response of near-field rocks and sediments because there exist extensive observational data of water-level changes and crustal deformation. The integrated model allows us to explore whether changes in Coulomb stress can adequately explain hydrologic anomalies observed in areas such as Taiwan’s western foothills and the Choshui River alluvial plain. To calculate coseismic strain, we use the carefully calibrated finite fault-rupture model of Ma et al. (2005) and the deformation modeling code Coulomb 3.1 (Toda et al., 2007

  9. 3-D Modeling of Pore Pressure Diffusion Beneath Koyna and Warna Reservoirs, Western India

    NASA Astrophysics Data System (ADS)

    Yadav, Amrita; Gahalaut, Kalpna; Purnachandra Rao, N.

    2017-03-01

    The mechanism of reservoir-triggered seismicity is well-understood and explains the earthquake occurrence at different reservoir sites. It can be attributed to the stresses due to water loading and to changes in fluid pressure in pores within the rock matrix. In the present study a 3-D fluid flow numerical model is used to investigate the pore pressure diffusion as a cause for continued seismicity in the Koyna-Warna region in western India. It is shown that reservoir water level fluctuations are sufficient to trigger earthquakes at the seismogenic depths in the region. Our numerical model suggests that a vertical fault with hydraulic conductivity in the range 2-6 m/day facilitates the diffusion of pressure at focal depths of earthquakes in the Koyna-Warna region. Also, for triggering of earthquakes a higher vertical conductivity is required for the Warna region than for the Koyna region. A lag of two months period is found between the maximum water level and the significant hydraulic head required to trigger earthquakes at the focal depth using the appropriate hydraulic conductivity for both the reservoirs.

  10. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    SciTech Connect

    B. Philip; Z. Wang; M.A. Berrill; M. Birke; M. Pernice

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton–Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  11. Dynamic implicit 3D adaptive mesh refinement for non-equilibrium radiation diffusion

    NASA Astrophysics Data System (ADS)

    Philip, B.; Wang, Z.; Berrill, M. A.; Birke, M.; Pernice, M.

    2014-04-01

    The time dependent non-equilibrium radiation diffusion equations are important for solving the transport of energy through radiation in optically thick regimes and find applications in several fields including astrophysics and inertial confinement fusion. The associated initial boundary value problems that are encountered often exhibit a wide range of scales in space and time and are extremely challenging to solve. To efficiently and accurately simulate these systems we describe our research on combining techniques that will also find use more broadly for long term time integration of nonlinear multi-physics systems: implicit time integration for efficient long term time integration of stiff multi-physics systems, local control theory based step size control to minimize the required global number of time steps while controlling accuracy, dynamic 3D adaptive mesh refinement (AMR) to minimize memory and computational costs, Jacobian Free Newton-Krylov methods on AMR grids for efficient nonlinear solution, and optimal multilevel preconditioner components that provide level independent solver convergence.

  12. Parareal in time 3D numerical solver for the LWR Benchmark neutron diffusion transient model

    SciTech Connect

    Baudron, Anne-Marie; Riahi, Mohamed Kamel; Salomon, Julien

    2014-12-15

    In this paper we present a time-parallel algorithm for the 3D neutrons calculation of a transient model in a nuclear reactor core. The neutrons calculation consists in numerically solving the time dependent diffusion approximation equation, which is a simplified transport equation. The numerical resolution is done with finite elements method based on a tetrahedral meshing of the computational domain, representing the reactor core, and time discretization is achieved using a θ-scheme. The transient model presents moving control rods during the time of the reaction. Therefore, cross-sections (piecewise constants) are taken into account by interpolations with respect to the velocity of the control rods. The parallelism across the time is achieved by an adequate use of the parareal in time algorithm to the handled problem. This parallel method is a predictor corrector scheme that iteratively combines the use of two kinds of numerical propagators, one coarse and one fine. Our method is made efficient by means of a coarse solver defined with large time step and fixed position control rods model, while the fine propagator is assumed to be a high order numerical approximation of the full model. The parallel implementation of our method provides a good scalability of the algorithm. Numerical results show the efficiency of the parareal method on large light water reactor transient model corresponding to the Langenbuch–Maurer–Werner benchmark.

  13. Diffuse optical 3D-slice imaging of bounded turbid media using a new integro-differential equation.

    PubMed

    Pattanayak, D; Yodh, A

    1999-04-12

    A new integro-differential equation for diffuse photon density waves (DPDW) is derived within the diffusion approximation. The new equation applies to inhomogeneous bounded turbid media. Interestingly, it does not contain any terms involving gradients of the light diffusion coefficient. The integro-differential equation for diffusive waves is used to develop a 3D-slice imaging algorithm based the on angular spectrum representation in the parallel plate geometry. The algorithm may be useful for near infrared optical imaging of breast tissue, and is applicable to other diagnostics such as ultrasound and microwave imaging.

  14. Study of a non-diffusing radiochromic gel dosimeter for 3D radiation dose imaging

    NASA Astrophysics Data System (ADS)

    Marsden, Craig Michael

    2000-12-01

    This thesis investigates the potential of a new radiation gel dosimeter, based on nitro-blue tetrazolium (NBTZ) suspended in a gelatin mold. Unlike all Fricke based gel dosimeters this dosimeter does not suffer from diffusive loss of image stability. Images are obtained by an optical tomography method. Nitro blue tetrazolium is a common biological indicator that when irradiated in an aqueous medium undergoes reduction to a highly colored formazan, which has an absorbance maximum at 525nm. Tetrazolium is water soluble while the formazan product is insoluble. The formazan product sticks to the gelatin matrix and the dose image is maintained for three months. Methods to maximize the sensitivity of the system were evaluated. It was found that a chemical detergent, Triton X-100, in combination with sodium formate, increased the dosimeter sensitivity significantly. An initial G-value of formazan production for a dosimeter composed of 1mM NBTZ, gelatin, and water was on the order of 0.2. The addition of Triton and formate produced a G-value in excess of 5.0. The effects of NBTZ, triton, formate, and gel concentration were all investigated. All the gels provided linear dose vs. absorbance plots for doses from 0 to >100 Gy. It was determined that gel concentration had minimal if any effect on sensitivity. Sensitivity increased slightly with increasing NBTZ concentration. Triton and formate individually and together provided moderate to large increases in dosimeter sensitivity. The dosimeter described in this work can provide stable 3D radiation dose images for all modalities of radiation therapy equipment. Methods to increase sensitivity are developed and discussed.

  15. A remark on the Beale-Kato-Majda criterion for the 3D MHD equations with zero magnetic diffusivity

    NASA Astrophysics Data System (ADS)

    Gala, Sadek; Ragusa, Maria Alessandra

    2016-06-01

    In this work, we show that a smooth solution of the 3D MHD equations with zero magnetic diffusivity in the whole space ℝ3 breaks down if and only if a certain norm of the magnetic field blows up at the same time.

  16. 3D-Printed High-Density Droplet Array Chip for Miniaturized Protein Crystallization Screening under Vapor Diffusion Mode.

    PubMed

    Liang, Yi-Ran; Zhu, Li-Na; Gao, Jie; Zhao, Hong-Xia; Zhu, Ying; Ye, Sheng; Fang, Qun

    2017-03-23

    Here we describe the combination of three-dimensional (3D) printed chip and automated microfluidic droplet-based screening techniques for achieving massively parallel, nanoliter-scale protein crystallization screening under vapor diffusion mode. We fabricated high-density microwell array chips for sitting-drop vapor diffusion crystallization utilizing the advantage of the 3D-printing technique in producing high-aspect-ratio chips. To overcome the obstacle of 3D-printed microchips in performing long-term reactions caused by their porousness and gas permeability properties in chip body, we developed a two-step postprocessing method, including paraffin filling and parylene coating, to achieve high sealability and stability. We also developed a simple method especially suitable for controlling the vapor diffusion speed of nanoliter-scale droplets by changing the layer thickness of covering oil. With the above methods, 84 tests of nanoliter-scale protein crystallization under vapor diffusion mode were successfully achieved in the 7 × 12 droplet array chip with a protein consumption of 10 nL for each test, which is 20-100 times lower than that in the conventional large-volume screening system. Such a nanoliter-scale vapor diffusion system was applied to two model proteins with commercial precipitants and displayed advantages over that under microbatch mode. It identified more crystallization conditions, especially for the protein samples with lower concentrations.

  17. Simple Multi-level Microchannel Fabrication by Pseudo-Grayscale Backside Diffused Light Lithography

    PubMed Central

    Lai, David; Labuz, Joseph M.; Kim, Jiwon; Luker, Gary D.; Shikanov, Ariella; Takayama, Shuichi

    2014-01-01

    Photolithography of multi-level channel features in microfluidics is laborious and/or costly. Grayscale photolithography is mostly used with positive photoresists and conventional front side exposure, but the grayscale masks needed are generally costly and positive photoresists are not commonly used in microfluidic rapid prototyping. Here we introduce a simple and inexpensive alternative that uses pseudo-grayscale (pGS) photomasks in combination with backside diffused light lithography (BDLL) and the commonly used negative photoresist, SU-8. BDLL can produce smooth multi-level channels of gradually changing heights without use of true grayscale masks because of the use of diffused light. Since the exposure is done through a glass slide, the photoresist is cross-linked from the substrate side up enabling well-defined and stable structures to be fabricated from even unspun photoresist layers. In addition to providing unique structures and capabilities, the method is compatible with the “garage microfluidics” concept of creating useful tools at low cost since pGS BDLL can be performed with the use of only hot plates and a UV transilluminator: equipment commonly found in biology labs. Expensive spin coaters or collimated UV aligners are not needed. To demonstrate the applicability of pGS BDLL, a variety of weir-type cell traps were constructed with a single UV exposure to separate cancer cells (MDA-MB-231, 10-15 μm in size) from red blood cells (RBCs, 2-8 μm in size) as well as follicle clusters (40-50 μm in size) from cancer cells (MDA-MB-231, 10-15 μm in size). PMID:24976950

  18. Modeling of lamps through a diffuser with 2D and 3D picket-fence backlight models

    NASA Astrophysics Data System (ADS)

    Belshaw, Richard J.; Wilmott, Roger; Thomas, John T.

    2002-08-01

    Laboratory photometric measurements are taken of a display backlight one metre away from the emission surface (diffuser) with a whole acceptance angle on the photometer of about 0.125 degrees (2.182mm spot size at emission surface). A simulation method was sought to be able to obtain the brightness uniformity (luminance peak to trough ratio from above one lamp to the null between lamps in a picket-fence backlight). A 3D raytrace BackLight model in TracePro and a 2D Mathematical model in Matlab have been developed. With a specimen backlight in the laboratory, a smooth luminance profile was measured by the photometer on the diffuser surface. Ray Trace models in both 3D and 2D take too long to produce smooth 'continuous filled' distributions. The Mathematical 2D approach, although with limitations, yielded smooth solutions in a very reasonable time frame.

  19. 3D AMR simulations of the evolution of the diffuse gas cloud G2 in the Galactic Centre

    NASA Astrophysics Data System (ADS)

    Schartmann, M.; Ballone, A.; Burkert, A.; Gillessen, S.; Genzel, R.; Pfuhl, O.; Eisenhauer, F.; Plewa, P. M.; Ott, T.; George, E. M.; Habibi, M.

    2017-01-01

    With the help of 3D AMR hydrodynamical simulations we aim at understanding G2's nature, recent evolution and fate in the coming years. By exploring the possible parameter space of the diffuse cloud scenario, we find that a starting point within the disc of young stars is favoured by the observations, which may hint at G2 being the result of stellar wind interactions.

  20. A unified approach to diffusion direction sensitive slice registration and 3-D DTI reconstruction from moving fetal brain anatomy.

    PubMed

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Xi Cheng; Chapman, Teresa; Wilm, Jakob; Rousseau, Francois; Studholme, Colin

    2014-02-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and an experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to current state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function.

  1. A Unified Approach to Diffusion Direction Sensitive Slice Registration and 3-D DTI Reconstruction From Moving Fetal Brain Anatomy

    PubMed Central

    Fogtmann, Mads; Seshamani, Sharmishtaa; Kroenke, Christopher; Cheng, Xi; Chapman, Teresa; Wilm, Jakob; Rousseau, François

    2014-01-01

    This paper presents an approach to 3-D diffusion tensor image (DTI) reconstruction from multi-slice diffusion weighted (DW) magnetic resonance imaging acquisitions of the moving fetal brain. Motion scatters the slice measurements in the spatial and spherical diffusion domain with respect to the underlying anatomy. Previous image registration techniques have been described to estimate the between slice fetal head motion, allowing the reconstruction of 3-D a diffusion estimate on a regular grid using interpolation. We propose Approach to Unified Diffusion Sensitive Slice Alignment and Reconstruction (AUDiSSAR) that explicitly formulates a process for diffusion direction sensitive DW-slice-to-DTI-volume alignment. This also incorporates image resolution modeling to iteratively deconvolve the effects of the imaging point spread function using the multiple views provided by thick slices acquired in different anatomical planes. The algorithm is implemented using a multi-resolution iterative scheme and multiple real and synthetic data are used to evaluate the performance of the technique. An accuracy experiment using synthetically created motion data of an adult head and a experiment using synthetic motion added to sedated fetal monkey dataset show a significant improvement in motion-trajectory estimation compared to a state-of-the-art approaches. The performance of the method is then evaluated on challenging but clinically typical in utero fetal scans of four different human cases, showing improved rendition of cortical anatomy and extraction of white matter tracts. While the experimental work focuses on DTI reconstruction (second-order tensor model), the proposed reconstruction framework can employ any 5-D diffusion volume model that can be represented by the spatial parameterizations of an orientation distribution function. PMID:24108711

  2. Microscale Diffusion Properties of the Cartilage Pericellular Matrix Measured Using 3D Scanning Microphotolysis

    PubMed Central

    Leddy, Holly A.; Christensen, Susan E.; Guilak, Farshid

    2009-01-01

    Chondrocytes (cartilage cells) are enclosed within a pericellular matrix (PCM) whose composition and structure differ from those of the extracellular matrix (ECM). Since the PCM surrounds each cell, molecules that interact with the chondrocyte must pass through the pericellular environment. A quantitative understanding of the diffusional properties of the PCM will help elucidate the PCM’s regulatory role in controlling transport to and from the chondrocyte. The diffusivity of a fluorescently-labeled 70 kDa dextran was quantified within the PCM of porcine articular cartilage using a newly-developed mathematical model of scanning microphotolysis (SCAMP). SCAMP is a rapid, line photobleaching method that accounts for out-of-plane bleaching attributable to high magnification. Data were analyzed by best-fit comparison to simulations generated using a discretization of the diffusion-reaction equation in conjunction with the microscope-specific three-dimensional excitation and detection profiles. The diffusion coefficient of dextran was significantly lower in the PCM than in the ECM in normal cartilage. In early-stage arthritic tissue, however, no significant differences in diffusivity were detectable. These results support the hypothesis that the diffusivity of the PCM is lower than that of the ECM, presumably due to differences in proteoglycan content, and that osteoarthritic changes in tissue affect the transport properties of the PCM. PMID:19045531

  3. Assessment of diffuse coronary artery disease by quantitative analysis of coronary morphology based upon 3-D reconstruction from biplane angiograms

    SciTech Connect

    Wahel, A.; Wellnhofer, E.; Mugaragu, I.; Sauer, H.U.; Oswald, H.; Fleck, E. |

    1995-06-01

    Quantitative evaluations on coronary vessel systems are of increasing importance in cardiovascular diagnosis, therapy planning, and surgical verification. Whereas local evaluations, such as stenosis analysis, are already available with sufficient accuracy, global evaluations of vessel segments or vessel subsystems are not yet common. Especially for the diagnosis of diffuse coronary artery diseases, the authors combined a 3-D reconstruction system operating on biplane angiograms with a length/volume calculation. The 3-D reconstruction results in a 3-D model of the coronary vessel system, consisting of the vessel skeleton and a discrete number of contours. To obtain an utmost accurate model, the authors focused on exact geometry determination. Several algorithms for calculating missing geometric parameters and correcting remaining geometry errors were implemented and verified. The length/volume evaluation can be performed either on single vessel segments, on a set of segments, or on subtrees. A volume model based on generalized elliptical conic sections is created for the selected segments. Volumes and lengths (measured along the vessel course) of those elements are summed up. In this way, the morphological parameters of a vessel subsystem can be set in relation to the parameters of the proximal segment supplying it. These relations allow objective assessments of diffuse coronary artery diseases.

  4. BOX SPLINE BASED 3D TOMOGRAPHIC RECONSTRUCTION OF DIFFUSION PROPAGATORS FROM MRI DATA.

    PubMed

    Ye, Wenxing; Portnoy, Sharon; Entezari, Alireza; Vemuri, Baba C; Blackband, Stephen J

    2011-06-09

    This paper introduces a tomographic approach for reconstruction of diffusion propagators, P( r ), in a box spline framework. Box splines are chosen as basis functions for high-order approximation of P( r ) from the diffusion signal. Box splines are a generalization of B-splines to multivariate setting that are particularly useful in the context of tomographic reconstruction. The X-Ray or Radon transform of a (tensor-product B-spline or a non-separable) box spline is a box spline - the space of box splines is closed under the Radon transform.We present synthetic and real multi-shell diffusion-weighted MR data experiments that demonstrate the increased accuracy of P( r ) reconstruction as the order of basis functions is increased.

  5. Constrained reverse diffusion for thick slice interpolation of 3D volumetric MRI images.

    PubMed

    Neubert, Aleš; Salvado, Olivier; Acosta, Oscar; Bourgeat, Pierrick; Fripp, Jurgen

    2012-03-01

    Due to physical limitations inherent in magnetic resonance imaging scanners, three dimensional volumetric scans are often acquired with anisotropic voxel resolution. We investigate several interpolation approaches to reduce the anisotropy and present a novel approach - constrained reverse diffusion for thick slice interpolation. This technique was compared to common methods: linear and cubic B-Spline interpolation and a technique based on non-rigid registration of neighboring slices. The methods were evaluated on artificial MR phantoms and real MR scans of human brain. The constrained reverse diffusion approach delivered promising results and provides an alternative for thick slice interpolation, especially for higher anisotropy factors.

  6. Applying and validating the RANS-3D flow-solver for evaluating a subsonic serpentine diffuser geometry

    NASA Technical Reports Server (NTRS)

    Fletcher, Michael J.; Won, Mark J.; Cosentino, Gary B.; Te, Alexander

    1993-01-01

    Subsonic inlet ducts for advanced, high-performance aircraft are evolving towards complex three-dimensional shapes for reasons of overall integration and weight. These factors lead to diffuser geometries that may sacrifice inlet performance, unless careful attention to design details and boundary layer management techniques are employed. The ability of viscous computational fluid dynamic (CFD) analysis of such geometries to aid the aircraft configurator in this complex design problem is herein examined. The RANS-3D Reynolds-Averaged Navier-Stokes solver is applied to model the complex flowfield occurring in a representative diffuser geometry and the solutions are compared to experimental results from a static test of the inlet duct. The computational results are shown to compare very favorably with experimental results over a range of mass flow rates, including those involving large amounts of separation in the diffuser. In addition, a novel grid topology is presented, and two turbulence models are evaluated in this study as part of the RANS-3D code.

  7. The regularized 3D Boussinesq equations with fractional Laplacian and no diffusion

    NASA Astrophysics Data System (ADS)

    Bessaih, H.; Ferrario, B.

    2017-02-01

    In this paper, we study the 3D regularized Boussinesq equations. The velocity equation is regularized à la Leray through a smoothing kernel of order α in the nonlinear term and a β-fractional Laplacian; we consider the critical case α + β =5/4 and we assume 1/2 < β <5/4. The temperature equation is a pure transport equation, where the transport velocity is regularized through the same smoothing kernel of order α. We prove global well posedness when the initial velocity is in Hr and the initial temperature is in H r - β for r > max ⁡ (2 β , β + 1). This regularity is enough to prove uniqueness of solutions. We also prove a continuous dependence of solutions on the initial conditions.

  8. Calcium3D: a visual software package for the simulation of calcium buffered diffusion in neuroendocrine cells.

    PubMed

    Carrera, Germán; Gil, Amparo; Segura, Javier

    2005-11-01

    We present Calcium3D, a user-friendly software package for simulating calcium triggered processes in neuroendocrine cells. We use Monte Carlo methods for the simulation of the basic processes involved: entry of calcium into the cytoplasm, the diffusion of ions and mobile intracellular calcium buffers inside the intracellular medium, and the kinetics of the reaction of calcium with these buffers. The outputs of the simulation are calcium and buffer concentrations as a function of time and for different depths from the cellular membrane.

  9. 3D transient electromagnetic simulation using a modified correspondence principle for wave and diffusion fields

    NASA Astrophysics Data System (ADS)

    Hu, Y.; Ji, Y.; Egbert, G. D.

    2015-12-01

    The fictitious time domain method (FTD), based on the correspondence principle for wave and diffusion fields, has been developed and used over the past few years primarily for marine electromagnetic (EM) modeling. Here we present results of our efforts to apply the FTD approach to land and airborne TEM problems which can reduce the computer time several orders of magnitude and preserve high accuracy. In contrast to the marine case, where sources are in the conductive sea water, we must model the EM fields in the air; to allow for topography air layers must be explicitly included in the computational domain. Furthermore, because sources for most TEM applications generally must be modeled as finite loops, it is useful to solve directly for the impulse response appropriate to the problem geometry, instead of the point-source Green functions typically used for marine problems. Our approach can be summarized as follows: (1) The EM diffusion equation is transformed to a fictitious wave equation. (2) The FTD wave equation is solved with an explicit finite difference time-stepping scheme, with CPML (Convolutional PML) boundary conditions for the whole computational domain including the air and earth , with FTD domain source corresponding to the actual transmitter geometry. Resistivity of the air layers is kept as low as possible, to compromise between efficiency (longer fictitious time step) and accuracy. We have generally found a host/air resistivity contrast of 10-3 is sufficient. (3)A "Modified" Fourier Transform (MFT) allow us recover system's impulse response from the fictitious time domain to the diffusion (frequency) domain. (4) The result is multiplied by the Fourier transformation (FT) of the real source current avoiding time consuming convolutions in the time domain. (5) The inverse FT is employed to get the final full waveform and full time response of the system in the time domain. In general, this method can be used to efficiently solve most time-domain EM

  10. MO-G-BRF-07: Anomalously Fast Diffusion of Carbon Nanotubes Carriers in 3D Tissue Model

    SciTech Connect

    Wang, Y; Bahng, J; Kotov, N

    2014-06-15

    Purpose: We aim to investigate and understand diffusion process of carbon nanotubes (CNTs) and other nanoscale particles in tissue and organs. Methods: In this research, we utilized a 3D model tissue of hepatocellular carcinoma (HCC)cultured in inverted colloidal crystal (ICC) scaffolds to compare the diffusivity of CNTs with small molecules such as Rhodamine and FITC in vitro, and further investigated the transportation of CNTs with and without targeting ligand, TGFβ1. The real-time permeation profiles of CNTs in HCC tissue model with high temporal and spatial resolution was demonstrated by using standard confocal microscopy. Quantitative analysis of the diffusion process in 3D was carried out using luminescence intensity in a series of Z-stack images obtained for different time points of the diffusion process after initial addition of CNTs or small molecules to the cell culture and the image data was analyzed by software ImageJ and Mathematica. Results: CNTs display diffusion rate in model tissues substantially faster than small molecules of the similar charge such as FITC, and the diffusion rate of CNTs are significantly enhanced with targeting ligand, TGFβ1. Conclusion: In terms of the advantages of in-vitro model, we were able to have access to measuring the rate of CNT penetration at designed conditions with variable parameters. And the findings by using this model, changed our understanding about advantages of CNTs as nanoscale drug carriers and provides design principles for making new drug carriers for both treatment and diagnostics. Additionally the fast diffusion opens the discussion of the best possible drug carriers to reach deep parts of cancerous tissues, which is often a prerequisite for successful cancer treatment. This work was supported by the Center for Photonic and Multiscale Nanomaterials funded by National Science Foundation Materials Research Science and Engineering Center program DMR 1120923. The work was also partially supported by NSF

  11. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Liu, Feng (Inventor); Lax, Melvin (Inventor); Das, Bidyut B. (Inventor)

    1999-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: ##EQU1## wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absoption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  12. Time-resolved diffusion tomographic 2D and 3D imaging in highly scattering turbid media

    NASA Technical Reports Server (NTRS)

    Alfano, Robert R. (Inventor); Cai, Wei (Inventor); Gayen, Swapan K. (Inventor)

    2000-01-01

    A method for imaging objects in highly scattering turbid media. According to one embodiment of the invention, the method involves using a plurality of intersecting source/detectors sets and time-resolving equipment to generate a plurality of time-resolved intensity curves for the diffusive component of light emergent from the medium. For each of the curves, the intensities at a plurality of times are then inputted into the following inverse reconstruction algorithm to form an image of the medium: wherein W is a matrix relating output at source and detector positions r.sub.s and r.sub.d, at time t, to position r, .LAMBDA. is a regularization matrix, chosen for convenience to be diagonal, but selected in a way related to the ratio of the noise, to fluctuations in the absorption (or diffusion) X.sub.j that we are trying to determine: .LAMBDA..sub.ij =.lambda..sub.j .delta..sub.ij with .lambda..sub.j =/<.DELTA.Xj.DELTA.Xj> Y is the data collected at the detectors, and X.sup.k is the kth iterate toward the desired absorption information. An algorithm, which combines a two dimensional (2D) matrix inversion with a one-dimensional (1D) Fourier transform inversion is used to obtain images of three dimensional hidden objects in turbid scattering media.

  13. Heat losses and 3D diffusion phenomena for defect sizing procedures in video pulse thermography

    NASA Astrophysics Data System (ADS)

    Ludwig, N.; Teruzzi, P.

    2002-06-01

    Dynamical thermographic techniques like video pulse thermography are very useful for the non-destructive testing of structural components. In literature different models were proposed, which allow to describe the time evolution of the thermal contrast for materials with sub-superficial defects. In the case of circular defect the time evolution of the full width half maximum (FWHM) of the thermal contrast was studied both theoretically and experimentally. Nevertheless a mismatch in defect sizing between experimental results and theoretical simulations was found. Possible explanations of this disagreement was analysed. A factor widely neglected is the heat loss (radiation and convection). In this paper a theoretical analysis of the influence of these contributions is reported. Furthermore in order to explain the experimental evidence of FWHM time evolution we introduced a correction due to lateral heat diffusion around the defect. In this way a possible explanation for the experimental results was obtained. Brick samples with a circular flat bottom hole as defect was tested both for the interest in defect sizing in building material through NDT and for the low thermal diffusivity of this material which allows the study of the phenomenon in a slow motion.

  14. 3-D Model of Broadband Emission from Supernova Remnants Undergoing Non-linear Diffusive Shock Acceleration

    SciTech Connect

    Lee, Shiu-Hang; Kamae, Tuneyoshi; Ellison, Donald C.

    2008-07-02

    We present a 3-dimensional model of supernova remnants (SNRs) where the hydrodynamical evolution of the remnant is modeled consistently with nonlinear diffusive shock acceleration occurring at the outer blast wave. The model includes particle escape and diffusion outside of the forward shock, and particle interactions with arbitrary distributions of external ambient material, such as molecular clouds. We include synchrotron emission and cooling, bremsstrahlung radiation, neutral pion production, inverse-Compton (IC), and Coulomb energy-loss. Boardband spectra have been calculated for typical parameters including dense regions of gas external to a 1000 year old SNR. In this paper, we describe the details of our model but do not attempt a detailed fit to any specific remnant. We also do not include magnetic field amplification (MFA), even though this effect may be important in some young remnants. In this first presentation of the model we don't attempt a detailed fit to any specific remnant. Our aim is to develop a flexible platform, which can be generalized to include effects such as MFA, and which can be easily adapted to various SNR environments, including Type Ia SNRs, which explode in a constant density medium, and Type II SNRs, which explode in a pre-supernova wind. When applied to a specific SNR, our model will predict cosmic-ray spectra and multi-wavelength morphology in projected images for instruments with varying spatial and spectral resolutions. We show examples of these spectra and images and emphasize the importance of measurements in the hard X-ray, GeV, and TeV gamma-ray bands for investigating key ingredients in the acceleration mechanism, and for deducing whether or not TeV emission is produced by IC from electrons or pion-decay from protons.

  15. Use of High Resolution 3D Diffusion Tensor Imaging to Study Brain White Matter Development in Live Neonatal Rats

    PubMed Central

    Cai, Yu; McMurray, Matthew S.; Oguz, Ipek; Yuan, Hong; Styner, Martin A.; Lin, Weili; Johns, Josephine M.; An, Hongyu

    2011-01-01

    High resolution diffusion tensor imaging (DTI) can provide important information on brain development, yet it is challenging in live neonatal rats due to the small size of neonatal brain and motion-sensitive nature of DTI. Imaging in live neonatal rats has clear advantages over fixed brain scans, as longitudinal and functional studies would be feasible to understand neuro-developmental abnormalities. In this study, we developed imaging strategies that can be used to obtain high resolution 3D DTI images in live neonatal rats at postnatal day 5 (PND5) and PND14, using only 3 h of imaging acquisition time. An optimized 3D DTI pulse sequence and appropriate animal setup to minimize physiological motion artifacts are the keys to successful high resolution 3D DTI imaging. Thus, a 3D rapid acquisition relaxation enhancement DTI sequence with twin navigator echoes was implemented to accelerate imaging acquisition time and minimize motion artifacts. It has been suggested that neonatal mammals possess a unique ability to tolerate mild-to-moderate hypothermia and hypoxia without long term impact. Thus, we additionally utilized this ability to minimize motion artifacts in magnetic resonance images by carefully suppressing the respiratory rate to around 15/min for PND5 and 30/min for PND14 using mild-to-moderate hypothermia. These imaging strategies have been successfully implemented to study how the effect of cocaine exposure in dams might affect brain development in their rat pups. Image quality resulting from this in vivo DTI study was comparable to ex vivo scans. fractional anisotropy values were also similar between the live and fixed brain scans. The capability of acquiring high quality in vivo DTI imaging offers a valuable opportunity to study many neurological disorders in brain development in an authentic living environment. PMID:22013426

  16. Dimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography.

    PubMed

    Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn

    2016-03-04

    Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up.

  17. Dimensionality Reduction Based Optimization Algorithm for Sparse 3-D Image Reconstruction in Diffuse Optical Tomography

    PubMed Central

    Bhowmik, Tanmoy; Liu, Hanli; Ye, Zhou; Oraintara, Soontorn

    2016-01-01

    Diffuse optical tomography (DOT) is a relatively low cost and portable imaging modality for reconstruction of optical properties in a highly scattering medium, such as human tissue. The inverse problem in DOT is highly ill-posed, making reconstruction of high-quality image a critical challenge. Because of the nature of sparsity in DOT, sparsity regularization has been utilized to achieve high-quality DOT reconstruction. However, conventional approaches using sparse optimization are computationally expensive and have no selection criteria to optimize the regularization parameter. In this paper, a novel algorithm, Dimensionality Reduction based Optimization for DOT (DRO-DOT), is proposed. It reduces the dimensionality of the inverse DOT problem by reducing the number of unknowns in two steps and thereby makes the overall process fast. First, it constructs a low resolution voxel basis based on the sensing-matrix properties to find an image support. Second, it reconstructs the sparse image inside this support. To compensate for the reduced sensitivity with increasing depth, depth compensation is incorporated in DRO-DOT. An efficient method to optimally select the regularization parameter is proposed for obtaining a high-quality DOT image. DRO-DOT is also able to reconstruct high-resolution images even with a limited number of optodes in a spatially limited imaging set-up. PMID:26940661

  18. An anatomically driven anisotropic diffusion filtering method for 3D SPECT reconstruction

    NASA Astrophysics Data System (ADS)

    Kazantsev, Daniil; Arridge, Simon R.; Pedemonte, Stefano; Bousse, Alexandre; Erlandsson, Kjell; Hutton, Brian F.; Ourselin, Sébastien

    2012-06-01

    In this study, we aim to reconstruct single-photon emission computed tomography images using anatomical information from magnetic resonance imaging as a priori knowledge about the activity distribution. The trade-off between anatomical and emission data is one of the main concerns for such studies. In this work, we propose an anatomically driven anisotropic diffusion filter (ADADF) as a penalized maximum likelihood expectation maximization optimization framework. The ADADF method has improved edge-preserving denoising characteristics compared to other smoothing penalty terms based on quadratic and non-quadratic functions. The proposed method has an important ability to retain information which is absent in the anatomy. To make our approach more stable to the noise-edge classification problem, robust statistics have been employed. Comparison of the ADADF method is performed with a successful anatomically driven technique, namely, the Bowsher prior (BP). Quantitative assessment using simulated and clinical neuroreceptor volumetric data show the advantage of the ADADF over the BP. For the modelled data, the overall image resolution, the contrast, the signal-to-noise ratio and the ability to preserve important features in the data are all improved by using the proposed method. For clinical data, the contrast in the region of interest is significantly improved using the ADADF compared to the BP, while successfully eliminating noise.

  19. Layered nano-gratings by electron beam writing to form 3-level diffractive optical elements for 3D phase-offset holographic lithography

    NASA Astrophysics Data System (ADS)

    Yuan, Liang (Leon); Herman, Peter R.

    2015-11-01

    A multi-level nanophotonic structure is a major goal in providing advanced optical functionalities as found in photonic crystals and metamaterials. A three-level nano-grating phase mask has been fabricated in an electron-beam resist (ma-N) to meet the requirement of holographic generation of a diamond-like 3D nanostructure in photoresist by a single exposure step. A 2D mask with 600 nm periodicity is presented for generating first order diffracted beams with a preferred π/2 phase shift on the X- and Y-axes and with sufficient 1st order diffraction efficiency of 3.5% at 800 nm wavelength for creating a 3D periodic nanostructure in SU-8 photoresist. The resulting 3D structure is anticipated to provide an 8% complete photonic band gap (PBG) upon silicon inversion. A thin SiO2 layer was used to isolate the grating layers and multiple spin-coating steps served to planarize the final resist layer. A reversible soft coating (aquaSAVE) was introduced to enable SEM inspection and verification of each insulating grating layer. This e-beam lithographic method is extensible to assembling multiple layers of a nanophotonic structure.

  20. Preclinical study of SZ2080 material 3D microstructured scaffolds for cartilage tissue engineering made by femtosecond direct laser writing lithography.

    PubMed

    Mačiulaitis, Justinas; Deveikytė, Milda; Rekštytė, Sima; Bratchikov, Maksim; Darinskas, Adas; Šimbelytė, Agnė; Daunoras, Gintaras; Laurinavičienė, Aida; Laurinavičius, Arvydas; Gudas, Rimtautas; Malinauskas, Mangirdas; Mačiulaitis, Romaldas

    2015-03-23

    Over the last decade DLW employing ultrafast pulsed lasers has become a well-established technique for the creation of custom-made free-form three-dimensional (3D) microscaffolds out of a variety of materials ranging from proteins to biocompatible glasses. Its potential applications for manufacturing a patient's specific scaffold seem unlimited in terms of spatial resolution and geometry complexity. However, despite few exceptions in which live cells or primitive organisms were encapsulated into a polymer matrix, no demonstration of an in vivo study case of scaffolds generated with the use of such a method was performed. Here, we report a preclinical study of 3D artificial microstructured scaffolds out of hybrid organic-inorganic (HOI) material SZ2080 fabricated using the DLW technique. The created 2.1 × 2.1 × 0.21 mm(3) membrane constructs are tested both in vitro by growing isolated allogeneic rabbit chondrocytes (Cho) and in vivo by implanting them into rabbit organisms for one, three and six months. An ex vivo histological examination shows that certain pore geometry and the pre-growing of Cho prior to implantation significantly improves the performance of the created 3D scaffolds. The achieved biocompatibility is comparable to the commercially available collagen membranes. The successful outcome of this study supports the idea that hexagonal-pore-shaped HOI microstructured scaffolds in combination with Cho seeding may be successfully implemented for cartilage tissue engineering.

  1. Multi-photon lithography of 3D micro-structures in As2S3 and Ge5(As2Se3)95 chalcogenide glasses

    NASA Astrophysics Data System (ADS)

    Schwarz, Casey M.; Labh, Shreya; Barker, Jayk E.; Sapia, Ryan J.; Richardson, Gerald D.; Rivero-Baleine, Clara; Gleason, Benn; Richardson, Kathleen A.; Pogrebnyakov, Alexej; Mayer, Theresa S.; Kuebler, Stephen M.

    2016-03-01

    This work reports a detailed study of the processing and photo-patterning of two chalcogenide glasses (ChGs) - arsenic trisulfide (As2S3) and a new composition of germanium-doped arsenic triselenide Ge5(As2Se3)95 - as well as their use for creating functional optical structures. ChGs are materials with excellent infrared (IR) transparency, large index of refraction, low coefficient of thermal expansion, and low change in refractive index with temperature. These features make them well suited for a wide range of commercial and industrial applications including detectors, sensors, photonics, and acousto-optics. Photo-patternable films of As2S3 and Ge5(As2Se3)95 were prepared by thermally depositing the ChGs onto silicon substrates. For some As2S3 samples, an anti-reflection layer of arsenic triselenide (As2Se3) was first added to mitigate the effects of standing-wave interference during laser patterning. The ChG films were photo-patterned by multi-photon lithography (MPL) and then chemically etched to remove the unexposed material, leaving free-standing structures that were negative-tone replicas of the photo-pattern in networked-solid ChG. The chemical composition and refractive index of the unexposed and photo-exposed materials were examined using Raman spectroscopy and near-IR ellipsometry. Nano-structured arrays were photo-patterned and the resulting nano-structure morphology and chemical composition were characterized and correlated with the film compositions, conditions of thermal deposition, patterned irradiation, and etch processing. Photo-patterned Ge5(As2Se3)95 was found to be more resistant than As2S3 toward degradation by formation of surface oxides.

  2. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes.

    PubMed

    Chervin, Christopher N; Parker, Joseph F; Nelson, Eric S; Rolison, Debra R; Long, Jeffrey W

    2016-04-29

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode-a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  3. CAD/CAM-designed 3D-printed electroanalytical cell for the evaluation of nanostructured gas-diffusion electrodes

    NASA Astrophysics Data System (ADS)

    Chervin, Christopher N.; Parker, Joseph F.; Nelson, Eric S.; Rolison, Debra R.; Long, Jeffrey W.

    2016-04-01

    The ability to effectively screen and validate gas-diffusion electrodes is critical to the development of next-generation metal-air batteries and regenerative fuel cells. The limiting electrode in a classic two-terminal device such as a battery or fuel cell is difficult to discern without an internal reference electrode, but the flooded electrolyte characteristic of three-electrode electroanalytical cells negates the prime function of an air electrode—a void volume freely accessible to gases. The nanostructured catalysts that drive the energy-conversion reactions (e.g., oxygen reduction and evolution in the air electrode of metal-air batteries) are best evaluated in the electrode structure as-used in the practical device. We have designed, 3D-printed, and characterized an air-breathing, thermodynamically referenced electroanalytical cell that allows us to mimic the Janus arrangement of the gas-diffusion electrode in a metal-air cell: one face freely exposed to gases, the other wetted by electrolyte.

  4. A Diffusion-Based and Dynamic 3D-Printed Device That Enables Parallel in Vitro Pharmacokinetic Profiling of Molecules

    PubMed Central

    Lockwood, Sarah Y.; Meisel, Jayda E.; Monsma, Frederick J.; Spence, Dana M.

    2016-01-01

    The process of bringing a drug to market involves many steps, including the preclinical stage, where various properties of the drug candidate molecule are determined. These properties, which include drug absorption, distribution, metabolism, and excretion, are often displayed in a pharmacokinetic (PK) profile. While PK profiles are determined in animal models, in vitro systems that model in vivo processes are available, although each possesses shortcomings. Here, we present a 3D-printed, diffusion-based, and dynamic in vitro PK device. The device contains six flow channels, each with integrated porous membrane-based insert wells. The pores of these membranes enable drugs to freely diffuse back and forth between the flow channels and the inserts, thus enabling both loading and clearance portions of a standard PK curve to be generated. The device is designed to work with 96-well plate technology and consumes single-digit milliliter volumes to generate multiple PK profiles, simultaneously. Generation of PK profiles by use of the device was initially performed with fluorescein as a test molecule. Effects of such parameters as flow rate, loading time, volume in the insert well, and initial concentration of the test molecule were investigated. A prediction model was generated from this data, enabling the user to predict the concentration of the test molecule at any point along the PK profile within a coefficient of variation of ~5%. Depletion of the analyte from the well was characterized and was determined to follow first-order rate kinetics, indicated by statistically equivalent (p > 0.05) depletion half-lives that were independent of the starting concentration. A PK curve for an approved antibiotic, levofloxacin, was generated to show utility beyond the fluorescein test molecule. PMID:26727249

  5. Hierarchical Statistical 3D ' Atomistic' Simulation of Decanano MOSFETs: Drift-Diffusion, Hydrodynamic and Quantum Mechanical Approaches

    NASA Technical Reports Server (NTRS)

    Asenov, Asen; Brown, A. R.; Slavcheva, G.; Davies, J. H.

    2000-01-01

    When MOSFETs are scaled to deep submicron dimensions the discreteness and randomness of the dopant charges in the channel region introduces significant fluctuations in the device characteristics. This effect, predicted 20 year ago, has been confirmed experimentally and in simulation studies. The impact of the fluctuations on the functionality, yield, and reliability of the corresponding systems shifts the paradigm of the numerical device simulation. It becomes insufficient to simulate only one device representing one macroscopical design in a continuous charge approximation. An ensemble of macroscopically identical but microscopically different devices has to be characterized by simulation of statistically significant samples. The aims of the numerical simulations shift from predicting the characteristics of a single device with continuous doping towards estimating the mean values and the standard deviations of basic design parameters such as threshold voltage, subthreshold slope, transconductance, drive current, etc. for the whole ensemble of 'atomistically' different devices in the system. It has to be pointed out that even the mean values obtained from 'atomistic' simulations are not identical to the values obtained from continuous doping simulations. In this paper we present a hierarchical approach to the 'atomistic' simulation of aggressively scaled decanano MOSFETs. A full scale 3D drift-diffusion'atomostic' simulation approach is first described and used for verification of the more economical, but also more restricted, options. To reduce the processor time and memory requirements at high drain voltage we have developed a self-consistent option based on a thin slab solution of the current continuity equation only in the channel region. This is coupled to the Poisson's equation solution in the whole simulation domain in the Gummel iteration cycles. The accuracy of this approach is investigated in comparison with the full self-consistent solution. At low drain

  6. The 3-D numerical study of airflow in the compressor/combustor prediffuser and dump diffuser of an industrial gas turbine

    NASA Technical Reports Server (NTRS)

    Agrawal, Ajay K.; Yang, Tah-Teh

    1993-01-01

    This paper describes the 3D computations of a flow field in the compressor/combustor diffusers of an industrial gas turbine. The geometry considered includes components such as the combustor support strut, the transition piece and the impingement sleeve with discrete cooling air holes on its surface. Because the geometry was complex and 3D, the airflow path was divided into two computational domains sharing an interface region. The body-fitted grid was generated independently in each of the two domains. The governing equations for incompressible Navier-Stokes equations were solved using the finite volume approach. The results show that the flow in the prediffuser is strongly coupled with the flow in the dump diffuser and vice versa. The computations also revealed that the flow in the dump diffuser is highly nonuniform.

  7. Prevention of sulfur diffusion using MoS2-intercalated 3D-nanostructured graphite for high-performance lithium-ion batteries.

    PubMed

    Tiwari, Anand P; Yoo, HeeJoun; Lee, JeongTaik; Kim, Doyoung; Park, Jong Hyeok; Lee, Hyoyoung

    2015-07-28

    We report new three-dimensional (3D)-nanostructured MoS2-carbonaceous materials in which MoS2 sheets are intercalated between the graphite layers that possess a multiply repeated graphite/MoS2/graphite structure which prevents the aggregation of MoS2 and diffusion of sulfur from carbonaceous materials, enhancing the cycling stability of Li-ion batteries. We developed an efficient and scalable process applicable to mass production for synthesizing non-aggregated MoS2-intercalated 3D hybrid-nanostructured graphite based on stress induced and microwave irradiation. X-ray diffraction, X-ray photospectroscopy, Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy analyses demonstrated that the as-synthesized materials consisted of MoS2-intercalated 3D hybrid-nanostructured graphite platelets that had a multiply repeated graphite/MoS2/graphite structure. The obtained MoS2-graphite powder surpasses MoS2 as an anode material in terms of specific capacity, cyclic stability, and rate performances at high current densities for Li-ion batteries. The electrochemical impedance spectroscopy demonstrated that the graphite sheets not only reduced the contact resistance in the electrode but also facilitated electron transfer in the lithiation/delithiation processes. The superior electrochemical performances especially for the cycling stability of the Li-ion battery originate from prevention of the sulfur diffusion of the MoS2-intercalated 3D-nanostructured graphite.

  8. Relationships between quencher diffusion constant and exposure dose dependences of line width, line edge roughness, and stochastic defect generation in extreme ultraviolet lithography

    NASA Astrophysics Data System (ADS)

    Kozawa, Takahiro

    2015-01-01

    Control of the acid catalytic chain reaction is essential in the pattern formation of chemically amplified resists used for the high-volume production of semiconductor devices. In this study, the relationships between the quencher diffusion constant and the exposure dose dependences of the line width, line edge roughness (LER), and stochastic defect generation were investigated assuming extreme ultraviolet (EUV) lithography. The dependence of the latent images of line-and-space patterns with 16 nm half-pitch on the quencher diffusion constant was calculated on the basis of sensitization and reaction mechanisms of chemically amplified EUV resists. The exposure latitude of the line width increased with the quencher diffusion constant. The dependences of LER and stochastic defect (bridges and pinching) generation on the deviation of the exposure dose became weak by increasing the quencher diffusion constant, similarly to the case for the dependence of the line width.

  9. Tracer diffusion in a polymer gel: simulations of static and dynamic 3D networks using spherical boundary conditions.

    PubMed

    Kamerlin, Natasha; Elvingson, Christer

    2016-11-30

    We have investigated an alternative to the standard periodic boundary conditions for simulating the diffusion of tracer particles in a polymer gel by performing Brownian dynamics simulations using spherical boundary conditions. The gel network is constructed by randomly distributing tetravalent cross-linking nodes and connecting nearest pairs. The final gel structure is characterised by the radial distribution functions, chain lengths and end-to-end distances, and the pore size distribution. We have looked at the diffusion of tracer particles with a wide range of sizes, diffusing in both static and dynamic networks of two different volume fractions. It is quantitatively shown that the dynamical effect of the network becomes more important in facilitating the diffusional transport for larger particle sizes, and that one obtains a finite diffusion also for particle sizes well above the maximum in the pore size distribution.

  10. Prevention of sulfur diffusion using MoS2-intercalated 3D-nanostructured graphite for high-performance lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Tiwari, Anand P.; Yoo, Heejoun; Lee, Jeongtaik; Kim, Doyoung; Park, Jong Hyeok; Lee, Hyoyoung

    2015-07-01

    We report new three-dimensional (3D)-nanostructured MoS2-carbonaceous materials in which MoS2 sheets are intercalated between the graphite layers that possess a multiply repeated graphite/MoS2/graphite structure which prevents the aggregation of MoS2 and diffusion of sulfur from carbonaceous materials, enhancing the cycling stability of Li-ion batteries. We developed an efficient and scalable process applicable to mass production for synthesizing non-aggregated MoS2-intercalated 3D hybrid-nanostructured graphite based on stress induced and microwave irradiation. X-ray diffraction, X-ray photospectroscopy, Raman spectroscopy, field emission scanning electron microscopy, and high-resolution transmission electron microscopy analyses demonstrated that the as-synthesized materials consisted of MoS2-intercalated 3D hybrid-nanostructured graphite platelets that had a multiply repeated graphite/MoS2/graphite structure. The obtained MoS2-graphite powder surpasses MoS2 as an anode material in terms of specific capacity, cyclic stability, and rate performances at high current densities for Li-ion batteries. The electrochemical impedance spectroscopy demonstrated that the graphite sheets not only reduced the contact resistance in the electrode but also facilitated electron transfer in the lithiation/delithiation processes. The superior electrochemical performances especially for the cycling stability of the Li-ion battery originate from prevention of the sulfur diffusion of the MoS2-intercalated 3D-nanostructured graphite.We report new three-dimensional (3D)-nanostructured MoS2-carbonaceous materials in which MoS2 sheets are intercalated between the graphite layers that possess a multiply repeated graphite/MoS2/graphite structure which prevents the aggregation of MoS2 and diffusion of sulfur from carbonaceous materials, enhancing the cycling stability of Li-ion batteries. We developed an efficient and scalable process applicable to mass production for synthesizing non

  11. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser

    PubMed Central

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-01-01

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing. PMID:28304371

  12. A scalable diffraction-based scanning 3D colour video display as demonstrated by using tiled gratings and a vertical diffuser

    NASA Astrophysics Data System (ADS)

    Jia, Jia; Chen, Jhensi; Yao, Jun; Chu, Daping

    2017-03-01

    A high quality 3D display requires a high amount of optical information throughput, which needs an appropriate mechanism to distribute information in space uniformly and efficiently. This study proposes a front-viewing system which is capable of managing the required amount of information efficiently from a high bandwidth source and projecting 3D images with a decent size and a large viewing angle at video rate in full colour. It employs variable gratings to support a high bandwidth distribution. This concept is scalable and the system can be made compact in size. A horizontal parallax only (HPO) proof-of-concept system is demonstrated by projecting holographic images from a digital micro mirror device (DMD) through rotational tiled gratings before they are realised on a vertical diffuser for front-viewing.

  13. 3D modeling of void nucleation and initial void growth due to Tin diffusion as a result of electromigration in polycrystalline lead-free solders

    NASA Astrophysics Data System (ADS)

    Karunakaran, Deepak

    Electromigration (EM) has been a serious reliability concern in microelectronics packaging for close to half a century now. Whenever the challenges of EM are overcome newer complications arise such as the demand for better performance due to increased miniaturization of semiconductor devices or the problems faced due to undesirable properties of lead-free solders. The motivation for the work is that there exists no fully computational modeling study on EM damage in lead-free solders (and also in lead-based solders). Modeling techniques such as one developed here can give new insights on effects of different grain features and offer high flexibility in varying parameters and study the corresponding effects. In this work, a new computational approach has been developed to study void nucleation and initial void growth in solders due to metal atom diffusion. It involves the creation of a 3D stochastic mesoscale model of the microstructure of a polycrystalline Tin structure. The next step was to identify regions of current crowding or 'hot-spots'. This was done through solving a finite difference scheme on top of the 3D structure. The nucleation of voids due to atomic diffusion from the regions of current crowding was modeled by diffusion from the identified hot-spot through a rejection free kinetic Monte-Carlo scheme. This resulted in the net movement of atoms from the cathode to the anode. The above steps of identifying the hotspot and diffusing the atoms at the hotspot were repeated and this lead to the initial growth of the void. This procedure was studied varying different grain parameters. In the future, the goal is to explore the effect of more grain parameters and consider other mechanisms of failure such as the formation of intermetallic compounds due to interstitial diffusion and dissolution of underbump metallurgy.

  14. Cosine series representation of 3D curves and its application to white matter fiber bundles in diffusion tensor imaging

    PubMed Central

    Adluru, Nagesh; Lee, Jee Eun; Lazar, Mariana; Lainhart, Janet E.; Alexander, Andrew L.

    2011-01-01

    We present a novel cosine series representation for encoding fiber bundles consisting of multiple 3D curves. The coordinates of curves are parameterized as coefficients of cosine series expansion. We address the issue of registration, averaging and statistical inference on curves in a unified Hilbert space framework. Unlike traditional splines, the proposed method does not have internal knots and explicitly represents curves as a linear combination of cosine basis. This simplicity in the representation enables us to design statistical models, register curves and perform subsequent analysis in a more unified statistical framework than splines. The proposed representation is applied in characterizing abnormal shape of white matter fiber tracts passing through the splenium of the corpus callosum in autistic subjects. For an arbitrary tract, a 19 degree expansion is usually found to be sufficient to reconstruct the tract with 60 parameters. PMID:23316267

  15. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    SciTech Connect

    Ivanov, Konstantin L. Lukzen, Nikita N.; Sadovsky, Vladimir M.

    2015-08-28

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical “microreactor,” i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the “pole” of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting

  16. Theoretical description of spin-selective reactions of radical pairs diffusing in spherical 2D and 3D microreactors

    NASA Astrophysics Data System (ADS)

    Ivanov, Konstantin L.; Sadovsky, Vladimir M.; Lukzen, Nikita N.

    2015-08-01

    In this work, we treat spin-selective recombination of a geminate radical pair (RP) in a spherical "microreactor," i.e., of a RP confined in a micelle, vesicle, or liposome. We consider the microreactor model proposed earlier, in which one of the radicals is located at the center of the micelle and the other one undergoes three-dimensional diffusion inside the micelle. In addition, we suggest a two-dimensional model, in which one of the radicals is located at the "pole" of the sphere, while the other one diffuses on the spherical surface. For this model, we have obtained a general analytical expression for the RP recombination yield in terms of the free Green function of two-dimensional diffusion motion. In turn, this Green function is expressed via the Legendre functions and thus takes account of diffusion over a restricted spherical surface and its curvature. The obtained expression allows one to calculate the RP recombination efficiency at an arbitrary magnetic field strength. We performed a comparison of the two models taking the same geometric parameters (i.e., the microreactor radius and the closest approach distance of the radicals), chemical reactivity, magnetic interactions in the RP and diffusion coefficient. Significant difference between the predictions of the two models is found, which is thus originating solely from the dimensionality effect: for different dimensionality of space, the statistics of diffusional contacts of radicals becomes different altering the reaction yield. We have calculated the magnetic field dependence of the RP reaction yield and chemically induced dynamic nuclear polarization of the reaction products at different sizes of the microreactor, exchange interaction, and spin relaxation rates. Interestingly, due to the intricate interplay of diffusional contacts of reactants and spin dynamics, the dependence of the reaction yield on the microreactor radius is non-monotonous. Our results are of importance for (i) interpreting

  17. A diffuser-based three-dimensional measurement of polarization-dependent scattering characteristics of optical films for 3D-display applications.

    PubMed

    Kim, Dae-Yeon; Seo, Jong-Wook

    2015-01-26

    We propose an accurate and easy-to-use three-dimensional measurement method using a diffuser plate to analyze the scattering characteristics of optical films. The far-field radiation pattern of light scattered by the optical film is obtained from the illuminance pattern created on the diffuser plate by the light. A mathematical model and calibration methods were described, and the results were compared with those obtained by a direct measurement using a luminance meter. The new method gave very precise three-dimensional polarization-dependent scattering characteristics of scattering polarizer films, and it can play an effective role in developing high performance polarization-selective screens for 3D display applications.

  18. Fingering convection induced by atomic diffusion in stars: 3D numerical computations and applications to stellar models

    SciTech Connect

    Zemskova, Varvara; Garaud, Pascale; Deal, Morgan; Vauclair, Sylvie

    2014-11-10

    Iron-rich layers are known to form in the stellar subsurface through a combination of gravitational settling and radiative levitation. Their presence, nature, and detailed structure can affect the excitation process of various stellar pulsation modes and must therefore be modeled carefully in order to better interpret Kepler asteroseismic data. In this paper, we study the interplay between atomic diffusion and fingering convection in A-type stars, as well as its role in the establishment and evolution of iron accumulation layers. To do so, we use a combination of three-dimensional idealized numerical simulations of fingering convection (which neglect radiative transfer and complex opacity effects) and one-dimensional realistic stellar models. Using the three-dimensional simulations, we first validate the mixing prescription for fingering convection recently proposed by Brown et al. (within the scope of the aforementioned approximation) and identify what system parameters (total mass of iron, iron diffusivity, thermal diffusivity, etc.) play a role in the overall evolution of the layer. We then implement the Brown et al. prescription in the Toulouse-Geneva Evolution Code to study the evolution of the iron abundance profile beneath the stellar surface. We find, as first discussed by Théado et al., that when the concurrent settling of helium is ignored, this accumulation rapidly causes an inversion in the mean molecular weight profile, which then drives fingering convection. The latter mixes iron with the surrounding material very efficiently, and the resulting iron layer is very weak. However, taking helium settling into account partially stabilizes the iron profile against fingering convection, and a large iron overabundance can accumulate. The opacity also increases significantly as a result, and in some cases it ultimately triggers dynamical convection. The direct effects of radiative acceleration on the dynamics of fingering convection (especially in the

  19. A Two Colorable Fourth Order Compact Difference Scheme and Parallel Iterative Solution of the 3D Convection Diffusion Equation

    NASA Technical Reports Server (NTRS)

    Zhang, Jun; Ge, Lixin; Kouatchou, Jules

    2000-01-01

    A new fourth order compact difference scheme for the three dimensional convection diffusion equation with variable coefficients is presented. The novelty of this new difference scheme is that it Only requires 15 grid points and that it can be decoupled with two colors. The entire computational grid can be updated in two parallel subsweeps with the Gauss-Seidel type iterative method. This is compared with the known 19 point fourth order compact differenCe scheme which requires four colors to decouple the computational grid. Numerical results, with multigrid methods implemented on a shared memory parallel computer, are presented to compare the 15 point and the 19 point fourth order compact schemes.

  20. 3D He-3 diffusion MRI as a local in vivo morphometric tool to evaluate emphysematous rat lungs

    SciTech Connect

    Jacob, Rick E.; Minard, Kevin R.; Laicher, Gernot J.; Timchalk, Charles

    2008-08-21

    In this work, we validate 3He magnetic resonance imaging as a non-invasive morphometric tool to assess emphysematous disease state on a local level. Emphysema was induced intratracheally in rats with 25U/100g body weight of porcine pancreatic elastase dissolved in 200 μL saline. Rats were then paired with saline-dosed controls. Nine three-dimensional 3He diffusion-weighted images were acquired at one-, two-, or three-weeks post-dose, after which the lungs were harvested and prepared for histological analysis. Recently introduced indices sensitive to the heterogeneity of the airspace size distribution were calculated. These indices, D1 and D2, were derived from the moments of the mean equivalent airway diameters. Averaged over the entire lung, it is shown that the 3He diffusivity (Dave) and anisotropy (Dan) both correlate with histology (R = 0.85, p < 0.0001 and R = 0.88, p < 0.0001, respectively). By matching small (0.046 cm2) regions in 3He images with corresponding regions in histological slices, Dave and Dan each correlate significantly with both D1 and D2 (R = 0.93, p < 0.0001). It is concluded that 3He MRI is a viable non-invasive morphometric tool for localized in vivo emphysema assessment.

  1. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model.

    PubMed

    Guilbert, Marie; Roig, Blandine; Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-02-23

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models.

  2. Highlighting the impact of aging on type I collagen: label-free investigation using confocal reflectance microscopy and diffuse reflectance spectroscopy in 3D matrix model

    PubMed Central

    Terryn, Christine; Garnotel, Roselyne; Jeannesson, Pierre; Sockalingum, Ganesh D.; Manfait, Michel; Perraut, François; Dinten, Jean-Marc; Koenig, Anne; Piot, Olivier

    2016-01-01

    During aging, alterations of extracellular matrix proteins contribute to various pathological phenotypes. Among these alterations, type I collagen cross-linking and associated glycation products accumulation over time detrimentally affects its physico-chemical properties, leading to alterations of tissue biomechanical stability. Here, different-age collagen 3D matrices using non-destructive and label-free biophotonic techniques were analysed to highlight the impact of collagen I aging on 3D constructs, at macroscopic and microscopic levels. Matrices were prepared with collagens extracted from tail tendons of rats (newborns, young and old adults) to be within the physiological aging process. The data of diffuse reflectance spectroscopy reveal that aging leads to an inhibition of fibril assembly and a resulting decrease of gel density. Investigations by confocal reflectance microscopy highlight poor-fibrillar structures in oldest collagen networks most likely related to the glycation products accumulation. Complementarily, an infrared analysis brings out marked spectral variations in the Amide I profile, specific of the peptidic bond conformation and for carbohydrates vibrations as function of collagen-age. Interestingly, we also highlight an unexpected behavior for newborn collagen, exhibiting poorly-organized networks and microscopic features close to the oldest collagen. These results demonstrate that changes in collagen optical properties are relevant for investigating the incidence of aging in 3D matrix models. PMID:26885896

  3. Electroless nickel alloy deposition on SiO2 for application as a diffusion barrier and seed layer in 3D copper interconnect technology.

    PubMed

    Kim, Tae-Yoo; Son, Hwa-Jin; Lim, Seung-Kyu; Song, Young-Il; Park, Hwa-Sun; Suh, Su-Jeong

    2014-12-01

    Electroless Ni-P films were investigated with the aim of application as barrier and seed layers in 3D interconnect technology. Different shapes of blind-via holes were fabricated with a deep reactive ion etcher and SiO2 formed on these holes as an insulating layer. The surface of the substrate has been made hydrophilic by O2 plasma treatment with 100 W of power for 20 min. Electroless Ni-P films were deposited as both a diffusion barrier and a seed layer for Cu filling process. Prior to plating, substrates were activated in a palladium chloride solution after sensitization in a tin chloride solution with various conditions in order to deposit uniform films in TSV. After the formation of the electroless barrier layer, electro Cu was plated directly on the barrier layer. Ni-P films fabricated in blind-via holes were observed by scanning electron microscope. Energy dispersive spectroscopy line scanning was carried out for evaluating the diffusion barrier properties of the Ni-P films. The electroless Ni-P layer worked well as a Cu diffusion barrier until 300 degrees C. However, Cu ions diffused into barrier layer when the annealing temperature increases over 400 degrees C.

  4. 3-D diffusion tensor MRI anisotropy content-adaptive finite element head model generation for bioelectromagnetic imaging.

    PubMed

    Lee, W H; Kim, T S; Kim, Andrew T; Lee, S Y

    2008-01-01

    Realistic finite element (FE) head models have been successfully applied to bioelectromagnetic problems due to a realistic representation of arbitrary head geometry with inclusion of anisotropic material properties. In this paper, we propose a new automatic FE mesh generation scheme to generate a diffusion tensor MRI (DT-MRI) white matter anisotropy content-adaptive FE head model. We term this kind of mesh as wMesh. With this meshing technique, the anisotropic electrical conductivities derived from DT-MRIs can be best incorporated into the model. The influence of the white matter anisotropy on the EEG forward solutions has been studied via our wMesh head models. The scalp potentials computed from the anisotropic wMesh models against those of the isotropic models have been compared. The results describe that there are substantial changes in the scalp electrical potentials between the isotropic and anisotropic models, indicating that the inclusion of the white matter anisotropy is critical for accurate computation of E/MEG forward and inverse solutions. This fully automatic anisotropy-adaptive wMesh meshing scheme could be useful for modeling of individual-specific FE head models with better incorporation of the white matter anisotropic property towards bioelectromagnetic imaging.

  5. 3-D diffusion tensor axonal tracking shows distinct SMA and pre-SMA projections to the human striatum.

    PubMed

    Lehéricy, Stéphane; Ducros, Mathieu; Krainik, Alexandre; Francois, Chantal; Van de Moortele, Pierre-François; Ugurbil, Kamil; Kim, Dae-Shik

    2004-12-01

    Studies in non-human primates have shown that medial premotor projections to the striatum are characterized as a set of distinct circuits conveying different type of information. This study assesses the anatomical projections from the supplementary motor area (SMA), pre-SMA and motor cortex (MC) to the human striatum using diffusion tensor imaging (DTI) axonal tracking. Eight right-handed volunteers were studied at 1.5 T using DTI axonal tracking. A connectivity matrix was computed, which tested for connections between cortical areas (MC, SMA and pre-SMA) and subcortical areas (posterior, middle and anterior putamen and the head of the caudate nucleus) in each hemisphere. Pre-SMA projections to the striatum were located rostral to SMA projections to the striatum. The SMA and the MC were similarly connected to the posterior and middle putamen and not to the anterior striatum. These data show that the MC and SMA have connections with similar parts of the sensorimotor compartment of the human striatum, whereas the pre-SMA sends connections to more rostral parts of the striatum, including the associative compartment.

  6. Impact of event-specific chorus wave realization for modeling the October 8-9, 2012, event using the LANL DREAM3D diffusion code

    NASA Astrophysics Data System (ADS)

    Cunningham, G.; Tu, W.; Chen, Y.; Reeves, G. D.; Henderson, M. G.; Baker, D. N.; Blake, J. B.; Spence, H.

    2013-12-01

    During the interval October 8-9, 2012, the phase-space density (PSD) of high-energy electrons exhibited a dropout preceding an intense enhancement observed by the MagEIS and REPT instruments aboard the Van Allen Probes. The evolution of the PSD suggests heating by chorus waves, which were observed to have high intensities at the time of the enhancement [1]. Although intense chorus waves were also observed during the first Dst dip on October 8, no PSD enhancement was observed at this time. We demonstrate a quantitative reproduction of the entire event that makes use of three recent modifications to the LANL DREAM3D diffusion code: 1) incorporation of a time-dependent, low-energy, boundary condition from the MagEIS instrument, 2) use of a time-dependent estimate of the chorus wave intensity derived from observations of POES low-energy electron precipitation, and 3) use of an estimate of the last closed drift shell, beyond which electrons are assumed to have a lifetime that is proportional to their drift period around earth. The key features of the event are quantitatively reproduced by the simulation, including the dropout on October 8, and a rapid increase in PSD early on October 9, with a peak near L*=4.2. The DREAM3D code predicts the dropout on October 8 because this feature is dominated by magnetospheric compression and outward radial diffusion-the L* of the last closed drift-shell reaches a minimum value of 5.33 at 1026 UT on October 8. We find that a ';statistical' wave model based on historical CRRES measurements binned in AE* does not reproduce the enhancement because the peak wave amplitudes are only a few 10's of pT, whereas an ';event-specific' model reproduces both the magnitude and timing of the enhancement very well, a s shown in the Figure, because the peak wave amplitudes are 10x higher. [1] 'Electron Acceleration in the Heart of the Van Allen Radiation Belts', G. D. Reeves et al., Science 1237743, Published online 25 July 2013 [DOI:10.1126/science

  7. 3-D Modeling of Directional Solidification of a Non-Dilute Alloy with Temperature and Concentration Fields Coupling via Materials Properties Dependence and via Double Diffusive Convection

    NASA Technical Reports Server (NTRS)

    Bune, Andris V.; Gillies, Donald C.; Lehoczky, Sandor L.

    1998-01-01

    Numerical simulation of the HgCdTe growth by the vertical Bridgman method was performed using FIDAP finite element code. Double-diffusive melt convection is analyzed, as the primary factor at controls inhomogeneity of the solidified material. Temperature and concentration fields in the model are also coupled via material properties, such as thermal and solutal expansion coefficients with the dependence on both temperature and concentration, and melting temperature evaluation from pseudobinary CdTe-HgTe phase diagram. Experimental measurements were used to obtain temperature boundary conditions. Parametric study of the melt convection dependence on the gravity conditions was undertaken. It was found, that the maximum convection velocity in the melt can be reduced under certain conditions. Optimal conditions to obtain a near flat solidified interface are discussed. The predicted interface shape is in agreement with one obtained experimentally by quenching. The results of 3-D calculations are compared with previous 2- D findings. A video film featuring 3-D melt convection will be presented.

  8. Dynamical microstructure formation in 3D directional solidification of transparent model alloys: in situ characterization in DECLIC Directional Solidification Insert under diffusion transport in microgravity

    NASA Astrophysics Data System (ADS)

    Bergeon, N.; Mota, F. L.; Chen, L.; Tourret, D.; Debierre, J. M.; Guérin, R.; Karma, A.; Billia, B.; Trivedi, R.

    2015-06-01

    To clarify and characterize the fundamental physical mechanisms active in the dynamical formation of three-dimensional (3D) arrays of cells and dendrites under diffusive growth conditions, in situ monitoring of series of experiments on transparent model alloy succinonitrile - 0.24 wt% camphor was carried out under low gravity in the DECLIC Directional Solidification Insert on-board the International Space Station. These experiments offered the very unique opportunity to in situ observe and characterize the whole development of the microstructure in extended 3D patterns. The experimental methods will be first briefly described, including in particular the observation modes and the image analysis procedures developed to quantitatively characterize the patterns. Microgravity environment provided the conditions to get quantitative benchmark data: homogeneous patterns corresponding to homogeneous values of control parameters along the whole interface were obtained. The sequence of microstructure formation will be presented as well as the evolution of the primary spacing which is one of the most important pattern characteristic. Time evolution of this primary spacing during the microstructure development will be analysed to identify the mechanisms of spacing selection and adjustment; the importance of the macroscopic interfacial curvature will be pointed out.

  9. Development of transrectal diffuse optical tomography combined with 3D-transrectal ultrasound imaging to monitor the photocoagulation front during interstitial photothermal therapy of primary focal prostate cancer

    NASA Astrophysics Data System (ADS)

    He, Jie; Weersink, Robert; Veilleux, Israel; Mayo, Kenwrick; Zhang, Anqi; Piao, Daqing; Alam, Adeel; Trachtenberg, John; Wilson, Brian C.

    2013-03-01

    Interstitial near-infrared laser thermal therapy (LITT) is currently undergoing clinical trials as an alternative to watchful waiting or radical surgery in patients with low-risk focal prostate cancer. Currently, we use magnetic resonance image (MRI)-based thermography to monitor treatment delivery and determine indirectly the completeness of the target tissue destruction while avoiding damage to adjacent normal tissues, particularly the rectal wall. However, incomplete tumor destruction has occurred in a significant fraction of patients due to premature termination of treatment, since the photocoagulation zone is not directly observed. Hence, we are developing transrectal diffuse optical tomography (TRDOT), in combination with transrectal 3D ultrasound (3D-TRUS), to address his limitation. This is based on the large changes in optical scattering expected upon tissue coagulation. Here, we present forward simulations of a growing coagulated lesion with optical scattering contrast, using an established finite element analysis software platform (NIRFAST). The simulations were validated in tissue-simulating phantoms, with measurements acquired by a state-of-the-art continuous wave (CW) TRDOT system and a recently assembled bench-top CW-DOT system, with specific source-detector configurations. Two image reconstruction schemes were investigated and evaluated, specifically for the accurate delineation of the posterior boundary of the coagulation zone as the critical parameter for treatment guidance in this clinical application.

  10. 3D Numerical Simulation versus Experimental Assessment of Pressure Pulsations Using a Passive Method for Swirling Flow Control in Conical Diffusers of Hydraulic Turbines

    NASA Astrophysics Data System (ADS)

    TANASA, C.; MUNTEAN, S.; CIOCAN, T.; SUSAN-RESIGA, R. F.

    2016-11-01

    The hydraulic turbines operated at partial discharge (especially hydraulic turbines with fixed blades, i.e. Francis turbine), developing a swirling flow in the conical diffuser of draft tube. As a result, the helical vortex breakdown, also known in the literature as “precessing vortex rope” is developed. A passive method to mitigate the pressure pulsations associated to the vortex rope in the draft tube cone of hydraulic turbines is presented in this paper. The method involves the development of a progressive and controlled throttling (shutter), of the flow cross section at the bottom of the conical diffuser. The adjustable cross section is made on the basis of the shutter-opening of circular diaphragms, while maintaining in all positions the circular cross-sectional shape, centred on the axis of the turbine. The stagnant region and the pressure pulsations associated to the vortex rope are mitigated when it is controlled with the turbine operating regime. Consequently, the severe flow deceleration and corresponding central stagnant are diminished with an efficient mitigation of the precessing helical vortex. Four cases (one without diaphragm and three with diaphragm), are numerically and experimentally investigated, respectively. The present paper focuses on a 3D turbulent swirling flow simulation in order to evaluate the control method. Numerical results are compared against measured pressure recovery coefficient and Fourier spectra. The results prove the vortex rope mitigation and its associated pressure pulsations when employing the diaphragm.

  11. Atomic gold-enabled three-dimensional lithography for silicon mesostructures

    NASA Astrophysics Data System (ADS)

    Luo, Zhiqiang; Jiang, Yuanwen; Myers, Benjamin D.; Isheim, Dieter; Wu, Jinsong; Zimmerman, John F.; Wang, Zongan; Li, Qianqian; Wang, Yucai; Chen, Xinqi; Dravid, Vinayak P.; Seidman, David N.; Tian, Bozhi

    2015-06-01

    Three-dimensional (3D) mesostructured semiconductors show promising properties and applications; however, to date, few methods exist to synthesize or fabricate such materials. Metal can diffuse along semiconductor surfaces, and even trace amounts can change the surface behavior. We exploited the phenomena for 3D mesoscale lithography, by showing one example where iterated deposition-diffusion-incorporation of gold over silicon nanowires forms etchant-resistant patterns. This process is facet-selective, producing mesostructured silicon spicules with skeletonlike morphology, 3D tectonic motifs, and reduced symmetries. Atom-probe tomography, coupled with other quantitative measurements, indicates the existence and the role of individual gold atoms in forming 3D lithographic resists. Compared to other more uniform silicon structures, the anisotropic spicule requires greater force for detachment from collagen hydrogels, suggesting enhanced interfacial interactions at the mesoscale.

  12. MR diffusion-weighted imaging-based subcutaneous tumour volumetry in a xenografted nude mouse model using 3D Slicer: an accurate and repeatable method

    PubMed Central

    Ma, Zelan; Chen, Xin; Huang, Yanqi; He, Lan; Liang, Cuishan; Liang, Changhong; Liu, Zaiyi

    2015-01-01

    Accurate and repeatable measurement of the gross tumour volume(GTV) of subcutaneous xenografts is crucial in the evaluation of anti-tumour therapy. Formula and image-based manual segmentation methods are commonly used for GTV measurement but are hindered by low accuracy and reproducibility. 3D Slicer is open-source software that provides semiautomatic segmentation for GTV measurements. In our study, subcutaneous GTVs from nude mouse xenografts were measured by semiautomatic segmentation with 3D Slicer based on morphological magnetic resonance imaging(mMRI) or diffusion-weighted imaging(DWI)(b = 0,20,800 s/mm2) . These GTVs were then compared with those obtained via the formula and image-based manual segmentation methods with ITK software using the true tumour volume as the standard reference. The effects of tumour size and shape on GTVs measurements were also investigated. Our results showed that, when compared with the true tumour volume, segmentation for DWI(P = 0.060–0.671) resulted in better accuracy than that mMRI(P < 0.001) and the formula method(P < 0.001). Furthermore, semiautomatic segmentation for DWI(intraclass correlation coefficient, ICC = 0.9999) resulted in higher reliability than manual segmentation(ICC = 0.9996–0.9998). Tumour size and shape had no effects on GTV measurement across all methods. Therefore, DWI-based semiautomatic segmentation, which is accurate and reproducible and also provides biological information, is the optimal GTV measurement method in the assessment of anti-tumour treatments. PMID:26489359

  13. Coaxial Lithography

    NASA Astrophysics Data System (ADS)

    Ozel, Tuncay

    The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowires that can be realized and studied in the laboratory. This thesis focuses on bridging templated electrochemical synthesis and lithography for expanding current synthetic capabilities with respect to materials generality and the ability to tailor two-dimensional growth in the formation of core-shell structures for the rational design and preparation of nanowires with very complex architectures that cannot be made by any other techniques. Chapter 1 introduces plasmonics, templated electrochemical synthesis, and on-wire lithography concepts and their significances within chemistry and materials science. Chapter 2 details a powerful technique for the deposition of metals and semiconductors with nanometer resolution in segment and gap lengths using on-wire lithography, which serves as a new platform to explore plasmon-exciton interactions in the form of long-range optical nanoscale rulers. Chapter 3 highlights an approach for the electrochemical synthesis of solution dispersible core-shell polymeric and inorganic semiconductor nanowires with metallic leads. A photodetector based on a single core-shell semiconductor nanowire is presented to demonstrate the functionality of the nanowires produced using this approach. Chapter 4 describes a new materials general technique, termed coaxial lithography (COAL), bridging templated electrochemical synthesis and lithography for generating coaxial nanowires in a parallel fashion with sub-10 nanometer resolution in both axial and radial dimensions. Combinations of coaxial nanowires composed of metals, metal oxides, metal chalcogenides, conjugated polymers, and a core/shell semiconductor nanowire with an embedded plasmonic nanoring are presented to

  14. A 3D high resolution ex vivo white matter atlas of the common squirrel monkey (saimiri sciureus) based on diffusion tensor imaging

    NASA Astrophysics Data System (ADS)

    Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G.; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S.; Ding, Zhaohua; Gore, John C.; Chen, Li min; Landman, Bennett A.; Anderson, Adam W.

    2016-03-01

    Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey - for which the primary published atlases date from the 1960's. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas.

  15. Diffusible iodine-based contrast-enhanced computed tomography (diceCT): an emerging tool for rapid, high-resolution, 3-D imaging of metazoan soft tissues.

    PubMed

    Gignac, Paul M; Kley, Nathan J; Clarke, Julia A; Colbert, Matthew W; Morhardt, Ashley C; Cerio, Donald; Cost, Ian N; Cox, Philip G; Daza, Juan D; Early, Catherine M; Echols, M Scott; Henkelman, R Mark; Herdina, A Nele; Holliday, Casey M; Li, Zhiheng; Mahlow, Kristin; Merchant, Samer; Müller, Johannes; Orsbon, Courtney P; Paluh, Daniel J; Thies, Monte L; Tsai, Henry P; Witmer, Lawrence M

    2016-06-01

    Morphologists have historically had to rely on destructive procedures to visualize the three-dimensional (3-D) anatomy of animals. More recently, however, non-destructive techniques have come to the forefront. These include X-ray computed tomography (CT), which has been used most commonly to examine the mineralized, hard-tissue anatomy of living and fossil metazoans. One relatively new and potentially transformative aspect of current CT-based research is the use of chemical agents to render visible, and differentiate between, soft-tissue structures in X-ray images. Specifically, iodine has emerged as one of the most widely used of these contrast agents among animal morphologists due to its ease of handling, cost effectiveness, and differential affinities for major types of soft tissues. The rapid adoption of iodine-based contrast agents has resulted in a proliferation of distinct specimen preparations and scanning parameter choices, as well as an increasing variety of imaging hardware and software preferences. Here we provide a critical review of the recent contributions to iodine-based, contrast-enhanced CT research to enable researchers just beginning to employ contrast enhancement to make sense of this complex new landscape of methodologies. We provide a detailed summary of recent case studies, assess factors that govern success at each step of the specimen storage, preparation, and imaging processes, and make recommendations for standardizing both techniques and reporting practices. Finally, we discuss potential cutting-edge applications of diffusible iodine-based contrast-enhanced computed tomography (diceCT) and the issues that must still be overcome to facilitate the broader adoption of diceCT going forward.

  16. A 3D high resolution ex vivo white matter atlas of the common squirrel monkey (Saimiri sciureus) based on diffusion tensor imaging.

    PubMed

    Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S; Ding, Zhaohua; Gore, John C; Chen, Li Min; Landman, Bennett A; Anderson, Adam W

    2016-02-27

    Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey - for which the primary published atlases date from the 1960's. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas.

  17. A 3D high resolution ex vivo white matter atlas of the common squirrel monkey (Saimiri sciureus) based on diffusion tensor imaging

    PubMed Central

    Gao, Yurui; Parvathaneni, Prasanna; Schilling, Kurt G.; Wang, Feng; Stepniewska, Iwona; Xu, Zhoubing; Choe, Ann S.; Ding, Zhaohua; Gore, John C.; Chen, Li Min; Landman, Bennett A.; Anderson, Adam W.

    2016-01-01

    Modern magnetic resonance imaging (MRI) brain atlases are high quality 3-D volumes with specific structures labeled in the volume. Atlases are essential in providing a common space for interpretation of results across studies, for anatomical education, and providing quantitative image-based navigation. Extensive work has been devoted to atlas construction for humans, macaque, and several non-primate species (e.g., rat). One notable gap in the literature is the common squirrel monkey – for which the primary published atlases date from the 1960’s. The common squirrel monkey has been used extensively as surrogate for humans in biomedical studies, given its anatomical neuro-system similarities and practical considerations. This work describes the continued development of a multi-modal MRI atlas for the common squirrel monkey, for which a structural imaging space and gray matter parcels have been previously constructed. This study adds white matter tracts to the atlas. The new atlas includes 49 white matter (WM) tracts, defined using diffusion tensor imaging (DTI) in three animals and combines these data to define the anatomical locations of these tracks in a standardized coordinate system compatible with previous development. An anatomist reviewed the resulting tracts and the inter-animal reproducibility (i.e., the Dice index of each WM parcel across animals in common space) was assessed. The Dice indices range from 0.05 to 0.80 due to differences of local registration quality and the variation of WM tract position across individuals. However, the combined WM labels from the 3 animals represent the general locations of WM parcels, adding basic connectivity information to the atlas. PMID:27064328

  18. AF printability check with a full-chip 3D resist profile model

    NASA Astrophysics Data System (ADS)

    Wu, Cheng-En R.; Chang, Jason; Song, Hua; Shiely, James

    2013-09-01

    A single compact resist model capable of predicting 3D resist profile is strongly demanded for the advanced technology nodes to avoid the potential hotspots due to imperfect resist pattern shape and its lack of resistance in the subsequent etch process. In this work, we propose a resist 3D (R3D) compact model that takes acidz-diffusion effect into account. The chemical reaction between acid and base along z-direction is treated as second order effect that is absorbed into the anisotropic diffusion length as a fitting parameter. Meanwhile, the resist model in the x-y wafer plane is still kept in general by applying the compact solution of 2D reaction-diffusion equation. In order to have the 2D contour predictability at arbitrary resist height, calibration from entire 3D data (CDs at several heights) areconducted simultaneously witha single cost function so that the R3D compact model is described by a common set of resist free parameters and threshold for all resist heights. With the low energy approximation, the acid z-diffusion effect is equivalent to a z-diffused TCC that takes the form of linear combination of pure optical TCCs sampled at discrete image-depth which can be pre-calculated. With this benefit, the R3D compact model offers a more physical approach but adds no runtime concern on the OPC and verification applications. The predicted resist cross-section profiles from our test patterns are compared those computed with rigorous lithography simulator SLITHO and show very good matching results between them. The demonstration of the AF printability check from the predicted cross-section profile at AF indicates the success of our R3D compact model.

  19. 3-D Technology Approaches for Biological Ecologies

    NASA Astrophysics Data System (ADS)

    Liu, Liyu; Austin, Robert; U. S-China Physical-Oncology Sciences Alliance (PS-OA) Team

    Constructing three dimensional (3-D) landscapes is an inevitable issue in deep study of biological ecologies, because in whatever scales in nature, all of the ecosystems are composed by complex 3-D environments and biological behaviors. Just imagine if a 3-D technology could help complex ecosystems be built easily and mimic in vivo microenvironment realistically with flexible environmental controls, it will be a fantastic and powerful thrust to assist researchers for explorations. For years, we have been utilizing and developing different technologies for constructing 3-D micro landscapes for biophysics studies in in vitro. Here, I will review our past efforts, including probing cancer cell invasiveness with 3-D silicon based Tepuis, constructing 3-D microenvironment for cell invasion and metastasis through polydimethylsiloxane (PDMS) soft lithography, as well as explorations of optimized stenting positions for coronary bifurcation disease with 3-D wax printing and the latest home designed 3-D bio-printer. Although 3-D technologies is currently considered not mature enough for arbitrary 3-D micro-ecological models with easy design and fabrication, I hope through my talk, the audiences will be able to sense its significance and predictable breakthroughs in the near future. This work was supported by the State Key Development Program for Basic Research of China (Grant No. 2013CB837200), the National Natural Science Foundation of China (Grant No. 11474345) and the Beijing Natural Science Foundation (Grant No. 7154221).

  20. Coaxial lithography.

    PubMed

    Ozel, Tuncay; Bourret, Gilles R; Mirkin, Chad A

    2015-04-01

    The optical and electrical properties of heterogeneous nanowires are profoundly related to their composition and nanoscale architecture. However, the intrinsic constraints of conventional synthetic and lithographic techniques have limited the types of multi-compositional nanowire that can be created and studied in the laboratory. Here, we report a high-throughput technique that can be used to prepare coaxial nanowires with sub-10 nm control over the architectural parameters in both axial and radial dimensions. The method, termed coaxial lithography (COAL), relies on templated electrochemical synthesis and can create coaxial nanowires composed of combinations of metals, metal oxides, metal chalcogenides and conjugated polymers. To illustrate the possibilities of the technique, a core/shell semiconductor nanowire with an embedded plasmonic nanoring was synthesized--a structure that cannot be prepared by any previously known method--and its plasmon-excitation-dependent optoelectronic properties were characterized.

  1. VUV lithography

    DOEpatents

    George, Edward V.; Oster, Yale; Mundinger, David C.

    1990-01-01

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1700-1300A using xenon, krypton or argon; shorter wavelengths of 850-650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask.

  2. VUV lithography

    DOEpatents

    George, E.V.; Oster, Y.; Mundinger, D.C.

    1990-12-25

    Deep UV projection lithography can be performed using an e-beam pumped solid excimer UV source, a mask, and a UV reduction camera. The UV source produces deep UV radiation in the range 1,700--1,300A using xenon, krypton or argon; shorter wavelengths of 850--650A can be obtained using neon or helium. A thin solid layer of the gas is formed on a cryogenically cooled plate and bombarded with an e-beam to cause fluorescence. The UV reduction camera utilizes multilayer mirrors having high reflectivity at the UV wavelength and images the mask onto a resist coated substrate at a preselected demagnification. The mask can be formed integrally with the source as an emitting mask. 6 figs.

  3. EUV lithography

    NASA Astrophysics Data System (ADS)

    Kemp, Kevin; Wurm, Stefan

    2006-10-01

    Extreme ultraviolet lithography (EUVL) technology and infrastructure development has made excellent progress over the past several years, and tool suppliers are delivering alpha tools to customers. However, requirements in source, mask, optics, and resist are very challenging, and significant development efforts are still needed to support beta and production-level performance. Some of the important advances in the past few years include increased source output power, tool and optics system development and integration, and mask blank defect reduction. For example, source power has increased to levels approaching specification, but reliable source operation at these power levels has yet to be fully demonstrated. Significant efforts are also needed to achieve the resolution, line width roughness, and photospeed requirements for EUV photoresists. Cost of ownership and extendibility to future nodes are key factors in determining the outlook for the manufacturing insertion of EUVL. Since wafer throughput is a critical cost factor, source power, resist sensitivity, and system design all need to be carefully considered. However, if the technical and business challenges can be met, then EUVL will be the likely technology of choice for semiconductor manufacturing at the 32, 22, 16 and 11 nm half-pitch nodes. To cite this article: K. Kemp, S. Wurm, C. R. Physique 7 (2006).

  4. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  5. Metrology for Grayscale Lithography

    SciTech Connect

    Murali, Raghunath

    2007-09-26

    Three dimensional microstructures find applications in diffractive optical elements, photonic elements, etc. and can be efficiently fabricated by grayscale lithography. Good process control is important for achieving the desired structures. Metrology methods for grayscale lithography are discussed. Process optimization for grayscale e-beam lithography is explored and various process parameters that affect the grayscale process are discussed.

  6. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  7. Evaluation of the effects of 3D diffusion, crystal geometry, and initial conditions on retrieved time-scales from Fe-Mg zoning in natural oriented orthopyroxene crystals

    NASA Astrophysics Data System (ADS)

    Krimer, Daniel; Costa, Fidel

    2017-01-01

    Volcano petrologists and geochemists increasingly use time-scale determinations of magmatic processes from modeling the chemical zoning patterns in crystals. Most determinations are done using one-dimensional traverses across a two-dimensional crystal section. However, crystals are three-dimensional objects with complex shapes, and diffusion and re-equilibration occurs in multiple dimensions. Given that we can mainly study the crystals in two-dimensional petrographic thin sections, the determined time-scales could be in error if multiple dimensional and geometrical effects are not identified and accounted for. Here we report the results of a numerical study where we investigate the role of multiple dimensions, geometry, and initial conditions of Fe-Mg diffusion in an orthopyroxene crystal with the view towards proper determinations of time scales from modeling natural crystals. We found that merging diffusion fronts (i.e. diffusion from multiple directions) causes 'additional' diffusion that has the greatest influence close to the crystal's corners (i.e. where two crystal faces meet), and with longer times the affected area widens. We also found that the one-dimensional traverses that can lead to the most accurate calculated time-scales from natural crystals are along the b- crystallographic axis on the ab-plane when model inputs (concentration and zoning geometry) are taken as measured (rather than inferred from other observations). More specifically, accurate time-scales are obtained if the compositional traverses are highly symmetrical and contain a concentration plateau measured through the crystal center. On the other hand, for two-dimensional models the ab- and ac-planes are better suited if the initial (pre-diffusion) concentration and zoning geometry inputs are known or can be estimated, although these are a priory unknown, and thus, may be difficult to use in practical terms. We also found that under certain conditions, a combined one-dimensional and two

  8. Radiologic-Pathologic Analysis of Contrast-enhanced and Diffusion-weighted MR Imaging in Patients with HCC after TACE: Diagnostic Accuracy of 3D Quantitative Image Analysis

    PubMed Central

    Chapiro, Julius; Wood, Laura D.; Lin, MingDe; Duran, Rafael; Cornish, Toby; Lesage, David; Charu, Vivek; Schernthaner, Rüdiger; Wang, Zhijun; Tacher, Vania; Savic, Lynn Jeanette; Kamel, Ihab R.

    2014-01-01

    Purpose To evaluate the diagnostic performance of three-dimensional (3Dthree-dimensional) quantitative enhancement-based and diffusion-weighted volumetric magnetic resonance (MR) imaging assessment of hepatocellular carcinoma (HCChepatocellular carcinoma) lesions in determining the extent of pathologic tumor necrosis after transarterial chemoembolization (TACEtransarterial chemoembolization). Materials and Methods This institutional review board–approved retrospective study included 17 patients with HCChepatocellular carcinoma who underwent TACEtransarterial chemoembolization before surgery. Semiautomatic 3Dthree-dimensional volumetric segmentation of target lesions was performed at the last MR examination before orthotopic liver transplantation or surgical resection. The amount of necrotic tumor tissue on contrast material–enhanced arterial phase MR images and the amount of diffusion-restricted tumor tissue on apparent diffusion coefficient (ADCapparent diffusion coefficient) maps were expressed as a percentage of the total tumor volume. Visual assessment of the extent of tumor necrosis and tumor response according to European Association for the Study of the Liver (EASLEuropean Association for the Study of the Liver) criteria was performed. Pathologic tumor necrosis was quantified by using slide-by-slide segmentation. Correlation analysis was performed to evaluate the predictive values of the radiologic techniques. Results At histopathologic examination, the mean percentage of tumor necrosis was 70% (range, 10%–100%). Both 3Dthree-dimensional quantitative techniques demonstrated a strong correlation with tumor necrosis at pathologic examination (R2 = 0.9657 and R2 = 0.9662 for quantitative EASLEuropean Association for the Study of the Liver and quantitative ADCapparent diffusion coefficient, respectively) and a strong intermethod agreement (R2 = 0.9585). Both methods showed a significantly lower discrepancy with pathologically measured necrosis (residual

  9. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  10. A 3D translation stage calibrated with Michelson interferometers

    NASA Astrophysics Data System (ADS)

    Lin, Hui-Hung; Hung, Kuo-Kai; Wang, Lu-Yu; Su, Wei-Hung

    2016-09-01

    A 3D translation stage which meets the requirement of the next-generation lithography is proposed. The Michelson interferometer is used to evaluate the moving distance for this 3-dimensional translation stage. With the help of Michelson interferometer, accuracy in the order of nanometers is desirable.

  11. Decal transfer lithography

    NASA Astrophysics Data System (ADS)

    Childs, William Robert

    A new soft-lithographic method for micropatterning polymeric resists, Decal Transfer Lithography (DTL), is described. This technique is based on the adhesive transfer of elastomeric decal patterns via the engineered adhesion and release properties of a compliant poly(dimethylsiloxane) (PDMS) patterning tool. This procedure is capable of transferring micron to sub-micron-sized features with high fidelity over large substrate areas in both open and closed forms, negative and positive image contrasts. Methods are introduced to promote adhesion of PDMS to noble metals using either of two methods: self-assembling monolayers (SAMs) or silicon dioxide capping layers. A novel UV/Ozone (UVO) mask was developed, which allows the photopatterning of UVO modifications of polymer surfaces. This modification in turn enables the direct photoinitiated patterning of resist patterns transferred by the soft-lithographic DTL method Photodefined-Cohesive Mechanical Failure (P-CMF), which fuses the design rules of the contact based adhesive transfer of PDMS in DTL with those of photolithography. The second, so-called Spartacus method, transfers the design rules of photolithography directly onto PDMS surfaces, enabling a photodefined adhesive transfer of PDMS films onto silicon oxide surfaces. The most significant advance embodied in the DTL method, however, is that is offers useful new capabilities for the design and fabrication of patterns of non-planar surfaces, 3D microfluidic assemblies, and microreactors.

  12. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  13. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  14. GPU-Accelerated Denoising in 3D (GD3D)

    SciTech Connect

    2013-10-01

    The raw computational power GPU Accelerators enables fast denoising of 3D MR images using bilateral filtering, anisotropic diffusion, and non-local means. This software addresses two facets of this promising application: what tuning is necessary to achieve optimal performance on a modern GPU? And what parameters yield the best denoising results in practice? To answer the first question, the software performs an autotuning step to empirically determine optimal memory blocking on the GPU. To answer the second, it performs a sweep of algorithm parameters to determine the combination that best reduces the mean squared error relative to a noiseless reference image.

  15. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  16. Evaluating scatterometry 3D capabilities for EUV

    NASA Astrophysics Data System (ADS)

    Li, Jie; Kritsun, Oleg; Dasari, Prasad; Volkman, Catherine; Wallow, Tom; Hu, Jiangtao

    2013-04-01

    Optical critical dimension (OCD) metrology using scatterometry has been demonstrated to be a viable solution for fast and non-destructive in-line process control and monitoring. As extreme ultraviolet lithography (EUVL) is more widely adopted to fabricate smaller and smaller patterns for electronic devices, scatterometry faces new challenges due to several reasons. For 14nm node and beyond, the feature size is nearly an order of magnitude smaller than the shortest wavelength used in scatterometry. In addition, thinner resist layer is used in EUVL compared with conventional lithography, which leads to reduced measurement sensitivity. Despite these difficulties, tolerance has reduced for smaller feature size. In this work we evaluate 3D capability of scatterometry for EUV process using spectroscopic ellipsometry (SE). Three types of structures, contact holes, tip-to-tip, and tip-to-edge, are studied to test CD and end-gap metrology capabilities. The wafer is processed with focus and exposure matrix. Good correlations to CD-SEM results are achieved and good dynamic precision is obtained for all the key parameters. In addition, the fit to process provides an independent method to evaluate data quality from different metrology tools such as OCD and CDSEM. We demonstrate 3D capabilities of scatterometry OCD metrology for EUVL using spectroscopic ellipsometry, which provides valuable in-line metrology for CD and end-gap control in electronic circuit fabrications.

  17. Application of optical CD metrology for alternative lithography

    NASA Astrophysics Data System (ADS)

    Asano, Masafumi; Kawamoto, Akiko; Matsuki, Kazuto; Godny, Stephane; Lin, Tingsheng; Wakamoto, Koichi

    2013-04-01

    Directed self-assembly (DSA) and nanoimprint lithography (NIL) have been widely developed for low-cost nanoscale patterning. Although they are currently regarded as "alternative lithography," some papers show their potential to be candidates for next-generation lithography (NGL). To actualize the potential, the contribution of metrology engineers is necessary. Since the characteristics of the lithography techniques are different from those of conventional lithography, new metrology schemes correlated with each characteristic are required. In DSA of block copolymer (BCP), a guide is needed to control the direction and position of BCP. Therefore, it is necessary to monitor the relationship between the guide and the BCP pattern. Since the depth of guide or the coating thickness variation of BCP over guide influences the behavior of phase separation of BCP, 3D metrology becomes increasingly important. In NIL, residual resist thickness (RLT) underneath the pattern should be measured because its variation affects the CD variation of transferred pattern. 3D metrology is also important in NIL. Optical critical dimension (OCD) metrology will be a powerful tool for 3D metrology. In this work, some applications of OCD for alternative lithography have been studied. For DSA, we have tried to simultaneously monitor the guide and BCP pattern in a DSA-based contact hole shrinking process. Sufficient measurement accuracy for CD and shapes for guide and BCP patterns was achievable. For NIL, sufficient sensitivity to RLT measurement was obtained.

  18. Silicon-Embedding Approaches to 3-D Toroidal Inductor Fabrication

    SciTech Connect

    Yu, XH; Kim, M; Herrault, F; Ji, CH; Kim, J; Allen, MG

    2013-06-01

    This paper presents complementary-metal-oxide-semiconductor-compatible silicon-embedding techniques for on-chip integration of microelectromechanical-system devices with 3-D complex structures. By taking advantage of the "dead volume" within the bulk of the silicon wafer, functional devices with large profile can be embedded into the substrate without consuming valuable die area on the wafer surface or increasing the packaging complexity. Furthermore, through-wafer interconnects can be implemented to connect the device to the circuitry on the wafer surface. The key challenge of embedding structures within the wafer volume is processing inside deep trenches. To achieve this goal in an area-efficient manner, straight-sidewall trenches are desired, adding additional difficulty to the embedding process. Two approaches to achieve this goal are presented in this paper, i.e., a lithography-based process and a shadow-mask-based process. The lithography-based process utilizes a spray-coating technique and proximity lithography in combination with thick epoxy processing and laminated dry-film lithography. The shadow-mask-based process employs a specially designed 3-D silicon shadow mask to enable simultaneous metal patterning on both the vertical sidewall and the bottom surface of the trench during deposition, eliminating multiple lithography steps and reducing the process time. Both techniques have been demonstrated through the embedding of the topologically complex 3-D toroidal inductors into the silicon substrate for power supply on-chip (PwrSoC) applications. Embedded 3-D inductors that possess 25 turns and a diameter of 6 mm in a silicon trench of 300-mu m depth achieve overall inductances of 45-60 nH, dc resistances of 290-400 m Omega, and quality factors of 16-17.5 at 40-70 MHz.

  19. The upcoming 3D-printing revolution in microfluidics.

    PubMed

    Bhattacharjee, Nirveek; Urrios, Arturo; Kang, Shawn; Folch, Albert

    2016-05-21

    In the last two decades, the vast majority of microfluidic systems have been built in poly(dimethylsiloxane) (PDMS) by soft lithography, a technique based on PDMS micromolding. A long list of key PDMS properties have contributed to the success of soft lithography: PDMS is biocompatible, elastomeric, transparent, gas-permeable, water-impermeable, fairly inexpensive, copyright-free, and rapidly prototyped with high precision using simple procedures. However, the fabrication process typically involves substantial human labor, which tends to make PDMS devices difficult to disseminate outside of research labs, and the layered molding limits the 3D complexity of the devices that can be produced. 3D-printing has recently attracted attention as a way to fabricate microfluidic systems due to its automated, assembly-free 3D fabrication, rapidly decreasing costs, and fast-improving resolution and throughput. Resins with properties approaching those of PDMS are being developed. Here we review past and recent efforts in 3D-printing of microfluidic systems. We compare the salient features of PDMS molding with those of 3D-printing and we give an overview of the critical barriers that have prevented the adoption of 3D-printing by microfluidic developers, namely resolution, throughput, and resin biocompatibility. We also evaluate the various forces that are persuading researchers to abandon PDMS molding in favor of 3D-printing in growing numbers.

  20. Photoinhibition superresolution lithography

    NASA Astrophysics Data System (ADS)

    Forman, Darren Lawrence

    While the prospect of nanoscale manufacturing has generated tremendous excitement, arbitrary patterning at nanometer length scales cannot be brought about with current photolithography---the technology that for decades has driven electronics miniaturization and enabled mass production of digital logic, memory, MEMS and flat-panel displays. This is due to the relatively long wavelength of light and diffraction, which imposes a physical not technological limit on the resolution of a far-field optical pattern. Photoinhibited superresolution (PInSR) lithography is a new scheme designed to beat the diffraction limit through two-color confinement of photopolymerization and, via efficient single-photon absorption kinetics, also be high-throughput capable. This thesis describes development of an integrated optical and materials system for investigating spatiotemporal dynamics of photoinhibited superresolution lithography, with a demonstrated 3x superresolution beyond the diffraction limit. The two-color response, arising from orthogonal photogeneration of species that participate in competing reactions, is shown to be highly complex. This is both a direct and indirect consequence of mobility. Interesting trade-offs arise: thin-film resins (necessitated by single-photon absorption kinetics) require high viscosity for film stability, but the photoinhibition effect is suppressed in viscous resins. Despite this apparent suppression, which can be overcome with high excitation of the photoinhibition system, the low mobility afforded by viscous materials is beneficial for confinement of active species. Diffusion-induced blurring of patterned photoinhibition is problematic in a resin with viscosity = 1,000 cP, and overcome in a resin with viscosity eta = 500,000 cP. Superresolution of factor 3x beyond the diffraction limit is demonstrated at 0.2 NA, with additional results indicating superresolution ability at 1.2 NA. Investigating the effect of diminished photoinhibition efficacy

  1. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  2. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  3. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  4. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  5. Optimal arrangements of fiber optic probes to enhance the spatial resolution in depth for 3D reflectance diffuse optical tomography with time-resolved measurements performed with fast-gated single-photon avalanche diodes

    NASA Astrophysics Data System (ADS)

    Puszka, Agathe; Di Sieno, Laura; Dalla Mora, Alberto; Pifferi, Antonio; Contini, Davide; Boso, Gianluca; Tosi, Alberto; Hervé, Lionel; Planat-Chrétien, Anne; Koenig, Anne; Dinten, Jean-Marc

    2014-02-01

    Fiber optic probes with a width limited to a few centimeters can enable diffuse optical tomography (DOT) in intern organs like the prostate or facilitate the measurements on extern organs like the breast or the brain. We have recently shown on 2D tomographic images that time-resolved measurements with a large dynamic range obtained with fast-gated single-photon avalanche diodes (SPADs) could push forward the imaged depth range in a diffusive medium at short source-detector separation compared with conventional non-gated approaches. In this work, we confirm these performances with the first 3D tomographic images reconstructed with such a setup and processed with the Mellin- Laplace transform. More precisely, we investigate the performance of hand-held probes with short interfiber distances in terms of spatial resolution and specifically demonstrate the interest of having a compact probe design featuring small source-detector separations. We compare the spatial resolution obtained with two probes having the same design but different scale factors, the first one featuring only interfiber distances of 15 mm and the second one, 10 mm. We evaluate experimentally the spatial resolution obtained with each probe on the setup with fast-gated SPADs for optical phantoms featuring two absorbing inclusions positioned at different depths and conclude on the potential of short source-detector separations for DOT.

  6. Lévy/Anomalous Diffusion as a Mean-Field Theory for 3D Cloud Effects in SW-RT: Empirical Support, New Analytical Formulation, and Impact on Atmospheric Absorption

    NASA Astrophysics Data System (ADS)

    Pfeilsticker, K.; Davis, A.; Marshak, A.; Suszcynsky, D. M.; Buldryrev, S.; Barker, H.

    2001-12-01

    2-stream RT models, as used in all current GCMs, are mathematically equivalent to standard diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. In other words, after the conventional van de Hulst rescaling by 1/(1-g) in R3 and also by (1-g) in t, solar photons follow convoluted fractal trajectories in the atmosphere. For instance, we know that transmitted light is typically scattered about (1-g)τ 2 times while reflected light is scattered on average about τ times, where τ is the optical depth of the column. The space/time spread of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows from directly from first principles (the RT equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the '1-g' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as anomalous diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics to investigate a wide variety of

  7. Lévy/Anomalous Diffusion as a Mean-Field Theory for 3D Cloud Effects in Shortwave Radiative Transfer: Empirical Support, New Analytical Formulation, and Impact on Atmospheric Absorption

    NASA Astrophysics Data System (ADS)

    Buldyrev, S.; Davis, A.; Marshak, A.; Stanley, H. E.

    2001-12-01

    Two-stream radiation transport models, as used in all current GCM parameterization schemes, are mathematically equivalent to ``standard'' diffusion theory where the physical picture is a slow propagation of the diffuse radiation by Gaussian random walks. The space/time spread (technically, the Green function) of this diffusion process is described exactly by a Gaussian distribution; from the statistical physics viewpoint, this follows from the convergence of the sum of many (rescaled) steps between scattering events with a finite variance. This Gaussian picture follows directly from first principles (the radiative transfer equation) under the assumptions of horizontal uniformity and large optical depth, i.e., there is a homogeneous plane-parallel cloud somewhere in the column. The first-order effect of 3D variability of cloudiness, the main source of scattering, is to perturb the distribution of single steps between scatterings which, modulo the ``1-g'' rescaling, can be assumed effectively isotropic. The most natural generalization of the Gaussian distribution is the 1-parameter family of symmetric Lévy-stable distributions because the sum of many zero-mean random variables with infinite variance, but finite moments of order q < α (0 < α < 2), converge to them. It has been shown on heuristic grounds that for these Lévy-based random walks the typical number of scatterings is now (1-g)τ α for transmitted light. The appearance of a non-rational exponent is why this is referred to as ``anomalous'' diffusion. Note that standard/Gaussian diffusion is retrieved in the limit α = 2-. Lévy transport theory has been successfully used in the statistical physics literature to investigate a wide variety of systems with strongly nonlinear dynamics; these applications range from random advection in turbulent fluids to the erratic behavior of financial time-series and, most recently, self-regulating ecological systems. We will briefly survey the state

  8. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  9. Mask lithography for display manufacturing

    NASA Astrophysics Data System (ADS)

    Sandstrom, T.; Ekberg, P.

    2010-05-01

    The last ten years have seen flat displays conquer our briefcases, desktops, and living rooms. There has been an enormous development in production technology, not least in lithography and photomasks. Current masks for large displays are more than 2 m2 and make 4-6 1X prints on glass substrates that are 9 m2. One of the most challenging aspects of photomasks for displays is the so called mura, stripes or blemishes which cause visible defects in the finished display. For the future new and even tighter maskwriter specifications are driven by faster transistors and more complex pixel layouts made necessary by the market's wish for still better image quality, multi-touch panels, 3D TVs, and the next wave of e-book readers. Large OLED screens will pose new challenges. Many new types of displays will be lowcost and use simple lithography, but anything which can show video and high quality photographic images needs a transistor backplane and sophisticated masks for its production.

  10. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  11. Controlled Scanning Probe Lithography

    NASA Astrophysics Data System (ADS)

    Ruskell, Todd G.; Sarid, Dror; Workman, Richard K.; Pyle, Jason L.

    1997-03-01

    A method for real-time monitoring of the quality and quantity of silicon oxide grown on silicon using conducting-tip scanning probe lithography has been developed. The sub-picoampere tip-sample currents measured during lithography in ambient conditions are shown to be proportional to the amount of silicon oxide being grown. In addition, we have demonstrated the ability to control the composition of the grown material by altering the lithographic environment. Silicon nitride growth is shown to result from lithography on silicon samples in an environment of annhydrous ammonia.

  12. 3-D transient analysis of pebble-bed HTGR by TORT-TD/ATTICA3D

    SciTech Connect

    Seubert, A.; Sureda, A.; Lapins, J.; Buck, M.; Bader, J.; Laurien, E.

    2012-07-01

    As most of the acceptance criteria are local core parameters, application of transient 3-D fine mesh neutron transport and thermal hydraulics coupled codes is mandatory for best estimate evaluations of safety margins. This also applies to high-temperature gas cooled reactors (HTGR). Application of 3-D fine-mesh transient transport codes using few energy groups coupled with 3-D thermal hydraulics codes becomes feasible in view of increasing computing power. This paper describes the discrete ordinates based coupled code system TORT-TD/ATTICA3D that has recently been extended by a fine-mesh diffusion solver. Based on transient analyses for the PBMR-400 design, the transport/diffusion capabilities are demonstrated and 3-D local flux and power redistribution effects during a partial control rod withdrawal are shown. (authors)

  13. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  14. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  15. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  16. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  17. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  18. Three-Dimensional Nano-Lithography for Emerging Technologies

    DTIC Science & Technology

    2005-09-27

    SUBJECT TERMS Grayscale lithography, micro - and nano -fabrication, 3D micro ...meso-optics for optical system integration, and the burgeoning field of micro -electro-mechanical systems (MEMS), provide drive in the micro - and nano ...scientific literature, and presentations at conferences devoted to micro - and nano -fabrication and micro - optics. More importantly, we developed technology

  19. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  20. Ion beam lithography system

    DOEpatents

    Leung, Ka-Ngo

    2005-08-02

    A maskless plasma-formed ion beam lithography tool provides for patterning of sub-50 nm features on large area flat or curved substrate surfaces. The system is very compact and does not require an accelerator column and electrostatic beam scanning components. The patterns are formed by switching beamlets on or off from a two electrode blanking system with the substrate being scanned mechanically in one dimension. This arrangement can provide a maskless nano-beam lithography tool for economic and high throughput processing.

  1. Development of a 3D-AFM for true 3D measurements of nanostructures

    NASA Astrophysics Data System (ADS)

    Dai, Gaoliang; Häßler-Grohne, Wolfgang; Hüser, Dorothee; Wolff, Helmut; Danzebrink, Hans-Ulrich; Koenders, Ludger; Bosse, Harald

    2011-09-01

    The development of advanced lithography requires highly accurate 3D metrology methods for small line structures of both wafers and photomasks. Development of a new 3D atomic force microscopy (3D-AFM) with vertical and torsional oscillation modes is introduced in this paper. In its configuration, the AFM probe is oscillated using two piezo actuators driven at vertical and torsional resonance frequencies of the cantilever. In such a way, the AFM tip can probe the surface with a vertical and a lateral oscillation, offering high 3D probing sensitivity. In addition, a so-called vector approach probing (VAP) method has been applied. The sample is measured point-by-point using this method. At each probing point, the tip is approached towards the surface until the desired tip-sample interaction is detected and then immediately withdrawn from the surface. Compared to conventional AFMs, where the tip is kept continuously in interaction with the surface, the tip-sample interaction time using the VAP method is greatly reduced and consequently the tip wear is reduced. Preliminary experimental results show promising performance of the developed system. A measurement of a line structure of 800 nm height employing a super sharp AFM tip could be performed with a repeatability of its 3D profiles of better than 1 nm (p-v). A line structure of a Physikalisch-Technische Bundesanstalt photomask with a nominal width of 300 nm has been measured using a flared tip AFM probe. The repeatability of the middle CD values reaches 0.28 nm (1σ). A long-term stability investigation shows that the 3D-AFM has a high stability of better than 1 nm within 197 measurements taken over 30 h, which also confirms the very low tip wear.

  2. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  3. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  4. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. 3D visualization of polymer nanostructure

    SciTech Connect

    Werner, James H

    2009-01-01

    at {approx} 10 nm resolution over hundreds of microns in 3 spatial dimensions. Super-resolution microcopy methods based upon single molecule localization were originally limited to 2D slices. Recent advances in this field have extended these methods to three dimensions. However, the 3D rendering was limited to viewing sparsely labeled cellular structures over a z-depth of less than 1 micron. Our first goal is to extend super resolution microscopy to z-depths of hundreds of microns. This substantial improvement is needed to image polymer nanostructure over functionally relevant length scales. (2) Benchmark this instrument by studying the 3D nanostructure of diblock co-polymer morphologies. We will test and benchmark our instrument by imaging fluorescently labeled diblock copolymers, molecules that self-assemble into a variety of 3D nano-structures. We reiterate these polymers are useful for a variety of applications ranging from lithography to light harvesting.

  6. Thirty years of lithography simulation

    NASA Astrophysics Data System (ADS)

    Mack, Chris A.

    2005-05-01

    Thirty years ago Rick Dill and his team at IBM published the first account of lithography simulation - the accurate description of semiconductor optical lithography by mathematical equations. Since then, lithography simulation has grown dramatically in importance in four important areas: as a research tool, as a development tool, as a manufacturing tool, and as a learning tool. In this paper, the history of lithography simulations is traced from its roots to today"s indispensable tools for lithographic technology development. Along the way, an attempt will be made to define the true value of lithography simulation to the semiconductor industry.

  7. An ice lithography instrument.

    PubMed

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J A

    2011-06-01

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  8. An ice lithography instrument

    SciTech Connect

    Han, Anpan; Chervinsky, John; Branton, Daniel; Golovchenko, J. A.

    2011-06-15

    We describe the design of an instrument that can fully implement a new nanopatterning method called ice lithography, where ice is used as the resist. Water vapor is introduced into a scanning electron microscope (SEM) vacuum chamber above a sample cooled down to 110 K. The vapor condenses, covering the sample with an amorphous layer of ice. To form a lift-off mask, ice is removed by the SEM electron beam (e-beam) guided by an e-beam lithography system. Without breaking vacuum, the sample with the ice mask is then transferred into a metal deposition chamber where metals are deposited by sputtering. The cold sample is then unloaded from the vacuum system and immersed in isopropanol at room temperature. As the ice melts, metal deposited on the ice disperses while the metals deposited on the sample where the ice had been removed by the e-beam remains. The instrument combines a high beam-current thermal field emission SEM fitted with an e-beam lithography system, cryogenic systems, and a high vacuum metal deposition system in a design that optimizes ice lithography for high throughput nanodevice fabrication. The nanoscale capability of the instrument is demonstrated with the fabrication of nanoscale metal lines.

  9. Resist profile simulation with fast lithography model

    NASA Astrophysics Data System (ADS)

    He, Yan-Ying; Chou, Chih-Shiang; Tang, Yu-Po; Huang, Wen-Chun; Liu, Ru-Gun; Gau, Tsai-Sheng

    2014-03-01

    A traditional approach to construct a fast lithographic model is to match wafer top-down SEM images, contours and/or gauge CDs with a TCC model plus some simple resist representation. This modeling method has been proven and is extensively used for OPC modeling. As the technology moves forward, this traditional approach has become insufficient in regard to lithography weak point detection, etching bias prediction, etc. The drawback of this approach is from metrology and simulation. First, top-down SEM is only good for acquiring planar CD information. Some 3D metrology such as cross-section SEM or AFM is necessary to obtain the true resist profile. Second, the TCC modeling approach is only suitable for planar image simulation. In order to model the resist profile, full 3D image simulation is needed. Even though there are many rigorous simulators capable of catching the resist profile very well, none of them is feasible for full-chip application due to the tremendous consumption of computational resource. The authors have proposed a quasi-3D image simulation method in the previous study [1], which is suitable for full-chip simulation with the consideration of sidewall angles, to improve the model accuracy of planar models. In this paper, the quasi-3D image simulation is extended to directly model the resist profile with AFM and/or cross-section SEM data. Resist weak points detected by the model generated with this 3D approach are verified on the wafer.

  10. Development of a 3D printer using scanning projection stereolithography

    PubMed Central

    Lee, Michael P.; Cooper, Geoffrey J. T.; Hinkley, Trevor; Gibson, Graham M.; Padgett, Miles J.; Cronin, Leroy

    2015-01-01

    We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 µm onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5cm2 area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels. PMID:25906401

  11. Development of a 3D printer using scanning projection stereolithography.

    PubMed

    Lee, Michael P; Cooper, Geoffrey J T; Hinkley, Trevor; Gibson, Graham M; Padgett, Miles J; Cronin, Leroy

    2015-04-23

    We have developed a system for the rapid fabrication of low cost 3D devices and systems in the laboratory with micro-scale features yet cm-scale objects. Our system is inspired by maskless lithography, where a digital micromirror device (DMD) is used to project patterns with resolution up to 10 µm onto a layer of photoresist. Large area objects can be fabricated by stitching projected images over a 5 cm(2) area. The addition of a z-stage allows multiple layers to be stacked to create 3D objects, removing the need for any developing or etching steps but at the same time leading to true 3D devices which are robust, configurable and scalable. We demonstrate the applications of the system by printing a range of micro-scale objects as well as a fully functioning microfluidic droplet device and test its integrity by pumping dye through the channels.

  12. Lithography alternatives meet design style reality: How do they "line" up?

    NASA Astrophysics Data System (ADS)

    Smayling, Michael C.

    2016-03-01

    Optical lithography resolution scaling has stalled, giving innovative alternatives a window of opportunity. One important factor that impacts these lithographic approaches is the transition in design style from 2D to 1D for advanced CMOS logic. Just as the transition from 3D circuits to 2D fabrication 50 years ago created an opportunity for a new breed of electronics companies, the transition today presents exciting and challenging time for lithographers. Today, we are looking at a range of non-optical lithography processes. Those considered here can be broadly categorized: self-aligned lithography, self-assembled lithography, deposition lithography, nano-imprint lithography, pixelated e-beam lithography, shot-based e-beam lithography .Do any of these alternatives benefit from or take advantage of 1D layout? Yes, for example SAPD + CL (Self Aligned Pitch Division combined with Complementary Lithography). This is a widely adopted process for CMOS nodes at 22nm and below. Can there be additional design / process co-optimization? In spite of the simple-looking nature of 1D layout, the placement of "cut" in the lines and "holes" for interlayer connections can be tuned for a given process capability. Examples of such optimization have been presented at this conference, typically showing a reduction of at least one in the number of cut or hole patterns needed.[1,2] Can any of the alternatives complement each other or optical lithography? Yes.[3] For example, DSA (Directed Self Assembly) combines optical lithography with self-assembly. CEBL (Complementary e-Beam Lithography) combines optical lithography with SAPD for lines with shot-based e-beam lithography for cuts and holes. Does one (shrinking) size fit all? No, that's why we have many alternatives. For example NIL (Nano-imprint Lithography) has been introduced for NAND Flash patterning where the (trending lower) defectivity is acceptable for the product. Deposition lithography has been introduced in 3D NAND Flash to

  13. Thermal characterization of a liquid resin for 3D printing using photothermal techniques

    NASA Astrophysics Data System (ADS)

    Jiménez-Pérez, José L.; Pincel, Pavel Vieyra; Cruz-Orea, Alfredo; Correa-Pacheco, Zormy N.

    2016-05-01

    Thermal properties of a liquid resin were studied by thermal lens spectrometry (TLS) and open photoacoustic cell (OPC), respectively. In the case of the TLS technique, the two mismatched mode experimental configuration was used with a He-Ne laser, as a probe beam and an Argon laser was used as the excitation source. The characteristic time constant of the transient thermal lens was obtained by fitting the theoretical expression to the experimental data in order to obtain the thermal diffusivity ( α) of the resin. On the other hand, the sample thermal effusivity ( e) was obtained by using the OPC technique. In this technique, an Argon laser was used as the excitation source and was operated at 514 nm with an output power of 30 mW. From the obtained thermal diffusivity ( α) and thermal effusivity ( e) values, the thermal conductivity ( k) and specific heat capacity per unit volume ( ρc) of resin were calculated through the relationships k = e( α)1/2 and ρc = e/( α)1/2. The obtained thermal parameters were compared with the thermal parameters of the literature. To our knowledge, the thermal characterization of resin has not been reported until now. The present study has applications in laser stereo-lithography to manufacture 3D printing pieces.

  14. Immersion lithography bevel solutions

    NASA Astrophysics Data System (ADS)

    Tedeschi, Len; Tamada, Osamu; Sanada, Masakazu; Yasuda, Shuichi; Asai, Masaya

    2008-03-01

    The introduction of Immersion lithography, combined with the desire to maximize the number of potential yielding devices per wafer, has brought wafer edge engineering to the forefront for advanced semiconductor manufactures. Bevel cleanliness, the position accuracy of the lithography films, and quality of the EBR cut has become more critical. In this paper, the effectiveness of wafer track based solutions to enable state-of-art bevel schemes is explored. This includes an integrated bevel cleaner and new bevel rinse nozzles. The bevel rinse nozzles are used in the coating process to ensure a precise, clean film edge on or near the bevel. The bevel cleaner is used immediately before the wafer is loaded into the scanner after the coating process. The bevel cleaner shows promise in driving down defectivity levels, specifically printing particles, while not damaging films on the bevel.

  15. EUV lithography imaging using novel pellicle membranes

    NASA Astrophysics Data System (ADS)

    Pollentier, Ivan; Vanpaemel, Johannes; Lee, Jae Uk; Adelmann, Christoph; Zahedmanesh, Houman; Huyghebaert, Cedric; Gallagher, Emily E.

    2016-03-01

    EUV mask protection against defects during use remains a challenge for EUV lithography. A stand-off protective membrane - a pellicle - is targeted to prevent yield losses in high volume manufacturing during handling and exposure, just as it is for 193nm lithography. The pellicle is thin enough to transmit EUV exposure light, yet strong enough to remain intact and hold any particles out of focus during exposure. The development of pellicles for EUV is much more challenging than for 193nm lithography for multiple reasons including: high absorption of most materials at EUV wavelength, pump-down sequences in the EUV vacuum system, and exposure to high intensity EUV light. To solve the problems of transmission and film durability, various options have been explored. In most cases a thin core film is considered, since the deposition process for this is well established and because it is the simplest option. The transmission specification typically dictates that membranes are very thin (~50nm or less), which makes both fabrication and film mechanical integrity difficult. As an alternative, low density films (e.g. including porosity) will allow thicker membranes for a given transmission specification, which is likely to improve film durability. The risk is that the porosity could influence the imaging. At imec, two cases of pellicle concepts based on reducing density have been assessed : (1) 3D-patterned SiN by directed self-assembly (DSA), and (2) carbon nanomaterials such as carbon nanotubes (CNT) and carbon nanosheets (CNS). The first case is based on SiN membranes that are 3D-patterned by Directed Self Assembly (DSA). The materials are tested relative to the primary specifications: EUV transmission and film durability. A risk assessment of printing performance is provided based on simulations of scattered energy. General conclusions on the efficacy of various approaches will provided.

  16. Supernova Remnant in 3-D

    NASA Technical Reports Server (NTRS)

    2009-01-01

    wavelengths. Since the amount of the wavelength shift is related to the speed of motion, one can determine how fast the debris are moving in either direction. Because Cas A is the result of an explosion, the stellar debris is expanding radially outwards from the explosion center. Using simple geometry, the scientists were able to construct a 3-D model using all of this information. A program called 3-D Slicer modified for astronomical use by the Astronomical Medicine Project at Harvard University in Cambridge, Mass. was used to display and manipulate the 3-D model. Commercial software was then used to create the 3-D fly-through.

    The blue filaments defining the blast wave were not mapped using the Doppler effect because they emit a different kind of light synchrotron radiation that does not emit light at discrete wavelengths, but rather in a broad continuum. The blue filaments are only a representation of the actual filaments observed at the blast wave.

    This visualization shows that there are two main components to this supernova remnant: a spherical component in the outer parts of the remnant and a flattened (disk-like) component in the inner region. The spherical component consists of the outer layer of the star that exploded, probably made of helium and carbon. These layers drove a spherical blast wave into the diffuse gas surrounding the star. The flattened component that astronomers were unable to map into 3-D prior to these Spitzer observations consists of the inner layers of the star. It is made from various heavier elements, not all shown in the visualization, such as oxygen, neon, silicon, sulphur, argon and iron.

    High-velocity plumes, or jets, of this material are shooting out from the explosion in the plane of the disk-like component mentioned above. Plumes of silicon appear in the northeast and southwest, while those of iron are seen in the southeast and north. These jets were already known and Doppler velocity measurements have been made for these

  17. Simulations of immersion lithography

    NASA Astrophysics Data System (ADS)

    Bai, Min; Lei, Junjiang; Zhang, Lin; Shiely, James P.

    2005-05-01

    Immersion lithography has been regarded as the most viable contender to extend the resolution capability of optical lithography using 193nm wavelength. In parallel with the tremendous effort of overcoming the engineering challenges in immersion, support from modeling and simulations is strongly needed. Although immersion simulation has become available through a number of simulation tools, we need to investigate the model generation and its compatibility within the context of full-chip optical proximity correction (OPC). In this paper, we will describe the physics of a full vector model that is necessary for the high NA optical modeling under immersion. In this full vector model, we consider not only the plane wave decomposition as light travels from the mask to wafer plane, but also the refraction, transmission and reflection of light through a thin film stack on the wafer. We integrated this comprehensive vector model into Synopsys OPC modeling tool ProGen. Through ProGen simulation results, we will discuss several important merits of immersion lithography, as well as the full portability of immersion models into OPC process flow.

  18. Fabrication of tunable plasmonic 3D nanostructures for SERS applications

    NASA Astrophysics Data System (ADS)

    Ozbay, Ayse; Yuksel, Handan; Solmaz, Ramazan; Kahraman, Mehmet

    2016-03-01

    Surface-enhanced Raman scattering (SERS) is a powerful technique used for characterization of biological and nonbiological molecules and structures. Since plasmonic properties of the nanomaterials is one of the most important factor influencing SERS activity, tunable plasmonic properties (wavelength of the surface plasmons and magnitude of the electromagnetic field generated on the surface) of SERS substrates are crucial in SERS studies. SERS enhancement can be maximized by controlling of plasmonic properties of the nanomaterials. In this study, a novel approach to fabricate tunable plasmonic 3D nanostructures based on combination of soft lithography and nanosphere lithography is studied. Spherical latex particles having different diameters are uniformly deposited on glass slides with convective assembly method. The experimental parameters for the convective assembly are optimized by changing of latex spheres concentration, stage velocity and latex particles volume placed between to two glass slides that staying with a certain angle to each other. Afterwards, polydimethylsiloxane (PDMS) elastomer is poured on the deposited latex particles and cured to obtain nanovoids on the PDMS surfaces. The diameter and depth of the nanovoids on the PDMS surface are controlled by the size of the latex particles. Finally, fabricated nanovoid template on the PDMS surfaces are filled with the silver coating to obtain plasmonic 3D nanostructures. Characterization of the fabricated surfaces is performed by scanning electron microscopy (SEM) and atomic force microscopy (AFM). SERS performance of fabricated 3D plasmonic nanostructures will be evaluated using Raman reporter molecules.

  19. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  20. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  1. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  2. A microfluidic device for 2D to 3D and 3D to 3D cell navigation

    NASA Astrophysics Data System (ADS)

    Shamloo, Amir; Amirifar, Leyla

    2016-01-01

    Microfluidic devices have received wide attention and shown great potential in the field of tissue engineering and regenerative medicine. Investigating cell response to various stimulations is much more accurate and comprehensive with the aid of microfluidic devices. In this study, we introduced a microfluidic device by which the matrix density as a mechanical property and the concentration profile of a biochemical factor as a chemical property could be altered. Our microfluidic device has a cell tank and a cell culture chamber to mimic both 2D to 3D and 3D to 3D migration of three types of cells. Fluid shear stress is negligible on the cells and a stable concentration gradient can be obtained by diffusion. The device was designed by a numerical simulation so that the uniformity of the concentration gradients throughout the cell culture chamber was obtained. Adult neural cells were cultured within this device and they showed different branching and axonal navigation phenotypes within varying nerve growth factor (NGF) concentration profiles. Neural stem cells were also cultured within varying collagen matrix densities while exposed to NGF concentrations and they experienced 3D to 3D collective migration. By generating vascular endothelial growth factor concentration gradients, adult human dermal microvascular endothelial cells also migrated in a 2D to 3D manner and formed a stable lumen within a specific collagen matrix density. It was observed that a minimum absolute concentration and concentration gradient were required to stimulate migration of all types of the cells. This device has the advantage of changing multiple parameters simultaneously and is expected to have wide applicability in cell studies.

  3. Microfluidic Applications of Soft Lithography

    SciTech Connect

    Rose, K A; Krulevitch, P; Hamilton, J

    2001-04-10

    The soft lithography fabrication technique was applied to three microfluidic devices. The method was used to create an original micropump design and retrofit to existing designs for a DNA manipulation device and a counter biological warfare sample preparation device. Each device presented unique and original challenges to the soft lithography application. AI1 design constraints of the retrofit devices were satisfied using PDMS devices created through variation of soft lithography methods. The micropump utilized the versatility of PDMS, creating design options not available with other materials. In all cases, the rapid processing of soft lithography reduced the fabrication time, creating faster turnaround for design modifications.

  4. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  5. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  6. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  7. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  8. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  9. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  10. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  11. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  12. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  13. 3D reconstruction of tensors and vectors

    SciTech Connect

    Defrise, Michel; Gullberg, Grant T.

    2005-02-17

    Here we have developed formulations for the reconstruction of 3D tensor fields from planar (Radon) and line-integral (X-ray) projections of 3D vector and tensor fields. Much of the motivation for this work is the potential application of MRI to perform diffusion tensor tomography. The goal is to develop a theory for the reconstruction of both Radon planar and X-ray or line-integral projections because of the flexibility of MRI to obtain both of these type of projections in 3D. The development presented here for the linear tensor tomography problem provides insight into the structure of the nonlinear MRI diffusion tensor inverse problem. A particular application of tensor imaging in MRI is the potential application of cardiac diffusion tensor tomography for determining in vivo cardiac fiber structure. One difficulty in the cardiac application is the motion of the heart. This presents a need for developing future theory for tensor tomography in a motion field. This means developing a better understanding of the MRI signal for diffusion processes in a deforming media. The techniques developed may allow the application of MRI tensor tomography for the study of structure of fiber tracts in the brain, atherosclerotic plaque, and spine in addition to fiber structure in the heart. However, the relations presented are also applicable to other fields in medical imaging such as diffraction tomography using ultrasound. The mathematics presented can also be extended to exponential Radon transform of tensor fields and to other geometric acquisitions such as cone beam tomography of tensor fields.

  14. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  15. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    PLOT3D is an interactive graphics program designed to help scientists visualize computational fluid dynamics (CFD) grids and solutions. Today, supercomputers and CFD algorithms can provide scientists with simulations of such highly complex phenomena that obtaining an understanding of the simulations has become a major problem. Tools which help the scientist visualize the simulations can be of tremendous aid. PLOT3D/AMES offers more functions and features, and has been adapted for more types of computers than any other CFD graphics program. Version 3.6b+ is supported for five computers and graphic libraries. Using PLOT3D, CFD physicists can view their computational models from any angle, observing the physics of problems and the quality of solutions. As an aid in designing aircraft, for example, PLOT3D's interactive computer graphics can show vortices, temperature, reverse flow, pressure, and dozens of other characteristics of air flow during flight. As critical areas become obvious, they can easily be studied more closely using a finer grid. PLOT3D is part of a computational fluid dynamics software cycle. First, a program such as 3DGRAPE (ARC-12620) helps the scientist generate computational grids to model an object and its surrounding space. Once the grids have been designed and parameters such as the angle of attack, Mach number, and Reynolds number have been specified, a "flow-solver" program such as INS3D (ARC-11794 or COS-10019) solves the system of equations governing fluid flow, usually on a supercomputer. Grids sometimes have as many as two million points, and the "flow-solver" produces a solution file which contains density, x- y- and z-momentum, and stagnation energy for each grid point. With such a solution file and a grid file containing up to 50 grids as input, PLOT3D can calculate and graphically display any one of 74 functions, including shock waves, surface pressure, velocity vectors, and particle traces. PLOT3D's 74 functions are organized into

  16. Preparation of ring resonator based on PDMS using laser lithography

    NASA Astrophysics Data System (ADS)

    Jandura, D.; Pudis, D.; Gaso, P.

    2016-12-01

    In this paper we present preparation process of ring resonator in racetrack configuration based on polydimethylsiloxane (PDMS). 3D laser lithography in combination with imprinting technique was used to pattern photoresist layer as a master for imprinting process. In the next step, PDMS ring resonator was imprinted and filled with core PDMS. Finally, morphological properties of prepared device were investigated by scanning electron microscope (SEM) and confocal microscope and transmission spectrum measurements were performed.

  17. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  18. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  19. Large Area Printing of 3D Photonic Crystals

    NASA Astrophysics Data System (ADS)

    Watkins, James J.; Beaulieu, Michael R.; Hendricks, Nicholas R.; Kothari, Rohit

    2014-03-01

    We have developed a readily scalable print, lift, and stack approach for producing large area, 3D photonic crystal (PC) structures. UV-assisted nanoimprint lithography (UV-NIL) was used to pattern grating structures comprised of highly filled nanoparticle polymer composite resists with tune-able refractive indices (RI). The gratings were robust and upon release from a support substrate were oriented and stacked to yield 3D PCs. The RI of the composite resists was tuned between 1.58 and 1.92 at 800 nm while maintaining excellent optical transparency. The grating structure dimensions, line width, depth, and pitch, were easily varied by simply changing the imprint mold. For example, a 6 layer log-pile stack was prepared using a composite resist a RI of 1.72 yielding 72 % reflection at 900 nm. The process is scalable for roll-to-roll (R2R) production. Center for Hierarchical Manufacturing - an NSF Nanoscale Science and Engineering Center.

  20. Lithography, metrology and nanomanufacturing

    NASA Astrophysics Data System (ADS)

    Liddle, J. Alexander; Gallatin, Gregg M.

    2011-07-01

    Semiconductor chip manufacturing is by far the predominant nanomanufacturing technology in the world today. Top-down lithography techniques are used for fabrication of logic and memory chips since, in order to function, these chips must essentially be perfect. Assuring perfection requires expensive metrology. Top of the line logic sells for several hundred thousand dollars per square metre and, even though the required metrology is expensive, it is a small percentage of the overall manufacturing cost. The level of stability and control afforded by current lithography tools means that much of this metrology can be online and statistical. In contrast, many of the novel types of nanomanufacturing currently being developed will produce products worth only a few dollars per square metre. To be cost effective, the required metrology must cost proportionately less. Fortunately many of these nanofabrication techniques, such as block copolymer self-assembly, colloidal self-assembly, DNA origami, roll-2-roll nano-imprint, etc., will not require the same level of perfection to meet specification. Given the variability of these self-assembly processes, in order to maintain process control, these techniques will require some level of real time online metrology. Hence we are led to the conclusion that future nanomanufacturing may well necessitate ``cheap'' nanometre scale metrology which functions real time and on-line, e.g. at GHz rates, in the production stream. In this paper we review top-down and bottom-up nanofabrication techniques and compare and contrast the various metrology requirements.

  1. Lithography, metrology and nanomanufacturing.

    PubMed

    Liddle, J Alexander; Gallatin, Gregg M

    2011-07-01

    Semiconductor chip manufacturing is by far the predominant nanomanufacturing technology in the world today. Top-down lithography techniques are used for fabrication of logic and memory chips since, in order to function, these chips must essentially be perfect. Assuring perfection requires expensive metrology. Top of the line logic sells for several hundred thousand dollars per square metre and, even though the required metrology is expensive, it is a small percentage of the overall manufacturing cost. The level of stability and control afforded by current lithography tools means that much of this metrology can be online and statistical. In contrast, many of the novel types of nanomanufacturing currently being developed will produce products worth only a few dollars per square metre. To be cost effective, the required metrology must cost proportionately less. Fortunately many of these nanofabrication techniques, such as block copolymer self-assembly, colloidal self-assembly, DNA origami, roll-2-roll nano-imprint, etc., will not require the same level of perfection to meet specification. Given the variability of these self-assembly processes, in order to maintain process control, these techniques will require some level of real time online metrology. Hence we are led to the conclusion that future nanomanufacturing may well necessitate "cheap" nanometre scale metrology which functions real time and on-line, e.g. at GHz rates, in the production stream. In this paper we review top-down and bottom-up nanofabrication techniques and compare and contrast the various metrology requirements.

  2. Bubble-Pen Lithography.

    PubMed

    Lin, Linhan; Peng, Xiaolei; Mao, Zhangming; Li, Wei; Yogeesh, Maruthi N; Rajeeva, Bharath Bangalore; Perillo, Evan P; Dunn, Andrew K; Akinwande, Deji; Zheng, Yuebing

    2016-01-13

    Current lithography techniques, which employ photon, electron, or ion beams to induce chemical or physical reactions for micro/nano-fabrication, have remained challenging in patterning chemically synthesized colloidal particles, which are emerging as building blocks for functional devices. Herein, we develop a new technique - bubble-pen lithography (BPL) - to pattern colloidal particles on substrates using optically controlled microbubbles. Briefly, a single laser beam generates a microbubble at the interface of colloidal suspension and a plasmonic substrate via plasmon-enhanced photothermal effects. The microbubble captures and immobilizes the colloidal particles on the substrate through coordinated actions of Marangoni convection, surface tension, gas pressure, and substrate adhesion. Through directing the laser beam to move the microbubble, we create arbitrary single-particle patterns and particle assemblies with different resolutions and architectures. Furthermore, we have applied BPL to pattern CdSe/ZnS quantum dots on plasmonic substrates and polystyrene (PS) microparticles on two-dimensional (2D) atomic-layer materials. With the low-power operation, arbitrary patterning and applicability to general colloidal particles, BPL will find a wide range of applications in microelectronics, nanophotonics, and nanomedicine.

  3. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  4. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  5. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  6. Addressing 3D metrology challenges by using a multiple detector CDSEM

    NASA Astrophysics Data System (ADS)

    Hiroyama, Mitsuo; Murakawa, Tsutomu; Kuribara, Masayuki; Iwai, Toshimichi; Soma, Minoru; Iko, Ikuo; Seyama, Masahiro; Matsumoto, Jun; Nakamura, Takayuki; Hakii, Hidemitsu; Yonekura, Isao; Kawashita, Masashi; Nishiyama, Yasushi; Tanaka, Keishi; Komoto, Kenji

    2011-11-01

    In next generation lithography (NGL) for the 22nm node and beyond, the three dimensional (3D) shape measurements of side wall angle (SWA) and height of the photomask pattern will become critical for controlling the exposure characteristics and wafer printability. Until today, cross-section SEM (X-SEM) and Atomic Force Microscope (AFM) methods are used to make 3D measurements, however, these techniques require time consuming preparation and observation. This paper presents an innovative technology for 3D measurement using a multiple detector CDSEM and reports its accuracy and precision.

  7. Development of complex 3D microstructures based on computer generated holography and their usage for biomedical applications

    NASA Astrophysics Data System (ADS)

    Palevicius, Arvydas; Grigaliunas, Viktoras; Janusas, Giedrius; Palevicius, Paulius; Sakalys, Rokas

    2016-04-01

    The main focus of the paper is the development of technological route of the production of complex 3D microstructure, from designing it by the method of computer generated holography till its physical 3D patterning by exploiting the process of electron beam lithography and thermal replication which is used for biomedical application. A phase data of a complex 3D microstructure was generated by using Gerchberg-Saxton algorithm which later was used to produce a computer generated hologram. Physical implementation of microstructure was done using a single layer polymethyl methacrylate (PMMA) as a basis for 3D microstructure, which was exposed using e-beam lithography system e-Line and replicated, using high frequency vibration. Manufactured 3D microstructure is used for designing micro sensor for biomedical applications.

  8. Can we get 3D-CD metrology right?

    NASA Astrophysics Data System (ADS)

    Vladár, András E.; Cizmar, Petr; Villarrubia, John S.; Postek, Michael T.

    2012-03-01

    Our world is three-dimensional, and so are the integrated circuits (ICs), they have always been. In the past, for a long time, we have been very fortunate, because it was enough to measure a simple critical dimension (CD), the width of the resist line, to keep IC production under acceptable control. This requirement has changed in the last few years to contour and now to three-dimensional measurements. Optical lithography is printing photoresist features that are significantly smaller than the wavelength of the light used, and therefore it is indispensable to use optical proximity correction (OPC) methods. This includes modeling and compensation for various errors in the lithography process down to sub-nanometer, essentially atomic levels. The process has to rely on sophisticated and complex simulations and on accurate and highly repeatable dimensional metrology. The necessary dimensional metrology is beyond the conventional one-dimensional line width measurements, and must include two - and three-dimensional measurements of the contours and shapes of structures. Contour metrology needs accurate and highly repeatable measurements on sets and individual OPC structures, for which the critical dimension measurement scanning electron microscope (CD-SEM) is the key metrology tool. Three-dimensional (3D) metrology is now indispensable for IC technology, but current metrology tools and methods cannot fulfill the requirements. We believe that with the implementation of new methods it is feasible to develop 3D metrology that will well serve IC production, even on structures in the few nanometer-size range.

  9. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  10. Extending lithography with advanced materials

    NASA Astrophysics Data System (ADS)

    Guerrero, Douglas J.

    2014-03-01

    Material evolution has been a key enabler of lithography nodes in the last 30 years. This paper explores the evolution of anti-reflective coatings and their transformation from materials that provide only reflection control to advanced multifunctional layers. It is expected that complementary processes that do not require a change in wavelength will continue to dominate the development of new devices and technology nodes. New device architecture, immersion lithography, negative-tone development, multiple patterning, and directed self-assembly have demonstrated the capabilities of extending lithography nodes beyond what anyone thought would be possible. New material advancements for future technology nodes are proposed.

  11. Programmable imprint lithography template

    DOEpatents

    Cardinale, Gregory F.; Talin, Albert A.

    2006-10-31

    A template for imprint lithography (IL) that reduces significantly template production costs by allowing the same template to be re-used for several technology generations. The template is composed of an array of spaced-apart moveable and individually addressable rods or plungers. Thus, the template can be configured to provide a desired pattern by programming the array of plungers such that certain of the plungers are in an "up" or actuated configuration. This arrangement of "up" and "down" plungers forms a pattern composed of protruding and recessed features which can then be impressed onto a polymer film coated substrate by applying a pressure to the template impressing the programmed configuration into the polymer film. The pattern impressed into the polymer film will be reproduced on the substrate by subsequent processing.

  12. Efficient fabrication method of nano-grating for 3D holographic display with full parallax views.

    PubMed

    Wan, Wenqiang; Qiao, Wen; Huang, Wenbin; Zhu, Ming; Fang, Zongbao; Pu, Donglin; Ye, Yan; Liu, Yanhua; Chen, Linsen

    2016-03-21

    Without any special glasses, multiview 3D displays based on the diffractive optics can present high resolution, full-parallax 3D images in an ultra-wide viewing angle. The enabling optical component, namely the phase plate, can produce arbitrarily distributed view zones by carefully designing the orientation and the period of each nano-grating pixel. However, such 3D display screen is restricted to a limited size due to the time-consuming fabricating process of nano-gratings on the phase plate. In this paper, we proposed and developed a lithography system that can fabricate the phase plate efficiently. Here we made two phase plates with full nano-grating pixel coverage at a speed of 20 mm2/mins, a 500 fold increment in the efficiency when compared to the method of E-beam lithography. One 2.5-inch phase plate generated 9-view 3D images with horizontal-parallax, while the other 6-inch phase plate produced 64-view 3D images with full-parallax. The angular divergence in horizontal axis and vertical axis was 1.5 degrees, and 1.25 degrees, respectively, slightly larger than the simulated value of 1.2 degrees by Finite Difference Time Domain (FDTD). The intensity variation was less than 10% for each viewpoint, in consistency with the simulation results. On top of each phase plate, a high-resolution binary masking pattern containing amplitude information of all viewing zone was well aligned. We achieved a resolution of 400 pixels/inch and a viewing angle of 40 degrees for 9-view 3D images with horizontal parallax. In another prototype, the resolution of each view was 160 pixels/inch and the view angle was 50 degrees for 64-view 3D images with full parallax. As demonstrated in the experiments, the homemade lithography system provided the key fabricating technology for multiview 3D holographic display.

  13. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  14. Off-axis illumination of lithography tool

    NASA Astrophysics Data System (ADS)

    Xing, Han; Lin, Li; Bin, Ma

    2013-12-01

    Lithography tool is a necessary part for LSI and VLSI. The illumination system design is an important part in the lithography optical system design. Off-axis illumination technology is an effective way to reducing resolution of lithography. The paper introduction the basic components of lithography tool, the principle of off-axis illumination reducing the resolution of lithography and focus on the two implementations of OAI technology, finally point out advantages and disadvantage of the two implementations.

  15. Freehand 3D ultrasound breast tumor segmentation

    NASA Astrophysics Data System (ADS)

    Liu, Qi; Ge, Yinan; Ou, Yue; Cao, Biao

    2007-12-01

    It is very important for physicians to accurately determine breast tumor location, size and shape in ultrasound image. The precision of breast tumor volume quantification relies on the accurate segmentation of the images. Given the known location and orientation of the ultrasound probe, We propose using freehand three dimensional (3D) ultrasound to acquire original images of the breast tumor and the surrounding tissues in real-time, after preprocessing with anisotropic diffusion filtering, the segmentation operation is performed slice by slice based on the level set method in the image stack. For the segmentation on each slice, the user can adjust the parameters to fit the requirement in the specified image in order to get the satisfied result. By the quantification procedure, the user can know the tumor size varying in different images in the stack. Surface rendering and interpolation are used to reconstruct the 3D breast tumor image. And the breast volume is constructed by the segmented contours in the stack of images. After the segmentation, the volume of the breast tumor in the 3D image data can be obtained.

  16. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  17. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  18. Precision process calibration and CD predictions for low-k1 lithography

    NASA Astrophysics Data System (ADS)

    Chen, Ting; Park, Sangbong; Berger, Gabriel; Coskun, Tamer H.; de Vocht, Joep; Chen, Fung; Yu, Linda; Hsu, Stephen; van den Broeke, Doug; Socha, Robert; Park, Jungchul; Gronlund, Keith; Davis, Todd; Plachecki, Vince; Harris, Tom; Hansen, Steve; Lambson, Chuck

    2005-06-01

    Leading resist calibration for sub-0.3 k1 lithography demands accuracy <2nm for CD through pitch. An accurately calibrated resist process is the prerequisite for establishing production-worthy manufacturing under extreme low k1. From an integrated imaging point of view, the following key components must be simultaneously considered during the calibration - high numerical aperture (NA>0.8) imaging characteristics, customized illuminations (measured vs. modeled pupil profiles), resolution enhancement technology (RET) mask with OPC, reticle metrology, and resist thin film substrate. For imaging at NA approaching unity, polarized illumination can impact significantly the contrast formation in the resist film stack, and therefore it is an important factor to consider in the CD-based resist calibration. For aggressive DRAM memory core designs at k1<0.3, pattern-specific illumination optimization has proven to be critical for achieving the required imaging performance. Various optimization techniques from source profile optimization with fixed mask design to the combined source and mask optimization have been considered for customer designs and available imaging capabilities. For successful low-k1 process development, verification of the optimization results can only be made with a sufficiently tunable resist model that can predicate the wafer printing accurately under various optimized process settings. We have developed, for resist patterning under aggressive low-k1 conditions, a novel 3D diffusion model equipped with double-Gaussian convolution in each dimension. Resist calibration with the new diffusion model has demonstrated a fitness and CD predication accuracy that rival or outperform the traditional 3D physical resist models. In this work, we describe our empirical approach to achieving the nm-scale precision for advanced lithography process calibrations, using either measured 1D CD through-pitch or 2D memory core patterns. We show that for ArF imaging, the

  19. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  20. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  1. Nanoimprint lithography for nanodevice fabrication

    NASA Astrophysics Data System (ADS)

    Barcelo, Steven; Li, Zhiyong

    2016-09-01

    Nanoimprint lithography (NIL) is a compelling technique for low cost nanoscale device fabrication. The precise and repeatable replication of nanoscale patterns from a single high resolution patterning step makes the NIL technique much more versatile than other expensive techniques such as e-beam or even helium ion beam lithography. Furthermore, the use of mechanical deformation during the NIL process enables grayscale lithography with only a single patterning step, not achievable with any other conventional lithography techniques. These strengths enable the fabrication of unique nanoscale devices by NIL for a variety of applications including optics, plasmonics and even biotechnology. Recent advances in throughput and yield in NIL processes demonstrate the potential of being adopted for mainstream semiconductor device fabrication as well.

  2. Nanoimprint lithography for nanodevice fabrication.

    PubMed

    Barcelo, Steven; Li, Zhiyong

    2016-01-01

    Nanoimprint lithography (NIL) is a compelling technique for low cost nanoscale device fabrication. The precise and repeatable replication of nanoscale patterns from a single high resolution patterning step makes the NIL technique much more versatile than other expensive techniques such as e-beam or even helium ion beam lithography. Furthermore, the use of mechanical deformation during the NIL process enables grayscale lithography with only a single patterning step, not achievable with any other conventional lithography techniques. These strengths enable the fabrication of unique nanoscale devices by NIL for a variety of applications including optics, plasmonics and even biotechnology. Recent advances in throughput and yield in NIL processes demonstrate the potential of being adopted for mainstream semiconductor device fabrication as well.

  3. The World of 3-D.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1991-01-01

    Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)

  4. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  5. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  6. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  7. A simple and low-cost 3d-printed emulsion generator

    NASA Astrophysics Data System (ADS)

    Zhang, J. M.; Aguirre-Pablo, A. A.; Li, E. Q.; Thoroddsen, S. T.

    2015-11-01

    The technique traditionally utilized to fabricate microfluidic emulsion generators, i.e. soft-lithography, is complex and expensive for producing three-dimensional (3D) structures. Here we apply 3D printing technology to fabricate a simple and low-cost 3D printed microfluidic device for emulsion generation without the need for surface treatment on the channel walls. This 3D-printed emulsion generator has been successfully tested over a range of conditions. We also formulate and demonstrate uniform scaling laws for emulsion droplets generated in different regimes for the first time, by incorporating the dynamic contact angle effects during the drop formation. Magnetically responsive microspheres are also produced with our emulsion templates, demonstrating the potential applications of this 3D emulsion generator in material and chemical engineering.

  8. TACO3D. 3-D Finite Element Heat Transfer Code

    SciTech Connect

    Mason, W.E.

    1992-03-04

    TACO3D is a three-dimensional, finite-element program for heat transfer analysis. An extension of the two-dimensional TACO program, it can perform linear and nonlinear analyses and can be used to solve either transient or steady-state problems. The program accepts time-dependent or temperature-dependent material properties, and materials may be isotropic or orthotropic. A variety of time-dependent and temperature-dependent boundary conditions and loadings are available including temperature, flux, convection, and radiation boundary conditions and internal heat generation. Additional specialized features treat enclosure radiation, bulk nodes, and master/slave internal surface conditions (e.g., contact resistance). Data input via a free-field format is provided. A user subprogram feature allows for any type of functional representation of any independent variable. A profile (bandwidth) minimization option is available. The code is limited to implicit time integration for transient solutions. TACO3D has no general mesh generation capability. Rows of evenly-spaced nodes and rows of sequential elements may be generated, but the program relies on separate mesh generators for complex zoning. TACO3D does not have the ability to calculate view factors internally. Graphical representation of data in the form of time history and spatial plots is provided through links to the POSTACO and GRAPE postprocessor codes.

  9. Extreme ultraviolet lithography machine

    DOEpatents

    Tichenor, Daniel A.; Kubiak, Glenn D.; Haney, Steven J.; Sweeney, Donald W.

    2000-01-01

    An extreme ultraviolet lithography (EUVL) machine or system for producing integrated circuit (IC) components, such as transistors, formed on a substrate. The EUVL machine utilizes a laser plasma point source directed via an optical arrangement onto a mask or reticle which is reflected by a multiple mirror system onto the substrate or target. The EUVL machine operates in the 10-14 nm wavelength soft x-ray photon. Basically the EUV machine includes an evacuated source chamber, an evacuated main or project chamber interconnected by a transport tube arrangement, wherein a laser beam is directed into a plasma generator which produces an illumination beam which is directed by optics from the source chamber through the connecting tube, into the projection chamber, and onto the reticle or mask, from which a patterned beam is reflected by optics in a projection optics (PO) box mounted in the main or projection chamber onto the substrate. In one embodiment of a EUVL machine, nine optical components are utilized, with four of the optical components located in the PO box. The main or projection chamber includes vibration isolators for the PO box and a vibration isolator mounting for the substrate, with the main or projection chamber being mounted on a support structure and being isolated.

  10. Lithography overlay controller formulation

    NASA Astrophysics Data System (ADS)

    Bode, Christopher A.; Toprac, Anthony J.; Edwards, Richard D.; Edgar, Thomas F.

    2000-08-01

    Lithography overlay refers to the measurement of the alignment of successive patterns within the manufacture of semiconductor devices. Control of overlay has become of great importance in semiconductor manufacturing, as the tolerance for overlay error is continually shrinking in order to manufacture next-generation semiconductor products. Run-to-run control has become an attractive solution to many control problems within the industry, including overlay. The term run-to-run control refers to any automated procedure whereby recipe settings are updated between successive process runs in order to keep the process under control. The following discussion will present the formulation of such a controller by examining control of overlay. A brief introduction of overlay will be given, highlighting the control challenge overlay presents. A data management methodology that groups like processes together in order to improve controllability, referred to as control threads, will then be presented. Finally, a discussion of linear model predictive control will show its utility in feedback run-to-run control.

  11. DREAM3D simulations of inner-belt dynamics

    SciTech Connect

    Cunningham, Gregory Scott

    2015-05-26

    A 1973 paper by Lyons and Thorne explains the two-belt structure for electrons in the inner magnetosphere as a balance between inward radial diffusion and loss to the atmosphere, where the loss to the atmosphere is enabled by pitch-angle scattering from Coulomb and wave-particle interactions. In the 1973 paper, equilibrium solutions to a decoupled set of 1D radial diffusion equations, one for each value of the first invariant of motion, μ, were computed to produce the equilibrium two-belt structure. Each 1D radial diffusion equation incorporated an L-and μ-dependent `lifetime' due to the Coulomb and wave-particle interactions. This decoupling of the problem is appropriate under the assumption that radial diffusion is slow in comparison to pitch-angle scattering. However, for some values of μ and L the lifetime associated with pitch-angle scattering is comparable to the timescale associated with radial diffusion, suggesting that the true equilibrium solutions might reflect `coupled modes' involving pitch-angle scattering and radial diffusion and thus requiring a 3D diffusion model. In the work we show here, we have computed the equilibrium solutions using our 3D diffusion model, DREAM3D, that allows for such coupling. We find that the 3D equilibrium solutions are quite similar to the solutions shown in the 1973 paper when we use the same physical models for radial diffusion and pitch-angle scattering from hiss. However, we show that the equilibrium solutions are quite sensitive to various aspects of the physics model employed in the 1973 paper that can be improved, suggesting that additional work needs to be done to understand the two-belt structure.

  12. A method to fabricate disconnected silver nanostructures in 3D.

    PubMed

    Vora, Kevin; Kang, SeungYeon; Mazur, Eric

    2012-11-27

    The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.(1,2) Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.(3-7) However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.(8) Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,(9) such as coupled metal dot(10,11)or coupled metal rod(12,13) resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can

  13. A Method to Fabricate Disconnected Silver Nanostructures in 3D

    PubMed Central

    Vora, Kevin; Kang, SeungYeon; Mazur, Eric

    2012-01-01

    The standard nanofabrication toolkit includes techniques primarily aimed at creating 2D patterns in dielectric media. Creating metal patterns on a submicron scale requires a combination of nanofabrication tools and several material processing steps. For example, steps to create planar metal structures using ultraviolet photolithography and electron-beam lithography can include sample exposure, sample development, metal deposition, and metal liftoff. To create 3D metal structures, the sequence is repeated multiple times. The complexity and difficulty of stacking and aligning multiple layers limits practical implementations of 3D metal structuring using standard nanofabrication tools. Femtosecond-laser direct-writing has emerged as a pre-eminent technique for 3D nanofabrication.1,2 Femtosecond lasers are frequently used to create 3D patterns in polymers and glasses.3-7 However, 3D metal direct-writing remains a challenge. Here, we describe a method to fabricate silver nanostructures embedded inside a polymer matrix using a femtosecond laser centered at 800 nm. The method enables the fabrication of patterns not feasible using other techniques, such as 3D arrays of disconnected silver voxels.8 Disconnected 3D metal patterns are useful for metamaterials where unit cells are not in contact with each other,9 such as coupled metal dot10,11or coupled metal rod12,13 resonators. Potential applications include negative index metamaterials, invisibility cloaks, and perfect lenses. In femtosecond-laser direct-writing, the laser wavelength is chosen such that photons are not linearly absorbed in the target medium. When the laser pulse duration is compressed to the femtosecond time scale and the radiation is tightly focused inside the target, the extremely high intensity induces nonlinear absorption. Multiple photons are absorbed simultaneously to cause electronic transitions that lead to material modification within the focused region. Using this approach, one can form structures

  14. Forensic 3D scene reconstruction

    NASA Astrophysics Data System (ADS)

    Little, Charles Q.; Small, Daniel E.; Peters, Ralph R.; Rigdon, J. B.

    2000-05-01

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a fieldable prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  15. 3D Printed Robotic Hand

    NASA Technical Reports Server (NTRS)

    Pizarro, Yaritzmar Rosario; Schuler, Jason M.; Lippitt, Thomas C.

    2013-01-01

    Dexterous robotic hands are changing the way robots and humans interact and use common tools. Unfortunately, the complexity of the joints and actuations drive up the manufacturing cost. Some cutting edge and commercially available rapid prototyping machines now have the ability to print multiple materials and even combine these materials in the same job. A 3D model of a robotic hand was designed using Creo Parametric 2.0. Combining "hard" and "soft" materials, the model was printed on the Object Connex350 3D printer with the purpose of resembling as much as possible the human appearance and mobility of a real hand while needing no assembly. After printing the prototype, strings where installed as actuators to test mobility. Based on printing materials, the manufacturing cost of the hand was $167, significantly lower than other robotic hands without the actuators since they have more complex assembly processes.

  16. Comparing swimsuits in 3D.

    PubMed

    van Geer, Erik; Molenbroek, Johan; Schreven, Sander; deVoogd-Claessen, Lenneke; Toussaint, Huib

    2012-01-01

    In competitive swimming, suits have become more important. These suits influence friction, pressure and wave drag. Friction drag is related to the surface properties whereas both pressure and wave drag are greatly influenced by body shape. To find a relationship between the body shape and the drag, the anthropometry of several world class female swimmers wearing different suits was accurately defined using a 3D scanner and traditional measuring methods. The 3D scans delivered more detailed information about the body shape. On the same day the swimmers did performance tests in the water with the tested suits. Afterwards the result of the performance tests and the differences found in body shape was analyzed to determine the deformation caused by a swimsuit and its effect on the swimming performance. Although the amount of data is limited because of the few test subjects, there is an indication that the deformation of the body influences the swimming performance.

  17. Forensic 3D Scene Reconstruction

    SciTech Connect

    LITTLE,CHARLES Q.; PETERS,RALPH R.; RIGDON,J. BRIAN; SMALL,DANIEL E.

    1999-10-12

    Traditionally law enforcement agencies have relied on basic measurement and imaging tools, such as tape measures and cameras, in recording a crime scene. A disadvantage of these methods is that they are slow and cumbersome. The development of a portable system that can rapidly record a crime scene with current camera imaging, 3D geometric surface maps, and contribute quantitative measurements such as accurate relative positioning of crime scene objects, would be an asset to law enforcement agents in collecting and recording significant forensic data. The purpose of this project is to develop a feasible prototype of a fast, accurate, 3D measurement and imaging system that would support law enforcement agents to quickly document and accurately record a crime scene.

  18. 3D-graphite structure

    SciTech Connect

    Belenkov, E. A. Ali-Pasha, V. A.

    2011-01-15

    The structure of clusters of some new carbon 3D-graphite phases have been calculated using the molecular-mechanics methods. It is established that 3D-graphite polytypes {alpha}{sub 1,1}, {alpha}{sub 1,3}, {alpha}{sub 1,5}, {alpha}{sub 2,1}, {alpha}{sub 2,3}, {alpha}{sub 3,1}, {beta}{sub 1,2}, {beta}{sub 1,4}, {beta}{sub 1,6}, {beta}{sub 2,1}, and {beta}{sub 3,2} consist of sp{sup 2}-hybridized atoms, have hexagonal unit cells, and differ in regards to the structure of layers and order of their alternation. A possible way to experimentally synthesize new carbon phases is proposed: the polymerization and carbonization of hydrocarbon molecules.

  19. Embedding objects during 3D printing to add new functionalities.

    PubMed

    Yuen, Po Ki

    2016-07-01

    A novel method for integrating and embedding objects to add new functionalities during 3D printing based on fused deposition modeling (FDM) (also known as fused filament fabrication or molten polymer deposition) is presented. Unlike typical 3D printing, FDM-based 3D printing could allow objects to be integrated and embedded during 3D printing and the FDM-based 3D printed devices do not typically require any post-processing and finishing. Thus, various fluidic devices with integrated glass cover slips or polystyrene films with and without an embedded porous membrane, and optical devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber were 3D printed to demonstrate the versatility of the FDM-based 3D printing and embedding method. Fluid perfusion flow experiments with a blue colored food dye solution were used to visually confirm fluid flow and/or fluid perfusion through the embedded porous membrane in the 3D printed fluidic devices. Similar to typical 3D printed devices, FDM-based 3D printed devices are translucent at best unless post-polishing is performed and optical transparency is highly desirable in any fluidic devices; integrated glass cover slips or polystyrene films would provide a perfect optical transparent window for observation and visualization. In addition, they also provide a compatible flat smooth surface for biological or biomolecular applications. The 3D printed fluidic devices with an embedded porous membrane are applicable to biological or chemical applications such as continuous perfusion cell culture or biocatalytic synthesis but without the need for any post-device assembly and finishing. The 3D printed devices with embedded Corning(®) Fibrance™ Light-Diffusing Fiber would have applications in display, illumination, or optical applications. Furthermore, the FDM-based 3D printing and embedding method could also be utilized to print casting molds with an integrated glass bottom for polydimethylsiloxane (PDMS) device replication

  20. [Real time 3D echocardiography

    NASA Technical Reports Server (NTRS)

    Bauer, F.; Shiota, T.; Thomas, J. D.

    2001-01-01

    Three-dimensional representation of the heart is an old concern. Usually, 3D reconstruction of the cardiac mass is made by successive acquisition of 2D sections, the spatial localisation and orientation of which require complex guiding systems. More recently, the concept of volumetric acquisition has been introduced. A matricial emitter-receiver probe complex with parallel data processing provides instantaneous of a pyramidal 64 degrees x 64 degrees volume. The image is restituted in real time and is composed of 3 planes (planes B and C) which can be displaced in all spatial directions at any time during acquisition. The flexibility of this system of acquisition allows volume and mass measurement with greater accuracy and reproducibility, limiting inter-observer variability. Free navigation of the planes of investigation allows reconstruction for qualitative and quantitative analysis of valvular heart disease and other pathologies. Although real time 3D echocardiography is ready for clinical usage, some improvements are still necessary to improve its conviviality. Then real time 3D echocardiography could be the essential tool for understanding, diagnosis and management of patients.

  1. Magmatic Systems in 3-D

    NASA Astrophysics Data System (ADS)

    Kent, G. M.; Harding, A. J.; Babcock, J. M.; Orcutt, J. A.; Bazin, S.; Singh, S.; Detrick, R. S.; Canales, J. P.; Carbotte, S. M.; Diebold, J.

    2002-12-01

    Multichannel seismic (MCS) images of crustal magma chambers are ideal targets for advanced visualization techniques. In the mid-ocean ridge environment, reflections originating at the melt-lens are well separated from other reflection boundaries, such as the seafloor, layer 2A and Moho, which enables the effective use of transparency filters. 3-D visualization of seismic reflectivity falls into two broad categories: volume and surface rendering. Volumetric-based visualization is an extremely powerful approach for the rapid exploration of very dense 3-D datasets. These 3-D datasets are divided into volume elements or voxels, which are individually color coded depending on the assigned datum value; the user can define an opacity filter to reject plotting certain voxels. This transparency allows the user to peer into the data volume, enabling an easy identification of patterns or relationships that might have geologic merit. Multiple image volumes can be co-registered to look at correlations between two different data types (e.g., amplitude variation with offsets studies), in a manner analogous to draping attributes onto a surface. In contrast, surface visualization of seismic reflectivity usually involves producing "fence" diagrams of 2-D seismic profiles that are complemented with seafloor topography, along with point class data, draped lines and vectors (e.g. fault scarps, earthquake locations and plate-motions). The overlying seafloor can be made partially transparent or see-through, enabling 3-D correlations between seafloor structure and seismic reflectivity. Exploration of 3-D datasets requires additional thought when constructing and manipulating these complex objects. As numbers of visual objects grow in a particular scene, there is a tendency to mask overlapping objects; this clutter can be managed through the effective use of total or partial transparency (i.e., alpha-channel). In this way, the co-variation between different datasets can be investigated

  2. Directing Matter: Toward Atomic-Scale 3D Nanofabrication

    SciTech Connect

    Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; Lupini, Andrew R.; Rack, Philip D.; Unocic, Raymond R.; Sumpter, Bobby G.; Kalinin, Sergei V.; Belianinov, Alex; Ovchinnikova, Olga S.

    2016-05-16

    Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.

  3. Directing Matter: Toward Atomic-Scale 3D Nanofabrication.

    PubMed

    Jesse, Stephen; Borisevich, Albina Y; Fowlkes, Jason D; Lupini, Andrew R; Rack, Philip D; Unocic, Raymond R; Sumpter, Bobby G; Kalinin, Sergei V; Belianinov, Alex; Ovchinnikova, Olga S

    2016-06-28

    Enabling memristive, neuromorphic, and quantum-based computing as well as efficient mainstream energy storage and conversion technologies requires the next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed toward this goal through various lithographies and scanning-probe-based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron- and ion-based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3D structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano- and atomic scales and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis, and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. In this paper, we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large-scale data analysis with theory, and discuss future prospects of these technologies.

  4. Printing Functional 3D Microdevices by Laser-Induced Forward Transfer.

    PubMed

    Luo, Jun; Pohl, Ralph; Qi, Lehua; Römer, Gert-Willem; Sun, Chao; Lohse, Detlef; Visser, Claas Willem

    2017-03-01

    Slender, out-of-plane metal microdevices are made in a new spatial domain, by using laser-induced forward transfer (LIFT) of metals. Here, a thermocouple with a thickness of 10 µm and a height of 250 µm, consisting of platinum and gold pillars is demonstrated. Multimaterial LIFT enables manufacturing in the micrometer to millimeter range, i.e., between lithography and other 3D printing technologies.

  5. Reaction induced fractures in 3D

    NASA Astrophysics Data System (ADS)

    Ulven, Ole Ivar; Malthe-Sørenssen, Anders

    2014-05-01

    The process of fracture formation due to volume changing processes has been studied numerically in a variety of different settings, e.g. fracture initiation in general volume increasing reactions by Ulven et al.[4], weathering of dolerites by Røyne et al.[2], and volume reduction during chemical decomposition prosesses by Malthe-Sørenssen et al.[1]. Common to many previous works is that the simulations were performed in a 2D setting, due to computational limitations. Fractures observed both in field studies and in experiments are in many cases three dimensional. It remains an open question in what cases the simplification to 2D systems is applicable, and when a full 3D simulation is necessary. In this study, we use a newly developed 3D code combining elements from the discrete element model (DEM) with elements from Peridynamics[3]. We study fracture formation in fully three dimensional simulations, and compare them with simulation results from 2D DEM, thus gaining insight in both qualitative and quantitative differences between results from 2D and 3D simulations. References [1] Malthe-Sørenssen, A., Jamtveit, B., and Meakin, P., 'Fracture Patterns Generated by Diffusion Controlled Volume Changing Reactions,' Phys. Rev. Lett. 96, 2006, pp. 245501-1 - 245501-4. [2] Røyne, A., Jamtveit, B., and Malthe-Sørenssen, A., 'Controls on rock weathering rates by reaction-induced hierarchial fracturing,' Earth Planet. Sci. Lett. 275, 2008, pp. 364 - 369. [3] Silling, S. A., 'Reformulation of elasticity theory for discontinuities and long-range forces,' J. Mech. Phys. Solids, 48, Issue 1, 2000, pp. 175 - 209 [4] Ulven, O. I., Storheim, H., Austrheim, H., and Malthe-Sørenssen, A., 'Fracture Initiation During Volume Increasing Reactions in Rocks and Applications for CO2 Sequestration', Earth Planet. Sci. Lett. 389C, 2014, pp. 132 - 142.

  6. Fabrication of Plasmonic Nanodiscs by Photonic Nanojet Lithography

    NASA Astrophysics Data System (ADS)

    Kim, Jooyoung; Cho, Kyuman; Kim, Inho; Kim, Won Mok; Lee, Taek Sung; Lee, Kyeong-Seok

    2012-02-01

    In this study, we present and demonstrate a new route to the fabrication of plasmonic nanostructures with a controlled size and shape using photonic nanojet lithography. Through the approach of dual-layer lift-off, the achievable size was remarkably reduced to a sub-100 nm scale and the introduction of an engineered diffuser was proved to give a facile and precise way of controlling the anisotropy in shape without a process burden even when the spherical focusing beads are used.

  7. Implementation of active-type Lamina 3D display system.

    PubMed

    Yoon, Sangcheol; Baek, Hogil; Min, Sung-Wook; Park, Soon-Gi; Park, Min-Kyu; Yoo, Seong-Hyeon; Kim, Hak-Rin; Lee, Byoungho

    2015-06-15

    Lamina 3D display is a new type of multi-layer 3D display, which utilizes the polarization state as a new dimension of depth information. Lamina 3D display system has advanced properties - to reduce the data amount representing 3D image, to be easily made using the conventional projectors, and to have a potential being applied to the many applications. However, the system might have some limitations in depth range and viewing angle due to the properties of the expressive volume components. In this paper, we propose the volume using the layers of switchable diffusers to implement the active-type Lamina 3D display system. Because the diffusing rate of the layers has no relation with the polarization state, the polarizer wheel is applied to the proposed system in purpose of making the sectioned image synchronized with the diffusing layer at the designated location. The imaging volume of the proposed system consists of five layers of polymer dispersed liquid crystal and the total size of the implemented volume is 24x18x12 mm3(3). The proposed system can achieve the improvements of viewing qualities such as enhanced depth expression and widened viewing angle.

  8. Physical Limitations in Lithography for Microelectronics.

    ERIC Educational Resources Information Center

    Flavin, P. G.

    1981-01-01

    Describes techniques being used in the production of microelectronics kits which have replaced traditional optical lithography, including contact and optical projection printing, and X-ray and electron beam lithography. Also includes limitations of each technique described. (SK)

  9. Interactive 3D Mars Visualization

    NASA Technical Reports Server (NTRS)

    Powell, Mark W.

    2012-01-01

    The Interactive 3D Mars Visualization system provides high-performance, immersive visualization of satellite and surface vehicle imagery of Mars. The software can be used in mission operations to provide the most accurate position information for the Mars rovers to date. When integrated into the mission data pipeline, this system allows mission planners to view the location of the rover on Mars to 0.01-meter accuracy with respect to satellite imagery, with dynamic updates to incorporate the latest position information. Given this information so early in the planning process, rover drivers are able to plan more accurate drive activities for the rover than ever before, increasing the execution of science activities significantly. Scientifically, this 3D mapping information puts all of the science analyses to date into geologic context on a daily basis instead of weeks or months, as was the norm prior to this contribution. This allows the science planners to judge the efficacy of their previously executed science observations much more efficiently, and achieve greater science return as a result. The Interactive 3D Mars surface view is a Mars terrain browsing software interface that encompasses the entire region of exploration for a Mars surface exploration mission. The view is interactive, allowing the user to pan in any direction by clicking and dragging, or to zoom in or out by scrolling the mouse or touchpad. This set currently includes tools for selecting a point of interest, and a ruler tool for displaying the distance between and positions of two points of interest. The mapping information can be harvested and shared through ubiquitous online mapping tools like Google Mars, NASA WorldWind, and Worldwide Telescope.

  10. 3D Nanostructuring of Semiconductors

    NASA Astrophysics Data System (ADS)

    Blick, Robert

    2000-03-01

    Modern semiconductor technology allows to machine devices on the nanometer scale. I will discuss the current limits of the fabrication processes, which enable the definition of single electron transistors with dimensions down to 8 nm. In addition to the conventional 2D patterning and structuring of semiconductors, I will demonstrate how to apply 3D nanostructuring techniques to build freely suspended single-crystal beams with lateral dimension down to 20 nm. In transport measurements in the temperature range from 30 mK up to 100 K these nano-crystals are characterized regarding their electronic as well as their mechanical properties. Moreover, I will present possible applications of these devices.

  11. What Lies Ahead (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D cylindrical-perspective mosaic taken by the navigation camera on the Mars Exploration Rover Spirit on sol 82 shows the view south of the large crater dubbed 'Bonneville.' The rover will travel toward the Columbia Hills, seen here at the upper left. The rock dubbed 'Mazatzal' and the hole the rover drilled in to it can be seen at the lower left. The rover's position is referred to as 'Site 22, Position 32.' This image was geometrically corrected to make the horizon appear flat.

  12. Making Inexpensive 3-D Models

    NASA Astrophysics Data System (ADS)

    Manos, Harry

    2016-03-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the TPT theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity well tailored to specific class lessons. Most of the supplies are readily available in the home or at school: rubbing alcohol, a rag, two colors of spray paint, art brushes, and masking tape. The cost of these supplies, if you don't have them, is less than 20.

  13. A Clean Adirondack (3-D)

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This is a 3-D anaglyph showing a microscopic image taken of an area measuring 3 centimeters (1.2 inches) across on the rock called Adirondack. The image was taken at Gusev Crater on the 33rd day of the Mars Exploration Rover Spirit's journey (Feb. 5, 2004), after the rover used its rock abrasion tool brush to clean the surface of the rock. Dust, which was pushed off to the side during cleaning, can still be seen to the left and in low areas of the rock.

  14. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  15. 3D Protein Dynamics in the Cell Nucleus.

    PubMed

    Singh, Anand P; Galland, Rémi; Finch-Edmondson, Megan L; Grenci, Gianluca; Sibarita, Jean-Baptiste; Studer, Vincent; Viasnoff, Virgile; Saunders, Timothy E

    2017-01-10

    The three-dimensional (3D) architecture of the cell nucleus plays an important role in protein dynamics and in regulating gene expression. However, protein dynamics within the 3D nucleus are poorly understood. Here, we present, to our knowledge, a novel combination of 1) single-objective based light-sheet microscopy, 2) photoconvertible proteins, and 3) fluorescence correlation microscopy, to quantitatively measure 3D protein dynamics in the nucleus. We are able to acquire >3400 autocorrelation functions at multiple spatial positions within a nucleus, without significant photobleaching, allowing us to make reliable estimates of diffusion dynamics. Using this tool, we demonstrate spatial heterogeneity in Polymerase II dynamics in live U2OS cells. Further, we provide detailed measurements of human-Yes-associated protein diffusion dynamics in a human gastric cancer epithelial cell line.

  16. Mechanical properties of 3D ceramic nanolattices

    NASA Astrophysics Data System (ADS)

    Meza, Lucas

    Developments in advanced nanoscale fabrication techniques have allowed for the creation of 3-dimensional hierarchical structural meta-materials that can be designed with arbitrary geometry. These structures can be made on length scales spanning multiple orders of magnitude, from tens of nanometers to hundreds of microns. The smallest features are controllable on length scales where materials have been shown to exhibit size effects in their mechanical properties. Combining novel nanoscale mechanical properties with a 3-dimensional architecture enables the creation of new classes of materials with tunable and unprecedented mechanical properties. We present the fabrication and mechanical deformation of hollow tube alumina nanolattices that were fabricated using two-photon lithography direct laser writing (DLW), atomic layer deposition (ALD), and oxygen plasma etching. Nanolattices were designed in a number of different geometries including octet-truss, octahedron, and 3D Kagome. Additionally, a number of structural parameters were varied including tube wall thickness (t) , tube major axis (a) , and unit cell size (L) . The resulting nanolattices had a range of densities from ρ = 4 to 250 mg/cm3. Uniaxial compression and cyclic loading tests were performed on the nanolattices to obtain the yield strength and modulus. In these tests, a marked change in the deformation response was observed when the wall thickness was reduced below 20nm; thick-walled nanolattices (t>20nm) underwent catastrophic, brittle failure, which transitioned to a gradual, ductile-like deformation as wall thickness was reduced. Thick-walled nanolattices also exhibited no recovery after compression, while thin-walled structures demonstrated notable recovery, with some recovering by 98% after compression to 50% strain and by 80% when compressed to 90% strain. Across all geometries, unit cell sizes, and wall thicknesses, we found a consistent power law relation between strength and modulus with

  17. Positional Awareness Map 3D (PAM3D)

    NASA Technical Reports Server (NTRS)

    Hoffman, Monica; Allen, Earl L.; Yount, John W.; Norcross, April Louise

    2012-01-01

    The Western Aeronautical Test Range of the National Aeronautics and Space Administration s Dryden Flight Research Center needed to address the aging software and hardware of its current situational awareness display application, the Global Real-Time Interactive Map (GRIM). GRIM was initially developed in the late 1980s and executes on older PC architectures using a Linux operating system that is no longer supported. Additionally, the software is difficult to maintain due to its complexity and loss of developer knowledge. It was decided that a replacement application must be developed or acquired in the near future. The replacement must provide the functionality of the original system, the ability to monitor test flight vehicles in real-time, and add improvements such as high resolution imagery and true 3-dimensional capability. This paper will discuss the process of determining the best approach to replace GRIM, and the functionality and capabilities of the first release of the Positional Awareness Map 3D.

  18. Porphyrin-Based Photocatalytic Lithography

    SciTech Connect

    Bearinger, J; Stone, G; Christian, A; Dugan, L; Hiddessen, A; Wu, K J; Wu, L; Hamilton, J; Stockton, C; Hubbell, J

    2007-10-15

    Photocatalytic lithography is an emerging technique that couples light with coated mask materials in order to pattern surface chemistry. We excite porphyrins to create radical species that photocatalytically oxidize, and thereby pattern, chemistries in the local vicinity. The technique advantageously does not necessitate mass transport or specified substrates, it is fast and robust and the wavelength of light does not limit the resolution of patterned features. We have patterned proteins and cells in order to demonstrate the utility of photocatalytic lithography in life science applications.

  19. Polymer nanofibers by soft lithography

    NASA Astrophysics Data System (ADS)

    Pisignano, Dario; Maruccio, Giuseppe; Mele, Elisa; Persano, Luana; Di Benedetto, Francesca; Cingolani, Roberto

    2005-09-01

    The fabrication of polymeric fibers by soft lithography is demonstrated. Polyurethane, patterned by capillarity-induced molding with high-resolution elastomeric templates, forms mm-long fibers with a diameter below 0.3μm. The Young's modulus of the fabricated structures, evaluated by force-distance scanning probe spectroscopy, has a value of 0.8MPa. This is an excellent example of nanostructures feasible by the combination of soft nanopatterning and high-resolution fabrication approaches for master templates, and particularly electron-beam lithography.

  20. 3D printed bionic ears.

    PubMed

    Mannoor, Manu S; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A; Soboyejo, Winston O; Verma, Naveen; Gracias, David H; McAlpine, Michael C

    2013-06-12

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing.

  1. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  2. 3D Printed Bionic Ears

    PubMed Central

    Mannoor, Manu S.; Jiang, Ziwen; James, Teena; Kong, Yong Lin; Malatesta, Karen A.; Soboyejo, Winston O.; Verma, Naveen; Gracias, David H.; McAlpine, Michael C.

    2013-01-01

    The ability to three-dimensionally interweave biological tissue with functional electronics could enable the creation of bionic organs possessing enhanced functionalities over their human counterparts. Conventional electronic devices are inherently two-dimensional, preventing seamless multidimensional integration with synthetic biology, as the processes and materials are very different. Here, we present a novel strategy for overcoming these difficulties via additive manufacturing of biological cells with structural and nanoparticle derived electronic elements. As a proof of concept, we generated a bionic ear via 3D printing of a cell-seeded hydrogel matrix in the precise anatomic geometry of a human ear, along with an intertwined conducting polymer consisting of infused silver nanoparticles. This allowed for in vitro culturing of cartilage tissue around an inductive coil antenna in the ear, which subsequently enables readout of inductively-coupled signals from cochlea-shaped electrodes. The printed ear exhibits enhanced auditory sensing for radio frequency reception, and complementary left and right ears can listen to stereo audio music. Overall, our approach suggests a means to intricately merge biologic and nanoelectronic functionalities via 3D printing. PMID:23635097

  3. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at lower left in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  4. Martian terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. 3D structured illumination microscopy

    NASA Astrophysics Data System (ADS)

    Dougherty, William M.; Goodwin, Paul C.

    2011-03-01

    Three-dimensional structured illumination microscopy achieves double the lateral and axial resolution of wide-field microscopy, using conventional fluorescent dyes, proteins and sample preparation techniques. A three-dimensional interference-fringe pattern excites the fluorescence, filling in the "missing cone" of the wide field optical transfer function, thereby enabling axial (z) discrimination. The pattern acts as a spatial carrier frequency that mixes with the higher spatial frequency components of the image, which usually succumb to the diffraction limit. The fluorescence image encodes the high frequency content as a down-mixed, moiré-like pattern. A series of images is required, wherein the 3D pattern is shifted and rotated, providing down-mixed data for a system of linear equations. Super-resolution is obtained by solving these equations. The speed with which the image series can be obtained can be a problem for the microscopy of living cells. Challenges include pattern-switching speeds, optical efficiency, wavefront quality and fringe contrast, fringe pitch optimization, and polarization issues. We will review some recent developments in 3D-SIM hardware with the goal of super-resolved z-stacks of motile cells.

  6. Analysis of 3D multi-layer microfluidic gradient generator.

    PubMed

    Ha, Jang Ho; Kim, Tae Hyeon; Lee, Jong Min; Ahrberg, Christian D; Chung, Bong Geun

    2017-01-01

    We developed a three-dimensional (3D) simple multi-layer microfluidic gradient generator to create molecular gradients on the centimeter scale with a wide range of flow rates. To create the concentration gradients, a main channel (MC) was orthogonally intersected with vertical side microchannel (SC) in a 3D multi-layer microfluidic device. Through sequential dilution from the SC, a spatial gradient was generated in the MC. Two theoretical models were created to assist in the design of the 3D multi-layer microfluidic gradient generator and to compare its performance against a two-dimensional equivalent. A first mass balance model was used to predict the steady-state concentrations reached, while a second computational fluid dynamic model was employed to predict spatial development of the gradient by considering convective as well as diffusive mass transport. Furthermore, the theoretical simulations were verified through experiments to create molecular gradients in a 3D multi-layer microfluidic gradient generator.

  7. Microfabrication using soft lithography

    NASA Astrophysics Data System (ADS)

    Zhao, Xiao-Mei

    Soft Lithography is a group of non-photolithographic techniques currently being explored in our group. Four such techniques-microcontact printing (μCP), replica molding (REM), micromolding in capillaries (MIMIC), and microtransfer molding (μTM)-have been demonstrated for fabricating micro- and nanostructures of a variety of materials with dimension >=30 nm. Part I (Chapters 1-5) reviews several aspects of the three molding techniques REM, MIMIC, and μTM. Chapters 1-3 describe μTM and MIMIC, and the use of these techniques in the fabrication of functional devices. μTM is capable of generating μm-scale structures over large areas, on both planar and contoured surfaces, and is able to make 3-dimensional structures layer by layer. The capability of μTM and MIMIC has been demonstrated in the fabrication of single-mode waveguides, waveguide couplers and interferometers. The coupling between waveguides can be tailored by waveguide spacing or the differential in curing time between the waveguides and the cladding. Chapters 4-5 demonstrate the combination of REM and shrinkable polystyrene (PS) films to reduce the feature size of microstructures and to generate microstructures with high aspect ratios on both planar and curved surfaces. A shrinkable PS film is patterned with relief structures, and then heated and shrinks. Thermal shrinkage results in a 100-fold increase in the aspect ratio of the patterned microstructures in the PS film. The microstructures in the shrunken PS films can be transferred to many other materials by REM. Part II (Chapters 6-7) focuses on two issues in the microfabrication using self-assembled monolayers (SAMs) as ultrathin resists. Chapter 6 describes a selective etching solution for transferring patterns of SAMs of alkanethiolates into the underlying layers (e.g., gold, silver, and copper). This etching solution uses thiosulfate as the ligand that coordinates to the metal ions, and ferricyanide as the oxidant. It has been demonstrated to be

  8. A 3D-Printed Oxygen Control Insert for a 24-Well Plate.

    PubMed

    Brennan, Martin D; Rexius-Hall, Megan L; Eddington, David T

    2015-01-01

    3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane) membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates. The direct printing allows integrated distribution channels and device geometries not possible with traditional planar lithography. With this device, four different oxygen conditions were able to be controlled, and six wells were maintained under each oxygen condition. We demonstrate enhanced transcription of the gene VEGFA (vascular endothelial growth factor A) with decreasing oxygen levels in human lung adenocarcinoma cells. This is the first 3D-printed device incorporating gas permeable membranes to facilitate oxygen control in cell culture.

  9. A 3D-Printed Oxygen Control Insert for a 24-Well Plate

    PubMed Central

    Brennan, Martin D.; Rexius-Hall, Megan L.; Eddington, David T.

    2015-01-01

    3D printing has emerged as a method for directly printing complete microfluidic devices, although printing materials have been limited to oxygen-impermeable materials. We demonstrate the addition of gas permeable PDMS (Polydimethylsiloxane) membranes to 3D-printed microfluidic devices as a means to enable oxygen control cell culture studies. The incorporation of a 3D-printed device and gas-permeable membranes was demonstrated on a 24-well oxygen control device for standard multiwell plates. The direct printing allows integrated distribution channels and device geometries not possible with traditional planar lithography. With this device, four different oxygen conditions were able to be controlled, and six wells were maintained under each oxygen condition. We demonstrate enhanced transcription of the gene VEGFA (vascular endothelial growth factor A) with decreasing oxygen levels in human lung adenocarcinoma cells. This is the first 3D-printed device incorporating gas permeable membranes to facilitate oxygen control in cell culture. PMID:26360882

  10. 3D scanning and 3D printing as innovative technologies for fabricating personalized topical drug delivery systems.

    PubMed

    Goyanes, Alvaro; Det-Amornrat, Usanee; Wang, Jie; Basit, Abdul W; Gaisford, Simon

    2016-07-28

    Acne is a multifactorial inflammatory skin disease with high prevalence. In this work, the potential of 3D printing to produce flexible personalised-shape anti-acne drug (salicylic acid) loaded devices was demonstrated by two different 3D printing (3DP) technologies: Fused Deposition Modelling (FDM) and stereolithography (SLA). 3D scanning technology was used to obtain a 3D model of a nose adapted to the morphology of an individual. In FDM 3DP, commercially produced Flex EcoPLA™ (FPLA) and polycaprolactone (PCL) filaments were loaded with salicylic acid by hot melt extrusion (HME) (theoretical drug loading - 2% w/w) and used as feedstock material for 3D printing. Drug loading in the FPLA-salicylic acid and PCL-salicylic acid 3D printed patches was 0.4% w/w and 1.2% w/w respectively, indicating significant thermal degradation of drug during HME and 3D printing. Diffusion testing in Franz cells using a synthetic membrane revealed that the drug loaded printed samples released <187μg/cm(2) within 3h. FPLA-salicylic acid filament was successfully printed as a nose-shape mask by FDM 3DP, but the PCL-salicylic acid filament was not. In the SLA printing process, the drug was dissolved in different mixtures of poly(ethylene glycol) diacrylate (PEGDA) and poly(ethylene glycol) (PEG) that were solidified by the action of a laser beam. SLA printing led to 3D printed devices (nose-shape) with higher resolution and higher drug loading (1.9% w/w) than FDM, with no drug degradation. The results of drug diffusion tests revealed that drug diffusion was faster than with the FDM devices, 229 and 291μg/cm(2) within 3h for the two formulations evaluated. In this study, SLA printing was the more appropriate 3D printing technology to manufacture anti-acne devices with salicylic acid. The combination of 3D scanning and 3D printing has the potential to offer solutions to produce personalised drug loaded devices, adapted in shape and size to individual patients.

  11. Non-isothermal 3D SDPD Simulations

    NASA Astrophysics Data System (ADS)

    Yang, Jun; Potami, Raffaele; Gatsonis, Nikolaos

    2012-11-01

    The study of fluids at micro and nanoscale requires new modeling and computational approaches. Smooth Particle Dissipative Dynamics (SDPD) is a mesh-free method that provides a bridge between the continuum equations of hydrodynamics embedded in the Smooth Particle Hydrodynamics approach and the molecular nature embedded in the DPD approach. SDPD is thermodynamically consistent, does not rely on arbitrary coefficients for its thermostat, involves realistic transport coefficients, and includes fluctuation terms. SDPD is implemented in our work for arbitrary 3D geometries with a methodology to model solid wall boundary conditions. We present simulations for isothermal flows for verification of our approach. The entropy equation is implemented with a velocity-entropy Verlet integration algorithm Flows with heat transfer are simulated for verification of the SDPD. We present also the self-diffusion coefficient derived from SDPD simulations for gases and liquids. Results show the scale dependence of self-diffusion coefficient on SDPD particle size. Computational Mathematics Program of the Air Force Office of Scientific Research under grant/contract number FA9550-06-1-0236.

  12. Holographic illuminator for synchrotron-based projection lithography systems

    DOEpatents

    Naulleau, Patrick P.

    2005-08-09

    The effective coherence of a synchrotron beam line can be tailored to projection lithography requirements by employing a moving holographic diffuser and a stationary low-cost spherical mirror. The invention is particularly suited for use in an illuminator device for an optical image processing system requiring partially coherent illumination. The illuminator includes: (1) a synchrotron source of coherent or partially coherent radiation which has an intrinsic coherence that is higher than the desired coherence, (2) a holographic diffuser having a surface that receives incident radiation from said source, (3) means for translating the surface of the holographic diffuser in two dimensions along a plane that is parallel to the surface of the holographic diffuser wherein the rate of the motion is fast relative to integration time of said image processing system; and (4) a condenser optic that re-images the surface of the holographic diffuser to the entrance plane of said image processing system.

  13. 3D Printing of Graphene Aerogels.

    PubMed

    Zhang, Qiangqiang; Zhang, Feng; Medarametla, Sai Pradeep; Li, Hui; Zhou, Chi; Lin, Dong

    2016-04-06

    3D printing of a graphene aerogel with true 3D overhang structures is highlighted. The aerogel is fabricated by combining drop-on-demand 3D printing and freeze casting. The water-based GO ink is ejected and freeze-cast into designed 3D structures. The lightweight (<10 mg cm(-3) ) 3D printed graphene aerogel presents superelastic and high electrical conduction.

  14. Quasi 3D dispersion experiment

    NASA Astrophysics Data System (ADS)

    Bakucz, P.

    2003-04-01

    This paper studies the problem of tracer dispersion in a coloured fluid flowing through a two-phase 3D rough channel-system in a 40 cm*40 cm plexi-container filled by homogen glass fractions and colourless fluid. The unstable interface between the driving coloured fluid and the colourless fluid develops viscous fingers with a fractal structure at high capillary number. Five two-dimensional fractal fronts have been observed at the same time using four cameras along the vertical side-walls and using one camera located above the plexi-container. In possession of five fronts the spatial concentration contours are determined using statistical models. The concentration contours are self-affine fractal curves with a fractal dimension D=2.19. This result is valid for disperison at high Péclet numbers.

  15. ShowMe3D

    SciTech Connect

    Sinclair, Michael B

    2012-01-05

    ShowMe3D is a data visualization graphical user interface specifically designed for use with hyperspectral image obtained from the Hyperspectral Confocal Microscope. The program allows the user to select and display any single image from a three dimensional hyperspectral image stack. By moving a slider control, the user can easily move between images of the stack. The user can zoom into any region of the image. The user can select any pixel or region from the displayed image and display the fluorescence spectrum associated with that pixel or region. The user can define up to 3 spectral filters to apply to the hyperspectral image and view the image as it would appear from a filter-based confocal microscope. The user can also obtain statistics such as intensity average and variance from selected regions.

  16. 3D Printed Shelby Cobra

    ScienceCinema

    Love, Lonnie

    2016-11-02

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  17. Directing Matter: Toward Atomic-Scale 3D Nanofabrication

    DOE PAGES

    Jesse, Stephen; Borisevich, Albina Y.; Fowlkes, Jason D.; ...

    2016-05-16

    Here we report that enabling memristive, neuromorphic, and quantum based computing as well as efficient mainstream energy storage and conversion technologies requires next generation of materials customized at the atomic scale. This requires full control of atomic arrangement and bonding in three dimensions. The last two decades witnessed substantial industrial, academic, and government research efforts directed towards this goal through various lithographies and scanning probe based methods. These technologies emphasize 2D surface structures, with some limited 3D capability. Recently, a range of focused electron and ion based methods have demonstrated compelling alternative pathways to achieving atomically precise manufacturing of 3Dmore » structures in solids, liquids, and at interfaces. Electron and ion microscopies offer a platform that can simultaneously observe dynamic and static structures at the nano and atomic scales, and also induce structural rearrangements and chemical transformation. The addition of predictive modeling or rapid image analytics and feedback enables guiding these in a controlled manner. Here, we review the recent results that used focused electron and ion beams to create free-standing nanoscale 3D structures, radiolysis and the fabrication potential with liquid precursors, epitaxial crystallization of amorphous oxides with atomic layer precision, as well as visualization and control of individual dopant motion within a 3D crystal lattice. These works lay the foundation for new approaches to directing nanoscale level architectures and offer a potential roadmap to full 3D atomic control in materials. Lastly, in this perspective we lay out the gaps that currently constrain the processing range of these platforms, reflect on indirect requirements, such as the integration of large scale data analysis with theory, and discuss future prospects of these technologies.« less

  18. Biomolecular Patterning via Photocatalytic Lithography

    SciTech Connect

    Bearinger, J P; Hiddessen, A L; Wu, K J; Christian, A T; Dugan, L C; Stone, G; Camarero, J; Hinz, A K; Hubbell, J A

    2005-02-18

    We have developed a novel method for patterning surface chemistry: Photocatalytic Lithography. This technique relies on inexpensive stamp materials and light; it does not necessitate mass transport or specified substrates, and the wavelength of light should not limit feature resolution. We have demonstrated the utility of this technique through the patterning of proteins, single cells and bacteria.

  19. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, Natale M.; Markle, David A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies.

  20. Advanced oxidation scanning probe lithography

    NASA Astrophysics Data System (ADS)

    Ryu, Yu K.; Garcia, Ricardo

    2017-04-01

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  1. Advanced oxidation scanning probe lithography.

    PubMed

    Ryu, Yu K; Garcia, Ricardo

    2017-04-07

    Force microscopy enables a variety of approaches to manipulate and/or modify surfaces. Few of those methods have evolved into advanced probe-based lithographies. Oxidation scanning probe lithography (o-SPL) is the only lithography that enables the direct and resist-less nanoscale patterning of a large variety of materials, from metals to semiconductors; from self-assembled monolayers to biomolecules. Oxidation SPL has also been applied to develop sophisticated electronic and nanomechanical devices such as quantum dots, quantum point contacts, nanowire transistors or mechanical resonators. Here, we review the principles, instrumentation aspects and some device applications of o-SPL. Our focus is to provide a balanced view of the method that introduces the key steps in its evolution, provides some detailed explanations on its fundamentals and presents current trends and applications. To illustrate the capabilities and potential of o-SPL as an alternative lithography we have favored the most recent and updated contributions in nanopatterning and device fabrication.

  2. Maskless, reticle-free, lithography

    DOEpatents

    Ceglio, N.M.; Markle, D.A.

    1997-11-25

    A lithography system in which the mask or reticle, which usually carries the pattern to be printed onto a substrate, is replaced by a programmable array of binary (i.e. on/off) light valves or switches which can be programmed to replicate a portion of the pattern each time an illuminating light source is flashed. The pattern of light produced by the programmable array is imaged onto a lithographic substrate which is mounted on a scanning stage as is common in optical lithography. The stage motion and the pattern of light displayed by the programmable array are precisely synchronized with the flashing illumination system so that each flash accurately positions the image of the pattern on the substrate. This is achieved by advancing the pattern held in the programmable array by an amount which corresponds to the travel of the substrate stage each time the light source flashes. In this manner the image is built up of multiple flashes and an isolated defect in the array will only have a small effect on the printed pattern. The method includes projection lithographies using radiation other than optical or ultraviolet light. The programmable array of binary switches would be used to control extreme ultraviolet (EUV), x-ray, or electron, illumination systems, obviating the need for stable, defect free masks for projection EUV, x-ray, or electron, lithographies. 7 figs.

  3. Graphic Arts/Offset Lithography.

    ERIC Educational Resources Information Center

    Hoisington, James; Metcalf, Joseph

    This revised curriculum for graphic arts is designed to provide secondary and postsecondary students with entry-level skills and an understanding of current printing technology. It contains lesson plans based on entry-level competencies for offset lithography as identified by educators and industry representatives. The guide is divided into 15…

  4. Applications of three-dimensional (3D) printing for microswimmers and bio-hybrid robotics.

    PubMed

    Stanton, M M; Trichet-Paredes, C; Sánchez, S

    2015-04-07

    This article will focus on recent reports that have applied three-dimensional (3D) printing for designing millimeter to micrometer architecture for robotic motility. The utilization of 3D printing has rapidly grown in applications for medical prosthetics and scaffolds for organs and tissue, but more recently has been implemented for designing mobile robotics. With an increase in the demand for devices to perform in fragile and confined biological environments, it is crucial to develop new miniaturized, biocompatible 3D systems. Fabrication of materials at different scales with different properties makes 3D printing an ideal system for creating frameworks for small-scale robotics. 3D printing has been applied for the design of externally powered, artificial microswimmers and studying their locomotive capabilities in different fluids. Printed materials have also been incorporated with motile cells for bio-hybrid robots capable of functioning by cell contraction and swimming. These 3D devices offer new methods of robotic motility for biomedical applications requiring miniature structures. Traditional 3D printing methods, where a structure is fabricated in an additive process from a digital design, and non-traditional 3D printing methods, such as lithography and molding, will be discussed.

  5. Plasmonic films based on colloidal lithography.

    PubMed

    Ai, Bin; Yu, Ye; Möhwald, Helmuth; Zhang, Gang; Yang, Bai

    2014-04-01

    This paper reviews recent advances in the field of plasmonic films fabricated by colloidal lithography. Compared with conventional lithography techniques such as electron beam lithography and focused ion beam lithography, the unconventional colloidal lithography technique with advantages of low-cost and high-throughput has made the fabrication process more efficient, and moreover brought out novel films that show remarkable surface plasmon features. These plasmonic films include those with nanohole arrays, nanovoid arrays and nanoshell arrays with precisely controlled shapes, sizes, and spacing. Based on these novel nanostructures, optical and sensing performances can be greatly enhanced. The introduction of colloidal lithography provides not only efficient fabrication processes but also plasmonic films with unique nanostructures, which are difficult to be fabricated by conventional lithography techniques.

  6. Intregrating metallic wiring with three-dimensional polystyrene colloidal crystals using electron-beam lithography and three-dimensional laser lithography

    NASA Astrophysics Data System (ADS)

    Tian, Yaolan; Isotalo, Tero J.; Konttinen, Mikko P.; Li, Jiawei; Heiskanen, Samuli; Geng, Zhuoran; Maasilta, Ilari J.

    2017-02-01

    We demonstrate a method to fabricate narrow, down to a few micron wide metallic leads on top of a three-dimensional (3D) colloidal crystal self-assembled from polystyrene (PS) nanospheres of diameter 260 nm, using electron-beam lithography. This fabrication is not straightforward due to the fact that PS nanospheres cannot usually survive the harsh chemical treatments required in the development and lift-off steps of electron-beam lithography. We solve this problem by increasing the chemical resistance of the PS nanospheres using an additional electron-beam irradiation step, which allows the spheres to retain their shape and their self-assembled structure, even after baking to a temperature of 160 °C, the exposure to the resist developer and the exposure to acetone, all of which are required for the electron-beam lithography step. Moreover, we show that by depositing an aluminum oxide capping layer on top of the colloidal crystal after the e-beam irradiation, the surface is smooth enough so that continuous metal wiring can be deposited by the electron-beam lithography. Finally, we also demonstrate a way to self-assemble PS colloidal crystals into a microscale container, which was fabricated using direct-write 3D laser-lithography. Metallic wiring was also successfully integrated with the combination of a container structure and a PS colloidal crystal. Our goal is to make a device for studies of thermal transport in 3D phononic crystals, but other phononic or photonic crystal applications could also be envisioned.

  7. XUV spectra of 2nd transition row elements: identification of 3d-4p and 3d-4f transition arrays

    NASA Astrophysics Data System (ADS)

    Lokasani, Ragava; Long, Elaine; Maguire, Oisin; Sheridan, Paul; Hayden, Patrick; O'Reilly, Fergal; Dunne, Padraig; Sokell, Emma; Endo, Akira; Limpouch, Jiri; O'Sullivan, Gerry

    2015-12-01

    The use of laser produced plasmas (LPPs) in extreme ultraviolet/soft x-ray lithography and metrology at 13.5 nm has been widely reported and recent research efforts have focused on developing next generation sources for lithography, surface morphology, patterning and microscopy at shorter wavelengths. In this paper, the spectra emitted from LPPs of the 2nd transition row elements from yttrium (Z = 39) to palladium (Z = 46), with the exception of zirconium (Z = 40) and technetium (Z = 43), produced by two Nd:YAG lasers which delivered up to 600 mJ in 7 ns and 230 mJ in 170 ps, respectively, are reported. Intense emission was observed in the 2-8 nm spectral region resulting from unresolved transition arrays (UTAs) due to 3d-4p, 3d-4f and 3p-3d transitions. These transitions in a number of ion stages of yttrium, niobium, ruthenium and rhodium were identified by comparison with results from Cowan code calculations and previous studies. The theoretical data were parameterized using the UTA formalism and the mean wavelength and widths were calculated and compared with experimental results.

  8. 3D Kitaev spin liquids

    NASA Astrophysics Data System (ADS)

    Hermanns, Maria

    The Kitaev honeycomb model has become one of the archetypal spin models exhibiting topological phases of matter, where the magnetic moments fractionalize into Majorana fermions interacting with a Z2 gauge field. In this talk, we discuss generalizations of this model to three-dimensional lattice structures. Our main focus is the metallic state that the emergent Majorana fermions form. In particular, we discuss the relation of the nature of this Majorana metal to the details of the underlying lattice structure. Besides (almost) conventional metals with a Majorana Fermi surface, one also finds various realizations of Dirac semi-metals, where the gapless modes form Fermi lines or even Weyl nodes. We introduce a general classification of these gapless quantum spin liquids using projective symmetry analysis. Furthermore, we briefly outline why these Majorana metals in 3D Kitaev systems provide an even richer variety of Dirac and Weyl phases than possible for electronic matter and comment on possible experimental signatures. Work done in collaboration with Kevin O'Brien and Simon Trebst.

  9. 3D multiplexed immunoplasmonics microscopy

    NASA Astrophysics Data System (ADS)

    Bergeron, Éric; Patskovsky, Sergiy; Rioux, David; Meunier, Michel

    2016-07-01

    Selective labelling, identification and spatial distribution of cell surface biomarkers can provide important clinical information, such as distinction between healthy and diseased cells, evolution of a disease and selection of the optimal patient-specific treatment. Immunofluorescence is the gold standard for efficient detection of biomarkers expressed by cells. However, antibodies (Abs) conjugated to fluorescent dyes remain limited by their photobleaching, high sensitivity to the environment, low light intensity, and wide absorption and emission spectra. Immunoplasmonics is a novel microscopy method based on the visualization of Abs-functionalized plasmonic nanoparticles (fNPs) targeting cell surface biomarkers. Tunable fNPs should provide higher multiplexing capacity than immunofluorescence since NPs are photostable over time, strongly scatter light at their plasmon peak wavelengths and can be easily functionalized. In this article, we experimentally demonstrate accurate multiplexed detection based on the immunoplasmonics approach. First, we achieve the selective labelling of three targeted cell surface biomarkers (cluster of differentiation 44 (CD44), epidermal growth factor receptor (EGFR) and voltage-gated K+ channel subunit KV1.1) on human cancer CD44+ EGFR+ KV1.1+ MDA-MB-231 cells and reference CD44- EGFR- KV1.1+ 661W cells. The labelling efficiency with three stable specific immunoplasmonics labels (functionalized silver nanospheres (CD44-AgNSs), gold (Au) NSs (EGFR-AuNSs) and Au nanorods (KV1.1-AuNRs)) detected by reflected light microscopy (RLM) is similar to the one with immunofluorescence. Second, we introduce an improved method for 3D localization and spectral identification of fNPs based on fast z-scanning by RLM with three spectral filters corresponding to the plasmon peak wavelengths of the immunoplasmonics labels in the cellular environment (500 nm for 80 nm AgNSs, 580 nm for 100 nm AuNSs and 700 nm for 40 nm × 92 nm AuNRs). Third, the developed

  10. Crowdsourcing Based 3d Modeling

    NASA Astrophysics Data System (ADS)

    Somogyi, A.; Barsi, A.; Molnar, B.; Lovas, T.

    2016-06-01

    Web-based photo albums that support organizing and viewing the users' images are widely used. These services provide a convenient solution for storing, editing and sharing images. In many cases, the users attach geotags to the images in order to enable using them e.g. in location based applications on social networks. Our paper discusses a procedure that collects open access images from a site frequently visited by tourists. Geotagged pictures showing the image of a sight or tourist attraction are selected and processed in photogrammetric processing software that produces the 3D model of the captured object. For the particular investigation we selected three attractions in Budapest. To assess the geometrical accuracy, we used laser scanner and DSLR as well as smart phone photography to derive reference values to enable verifying the spatial model obtained from the web-album images. The investigation shows how detailed and accurate models could be derived applying photogrammetric processing software, simply by using images of the community, without visiting the site.

  11. High-resolution 3D digital models of artworks

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Pampaloni, Enrico; Pezzati, Luca; Scopigno, Roberto

    2003-10-01

    The measurement of the shape of an artwork usually requires a high-resolution instrumentation, in order to catch small details such as chisel marks, sculptural relieves, surface cracks, etc. 3D scanning techniques, together with new modeling software tools, allow a high fidelity reproduction of an artwork: these can be applied either to support and document its repair or for the realization of 3D archives and virtual museums. Starting from a high-resolution digital model of an object, a further step could be its reproduction by means of fast-prototyping techniques like stereo-lithography or electro-erosion. This work is aimed at showing the performance of a high-resolution laser scanner devoted to Cultural Heritage applications. The device is portable and very versatile, in order to allow in situ applications, accurate and reliable, so to capture intricate details. This laser profilometer has been used in a few surveys, the most significant of which are the monitoring the various phases of the restoration process of an ellenistic bronze (the Minerva of Arezzo, Florence), the cataloguing of some archaeological findings (from the Grotta della Poesia, Lecce) and the documenting of wooden panels surface conditions (the "Madonna del Cardellino" by Raffaello and "La Tebaide" by Beato Angelico).

  12. Fabrication of a Polymer Micro Needle Array by Mask-Dragging X-Ray Lithography and Alignment X-Ray Lithography

    NASA Astrophysics Data System (ADS)

    Li, Yi-Gui; Yang, Chun-Sheng; Liu, Jing-Quan; Sugiyama, Susumu

    2011-03-01

    Polymer materials such as transparent thermoplastic poly(methyl methacrylate) (PMMA) have been of great interest in the research and development of integrated circuits and micro-electromechanical systems due to their relatively low cost and easy process. We fabricated PMMA-based polymer hollow microneedle arrays by mask-dragging and aligning x-ray lithography. Techniques for 3D micromachining by direct lithography using x-rays are developed. These techniques are based on using image projection in which the x-ray is used to illuminate an appropriate gold pattern on a polyimide film mask. The mask is imaged onto the PMMA sample. A pattern with an area of up to 100 × 100mm2 can be fabricated with sub-micron resolution and a highly accurate order of a few microns by using a dragging mask. The fabrication technology has several advantages, such as forming complex 3D micro structures, high throughput and low cost.

  13. Tuning and Freezing Disorder in Photonic Crystals using Percolation Lithography

    PubMed Central

    Burgess, Ian B.; Abedzadeh, Navid; Kay, Theresa M.; Shneidman, Anna V.; Cranshaw, Derek J.; Lončar, Marko; Aizenberg, Joanna

    2016-01-01

    Although common in biological systems, synthetic self-assembly routes to complex 3D photonic structures with tailored degrees of disorder remain elusive. Here we show how liquids can be used to finely control disorder in porous 3D photonic crystals, leading to complex and hierarchical geometries. In these optofluidic crystals, dynamically tunable disorder is superimposed onto the periodic optical structure through partial wetting or evaporation. In both cases, macroscopic symmetry breaking is driven by subtle sub-wavelength variations in the pore geometry. These variations direct site-selective infiltration of liquids through capillary interactions. Incorporating cross-linkable resins into our liquids, we developed methods to freeze in place the filling patterns at arbitrary degrees of partial wetting and intermediate stages of drying. These percolation lithography techniques produced permanent photonic structures with adjustable disorder. By coupling strong changes in optical properties to subtle differences in fluid behavior, optofluidic crystals may also prove useful in rapid analysis of liquids. PMID:26790372

  14. Nanoimprint Lithography on curved surfaces prepared by fused deposition modelling

    NASA Astrophysics Data System (ADS)

    Köpplmayr, Thomas; Häusler, Lukas; Bergmair, Iris; Mühlberger, Michael

    2015-06-01

    Fused deposition modelling (FDM) is an additive manufacturing technology commonly used for modelling, prototyping and production applications. The achievable surface roughness is one of its most limiting aspects. It is however of great interest to create well-defined (nanosized) patterns on the surface for functional applications such as optical effects, electronics or bio-medical devices. We used UV-curable polymers of different viscosities and flexible stamps made of poly(dimethylsiloxane) (PDMS) to perform Nanoimprint Lithography (NIL) on FDM-printed curved parts. Substrates with different roughness and curvature were prepared using a commercially available 3D printer. The nanoimprint results were characterized by optical light microscopy, profilometry and atomic force microscopy (AFM). Our experiments show promising results in creating well-defined microstructures on the 3D-printed parts.

  15. Modeling the transparent shape memory gels by 3D printer Acculas

    NASA Astrophysics Data System (ADS)

    Kumagai, Hiroaki; Arai, Masanori; Gong, Jin; Sakai, Kazuyuki; Kawakami, Masaru; Furukawa, Hidemitsu

    2016-04-01

    In our group, highly transparent shape memory gels were successfully synthesized for the first time in the world. These gels have the high strength of 3MPs modulus even with the water content of 40wt% water and high transparency. We consider that these highly transparent and high strength gels can be applied to the optical devices such as intraocular-lenses and optical fibers. In previous research by our group, attempts were made to manufacture the gel intraocular-lenses using highly transparent shape memory gels. However, it was too difficult to print the intraocular-lens finely enough. Here, we focus on a 3D printer, which can produce objects of irregular shape. 3D printers generally we fused deposition modeling (FDM), a stereo lithography apparatus (SLA) and selective laser sintering (SLS). Because highly transparent shape memory gels are gelled by light irradiation, we used 3D printer with stereo lithography apparatus (SLA). In this study, we found the refractive index of highly transparent shape memory gels depend on monomer concentration, and does not depend on the cross-linker or initiator concentration. Furthermore, the cross-linker and initiator concentration can change the gelation progression rate. As a result, we have developed highly transparent shape memory gels, which can have a range of refractive indexes, and we defined the optimal conditions that can be modeling in the 3D printer by changing the cross-linker and initiator concentration. With these discoveries we were able to produce a gel intraocular-lens replica.

  16. Evaporative Lithography in Open Microfluidic Channel Networks.

    PubMed

    Lone, Saifullah; Zhang, Jia Ming; Vakarelski, Ivan U; Li, Er Qiang; Thoroddsen, Sigurdur T

    2017-03-13

    We demonstrate a direct capillary-driven method based on wetting and evaporation of various suspensions to fabricate regular two-dimensional wires in an open microfluidic channel through continuous deposition of micro- or nanoparticles under evaporative lithography, akin to the coffee-ring effect. The suspension is gently placed in a loading reservoir connected to the main open microchannel groove on a PDMS substrate. Hydrophilic conditions ensure rapid spreading of the suspension from the loading reservoir to fill the entire channel length. Evaporation during the spreading and after the channel is full increases the particle concentration toward the end of the channel. This evaporation-induced convective transport brings particles from the loading reservoir toward the channel end where this flow deposits a continuous multilayered particle structure. The particle deposition front propagates backward over the entire channel length. The final dry deposit of the particles is thereby much thicker than the initial volume fraction of the suspension. The deposition depth is characterized using a 3D imaging profiler, whereas the deposition topography is revealed using a scanning electron microscope. The patterning technology described here is robust and passive and hence operates without an external field. This work may well become a launching pad to construct low-cost and large-scale thin optoelectronic films with variable thicknesses and interspacing distances.

  17. [3D emulation of epicardium dynamic mapping].

    PubMed

    Lu, Jun; Yang, Cui-Wei; Fang, Zu-Xiang

    2005-03-01

    In order to realize epicardium dynamic mapping of the whole atria, 3-D graphics are drawn with OpenGL. Some source codes are introduced in the paper to explain how to produce, read, and manipulate 3-D model data.

  18. An interactive multiview 3D display system

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Zhang, Mei; Dong, Hui

    2013-03-01

    The progresses in 3D display systems and user interaction technologies will help more effective 3D visualization of 3D information. They yield a realistic representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them. In this paper, we describe an autostereoscopic multiview 3D display system with capability of real-time user interaction. Design principle of this autostereoscopic multiview 3D display system is presented, together with the details of its hardware/software architecture. A prototype is built and tested based upon multi-projectors and horizontal optical anisotropic display structure. Experimental results illustrate the effectiveness of this novel 3D display and user interaction system.

  19. Flexible fabrication of multi-scale integrated 3D periodic nanostructures with phase mask

    NASA Astrophysics Data System (ADS)

    Yuan, Liang Leon

    Top-down fabrication of artificial nanostructures, especially three-dimensional (3D) periodic nanostructures, that forms uniform and defect-free structures over large area with the advantages of high throughput and rapid processing and in a manner that can further monolithically integrate into multi-scale and multi-functional devices is long-desired but remains a considerable challenge. This thesis study advances diffractive optical element (DOE) based 3D laser holographic nanofabrication of 3D periodic nanostructures and develops new kinds of DOEs for advanced diffracted-beam control during the fabrication. Phase masks, as one particular kind of DOE, are a promising direction for simple and rapid fabrication of 3D periodic nanostructures by means of Fresnel diffraction interference lithography. When incident with a coherent beam of light, a suitable phase mask (e.g. with 2D nano-grating) can create multiple diffraction orders that are inherently phase-locked and overlap to form a 3D light interference pattern in the proximity of the DOE. This light pattern is typically recorded in photosensitive materials including photoresist to develop into 3D photonic crystal nanostructure templates. Two kinds of advanced phase masks were developed that enable delicate phase control of multiple diffraction beams. The first exploits femtosecond laser direct writing inside fused silica to assemble multiple (up to nine) orthogonally crossed (2D) grating layers, spaced on Talbot planes to overcome the inherent weak diffraction efficiency otherwise found in low-contrast volume gratings. A systematic offsetting of orthogonal grating layers to establish phase offsets over 0 to pi/2 range provided precise means for controlling the 3D photonic crystal structure symmetry between body centered tetragonal (BCT) and woodpile-like tetragonal (wTTR). The second phase mask consisted of two-layered nanogratings with small sub-wavelength grating periods and phase offset control. That was

  20. Fabrication of 3D polymer photonic crystals for near-IR applications

    NASA Astrophysics Data System (ADS)

    Yao, Peng; Qiu, Liang; Shi, Shouyuan; Schneider, Garrett J.; Prather, Dennis W.; Sharkawy, Ahmed; Kelmelis, Eric

    2008-02-01

    Photonic crystals[1, 2] have stirred enormous research interest and became a growing enterprise in the last 15 years. Generally, PhCs consist of periodic structures that possess periodicity comparable with the wavelength that the PhCs are designed to modulate. If material and periodic pattern are properly selected, PhCs can be applied to many applications based on their unique properties, including photonic band gaps (PBG)[3], self-collimation[4], super prism[5], etc. Strictly speaking, PhCs need to possess periodicity in three dimensions to maximize their advantageous capabilities. However, many current research is based on scaled two-dimensional PhCs, mainly due to the difficulty of fabrication such three-dimensional PhCs. Many approaches have been explored for the fabrication of 3D photonic crystals, including layer-by-layer surface micromachining[6], glancing angle deposition[7], 3D micro-sculpture method[8], self-assembly[9] and lithographical methods[10-12]. Among them, lithographic methods became increasingly accepted due to low costs and precise control over the photonic crystal structure. There are three mostly developed lithographical methods, namely X-ray lithography[10], holographic lithography[11] and two-photon polymerization[12]. Although significant progress has been made in developing these lithography-based technologies, these approaches still suffer from significant disadvantages. X-ray lithography relies on an expensive radiation source. Holographic lithography lacks the flexibility to create engineered defects, and multi-photon polymerization is not suitable for parallel fabrication. In our previous work, we developed a multi-layer photolithography processes[13, 14] that is based on multiple resist application and enhanced absorption upon exposure. Using a negative lift-off resist (LOR) and 254nm DUV source, we have demonstrated fabrication of 3D arbitrary structures with feature size of several microns. However, severe intermixing problem

  1. Laser Based 3D Volumetric Display System

    DTIC Science & Technology

    1993-03-01

    Literature, Costa Mesa, CA July 1983. 3. "A Real Time Autostereoscopic Multiplanar 3D Display System", Rodney Don Williams, Felix Garcia, Jr., Texas...8217 .- NUMBERS LASER BASED 3D VOLUMETRIC DISPLAY SYSTEM PR: CD13 0. AUTHOR(S) PE: N/AWIU: DN303151 P. Soltan, J. Trias, W. Robinson, W. Dahlke 7...laser generated 3D volumetric images on a rotating double helix, (where the 3D displays are computer controlled for group viewing with the naked eye

  2. True 3d Images and Their Applications

    NASA Astrophysics Data System (ADS)

    Wang, Z.; wang@hzgeospace., zheng.

    2012-07-01

    A true 3D image is a geo-referenced image. Besides having its radiometric information, it also has true 3Dground coordinates XYZ for every pixels of it. For a true 3D image, especially a true 3D oblique image, it has true 3D coordinates not only for building roofs and/or open grounds, but also for all other visible objects on the ground, such as visible building walls/windows and even trees. The true 3D image breaks the 2D barrier of the traditional orthophotos by introducing the third dimension (elevation) into the image. From a true 3D image, for example, people will not only be able to read a building's location (XY), but also its height (Z). true 3D images will fundamentally change, if not revolutionize, the way people display, look, extract, use, and represent the geospatial information from imagery. In many areas, true 3D images can make profound impacts on the ways of how geospatial information is represented, how true 3D ground modeling is performed, and how the real world scenes are presented. This paper first gives a definition and description of a true 3D image and followed by a brief review of what key advancements of geospatial technologies have made the creation of true 3D images possible. Next, the paper introduces what a true 3D image is made of. Then, the paper discusses some possible contributions and impacts the true 3D images can make to geospatial information fields. At the end, the paper presents a list of the benefits of having and using true 3D images and the applications of true 3D images in a couple of 3D city modeling projects.

  3. X-ray lithography source

    DOEpatents

    Piestrup, Melvin A.; Boyers, David G.; Pincus, Cary

    1991-01-01

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and elminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an exellent moderate-priced X-ray source for lithography.

  4. X-ray lithography source

    DOEpatents

    Piestrup, M.A.; Boyers, D.G.; Pincus, C.

    1991-12-31

    A high-intensity, inexpensive X-ray source for X-ray lithography for the production of integrated circuits is disclosed. Foil stacks are bombarded with a high-energy electron beam of 25 to 250 MeV to produce a flux of soft X-rays of 500 eV to 3 keV. Methods of increasing the total X-ray power and making the cross section of the X-ray beam uniform are described. Methods of obtaining the desired X-ray-beam field size, optimum frequency spectrum and eliminating the neutron flux are all described. A method of obtaining a plurality of station operation is also described which makes the process more efficient and economical. The satisfying of these issues makes transition radiation an excellent moderate-priced X-ray source for lithography. 26 figures.

  5. EUV Lithography: New Metrology Challenges

    SciTech Connect

    Wood, Obert

    2007-09-26

    Extreme ultraviolet lithography is one of the most promising printing techniques for high volume semiconductor manufacturing at the 22 nm half-pitch device node and beyond. Because its imaging wavelength is approximately twenty times shorter than those currently in use (13.5 nm versus 193-248 nm) and because EUV optics and masks must be provided with highly-precise reflective multilayer coatings, EUV lithography presents a number of new and difficult metrology challenges. In this paper, the current status of the metrology tools being used to characterize the figure and finish of EUV mirror surfaces, the defectivity and flatness of EUV mask blanks and the outgassing rates of EUV resist materials are discussed.

  6. 3D Printing and Its Urologic Applications

    PubMed Central

    Soliman, Youssef; Feibus, Allison H; Baum, Neil

    2015-01-01

    3D printing is the development of 3D objects via an additive process in which successive layers of material are applied under computer control. This article discusses 3D printing, with an emphasis on its historical context and its potential use in the field of urology. PMID:26028997

  7. Teaching Geography with 3-D Visualization Technology

    ERIC Educational Resources Information Center

    Anthamatten, Peter; Ziegler, Susy S.

    2006-01-01

    Technology that helps students view images in three dimensions (3-D) can support a broad range of learning styles. "Geo-Wall systems" are visualization tools that allow scientists, teachers, and students to project stereographic images and view them in 3-D. We developed and presented 3-D visualization exercises in several undergraduate courses.…

  8. Expanding Geometry Understanding with 3D Printing

    ERIC Educational Resources Information Center

    Cochran, Jill A.; Cochran, Zane; Laney, Kendra; Dean, Mandi

    2016-01-01

    With the rise of personal desktop 3D printing, a wide spectrum of educational opportunities has become available for educators to leverage this technology in their classrooms. Until recently, the ability to create physical 3D models was well beyond the scope, skill, and budget of many schools. However, since desktop 3D printers have become readily…

  9. Beowulf 3D: a case study

    NASA Astrophysics Data System (ADS)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  10. 3D Flow Visualization Using Texture Advection

    NASA Technical Reports Server (NTRS)

    Kao, David; Zhang, Bing; Kim, Kwansik; Pang, Alex; Moran, Pat (Technical Monitor)

    2001-01-01

    Texture advection is an effective tool for animating and investigating 2D flows. In this paper, we discuss how this technique can be extended to 3D flows. In particular, we examine the use of 3D and 4D textures on 3D synthetic and computational fluid dynamics flow fields.

  11. Real Time Quantitative 3-D Imaging of Diffusion Flame Species

    NASA Technical Reports Server (NTRS)

    Kane, Daniel J.; Silver, Joel A.

    1997-01-01

    A low-gravity environment, in space or ground-based facilities such as drop towers, provides a unique setting for study of combustion mechanisms. Understanding the physical phenomena controlling the ignition and spread of flames in microgravity has importance for space safety as well as better characterization of dynamical and chemical combustion processes which are normally masked by buoyancy and other gravity-related effects. Even the use of so-called 'limiting cases' or the construction of 1-D or 2-D models and experiments fail to make the analysis of combustion simultaneously simple and accurate. Ideally, to bridge the gap between chemistry and fluid mechanics in microgravity combustion, species concentrations and temperature profiles are needed throughout the flame. However, restrictions associated with performing measurements in reduced gravity, especially size and weight considerations, have generally limited microgravity combustion studies to the capture of flame emissions on film or video laser Schlieren imaging and (intrusive) temperature measurements using thermocouples. Given the development of detailed theoretical models, more sophisticated studies are needed to provide the kind of quantitative data necessary to characterize the properties of microgravity combustion processes as well as provide accurate feedback to improve the predictive capabilities of the computational models. While there have been a myriad of fluid mechanical visualization studies in microgravity combustion, little experimental work has been completed to obtain reactant and product concentrations within a microgravity flame. This is largely due to the fact that traditional sampling methods (quenching microprobes using GC and/or mass spec analysis) are too heavy, slow, and cumbersome for microgravity experiments. Non-intrusive optical spectroscopic techniques have - up until now - also required excessively bulky, power hungry equipment. However, with the advent of near-IR diode lasers, the possibility now exists to obtain reactant and product concentrations and temperatures non-intrusively in microgravity combustion studies. Over the past ten years, Southwest Sciences has focused its research on the high sensitivity, quantitative detection of gas phase species using diode lasers. Our research approach combines three innovations in an experimental system resulting in a new capability for nonintrusive measurement of major combustion species. FM spectroscopy or high frequency Wavelength Modulation Spectroscopy (WMS) have recently been applied to sensitive absorption measurements at Southwest Sciences and in other laboratories using GaAlAs or InGaAsP diode lasers in the visible or near-infrared as well as lead-salt lasers in the mid-infrared spectral region. Because these lasers exhibit essentially no source noise at the high detection frequencies employed with this technique, the achievement of sensitivity approaching the detector shot noise limit is possible.

  12. Nanoimprint lithography for microfluidics manufacturing

    NASA Astrophysics Data System (ADS)

    Kreindl, Gerald; Matthias, Thorsten

    2013-12-01

    The history of imprint technology as lithography method for pattern replication can be traced back to 1970's but the most significant progress has been made by the research group of S. Chou in the 1990's. Since then, it has become a popular technique with a rapidly growing interest from both research and industrial sides and a variety of new approaches have been proposed along the mainstream scientific advances. Nanoimprint lithography (NIL) is a novel method for the fabrication of micro/nanometer scale patterns with low cost, high throughput and high resolution. Unlike traditional optical lithographic approaches, which create pattern through the use of photons or electrons to modify the chemical and physical properties of the resist, NIL relies on direct mechanical deformation of the resist and can therefore achieve resolutions beyond the limitations set by light diffraction or beam scattering that are encountered in conventional lithographic techniques. The ability to fabricate structures from the micro- to the nanoscale with high precision in a wide variety of materials is of crucial importance to the advancement of micro- and nanotechnology and the biotech- sciences as a whole and will be discussed in this paper. Nanoimprinting can not only create resist patterns, as in lithography, but can also imprint functional device structures in various polymers, which can lead to a wide range of applications in electronics, photonics, data storage, and biotechnology.

  13. X ray lithography in Japan

    NASA Astrophysics Data System (ADS)

    Clemens, James T.; Hill, Robert W.; Cerrina, Franco; Fuller, Gene E.; Pease, R. F.

    1991-10-01

    Integrated circuits (semiconductors) are the key components of modern computers, communication systems, consumer electronics, and the new generations of smart machines and instruments. Japan's strong position and growing influence in the manufacture of semiconductors and systems based on them is well known and well documented. Microlithography is one the most critical elements of the semiconductor manufacturing process because it determines the minimum feature size and the functional capabilities of the semiconductor. Because it is used many times in the manufacturing sequence, the quality of the microlithography process (i.e., number of defects, control for feature size, etc.) is critical in determining the yield and cost of semiconductors and hence the competitiveness of the electronics industry. At present all volume semiconductor manufacturing is done with optical UV (ultraviolet) projection lithography, twenty-year-old photographic technology which has been and is still evolving. There are many issues that limit the technical capability and cost-effectiveness of UV lithography, and thus, alternate lithographic techniques are continuously being researched and developed. X-ray lithography, which was invented in the early 1970's, holds the promise of providing higher yields in manufacturing semiconductors by virtue of enhanced process latitude, process robustness, and resolution.

  14. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  15. Use of 3D Printing for Custom Wind Tunnel Fabrication

    NASA Astrophysics Data System (ADS)

    Gagorik, Paul; Bates, Zachary; Issakhanian, Emin

    2016-11-01

    Small-scale wind tunnels for the most part are fairly simple to produce with standard building equipment. However, the intricate bell housing and inlet shape of an Eiffel type wind tunnel, as well as the transition from diffuser to fan in a rectangular tunnel can present design and construction obstacles. With the help of 3D printing, these shapes can be custom designed in CAD models and printed in the lab at very low cost. The undergraduate team at Loyola Marymount University has built a custom benchtop tunnel for gas turbine film cooling experiments. 3D printing is combined with conventional construction methods to build the tunnel. 3D printing is also used to build the custom tunnel floor and interchangeable experimental pieces for various experimental shapes. This simple and low-cost tunnel is a custom solution for specific engineering experiments for gas turbine technology research.

  16. Multi-view 3D display using waveguides

    NASA Astrophysics Data System (ADS)

    Lee, Byoungho; Lee, Chang-Kun

    2015-07-01

    We propose a multi-projection based multi-view 3D display system using an optical waveguide. The images from the projection units with the angle satisfying the total internal reflection (TIR) condition are incident on the waveguide and experience multiple reflections at the interface by the TIR. As a result of the multiple reflections in the waveguide, the projection distance in horizontal direction is effectively reduced to the thickness of the waveguide, and it is possible to implement the compact projection display system. By aligning the projection array in the entrance part of the waveguide, the multi-view 3D display system based on the multiple projectors with the minimized structure is realized. Viewing zones are generated by combining the waveguide projection system, a vertical diffuser, and a Fresnel lens. In the experimental setup, the feasibility of the proposed method is verified and a ten-view 3D display system with compact size in projection space is implemented.

  17. Lithographically-generated 3D lamella layers and their structural color.

    PubMed

    Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen

    2016-04-28

    Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ∼ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.

  18. Lithographically-generated 3D lamella layers and their structural color

    NASA Astrophysics Data System (ADS)

    Zhang, Sichao; Chen, Yifang; Lu, Bingrui; Liu, Jianpeng; Shao, Jinhai; Xu, Chen

    2016-04-01

    Inspired by the structural color from the multilayer nanophotonic structures in Morpho butterfly wing scales, 3D lamellae layers in dielectric polymers (polymethyl methacrylate, PMMA) with n ~ 1.5 were designed and fabricated by standard top-down electron beam lithography with one-step exposure followed by an alternating development/dissolution process of PMMA/LOR (lift-off resist) multilayers. This work offers direct proof of the structural blue/green color via lithographically-replicated PMMA/air multilayers, analogous to those in real Morpho butterfly wings. The success of nanolithography in this work for the 3D lamellae structures in dielectric polymers not only enables us to gain deeper insight into the mysterious blue color of the Morpho butterfly wings, but also breaks through the bottleneck in technical development toward broad applications in gas/liquid sensors, 3D meta-materials, coloring media, and infrared imaging devices, etc.

  19. Case study: Beauty and the Beast 3D: benefits of 3D viewing for 2D to 3D conversion

    NASA Astrophysics Data System (ADS)

    Handy Turner, Tara

    2010-02-01

    From the earliest stages of the Beauty and the Beast 3D conversion project, the advantages of accurate desk-side 3D viewing was evident. While designing and testing the 2D to 3D conversion process, the engineering team at Walt Disney Animation Studios proposed a 3D viewing configuration that not only allowed artists to "compose" stereoscopic 3D but also improved efficiency by allowing artists to instantly detect which image features were essential to the stereoscopic appeal of a shot and which features had minimal or even negative impact. At a time when few commercial 3D monitors were available and few software packages provided 3D desk-side output, the team designed their own prototype devices and collaborated with vendors to create a "3D composing" workstation. This paper outlines the display technologies explored, final choices made for Beauty and the Beast 3D, wish-lists for future development and a few rules of thumb for composing compelling 2D to 3D conversions.

  20. Mini 3D for shallow gas reconnaissance

    SciTech Connect

    Vallieres, T. des; Enns, D.; Kuehn, H.; Parron, D.; Lafet, Y.; Van Hulle, D.

    1996-12-31

    The Mini 3D project was undertaken by TOTAL and ELF with the support of CEPM (Comite d`Etudes Petrolieres et Marines) to define an economical method of obtaining 3D seismic HR data for shallow gas assessment. An experimental 3D survey was carried out with classical site survey techniques in the North Sea. From these data 19 simulations, were produced to compare different acquisition geometries ranging from dual, 600 m long cables to a single receiver. Results show that short offset, low fold and very simple streamer positioning are sufficient to give a reliable 3D image of gas charged bodies. The 3D data allow a much more accurate risk delineation than 2D HR data. Moreover on financial grounds Mini-3D is comparable in cost to a classical HR 2D survey. In view of these results, such HR 3D should now be the standard for shallow gas surveying.

  1. Maskless, resistless ion beam lithography

    SciTech Connect

    Ji, Qing

    2003-01-01

    As the dimensions of semiconductor devices are scaled down, in order to achieve higher levels of integration, optical lithography will no longer be sufficient for the needs of the semiconductor industry. Alternative next-generation lithography (NGL) approaches, such as extreme ultra-violet (EUV), X-ray, electron-beam, and ion projection lithography face some challenging issues with complicated mask technology and low throughput. Among the four major alternative NGL approaches, ion beam lithography is the only one that can provide both maskless and resistless patterning. As such, it can potentially make nano-fabrication much simpler. This thesis investigates a focused ion beam system for maskless, resistless patterning that can be made practical for high-volume production. In order to achieve maskless, resistless patterning, the ion source must be able to produce a variety of ion species. The compact FIB system being developed uses a multicusp plasma ion source, which can generate ion beams of various elements, such as O2+, BF2+, P+ etc., for surface modification and doping applications. With optimized source condition, around 85% of BF2+, over 90% of O2+ and P+ have been achieved. The brightness of the multicusp-plasma ion source is a key issue for its application to maskless ion beam lithography. It can be substantially improved by optimizing the source configuration and extractor geometry. Measured brightness of 2 keV He+ beam is as high as 440 A/cm2 • Sr, which represents a 30x improvement over prior work. Direct patterning of Si thin film using a focused O2+ ion beam has been investigated. A thin surface oxide film can be selectively formed using 3 keV O2+ ions with the dose of 1015 cm-2. The oxide can then serve as a hard mask for patterning of the Si film. The

  2. Charting CEBL's role in mainstream semiconductor lithography

    NASA Astrophysics Data System (ADS)

    Lam, David K.

    2013-09-01

    historically kept it out of mainstream fabs. Thanks to continuing EBDW advances combined with the industry's move to unidirectional (1D) gridded layout style, EBDW promises to cost-efficiently complement 193nm ArF immersion (193i) optical lithography in high volume manufacturing (HVM). Patterning conventional 2D design layouts with 193i is a major roadblock in device scaling: the resolution limitations of optical lithography equipment have led to higher mask cost and increased lithography complexity. To overcome the challenge, IC designers have used 1D layouts with "lines and cuts" in critical layers.1 Leading logic and memory chipmakers have been producing advanced designs with lines-and-cuts in HVM for several technology nodes in recent years. However, cut masks in multiple optical patterning are getting extremely costly. Borodovsky proposes Complementary Lithography in which another lithography technology is used to pattern line-cuts in critical layers to complement optical lithography.2 Complementary E-Beam Lithography (CEBL) is a candidate to pattern the Cuts of optically printed Lines. The concept of CEBL is gaining acceptance. However, challenges in throughput, scaling, and data preparation rate are threatening to deny CEBL's role in solving industry's lithography problem. This paper will examine the following issues: The challenges of massively parallel pixel writing The solutions of multiple mini-column design/architecture in: Boosting CEBL throughput Resolving issues of CD control, CDU, LER, data rate, higher resolution, and 450mm wafers The role of CEBL in next-generation solution of semiconductor lithography

  3. Towards a 3D Space Radiation Transport Code

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Tripathl, R. K.; Cicomptta, F. A.; Heinbockel, J. H.; Tweed, J.

    2002-01-01

    High-speed computational procedures for space radiation shielding have relied on asymptotic expansions in terms of the off-axis scatter and replacement of the general geometry problem by a collection of flat plates. This type of solution was derived for application to human rated systems in which the radius of the shielded volume is large compared to the off-axis diffusion limiting leakage at lateral boundaries. Over the decades these computational codes are relatively complete and lateral diffusion effects are now being added. The analysis for developing a practical full 3D space shielding code is presented.

  4. 3D microstructure modeling of compressed fiber-based materials

    NASA Astrophysics Data System (ADS)

    Gaiselmann, Gerd; Tötzke, Christian; Manke, Ingo; Lehnert, Werner; Schmidt, Volker

    2014-07-01

    A novel parametrized model that describes the 3D microstructure of compressed fiber-based materials is introduced. It allows to virtually generate the microstructure of realistically compressed gas-diffusion layers (GDL). Given the input of a 3D microstructure of some fiber-based material, the model compresses the system of fibers in a uniaxial direction for arbitrary compression rates. The basic idea is to translate the fibers in the direction of compression according to a vector field which depends on the rate of compression and on the locations of fibers within the material. In order to apply the model to experimental 3D image data of fiber-based materials given for several compression states, an optimal vector field is estimated by simulated annealing. The model is applied to 3D image data of non-woven GDL in PEMFC gained by synchrotron tomography for different compression rates. The compression model is validated by comparing structural characteristics computed for experimentally compressed and virtually compressed microstructures, where two kinds of compression - using a flat stamp and a stamp with a flow-field profile - are applied. For both stamps types, a good agreement is found. Furthermore, the compression model is combined with a stochastic 3D microstructure model for uncompressed fiber-based materials. This allows to efficiently generate compressed fiber-based microstructures in arbitrary volumes.

  5. Influence of scaffold design on 3D printed cell constructs.

    PubMed

    Souness, Auryn; Zamboni, Fernanda; Walker, Gavin M; Collins, Maurice N

    2017-02-14

    Additive manufacturing is currently receiving significant attention in the field of tissue engineering and biomaterial science. The development of precise, affordable 3D printing technologies has provided a new platform for novel research to be undertaken in 3D scaffold design and fabrication. In the past, a number of 3D scaffold designs have been fabricated to investigate the potential of a 3D printed scaffold as a construct which could support cellular life. These studies have shown promising results; however, few studies have utilized a low-cost desktop 3D printing technology as a potential rapid manufacturing route for different scaffold designs. Here six scaffold designs were manufactured using a Fused deposition modeling, a "bottom-up" solid freeform fabrication approach, to determine optimal scaffold architecture for three-dimensional cell growth. The scaffolds, produced from PLA, are coated using pullulan and hyaluronic acid to assess the coating influence on cell proliferation and metabolic rate. Scaffolds are characterized both pre- and postprocessing using water uptake analysis, mechanical testing, and morphological evaluation to study the inter-relationships between the printing process, scaffold design, and scaffold properties. It was found that there were key differences between each scaffold design in terms of porosity, diffusivity, swellability, and compressive strength. An optimal design was chosen based on these physical measurements which were then weighted in accordance to design importance based on literature and utilizing a design matrix technique. © 2017 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 2017.

  6. Phonon-drag thermopower in 3D Dirac semimetals.

    PubMed

    Kubakaddi, S S

    2015-11-18

    A theory of low-temperature phonon-drag thermopower S(g) in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S(g), in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S(g) is found to increase rapidly for about T  <  1 K and nearly levels off for higher T. It is also seen that S(g) increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about  <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S(g) ~ T(8) (T(4)) and S(g) ~ n(e)(-5/3)(n(e)(-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S(d) shows that S (g) dominates (and is much greater than) S(d) for about T  >  0.2 K. Herring's law S(g) μ p ~ T (-1), relating phonon limited mobility μ p and S(g) in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase.

  7. Phonon-drag thermopower in 3D Dirac semimetals

    NASA Astrophysics Data System (ADS)

    Kubakaddi, S. S.

    2015-11-01

    A theory of low-temperature phonon-drag thermopower S g in three-dimensional (3D) Dirac semimetals has been developed considering screened electron-phonon deformation potential coupling. Numerical investigations of S g, in the boundary scattering regime for phonons, are made in 3D Dirac semimetal Cd3As2, as a function of temperature T and electron concentration n e. S g is found to increase rapidly for about T  <  1 K and nearly levels off for higher T. It is also seen that S g increases (decreases) with decreasing n e at lower (higher) T (<2 K). A screening effect is found to be very significant, strongly affecting T and n e dependence for about  <1 K and becoming negligible at higher temperature. In the Bloch-Gruneisen (BG) regime the power laws S g ~ T 8 (T 4) and S g ~ n\\text{e}-5/3 (n\\text{e}-1/3) with (without) screening are obtained. These laws with respect to T and n e are, respectively, characteristics of 3D phonons and Dirac 3D electrons. Comparison with diffusion thermopower S d shows that S g dominates (and is much greater than) S d for about T  >  0.2 K. Herring’s law S g μ p ~ T -1, relating phonon limited mobility μ p and S g in the BG regime, is shown to be valid in 3D Dirac semimetals. The results obtained here are compared with those in 3D semiconductors, low-dimensional semiconductor heterojunctions and graphene. We conclude that n e-dependent measurements, rather than T-dependent ones, provide a clearer signature of the 3D Dirac semimetal phase.

  8. Fabrication of Single, Vertically Aligned Carbon Nanotubes in 3D Nanoscale Architectures

    NASA Technical Reports Server (NTRS)

    Kaul, Anupama B.; Megerian, Krikor G.; Von Allmen, Paul A.; Baron, Richard L.

    2010-01-01

    Plasma-enhanced chemical vapor deposition (PECVD) and high-throughput manufacturing techniques for integrating single, aligned carbon nanotubes (CNTs) into novel 3D nanoscale architectures have been developed. First, the PECVD growth technique ensures excellent alignment of the tubes, since the tubes align in the direction of the electric field in the plasma as they are growing. Second, the tubes generated with this technique are all metallic, so their chirality is predetermined, which is important for electronic applications. Third, a wafer-scale manufacturing process was developed that is high-throughput and low-cost, and yet enables the integration of just single, aligned tubes with nanoscale 3D architectures with unprecedented placement accuracy and does not rely on e-beam lithography. Such techniques should lend themselves to the integration of PECVD grown tubes for applications ranging from interconnects, nanoelectromechanical systems (NEMS), sensors, bioprobes, or other 3D electronic devices. Chemically amplified polyhydroxystyrene-resin-based deep UV resists were used in conjunction with excimer laser-based (lambda = 248 nm) step-and-repeat lithography to form Ni catalyst dots = 300 nm in diameter that nucleated single, vertically aligned tubes with high yield using dc PECVD growth. This is the first time such chemically amplified resists have been used, resulting in the nucleation of single, vertically aligned tubes. In addition, novel 3D nanoscale architectures have been created using topdown techniques that integrate single, vertically aligned tubes. These were enabled by implementing techniques that use deep-UV chemically amplified resists for small-feature-size resolution; optical lithography units that allow unprecedented control over layer-to-layer registration; and ICP (inductively coupled plasma) etching techniques that result in near-vertical, high-aspect-ratio, 3D nanoscale architectures, in conjunction with the use of materials that are

  9. 3D change detection - Approaches and applications

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  10. RT3D tutorials for GMS users

    SciTech Connect

    Clement, T.P.; Jones, N.L.

    1998-02-01

    RT3D (Reactive Transport in 3-Dimensions) is a computer code that solves coupled partial differential equations that describe reactive-flow and transport of multiple mobile and/or immobile species in a three dimensional saturated porous media. RT3D was developed from the single-species transport code, MT3D (DoD-1.5, 1997 version). As with MT3D, RT3D also uses the USGS groundwater flow model MODFLOW for computing spatial and temporal variations in groundwater head distribution. This report presents a set of tutorial problems that are designed to illustrate how RT3D simulations can be performed within the Department of Defense Groundwater Modeling System (GMS). GMS serves as a pre- and post-processing interface for RT3D. GMS can be used to define all the input files needed by RT3D code, and later the code can be launched from within GMS and run as a separate application. Once the RT3D simulation is completed, the solution can be imported to GMS for graphical post-processing. RT3D v1.0 supports several reaction packages that can be used for simulating different types of reactive contaminants. Each of the tutorials, described below, provides training on a different RT3D reaction package. Each reaction package has different input requirements, and the tutorials are designed to describe these differences. Furthermore, the tutorials illustrate the various options available in GMS for graphical post-processing of RT3D results. Users are strongly encouraged to complete the tutorials before attempting to use RT3D and GMS on a routine basis.

  11. Polymer microfluidic bioreactor fabrication by means of gray scale lithography technique

    NASA Astrophysics Data System (ADS)

    Sierakowski, Andrzej; Prokaryn, Piotr; Dobrowolski, Rafał; Malinowska, Anna; Szmigiel, Dariusz; Grabiec, Piotr; Trojanowski, Damian; Jakimowicz, Dagmara; Zakrzewska-Czerwinska, Jolanta

    2016-11-01

    In this paper we present a new method of polymer microfluidic bioreactor fabrication by means of a gray scale lithography technique. As a result of the gray scale lithography process the 3D model of the bioreactor is defined in photoresist. The obtained model serves as a sacrificial layer for the subsequent transfer of the 3D shape into the polymer material. The proposed method allows simultaneous definition of both the overall bioreactor geometry and the multi steps cell traps in a single photolithography step. Such microfluidic structure can be used for sorting cells based on their size. The developed solution significantly simplifies the production technology and reduces its costs in comparison to standard photolithography techniques.

  12. 3D measurement for rapid prototyping

    NASA Astrophysics Data System (ADS)

    Albrecht, Peter; Lilienblum, Tilo; Sommerkorn, Gerd; Michaelis, Bernd

    1996-08-01

    Optical 3-D measurement is an interesting approach for rapid prototyping. On one hand it's necessary to get the 3-D data of an object and on the other hand it's necessary to check the manufactured object (quality checking). Optical 3-D measurement can realize both. Classical 3-D measurement procedures based on photogrammetry cause systematic errors at strongly curved surfaces or steps in surfaces. One possibility to reduce these errors is to calculate the 3-D coordinates from several successively taken images. Thus it's possible to get higher spatial resolution and to reduce the systematic errors at 'problem surfaces.' Another possibility is to process the measurement values by neural networks. A modified associative memory smoothes and corrects the calculated 3-D coordinates using a-priori knowledge about the measurement object.

  13. Photorefractive Polymers for Updateable 3D Displays

    DTIC Science & Technology

    2010-02-24

    Final Performance Report 3. DATES COVERED (From - To) 01-01-2007 to 11-30-2009 4. TITLE AND SUBTITLE Photorefractive Polymers for Updateable 3D ...ABSTRACT During the tenure of this project a large area updateable 3D color display has been developed for the first time using a new co-polymer...photorefractive polymers have been demonstrated. Moreover, a 6 inch × 6 inch sample was fabricated demonstrating the feasibility of making large area 3D

  14. 3D Microperfusion Model of ADPKD

    DTIC Science & Technology

    2015-10-01

    Stratasys 3D printer . PDMS was cast in the negative molds in order to create permanent biocompatible plastic masters (SmoothCast 310). All goals of task...1 AWARD NUMBER: W81XWH-14-1-0304 TITLE: 3D Microperfusion Model of ADPKD PRINCIPAL INVESTIGATOR: David L. Kaplan CONTRACTING ORGANIZATION...ADDRESS. 1. REPORT DATE October 2015 2. REPORT TYPE Annual Report 3. DATES COVERED 15 Sep 2014 - 14 Sep 2015 4. TITLE AND SUBTITLE 3D

  15. 3D carotid plaque MR Imaging

    PubMed Central

    Parker, Dennis L.

    2015-01-01

    SYNOPSIS There has been significant progress made in 3D carotid plaque magnetic resonance imaging techniques in recent years. 3D plaque imaging clearly represents the future in clinical use. With effective flow suppression techniques, choices of different contrast weighting acquisitions, and time-efficient imaging approaches, 3D plaque imaging offers flexible imaging plane and view angle analysis, large coverage, multi-vascular beds capability, and even can be used in fast screening. PMID:26610656

  16. 3-D Extensions for Trustworthy Systems

    DTIC Science & Technology

    2011-01-01

    3- D Extensions for Trustworthy Systems (Invited Paper) Ted Huffmire∗, Timothy Levin∗, Cynthia Irvine∗, Ryan Kastner† and Timothy Sherwood...address these problems, we propose an approach to trustworthy system development based on 3- D integration, an emerging chip fabrication technique in...which two or more integrated circuit dies are fabricated individually and then combined into a single stack using vertical conductive posts. With 3- D

  17. Hardware Trust Implications of 3-D Integration

    DTIC Science & Technology

    2010-12-01

    enhancing a commod- ity processor with a variety of security functions. This paper examines the 3-D design approach and provides an analysis concluding...of key components. The question addressed by this paper is, “Can a 3-D control plane provide useful secure services when it is conjoined with an...untrust- worthy computation plane?” Design-level investigation of this question yields a definite yes. This paper explores 3- D applications and their

  18. Digital holography and 3-D imaging.

    PubMed

    Banerjee, Partha; Barbastathis, George; Kim, Myung; Kukhtarev, Nickolai

    2011-03-01

    This feature issue on Digital Holography and 3-D Imaging comprises 15 papers on digital holographic techniques and applications, computer-generated holography and encryption techniques, and 3-D display. It is hoped that future work in the area leads to innovative applications of digital holography and 3-D imaging to biology and sensing, and to the development of novel nonlinear dynamic digital holographic techniques.

  19. Dimensional accuracy of 3D printed vertebra

    NASA Astrophysics Data System (ADS)

    Ogden, Kent; Ordway, Nathaniel; Diallo, Dalanda; Tillapaugh-Fay, Gwen; Aslan, Can

    2014-03-01

    3D printer applications in the biomedical sciences and medical imaging are expanding and will have an increasing impact on the practice of medicine. Orthopedic and reconstructive surgery has been an obvious area for development of 3D printer applications as the segmentation of bony anatomy to generate printable models is relatively straightforward. There are important issues that should be addressed when using 3D printed models for applications that may affect patient care; in particular the dimensional accuracy of the printed parts needs to be high to avoid poor decisions being made prior to surgery or therapeutic procedures. In this work, the dimensional accuracy of 3D printed vertebral bodies derived from CT data for a cadaver spine is compared with direct measurements on the ex-vivo vertebra and with measurements made on the 3D rendered vertebra using commercial 3D image processing software. The vertebra was printed on a consumer grade 3D printer using an additive print process using PLA (polylactic acid) filament. Measurements were made for 15 different anatomic features of the vertebral body, including vertebral body height, endplate width and depth, pedicle height and width, and spinal canal width and depth, among others. It is shown that for the segmentation and printing process used, the results of measurements made on the 3D printed vertebral body are substantially the same as those produced by direct measurement on the vertebra and measurements made on the 3D rendered vertebra.

  20. Discharge produced plasma source for EUV lithography

    NASA Astrophysics Data System (ADS)

    Borisov, V.; Eltzov, A.; Ivanov, A.; Khristoforov, O.; Kirykhin, Yu.; Vinokhodov, A.; Vodchits, V.; Mishhenko, V.; Prokofiev, A.

    2007-04-01

    Extreme ultraviolet (EUV) radiation is seen as the most promising candidate for the next generation of lithography and semiconductor chip manufacturing for the 32 nm node and below. The paper describes experimental results obtained with discharge produced plasma (DPP) sources based on pinch effect in a Xe and Sn vapour as potential tool for the EUV lithography. Problems of DPP source development are discussed.

  1. Nanoimaging of Focal Adhesion Dynamics in 3D

    PubMed Central

    Chiu, Chi-Li; Aguilar, Jose S.; Tsai, Connie Y.; Wu, GuiKai; Gratton, Enrico; Digman, Michelle A.

    2014-01-01

    Organization and dynamics of focal adhesion proteins have been well characterized in cells grown on two-dimensional (2D) cell culture surfaces. However, much less is known about the dynamic association of these proteins in the 3D microenvironment. Limited imaging technologies capable of measuring protein interactions in real time and space for cells grown in 3D is a major impediment in understanding how proteins function under different environmental cues. In this study, we applied the nano-scale precise imaging by rapid beam oscillation (nSPIRO) technique and combined the scaning-fluorescence correlation spectroscopy (sFCS) and the number and molecular brightness (N&B) methods to investigate paxillin and actin dynamics at focal adhesions in 3D. Both MDA-MB-231 cells and U2OS cells produce elongated protrusions with high intensity regions of paxillin in cell grown in 3D collagen matrices. Using sFCS we found higher percentage of slow diffusing proteins at these focal spots, suggesting assembling/disassembling processes. In addition, the N&B analysis shows paxillin aggregated predominantly at these focal contacts which are next to collagen fibers. At those sites, actin showed slower apparent diffusion rate, which indicated that actin is either polymerizing or binding to the scaffolds in these locals. Our findings demonstrate that by multiplexing these techniques we have the ability to spatially and temporally quantify focal adhesion assembly and disassembly in 3D space and allow the understanding tumor cell invasion in a more complex relevant environment. PMID:24959851

  2. FastScript3D - A Companion to Java 3D

    NASA Technical Reports Server (NTRS)

    Koenig, Patti

    2005-01-01

    FastScript3D is a computer program, written in the Java 3D(TM) programming language, that establishes an alternative language that helps users who lack expertise in Java 3D to use Java 3D for constructing three-dimensional (3D)-appearing graphics. The FastScript3D language provides a set of simple, intuitive, one-line text-string commands for creating, controlling, and animating 3D models. The first word in a string is the name of a command; the rest of the string contains the data arguments for the command. The commands can also be used as an aid to learning Java 3D. Developers can extend the language by adding custom text-string commands. The commands can define new 3D objects or load representations of 3D objects from files in formats compatible with such other software systems as X3D. The text strings can be easily integrated into other languages. FastScript3D facilitates communication between scripting languages [which enable programming of hyper-text markup language (HTML) documents to interact with users] and Java 3D. The FastScript3D language can be extended and customized on both the scripting side and the Java 3D side.

  3. Analysis of the blurring in stencil lithography.

    PubMed

    Vazquez-Mena, O; Villanueva, L G; Savu, V; Sidler, K; Langlet, P; Brugger, J

    2009-10-14

    A quantitative analysis of blurring and its dependence on the stencil-substrate gap and the deposition parameters in stencil lithography, a high resolution shadow mask technique, is presented. The blurring is manifested in two ways: first, the structure directly deposited on the substrate is larger than the stencil aperture due to geometrical factors, and second, a halo of material is formed surrounding the deposited structure, presumably due to surface diffusion. The blurring is studied as a function of the gap using dedicated stencils that allow a controlled variation of the gap. Our results show a linear relationship between the gap and the blurring of the directly deposited structure. In our configuration, with a material source of approximately 5 mm and a source-substrate distance of 1 m, we find that a gap size of approximately 10 microm enlarges the directly deposited structures by approximately 50 nm. The measured halo varies from 0.2 to 3 microm in width depending on the gap, the stencil aperture size and other deposition parameters. We also show that the blurring can be reduced by decreasing the nominal deposition thickness, the deposition rate and the substrate temperature.

  4. 3D ultrafast ultrasound imaging in vivo.

    PubMed

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-07

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra--and inter-observer variability.

  5. 3D ultrafast ultrasound imaging in vivo

    NASA Astrophysics Data System (ADS)

    Provost, Jean; Papadacci, Clement; Esteban Arango, Juan; Imbault, Marion; Fink, Mathias; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-10-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in 3D based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32  ×  32 matrix-array probe. Its ability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3D Shear-Wave Imaging, 3D Ultrafast Doppler Imaging, and, finally, 3D Ultrafast combined Tissue and Flow Doppler Imaging. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3D Ultrafast Doppler was used to obtain 3D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, at thousands of volumes per second, the complex 3D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, as well as the 3D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3D Ultrafast Ultrasound Imaging for the 3D mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra—and inter-observer variability.

  6. An aerial 3D printing test mission

    NASA Astrophysics Data System (ADS)

    Hirsch, Michael; McGuire, Thomas; Parsons, Michael; Leake, Skye; Straub, Jeremy

    2016-05-01

    This paper provides an overview of an aerial 3D printing technology, its development and its testing. This technology is potentially useful in its own right. In addition, this work advances the development of a related in-space 3D printing technology. A series of aerial 3D printing test missions, used to test the aerial printing technology, are discussed. Through completing these test missions, the design for an in-space 3D printer may be advanced. The current design for the in-space 3D printer involves focusing thermal energy to heat an extrusion head and allow for the extrusion of molten print material. Plastics can be used as well as composites including metal, allowing for the extrusion of conductive material. A variety of experiments will be used to test this initial 3D printer design. High altitude balloons will be used to test the effects of microgravity on 3D printing, as well as parabolic flight tests. Zero pressure balloons can be used to test the effect of long 3D printing missions subjected to low temperatures. Vacuum chambers will be used to test 3D printing in a vacuum environment. The results will be used to adapt a current prototype of an in-space 3D printer. Then, a small scale prototype can be sent into low-Earth orbit as a 3-U cube satellite. With the ability to 3D print in space demonstrated, future missions can launch production hardware through which the sustainability and durability of structures in space will be greatly improved.

  7. Fixing the focus shift caused by 3D mask diffraction

    NASA Astrophysics Data System (ADS)

    Yenikaya, Bayram; Chuyeshov, Constantin; Bakir, Onur; Han, Youngae

    2014-03-01

    As the feature sizes printed with optical lithography get smaller, Kirchhoff's thin mask approximation used in full chip optical proximity corrections (OPC) fails to yield acceptable accuracy due to thick mask diffraction effects. One of the most observed effects of the thick mask diffraction is that it creates different focus shift for different patterns. When Bossung curves (CD plots with respect to defocus) of various patterns are observed from rigorous simulations and from actual wafer data one can notice that each pattern has a different best focus. Depending on the pattern, Bossung curves can be offset in either positive or negative direction. This significantly reduces the common depth of focus (DOF) for which all patterns print with acceptable fidelity. Even though each pattern by itself may have an acceptable DOF, the common DOF may not be acceptable. Several extensions to the thin mask approximation have been developed that model this behavior accurately, such as boundary layer approximations and domain decomposition methods. These methods provide a more accurate approximation than the thin mask model while still being computationally efficient to be useful for full chip OPC. Even though these approximations model and predict the focus shift accurately, to the best knowledge of the authors no method has been published to use these modeling capabilities to automatically fix this focus shift during OPC. In this paper we provide an optimization method to significantly reduce focus shift due to 3D mask effects during OPC. We show that our 3D mask model can predict this focus shift fairly accurately and we also demonstrate how we use this model in OPC to reduce focus shift, which significantly improves the common DOF for the entire layout.

  8. Elevating optical activity: Efficient on-edge lithography of three-dimensional starfish metamaterial

    SciTech Connect

    Dietrich, K. Menzel, C.; Lehr, D.; Puffky, O.; Pertsch, T.; Tünnermann, A.; Kley, E.-B.; Hübner, U.

    2014-05-12

    We present an approach for extremely fast, wafer-scale fabrication of chiral starfish metamaterials based on electron beam- and on-edge lithography. A millimeter sized array of both the planar chiral and the true 3D chiral starfish is realized, and their chiroptical performances are compared by circular dichroism measurements. We find optical activity in the visible and near-infrared spectral range, where the 3D starfish clearly outperforms the planar design by almost 2 orders of magnitude, though fabrication efforts are only moderately increased. The presented approach is capable of bridging the gap between high performance optical chiral metamaterials and industrial production by nanoimprint technology.

  9. Grayscale gel lithography for programmed buckling of non-Euclidean hydrogel plates.

    PubMed

    Na, Jun-Hee; Bende, Nakul P; Bae, Jinhye; Santangelo, Christian D; Hayward, Ryan C

    2016-06-14

    Shape programmable materials capable of morphing from a flat sheet into controlled three dimensional (3D) shapes offer promise in diverse areas including soft robotics, tunable optics, and bio-engineering. We describe a simple method of 'grayscale gel lithography' that relies on a digital micromirror array device (DMD) to control the dose of ultraviolet (UV) light, and therefore the extent of swelling of a photocrosslinkable poly(N-isopropyl acrylamide) (PNIPAm) copolymer film, with micrometer-scale spatial resolution. This approach allows for effectively smooth profiles of swelling to be prescribed, enabling the preparation of buckled 3D shapes with programmed Gaussian curvature.

  10. Integration of real-time 3D image acquisition and multiview 3D display

    NASA Astrophysics Data System (ADS)

    Zhang, Zhaoxing; Geng, Zheng; Li, Tuotuo; Li, Wei; Wang, Jingyi; Liu, Yongchun

    2014-03-01

    Seamless integration of 3D acquisition and 3D display systems offers enhanced experience in 3D visualization of the real world objects or scenes. The vivid representation of captured 3D objects displayed on a glasses-free 3D display screen could bring the realistic viewing experience to viewers as if they are viewing real-world scene. Although the technologies in 3D acquisition and 3D display have advanced rapidly in recent years, effort is lacking in studying the seamless integration of these two different aspects of 3D technologies. In this paper, we describe our recent progress on integrating a light-field 3D acquisition system and an autostereoscopic multiview 3D display for real-time light field capture and display. This paper focuses on both the architecture design and the implementation of the hardware and the software of this integrated 3D system. A prototype of the integrated 3D system is built to demonstrate the real-time 3D acquisition and 3D display capability of our proposed system.

  11. Immersive 3D Geovisualization in Higher Education

    ERIC Educational Resources Information Center

    Philips, Andrea; Walz, Ariane; Bergner, Andreas; Graeff, Thomas; Heistermann, Maik; Kienzler, Sarah; Korup, Oliver; Lipp, Torsten; Schwanghart, Wolfgang; Zeilinger, Gerold

    2015-01-01

    In this study, we investigate how immersive 3D geovisualization can be used in higher education. Based on MacEachren and Kraak's geovisualization cube, we examine the usage of immersive 3D geovisualization and its usefulness in a research-based learning module on flood risk, called GEOSimulator. Results of a survey among participating students…

  12. A 3D Geostatistical Mapping Tool

    SciTech Connect

    Weiss, W. W.; Stevenson, Graig; Patel, Ketan; Wang, Jun

    1999-02-09

    This software provides accurate 3D reservoir modeling tools and high quality 3D graphics for PC platforms enabling engineers and geologists to better comprehend reservoirs and consequently improve their decisions. The mapping algorithms are fractals, kriging, sequential guassian simulation, and three nearest neighbor methods.

  13. 3D Printing. What's the Harm?

    ERIC Educational Resources Information Center

    Love, Tyler S.; Roy, Ken

    2016-01-01

    Health concerns from 3D printing were first documented by Stephens, Azimi, Orch, and Ramos (2013), who found that commercially available 3D printers were producing hazardous levels of ultrafine particles (UFPs) and volatile organic compounds (VOCs) when plastic materials were melted through the extruder. UFPs are particles less than 100 nanometers…

  14. Topology dictionary for 3D video understanding.

    PubMed

    Tung, Tony; Matsuyama, Takashi

    2012-08-01

    This paper presents a novel approach that achieves 3D video understanding. 3D video consists of a stream of 3D models of subjects in motion. The acquisition of long sequences requires large storage space (2 GB for 1 min). Moreover, it is tedious to browse data sets and extract meaningful information. We propose the topology dictionary to encode and describe 3D video content. The model consists of a topology-based shape descriptor dictionary which can be generated from either extracted patterns or training sequences. The model relies on 1) topology description and classification using Reeb graphs, and 2) a Markov motion graph to represent topology change states. We show that the use of Reeb graphs as the high-level topology descriptor is relevant. It allows the dictionary to automatically model complex sequences, whereas other strategies would require prior knowledge on the shape and topology of the captured subjects. Our approach serves to encode 3D video sequences, and can be applied for content-based description and summarization of 3D video sequences. Furthermore, topology class labeling during a learning process enables the system to perform content-based event recognition. Experiments were carried out on various 3D videos. We showcase an application for 3D video progressive summarization using the topology dictionary.

  15. 3D elastic control for mobile devices.

    PubMed

    Hachet, Martin; Pouderoux, Joachim; Guitton, Pascal

    2008-01-01

    To increase the input space of mobile devices, the authors developed a proof-of-concept 3D elastic controller that easily adapts to mobile devices. This embedded device improves the completion of high-level interaction tasks such as visualization of large documents and navigation in 3D environments. It also opens new directions for tomorrow's mobile applications.

  16. 3D Printing of Molecular Models

    ERIC Educational Resources Information Center

    Gardner, Adam; Olson, Arthur

    2016-01-01

    Physical molecular models have played a valuable role in our understanding of the invisible nano-scale world. We discuss 3D printing and its use in producing models of the molecules of life. Complex biomolecular models, produced from 3D printed parts, can demonstrate characteristics of molecular structure and function, such as viral self-assembly,…

  17. 3D Printed Block Copolymer Nanostructures

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Turner, C. Heath; Rupar, Paul A.; Jenkins, Alexander H.; Bara, Jason E.

    2015-01-01

    The emergence of 3D printing has dramatically advanced the availability of tangible molecular and extended solid models. Interestingly, there are few nanostructure models available both commercially and through other do-it-yourself approaches such as 3D printing. This is unfortunate given the importance of nanotechnology in science today. In this…

  18. Infrastructure for 3D Imaging Test Bed

    DTIC Science & Technology

    2007-05-11

    analysis. (c.) Real time detection & analysis of human gait: using a video camera we capture walking human silhouette for pattern modeling and gait ... analysis . Fig. 5 shows the scanning result result that is fed into a Geo-magic software tool for 3D meshing. Fig. 5: 3D scanning result In

  19. Wow! 3D Content Awakens the Classroom

    ERIC Educational Resources Information Center

    Gordon, Dan

    2010-01-01

    From her first encounter with stereoscopic 3D technology designed for classroom instruction, Megan Timme, principal at Hamilton Park Pacesetter Magnet School in Dallas, sensed it could be transformative. Last spring, when she began pilot-testing 3D content in her third-, fourth- and fifth-grade classrooms, Timme wasn't disappointed. Students…

  20. Stereo 3-D Vision in Teaching Physics

    ERIC Educational Resources Information Center

    Zabunov, Svetoslav

    2012-01-01

    Stereo 3-D vision is a technology used to present images on a flat surface (screen, paper, etc.) and at the same time to create the notion of three-dimensional spatial perception of the viewed scene. A great number of physical processes are much better understood when viewed in stereo 3-D vision compared to standard flat 2-D presentation. The…

  1. Pathways for Learning from 3D Technology

    ERIC Educational Resources Information Center

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2012-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion"…

  2. 3D, or Not to Be?

    ERIC Educational Resources Information Center

    Norbury, Keith

    2012-01-01

    It may be too soon for students to be showing up for class with popcorn and gummy bears, but technology similar to that behind the 3D blockbuster movie "Avatar" is slowly finding its way into college classrooms. 3D classroom projectors are taking students on fantastic voyages inside the human body, to the ruins of ancient Greece--even to faraway…

  3. Static & Dynamic Response of 3D Solids

    SciTech Connect

    Lin, Jerry

    1996-07-15

    NIKE3D is a large deformations 3D finite element code used to obtain the resulting displacements and stresses from multi-body static and dynamic structural thermo-mechanics problems with sliding interfaces. Many nonlinear and temperature dependent constitutive models are available.

  4. Microfabricated polymeric vessel mimetics for 3-D cancer cell culture

    PubMed Central

    Jaeger, Ashley A.; Das, Chandan K.; Morgan, Nicole Y.; Pursley, Randall H.; McQueen, Philip G.; Hall, Matthew D.; Pohida, Thomas J.; Gottesman, Michael M.

    2013-01-01

    Modeling tumor growth in vitro is essential for cost-effective testing of hypotheses in preclinical cancer research. 3-D cell culture offers an improvement over monolayer culture for studying cellular processes in cancer biology because of the preservation of cell-cell and cell-ECM interactions. Oxygen transport poses a major barrier to mimicking in vivo environments and is not replicated in conventional cell culture systems. We hypothesized that we can better mimic the tumor microenvironment using a bioreactor system for controlling gas exchange in cancer cell cultures with silicone hydrogel synthetic vessels. Soft-lithography techniques were used to fabricate oxygen-permeable silicone hydrogel membranes containing arrays of micropillars. These membranes were inserted into a bioreactor and surrounded by basement membrane extract (BME) within which fluorescent ovarian cancer (OVCAR8) cells were cultured. Cell clusters oxygenated by synthetic vessels showed a ∼100um drop-off to anoxia, consistent with in vivo studies of tumor nodules fed by the microvasculature. We showed oxygen tension gradients inside the clusters oxygenated by synthetic vessels had a ∼100 µm drop-off to anoxia, which is consistent with in vivo studies. Oxygen transport in the bioreactor system was characterized by experimental testing with a dissolved oxygen probe and finite element modeling of convective flow. Our study demonstrates differing growth patterns associated with controlling gas distributions to better mimic in vivo conditions. PMID:23911071

  5. High-strength cellular ceramic composites with 3D microarchitecture

    PubMed Central

    Bauer, Jens; Hengsbach, Stefan; Tesari, Iwiza; Schwaiger, Ruth; Kraft, Oliver

    2014-01-01

    To enhance the strength-to-weight ratio of a material, one may try to either improve the strength or lower the density, or both. The lightest solid materials have a density in the range of 1,000 kg/m3; only cellular materials, such as technical foams, can reach considerably lower values. However, compared with corresponding bulk materials, their specific strength generally is significantly lower. Cellular topologies may be divided into bending- and stretching-dominated ones. Technical foams are structured randomly and behave in a bending-dominated way, which is less weight efficient, with respect to strength, than stretching-dominated behavior, such as in regular braced frameworks. Cancellous bone and other natural cellular solids have an optimized architecture. Their basic material is structured hierarchically and consists of nanometer-size elements, providing a benefit from size effects in the material strength. Designing cellular materials with a specific microarchitecture would allow one to exploit the structural advantages of stretching-dominated constructions as well as size-dependent strengthening effects. In this paper, we demonstrate that such materials may be fabricated. Applying 3D laser lithography, we produced and characterized micro-truss and -shell structures made from alumina–polymer composite. Size-dependent strengthening of alumina shells has been observed, particularly when applied with a characteristic thickness below 100 nm. The presented artificial cellular materials reach compressive strengths up to 280 MPa with densities well below 1,000 kg/m3. PMID:24550268

  6. Using micro-3D printing to build acoustically driven microswimmers.

    NASA Astrophysics Data System (ADS)

    Bertin, Nicolas; Stephan, Olivier; Marmottant, Philippe; Spelman, Tamsin; Lauga, Eric; Dyfcom Team; Complex; Biological Fluids Team

    2015-11-01

    With no protection, a micron-sized free air bubble at room temperature in water has a life span shorter than a few tens of seconds. Using two-photon lithography, which is similar to 3D printing at the micron scale, we can build ``armors'' for these bubbles: micro-capsules with an opening to contain the bubble and extend its life to several hours in biological buffer solutions. When excited by an ultrasound transducer, a 20 μm bubble performs large amplitude oscillations in the capsule opening and generates a powerful acoustic streaming flow (velocity up to dozens of mm/s). A collaboration with the Dept. of Applied Mathematics and Theoretical Physics, University of Cambridge, is helping us predict the true resonance of these capsules and the full surrounding streaming flow. The present Bubbleboost project aims at creating red blood cell sized capsules (~ 10-20 μm) that can move on their own with a non-contact acoustic excitation for drug delivery applications. Another application of this research is in microfluidics: we are able to fabricate fields of capsules able to generate mixing effects in microchannels, or use the bubble-generated flow to guide passing objects at a junction. ERC Grant Agreement Bubbleboost no. 614655.

  7. BEAMS3D Neutral Beam Injection Model

    SciTech Connect

    Lazerson, Samuel

    2014-04-14

    With the advent of applied 3D fi elds in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous velocity reduction, and pitch angle scattering are modeled with the ADAS atomic physics database [1]. Benchmark calculations are presented to validate the collisionless particle orbits, neutral beam injection model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields.

  8. Fabrication of 3D Silicon Sensors

    SciTech Connect

    Kok, A.; Hansen, T.E.; Hansen, T.A.; Lietaer, N.; Summanwar, A.; Kenney, C.; Hasi, J.; Da Via, C.; Parker, S.I.; /Hawaii U.

    2012-06-06

    Silicon sensors with a three-dimensional (3-D) architecture, in which the n and p electrodes penetrate through the entire substrate, have many advantages over planar silicon sensors including radiation hardness, fast time response, active edge and dual readout capabilities. The fabrication of 3D sensors is however rather complex. In recent years, there have been worldwide activities on 3D fabrication. SINTEF in collaboration with Stanford Nanofabrication Facility have successfully fabricated the original (single sided double column type) 3D detectors in two prototype runs and the third run is now on-going. This paper reports the status of this fabrication work and the resulted yield. The work of other groups such as the development of double sided 3D detectors is also briefly reported.

  9. 2D/3D switchable displays

    NASA Astrophysics Data System (ADS)

    Dekker, T.; de Zwart, S. T.; Willemsen, O. H.; Hiddink, M. G. H.; IJzerman, W. L.

    2006-02-01

    A prerequisite for a wide market acceptance of 3D displays is the ability to switch between 3D and full resolution 2D. In this paper we present a robust and cost effective concept for an auto-stereoscopic switchable 2D/3D display. The display is based on an LCD panel, equipped with switchable LC-filled lenticular lenses. We will discuss 3D image quality, with the focus on display uniformity. We show that slanting the lenticulars in combination with a good lens design can minimize non-uniformities in our 20" 2D/3D monitors. Furthermore, we introduce fractional viewing systems as a very robust concept to further improve uniformity in the case slanting the lenticulars and optimizing the lens design are not sufficient. We will discuss measurements and numerical simulations of the key optical characteristics of this display. Finally, we discuss 2D image quality, the switching characteristics and the residual lens effect.

  10. 6D Interpretation of 3D Gravity

    NASA Astrophysics Data System (ADS)

    Herfray, Yannick; Krasnov, Kirill; Scarinci, Carlos

    2017-02-01

    We show that 3D gravity, in its pure connection formulation, admits a natural 6D interpretation. The 3D field equations for the connection are equivalent to 6D Hitchin equations for the Chern–Simons 3-form in the total space of the principal bundle over the 3-dimensional base. Turning this construction around one gets an explanation of why the pure connection formulation of 3D gravity exists. More generally, we interpret 3D gravity as the dimensional reduction of the 6D Hitchin theory. To this end, we show that any \\text{SU}(2) invariant closed 3-form in the total space of the principal \\text{SU}(2) bundle can be parametrised by a connection together with a 2-form field on the base. The dimensional reduction of the 6D Hitchin theory then gives rise to 3D gravity coupled to a topological 2-form field.

  11. Biocompatible 3D Matrix with Antimicrobial Properties.

    PubMed

    Ion, Alberto; Andronescu, Ecaterina; Rădulescu, Dragoș; Rădulescu, Marius; Iordache, Florin; Vasile, Bogdan Ștefan; Surdu, Adrian Vasile; Albu, Madalina Georgiana; Maniu, Horia; Chifiriuc, Mariana Carmen; Grumezescu, Alexandru Mihai; Holban, Alina Maria

    2016-01-20

    The aim of this study was to develop, characterize and assess the biological activity of a new regenerative 3D matrix with antimicrobial properties, based on collagen (COLL), hydroxyapatite (HAp), β-cyclodextrin (β-CD) and usnic acid (UA). The prepared 3D matrix was characterized by Scanning Electron Microscopy (SEM), Fourier Transform Infrared Microscopy (FT-IRM), Transmission Electron Microscopy (TEM), and X-ray Diffraction (XRD). In vitro qualitative and quantitative analyses performed on cultured diploid cells demonstrated that the 3D matrix is biocompatible, allowing the normal development and growth of MG-63 osteoblast-like cells and exhibited an antimicrobial effect, especially on the Staphylococcus aureus strain, explained by the particular higher inhibitory activity of usnic acid (UA) against Gram positive bacterial strains. Our data strongly recommend the obtained 3D matrix to be used as a successful alternative for the fabrication of three dimensional (3D) anti-infective regeneration matrix for bone tissue engineering.

  12. Quon 3D language for quantum information

    PubMed Central

    Liu, Zhengwei; Wozniakowski, Alex; Jaffe, Arthur M.

    2017-01-01

    We present a 3D topological picture-language for quantum information. Our approach combines charged excitations carried by strings, with topological properties that arise from embedding the strings in the interior of a 3D manifold with boundary. A quon is a composite that acts as a particle. Specifically, a quon is a hemisphere containing a neutral pair of open strings with opposite charge. We interpret multiquons and their transformations in a natural way. We obtain a type of relation, a string–genus “joint relation,” involving both a string and the 3D manifold. We use the joint relation to obtain a topological interpretation of the C∗-Hopf algebra relations, which are widely used in tensor networks. We obtain a 3D representation of the controlled NOT (CNOT) gate that is considerably simpler than earlier work, and a 3D topological protocol for teleportation. PMID:28167790

  13. 3D Ultrafast Ultrasound Imaging In Vivo

    PubMed Central

    Provost, Jean; Papadacci, Clement; Arango, Juan Esteban; Imbault, Marion; Gennisson, Jean-Luc; Tanter, Mickael; Pernot, Mathieu

    2014-01-01

    Very high frame rate ultrasound imaging has recently allowed for the extension of the applications of echography to new fields of study such as the functional imaging of the brain, cardiac electrophysiology, and the quantitative real-time imaging of the intrinsic mechanical properties of tumors, to name a few, non-invasively and in real time. In this study, we present the first implementation of Ultrafast Ultrasound Imaging in three dimensions based on the use of either diverging or plane waves emanating from a sparse virtual array located behind the probe. It achieves high contrast and resolution while maintaining imaging rates of thousands of volumes per second. A customized portable ultrasound system was developed to sample 1024 independent channels and to drive a 32×32 matrix-array probe. Its capability to track in 3D transient phenomena occurring in the millisecond range within a single ultrafast acquisition was demonstrated for 3-D Shear-Wave Imaging, 3-D Ultrafast Doppler Imaging and finally 3D Ultrafast combined Tissue and Flow Doppler. The propagation of shear waves was tracked in a phantom and used to characterize its stiffness. 3-D Ultrafast Doppler was used to obtain 3-D maps of Pulsed Doppler, Color Doppler, and Power Doppler quantities in a single acquisition and revealed, for the first time, the complex 3-D flow patterns occurring in the ventricles of the human heart during an entire cardiac cycle, and the 3-D in vivo interaction of blood flow and wall motion during the pulse wave in the carotid at the bifurcation. This study demonstrates the potential of 3-D Ultrafast Ultrasound Imaging for the 3-D real-time mapping of stiffness, tissue motion, and flow in humans in vivo and promises new clinical applications of ultrasound with reduced intra- and inter-observer variability. PMID:25207828

  14. 3D Visualization Development of SIUE Campus

    NASA Astrophysics Data System (ADS)

    Nellutla, Shravya

    Geographic Information Systems (GIS) has progressed from the traditional map-making to the modern technology where the information can be created, edited, managed and analyzed. Like any other models, maps are simplified representations of real world. Hence visualization plays an essential role in the applications of GIS. The use of sophisticated visualization tools and methods, especially three dimensional (3D) modeling, has been rising considerably due to the advancement of technology. There are currently many off-the-shelf technologies available in the market to build 3D GIS models. One of the objectives of this research was to examine the available ArcGIS and its extensions for 3D modeling and visualization and use them to depict a real world scenario. Furthermore, with the advent of the web, a platform for accessing and sharing spatial information on the Internet, it is possible to generate interactive online maps. Integrating Internet capacity with GIS functionality redefines the process of sharing and processing the spatial information. Enabling a 3D map online requires off-the-shelf GIS software, 3D model builders, web server, web applications and client server technologies. Such environments are either complicated or expensive because of the amount of hardware and software involved. Therefore, the second objective of this research was to investigate and develop simpler yet cost-effective 3D modeling approach that uses available ArcGIS suite products and the free 3D computer graphics software for designing 3D world scenes. Both ArcGIS Explorer and ArcGIS Online will be used to demonstrate the way of sharing and distributing 3D geographic information on the Internet. A case study of the development of 3D campus for the Southern Illinois University Edwardsville is demonstrated.

  15. Pathways for Learning from 3D Technology

    PubMed Central

    Carrier, L. Mark; Rab, Saira S.; Rosen, Larry D.; Vasquez, Ludivina; Cheever, Nancy A.

    2016-01-01

    The purpose of this study was to find out if 3D stereoscopic presentation of information in a movie format changes a viewer's experience of the movie content. Four possible pathways from 3D presentation to memory and learning were considered: a direct connection based on cognitive neuroscience research; a connection through "immersion" in that 3D presentations could provide additional sensorial cues (e.g., depth cues) that lead to a higher sense of being surrounded by the stimulus; a connection through general interest such that 3D presentation increases a viewer’s interest that leads to greater attention paid to the stimulus (e.g., "involvement"); and a connection through discomfort, with the 3D goggles causing discomfort that interferes with involvement and thus with memory. The memories of 396 participants who viewed two-dimensional (2D) or 3D movies at movie theaters in Southern California were tested. Within three days of viewing a movie, participants filled out an online anonymous questionnaire that queried them about their movie content memories, subjective movie-going experiences (including emotional reactions and "presence") and demographic backgrounds. The responses to the questionnaire were subjected to path analyses in which several different links between 3D presentation to memory (and other variables) were explored. The results showed there were no effects of 3D presentation, either directly or indirectly, upon memory. However, the largest effects of 3D presentation were on emotions and immersion, with 3D presentation leading to reduced positive emotions, increased negative emotions and lowered immersion, compared to 2D presentations. PMID:28078331

  16. The psychology of the 3D experience

    NASA Astrophysics Data System (ADS)

    Janicke, Sophie H.; Ellis, Andrew

    2013-03-01

    With 3D televisions expected to reach 50% home saturation as early as 2016, understanding the psychological mechanisms underlying the user response to 3D technology is critical for content providers, educators and academics. Unfortunately, research examining the effects of 3D technology has not kept pace with the technology's rapid adoption, resulting in large-scale use of a technology about which very little is actually known. Recognizing this need for new research, we conducted a series of studies measuring and comparing many of the variables and processes underlying both 2D and 3D media experiences. In our first study, we found narratives within primetime dramas had the power to shift viewer attitudes in both 2D and 3D settings. However, we found no difference in persuasive power between 2D and 3D content. We contend this lack of effect was the result of poor conversion quality and the unique demands of 3D production. In our second study, we found 3D technology significantly increased enjoyment when viewing sports content, yet offered no added enjoyment when viewing a movie trailer. The enhanced enjoyment of the sports content was shown to be the result of heightened emotional arousal and attention in the 3D condition. We believe the lack of effect found for the movie trailer may be genre-related. In our final study, we found 3D technology significantly enhanced enjoyment of two video games from different genres. The added enjoyment was found to be the result of an increased sense of presence.

  17. Microreplication and design of biological architectures using dynamic-mask multiphoton lithography.

    PubMed

    Nielson, Rex; Kaehr, Bryan; Shear, Jason B

    2009-01-01

    A strategy for rapidly printing three-dimensional (3D) microscopic replicas using multiphoton lithography directed by a dynamic electronic mask is reported. Morphological descriptions of 3D structures are encoded as stacks of 2D slices created from tomographic and computer-designed instruction sets. In this manner, digital images serve as input for a sequence of reflective photomasks on a digital micromirror device to direct replication of a structure. By scanning a laser focus across the face of the intrinsically aligned masks, tomographic and computed data can be translated into protein-based 3D reproductions with submicrometer feature sizes within 1 min. This straightforward and highly versatile approach may provide improved routes for the development of 3D cellular scaffolds, rapid prototyping of microanalytical devices, and production of custom tissue replacements.

  18. 3D shape measurement with thermal pattern projection

    NASA Astrophysics Data System (ADS)

    Brahm, Anika; Reetz, Edgar; Schindwolf, Simon; Correns, Martin; Kühmstedt, Peter; Notni, Gunther

    2016-12-01

    Structured light projection techniques are well-established optical methods for contactless and nondestructive three-dimensional (3D) measurements. Most systems operate in the visible wavelength range (VIS) due to commercially available projection and detection technology. For example, the 3D reconstruction can be done with a stereo-vision setup by finding corresponding pixels in both cameras followed by triangulation. Problems occur, if the properties of object materials disturb the measurements, which are based on the measurement of diffuse light reflections. For example, there are existing materials in the VIS range that are too transparent, translucent, high absorbent, or reflective and cannot be recorded properly. To overcome these challenges, we present an alternative thermal approach that operates in the infrared (IR) region of the electromagnetic spectrum. For this purpose, we used two cooled mid-wave (MWIR) cameras (3-5 μm) to detect emitted heat patterns, which were introduced by a CO2 laser. We present a thermal 3D system based on a GOBO (GOes Before Optics) wheel projection unit and first 3D analyses for different system parameters and samples. We also show a second alternative approach based on an incoherent (heat) source, to overcome typical disadvantages of high-power laser-based systems, such as industrial health and safety considerations, as well as high investment costs. Thus, materials like glass or fiber-reinforced composites can be measured contactless and without the need of additional paintings.

  19. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU.

    PubMed

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations.

  20. Parallel Optimization of 3D Cardiac Electrophysiological Model Using GPU

    PubMed Central

    Xia, Yong; Wang, Kuanquan; Zhang, Henggui

    2015-01-01

    Large-scale 3D virtual heart model simulations are highly demanding in computational resources. This imposes a big challenge to the traditional computation resources based on CPU environment, which already cannot meet the requirement of the whole computation demands or are not easily available due to expensive costs. GPU as a parallel computing environment therefore provides an alternative to solve the large-scale computational problems of whole heart modeling. In this study, using a 3D sheep atrial model as a test bed, we developed a GPU-based simulation algorithm to simulate the conduction of electrical excitation waves in the 3D atria. In the GPU algorithm, a multicellular tissue model was split into two components: one is the single cell model (ordinary differential equation) and the other is the diffusion term of the monodomain model (partial differential equation). Such a decoupling enabled realization of the GPU parallel algorithm. Furthermore, several optimization strategies were proposed based on the features of the virtual heart model, which enabled a 200-fold speedup as compared to a CPU implementation. In conclusion, an optimized GPU algorithm has been developed that provides an economic and powerful platform for 3D whole heart simulations. PMID:26581957

  1. 3D printing technology using high viscous materials - Synthesis of functional materials and fabrication of 3D metal structure

    NASA Astrophysics Data System (ADS)

    Hong, Seongik

    In the 3D printing technology, the research for using various materials has been performing. In this research work, 3D printable high viscous materials are suggested as one of the solutions for problems in the traditional 3D printing technology. First, Cu-Ag coreshell was synthesized as a functional material. In terms of the reaction rate, reaction rate limiting step was defined as a fundamental research, and then prepared Cu-Ag coreshell was printed and analyzed. Second, the high viscous Cu paste was prepared and then metal 3D printed structure was fabricated by using new printing method. In the synthesis of Cu-Ag coreshell, different sizes of Cu particle, 2μm and 100nm were used, and when 2μm Cu was applied, the reaction rate was limited by film diffusion control. However, when 100nm Cu was applied, reaction rate was controlled by CuO film and the rate of the reaction, which includes removing CuO film in the solution, is limited by chemical reaction control. The shape of Cu-Ag particle is spherical in the 2μm Cu condition and dendrite shape in the 100nm Cu condition respectively. The conductivity of Cu-Ag coreshell paste increased as increasing content of coreshell particle in the paste and sintering temperature. In order to print high viscous metal paste, the high viscous Cu paste was printed by using screw extruder, and the viscosity of Cu paste was measured as a fundamental research. As increasing wt.% of Cu in the paste, the viscosity also increased. In addition, the shrinkage factor was reduced by increasing wt.% of Cu in the paste. An optimized printing condition for the high viscous material was obtained, and by using this condition, 3D metal structure was fabricated. The final product was heat treated and polished. Through these processes, a fine quality of metal 3D structure was printed.

  2. 3D bioprinting of tissues and organs.

    PubMed

    Murphy, Sean V; Atala, Anthony

    2014-08-01

    Additive manufacturing, otherwise known as three-dimensional (3D) printing, is driving major innovations in many areas, such as engineering, manufacturing, art, education and medicine. Recent advances have enabled 3D printing of biocompatible materials, cells and supporting components into complex 3D functional living tissues. 3D bioprinting is being applied to regenerative medicine to address the need for tissues and organs suitable for transplantation. Compared with non-biological printing, 3D bioprinting involves additional complexities, such as the choice of materials, cell types, growth and differentiation factors, and technical challenges related to the sensitivities of living cells and the construction of tissues. Addressing these complexities requires the integration of technologies from the fields of engineering, biomaterials science, cell biology, physics and medicine. 3D bioprinting has already been used for the generation and transplantation of several tissues, including multilayered skin, bone, vascular grafts, tracheal splints, heart tissue and cartilaginous structures. Other applications include developing high-throughput 3D-bioprinted tissue models for research, drug discovery and toxicology.

  3. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  4. Medical 3D Printing for the Radiologist

    PubMed Central

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  5. 3D imaging in forensic odontology.

    PubMed

    Evans, Sam; Jones, Carl; Plassmann, Peter

    2010-06-16

    This paper describes the investigation of a new 3D capture method for acquiring and subsequent forensic analysis of bite mark injuries on human skin. When documenting bite marks with standard 2D cameras errors in photographic technique can occur if best practice is not followed. Subsequent forensic analysis of the mark is problematic when a 3D structure is recorded into a 2D space. Although strict guidelines (BAFO) exist, these are time-consuming to follow and, due to their complexity, may produce errors. A 3D image capture and processing system might avoid the problems resulting from the 2D reduction process, simplifying the guidelines and reducing errors. Proposed Solution: a series of experiments are described in this paper to demonstrate that the potential of a 3D system might produce suitable results. The experiments tested precision and accuracy of the traditional 2D and 3D methods. A 3D image capture device minimises the amount of angular distortion, therefore such a system has the potential to create more robust forensic evidence for use in courts. A first set of experiments tested and demonstrated which method of forensic analysis creates the least amount of intra-operator error. A second set tested and demonstrated which method of image capture creates the least amount of inter-operator error and visual distortion. In a third set the effects of angular distortion on 2D and 3D methods of image capture were evaluated.

  6. NUBEAM developments and 3d halo modeling

    NASA Astrophysics Data System (ADS)

    Gorelenkova, M. V.; Medley, S. S.; Kaye, S. M.

    2012-10-01

    Recent developments related to the 3D halo model in NUBEAM code are described. To have a reliable halo neutral source for diagnostic simulation, the TRANSP/NUBEAM code has been enhanced with full implementation of ADAS atomic physic ground state and excited state data for hydrogenic beams and mixed species plasma targets. The ADAS codes and database provide the density and temperature dependence of the atomic data, and the collective nature of the state excitation process. To be able to populate 3D halo output with sufficient statistical resolution, the capability to control the statistics of fast ion CX modeling and for thermal halo launch has been added to NUBEAM. The 3D halo neutral model is based on modification and extension of the ``beam in box'' aligned 3d Cartesian grid that includes the neutral beam itself, 3D fast neutral densities due to CX of partially slowed down fast ions in the beam halo region, 3D thermal neutral densities due to CX deposition and fast neutral recapture source. More details on the 3D halo simulation design will be presented.

  7. Optically rewritable 3D liquid crystal displays.

    PubMed

    Sun, J; Srivastava, A K; Zhang, W; Wang, L; Chigrinov, V G; Kwok, H S

    2014-11-01

    Optically rewritable liquid crystal display (ORWLCD) is a concept based on the optically addressed bi-stable display that does not need any power to hold the image after being uploaded. Recently, the demand for the 3D image display has increased enormously. Several attempts have been made to achieve 3D image on the ORWLCD, but all of them involve high complexity for image processing on both hardware and software levels. In this Letter, we disclose a concept for the 3D-ORWLCD by dividing the given image in three parts with different optic axis. A quarter-wave plate is placed on the top of the ORWLCD to modify the emerging light from different domains of the image in different manner. Thereafter, Polaroid glasses can be used to visualize the 3D image. The 3D image can be refreshed, on the 3D-ORWLCD, in one-step with proper ORWLCD printer and image processing, and therefore, with easy image refreshing and good image quality, such displays can be applied for many applications viz. 3D bi-stable display, security elements, etc.

  8. Mobile laser lithography station for microscopic two-photon polymerization

    NASA Astrophysics Data System (ADS)

    Leinenbach, F.; Breunig, H. G.; König, K.

    2015-03-01

    We present a mobile laser lithography station for 3D structuring by microscopic two-photon polymerization. For structuring the Coherent Vitara UBB titanium:sapphire femtosecond laser is used, which has a power output of 500mW and generates pulses with a central wavelength of 810nm. The laser pulses have a tunable bandwidth from 50nm to 250nm. The pulses are temporally compressed using chirped mirrors to a minimum duration of less than 15fs at the sample. The laser power reaching the sample can be motionless controlled by a combination of a liquid crystal retarder and a polarizer within milliseconds. The sample is placed onto a microscope stage which has a movement range of 300µm in the X, Y and Z direction with an accuracy of 2nm. Sample imaging is possible with a microscope camera simultaneous to the structuring. The pulses are focused by a 40X microscope objective (1.3NA) onto the sample. To operate the lithography station, we developed a LabVIEW-based software which controls sample position, laser power and objective height and as well as the microscope camera. Furthermore, CAD data can be read and converted into sample position data. By combining all these components, a fully automatic structuring of a sample with sub-micrometer precision is possible.

  9. Scatterometry-based process control for nanoimprint lithography

    NASA Astrophysics Data System (ADS)

    Asano, Masafumi; Tsuda, Hirotaka; Komori, Motofumi; Matsuki, Kazuto; Abe, Hideaki; Jung, Woo-Yung

    2016-03-01

    In principal, the critical dimension (CD) of Nanoimprint lithography (NIL) pattern is determined by the CD of the template pattern. Unless one template is changed to another, NIL does not have a knob for direct control of the CD, such as the exposure dose and focus in optical lithography. Alternatively, the CD would be controlled by adjusting the thickness of the residual layer underneath the NIL pattern and controlling the etching process to transfer the pattern to a substrate. Controlling the residual layer thickness (RLT) can change the etching bias, resulting in the control of the CD of etched pattern. RLT is controllable by the resist dispense condition of the inkjet. For CD control, the metrology of RLT and feedback of the results to the dispense condition are extremely important. Scatterometry is the most promising metrology for the task because it is nondestructive 3D metrology with high throughput. In this paper, we discuss how to control CD in the NIL process and propose a process control flow based on scatterometry.

  10. Multiscale 3D manufacturing: combining thermal extrusion printing with additive and subtractive direct laser writing

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Lukoševičius, Laurynas; MackevičiÅ«tÄ--, DovilÄ--; BalčiÅ«nas, Evaldas; RekštytÄ--, Sima; Paipulas, Domas

    2014-05-01

    A novel approach for efficient manufacturing of three-dimensional (3D) microstructured scaffolds designed for cell studies and tissue engineering applications is presented. A thermal extrusion (fused filament fabrication) 3D printer is employed as a simple and low-cost tabletop device enabling rapid materialization of CAD models out of biocompatible and biodegradable polylactic acid (PLA). Here it was used to produce cm- scale microporous (pore size varying from 100 to 400 µm) scaffolds. The fabricated objects were further laser processed in a direct laser writing (DLW) subtractive (ablation) and additive (lithography) manners. The first approach enables precise surface modification by creating micro-craters, holes and grooves thus increasing the surface roughness. An alternative way is to immerse the 3D PLA scaffold in a monomer solution and use the same DLW setup to refine its inner structure by fabricating dots, lines or a fine mesh on top as well as inside the pores of previously produced scaffolds. The DLW technique is empowered by ultrafast lasers - it allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. Structure geometry on macro- to micro- scales could be finely tuned by combining these two fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro- featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of ms, microfluidics, microoptics and many others.

  11. 3D packaging for integrated circuit systems

    SciTech Connect

    Chu, D.; Palmer, D.W.

    1996-11-01

    A goal was set for high density, high performance microelectronics pursued through a dense 3D packing of integrated circuits. A {open_quotes}tool set{close_quotes} of assembly processes have been developed that enable 3D system designs: 3D thermal analysis, silicon electrical through vias, IC thinning, mounting wells in silicon, adhesives for silicon stacking, pretesting of IC chips before commitment to stacks, and bond pad bumping. Validation of these process developments occurred through both Sandia prototypes and subsequent commercial examples.

  12. FUN3D Manual: 12.5

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.5, including optional dependent packages. FUN3D is a suite of computational uid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables ecient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  13. FUN3D Manual: 12.4

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2014-01-01

    This manual describes the installation and execution of FUN3D version 12.4, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixedelement unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  14. 3D Immersive Visualization with Astrophysical Data

    NASA Astrophysics Data System (ADS)

    Kent, Brian R.

    2017-01-01

    We present the refinement of a new 3D immersion technique for astrophysical data visualization.Methodology to create 360 degree spherical panoramas is reviewed. The 3D software package Blender coupled with Python and the Google Spatial Media module are used together to create the final data products. Data can be viewed interactively with a mobile phone or tablet or in a web browser. The technique can apply to different kinds of astronomical data including 3D stellar and galaxy catalogs, images, and planetary maps.

  15. A high capacity 3D steganography algorithm.

    PubMed

    Chao, Min-Wen; Lin, Chao-hung; Yu, Cheng-Wei; Lee, Tong-Yee

    2009-01-01

    In this paper, we present a very high-capacity and low-distortion 3D steganography scheme. Our steganography approach is based on a novel multilayered embedding scheme to hide secret messages in the vertices of 3D polygon models. Experimental results show that the cover model distortion is very small as the number of hiding layers ranges from 7 to 13 layers. To the best of our knowledge, this novel approach can provide much higher hiding capacity than other state-of-the-art approaches, while obeying the low distortion and security basic requirements for steganography on 3D models.

  16. How We 3D-Print Aerogel

    SciTech Connect

    2015-04-23

    A new type of graphene aerogel will make for better energy storage, sensors, nanoelectronics, catalysis and separations. Lawrence Livermore National Laboratory researchers have made graphene aerogel microlattices with an engineered architecture via a 3D printing technique known as direct ink writing. The research appears in the April 22 edition of the journal, Nature Communications. The 3D printed graphene aerogels have high surface area, excellent electrical conductivity, are lightweight, have mechanical stiffness and exhibit supercompressibility (up to 90 percent compressive strain). In addition, the 3D printed graphene aerogel microlattices show an order of magnitude improvement over bulk graphene materials and much better mass transport.

  17. FUN3D Manual: 12.6

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, William L.; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.6, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  18. FUN3D Manual: 12.9

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 12.9, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  19. FUN3D Manual: 13.1

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2017-01-01

    This manual describes the installation and execution of FUN3D version 13.1, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  20. FUN3D Manual: 12.7

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.7, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  1. FUN3D Manual: 13.0

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bill; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2016-01-01

    This manual describes the installation and execution of FUN3D version 13.0, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  2. FUN3D Manual: 12.8

    NASA Technical Reports Server (NTRS)

    Biedron, Robert T.; Carlson, Jan-Renee; Derlaga, Joseph M.; Gnoffo, Peter A.; Hammond, Dana P.; Jones, William T.; Kleb, Bil; Lee-Rausch, Elizabeth M.; Nielsen, Eric J.; Park, Michael A.; Rumsey, Christopher L.; Thomas, James L.; Wood, William A.

    2015-01-01

    This manual describes the installation and execution of FUN3D version 12.8, including optional dependent packages. FUN3D is a suite of computational fluid dynamics simulation and design tools that uses mixed-element unstructured grids in a large number of formats, including structured multiblock and overset grid systems. A discretely-exact adjoint solver enables efficient gradient-based design and grid adaptation to reduce estimated discretization error. FUN3D is available with and without a reacting, real-gas capability. This generic gas option is available only for those persons that qualify for its beta release status.

  3. An Improved Version of TOPAZ 3D

    SciTech Connect

    Krasnykh, Anatoly

    2003-07-29

    An improved version of the TOPAZ 3D gun code is presented as a powerful tool for beam optics simulation. In contrast to the previous version of TOPAZ 3D, the geometry of the device under test is introduced into TOPAZ 3D directly from a CAD program, such as Solid Edge or AutoCAD. In order to have this new feature, an interface was developed, using the GiD software package as a meshing code. The article describes this method with two models to illustrate the results.

  4. RHOCUBE: 3D density distributions modeling code

    NASA Astrophysics Data System (ADS)

    Nikutta, Robert; Agliozzo, Claudia

    2016-11-01

    RHOCUBE models 3D density distributions on a discrete Cartesian grid and their integrated 2D maps. It can be used for a range of applications, including modeling the electron number density in LBV shells and computing the emission measure. The RHOCUBE Python package provides several 3D density distributions, including a powerlaw shell, truncated Gaussian shell, constant-density torus, dual cones, and spiralling helical tubes, and can accept additional distributions. RHOCUBE provides convenient methods for shifts and rotations in 3D, and if necessary, an arbitrary number of density distributions can be combined into the same model cube and the integration ∫ dz performed through the joint density field.

  5. Explicit 3-D Hydrodynamic FEM Program

    SciTech Connect

    2000-11-07

    DYNA3D is a nonlinear explicit finite element code for analyzing 3-D structures and solid continuum. The code is vectorized and available on several computer platforms. The element library includes continuum, shell, beam, truss and spring/damper elements to allow maximum flexibility in modeling physical problems. Many materials are available to represent a wide range of material behavior, including elasticity, plasticity, composites, thermal effects and rate dependence. In addition, DYNA3D has a sophisticated contact interface capability, including frictional sliding, single surface contact and automatic contact generation.

  6. 3D-HIM: A 3D High-density Interleaved Memory for Bipolar RRAM Design

    DTIC Science & Technology

    2013-05-01

    JOURNAL ARTICLE (Post Print ) 3. DATES COVERED (From - To) DEC 2010 – NOV 2012 4. TITLE AND SUBTITLE 3D -HIM: A 3D HIGH-DENSITY INTERLEAVED MEMORY...emerged as one of the promising candidates for large data storage in computing systems. Moreover, building up RRAM in a three dimensional ( 3D ) stacking...brings in the potential reliability issue. To alleviate the situation, we introduce two novel 3D stacking structures built upon bipolar RRAM

  7. Particle Lithography Enables Fabrication of Multicomponent Nanostructures

    PubMed Central

    Lin, Wei-feng; Swartz, Logan A.; Li, Jie-Ren; Liu, Yang; Liu, Gang-yu

    2014-01-01

    Multicomponent nanostructures with individual geometries have attracted much attention because of their potential to carry out multiple functions synergistically. The current work reports a simple method using particle lithography to fabricate multicomponent nanostructures of metals, proteins, and organosiloxane molecules, each with its own geometry. Particle lithography is well-known for its capability to produce arrays of triangular-shaped nanostructures with novel optical properties. This paper extends the capability of particle lithography by combining a particle template in conjunction with surface chemistry to produce multicomponent nanostructures. The advantages and limitations of this approach will also be addressed. PMID:24707328

  8. Multi-shaped beam proof of lithography

    NASA Astrophysics Data System (ADS)

    Slodowski, Matthias; Doering, Hans-Joachim; Dorl, Wolfgang; Stolberg, Ines A.

    2010-03-01

    In this paper a full package high throughput multi electron-beam approach, called Multi Shaped Beam (MSB), for applications in mask making as well as direct write will be presented including complex proof-of-lithography results. The basic concept enables a significant exposure shot count reduction for advanced patterns compared to standard Variable Shaped Beam (VSB) systems and allows full pattern flexibility by concurrently using MSB, VSB and Cell Projection (CP). Proof of lithography results will be presented, which have been performed using a fully operational electron-beam lithography system including data path and substrate scanning by x/y-stage movement.

  9. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, G. D.

    2000-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  10. Method for extreme ultraviolet lithography

    DOEpatents

    Felter, T. E.; Kubiak, Glenn D.

    1999-01-01

    A method of producing a patterned array of features, in particular, gate apertures, in the size range 0.4-0.05 .mu.m using projection lithography and extreme ultraviolet (EUV) radiation. A high energy laser beam is used to vaporize a target material in order to produce a plasma which in turn, produces extreme ultraviolet radiation of a characteristic wavelength of about 13 nm for lithographic applications. The radiation is transmitted by a series of reflective mirrors to a mask which bears the pattern to be printed. The demagnified focused mask pattern is, in turn, transmitted by means of appropriate optics and in a single exposure, to a substrate coated with photoresists designed to be transparent to EUV radiation and also satisfy conventional processing methods.

  11. Defect tolerant transmission lithography mask

    DOEpatents

    Vernon, Stephen P.

    2000-01-01

    A transmission lithography mask that utilizes a transparent substrate or a partially transparent membrane as the active region of the mask. A reflective single layer or multilayer coating is deposited on the membrane surface facing the illumination system. The coating is selectively patterned (removed) to form transmissive (bright) regions. Structural imperfections and defects in the coating have negligible effect on the aerial image of the mask master pattern since the coating is used to reflect radiation out of the entrance pupil of the imaging system. Similarly, structural imperfections in the clear regions of the membrane have little influence on the amplitude or phase of the transmitted electromagnetic fields. Since the mask "discards," rather than absorbs, unwanted radiation, it has reduced optical absorption and reduced thermal loading as compared to conventional designs. For EUV applications, the mask circumvents the phase defect problem, and is independent of the thermal load during exposure.

  12. Nanofluidic devices for dielectrophoretic mobility shift assays by soft lithography

    NASA Astrophysics Data System (ADS)

    Viefhues, M.; Regtmeier, J.; Anselmetti, D.

    2012-11-01

    We report development and application of 3D structured nano-microfluidic devices that were produced via soft lithography with poly(dimethylsiloxane). The procedure does not rely on hazardous or time-consuming production steps. Here, the nanochannels were created by channel-spanning ridges that reduce the flow height of the microchannel. Several realizations of the ridge layout and nanochannel height are demonstrated, depicting the high potential of this technique. The nanochannels proved to be stable even for width-to-height aspect ratios of 873:1. Additionally, an application of these submicrometer structures is presented with a new technique of a dielectrophoretic mobility shift assay (DEMSA). The DEMSA was used to detect different DNA variants, e.g. protein-DNA-complexes, via a shift in (dielectrophoretically retarded) migration velocities within an array of nanoslits.

  13. Development of CMOS-compatible membrane projection lithography

    NASA Astrophysics Data System (ADS)

    Burckel, D. Bruce; Samora, Sally; Wiwi, Mike; Wendt, Joel R.

    2013-09-01

    Recently we have demonstrated membrane projection lithography (MPL) as a fabrication approach capable of creating 3D structures with sub-micron metallic inclusions for use in metamaterial and plasmonic applications using polymer material systems. While polymers provide several advantages in processing, they are soft and subject to stress-induced buckling. Furthermore, in next generation active photonic structures, integration of photonic components with CMOS electronics is desirable. While the MPL process flow is conceptually simple, it requires matrix, membrane and backfill materials with orthogonal processing deposition/removal chemistries. By transitioning the MPL process flow into an entirely inorganic material set based around silicon and standard CMOS-compatible materials, several elements of silicon microelectronics can be integrated into photonic devices at the unit-cell scale. This paper will present detailed fabrication and characterization data of these materials, emphasizing the processing trade space as well as optical characterization of the resulting structures.

  14. Simulation of sub-wavelength 3D photomask induced polarization effect by RCWA

    NASA Astrophysics Data System (ADS)

    Yang, Liang; Li, Yanqiu; Liu, Lihui; Wang, Jianfeng

    2012-10-01

    In 45nm technology node and beyond with hyper NA and Off-axis Illumination (OAI) lithography, mask induced polarization effect is remarkable. At this scale, traditional Kirchhoff approximation, in which the masks are considered to be infinitely thin objects, is no longer valid. Rigorous three-dimensional (3D) mask model is required for precise evaluation of mask diffraction. In this paper, a general 3D mask model based on the rigorous coupled-wave analysis (RCWA) is presented, and the change of polarization state as a function of mask and incident light properties is evaluated. The masks considered are the binary chrome mask and 10% Si-Si3N4 attenuated phase shifting mask. The results show that the mask induced polarization effects depend on the mask and incident light properties, such as mask material, absorber thickness, mask pitch, feature size, the polarization and incident angle of the light.

  15. Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy.

    PubMed

    Mihailescu, M; Popescu, R C; Matei, A; Acasandrei, A; Paun, I A; Dinescu, M

    2014-08-01

    The effect of micropatterned polymeric scaffolds on the features of the cultured cells at different time intervals after seeding was investigated by digital holographic microscopy. Both parallel and perpendicular walls, with different heights, were fabricated using two-photon lithography on photopolymers. The walls were subsequently coated with polypyrrole-based thin films using the matrix assisted pulsed laser evaporation technique. Osteoblast-like cells, MG-63 line, were cultured on these polymeric 3D micropatterned scaffolds. To analyze these scaffolds with/without cultured cells, an inverted digital holographic microscope, which provides 3D images, was used. Information about the samples' refractive indices and heights was obtained from the phase shift introduced in the optical path. Characteristics of cell adhesion, alignment, orientation, and morphology as a function of the wall heights and time from seeding were highlighted.

  16. Efficient calculation method for realistic deep 3D scene hologram using orthographic projection

    NASA Astrophysics Data System (ADS)

    Igarashi, Shunsuke; Nakamura, Tomoya; Matsushima, Kyoji; Yamaguchi, Masahiro

    2016-03-01

    We propose a fast calculation method to synthesize a computer-generated hologram (CGH) of realistic deep three-dimensional (3D) scene. In our previous study, we have proposed a calculation method of CGH for reproducing such scene called ray-sampling-plane (RSP) method, in which light-ray information of a scene is converted to wavefront, and the wavefront is numerically propagated based on diffraction theory. In this paper, we introduce orthographic projection to the RSP method for accelerating calculation time. By numerical experiments, we verified the accelerated calculation with the ratio of 28-times compared to the conventional RSP method. The calculated CGH was fabricated by the printing system using laser lithography and demonstrated deep 3D image reconstruction in 52mm×52mm with realistic appearance effect such as gloss and translucent effect.

  17. Do-It-Yourself: 3D Models of Hydrogenic Orbitals through 3D Printing

    ERIC Educational Resources Information Center

    Griffith, Kaitlyn M.; de Cataldo, Riccardo; Fogarty, Keir H.

    2016-01-01

    Introductory chemistry students often have difficulty visualizing the 3-dimensional shapes of the hydrogenic electron orbitals without the aid of physical 3D models. Unfortunately, commercially available models can be quite expensive. 3D printing offers a solution for producing models of hydrogenic orbitals. 3D printing technology is widely…

  18. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.

    PubMed

    Thali, Michael J; Braun, Marcel; Dirnhofer, Richard

    2003-11-26

    Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.

  19. XML3D and Xflow: combining declarative 3D for the Web with generic data flows.

    PubMed

    Klein, Felix; Sons, Kristian; Rubinstein, Dmitri; Slusallek, Philipp

    2013-01-01

    Researchers have combined XML3D, which provides declarative, interactive 3D scene descriptions based on HTML5, with Xflow, a language for declarative, high-performance data processing. The result lets Web developers combine a 3D scene graph with data flows for dynamic meshes, animations, image processing, and postprocessing.

  20. Mask requirements for advanced lithography

    NASA Astrophysics Data System (ADS)

    Trybula, Walter J.; Engelstad, Roxann L.

    1998-06-01

    Within the n ext 10 years, sub-100 nm features will be required for state-of-the-industry devices. The tolerances for errors at 100 nm or less are substantially smaller than can be achieved today. A critical element of the error budget is the mask. For the 100 nm generation, the 4x mask image placement requirement is 20 nm with CD requirements as low as 9 nm. The challenge would be significant if the only improvement were to develop superior optical masks. There are multiple advanced technologies that are vying to be the successor to optical lithography. Each of these has a unique mask requirement. The leading contenders for the next generation are 1x x-ray, projection e-beam, ion beam, EUV and cell projection e-beam. The x-ray design is a proximity system that employs a 1x membrane mask. Projection e-beam uses a membrane mask with stabilizing struts. Ion beam lithography employs a stencil membrane mask with a carbon coating. EUV employs a 13 nm radiation source that requires a reflective mask. Cell projection e-beam has 25x or greater image masks that are stitched on the wafer. All the technologies indicated above. Once a total error budget for the mask is known, it is necessary to divide the total into the constituent parts. The major sources of distortion can be categorized into eight areas: mask blank processing, e- beam writing, pattern transfer, pellicle effects, mounting, thermal loadings, dynamic effects during exposure and radiation damage. The distortions introduced by each of these depend upon the type of mask; so, individual mask calculations must be made. The purpose of this paper is to review the modeling requirements of each of the categories and to highlight some results from each of the mask configurations.

  1. Quantifying modes of 3D cell migration

    PubMed Central

    Driscoll, Meghan K.; Danuser, Gaudenz

    2015-01-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates. PMID:26603943

  2. Modeling cellular processes in 3D.

    PubMed

    Mogilner, Alex; Odde, David

    2011-12-01

    Recent advances in photonic imaging and fluorescent protein technology offer unprecedented views of molecular space-time dynamics in living cells. At the same time, advances in computing hardware and software enable modeling of ever more complex systems, from global climate to cell division. As modeling and experiment become more closely integrated we must address the issue of modeling cellular processes in 3D. Here, we highlight recent advances related to 3D modeling in cell biology. While some processes require full 3D analysis, we suggest that others are more naturally described in 2D or 1D. Keeping the dimensionality as low as possible reduces computational time and makes models more intuitively comprehensible; however, the ability to test full 3D models will build greater confidence in models generally and remains an important emerging area of cell biological modeling.

  3. Cyclone Rusty's Landfall in 3-D

    NASA Video Gallery

    This 3-D image derived from NASA's TRMM satellite Precipitation Radar data on February 26, 2013 at 0654 UTC showed that the tops of some towering thunderstorms in Rusty's eye wall were reaching hei...

  4. Tropical Cyclone Jack in Satellite 3-D

    NASA Video Gallery

    This 3-D flyby from NASA's TRMM satellite of Tropical Cyclone Jack on April 21 shows that some of the thunderstorms were shown by TRMM PR were still reaching height of at least 17 km (10.5 miles). ...

  5. Future Engineers 3-D Print Timelapse

    NASA Video Gallery

    NASA Challenges K-12 students to create a model of a container for space using 3-D modeling software. Astronauts need containers of all kinds - from advanced containers that can study fruit flies t...

  6. 3-D Animation of Typhoon Bopha

    NASA Video Gallery

    This 3-D animation of NASA's TRMM satellite data showed Typhoon Bopha tracking over the Philippines on Dec. 3 and moving into the Sulu Sea on Dec. 4, 2012. TRMM saw heavy rain (red) was falling at ...

  7. DNA biosensing with 3D printing technology.

    PubMed

    Loo, Adeline Huiling; Chua, Chun Kiang; Pumera, Martin

    2017-01-16

    3D printing, an upcoming technology, has vast potential to transform conventional fabrication processes due to the numerous improvements it can offer to the current methods. To date, the employment of 3D printing technology has been examined for applications in the fields of engineering, manufacturing and biological sciences. In this study, we examined the potential of adopting 3D printing technology for a novel application, electrochemical DNA biosensing. Metal 3D printing was utilized to construct helical-shaped stainless steel electrodes which functioned as a transducing platform for the detection of DNA hybridization. The ability of electroactive methylene blue to intercalate into the double helix structure of double-stranded DNA was then exploited to monitor the DNA hybridization process, with its inherent reduction peak serving as an analytical signal. The designed biosensing approach was found to demonstrate superior selectivity against a non-complementary DNA target, with a detection range of 1-1000 nM.

  8. Designing Biomaterials for 3D Printing.

    PubMed

    Guvendiren, Murat; Molde, Joseph; Soares, Rosane M D; Kohn, Joachim

    2016-10-10

    Three-dimensional (3D) printing is becoming an increasingly common technique to fabricate scaffolds and devices for tissue engineering applications. This is due to the potential of 3D printing to provide patient-specific designs, high structural complexity, rapid on-demand fabrication at a low-cost. One of the major bottlenecks that limits the widespread acceptance of 3D printing in biomanufacturing is the lack of diversity in "biomaterial inks". Printability of a biomaterial is determined by the printing technique. Although a wide range of biomaterial inks including polymers, ceramics, hydrogels and composites have been developed, the field is still struggling with processing of these materials into self-supporting devices with tunable mechanics, degradation, and bioactivity. This review aims to highlight the past and recent advances in biomaterial ink development and design considerations moving forward. A brief overview of 3D printing technologies focusing on ink design parameters is also included.

  9. 3D Printing for Tissue Engineering.

    PubMed

    Richards, Dylan Jack; Tan, Yu; Jia, Jia; Yao, Hai; Mei, Ying

    2013-10-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication.

  10. 3-D Flyover Visualization of Veil Nebula

    NASA Video Gallery

    This 3-D visualization flies across a small portion of the Veil Nebula as photographed by the Hubble Space Telescope. This region is a small part of a huge expanding remnant from a star that explod...

  11. TRMM 3-D Flyby of Ingrid

    NASA Video Gallery

    This 3-D flyby of Tropical Storm Ingrid's rainfall was created from TRMM satellite data for Sept. 16. Heaviest rainfall appears in red towers over the Gulf of Mexico, while moderate rainfall stretc...

  12. Quantifying Modes of 3D Cell Migration.

    PubMed

    Driscoll, Meghan K; Danuser, Gaudenz

    2015-12-01

    Although it is widely appreciated that cells migrate in a variety of diverse environments in vivo, we are only now beginning to use experimental workflows that yield images with sufficient spatiotemporal resolution to study the molecular processes governing cell migration in 3D environments. Since cell migration is a dynamic process, it is usually studied via microscopy, but 3D movies of 3D processes are difficult to interpret by visual inspection. In this review, we discuss the technologies required to study the diversity of 3D cell migration modes with a focus on the visualization and computational analysis tools needed to study cell migration quantitatively at a level comparable to the analyses performed today on cells crawling on flat substrates.

  13. 3D Printing for Tissue Engineering

    PubMed Central

    Jia, Jia; Yao, Hai; Mei, Ying

    2016-01-01

    Tissue engineering aims to fabricate functional tissue for applications in regenerative medicine and drug testing. More recently, 3D printing has shown great promise in tissue fabrication with a structural control from micro- to macro-scale by using a layer-by-layer approach. Whether through scaffold-based or scaffold-free approaches, the standard for 3D printed tissue engineering constructs is to provide a biomimetic structural environment that facilitates tissue formation and promotes host tissue integration (e.g., cellular infiltration, vascularization, and active remodeling). This review will cover several approaches that have advanced the field of 3D printing through novel fabrication methods of tissue engineering constructs. It will also discuss the applications of synthetic and natural materials for 3D printing facilitated tissue fabrication. PMID:26869728

  14. Eyes on the Earth 3D

    NASA Technical Reports Server (NTRS)

    Kulikov, anton I.; Doronila, Paul R.; Nguyen, Viet T.; Jackson, Randal K.; Greene, William M.; Hussey, Kevin J.; Garcia, Christopher M.; Lopez, Christian A.

    2013-01-01

    Eyes on the Earth 3D software gives scientists, and the general public, a realtime, 3D interactive means of accurately viewing the real-time locations, speed, and values of recently collected data from several of NASA's Earth Observing Satellites using a standard Web browser (climate.nasa.gov/eyes). Anyone with Web access can use this software to see where the NASA fleet of these satellites is now, or where they will be up to a year in the future. The software also displays several Earth Science Data sets that have been collected on a daily basis. This application uses a third-party, 3D, realtime, interactive game engine called Unity 3D to visualize the satellites and is accessible from a Web browser.

  15. Nonlaser-based 3D surface imaging

    SciTech Connect

    Lu, Shin-yee; Johnson, R.K.; Sherwood, R.J.

    1994-11-15

    3D surface imaging refers to methods that generate a 3D surface representation of objects of a scene under viewing. Laser-based 3D surface imaging systems are commonly used in manufacturing, robotics and biomedical research. Although laser-based systems provide satisfactory solutions for most applications, there are situations where non laser-based approaches are preferred. The issues that make alternative methods sometimes more attractive are: (1) real-time data capturing, (2) eye-safety, (3) portability, and (4) work distance. The focus of this presentation is on generating a 3D surface from multiple 2D projected images using CCD cameras, without a laser light source. Two methods are presented: stereo vision and depth-from-focus. Their applications are described.

  16. 3-D TRMM Flyby of Hurricane Amanda

    NASA Video Gallery

    The TRMM satellite flew over Hurricane Amanda on Tuesday, May 27 at 1049 UTC (6:49 a.m. EDT) and captured rainfall rates and cloud height data that was used to create this 3-D simulated flyby. Cred...

  17. 3D-printed bioanalytical devices

    NASA Astrophysics Data System (ADS)

    Bishop, Gregory W.; Satterwhite-Warden, Jennifer E.; Kadimisetty, Karteek; Rusling, James F.

    2016-07-01

    While 3D printing technologies first appeared in the 1980s, prohibitive costs, limited materials, and the relatively small number of commercially available printers confined applications mainly to prototyping for manufacturing purposes. As technologies, printer cost, materials, and accessibility continue to improve, 3D printing has found widespread implementation in research and development in many disciplines due to ease-of-use and relatively fast design-to-object workflow. Several 3D printing techniques have been used to prepare devices such as milli- and microfluidic flow cells for analyses of cells and biomolecules as well as interfaces that enable bioanalytical measurements using cellphones. This review focuses on preparation and applications of 3D-printed bioanalytical devices.

  18. 3D liver surgery simulation: computer-assisted surgical planning with 3D simulation software and 3D printing.

    PubMed

    Oshiro, Yukio; Ohkohchi, Nobuhiro

    2017-03-27

    To perform accurate hepatectomy without injury, it is necessary to understand the anatomical relationship among the branches of Glisson's sheath, hepatic veins, and tumor. In Japan, three-dimensional (3D) preoperative simulation for liver surgery is becoming increasingly common, and liver 3D modeling and 3D hepatectomy simulation by 3D analysis software for liver surgery have been covered by universal healthcare insurance since 2012. Herein, we review the history of virtual hepatectomy using computer-aided surgery (CAS) and our research to date, and we discuss the future prospects of CAS. We have used the SYNAPSE VINCENT medical imaging system (Fujifilm Medical, Tokyo, Japan) for 3D visualization and virtual resection of the liver since 2010. We developed a novel fusion imaging technique combining 3D computed tomography (CT) with magnetic resonance imaging (MRI). The fusion image enables us to easily visualize anatomic relationships among the hepatic arteries, portal veins, bile duct, and tumor in the hepatic hilum. In 2013, we developed an original software, called Liversim, that enables real-time deformation of the liver using physical simulation, and a randomized control trial has recently been conducted to evaluate the use of Liversim and SYNAPSE VINCENT for preoperative simulation and planning. Furthermore, we developed a novel hollow 3D-printed liver model whose surface is covered with frames. This model is useful for safe liver resection, has better visibility, and the production cost is reduced to one-third of a previous model. Preoperative simulation and navigation with CAS in liver resection are expected to help planning and conducting a surgery and surgical education. Thus, a novel CAS system will contribute to not only the performance of reliable hepatectomy but also to surgical education.

  19. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries

    PubMed Central

    Ning, Hailong; Pikul, James H.; Zhang, Runyu; Li, Xuejiao; Xu, Sheng; Wang, Junjie; Rogers, John A.; King, William P.; Braun, Paul V.

    2015-01-01

    As sensors, wireless communication devices, personal health monitoring systems, and autonomous microelectromechanical systems (MEMS) become distributed and smaller, there is an increasing demand for miniaturized integrated power sources. Although thin-film batteries are well-suited for on-chip integration, their energy and power per unit area are limited. Three-dimensional electrode designs have potential to offer much greater power and energy per unit area; however, efforts to date to realize 3D microbatteries have led to prototypes with solid electrodes (and therefore low power) or mesostructured electrodes not compatible with manufacturing or on-chip integration. Here, we demonstrate an on-chip compatible method to fabricate high energy density (6.5 μWh cm−2⋅μm−1) 3D mesostructured Li-ion microbatteries based on LiMnO2 cathodes, and NiSn anodes that possess supercapacitor-like power (3,600 μW cm−2⋅μm−1 peak). The mesostructured electrodes are fabricated by combining 3D holographic lithography with conventional photolithography, enabling deterministic control of both the internal electrode mesostructure and the spatial distribution of the electrodes on the substrate. The resultant full cells exhibit impressive performances, for example a conventional light-emitting diode (LED) is driven with a 500-μA peak current (600-C discharge) from a 10-μm-thick microbattery with an area of 4 mm2 for 200 cycles with only 12% capacity fade. A combined experimental and modeling study where the structural parameters of the battery are modulated illustrates the unique design flexibility enabled by 3D holographic lithography and provides guidance for optimization for a given application. PMID:25964360

  20. Holographic patterning of high-performance on-chip 3D lithium-ion microbatteries.

    PubMed

    Ning, Hailong; Pikul, James H; Zhang, Runyu; Li, Xuejiao; Xu, Sheng; Wang, Junjie; Rogers, John A; King, William P; Braun, Paul V

    2015-05-26

    As sensors, wireless communication devices, personal health monitoring systems, and autonomous microelectromechanical systems (MEMS) become distributed and smaller, there is an increasing demand for miniaturized integrated power sources. Although thin-film batteries are well-suited for on-chip integration, their energy and power per unit area are limited. Three-dimensional electrode designs have potential to offer much greater power and energy per unit area; however, efforts to date to realize 3D microbatteries have led to prototypes with solid electrodes (and therefore low power) or mesostructured electrodes not compatible with manufacturing or on-chip integration. Here, we demonstrate an on-chip compatible method to fabricate high energy density (6.5 μWh cm(-2)⋅μm(-1)) 3D mesostructured Li-ion microbatteries based on LiMnO2 cathodes, and NiSn anodes that possess supercapacitor-like power (3,600 μW cm(-2)⋅μm(-1) peak). The mesostructured electrodes are fabricated by combining 3D holographic lithography with conventional photolithography, enabling deterministic control of both the internal electrode mesostructure and the spatial distribution of the electrodes on the substrate. The resultant full cells exhibit impressive performances, for example a conventional light-emitting diode (LED) is driven with a 500-μA peak current (600-C discharge) from a 10-μm-thick microbattery with an area of 4 mm(2) for 200 cycles with only 12% capacity fade. A combined experimental and modeling study where the structural parameters of the battery are modulated illustrates the unique design flexibility enabled by 3D holographic lithography and provides guidance for optimization for a given application.

  1. Microfabricating 3D Structures by Laser Origami

    DTIC Science & Technology

    2011-11-09

    technique generates 3D microstructures by controlled out-of- plane folding of 2D patterns through a variety of laser-based digital fabrication...processes. Digital microfabrication techniques such as laser direct-write (LDW) offer a viable alternative for generating 3D self-folding designs. These...folding at the microscale where manual or mechanized actuation of the smaller struc- tures is not practical. LDW techniques allow micromachining and

  2. Spatioangular Prefiltering for Multiview 3D Displays.

    PubMed

    Ramachandra, Vikas; Hirakawa, Keigo; Zwicker, Matthias; Nguyen, Truong

    2011-05-01

    In this paper, we analyze the reproduction of light fields on multiview 3D displays. A three-way interaction between the input light field signal (which is often aliased), the joint spatioangular sampling grids of multiview 3D displays, and the interview light leakage in modern multiview 3D displays is characterized in the joint spatioangular frequency domain. Reconstruction of light fields by all physical 3D displays is prone to light leakage, which means that the reconstruction low-pass filter implemented by the display is too broad in the angular domain. As a result, 3D displays excessively attenuate angular frequencies. Our analysis shows that this reduces sharpness of the images shown in the 3D displays. In this paper, stereoscopic image recovery is recast as a problem of joint spatioangular signal reconstruction. The combination of the 3D display point spread function and human visual system provides the narrow-band low-pass filter which removes spectral replicas in the reconstructed light field on the multiview display. The nonideality of this filter is corrected with the proposed prefiltering. The proposed light field reconstruction method performs light field antialiasing as well as angular sharpening to compensate for the nonideal response of the 3D display. The union of cosets approach which has been used earlier by others is employed here to model the nonrectangular spatioangular sampling grids on a multiview display in a generic fashion. We confirm the effectiveness of our approach in simulation and in physical hardware, and demonstrate improvement over existing techniques.

  3. Auto convergence for stereoscopic 3D cameras

    NASA Astrophysics Data System (ADS)

    Zhang, Buyue; Kothandaraman, Sreenivas; Batur, Aziz Umit

    2012-03-01

    Viewing comfort is an important concern for 3-D capable consumer electronics such as 3-D cameras and TVs. Consumer generated content is typically viewed at a close distance which makes the vergence-accommodation conflict particularly pronounced, causing discomfort and eye fatigue. In this paper, we present a Stereo Auto Convergence (SAC) algorithm for consumer 3-D cameras that reduces the vergence-accommodation conflict on the 3-D display by adjusting the depth of the scene automatically. Our algorithm processes stereo video in realtime and shifts each stereo frame horizontally by an appropriate amount to converge on the chosen object in that frame. The algorithm starts by estimating disparities between the left and right image pairs using correlations of the vertical projections of the image data. The estimated disparities are then analyzed by the algorithm to select a point of convergence. The current and target disparities of the chosen convergence point determines how much horizontal shift is needed. A disparity safety check is then performed to determine whether or not the maximum and minimum disparity limits would be exceeded after auto convergence. If the limits would be exceeded, further adjustments are made to satisfy the safety limits. Finally, desired convergence is achieved by shifting the left and the right frames accordingly. Our algorithm runs real-time at 30 fps on a TI OMAP4 processor. It is tested using an OMAP4 embedded prototype stereo 3-D camera. It significantly improves 3-D viewing comfort.

  4. Assessing 3d Photogrammetry Techniques in Craniometrics

    NASA Astrophysics Data System (ADS)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  5. 3D steerable wavelets in practice.

    PubMed

    Chenouard, Nicolas; Unser, Michael

    2012-11-01

    We introduce a systematic and practical design for steerable wavelet frames in 3D. Our steerable wavelets are obtained by applying a 3D version of the generalized Riesz transform to a primary isotropic wavelet frame. The novel transform is self-reversible (tight frame) and its elementary constituents (Riesz wavelets) can be efficiently rotated in any 3D direction by forming appropriate linear combinations. Moreover, the basis functions at a given location can be linearly combined to design custom (and adaptive) steerable wavelets. The features of the proposed method are illustrated with the processing and analysis of 3D biomedical data. In particular, we show how those wavelets can be used to characterize directional patterns and to detect edges by means of a 3D monogenic analysis. We also propose a new inverse-problem formalism along with an optimization algorithm for reconstructing 3D images from a sparse set of wavelet-domain edges. The scheme results in high-quality image reconstructions which demonstrate the feature-reduction ability of the steerable wavelets as well as their potential for solving inverse problems.

  6. 3D Viscoelastic traction force microscopy.

    PubMed

    Toyjanova, Jennet; Hannen, Erin; Bar-Kochba, Eyal; Darling, Eric M; Henann, David L; Franck, Christian

    2014-10-28

    Native cell-material interactions occur on materials differing in their structural composition, chemistry, and physical compliance. While the last two decades have shown the importance of traction forces during cell-material interactions, they have been almost exclusively presented on purely elastic in vitro materials. Yet, most bodily tissue materials exhibit some level of viscoelasticity, which could play an important role in how cells sense and transduce tractions. To expand the realm of cell traction measurements and to encompass all materials from elastic to viscoelastic, this paper presents a general, and comprehensive approach for quantifying 3D cell tractions in viscoelastic materials. This methodology includes the experimental characterization of the time-dependent material properties for any viscoelastic material with the subsequent mathematical implementation of the determined material model into a 3D traction force microscopy (3D TFM) framework. Utilizing this new 3D viscoelastic TFM (3D VTFM) approach, we quantify the influence of viscosity on the overall material traction calculations and quantify the error associated with omitting time-dependent material effects, as is the case for all other TFM formulations. We anticipate that the 3D VTFM technique will open up new avenues of cell-material investigations on even more physiologically relevant time-dependent materials including collagen and fibrin gels.

  7. Focus-distance-controlled 3D TV

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Nobuaki; Kim, Kyung-tae; Son, Jung-Young; Murata, Tatsuya; Orima, Takatoshi

    1996-09-01

    There is a phenomenon that a 3D image appears in proportion to a focus distance when something is watched through a convex lens. An adjustable focus lens which can control the focus distance of the convex lens is contrived and applied to 3D TV. We can watch 3D TV without eyeglasses. The 3D TV image meets the NTSC standard. A parallax data and a focus data about the image can be accommodated at the same time. A continuous image method realizes much wider views. An anti 3D image effect can be avoided by using this method. At present, an analysis of proto-type lens and experiment are being carried out. As a result, a phantom effect and a viewing area can be improved. It is possible to watch the 3D TV at any distance. Distance data are triangulated by two cameras. A plan of AVI photo type using ten thousand lenses is discussed. This method is compared with four major conventional methods. As a result, it is revealed that this method can make the efficient use of Integral Photography and Varifocal type method. In the case of Integral Photography, a miniaturization of this system is possible. But it is difficult to get actual focus. In the case of varifocal type method, there is no problem with focusing, but the miniaturization is impossible. The theory investigated in this paper makes it possible to solve these problems.

  8. Focus-distance-controlled 3D TV

    NASA Astrophysics Data System (ADS)

    Yanagisawa, Nobuaki; Kim, Kyung-tae; Son, Jung-Young; Murata, Tatsuya; Orima, Takatoshi

    1997-05-01

    There is a phenomenon that a 3D image appears in proportion to a focus distance when something is watched through a convex lens. An adjustable focus lens which can control the focus distance of the convex lens is contrived and applied to 3D TV. We can watch 3D TV without eyeglasses. The 3D TV image meets the NTSC standard. A parallax data and a focus data about the image can be accommodated at the same time. A continuous image method realizes much wider views. An anti 3D image effect can be avoided by using this method. At present, an analysis of proto-type lens and experiment are being carried out. As a result, a phantom effect and a viewing area can be improved. It is possible to watch the 3D TV at any distance. Distance data are triangulated by two cameras. A plan of AVI proto type using ten thousands lenses is discussed. This method is compared with four major conventional methods. As a result, it is revealed that this method can make the efficient use of integral photography and varifocal type method. In the case of integral photography, a miniaturization of this system is possible. But it is difficult to get actual focus. In the case of varifocal type method, there is no problem with focusing, but the miniaturization is impossible. The theory investigated in this paper makes it possible to solve these problems.

  9. 3D goes digital: from stereoscopy to modern 3D imaging techniques

    NASA Astrophysics Data System (ADS)

    Kerwien, N.

    2014-11-01

    In the 19th century, English physicist Charles Wheatstone discovered stereopsis, the basis for 3D perception. His construction of the first stereoscope established the foundation for stereoscopic 3D imaging. Since then, many optical instruments were influenced by these basic ideas. In recent decades, the advent of digital technologies revolutionized 3D imaging. Powerful readily available sensors and displays combined with efficient pre- or post-processing enable new methods for 3D imaging and applications. This paper draws an arc from basic concepts of 3D imaging to modern digital implementations, highlighting instructive examples from its 175 years of history.

  10. Diatom-inspired templates for 3D replication: natural diatoms versus laser written artificial diatoms.

    PubMed

    Belegratis, M R; Schmidt, V; Nees, D; Stadlober, B; Hartmann, P

    2014-03-01

    The diatoms are ubiquitous, exist in large numbers and show a great diversity of features on their porous silica structures. Therefore, they inspire the fabrication of nanostructured templates for nanoimprint processes (NIL), where large structured areas with nanometer precision are required. In this study, two approaches regarding the respective challenges and potential exploitations are followed and discussed: the first one takes advantage of a template that is directly made of natural occurring diatoms. Here, two replication steps via soft lithography are needed to obtain a template which is subsequently used for NIL. The second approach exploits the technical capabilities of the precise 3D laser lithography (3DLL) based on two-photon polymerization of organic materials. This method enables the fabrication of arbitrary artificial diatom-inspired micro- and nanostructures and the design of an inverse structure. Therefore, only one replication step is needed to obtain a template for NIL. In both approaches, a replication technique for true 3D structures is shown.

  11. The NIH 3D Print Exchange: A Public Resource for Bioscientific and Biomedical 3D Prints

    PubMed Central

    Coakley, Meghan F.; Hurt, Darrell E.; Weber, Nick; Mtingwa, Makazi; Fincher, Erin C.; Alekseyev, Vsevelod; Chen, David T.; Yun, Alvin; Gizaw, Metasebia; Swan, Jeremy; Yoo, Terry S.; Huyen, Yentram

    2016-01-01

    The National Institutes of Health (NIH) has launched the NIH 3D Print Exchange, an online portal for discovering and creating bioscientifically relevant 3D models suitable for 3D printing, to provide both researchers and educators with a trusted source to discover accurate and informative models. There are a number of online resources for 3D prints, but there is a paucity of scientific models, and the expertise required to generate and validate such models remains a barrier. The NIH 3D Print Exchange fills this gap by providing novel, web-based tools that empower users with the ability to create ready-to-print 3D files from molecular structure data, microscopy image stacks, and computed tomography scan data. The NIH 3D Print Exchange facilitates open data sharing in a community-driven environment, and also includes various interactive features, as well as information and tutorials on 3D modeling software. As the first government-sponsored website dedicated to 3D printing, the NIH 3D Print Exchange is an important step forward to bringing 3D printing to the mainstream for scientific research and education. PMID:28367477

  12. Three-dimensional colloidal lithography.

    PubMed

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A; Chang, Chih-Hao

    2017-03-24

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle-light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd's mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  13. Three-dimensional colloidal lithography

    NASA Astrophysics Data System (ADS)

    Nagai, Hironori; Poteet, Austen; Zhang, Xu A.; Chang, Chih-Hao

    2017-03-01

    Light interactions with colloidal particles can generate a variety of complex three-dimensional (3D) intensity patterns, which can be utilized for nanolithography. The study of particle–light interactions can add more types of intensity patterns by manipulating key factors. Here we investigate a novel 3D nanolithography technique using colloidal particles under two-beam coherent illuminations. The fabricated 3D nanostructures are hollow, nested within periodic structures, and possess multiple chamber geometry. The effects of incident angles and particle size on the fabricated nanostructures were examined. The relative phase shift between particle position and interference pattern is identified as another significant parameter influencing the resultant nanostructures. A numerical model has been developed to show the evolution of nanostructure geometry with phase shifts, and experimental studies confirm the simulation results. Through the introduction of single colloidal particles, the fabrication capability of Lloyd’s mirror interference can now be extended to fabrication of 3D nanostructure with complex shell geometry. The fabricated hollow nanostructures with grating background could find potential applications in the area of photonics, drug delivery, and nanofluidics.

  14. CFL3D, FUN3d, and NSU3D Contributions to the Fifth Drag Prediction Workshop

    NASA Technical Reports Server (NTRS)

    Park, Michael A.; Laflin, Kelly R.; Chaffin, Mark S.; Powell, Nicholas; Levy, David W.

    2013-01-01

    Results presented at the Fifth Drag Prediction Workshop using CFL3D, FUN3D, and NSU3D are described. These are calculations on the workshop provided grids and drag adapted grids. The NSU3D results have been updated to reflect an improvement to skin friction calculation on skewed grids. FUN3D results generated after the workshop are included for custom participant generated grids and a grid from a previous workshop. Uniform grid refinement at the design condition shows a tight grouping in calculated drag, where the variation in the pressure component of drag is larger than the skin friction component. At this design condition, A fine-grid drag value was predicted with a smaller drag adjoint adapted grid via tetrahedral adaption to a metric and mixed-element subdivision. The buffet study produced larger variation than the design case, which is attributed to large differences in the predicted side-of-body separation extent. Various modeling and discretization approaches had a strong impact on predicted side-of-body separation. This large wing root separation bubble was not observed in wind tunnel tests indicating that more work is necessary in modeling wing root juncture flows to predict experiments.

  15. Secrets of subwavelength imaging and lithography

    NASA Astrophysics Data System (ADS)

    Hemmer, Philip R.

    2011-08-01

    To understand the limits and tradeoffs of nearly all existing subwavelength imaging techniques it sufficient to understand magnetic resonance imaging (MRI) and its generalizations. In many cases, subwavelength optical lithography can be viewed as the inverse problem to imaging and so the same principles apply. A simple review of MRI is given which shows how the most popular subwavelength imaging and lithography techniques naturally arise as special cases.

  16. Self assembled structures for 3D integration

    NASA Astrophysics Data System (ADS)

    Rao, Madhav

    Three dimensional (3D) micro-scale structures attached to a silicon substrate have various applications in microelectronics. However, formation of 3D structures using conventional micro-fabrication techniques are not efficient and require precise control of processing parameters. Self assembly is a method for creating 3D structures that takes advantage of surface area minimization phenomena. Solder based self assembly (SBSA), the subject of this dissertation, uses solder as a facilitator in the formation of 3D structures from 2D patterns. Etching a sacrificial layer underneath a portion of the 2D pattern allows the solder reflow step to pull those areas out of the substrate plane resulting in a folded 3D structure. Initial studies using the SBSA method demonstrated low yields in the formation of five different polyhedra. The failures in folding were primarily attributed to nonuniform solder deposition on the underlying metal pads. The dip soldering method was analyzed and subsequently refined. A modified dip soldering process provided improved yield among the polyhedra. Solder bridging referred as joining of solder deposited on different metal patterns in an entity influenced the folding mechanism. In general, design parameters such as small gap-spacings and thick metal pads were found to favor solder bridging for all patterns studied. Two types of soldering: face and edge soldering were analyzed. Face soldering refers to the application of solder on the entire metal face. Edge soldering indicates application of solder only on the edges of the metal face. Mechanical grinding showed that face soldered SBSA structures were void free and robust in nature. In addition, the face soldered 3D structures provide a consistent heat resistant solder standoff height that serve as attachments in the integration of dissimilar electronic technologies. Face soldered 3D structures were developed on the underlying conducting channel to determine the thermo-electric reliability of

  17. PLOT3D Export Tool for Tecplot

    NASA Technical Reports Server (NTRS)

    Alter, Stephen

    2010-01-01

    The PLOT3D export tool for Tecplot solves the problem of modified data being impossible to output for use by another computational science solver. The PLOT3D Exporter add-on enables the use of the most commonly available visualization tools to engineers for output of a standard format. The exportation of PLOT3D data from Tecplot has far reaching effects because it allows for grid and solution manipulation within a graphical user interface (GUI) that is easily customized with macro language-based and user-developed GUIs. The add-on also enables the use of Tecplot as an interpolation tool for solution conversion between different grids of different types. This one add-on enhances the functionality of Tecplot so significantly, it offers the ability to incorporate Tecplot into a general suite of tools for computational science applications as a 3D graphics engine for visualization of all data. Within the PLOT3D Export Add-on are several functions that enhance the operations and effectiveness of the add-on. Unlike Tecplot output functions, the PLOT3D Export Add-on enables the use of the zone selection dialog in Tecplot to choose which zones are to be written by offering three distinct options - output of active, inactive, or all zones (grid blocks). As the user modifies the zones to output with the zone selection dialog, the zones to be written are similarly updated. This enables the use of Tecplot to create multiple configurations of a geometry being analyzed. For example, if an aircraft is loaded with multiple deflections of flaps, by activating and deactivating different zones for a specific flap setting, new specific configurations of that aircraft can be easily generated by only writing out specific zones. Thus, if ten flap settings are loaded into Tecplot, the PLOT3D Export software can output ten different configurations, one for each flap setting.

  18. RAG-3D: A search tool for RNA 3D substructures

    SciTech Connect

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; Schlick, Tamar

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally described in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.

  19. RAG-3D: A search tool for RNA 3D substructures

    DOE PAGES

    Zahran, Mai; Sevim Bayrak, Cigdem; Elmetwaly, Shereef; ...

    2015-08-24

    In this study, to address many challenges in RNA structure/function prediction, the characterization of RNA's modular architectural units is required. Using the RNA-As-Graphs (RAG) database, we have previously explored the existence of secondary structure (2D) submotifs within larger RNA structures. Here we present RAG-3D—a dataset of RNA tertiary (3D) structures and substructures plus a web-based search tool—designed to exploit graph representations of RNAs for the goal of searching for similar 3D structural fragments. The objects in RAG-3D consist of 3D structures translated into 3D graphs, cataloged based on the connectivity between their secondary structure elements. Each graph is additionally describedmore » in terms of its subgraph building blocks. The RAG-3D search tool then compares a query RNA 3D structure to those in the database to obtain structurally similar structures and substructures. This comparison reveals conserved 3D RNA features and thus may suggest functional connections. Though RNA search programs based on similarity in sequence, 2D, and/or 3D structural elements are available, our graph-based search tool may be advantageous for illuminating similarities that are not obvious; using motifs rather than sequence space also reduces search times considerably. Ultimately, such substructuring could be useful for RNA 3D structure prediction, structure/function inference and inverse folding.« less

  20. ICER-3D Hyperspectral Image Compression Software

    NASA Technical Reports Server (NTRS)

    Xie, Hua; Kiely, Aaron; Klimesh, matthew; Aranki, Nazeeh

    2010-01-01

    Software has been developed to implement the ICER-3D algorithm. ICER-3D effects progressive, three-dimensional (3D), wavelet-based compression of hyperspectral images. If a compressed data stream is truncated, the progressive nature of the algorithm enables reconstruction of hyperspectral data at fidelity commensurate with the given data volume. The ICER-3D software is capable of providing either lossless or lossy compression, and incorporates an error-containment scheme to limit the effects of data loss during transmission. The compression algorithm, which was derived from the ICER image compression algorithm, includes wavelet-transform, context-modeling, and entropy coding subalgorithms. The 3D wavelet decomposition structure used by ICER-3D exploits correlations in all three dimensions of sets of hyperspectral image data, while facilitating elimination of spectral ringing artifacts, using a technique summarized in "Improving 3D Wavelet-Based Compression of Spectral Images" (NPO-41381), NASA Tech Briefs, Vol. 33, No. 3 (March 2009), page 7a. Correlation is further exploited by a context-modeling subalgorithm, which exploits spectral dependencies in the wavelet-transformed hyperspectral data, using an algorithm that is summarized in "Context Modeler for Wavelet Compression of Hyperspectral Images" (NPO-43239), which follows this article. An important feature of ICER-3D is a scheme for limiting the adverse effects of loss of data during transmission. In this scheme, as in the similar scheme used by ICER, the spatial-frequency domain is partitioned into rectangular error-containment regions. In ICER-3D, the partitions extend through all the wavelength bands. The data in each partition are compressed independently of those in the other partitions, so that loss or corruption of data from any partition does not affect the other partitions. Furthermore, because compression is progressive within each partition, when data are lost, any data from that partition received

  1. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  2. 3D bioprinting for engineering complex tissues.

    PubMed

    Mandrycky, Christian; Wang, Zongjie; Kim, Keekyoung; Kim, Deok-Ho

    2016-01-01

    Bioprinting is a 3D fabrication technology used to precisely dispense cell-laden biomaterials for the construction of complex 3D functional living tissues or artificial organs. While still in its early stages, bioprinting strategies have demonstrated their potential use in regenerative medicine to generate a variety of transplantable tissues, including skin, cartilage, and bone. However, current bioprinting approaches still have technical challenges in terms of high-resolution cell deposition, controlled cell distributions, vascularization, and innervation within complex 3D tissues. While no one-size-fits-all approach to bioprinting has emerged, it remains an on-demand, versatile fabrication technique that may address the growing organ shortage as well as provide a high-throughput method for cell patterning at the micrometer scale for broad biomedical engineering applications. In this review, we introduce the basic principles, materials, integration strategies and applications of bioprinting. We also discuss the recent developments, current challenges and future prospects of 3D bioprinting for engineering complex tissues. Combined with recent advances in human pluripotent stem cell technologies, 3D-bioprinted tissue models could serve as an enabling platform for high-throughput predictive drug screening and more effective regenerative therapies.

  3. 3D optical measuring technologies and systems

    NASA Astrophysics Data System (ADS)

    Chugui, Yuri V.

    2005-02-01

    The results of the R & D activity of TDI SIE SB RAS in the field of the 3D optical measuring technologies and systems for noncontact 3D optical dimensional inspection applied to atomic and railway industry safety problems are presented. This activity includes investigations of diffraction phenomena on some 3D objects, using the original constructive calculation method. The efficient algorithms for precise determining the transverse and longitudinal sizes of 3D objects of constant thickness by diffraction method, peculiarities on formation of the shadow and images of the typical elements of the extended objects were suggested. Ensuring the safety of nuclear reactors and running trains as well as their high exploitation reliability requires a 100% noncontact precise inspection of geometrical parameters of their components. To solve this problem we have developed methods and produced the technical vision measuring systems LMM, CONTROL, PROFIL, and technologies for noncontact 3D dimensional inspection of grid spacers and fuel elements for the nuclear reactor VVER-1000 and VVER-440, as well as automatic laser diagnostic COMPLEX for noncontact inspection of geometric parameters of running freight car wheel pairs. The performances of these systems and the results of industrial testing are presented and discussed. The created devices are in pilot operation at Atomic and Railway Companies.

  4. Magnetic Properties of 3D Printed Toroids

    NASA Astrophysics Data System (ADS)

    Bollig, Lindsey; Otto, Austin; Hilpisch, Peter; Mowry, Greg; Nelson-Cheeseman, Brittany; Renewable Energy; Alternatives Lab (REAL) Team

    Transformers are ubiquitous in electronics today. Although toroidal geometries perform most efficiently, transformers are traditionally made with rectangular cross-sections due to the lower manufacturing costs. Additive manufacturing techniques (3D printing) can easily achieve toroidal geometries by building up a part through a series of 2D layers. To get strong magnetic properties in a 3D printed transformer, a composite filament is used containing Fe dispersed in a polymer matrix. How the resulting 3D printed toroid responds to a magnetic field depends on two structural factors of the printed 2D layers: fill factor (planar density) and fill pattern. In this work, we investigate how the fill factor and fill pattern affect the magnetic properties of 3D printed toroids. The magnetic properties of the printed toroids are measured by a custom circuit that produces a hysteresis loop for each toroid. Toroids with various fill factors and fill patterns are compared to determine how these two factors can affect the magnetic field the toroid can produce. These 3D printed toroids can be used for numerous applications in order to increase the efficiency of transformers by making it possible for manufacturers to make a toroidal geometry.

  5. 3D culture for cardiac cells.

    PubMed

    Zuppinger, Christian

    2016-07-01

    This review discusses historical milestones, recent developments and challenges in the area of 3D culture models with cardiovascular cell types. Expectations in this area have been raised in recent years, but more relevant in vitro research, more accurate drug testing results, reliable disease models and insights leading to bioartificial organs are expected from the transition to 3D cell culture. However, the construction of organ-like cardiac 3D models currently remains a difficult challenge. The heart consists of highly differentiated cells in an intricate arrangement.Furthermore, electrical “wiring”, a vascular system and multiple cell types act in concert to respond to the rapidly changing demands of the body. Although cardiovascular 3D culture models have been predominantly developed for regenerative medicine in the past, their use in drug screening and for disease models has become more popular recently. Many sophisticated 3D culture models are currently being developed in this dynamic area of life science. This article is part of a Special Issue entitled: Cardiomyocyte Biology: Integration of Developmental and Environmental Cues in the Heart edited by Marcus Schaub and Hughes Abriel.

  6. 3D Spray Droplet Distributions in Sneezes

    NASA Astrophysics Data System (ADS)

    Techet, Alexandra; Scharfman, Barry; Bourouiba, Lydia

    2015-11-01

    3D spray droplet clouds generated during human sneezing are investigated using the Synthetic Aperture Feature Extraction (SAFE) method, which relies on light field imaging (LFI) and synthetic aperture (SA) refocusing computational photographic techniques. An array of nine high-speed cameras are used to image sneeze droplets and tracked the droplets in 3D space and time (3D + T). An additional high-speed camera is utilized to track the motion of the head during sneezing. In the SAFE method, the raw images recorded by each camera in the array are preprocessed and binarized, simplifying post processing after image refocusing and enabling the extraction of feature sizes and positions in 3D + T. These binary images are refocused using either additive or multiplicative methods, combined with thresholding. Sneeze droplet centroids, radii, distributions and trajectories are determined and compared with existing data. The reconstructed 3D droplet centroids and radii enable a more complete understanding of the physical extent and fluid dynamics of sneeze ejecta. These measurements are important for understanding the infectious disease transmission potential of sneezes in various indoor environments.

  7. BEAMS3D Neutral Beam Injection Model

    NASA Astrophysics Data System (ADS)

    McMillan, Matthew; Lazerson, Samuel A.

    2014-09-01

    With the advent of applied 3D fields in Tokamaks and modern high performance stellarators, a need has arisen to address non-axisymmetric effects on neutral beam heating and fueling. We report on the development of a fully 3D neutral beam injection (NBI) model, BEAMS3D, which addresses this need by coupling 3D equilibria to a guiding center code capable of modeling neutral and charged particle trajectories across the separatrix and into the plasma core. Ionization, neutralization, charge-exchange, viscous slowing down, and pitch angle scattering are modeled with the ADAS atomic physics database. Elementary benchmark calculations are presented to verify the collisionless particle orbits, NBI model, frictional drag, and pitch angle scattering effects. A calculation of neutral beam heating in the NCSX device is performed, highlighting the capability of the code to handle 3D magnetic fields. Notice: this manuscript has been authored by Princeton University under Contract Number DE-AC02-09CH11466 with the US Department of Energy. The United States Government retains and the publisher, by accepting the article for publication, acknowledges that the United States Government retains a non-exclusive, paid-up, irrevocable, world-wide license to publish or reproduce the published form of this manuscript, or allow others to do so, for United States Government purposes.

  8. Extra dimensions: 3D in PDF documentation

    SciTech Connect

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universal 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.

  9. Extra dimensions: 3D in PDF documentation

    DOE PAGES

    Graf, Norman A.

    2011-01-11

    Experimental science is replete with multi-dimensional information which is often poorly represented by the two dimensions of presentation slides and print media. Past efforts to disseminate such information to a wider audience have failed for a number of reasons, including a lack of standards which are easy to implement and have broad support. Adobe's Portable Document Format (PDF) has in recent years become the de facto standard for secure, dependable electronic information exchange. It has done so by creating an open format, providing support for multiple platforms and being reliable and extensible. By providing support for the ECMA standard Universalmore » 3D (U3D) file format in its free Adobe Reader software, Adobe has made it easy to distribute and interact with 3D content. By providing support for scripting and animation, temporal data can also be easily distributed to a wide, non-technical audience. We discuss how the field of radiation imaging could benefit from incorporating full 3D information about not only the detectors, but also the results of the experimental analyses, in its electronic publications. In this article, we present examples drawn from high-energy physics, mathematics and molecular biology which take advantage of this functionality. Furthermore, we demonstrate how 3D detector elements can be documented, using either CAD drawings or other sources such as GEANT visualizations as input.« less

  10. Fabrication of a curved microlens array using double gray-scale digital maskless lithography

    NASA Astrophysics Data System (ADS)

    Luo, Ningning; Zhang, Zhimin

    2017-03-01

    Digital maskless lithography is considered to be a high-efficiency and low-cost approach for the fabrication of microstructures, but is limited by the gray scale capability of spatial light modulators. In this work, a novel method of double gray-scale digital maskless lithography is presented for forming a curved microlens array. The target exposure dose profile of the curved microlens array is first split into two individual 3D energy profiles, and then each 3D energy profile can be respectively realized by a single gray-scale digital lithography. Two gray-scale digital masks obtained by projection calculation are superposed on the substrate so as to realize the exposure dose profile of the curved microlens array. Thus, the effective steps that are achieved through the photoresist response to the modulated UV exposure are doubled, so a smoother profile with a steep gradient can be formed by the precise modulation of double gray-scale masks. As a result of the double gray-scale method, a curved microlens array with 183 micro lenslets on a 1024 µm  ×  768 µm spherical surface has been successfully fabricated.

  11. Joint calibration of 3D resist image and CDSEM

    NASA Astrophysics Data System (ADS)

    Chou, C. S.; He, Y. Y.; Tang, Y. P.; Chang, Y. T.; Huang, W. C.; Liu, R. G.; Gau, T. S.

    2013-04-01

    Traditionally, an optical proximity correction model is to evaluate the resist image at a specific depth within the photoresist and then extract the resist contours from the image. Calibration is generally implemented by comparing resist contours with the critical dimensions (CD). The wafer CD is usually collected by a scanning electron microscope (SEM), which evaluates the CD based on some criterion that is a function of gray level, differential signal, threshold or other parameters set by the SEM. However, the criterion does not reveal which depth the CD is obtained at. This depth inconsistency between modeling and SEM makes the model calibration difficult for low k1 images. In this paper, the vertical resist profile is obtained by modifying the model from planar (2D) to quasi-3D approach and comparing the CD from this new model with SEM CD. For this quasi-3D model, the photoresist diffusion along the depth of the resist is considered and the 3D photoresist contours are evaluated. The performance of this new model is studied and is better than the 2D model.

  12. Research on the printability of hydrogels in 3D bioprinting

    PubMed Central

    He, Yong; Yang, FeiFei; Zhao, HaiMing; Gao, Qing; Xia, Bing; Fu, JianZhong

    2016-01-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells. PMID:27436509

  13. Research on the printability of hydrogels in 3D bioprinting

    NASA Astrophysics Data System (ADS)

    He, Yong; Yang, Feifei; Zhao, Haiming; Gao, Qing; Xia, Bing; Fu, Jianzhong

    2016-07-01

    As the biocompatible materials, hydrogels have been widely used in three- dimensional (3D) bioprinting/organ printing to load cell for tissue engineering. It is important to precisely control hydrogels deposition during printing the mimic organ structures. However, the printability of hydrogels about printing parameters is seldom addressed. In this paper, we systemically investigated the printability of hydrogels from printing lines (one dimensional, 1D structures) to printing lattices/films (two dimensional, 2D structures) and printing 3D structures with a special attention to the accurate printing. After a series of experiments, we discovered the relationships between the important factors such as air pressure, feedrate, or even printing distance and the printing quality of the expected structures. Dumbbell shape was observed in the lattice structures printing due to the hydrogel diffuses at the intersection. Collapses and fusion of adjacent layer would result in the error accumulation at Z direction which was an important fact that could cause printing failure. Finally, we successfully demonstrated a 3D printing hydrogel scaffold through harmonize with all the parameters. The cell viability after printing was compared with the casting and the results showed that our bioprinting method almost had no extra damage to the cells.

  14. 3D Simulation: Microgravity Environments and Applications

    NASA Technical Reports Server (NTRS)

    Hunter, Steve L.; Dischinger, Charles; Estes, Samantha; Parker, Nelson C. (Technical Monitor)

    2001-01-01

    Most, if not all, 3-D and Virtual Reality (VR) software programs are designed for one-G gravity applications. Space environments simulations require gravity effects of one one-thousandth to one one-million of that of the Earth's surface (10(exp -3) - 10(exp -6) G), thus one must be able to generate simulations that replicate those microgravity effects upon simulated astronauts. Unfortunately, the software programs utilized by the National Aeronautical and Space Administration does not have the ability to readily neutralize the one-G gravity effect. This pre-programmed situation causes the engineer or analysis difficulty during micro-gravity simulations. Therefore, microgravity simulations require special techniques or additional code in order to apply the power of 3D graphic simulation to space related applications. This paper discusses the problem and possible solutions to allow microgravity 3-D/VR simulations to be completed successfully without program code modifications.

  15. 3D Printed Multimaterial Microfluidic Valve

    PubMed Central

    Patrick, William G.; Sharma, Sunanda; Kong, David S.; Oxman, Neri

    2016-01-01

    We present a novel 3D printed multimaterial microfluidic proportional valve. The microfluidic valve is a fundamental primitive that enables the development of programmable, automated devices for controlling fluids in a precise manner. We discuss valve characterization results, as well as exploratory design variations in channel width, membrane thickness, and membrane stiffness. Compared to previous single material 3D printed valves that are stiff, these printed valves constrain fluidic deformation spatially, through combinations of stiff and flexible materials, to enable intricate geometries in an actuated, functionally graded device. Research presented marks a shift towards 3D printing multi-property programmable fluidic devices in a single step, in which integrated multimaterial valves can be used to control complex fluidic reactions for a variety of applications, including DNA assembly and analysis, continuous sampling and sensing, and soft robotics. PMID:27525809

  16. Impedance mammograph 3D phantom studies.

    PubMed

    Wtorek, J; Stelter, J; Nowakowski, A

    1999-04-20

    The results obtained using the Technical University of Gdansk Electroimpedance Mammograph (TUGEM) of a 3D phantom study are presented. The TUGEM system is briefly described. The hardware contains the measurement head and DSP-based identification modules controlled by a PC computer. A specially developed reconstruction algorithm, Regulated Correction Frequency Algebraic Reconstruction Technique (RCFART), is used to obtain 3D images. To visualize results, the Advance Visualization System (AVS) is used. It allows a powerful image processing on a fast workstation or on a high-performance computer. Results of three types of 3D conductivity perturbations used in the study (aluminum, Plexiglas, and cucumber) are shown. The relative volumes of perturbations less than 2% of the measurement chamber are easily evidenced.

  17. Spectroradiometric characterization of autostereoscopic 3D displays

    NASA Astrophysics Data System (ADS)

    Rubiño, Manuel; Salas, Carlos; Pozo, Antonio M.; Castro, J. J.; Pérez-Ocón, Francisco

    2013-11-01

    Spectroradiometric measurements have been made for the experimental characterization of the RGB channels of autostereoscopic 3D displays, giving results for different measurement angles with respect to the normal direction of the plane of the display. In the study, 2 different models of autostereoscopic 3D displays of different sizes and resolutions were used, making measurements with a spectroradiometer (model PR-670 SpectraScan of PhotoResearch). From the measurements made, goniometric results were recorded for luminance contrast, and the fundamental hypotheses have been evaluated for the characterization of the displays: independence of the RGB channels and their constancy. The results show that the display with the lower angle variability in the contrast-ratio value and constancy of the chromaticity coordinates nevertheless presented the greatest additivity deviations with the measurement angle. For both displays, when the parameters evaluated were taken into account, lower angle variability consistently resulted in the 2D mode than in the 3D mode.

  18. Ames Lab 101: 3D Metals Printer

    SciTech Connect

    Ott, Ryan

    2014-02-13

    To meet one of the biggest energy challenges of the 21st century - finding alternatives to rare-earth elements and other critical materials - scientists will need new and advanced tools. The Critical Materials Institute at the U.S. Department of Energy's Ames Laboratory has a new one: a 3D printer for metals research. 3D printing technology, which has captured the imagination of both industry and consumers, enables ideas to move quickly from the initial design phase to final form using materials including polymers, ceramics, paper and even food. But the Critical Materials Institute (CMI) will apply the advantages of the 3D printing process in a unique way: for materials discovery.

  19. 3D Gravity Inversion using Tikhonov Regularization

    NASA Astrophysics Data System (ADS)

    Toushmalani, Reza; Saibi, Hakim

    2015-08-01

    Subsalt exploration for oil and gas is attractive in regions where 3D seismic depth-migration to recover the geometry of a salt base is difficult. Additional information to reduce the ambiguity in seismic images would be beneficial. Gravity data often serve these purposes in the petroleum industry. In this paper, the authors present an algorithm for a gravity inversion based on Tikhonov regularization and an automatically regularized solution process. They examined the 3D Euler deconvolution to extract the best anomaly source depth as a priori information to invert the gravity data and provided a synthetic example. Finally, they applied the gravity inversion to recently obtained gravity data from the Bandar Charak (Hormozgan, Iran) to identify its subsurface density structure. Their model showed the 3D shape of salt dome in this region.

  20. 3D face analysis for demographic biometrics

    SciTech Connect

    Tokola, Ryan A; Mikkilineni, Aravind K; Boehnen, Chris Bensing

    2015-01-01

    Despite being increasingly easy to acquire, 3D data is rarely used for face-based biometrics applications beyond identification. Recent work in image-based demographic biometrics has enjoyed much success, but these approaches suffer from the well-known limitations of 2D representations, particularly variations in illumination, texture, and pose, as well as a fundamental inability to describe 3D shape. This paper shows that simple 3D shape features in a face-based coordinate system are capable of representing many biometric attributes without problem-specific models or specialized domain knowledge. The same feature vector achieves impressive results for problems as diverse as age estimation, gender classification, and race classification.