Science.gov

Sample records for 3d digital subtraction

  1. Improved Visualization of Intracranial Vessels with Intraoperative Coregistration of Rotational Digital Subtraction Angiography and Intraoperative 3D Ultrasound

    PubMed Central

    Podlesek, Dino; Meyer, Tobias; Morgenstern, Ute; Schackert, Gabriele; Kirsch, Matthias

    2015-01-01

    Introduction Ultrasound can visualize and update the vessel status in real time during cerebral vascular surgery. We studied the depiction of parent vessels and aneurysms with a high-resolution 3D intraoperative ultrasound imaging system during aneurysm clipping using rotational digital subtraction angiography as a reference. Methods We analyzed 3D intraoperative ultrasound in 39 patients with cerebral aneurysms to visualize the aneurysm intraoperatively and the nearby vascular tree before and after clipping. Simultaneous coregistration of preoperative subtraction angiography data with 3D intraoperative ultrasound was performed to verify the anatomical assignment. Results Intraoperative ultrasound detected 35 of 43 aneurysms (81%) in 39 patients. Thirty-nine intraoperative ultrasound measurements were matched with rotational digital subtraction angiography and were successfully reconstructed during the procedure. In 7 patients, the aneurysm was partially visualized by 3D-ioUS or was not in field of view. Post-clipping intraoperative ultrasound was obtained in 26 and successfully reconstructed in 18 patients (69%) despite clip related artefacts. The overlap between 3D-ioUS aneurysm volume and preoperative rDSA aneurysm volume resulted in a mean accuracy of 0.71 (Dice coefficient). Conclusions Intraoperative coregistration of 3D intraoperative ultrasound data with preoperative rotational digital subtraction angiography is possible with high accuracy. It allows the immediate visualization of vessels beyond the microscopic field, as well as parallel assessment of blood velocity, aneurysm and vascular tree configuration. Although spatial resolution is lower than for standard angiography, the method provides an excellent vascular overview, advantageous interpretation of 3D-ioUS and immediate intraoperative feedback of the vascular status. A prerequisite for understanding vascular intraoperative ultrasound is image quality and a successful match with preoperative

  2. Remapping of digital subtraction angiography on a standard fluoroscopy system using 2D-3D registration

    NASA Astrophysics Data System (ADS)

    Alhrishy, Mazen G.; Varnavas, Andreas; Guyot, Alexis; Carrell, Tom; King, Andrew; Penney, Graeme

    2015-03-01

    Fluoroscopy-guided endovascular interventions are being performing for more and more complex cases with longer screening times. However, X-ray is much better at visualizing interventional devices and dense structures compared to vasculature. To visualise vasculature, angiography screening is essential but requires the use of iodinated contrast medium (ICM) which is nephrotoxic. Acute kidney injury is the main life-threatening complication of ICM. Digital subtraction angiography (DSA) is also often a major contributor to overall patient radiation dose (81% reported). Furthermore, a DSA image is only valid for the current interventional view and not the new view once the C-arm is moved. In this paper, we propose the use of 2D-3D image registration between intraoperative images and the preoperative CT volume to facilitate DSA remapping using a standard fluoroscopy system. This allows repeated ICM-free DSA and has the potential to enable a reduction in ICM usage and radiation dose. Experiments were carried out using 9 clinical datasets. In total, 41 DSA images were remapped. For each dataset, the maximum and averaged remapping accuracy error were calculated and presented. Numerical results showed an overall averaged error of 2.50 mm, with 7 patients scoring averaged errors < 3 mm and 2 patients < 6 mm.

  3. Mask free intravenous 3D digital subtraction angiography (IV 3D-DSA) from a single C-arm acquisition

    NASA Astrophysics Data System (ADS)

    Li, Yinsheng; Niu, Kai; Yang, Pengfei; Aagaard-Kienitz, Beveley; Niemann, David B.; Ahmed, Azam S.; Strother, Charles; Chen, Guang-Hong

    2016-03-01

    Currently, clinical acquisition of IV 3D-DSA requires two separate scans: one mask scan without contrast medium and a filled scan with contrast injection. Having two separate scans adds radiation dose to the patient and increases the likelihood of suffering inadvertent patient motion induced mis-registration and the associated mis-registraion artifacts in IV 3D-DSA images. In this paper, a new technique, SMART-RECON is introduced to generate IV 3D-DSA images from a single Cone Beam CT (CBCT) acquisition to eliminate the mask scan. Potential benefits of eliminating mask scan would be: (1) both radiation dose and scan time can be reduced by a factor of 2; (2) intra-sweep motion can be eliminated; (3) inter-sweep motion can be mitigated. Numerical simulations were used to validate the algorithm in terms of contrast recoverability and the ability to mitigate limited view artifacts.

  4. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    PubMed Central

    Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-01-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability. PMID:26633914

  5. Initial testing of a 3D printed perfusion phantom using digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Wood, Rachel P.; Khobragade, Parag; Ying, Leslie; Snyder, Kenneth; Wack, David; Bednarek, Daniel R.; Rudin, Stephen; Ionita, Ciprian N.

    2015-03-01

    Perfusion imaging is the most applied modality for the assessment of acute stroke. Parameters such as Cerebral Blood Flow (CBF), Cerebral Blood volume (CBV) and Mean Transit Time (MTT) are used to distinguish the tissue infarct core and ischemic penumbra. Due to lack of standardization these parameters vary significantly between vendors and software even when provided with the same data set. There is a critical need to standardize the systems and make them more reliable. We have designed a uniform phantom to test and verify the perfusion systems. We implemented a flow loop with different flow rates (250, 300, 350 ml/min) and injected the same amount of contrast. The images of the phantom were acquired using a Digital Angiographic system. Since this phantom is uniform, projection images obtained using DSA is sufficient for initial validation. To validate the phantom we measured the contrast concentration at three regions of interest (arterial input, venous output, perfused area) and derived time density curves (TDC). We then calculated the maximum slope, area under the TDCs and flow. The maximum slope calculations were linearly increasing with increase in flow rate, the area under the curve decreases with increase in flow rate. There was 25% error between the calculated flow and measured flow. The derived TDCs were clinically relevant and the calculated flow, maximum slope and areas under the curve were sensitive to the measured flow. We have created a systematic way to calibrate existing perfusion systems and assess their reliability.

  6. A fully-automatic locally adaptive thresholding algorithm for blood vessel segmentation in 3D digital subtraction angiography.

    PubMed

    Boegel, Marco; Hoelter, Philip; Redel, Thomas; Maier, Andreas; Hornegger, Joachim; Doerfler, Arnd

    2015-01-01

    Subarachnoid hemorrhage due to a ruptured cerebral aneurysm is still a devastating disease. Planning of endovascular aneurysm therapy is increasingly based on hemodynamic simulations necessitating reliable vessel segmentation and accurate assessment of vessel diameters. In this work, we propose a fully-automatic, locally adaptive, gradient-based thresholding algorithm. Our approach consists of two steps. First, we estimate the parameters of a global thresholding algorithm using an iterative process. Then, a locally adaptive version of the approach is applied using the estimated parameters. We evaluated both methods on 8 clinical 3D DSA cases. Additionally, we propose a way to select a reference segmentation based on 2D DSA measurements. For large vessels such as the internal carotid artery, our results show very high sensitivity (97.4%), precision (98.7%) and Dice-coefficient (98.0%) with our reference segmentation. Similar results (sensitivity: 95.7%, precision: 88.9% and Dice-coefficient: 90.7%) are achieved for smaller vessels of approximately 1mm diameter.

  7. Pediatric digital subtraction angiography

    SciTech Connect

    Amundson, G.M.; Wesenberg, R.L.; Mueller, D.L.; Reid, R.H.

    1984-12-01

    Experience with intravenous digital subtraction angiography (DSA) in infants and children is limited, although its relative rate of performance, low complication rate, and diagnostic accuracy indicate great potential. The authors performed 87 DSA examinations (74 patients) and obtained sufficient detail to facilitate diagnosis in most cases. The major problems of patient movement and overlapping vessels can be minimized by judicious use of sedation and strict attention to technique. Exposure of patients to radiation has not been a limiting factor since our system uses low exposure factors. Our results demonstrate that DSA has wide applicability to many organ systems and is especially useful in intracranial disease and for preoperative evaluation of neoplasms.

  8. Magnitude subtraction vs. complex subtraction in dynamic contrast-enhanced 3D-MR angiography: basic experiments and clinical evaluation.

    PubMed

    Naganawa, S; Ito, T; Iwayama, E; Fukatsu, H; Ishiguchi, T; Ishigaki, T; Ichinose, N

    1999-11-01

    Magnitude subtraction and complex subtraction in dynamic contrast-enhanced three-dimensional magnetic resonance (3D-MR) angiography were compared using a phantom and 23 human subjects. In phantom studies, complex subtraction showed far better performance than magnitude subtraction, especially for longer echo times, with thicker slices, and without fat suppression. With complex subtraction, non-fat-suppressed studies showed contrast-to-noise ratios comparable to those in fat-suppressed studies. In human subjects, complex subtraction was superior to magnitude subtraction in 9 subjects, but comparable to magnitude subtraction in 14 subjects. There were no cases in which magnitude subtraction was superior to complex subtraction. Although the differences observed in human studies when complex subtraction was applied with thinner slices, shorter echo times, and the fat-suppression technique were not as pronounced as those seen in phantom studies, complex subtraction should be performed in dynamic contrast-enhanced 3D-MR angiography because there are no drawbacks in complex subtraction. Further research is necessary to assess the feasibility of dynamic contrast-enhanced 3D-MR angiography without fat suppression in human subjects using complex subtraction, as suggested by the results of phantom studies. If it is found to be feasible, dynamic contrast-enhanced 3D-MR angiography without fat suppression using complex subtraction may prove to be a robust technique that eliminates the need for shimming and can reduce the acquisition time. J. Magn. Reson. Imaging 1999;10:813-820.

  9. Digital subtraction angiography in children

    SciTech Connect

    Wagner, M.L.; Singleton, E.B.; Egan, M.E.

    1983-01-01

    Preliminary results with digital subtraction angiography in infants and children have shown this to be an excellent screening procedure and often diagnostic. The examination can be performed satisfactorily on outpatients. Sixty patients have undergone this examination for evaluation of suspected abnormalities of the aortic arch and its branches, intracranial arteries, pulmonary arteries, abdominal aorta and its branches, and peripheral vessels. Adequate sedation is mandatory to prevent motion artifacts. While the literature reports increasing use of central venous catheters for delivery of contrast material, the use of short catheters placed in an antecubital vein is satisfactory for the pediatric patient. Techniques of the procedures are described along with seven appropriate case examples.

  10. Digital holography and 3-D imaging.

    PubMed

    Banerjee, Partha; Barbastathis, George; Kim, Myung; Kukhtarev, Nickolai

    2011-03-01

    This feature issue on Digital Holography and 3-D Imaging comprises 15 papers on digital holographic techniques and applications, computer-generated holography and encryption techniques, and 3-D display. It is hoped that future work in the area leads to innovative applications of digital holography and 3-D imaging to biology and sensing, and to the development of novel nonlinear dynamic digital holographic techniques.

  11. Digital subtraction angiography of the heart and lungs

    SciTech Connect

    Moodie, D.S.; Yiannikas, J.

    1986-01-01

    This book contains 12 chapters. Some of the chapter titles are: Physical Principles of Cardiac Digital Subtraction Angiography, The Use of Intravenous Digital Subtraction Angiography in Evaluating Patients with Complex Congenital Heart Disease, Exercise Intravenous Digital Subtraction Angiograpny, Cardiomyopathic and Cardiac Neoplastic Disease, Digital Subtraction Angiography in the Catheterization Laboratory, and Cardiac Digital Subtraction Angiography - Future Directions.

  12. 3D Buckligami: Digital Matter

    NASA Astrophysics Data System (ADS)

    van Hecke, Martin; de Reus, Koen; Florijn, Bastiaan; Coulais, Corentin

    2014-03-01

    We present a class of elastic structures which exhibit collective buckling in 3D, and create these by a 3D printing/moulding technique. Our structures consist of cubic lattice of anisotropic unit cells, and we show that their mechanical properties are programmable via the orientation of these unit cells.

  13. Children's Use of Subtraction by Addition on Large Single-Digit Subtractions

    ERIC Educational Resources Information Center

    Peters, Greet; De Smedt, Bert; Torbeyns, Joke; Ghesquiere, Pol; Verschaffel, Lieven

    2012-01-01

    Subtractions of the type M - S = ? can be solved by various strategies, including subtraction by addition. In this study, we investigated children's use of subtraction by addition by means of reaction time analyses. We presented 106 third to sixth graders with 32 large non-tie single-digit problems in both subtraction (12 - 9 = .) and addition…

  14. 3D Printing and Digital Rock Physics for the Geosciences

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2014-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. For example, digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts, to the point where parts might be cheaper to print than to make by traditional means in a plant and ship. Some key benefits of additive manufacturing include short lead times, complex shapes, parts on demand, zero required inventory and less material waste. Even subtractive processing, such as milling and etching, may be economized by additive manufacturing. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that the marriage of these technologies can bring to geosciences, including examples from our current research initiatives in developing constitutive laws for transport and geomechanics via digital rock physics. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of

  15. Digital subtraction angiography of the thoracic aorta

    SciTech Connect

    Grossman, L.B.; Buonocore, E.; Modic, M.T.; Meaney, T.F.

    1984-02-01

    Forty-three patients with acquired and congenital abnormalities of the thoracic aorta were studied using digital subtraction angiography (DSA) after an intravenous bolus injection of 40 ml of contrast material. Abnormalities studied included coarctation, pseudocoarctation, Marfan syndrome, cervical aorta, double aortic arch, aneurysm, dissection, and tumor. Twenty-four patients also had conventional angiography. DSA was accurate in 95% of cases; in the other 5%, involving patients with acute type I dissection, the coronary arteries could not be seen. The authors concluded that in 92% of their patients, DSA could have replaced the standard aortogram.

  16. Digital subtraction angiography of the kidney.

    PubMed

    Gattoni, F; Avogadro, A; Baldini, U; Pozzato, C; Bonfanti, M T; Gandini, D; Franch, L; Uslenghi, C

    1988-09-01

    Intravenous and intra-arterial digital subtraction angiography (DSA) was performed in 88 patients: 34 with tumours, 10 with renal trauma, 26 with suspected renovascular hypertension, 6 with vascular impression on the renal pelvis, 8 with nephrolithiasis and 4 with sonographically abnormal kidneys. Venous and arterial DSA always gave diagnostically useful images. Intravenous DSA is valuable in patients with suspected renovascular hypertension or after vascular surgery, percutaneous transluminal angioplasty and transcatheter embolisation. Arterial DSA is preferable to venous DSA in other clinical situations, particularly in the evaluation of renal tumours, and may be recommended in preference to conventional angiography.

  17. 3D goes digital: from stereoscopy to modern 3D imaging techniques

    NASA Astrophysics Data System (ADS)

    Kerwien, N.

    2014-11-01

    In the 19th century, English physicist Charles Wheatstone discovered stereopsis, the basis for 3D perception. His construction of the first stereoscope established the foundation for stereoscopic 3D imaging. Since then, many optical instruments were influenced by these basic ideas. In recent decades, the advent of digital technologies revolutionized 3D imaging. Powerful readily available sensors and displays combined with efficient pre- or post-processing enable new methods for 3D imaging and applications. This paper draws an arc from basic concepts of 3D imaging to modern digital implementations, highlighting instructive examples from its 175 years of history.

  18. Multiscale 3D manufacturing: combining thermal extrusion printing with additive and subtractive direct laser writing

    NASA Astrophysics Data System (ADS)

    Malinauskas, Mangirdas; Lukoševičius, Laurynas; MackevičiÅ«tÄ--, DovilÄ--; BalčiÅ«nas, Evaldas; RekštytÄ--, Sima; Paipulas, Domas

    2014-05-01

    A novel approach for efficient manufacturing of three-dimensional (3D) microstructured scaffolds designed for cell studies and tissue engineering applications is presented. A thermal extrusion (fused filament fabrication) 3D printer is employed as a simple and low-cost tabletop device enabling rapid materialization of CAD models out of biocompatible and biodegradable polylactic acid (PLA). Here it was used to produce cm- scale microporous (pore size varying from 100 to 400 µm) scaffolds. The fabricated objects were further laser processed in a direct laser writing (DLW) subtractive (ablation) and additive (lithography) manners. The first approach enables precise surface modification by creating micro-craters, holes and grooves thus increasing the surface roughness. An alternative way is to immerse the 3D PLA scaffold in a monomer solution and use the same DLW setup to refine its inner structure by fabricating dots, lines or a fine mesh on top as well as inside the pores of previously produced scaffolds. The DLW technique is empowered by ultrafast lasers - it allows 3D structuring with high spatial resolution in a great variety of photosensitive materials. Structure geometry on macro- to micro- scales could be finely tuned by combining these two fabrication techniques. Such artificial 3D substrates could be used for cell growth or as biocompatible-biodegradable implants. This combination of distinct material processing techniques enables rapid fabrication of diverse functional micro- featured and integrated devices. Hopefully, the proposed approach will find numerous applications in the field of ms, microfluidics, microoptics and many others.

  19. [Myocardial perfusion imaging by digital subtraction angiography].

    PubMed

    Kadowaki, H; Ishikawa, K; Ogai, T; Katori, R

    1986-03-01

    Several methods of digital subtraction angiography (DSA) were compared to determine which could better visualize regional myocardial perfusion using coronary angiography in seven patients with myocardial infarction, two with angina pectoris and five with normal coronary arteries. Satisfactory DSA was judged to be achieved if the shape of the heart on the mask film was identical to that on the live film and if both films were exactly superimposed. To obtain an identical mask film in the shape of each live film, both films were selected from the following three phases of the cardiac cycle; at the R wave of the electrocardiogram, 100 msec before the R wave, and 200 msec before the R wave. The last two were superior for obtaining mask and live films which were similar in shape, because the cardiac motion in these phases was relatively small. Using these mask and live films, DSA was performed either with the continuous image mode (CI mode) or the time interval difference mode (TID mode). The overall perfusion of contrast medium through the artery to the vein was adequately visualized using the CI mode. Passage of contrast medium through the artery, capillary and vein was visualized at each phase using TID mode. Subtracted images were displayed and photographed, and the density of the contrast medium was adequate to display contour lines as in a relief map. Using this DSA, it was found that regional perfusion of the contrast medium was not always uniform in normal subjects, depending on the typography of the coronary artery.(ABSTRACT TRUNCATED AT 250 WORDS)

  20. Optical 3D surface digitizing in forensic medicine: 3D documentation of skin and bone injuries.

    PubMed

    Thali, Michael J; Braun, Marcel; Dirnhofer, Richard

    2003-11-26

    Photography process reduces a three-dimensional (3D) wound to a two-dimensional level. If there is a need for a high-resolution 3D dataset of an object, it needs to be three-dimensionally scanned. No-contact optical 3D digitizing surface scanners can be used as a powerful tool for wound and injury-causing instrument analysis in trauma cases. The 3D skin wound and a bone injury documentation using the optical scanner Advanced TOpometric Sensor (ATOS II, GOM International, Switzerland) will be demonstrated using two illustrative cases. Using this 3D optical digitizing method the wounds (the virtual 3D computer model of the skin and the bone injuries) and the virtual 3D model of the injury-causing tool are graphically documented in 3D in real-life size and shape and can be rotated in the CAD program on the computer screen. In addition, the virtual 3D models of the bone injuries and tool can now be compared in a 3D CAD program against one another in virtual space, to see if there are matching areas. Further steps in forensic medicine will be a full 3D surface documentation of the human body and all the forensic relevant injuries using optical 3D scanners.

  1. The Digital Space Shuttle, 3D Graphics, and Knowledge Management

    NASA Technical Reports Server (NTRS)

    Gomez, Julian E.; Keller, Paul J.

    2003-01-01

    The Digital Shuttle is a knowledge management project that seeks to define symbiotic relationships between 3D graphics and formal knowledge representations (ontologies). 3D graphics provides geometric and visual content, in 2D and 3D CAD forms, and the capability to display systems knowledge. Because the data is so heterogeneous, and the interrelated data structures are complex, 3D graphics combined with ontologies provides mechanisms for navigating the data and visualizing relationships.

  2. A 3D digital medical photography system in paediatric medicine.

    PubMed

    Williams, Susanne K; Ellis, Lloyd A; Williams, Gigi

    2008-01-01

    In 2004, traditional clinical photography services at the Educational Resource Centre were extended using new technology. This paper describes the establishment of a 3D digital imaging system in a paediatric setting at the Royal Children's Hospital, Melbourne.

  3. Scoops3D: software to analyze 3D slope stability throughout a digital landscape

    USGS Publications Warehouse

    Reid, Mark E.; Christian, Sarah B.; Brien, Dianne L.; Henderson, Scott T.

    2015-01-01

    The computer program, Scoops3D, evaluates slope stability throughout a digital landscape represented by a digital elevation model (DEM). The program uses a three-dimensional (3D) method of columns approach to assess the stability of many (typically millions) potential landslides within a user-defined size range. For each potential landslide (or failure), Scoops3D assesses the stability of a rotational, spherical slip surface encompassing many DEM cells using a 3D version of either Bishop’s simplified method or the Ordinary (Fellenius) method of limit-equilibrium analysis. Scoops3D has several options for the user to systematically and efficiently search throughout an entire DEM, thereby incorporating the effects of complex surface topography. In a thorough search, each DEM cell is included in multiple potential failures, and Scoops3D records the lowest stability (factor of safety) for each DEM cell, as well as the size (volume or area) associated with each of these potential landslides. It also determines the least-stable potential failure for the entire DEM. The user has a variety of options for building a 3D domain, including layers or full 3D distributions of strength and pore-water pressures, simplistic earthquake loading, and unsaturated suction conditions. Results from Scoops3D can be readily incorporated into a geographic information system (GIS) or other visualization software. This manual includes information on the theoretical basis for the slope-stability analysis, requirements for constructing and searching a 3D domain, a detailed operational guide (including step-by-step instructions for using the graphical user interface [GUI] software, Scoops3D-i) and input/output file specifications, practical considerations for conducting an analysis, results of verification tests, and multiple examples illustrating the capabilities of Scoops3D. Easy-to-use software installation packages are available for the Windows or Macintosh operating systems; these packages

  4. Digital subtraction angiography: principles and pitfalls of image improvement techniques.

    PubMed

    Levin, D C; Schapiro, R M; Boxt, L M; Dunham, L; Harrington, D P; Ergun, D L

    1984-09-01

    The technology of imaging methods in digital subtraction angiography (DSA) is discussed in detail. Areas covered include function of the video camera in both interlaced and sequential scan modes, digitization by the analog-to-digital converter, logarithmic signal processing, dose rates, and acquisition of images using frame integration and pulsed-sequential techniques. Also discussed are various methods of improving image content and quality by both hardware and software modifications. These include the development of larger image intensifiers, larger matrices, video camera improvements, reregistration, hybrid subtraction, matched filtering, recursive filtering, DSA tomography, and edge enhancement.

  5. High speed 3D surface inspection with digital holography

    NASA Astrophysics Data System (ADS)

    Brunn, Andreas; Aspert, Nicolas; Cuche, Etienne; Emery, Yves; Ettemeyer, Andreas

    2013-01-01

    Digital holography has proven its ability to acquire high accuracy full field 3D data with one single image acquisition. This means that in principle this technique offers the chance to perform 3D serial inspection processes, as well. However, one limitation in digital holography is its limited ability to measure rough surfaces. In the presence of rough surfaces, the magnification of the image has to be increased to capture the required phase information on each camera pixel. However, this leads to significant reduction of inspection speed. If low magnification is selected, the rough surface produces speckles which cannot be treated properly by digital holography algorithms. In this paper, we describe the extension of digital holography to rough surface applications using speckle interferometry technique. This technique is capable of fast inspection of rough surfaces with sub-micrometer accuracy. The principle of this approach is shown and a practical application for 3D surface inspection of wafer cutting processes is given.

  6. Methodologies for digital 3D acquisition and representation of mosaics

    NASA Astrophysics Data System (ADS)

    Manferdini, Anna Maria; Cipriani, Luca; Kniffitz, Linda

    2011-07-01

    Despite the recent improvements and widespread of digital technologies and their applications in the field of Cultural Heritage, nowadays Museums and Institutions still aren't encouraged to adopt digital procedures as a standard practice to collect data upon the heritage they are called to preserve and promote. One of the main reasons for this lack can be singled out in the high costs connected with these procedures and with their increasing due to difficulties connected with digital survey of artifacts and artworks which present evident intrinsic complexities and peculiarities that cannot be reconnected to recurrences. The aim of this paper is to show the results of a research conducted in order to find the most suitable digital methodology and procedure to be adopted to collect geometric and radiometric data upon mosaics that can straightforward both the preservation of the consistency of information about its geometry and the management of huge amount of data. One of the most immediate application of digital 3d survey of mosaics is the substitution of plaster casts that are usually built to add the third dimension to pictorial or photographic surveys before restoration interventions in order to document their conservation conditions and ease reconstruction procedures. Moreover, digital 3d surveys of mosaics allow to reproduce restoration interventions in digital environment able to perform reliable preliminary evaluations; in addition, 3d reality-based models of mosaics can be used within digital catalogues or for digital exhibitions and reconstruction aims.

  7. A 3D digital map of rat brain.

    PubMed

    Toga, A W; Santori, E M; Hazani, R; Ambach, K

    1995-01-01

    A three dimensional (3D) computerized map of rat brain anatomy created with digital imaging techniques is described. Six male Sprague-Dawley rats, weighing 270-320 g, were used in the generation of this atlas. Their heads were frozen, and closely spaced cryosectional images were digitally captured. Each serial data set was organized into a digital volume, reoriented into a flat skull position, and brought into register with each other. A volume representative of the group following registration was chosen based on its anatomic correspondence with the other specimens as measured by image correlation coefficients and landmark matching. Mean positions of lambda, bregma, and the interaural plane of the group within the common coordinate system were used to transform the representative volume into a 3D map of rat neuroanatomy. images reconstructed from this 3D map are available to the public via Internet with an anonymous file transfer protocol (FTP) and World Wide Web. A complete description of the digital map is provided in a comprehensive set of sagittal planes (up to 0.031 mm spacing) containing stereotaxic reference grids. Sets of coronal and horizontal planes, resampled at the same increment, also are included. Specific anatomic features are identified in a second collection of images. Stylized anatomic boundaries and structural labels were incorporated into selected orthogonal planes. Electronic sharing and interactive use are benefits afforded by a digital format, but the foremost advantage of this 3D map is its whole brain integrated representation of rat in situ neuroanatomy.

  8. Digital holography and 3D imaging: introduction to feature issue.

    PubMed

    Kim, Myung K; Hayasaki, Yoshio; Picart, Pascal; Rosen, Joseph

    2013-01-01

    This feature issue of Applied Optics on Digital Holography and 3D Imaging is the sixth of an approximately annual series. Forty-seven papers are presented, covering a wide range of topics in phase-shifting methods, low coherence methods, particle analysis, biomedical imaging, computer-generated holograms, integral imaging, and many others.

  9. 3D Digital Legos for Teaching Security Protocols

    ERIC Educational Resources Information Center

    Yu, Li; Harrison, L.; Lu, Aidong; Li, Zhiwei; Wang, Weichao

    2011-01-01

    We have designed and developed a 3D digital Lego system as an education tool for teaching security protocols effectively in Information Assurance courses (Lego is a trademark of the LEGO Group. Here, we use it only to represent the pieces of a construction set.). Our approach applies the pedagogical methods learned from toy construction sets by…

  10. 3D Printing and Digital Rock Physics for Geomaterials

    NASA Astrophysics Data System (ADS)

    Martinez, M. J.; Yoon, H.; Dewers, T. A.

    2015-12-01

    Imaging techniques for the analysis of porous structures have revolutionized our ability to quantitatively characterize geomaterials. Digital representations of rock from CT images and physics modeling based on these pore structures provide the opportunity to further advance our quantitative understanding of fluid flow, geomechanics, and geochemistry, and the emergence of coupled behaviors. Additive manufacturing, commonly known as 3D printing, has revolutionized production of custom parts with complex internal geometries. For the geosciences, recent advances in 3D printing technology may be co-opted to print reproducible porous structures derived from CT-imaging of actual rocks for experimental testing. The use of 3D printed microstructure allows us to surmount typical problems associated with sample-to-sample heterogeneity that plague rock physics testing and to test material response independent from pore-structure variability. Together, imaging, digital rocks and 3D printing potentially enables a new workflow for understanding coupled geophysical processes in a real, but well-defined setting circumventing typical issues associated with reproducibility, enabling full characterization and thus connection of physical phenomena to structure. In this talk we will discuss the possibilities that these technologies can bring to geosciences and present early experiences with coupled multiscale experimental and numerical analysis using 3D printed fractured rock specimens. In particular, we discuss the processes of selection and printing of transparent fractured specimens based on 3D reconstruction of micro-fractured rock to study fluid flow characterization and manipulation. Micro-particle image velocimetry is used to directly visualize 3D single and multiphase flow velocity in 3D fracture networks. Sandia National Laboratories is a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U

  11. Exposing digital image forgeries by 3D reconstruction technology

    NASA Astrophysics Data System (ADS)

    Wang, Yongqiang; Xu, Xiaojing; Li, Zhihui; Liu, Haizhen; Li, Zhigang; Huang, Wei

    2009-11-01

    Digital images are easy to tamper and edit due to availability of powerful image processing and editing software. Especially, forged images by taking from a picture of scene, because of no manipulation was made after taking, usual methods, such as digital watermarks, statistical correlation technology, can hardly detect the traces of image tampering. According to image forgery characteristics, a method, based on 3D reconstruction technology, which detect the forgeries by discriminating the dimensional relationship of each object appeared on image, is presented in this paper. This detection method includes three steps. In the first step, all the parameters of images were calibrated and each crucial object on image was chosen and matched. In the second step, the 3D coordinates of each object were calculated by bundle adjustment. In final step, the dimensional relationship of each object was analyzed. Experiments were designed to test this detection method; the 3D reconstruction and the forged image 3D reconstruction were computed independently. Test results show that the fabricating character in digital forgeries can be identified intuitively by this method.

  12. Case study: The Avengers 3D: cinematic techniques and digitally created 3D

    NASA Astrophysics Data System (ADS)

    Clark, Graham D.

    2013-03-01

    Marvel's THE AVENGERS was the third film Stereo D collaborated on with Marvel; it was a summation of our artistic development of what Digitally Created 3D and Stereo D's artists and toolsets affords Marvel's filmmakers; the ability to shape stereographic space to support the film and story, in a way that balances human perception and live photography. We took our artistic lead from the cinematic intentions of Marvel, the Director Joss Whedon, and Director of Photography Seamus McGarvey. In the digital creation of a 3D film from a 2D image capture, recommendations to the filmmakers cinematic techniques are offered by Stereo D at each step from pre-production onwards, through set, into post. As the footage arrives at our facility we respond in depth to the cinematic qualities of the imagery in context of the edit and story, with the guidance of the Directors and Studio, creating stereoscopic imagery. Our involvement in The Avengers was early in production, after reading the script we had the opportunity and honor to meet and work with the Director Joss Whedon, and DP Seamus McGarvey on set, and into post. We presented what is obvious to such great filmmakers in the ways of cinematic techniques as they related to the standard depth cues and story points we would use to evaluate depth for their film. Our hope was any cinematic habits that supported better 3D would be emphasized. In searching for a 3D statement for the studio and filmmakers we arrived at a stereographic style that allowed for comfort and maximum visual engagement to the viewer.

  13. Digital 3D Borobudur - Integration of 3D surveying and modeling techniques

    NASA Astrophysics Data System (ADS)

    Suwardhi, D.; Menna, F.; Remondino, F.; Hanke, K.; Akmalia, R.

    2015-08-01

    The Borobudur temple (Indonesia) is one of the greatest Buddhist monuments in the world, now listed as an UNESCO World Heritage Site. The present state of the temple is the result of restorations after being exposed to natural disasters several times. Today there is still a growing rate of deterioration of the building stones whose causes need further researches. Monitoring programs, supported at institutional level, have been effectively executed to observe the problem. The paper presents the latest efforts to digitally document the Borobudur Temple and its surrounding area in 3D with photogrammetric techniques. UAV and terrestrial images were acquired to completely digitize the temple, produce DEM, orthoimages and maps at 1:100 and 1:1000 scale. The results of the project are now employed by the local government organizations to manage the heritage area and plan new policies for the conservation and preservation of the UNESCO site. In order to help data management and policy makers, a web-based information system of the heritage area was also built to visualize and easily access all the data and achieved 3D results.

  14. Low cost 3D scanning process using digital image processing

    NASA Astrophysics Data System (ADS)

    Aguilar, David; Romero, Carlos; Martínez, Fernando

    2017-02-01

    This paper shows the design and building of a low cost 3D scanner, able to digitize solid objects through contactless data acquisition, using active object reflection. 3D scanners are used in different applications such as: science, engineering, entertainment, etc; these are classified in: contact scanners and contactless ones, where the last ones are often the most used but they are expensive. This low-cost prototype is done through a vertical scanning of the object using a fixed camera and a mobile horizontal laser light, which is deformed depending on the 3-dimensional surface of the solid. Using digital image processing an analysis of the deformation detected by the camera was done; it allows determining the 3D coordinates using triangulation. The obtained information is processed by a Matlab script, which gives to the user a point cloud corresponding to each horizontal scanning done. The obtained results show an acceptable quality and significant details of digitalized objects, making this prototype (built on LEGO Mindstorms NXT kit) a versatile and cheap tool, which can be used for many applications, mainly by engineering students.

  15. Digital subtraction angiography in pediatric cerebrovascular occlusive disease

    SciTech Connect

    Faerber, E.N.; Griska, L.A.B.; Swartz, J.D.; Capitanio, M.A.; Popky, G.L.

    1984-08-01

    While conventional angiography has been used to demonstrate cerebrovascular occlusive disease in the past, digital subtraction angiography (DSA) is capable of showing progressive vascular involvement with ease, simplicity, and extremely low morbidity, making it particularly well suited for children and outpatients either alone or coordinated with computed tomography. The authors discuss the usefulness and advantages of DSA as demonstrated in 7 infants and children with hemiplegia, 4 of whom had sickle-cell disease.

  16. Detecting small anatomical change with 3D serial MR subtraction images

    NASA Astrophysics Data System (ADS)

    Holden, Mark; Denton, Erica R. E.; Jarosz, J. M.; Cox, T. C.; Studholme, Colin; Hawkes, David J.; Hill, Derek L.

    1999-05-01

    Spoiled gradient echo volume MR scans were obtained from 5 growth hormone (GH) patients and 6 normal controls. The patients were scanned before treatment and after 3 and 6 months of GH therapy. The controls were scanned at similar intervals. A calibration phantom was scanned on the same day as each subject. The phantom images were registered with a 9 degree of freedom algorithm to measure scaling errors due to changes in scanner calibration. The second and third images were each registered with a 6 degree of freedom algorithm to the first (baseline) image by maximizing normalized mutual information, and transformed, with and without scaling error correction, using sinc interpolation. Each registered and transformed image had the baseline image subtracted to generate a difference image. Two neuro-radiologists were trained to detect structural change with difference images containing synthetic misregistration and scale changes. They carried out a blinded assessment of anatomical change for the unregistered; aligned and subtracted; and scale corrected, aligned and subtracted images. The results show a significant improvement in the detection of structural change and inter-observer agreement when aligned and subtracted images were used instead of unregistered ones. The structural change corresponded to an increase in brain: CSF ratio.

  17. Digital Subtraction Fluoroscopic System With Tandem Video Processing Units

    NASA Astrophysics Data System (ADS)

    Gould, Robert G.; Lipton, Martin J.; Mengers, Paul; Dahlberg, Roger

    1981-07-01

    A real-time digital fluoroscopic system utilizing two video processing units (Quantex) in tandem to produce continuous subtraction images of peripheral and internal vessels following intravenous contrast media injection has been inves-tigated. The first processor subtracts a mask image consisting of an exponentially weighted moving average of N1 frames (N1 = 2k where k = 0.7) from each incoming video frame, divides by N1, and outputs the resulting difference image to the second processor. The second unit continuously averages N2 incoming frames (N2 = 2k) and outputs to a video monitor and analog disc recorder. The contrast of the subtracted images can be manipulated by changing gain or by a non-linear output transform. After initial equipment adjustments, a subtraction sequence can be produced without operator interaction with the processors. Alternatively, the operator can freeze the mask and/or the subtracted output image at any time during the sequence. Raw data is preserved on a wide band video tape recorder permitting retrospective viewing of an injection sequence with different processor settings. The advantage of the tandem arrangement is that it has great flexibility in varying the duration and the time of both the mask and injection images thereby minimizing problems of registration between them. In addition, image noise is reduced by compiling video frames rather than by using a large radiation dose for a single frame, which requires a wide dynamic range video camera riot commonly available in diagnostic x-ray equipment. High quality subtraction images of arteries have been obtained in 15 anesthetized dogs using relatively low exposure rates (10-12 μR/video frame) modest volumes of contrast medium (0.5-1 ml/kg), and low injection flow rates (6-10 ml/sec). The results/ achieved so far suggest that this system has direct clinical applications.

  18. Fully automatic 3D digitization of unknown objects

    NASA Astrophysics Data System (ADS)

    Rozenwald, Gabriel F.; Seulin, Ralph; Fougerolle, Yohan D.

    2010-01-01

    This paper presents a complete system for 3D digitization of objects assuming no prior knowledge on its shape. The proposed methodology is applied to a digitization cell composed of a fringe projection scanner head, a robotic arm with 6 degrees of freedom (DoF), and a turntable. A two-step approach is used to automatically guide the scanning process. The first step uses the concept of Mass Vector Chains (MVC) to perform an initial scanning. The second step directs the scanner to remaining holes of the model. Post-processing of the data is also addressed. Tests with real objects were performed and results of digitization length in time and number of views are provided along with estimated surface coverage.

  19. Digital acquisition system for high-speed 3-D imaging

    NASA Astrophysics Data System (ADS)

    Yafuso, Eiji

    1997-11-01

    High-speed digital three-dimensional (3-D) imagery is possible using multiple independent charge-coupled device (CCD) cameras with sequentially triggered acquisition and individual field storage capability. The system described here utilizes sixteen independent cameras, providing versatility in configuration and image acquisition. By aligning the cameras in nearly coincident lines-of-sight, a sixteen frame two-dimensional (2-D) sequence can be captured. The delays can be individually adjusted lo yield a greater number of acquired frames during the more rapid segments of the event. Additionally, individual integration periods may be adjusted to ensure adequate radiometric response while minimizing image blur. An alternative alignment and triggering scheme arranges the cameras into two angularly separated banks of eight cameras each. By simultaneously triggering correlated stereo pairs, an eight-frame sequence of stereo images may be captured. In the first alignment scheme the camera lines-of-sight cannot be made precisely coincident. Thus representation of the data as a monocular sequence introduces the issue of independent camera coordinate registration with the real scene. This issue arises more significantly using the stereo pair method to reconstruct quantitative 3-D spatial information of the event as a function of time. The principal development here will be the derivation and evaluation of a solution transform and its inverse for the digital data which will yield a 3-D spatial mapping as a function of time.

  20. Digital 3D facial reconstruction of George Washington

    NASA Astrophysics Data System (ADS)

    Razdan, Anshuman; Schwartz, Jeff; Tocheri, Mathew; Hansford, Dianne

    2006-02-01

    PRISM is a focal point of interdisciplinary research in geometric modeling, computer graphics and visualization at Arizona State University. Many projects in the last ten years have involved laser scanning, geometric modeling and feature extraction from such data as archaeological vessels, bones, human faces, etc. This paper gives a brief overview of a recently completed project on the 3D reconstruction of George Washington (GW). The project brought together forensic anthropologists, digital artists and computer scientists in the 3D digital reconstruction of GW at 57, 45 and 19 including detailed heads and bodies. Although many other scanning projects such as the Michelangelo project have successfully captured fine details via laser scanning, our project took it a step further, i.e. to predict what that individual (in the sculpture) might have looked like both in later and earlier years, specifically the process to account for reverse aging. Our base data was GWs face mask at Morgan Library and Hudons bust of GW at Mount Vernon, both done when GW was 53. Additionally, we scanned the statue at the Capitol in Richmond, VA; various dentures, and other items. Other measurements came from clothing and even portraits of GW. The digital GWs were then milled in high density foam for a studio to complete the work. These will be unveiled at the opening of the new education center at Mt Vernon in fall 2006.

  1. Quantitative Digital Subtraction Angiography in Pediatric Moyamoya Disease

    PubMed Central

    2015-01-01

    Moyamoya disease is a unique cerebrovascular disorder characterized by idiopathic progressive stenosis at the terminal portion of the internal carotid artery (ICA) and fine vascular network. The aim of this review is to present the clinical application of quantitative digital subtraction angiography (QDSA) in pediatric moyamoya disease. Using conventional angiographic data and postprocessing software, QDSA provides time-contrast intensity curves and then displays the peak time (Tmax) and area under the curve (AUC). These parameters of QDSA can be used as surrogate markers for the hemodynamic evaluation of disease severity and quantification of postoperative neovascularization in moyamoya disease. PMID:26180611

  2. High-resolution 3D digital models of artworks

    NASA Astrophysics Data System (ADS)

    Fontana, Raffaella; Gambino, Maria Chiara; Greco, Marinella; Pampaloni, Enrico; Pezzati, Luca; Scopigno, Roberto

    2003-10-01

    The measurement of the shape of an artwork usually requires a high-resolution instrumentation, in order to catch small details such as chisel marks, sculptural relieves, surface cracks, etc. 3D scanning techniques, together with new modeling software tools, allow a high fidelity reproduction of an artwork: these can be applied either to support and document its repair or for the realization of 3D archives and virtual museums. Starting from a high-resolution digital model of an object, a further step could be its reproduction by means of fast-prototyping techniques like stereo-lithography or electro-erosion. This work is aimed at showing the performance of a high-resolution laser scanner devoted to Cultural Heritage applications. The device is portable and very versatile, in order to allow in situ applications, accurate and reliable, so to capture intricate details. This laser profilometer has been used in a few surveys, the most significant of which are the monitoring the various phases of the restoration process of an ellenistic bronze (the Minerva of Arezzo, Florence), the cataloguing of some archaeological findings (from the Grotta della Poesia, Lecce) and the documenting of wooden panels surface conditions (the "Madonna del Cardellino" by Raffaello and "La Tebaide" by Beato Angelico).

  3. Using a digital signal processor as a data stream controller for digital subtraction angiography

    SciTech Connect

    Meng, J.D.; Katz, J.E.

    1991-10-01

    High speed, flexibility, and good arithmetic abilities make digital signal processors (DSP) a good choice as input/output controllers for real time applications. The DSP can be made to pre-process data in real time to reduce data volume, to open early windows on what is being acquired and to implement local servo loops. We present an example of a DSP as an input/output controller for a digital subtraction angiographic imaging system. The DSP pre-processes the raw data, reducing data volume by a factor of two, and is potentially capable of producing real-time subtracted images for immediate display.

  4. Motion compensation in digital subtraction angiography using graphics hardware.

    PubMed

    Deuerling-Zheng, Yu; Lell, Michael; Galant, Adam; Hornegger, Joachim

    2006-07-01

    An inherent disadvantage of digital subtraction angiography (DSA) is its sensitivity to patient motion which causes artifacts in the subtraction images. These artifacts could often reduce the diagnostic value of this technique. Automated, fast and accurate motion compensation is therefore required. To cope with this requirement, we first examine a method explicitly designed to detect local motions in DSA. Then, we implement a motion compensation algorithm by means of block matching on modern graphics hardware. Both methods search for maximal local similarity by evaluating a histogram-based measure. In this context, we are the first who have mapped an optimizing search strategy on graphics hardware while paralleling block matching. Moreover, we provide an innovative method for creating histograms on graphics hardware with vertex texturing and frame buffer blending. It turns out that both methods can effectively correct the artifacts in most case, as the hardware implementation of block matching performs much faster: the displacements of two 1024 x 1024 images can be calculated at 3 frames/s with integer precision or 2 frames/s with sub-pixel precision. Preliminary clinical evaluation indicates that the computation with integer precision could already be sufficient.

  5. Multinuclide digital subtraction imaging in symptomatic prostnetic joints

    SciTech Connect

    Chafetz, N.; Hattner, R.S.; Ruarke, W.C.; Helms, C.A.; Genant, H.K.; Murray, W.R.

    1985-06-01

    One hundred eleven patients with symptomatic prosthetic joints (86 hips, 23 knees, and two shoulders) were evaluated for prosthetic loosening and infection by combined technetium-99m-MDP/gallium-67 digital subtraction imaging. Clinical correlation was based on the assessment of loosening and bacterial cultures obtained at the time of surgery in 54 patients, joint aspiration cultures obtained in 37 patients, and long-term clinical follow-up for greater than 1.5 years in an additional 15 patients. Results revealed an 80-90% predictive value of a positive test for loosening, and a 95% predictive value of a negative test for infection. However, because of the low sensitivities and specificities observed, this approach to the evaluation of symptomatic prosthetic joints does not seem cost effective.

  6. Digital subtraction angiography for preoperative evaluation of extremity tumors

    SciTech Connect

    Paushter, D.M.; Borkowski, G.R.; Buonocore, E.; Belhobek, G.H.; Marks, K.E.

    1983-07-01

    A retrospective study was undertaken to evaluate the role of digital subtraction angiography (DSA) in the surgical planning of musculoskeletal neoplasms. Thirteen patients with primary bone and soft-tissue tumors were examined by CT and DSA. Three patients also had conventional angiography. DSA yielded surgically useful information in 10 patients, comparable to that expected from conventional angiography. DSA was most helpful in demonstrating the presence or absence of major vessel involvement by tumor when this could not be ascertained definitely on CT. Demonstration of mass extent by CT was accurate in 11 patients. Results of this study suggest that the combination of CT and DSA is useful in the preoperative evaluation of selected extremity tumors and should diminish the need for conventional angiography.

  7. Thoracic Temporal Subtraction Three Dimensional Computed Tomography (3D-CT): Screening for Vertebral Metastases of Primary Lung Cancers

    PubMed Central

    Iwano, Shingo; Ito, Rintaro; Umakoshi, Hiroyasu; Karino, Takatoshi; Inoue, Tsutomu; Li, Yuanzhong; Naganawa, Shinji

    2017-01-01

    Purpose We developed an original, computer-aided diagnosis (CAD) software that subtracts the initial thoracic vertebral three-dimensional computed tomography (3D-CT) image from the follow-up 3D-CT image. The aim of this study was to investigate the efficacy of this CAD software during screening for vertebral metastases on follow-up CT images of primary lung cancer patients. Materials and Methods The interpretation experiment included 30 sets of follow-up CT scans in primary lung cancer patients and was performed by two readers (readers A and B), who each had 2.5 years’ experience reading CT images. In 395 vertebrae from C6 to L3, 46 vertebral metastases were identified as follows: osteolytic metastases (n = 17), osteoblastic metastases (n = 14), combined osteolytic and osteoblastic metastases (n = 6), and pathological fractures (n = 9). Thirty-six lesions were in the anterior component (vertebral body), and 10 lesions were in the posterior component (vertebral arch, transverse process, and spinous process). The area under the curve (AUC) by receiver operating characteristic (ROC) curve analysis and the sensitivity and specificity for detecting vertebral metastases were compared with and without CAD for each observer. Results Reader A detected 47 abnormalities on CT images without CAD, and 33 of them were true-positive metastatic lesions. Using CAD, reader A detected 57 abnormalities, and 38 were true positives. The sensitivity increased from 0.717 to 0.826, and on ROC curve analysis, AUC with CAD was significantly higher than that without CAD (0.849 vs. 0.902, p = 0.021). Reader B detected 40 abnormalities on CT images without CAD, and 36 of them were true-positive metastatic lesions. Using CAD, reader B detected 44 abnormalities, and 39 were true positives. The sensitivity increased from 0.783 to 0.848, and AUC with CAD was nonsignificantly higher than that without CAD (0.889 vs. 0.910, p = 0.341). Both readers detected more osteolytic and osteoblastic

  8. Efficiency and Flexibility of Indirect Addition in the Domain of Multi-Digit Subtraction

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Ghesquiere, Pol; Verschaffel, Lieven

    2009-01-01

    This article discusses the characteristics of the indirect addition strategy (IA) in the domain of multi-digit subtraction. In two studies, adults' use of IA on three-digit subtractions with a small, medium, or large difference between the integers was analysed using the choice/no-choice method. Results from both studies indicate that adults…

  9. How Do Manipulatives Help Students Communicate Their Understanding of Double-Digit Subtraction?

    ERIC Educational Resources Information Center

    Abi-Hanna, Rabab

    2016-01-01

    Multi-digit subtraction is difficult for students to learn. The purpose of this study is to explore how second-grade students communicate their understanding of double-digit subtraction through the use of manipulatives/tools. This qualitative study reports on six case studies of second-grade students where clinical interviews were the main source…

  10. 3D Color Digital Elevation Map of AFM Sample

    NASA Technical Reports Server (NTRS)

    2008-01-01

    This color image is a three dimensional (3D) view of a digital elevation map of a sample collected by NASA's Phoenix Mars Lander's Atomic Force Microscope (AFM).

    The image shows four round pits, only 5 microns in depth, that were micromachined into the silicon substrate, which is the background plane shown in red. This image has been processed to reflect the levelness of the substrate.

    A Martian particle only one micrometer, or one millionth of a meter, across is held in the upper left pit.

    The rounded particle shown at the highest magnification ever seen from another world is a particle of the dust that cloaks Mars. Such dust particles color the Martian sky pink, feed storms that regularly envelop the planet and produce Mars' distinctive red soil.

    The particle was part of a sample informally called 'Sorceress' delivered to the AFM on the 38th Martian day, or sol, of the mission (July 2, 2008). The AFM is part of Phoenix's microscopic station called MECA, or the Microscopy, Electrochemistry, and Conductivity Analyzer.

    The AFM was developed by a Swiss-led consortium, with Imperial College London producing the silicon substrate that holds sampled particles.

    The Phoenix Mission is led by the University of Arizona, Tucson, on behalf of NASA. Project management of the mission is by NASA's Jet Propulsion Laboratory, Pasadena, Calif. Spacecraft development is by Lockheed Martin Space Systems, Denver.

  11. ETeach3D: Designing a 3D Virtual Environment for Evaluating the Digital Competence of Preservice Teachers

    ERIC Educational Resources Information Center

    Esteve-Mon, Francesc M.; Cela-Ranilla, Jose María; Gisbert-Cervera, Mercè

    2016-01-01

    The acquisition of teacher digital competence is a key aspect in the initial training of teachers. However, most existing evaluation instruments do not provide sufficient evidence of this teaching competence. In this study, we describe the design and development process of a three-dimensional (3D) virtual environment for evaluating the teacher…

  12. 3D Modeling Techniques for Print and Digital Media

    NASA Astrophysics Data System (ADS)

    Stephens, Megan Ashley

    In developing my thesis, I looked to gain skills using ZBrush to create 3D models, 3D scanning, and 3D printing. The models created compared the hearts of several vertebrates and were intended for students attending Comparative Vertebrate Anatomy. I used several resources to create a model of the human heart and was able to work from life while creating heart models from other vertebrates. I successfully learned ZBrush and 3D scanning, and successfully printed 3D heart models. ZBrush allowed me to create several intricate models for use in both animation and print media. The 3D scanning technique did not fit my needs for the project, but may be of use for later projects. I was able to 3D print using two different techniques as well.

  13. 3D-Digital soil property mapping by geoadditive models

    NASA Astrophysics Data System (ADS)

    Papritz, Andreas

    2016-04-01

    In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to

  14. Mental Computation or Standard Algorithm? Children's Strategy Choices on Multi-Digit Subtractions

    ERIC Educational Resources Information Center

    Torbeyns, Joke; Verschaffel, Lieven

    2016-01-01

    This study analyzed children's use of mental computation strategies and the standard algorithm on multi-digit subtractions. Fifty-eight Flemish 4th graders of varying mathematical achievement level were individually offered subtractions that either stimulated the use of mental computation strategies or the standard algorithm in one choice and two…

  15. Optical 3D watermark based digital image watermarking for telemedicine

    NASA Astrophysics Data System (ADS)

    Li, Xiao Wei; Kim, Seok Tae

    2013-12-01

    Region of interest (ROI) of a medical image is an area including important diagnostic information and must be stored without any distortion. This algorithm for application of watermarking technique for non-ROI of the medical image preserving ROI. The paper presents a 3D watermark based medical image watermarking scheme. In this paper, a 3D watermark object is first decomposed into 2D elemental image array (EIA) by a lenslet array, and then the 2D elemental image array data is embedded into the host image. The watermark extraction process is an inverse process of embedding. The extracted EIA through the computational integral imaging reconstruction (CIIR) technique, the 3D watermark can be reconstructed. Because the EIA is composed of a number of elemental images possesses their own perspectives of a 3D watermark object. Even though the embedded watermark data badly damaged, the 3D virtual watermark can be successfully reconstructed. Furthermore, using CAT with various rule number parameters, it is possible to get many channels for embedding. So our method can recover the weak point having only one transform plane in traditional watermarking methods. The effectiveness of the proposed watermarking scheme is demonstrated with the aid of experimental results.

  16. Reconstruction of 3d Digital Image of Weepingforsythia Pollen

    NASA Astrophysics Data System (ADS)

    Liu, Dongwu; Chen, Zhiwei; Xu, Hongzhi; Liu, Wenqi; Wang, Lina

    Confocal microscopy, which is a major advance upon normal light microscopy, has been used in a number of scientific fields. By confocal microscopy techniques, cells and tissues can be visualized deeply, and three-dimensional images created. Compared with conventional microscopes, confocal microscope improves the resolution of images by eliminating out-of-focus light. Moreover, confocal microscope has a higher level of sensitivity due to highly sensitive light detectors and the ability to accumulate images captured over time. In present studies, a series of Weeping Forsythia pollen digital images (35 images in total) were acquired with confocal microscope, and the three-dimensional digital image of the pollen reconstructed with confocal microscope. Our results indicate that it's a very easy job to analysis threedimensional digital image of the pollen with confocal microscope and the probe Acridine orange (AO).

  17. Literary and Historical 3D Digital Game-Based Learning: Design Guidelines

    ERIC Educational Resources Information Center

    Neville, David O.; Shelton, Brett E.

    2010-01-01

    As 3D digital game-based learning (3D-DGBL) for the teaching of literature and history gradually gains acceptance, important questions will need to be asked regarding its method of design, development, and deployment. This article offers a synthesis of contemporary pedagogical, instructional design, new media, and literary-historical theories to…

  18. Highly Stretchable and UV Curable Elastomers for Digital Light Processing Based 3D Printing.

    PubMed

    Patel, Dinesh K; Sakhaei, Amir Hosein; Layani, Michael; Zhang, Biao; Ge, Qi; Magdassi, Shlomo

    2017-04-01

    Stretchable UV-curable (SUV) elastomers can be stretched by up to 1100% and are suitable for digital-light-processing (DLP)-based 3D-printing technology. DLP printing of these SUV elastomers enables the direct creation of highly deformable complex 3D hollow structures such as balloons, soft actuators, grippers, and buckyball electronical switches.

  19. Rethinking Design Process: Using 3D Digital Models as an Interface in Collaborative Session

    ERIC Educational Resources Information Center

    Ding, Suining

    2008-01-01

    This paper describes a pilot study for an alternative design process by integrating a designer-user collaborative session with digital models. The collaborative session took place in a 3D AutoCAD class for a real world project. The 3D models served as an interface for designer-user collaboration during the design process. Students not only learned…

  20. Matching of projection imaging and tomographic imaging: application to digital subtracted angiography (DSA) and magnetic resonance angiography (MRA)

    NASA Astrophysics Data System (ADS)

    Vermandel, Maximilien; Kulik, Carine; Leclerc, Xavier; Rousseau, Jean; Vasseur, Christian

    2002-05-01

    This study proposes a new method for matching vascular imaging modalities without the use of external frame or external landmarks. We first perform a 3D reconstruction of a piece of the cerebral vascular tree using Magnetic Resonance Angiography (MRA). Then, this structure is projected on the Digital Subtracted Angiography (DSA) images until its best position and orientation are found. As the 3D structure is known in the MRA referential, this method enables us to match information from DSA and MRA. The complete matching of all the DSA images in many incidences and the MRA set have been obtained. For the DSA images, the epipolar constraint has been verified between all the incidences. This new approach in medical imaging brings a very original method, making easier and more efficient visualization and quantification of vascular information.

  1. [Development of a digital chest phantom for studies on energy subtraction techniques].

    PubMed

    Hayashi, Norio; Taniguchi, Anna; Noto, Kimiya; Shimosegawa, Masayuki; Ogura, Toshihiro; Doi, Kunio

    2014-03-01

    Digital chest phantoms continue to play a significant role in optimizing imaging parameters for chest X-ray examinations. The purpose of this study was to develop a digital chest phantom for studies on energy subtraction techniques under ideal conditions without image noise. Computed tomography (CT) images from the LIDC (Lung Image Database Consortium) were employed to develop a digital chest phantom. The method consisted of the following four steps: 1) segmentation of the lung and bone regions on CT images; 2) creation of simulated nodules; 3) transformation to attenuation coefficient maps from the segmented images; and 4) projection from attenuation coefficient maps. To evaluate the usefulness of digital chest phantoms, we determined the contrast of the simulated nodules in projection images of the digital chest phantom using high and low X-ray energies, soft tissue images obtained by energy subtraction, and "gold standard" images of the soft tissues. Using our method, the lung and bone regions were segmented on the original CT images. The contrast of simulated nodules in soft tissue images obtained by energy subtraction closely matched that obtained using the gold standard images. We thus conclude that it is possible to carry out simulation studies based on energy subtraction techniques using the created digital chest phantoms. Our method is potentially useful for performing simulation studies for optimizing the imaging parameters in chest X-ray examinations.

  2. Digital subtraction cisternography: a new approach to fistula localisation in cerebrospinal fluid rhinorrhoea.

    PubMed Central

    Byrne, J V; Ingram, C E; MacVicar, D; Sullivan, F M; Uttley, D

    1990-01-01

    Positive contrast cisternography with digital subtraction of fluoroscopy images before computed tomography (CT) was employed in the investigation of eight patients with cerebrospinal fluid (CSF) rhinorrhoea. Fistulae were visualised by preliminary digital subtraction cisternography (DSC) in six patients and in five patients the sites of leakage were confirmed at surgery. Fluoroscopy facilitated interpretation of CT in all the positive studies and in two patients provided information which could not be deduced from CT cisternography (CTC) alone. The combined technique is recommended for the investigation of patients with recurrent and post operative CSF rhinorrhoea and when CTC alone fails to identify the site of leakage. Images PMID:2292701

  3. Combination of Virtual Tours, 3d Model and Digital Data in a 3d Archaeological Knowledge and Information System

    NASA Astrophysics Data System (ADS)

    Koehl, M.; Brigand, N.

    2012-08-01

    The site of the Engelbourg ruined castle in Thann, Alsace, France, has been for some years the object of all the attention of the city, which is the owner, and also of partners like historians and archaeologists who are in charge of its study. The valuation of the site is one of the main objective, as well as its conservation and its knowledge. The aim of this project is to use the environment of the virtual tour viewer as new base for an Archaeological Knowledge and Information System (AKIS). With available development tools we add functionalities in particular through diverse scripts that convert the viewer into a real 3D interface. By beginning with a first virtual tour that contains about fifteen panoramic images, the site of about 150 times 150 meters can be completely documented by offering the user a real interactivity and that makes visualization very concrete, almost lively. After the choice of pertinent points of view, panoramic images were realized. For the documentation, other sets of images were acquired at various seasons and climate conditions, which allow documenting the site in different environments and states of vegetation. The final virtual tour was deducted from them. The initial 3D model of the castle, which is virtual too, was also joined in the form of panoramic images for completing the understanding of the site. A variety of types of hotspots were used to connect the whole digital documentation to the site, including videos (as reports during the acquisition phases, during the restoration works, during the excavations, etc.), digital georeferenced documents (archaeological reports on the various constituent elements of the castle, interpretation of the excavations and the searches, description of the sets of collected objects, etc.). The completely personalized interface of the system allows either to switch from a panoramic image to another one, which is the classic case of the virtual tours, or to go from a panoramic photographic image

  4. 3D digitization methods based on laser excitation and active triangulation: a comparison

    NASA Astrophysics Data System (ADS)

    Aubreton, Olivier; Mériaudeau, Fabrice; Truchetet, Frédéric

    2016-04-01

    3D reconstruction of surfaces is an important topic in computer vision and corresponds to a large field of applications: industrial inspection, reverse engineering, object recognition, biometry, archeology… Because of the large varieties of applications, one can find in the literature a lot of approaches which can be classified into two families: passive and active [1]. Certainly because of their reliability, active approaches, using imaging system with an additional controlled light source, seem to be the most commonly used in the industrial field. In this domain, the 3D digitization approach based on active 3D triangulation has had important developments during the last ten years [2] and seems to be mature today if considering the important number of systems proposed by manufacturers. Unfortunately, the performances of active 3D scanners depend on the optical properties of the surface to digitize. As an example, on Fig 1.a, a 3D shape with a diffuse surface has been digitized with Comet V scanner (Steinbichler). The 3D reconstruction is presented on Fig 1.b. The same experiment was carried out on a similar object (same shape) but presenting a specular surface (Fig 1.c and Fig 1.d) ; it can clearly be observed, that the specularity influences of the performance of the digitization.

  5. High-speed 3D digital image correlation vibration measurement: Recent advancements and noted limitations

    NASA Astrophysics Data System (ADS)

    Beberniss, Timothy J.; Ehrhardt, David A.

    2017-03-01

    A review of the extensive studies on the feasibility and practicality of utilizing high-speed 3 dimensional digital image correlation (3D-DIC) for various random vibration measurement applications is presented. Demonstrated capabilities include finite element model updating utilizing full-field 3D-DIC static displacements, modal survey natural frequencies, damping, and mode shape results from 3D-DIC are baselined against laser Doppler vibrometry (LDV), a comparison between foil strain gage and 3D-DIC strain, and finally the unique application to a high-speed wind tunnel fluid-structure interaction study. Results show good agreement between 3D-DIC and more traditional vibration measurement techniques. Unfortunately, 3D-DIC vibration measurement is not without its limitations, which are also identified and explored in this study. The out-of-plane sensitivity required for vibration measurement for 3D-DIC is orders of magnitude less than LDV making higher frequency displacements difficult to sense. Furthermore, the digital cameras used to capture the DIC images have no filter to eliminate temporal aliasing of the digitized signal. Ultimately DIC is demonstrated as a valid alternative means to measure structural vibrations while one unique application achieves success where more traditional methods would fail.

  6. Videodensitometric ejection fraction from intravenous digital subtraction right ventriculograms: correlation with first pass radionuclide ejection fraction

    SciTech Connect

    Detrano, R.; MacIntyre, W.; Salcedo, E.E.; O'Donnell, J.; Underwood, D.A.; Simpfendorfer, C.; Go, R.T.; Butters, K.; Withrow, S.

    1985-06-01

    Thirty-one consecutive patients undergoing intravenous blurred mask digital subtraction right ventriculography were submitted to first pass radionuclide angiography. Second order mask resubtraction of end-diastolic and end-systolic right ventricular digital image frames was executed using preinjection end-diastolic and end-systolic frames to rid the digital subtraction images of mis-registration artifact. End-diastolic and end-systolic perimeters were drawn manually by two independent observers with a light pen. Ejection fractions calculated from the integrated videodensitometric counts within these perimeters correlated well with those derived from the first pass radionuclide right ventriculogram (r = 0.84) and the interobserver correlation was acceptable (r = 0.91). Interobserver differences occurred more frequently in patients with atrial fibrillation and in those whose tricuspid valve planes were difficult to discern on the digital subtraction right ventriculograms. These results suggest that videodensitometric analysis of digital subtraction right ventriculograms is an accurate method of determining right ventricular ejection fraction and may find wide clinical applicability.

  7. Possibility of reconstruction of dental plaster cast from 3D digital study models

    PubMed Central

    2013-01-01

    Objectives To compare traditional plaster casts, digital models and 3D printed copies of dental plaster casts based on various criteria. To determine whether 3D printed copies obtained using open source system RepRap can replace traditional plaster casts in dental practice. To compare and contrast the qualities of two possible 3D printing options – open source system RepRap and commercially available 3D printing. Design and settings A method comparison study on 10 dental plaster casts from the Orthodontic department, Department of Stomatology, 2nd medical Faulty, Charles University Prague, Czech Republic. Material and methods Each of 10 plaster casts were scanned by inEos Blue scanner and the printed on 3D printer RepRap [10 models] and ProJet HD3000 3D printer [1 model]. Linear measurements between selected points on the dental arches of upper and lower jaws on plaster casts and its 3D copy were recorded and statistically analyzed. Results 3D printed copies have many advantages over traditional plaster casts. The precision and accuracy of the RepRap 3D printed copies of plaster casts were confirmed based on the statistical analysis. Although the commercially available 3D printing enables to print more details than the RepRap system, it is expensive and for the purpose of clinical use can be replaced by the cheaper prints obtained from RepRap printed copies. Conclusions Scanning of the traditional plaster casts to obtain a digital model offers a pragmatic approach. The scans can subsequently be used as a template to print the plaster casts as required. Using 3D printers can replace traditional plaster casts primarily due to their accuracy and price. PMID:23721330

  8. [The improved design of table operating box of digital subtraction angiography device].

    PubMed

    Qi, Xianying; Zhang, Minghai; Han, Fengtan; Tang, Feng; He, Lemin

    2009-12-01

    In this paper are analyzed the disadvantages of CGO-3000 digital subtraction angiography table Operating Box. The authors put forward a communication control scheme between single-chip microcomputer(SCM) and programmable logic controller(PLC). The details of hardware and software of communication are given.

  9. Design of a 3D-IC multi-resolution digital pixel sensor

    NASA Astrophysics Data System (ADS)

    Brochard, N.; Nebhen, J.; Dubois, J.; Ginhac, D.

    2016-04-01

    This paper presents a digital pixel sensor (DPS) integrating a sigma-delta analog-to-digital converter (ADC) at pixel level. The digital pixel includes a photodiode, a delta-sigma modulation and a digital decimation filter. It features adaptive dynamic range and multiple resolutions (up to 10-bit) with a high linearity. A specific row decoder and column decoder are also designed to permit to read a specific pixel chosen in the matrix and its neighborhood of 4 x 4. Finally, a complete design with the CMOS 130 nm 3D-IC FaStack Tezzaron technology is also described, revealing a high fill-factor of about 80%.

  10. Digital holographic microscopy for imaging growth and treatment response in 3D tumor models

    NASA Astrophysics Data System (ADS)

    Li, Yuyu; Petrovic, Ljubica; Celli, Jonathan P.; Yelleswarapu, Chandra S.

    2014-03-01

    While three-dimensional tumor models have emerged as valuable tools in cancer research, the ability to longitudinally visualize the 3D tumor architecture restored by these systems is limited with microscopy techniques that provide only qualitative insight into sample depth, or which require terminal fixation for depth-resolved 3D imaging. Here we report the use of digital holographic microscopy (DHM) as a viable microscopy approach for quantitative, non-destructive longitudinal imaging of in vitro 3D tumor models. Following established methods we prepared 3D cultures of pancreatic cancer cells in overlay geometry on extracellular matrix beds and obtained digital holograms at multiple timepoints throughout the duration of growth. The holograms were digitally processed and the unwrapped phase images were obtained to quantify nodule thickness over time under normal growth, and in cultures subject to chemotherapy treatment. In this manner total nodule volumes are rapidly estimated and demonstrated here to show contrasting time dependent changes during growth and in response to treatment. This work suggests the utility of DHM to quantify changes in 3D structure over time and suggests the further development of this approach for time-lapse monitoring of 3D morphological changes during growth and in response to treatment that would otherwise be impractical to visualize.

  11. Technical note: 3D from standard digital photography of human crania-a preliminary assessment.

    PubMed

    Katz, David; Friess, Martin

    2014-05-01

    This study assessed three-dimensional (3D) photogrammetry as a tool for capturing and quantifying human skull morphology. While virtual reconstruction with 3D surface scanning technology has become an accepted part of the paleoanthropologist's tool kit, recent advances in 3D photogrammetry make it a potential alternative to dedicated surface scanners. The principal advantages of photogrammetry are more rapid raw data collection, simplicity and portability of setup, and reduced equipment costs. We tested the precision and repeatability of 3D photogrammetry by comparing digital models of human crania reconstructed from conventional, 2D digital photographs to those generated using a 3D surface scanner. Overall, the photogrammetry and scanner meshes showed low degrees of deviation from one another. Surface area estimates derived from photogrammetry models tended to be slightly larger. Landmark configurations generally did not cluster together based upon whether the reconstruction was created with photogrammetry or surface scanning technology. Average deviations of landmark coordinates recorded on photogrammetry models were within the generally allowable range of error in osteometry. Thus, while dependent upon the needs of the particular research project, 3D photogrammetry appears to be a suitable, lower-cost alternative to 3D imaging and scanning options.

  12. The application of digital medical 3D printing technology on tumor operation

    NASA Astrophysics Data System (ADS)

    Chen, Jimin; Jiang, Yijian; Li, Yangsheng

    2016-04-01

    Digital medical 3D printing technology is a new hi-tech which combines traditional medical and digital design, computer science, bio technology and 3D print technology. At the present time there are four levels application: The printed 3D model is the first and simple application. The surgery makes use of the model to plan the processing before operation. The second is customized operation tools such as implant guide. It helps doctor to operate with special tools rather than the normal medical tools. The third level application of 3D printing in medical area is to print artificial bones or teeth to implant into human body. The big challenge is the fourth level which is to print organs with 3D printing technology. In this paper we introduced an application of 3D printing technology in tumor operation. We use 3D printing to print guide for invasion operation. Puncture needles were guided by printed guide in face tumors operation. It is concluded that this new type guide is dominantly advantageous.

  13. Digital holography particle image velocimetry for the measurement of 3D t-3c flows

    NASA Astrophysics Data System (ADS)

    Shen, Gongxin; Wei, Runjie

    2005-10-01

    In this paper a digital in-line holographic recording and reconstruction system was set up and used in the particle image velocimetry for the 3D t-3c (the three-component (3c), velocity vector field measurements in a three-dimensional (3D), space field with time history ( t)) flow measurements that made up of the new full-flow field experimental technique—digital holographic particle image velocimetry (DHPIV). The traditional holographic film was replaced by a CCD chip that records instantaneously the interference fringes directly without the darkroom processing, and the virtual image slices in different positions were reconstructed by computation using Fresnel-Kirchhoff integral method from the digital holographic image. Also a complex field signal filter (analyzing image calculated by its intensity and phase from real and image parts in fast fourier transform (FFT)) was applied in image reconstruction to achieve the thin focus depth of image field that has a strong effect with the vertical velocity component resolution. Using the frame-straddle CCD device techniques, the 3c velocity vector was computed by 3D cross-correlation through space interrogation block matching through the reconstructed image slices with the digital complex field signal filter. Then the 3D-3c-velocity field (about 20 000 vectors), 3D-streamline and 3D-vorticiry fields, and the time evolution movies (30 field/s) for the 3D t-3c flows were displayed by the experimental measurement using this DHPIV method and techniques.

  14. Study on camera calibration technique of 3D color digitization system

    NASA Astrophysics Data System (ADS)

    Sun, Yuchen; Ge, Baozhen

    2006-11-01

    3D (three-dimensional) color digitization of an object is fulfilled by light-stripe method based on laser triangle principle and direct capturing method based on the color photo of the object. With this system, information matching between 3D and color sensor and data registration of different sensors are fulfilled by a sensor calibration process. The process uses the same round filament target to calibrate all of the sensors together. The principle and procedure of the process are presented in detail. Finally, a costume model is 3D color digitized and the obtaining data sets are processed by the method discussed, the results verify the correctness and feasibility of the algorithm.

  15. Applications of Digital Holography: From Microscopy to 3D-Television

    NASA Astrophysics Data System (ADS)

    Kreis, T.

    2012-03-01

    The paper gives an overview of the applications of digital holography based on the one hand on CCD-recording, computer storage, and numerical reconstruction of the wave fields, and on the other hand on numerical calculation of computer generated holograms (CGH) and the transfer of these CGHs to spatial light modulators (SLM) for optical reconstruction of the wave fields. The first mentioned type of digital holography finds applications in digital holographic microscopy, particle analysis, and interferometric form and deformation measurement, while the second type constitutes the basis for holographic 3D TV. The space-bandwidth-problem occuring in this context is addressed and first partial solutions are presented.

  16. Development of a 3D Digital Particle Image Thermometry and Velocimetry (3DDPITV) System

    NASA Astrophysics Data System (ADS)

    Schmitt, David; Rixon, Greg; Dabiri, Dana

    2006-11-01

    A novel 3D Digital Particle Image Thermometry and Velocimetry (3DDPITV) system has been designed and fabricated. By combining 3D Digital Particle Image Velocimetry (3DDPIV) and Digital Particle Image Thermometry (DPIT) into one system, this technique provides simultaneous temperature and velocity data in a volume of ˜1x1x0.5 in^3 using temperature sensitive liquid crystal particles as flow sensors. Two high-intensity xenon flashlamps were used as illumination sources. The imaging system consists of six CCD cameras, three allocated for measuring velocity, based on particle motion, and three for measuring temperature, based on particle color. The cameras were optically aligned using a precision grid and high-resolution translation stages. Temperature calibration was then performed using a precision thermometer and a temperature-controlled bath. Results from proof-of-concept experiments will be presented and discussed.

  17. High-speed 3D imaging by parallel phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Matoba, Osamu

    2015-07-01

    As a high-speed three-dimensional (3D) imaging technique, parallel phase-shifting digital holography is presented. This technique records a single hologram of an object with an image sensor having a phase-shift array device and reconstructs the instantaneous 3D image of the object with a computer. In this technique, a single hologram in which the multiple holograms required for phase-shifting digital holography are multiplexed by using space-division multiplexing technique pixel by pixel. Also, we present a high-speed parallel phase-shifting digital holography system. The system consists of an interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Motion pictures of dynamic phenomena at the rate of up to 1,000,000 frames per second have been achieved by the high-speed system.

  18. 3D evaluation of palatal rugae for human identification using digital study models

    PubMed Central

    Taneva, Emilia D.; Johnson, Andrew; Viana, Grace; Evans, Carla A.

    2015-01-01

    Background: While there is literature suggesting that the palatal rugae could be used for human identification, most of these studies use two-dimensional (2D) approach. Aim: The aims of this study were to evaluate palatal ruga patterns using three-dimensional (3D) digital models; compare the most clinically relevant digital model conversion techniques for identification of the palatal rugae; develop a protocol for overlay registration; determine changes in palatal ruga individual patterns through time; and investigate the efficiency and accuracy of 3D matching processes between different individuals’ patterns. Material and Methods: Five cross sections in the anteroposterior dimension and four cross sections in the transverse dimension were computed which generated 18 2D variables. In addition, 13 3D variables were defined: The posterior point of incisive papilla (IP), and the most medial and lateral end points of the palatal rugae (R1MR, R1ML, R1LR, R1LL, R2MR, R2ML, R2LR, R2LL, R3MR, R3ML, R3LR, and R3LL). The deviation magnitude for each variable was statistically analyzed in this study. Five different data sets with the same 31 landmarks were evaluated in this study. Results: The results demonstrated that 2D images and linear measurements in the anteroposterior and transverse dimensions were not sufficient for comparing different digital model conversion techniques using the palatal rugae. 3D digital models proved to be a highly effective tool in evaluating different palatal ruga patterns. The 3D landmarks showed no statistically significant mean differences over time or as a result of orthodontic treatment. No statistically significant mean differences were found between different digital model conversion techniques, that is, between OrthoCAD™ and Ortho Insight 3D™, and between Ortho Insight 3D™ and the iTero® scans, when using 12 3D palatal rugae landmarks for comparison. Conclusion: Although 12 palatal 3D landmarks could be used for human

  19. An object-oriented simulator for 3D digital breast tomosynthesis imaging system.

    PubMed

    Seyyedi, Saeed; Cengiz, Kubra; Kamasak, Mustafa; Yildirim, Isa

    2013-01-01

    Digital breast tomosynthesis (DBT) is an innovative imaging modality that provides 3D reconstructed images of breast to detect the breast cancer. Projections obtained with an X-ray source moving in a limited angle interval are used to reconstruct 3D image of breast. Several reconstruction algorithms are available for DBT imaging. Filtered back projection algorithm has traditionally been used to reconstruct images from projections. Iterative reconstruction algorithms such as algebraic reconstruction technique (ART) were later developed. Recently, compressed sensing based methods have been proposed in tomosynthesis imaging problem. We have developed an object-oriented simulator for 3D digital breast tomosynthesis (DBT) imaging system using C++ programming language. The simulator is capable of implementing different iterative and compressed sensing based reconstruction methods on 3D digital tomosynthesis data sets and phantom models. A user friendly graphical user interface (GUI) helps users to select and run the desired methods on the designed phantom models or real data sets. The simulator has been tested on a phantom study that simulates breast tomosynthesis imaging problem. Results obtained with various methods including algebraic reconstruction technique (ART) and total variation regularized reconstruction techniques (ART+TV) are presented. Reconstruction results of the methods are compared both visually and quantitatively by evaluating performances of the methods using mean structural similarity (MSSIM) values.

  20. Shape and 3D acoustically induced vibrations of the human eardrum characterized by digital holography

    NASA Astrophysics Data System (ADS)

    Khaleghi, Morteza; Furlong, Cosme; Cheng, Jeffrey Tao; Rosowski, John J.

    2014-07-01

    The eardrum or Tympanic Membrane (TM) transfers acoustic energy from the ear canal (at the external ear) into mechanical motions of the ossicles (at the middle ear). The acousto-mechanical-transformer behavior of the TM is determined by its shape and mechanical properties. For a better understanding of hearing mysteries, full-field-of-view techniques are required to quantify shape, nanometer-scale sound-induced displacement, and mechanical properties of the TM in 3D. In this paper, full-field-of-view, three-dimensional shape and sound-induced displacement of the surface of the TM are obtained by the methods of multiple wavelengths and multiple sensitivity vectors with lensless digital holography. Using our developed digital holographic systems, unique 3D information such as, shape (with micrometer resolution), 3D acoustically-induced displacement (with nanometer resolution), full strain tensor (with nano-strain resolution), 3D phase of motion, and 3D directional cosines of the displacement vectors can be obtained in full-field-ofview with a spatial resolution of about 3 million points on the surface of the TM and a temporal resolution of 15 Hz.

  1. Quantitative analysis of platelets aggregates in 3D by digital holographic microscopy

    PubMed Central

    Boudejltia, Karim Zouaoui; Ribeiro de Sousa, Daniel; Uzureau, Pierrick; Yourassowsky, Catherine; Perez-Morga, David; Courbebaisse, Guy; Chopard, Bastien; Dubois, Frank

    2015-01-01

    Platelet spreading and retraction play a pivotal role in the platelet plugging and the thrombus formation. In routine laboratory, platelet function tests include exhaustive information about the role of the different receptors present at the platelet surface without information on the 3D structure of platelet aggregates. In this work, we develop, a method in Digital Holographic Microscopy (DHM) to characterize the platelet and aggregate 3D shapes using the quantitative phase contrast imaging. This novel method is suited to the study of platelets physiology in clinical practice as well as the development of new drugs. PMID:26417523

  2. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network.

    PubMed

    Grothausmann, Roman; Knudsen, Lars; Ochs, Matthias; Mühlfeld, Christian

    2017-02-01

    Grothausmann R, Knudsen L, Ochs M, Mühlfeld C. Digital 3D reconstructions using histological serial sections of lung tissue including the alveolar capillary network. Am J Physiol Lung Cell Mol Physiol 312: L243-L257, 2017. First published December 2, 2016; doi:10.1152/ajplung.00326.2016-The alveolar capillary network (ACN) provides an enormously large surface area that is necessary for pulmonary gas exchange. Changes of the ACN during normal or pathological development or in pulmonary diseases are of great functional impact and warrant further analysis. Due to the complexity of the three-dimensional (3D) architecture of the ACN, 2D approaches are limited in providing a comprehensive impression of the characteristics of the normal ACN or the nature of its alterations. Stereological methods offer a quantitative way to assess the ACN in 3D in terms of capillary volume, surface area, or number but lack a 3D visualization to interpret the data. Hence, the necessity to visualize the ACN in 3D and to correlate this with data from the same set of data arises. Such an approach requires a large sample volume combined with a high resolution. Here, we present a technically simple and cost-efficient approach to create 3D representations of lung tissue ranging from bronchioles over alveolar ducts and alveoli up to the ACN from more than 1 mm sample extent to a resolution of less than 1 μm. The method is based on automated image acquisition of serially sectioned epoxy resin-embedded lung tissue fixed by vascular perfusion and subsequent automated digital reconstruction and analysis of the 3D data. This efficient method may help to better understand mechanisms of vascular development and pathology of the lung.

  3. 3D interactive augmented reality-enhanced digital learning systems for mobile devices

    NASA Astrophysics Data System (ADS)

    Feng, Kai-Ten; Tseng, Po-Hsuan; Chiu, Pei-Shuan; Yang, Jia-Lin; Chiu, Chun-Jie

    2013-03-01

    With enhanced processing capability of mobile platforms, augmented reality (AR) has been considered a promising technology for achieving enhanced user experiences (UX). Augmented reality is to impose virtual information, e.g., videos and images, onto a live-view digital display. UX on real-world environment via the display can be e ectively enhanced with the adoption of interactive AR technology. Enhancement on UX can be bene cial for digital learning systems. There are existing research works based on AR targeting for the design of e-learning systems. However, none of these work focuses on providing three-dimensional (3-D) object modeling for en- hanced UX based on interactive AR techniques. In this paper, the 3-D interactive augmented reality-enhanced learning (IARL) systems will be proposed to provide enhanced UX for digital learning. The proposed IARL systems consist of two major components, including the markerless pattern recognition (MPR) for 3-D models and velocity-based object tracking (VOT) algorithms. Realistic implementation of proposed IARL system is conducted on Android-based mobile platforms. UX on digital learning can be greatly improved with the adoption of proposed IARL systems.

  4. Demonstration of digital hologram recording and 3D-scenes reconstruction in real-time

    NASA Astrophysics Data System (ADS)

    Cheremkhin, Pavel A.; Evtikhiev, Nikolay N.; Krasnov, Vitaly V.; Kulakov, Mikhail N.; Kurbatova, Ekaterina A.; Molodtsov, Dmitriy Y.; Rodin, Vladislav G.

    2016-04-01

    Digital holography is technique that allows to reconstruct information about 2D-objects and 3D-scenes. This is achieved by registration of interference pattern formed by two beams: object and reference ones. Pattern registered by the digital camera is processed. This allows to obtain amplitude and phase of the object beam. Reconstruction of shape of the 2D objects and 3D-scenes can be obtained numerically (using computer) and optically (using spatial light modulators - SLMs). In this work camera Megaplus II ES11000 was used for digital holograms recording. The camera has 4008 × 2672 pixels with sizes of 9 μm × 9 μm. For hologram recording, 50 mW frequency-doubled Nd:YAG laser with wavelength 532 nm was used. Liquid crystal on silicon SLM HoloEye PLUTO VIS was used for optical reconstruction of digital holograms. SLM has 1920 × 1080 pixels with sizes of 8 μm × 8 μm. At objects reconstruction 10 mW He-Ne laser with wavelength 632.8 nm was used. Setups for digital holograms recording and their optical reconstruction with the SLM were combined as follows. MegaPlus Central Control Software allows to display registered frames by the camera with a little delay on the computer monitor. The SLM can work as additional monitor. In result displayed frames can be shown on the SLM display in near real-time. Thus recording and reconstruction of the 3D-scenes was obtained in real-time. Preliminary, resolution of displayed frames was chosen equaled to the SLM one. Quantity of the pixels was limited by the SLM resolution. Frame rate was limited by the camera one. This holographic video setup was applied without additional program implementations that would increase time delays between hologram recording and object reconstruction. The setup was demonstrated for reconstruction of 3D-scenes.

  5. Novel fully integrated computer system for custom footwear: from 3D digitization to manufacturing

    NASA Astrophysics Data System (ADS)

    Houle, Pascal-Simon; Beaulieu, Eric; Liu, Zhaoheng

    1998-03-01

    This paper presents a recently developed custom footwear system, which integrates 3D digitization technology, range image fusion techniques, a 3D graphical environment for corrective actions, parametric curved surface representation and computer numerical control (CNC) machining. In this system, a support designed with the help of biomechanics experts can stabilize the foot in a correct and neutral position. The foot surface is then captured by a 3D camera using active ranging techniques. A software using a library of documented foot pathologies suggests corrective actions on the orthosis. Three kinds of deformations can be achieved. The first method uses previously scanned pad surfaces by our 3D scanner, which can be easily mapped onto the foot surface to locally modify the surface shape. The second kind of deformation is construction of B-Spline surfaces by manipulating control points and modifying knot vectors in a 3D graphical environment to build desired deformation. The last one is a manual electronic 3D pen, which may be of different shapes and sizes, and has an adjustable 'pressure' information. All applied deformations should respect a G1 surface continuity, which ensure that the surface can accustom a foot. Once the surface modification process is completed, the resulting data is sent to manufacturing software for CNC machining.

  6. The association between children's numerical magnitude processing and mental multi-digit subtraction.

    PubMed

    Linsen, Sarah; Verschaffel, Lieven; Reynvoet, Bert; De Smedt, Bert

    2014-01-01

    Children apply various strategies to mentally solve multi-digit subtraction problems and the efficient use of some of them may depend more or less on numerical magnitude processing. For example, the indirect addition strategy (solving 72-67 as "how much do I have to add up to 67 to get 72?"), which is particularly efficient when the two given numbers are close to each other, requires to determine the proximity of these two numbers, a process that may depend on numerical magnitude processing. In the present study, children completed a numerical magnitude comparison task and a number line estimation task, both in a symbolic and nonsymbolic format, to measure their numerical magnitude processing. We administered a multi-digit subtraction task, in which half of the items were specifically designed to elicit indirect addition. Partial correlational analyses, controlling for intellectual ability and motor speed, revealed significant associations between numerical magnitude processing and mental multi-digit subtraction. Additional analyses indicated that numerical magnitude processing was particularly important for those items for which the use of indirect addition is expected to be most efficient. Although this association was observed for both symbolic and nonsymbolic tasks, the strongest associations were found for the symbolic format, and they seemed to be more prominent on numerical magnitude comparison than on number line estimation.

  7. Digital mono- and 3D stereo-photogrammetry for geological and geomorphological mapping

    NASA Astrophysics Data System (ADS)

    Scapozza, Cristian; Schenker, Filippo Luca; Castelletti, Claudio; Bozzini, Claudio; Ambrosi, Christian

    2016-04-01

    The generalization of application of digital tools for managing, mapping and updating geological data have become widely accepted in the last decennia. Despite the increasing quality and availability of digital topographical maps, orthorectified aerial photographs (orthophotos) and high resolution (5 up to 0.5 m) Digital Elevation Models (DEMs), a correct recognition of the kind, the nature and the boundaries of geological formations and geomophological landforms, unconsolidated sedimentary deposits or slope instabilities is often very difficult on conventional two-dimensional (2D) products, in particular in steep zones (rock walls and talus slopes), under the forest cover, for a very complex topography and in deeply urbanised zones. In many cases, photo-interpretative maps drawn only by 2D data sets must be improved by field verifications or, at least, by field oblique photographs. This is logical, because our natural perception of the real world is three-dimensional (3D), which is partially disabled by the application of 2D visualization techniques. Here we present some examples of application of digital mapping based on a 3D visualization (for aerial and satellite images photo-interpretation) or on a terrestrial perception by digital mono-photogrammetry (for oblique photographs). The 3D digital mapping was performed thanks to an extension of the software ESRI® ArcGIS™ called ArcGDS™. This methodology was also applied on historical aerial photographs (normally analysed by optical stereo-photogrammetry), which were digitized by scanning and then oriented and aero-triangulated thanks to the ArcGDS™ software, allowing the 3D visualisation and the mapping in a GIS environment (Ambrosi and Scapozza, 2015). The mono-photogrammetry (or monoplotting) is the technique of photogrammetrical georeferentiation of single oblique unrectified photographs, which are related to a DEM. In other words, the monoplotting allows relating each pixel of the photograph to the

  8. Investigation on 3D morphological changes of in vitro cells through digital holographic microscopy

    NASA Astrophysics Data System (ADS)

    Memmolo, Pasquale; Miccio, Lisa; Merola, Francesco; Netti, Paolo A.; Coppola, Giuseppe; Ferraro, Pietro

    2013-04-01

    We report the investigation of the identification and measurement of region of interest (ROI) in quantitative phase-contrast maps (QPMs) of biological cells by digital holographic microscopy (DHM), with the aim to analyze the 3D positions and 3D morphology together. We consider as test case for our tool the in vitro bull sperm head morphometry analysis. Extraction and measurement of various morphological parameters are performed by using two methods: the anisotropic diffusion filter, that is based on the Gaussian diffusivity function which allows more accuracy of the edge position, and the simple thresholding filter. In particular we consider the calculation of area, ellipticity, perimeter, major axis, minor axis and shape factor as a morphological parameter, instead, for the estimation of 3D position, we compute the centroid, the weighted centroid and the maximum phase values. A statistical analysis on a data set composed by N = 14 holograms relative to bovine spermatozoa and its reference holograms is reported.

  9. Investigations and improvements of digital holographic tomography applied for 3D studies of transmissive photonics microelements

    NASA Astrophysics Data System (ADS)

    Kujawinska, Malgorzata; Jozwicka, Agata; Kozacki, Tomasz

    2008-08-01

    In order to control performance of photonics microelements it is necessary to receive 3D information about their amplitude and phase distributions. To perform this task we propose to apply tomography based on projections gather by digital holography (DH). Specifically the DH capability to register several angular views of the object during a single hologram capture is employed, which may in future shorten significantly the measurement time or even allow for tomographic analysis of dynamic media. However such a new approach brings a lot of new issues to be considered. Therefore, in this paper the method limitations, with special emphasis on holographic reconstruction process, are investigated through extensive numerical experiments with special focus on 3D refractive index distribution determination.. The main errors and means of their elimination are presented. The possibility of 3D refractive index distribution determination by means of DHT is proved numerically and experimentally.

  10. 3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art.

    PubMed

    González-Aguilera, Diego; Muñoz-Nieto, Angel; Gómez-Lahoz, Javier; Herrero-Pascual, Jesus; Gutierrez-Alonso, Gabriel

    2009-01-01

    3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, "Las Caldas" and "Peña de Candamo", have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1) a basic level based on the accurate and metric support provided by the laser scanner; and (2) a advanced level using the range and image-based modelling.

  11. Detection of inhomogeneities in a metal cylinder using ESPI and 3D pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Saucedo-Anaya, Tonatiuh; Mendoza Santoyo, Fernando; Perez-Lopez, Carlos; de la Torre Ibarra, Manuel

    2004-06-01

    ESPI and 3D pulsed Digital Holography have been applied to detect inhomogeneities inside a metal cylinder. A shaker was employed to produce a mechanical wave that propagates through the inner structure of the cylinder in such a way that it generates vibrational resonant modes on the cylinder surface. An out of plane ESPI optical sensitive configuration was used to detect vibrational resonant modes. A 3D multi-pulse digital holography system was used to obtain quantitative deformation data of the dynamically moving cylinder. The local decrease in structural stiffness inside the cylinder due to an inhomogeneity produces an asymmetry in the resonant mode shape. Results show that the inhomogeneity produces an asymmetry in its vibrational resonant modes. The method may be reliably used to study and compare data from inside homogeneous and inhomogeneous solid materials.

  12. Investigation of osteoblast cells behavior in polymeric 3D micropatterned scaffolds using digital holographic microscopy.

    PubMed

    Mihailescu, M; Popescu, R C; Matei, A; Acasandrei, A; Paun, I A; Dinescu, M

    2014-08-01

    The effect of micropatterned polymeric scaffolds on the features of the cultured cells at different time intervals after seeding was investigated by digital holographic microscopy. Both parallel and perpendicular walls, with different heights, were fabricated using two-photon lithography on photopolymers. The walls were subsequently coated with polypyrrole-based thin films using the matrix assisted pulsed laser evaporation technique. Osteoblast-like cells, MG-63 line, were cultured on these polymeric 3D micropatterned scaffolds. To analyze these scaffolds with/without cultured cells, an inverted digital holographic microscope, which provides 3D images, was used. Information about the samples' refractive indices and heights was obtained from the phase shift introduced in the optical path. Characteristics of cell adhesion, alignment, orientation, and morphology as a function of the wall heights and time from seeding were highlighted.

  13. 3D Digital Surveying and Modelling of Cave Geometry: Application to Paleolithic Rock Art

    PubMed Central

    González-Aguilera, Diego; Muñoz-Nieto, Angel; Gómez-Lahoz, Javier; Herrero-Pascual, Jesus; Gutierrez-Alonso, Gabriel

    2009-01-01

    3D digital surveying and modelling of cave geometry represents a relevant approach for research, management and preservation of our cultural and geological legacy. In this paper, a multi-sensor approach based on a terrestrial laser scanner, a high-resolution digital camera and a total station is presented. Two emblematic caves of Paleolithic human occupation and situated in northern Spain, “Las Caldas” and “Peña de Candamo”, have been chosen to put in practise this approach. As a result, an integral and multi-scalable 3D model is generated which may allow other scientists, pre-historians, geologists…, to work on two different levels, integrating different Paleolithic Art datasets: (1) a basic level based on the accurate and metric support provided by the laser scanner; and (2) a advanced level using the range and image-based modelling. PMID:22399958

  14. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    PubMed Central

    Murienne, Barbara J.; Nguyen, Thao D.

    2015-01-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions. PMID:26543296

  15. A comparison of 2D and 3D digital image correlation for a membrane under inflation.

    PubMed

    Murienne, Barbara J; Nguyen, Thao D

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  16. A comparison of 2D and 3D digital image correlation for a membrane under inflation

    NASA Astrophysics Data System (ADS)

    Murienne, Barbara J.; Nguyen, Thao D.

    2016-02-01

    Three-dimensional (3D) digital image correlation (DIC) is becoming widely used to characterize the behavior of structures undergoing 3D deformations. However, the use of 3D-DIC can be challenging under certain conditions, such as high magnification, and therefore small depth of field, or a highly controlled environment with limited access for two-angled cameras. The purpose of this study is to compare 2D-DIC and 3D-DIC for the same inflation experiment and evaluate whether 2D-DIC can be used when conditions discourage the use of a stereo-vision system. A latex membrane was inflated vertically to 5.41 kPa (reference pressure), then to 7.87 kPa (deformed pressure). A two-camera stereo-vision system acquired top-down images of the membrane, while a single camera system simultaneously recorded images of the membrane in profile. 2D-DIC and 3D-DIC were used to calculate horizontal (in the membrane plane) and vertical (out of the membrane plane) displacements, and meridional strain. Under static conditions, the baseline uncertainty in horizontal displacement and strain were smaller for 3D-DIC than 2D-DIC. However, the opposite was observed for the vertical displacement, for which 2D-DIC had a smaller baseline uncertainty. The baseline absolute error in vertical displacement and strain were similar for both DIC methods, but it was larger for 2D-DIC than 3D-DIC for the horizontal displacement. Under inflation, the variability in the measurements were larger than under static conditions for both DIC methods. 2D-DIC showed a smaller variability in displacements than 3D-DIC, especially for the vertical displacement, but a similar strain uncertainty. The absolute difference in the average displacements and strain between 3D-DIC and 2D-DIC were in the range of the 3D-DIC variability. Those findings suggest that 2D-DIC might be used as an alternative to 3D-DIC to study the inflation response of materials under certain conditions.

  17. High-accuracy 3-D modeling of cultural heritage: the digitizing of Donatello's "Maddalena".

    PubMed

    Guidi, Gabriele; Beraldin, J Angelo; Atzeni, Carlo

    2004-03-01

    Three-dimensional digital modeling of Heritage works of art through optical scanners, has been demonstrated in recent years with results of exceptional interest. However, the routine application of three-dimensional (3-D) modeling to Heritage conservation still requires the systematic investigation of a number of technical problems. In this paper, the acquisition process of the 3-D digital model of the Maddalena by Donatello, a wooden statue representing one of the major masterpieces of the Italian Renaissance which was swept away by the Florence flood of 1966 and successively restored, is described. The paper reports all the steps of the acquisition procedure, from the project planning to the solution of the various problems due to range camera calibration and to material non optically cooperative. Since the scientific focus is centered on the 3-D model overall dimensional accuracy, a methodology for its quality control is described. Such control has demonstrated how, in some situations, the ICP-based alignment can lead to incorrect results. To circumvent this difficulty we propose an alignment technique based on the fusion of ICP with close-range digital photogrammetry and a non-invasive procedure in order to generate a final accurate model. In the end detailed results are presented, demonstrating the improvement of the final model, and how the proposed sensor fusion ensure a pre-specified level of accuracy.

  18. Direct Manufacturing of CubeSat Using 3-D Digital Printer and Determination of its Mechanical Properties

    DTIC Science & Technology

    2010-12-01

    mechanical properties (i.e. strength and elastic modulus) of samples fabricated from a 3-D digital printer as a function of processing parameters (2) to...geometry is brought into the 3D printer software application and rotated for the desired build orientation. The software then slices horizontal build...Arlington, VA 22203-1714 Direct Manufacturing of CubeSat Using 3-D Digital Printer and Determination of Its Mechanical Properties

  19. Quantitative IR microscopy and spectromics open the way to 3D digital pathology.

    PubMed

    Bobroff, Vladimir; Chen, Hsiang-Hsin; Delugin, Maylis; Javerzat, Sophie; Petibois, Cyril

    2016-06-01

    Currently, only mass-spectrometry (MS) microscopy brings a quantitative analysis of chemical contents of tissue samples in 3D. Here, the reconstruction of a 3D quantitative chemical images of a biological tissue by FTIR spectro-microscopy is reported. An automated curve-fitting method is developed to extract all intense absorption bands constituting IR spectra. This innovation benefits from three critical features: (1) the correction of raw IR spectra to make them quantitatively comparable; (2) the automated and iterative data treatment allowing to transfer the IR-absorption spectrum into a IR-band spectrum; (3) the reconstruction of an 3D IR-band matrix (x, y, z for voxel position and a 4(th) dimension with all IR-band parameters). Spectromics, which is a new method for exploiting spectral data for tissue metadata reconstruction, is proposed to further translate the related chemical information in 3D, as biochemical and anatomical tissue parameters. An example is given with oxidative stress distribution and the reconstruction of blood vessels in tissues. The requirements of IR microscopy instrumentation to propose 3D digital histology as a clinical routine technology is briefly discussed.

  20. 3D Reconstruction of Static Human Body with a Digital Camera

    NASA Astrophysics Data System (ADS)

    Remondino, Fabio

    2003-01-01

    Nowadays the interest in 3D reconstruction and modeling of real humans is one of the most challenging problems and a topic of great interest. The human models are used for movies, video games or ergonomics applications and they are usually created with 3D scanner devices. In this paper a new method to reconstruct the shape of a static human is presented. Our approach is based on photogrammetric techniques and uses a sequence of images acquired around a standing person with a digital still video camera or with a camcorder. First the images are calibrated and orientated using a bundle adjustment. After the establishment of a stable adjusted image block, an image matching process is performed between consecutive triplets of images. Finally the 3D coordinates of the matched points are computed with a mean accuracy of ca 2 mm by forward ray intersection. The obtained point cloud can then be triangulated to generate a surface model of the body or a virtual human model can be fitted to the recovered 3D data. Results of the 3D human point cloud with pixel color information are presented.

  1. Stereotactic vacuum-assisted biopsies on a digital breast 3D-tomosynthesis system.

    PubMed

    Viala, Juliette; Gignier, Pierre; Perret, Baudouin; Hovasse, Claudie; Hovasse, Denis; Chancelier-Galan, Marie-Dominique; Bornet, Gregoire; Hamrouni, Adel; Lasry, Jean-Louis; Convard, Jean-Paul

    2013-01-01

    The purpose of this study was to describe our operating process and to report results of 118 stereotactic vacuum-assisted biopsies performed on a digital breast 3D-tomosynthesis system. From October 2009 to December 2010, 118 stereotactic vacuum assisted biopsies have been performed on a digital breast 3D-tomosynthesis system. Informed consent was obtained for all patients. A total of 106 patients had a lesion, six had two lesions. Sixty-one lesions were clusters of micro-calcifications, 54 were masses and three were architectural distortions. Patients were in lateral decubitus position to allow shortest skin-target approach (or sitting). Specific compression paddle, adapted on the system, performed, and graduated, allowing localization in X-Y. Tomosynthesis views define the depth of lesion. Graduated Coaxial localization kit determines the beginning of the biopsy window. Biopsies were performed with an ATEC-Suros, 9 Gauge handpiece. All biopsies, except one, have reached the lesions. Five hemorrhages were incurred in the process, but no interruption was needed. Eight breast hematomas, were all spontaneously resolved. One was an infection. About 40% of patients had a skin ecchymosis. Processing is fast, easy, and requires lower irradiation dose than with classical stereotactic biopsies. Histology analysis reported 45 benign clusters of micro-calcifications, 16 malignant clusters of micro-calcifications, 24 benign masses, and 33 malignant masses. Of 13 malignant lesions, digital 2D-mammography failed to detect eight lesions and underestimated the classification of five lesions. Digital breast 3D-tomosynthesis depicts malignant lesions not visualized on digital 2D-mammography. Development of tomosynthesis biopsy unit integrated to stereotactic system will permit histology analysis for suspicious lesions.

  2. A Prototype Digital Library for 3D Collections: Tools To Capture, Model, Analyze, and Query Complex 3D Data.

    ERIC Educational Resources Information Center

    Rowe, Jeremy; Razdan, Anshuman

    The Partnership for Research in Spatial Modeling (PRISM) project at Arizona State University (ASU) developed modeling and analytic tools to respond to the limitations of two-dimensional (2D) data representations perceived by affiliated discipline scientists, and to take advantage of the enhanced capabilities of three-dimensional (3D) data that…

  3. Automatic system for 3D reconstruction of the chick eye based on digital photographs.

    PubMed

    Wong, Alexander; Genest, Reno; Chandrashekar, Naveen; Choh, Vivian; Irving, Elizabeth L

    2012-01-01

    The geometry of anatomical specimens is very complex and accurate 3D reconstruction is important for morphological studies, finite element analysis (FEA) and rapid prototyping. Although magnetic resonance imaging, computed tomography and laser scanners can be used for reconstructing biological structures, the cost of the equipment is fairly high and specialised technicians are required to operate the equipment, making such approaches limiting in terms of accessibility. In this paper, a novel automatic system for 3D surface reconstruction of the chick eye from digital photographs of a serially sectioned specimen is presented as a potential cost-effective and practical alternative. The system is designed to allow for automatic detection of the external surface of the chick eye. Automatic alignment of the photographs is performed using a combination of coloured markers and an algorithm based on complex phase order likelihood that is robust to noise and illumination variations. Automatic segmentation of the external boundaries of the eye from the aligned photographs is performed using a novel level-set segmentation approach based on a complex phase order energy functional. The extracted boundaries are sampled to construct a 3D point cloud, and a combination of Delaunay triangulation and subdivision surfaces is employed to construct the final triangular mesh. Experimental results using digital photographs of the chick eye show that the proposed system is capable of producing accurate 3D reconstructions of the external surface of the eye. The 3D model geometry is similar to a real chick eye and could be used for morphological studies and FEA.

  4. Strategies for Human Tumor Virus Discoveries: From Microscopic Observation to Digital Transcriptome Subtraction

    PubMed Central

    Mirvish, Ezra D.; Shuda, Masahiro

    2016-01-01

    Over 20% of human cancers worldwide are associated with infectious agents, including viruses, bacteria, and parasites. Various methods have been used to identify human tumor viruses, including electron microscopic observations of viral particles, immunologic screening, cDNA library screening, nucleic acid hybridization, consensus PCR, viral DNA array chip, and representational difference analysis. With the Human Genome Project, a large amount of genetic information from humans and other organisms has accumulated over the last decade. Utilizing the available genetic databases, Feng et al. (2007) developed digital transcriptome subtraction (DTS), an in silico method to sequentially subtract human sequences from tissue or cellular transcriptome, and discovered Merkel cell polyomavirus (MCV) from Merkel cell carcinoma. Here, we review the background and methods underlying the human tumor virus discoveries and explain how DTS was developed and used for the discovery of MCV. PMID:27242703

  5. Suppression of high-density artifacts in x-ray CT images using temporal digital subtraction with application to cryotherapy

    NASA Astrophysics Data System (ADS)

    Baissalov, Roustem; Sandison, George A.; Donnelly, Bryan J.; Saliken, John C.; Muldrew, Ken; Rewcastle, John C.

    2000-06-01

    Image guidance of cryotherapy is usually performed using ultrasound or x-ray CT. Despite the ability of CT to display the full 3D structure of the iceball, including frozen and unfrozen regions, the quality of the images is compromised by the presence of high density streak artifacts. To suppress these artifacts we applied Temporal Digital Subtraction (TDS). This TDS method has the added advantage of improving the gray scale contrast between frozen and unfrozen tissue in the CT images. Two sets of CT images were taken of a phantom material, cryoprobes and a urethral warmer (UW) before and during the cryoprobe freeze cycle. The high density artifacts persisted in both image sets. TDS was performed on these two image sets using the corresponding mask image of unfrozen material and the same geometrical configuration of the cryoprobes and the UW. The resultant difference image had a significantly reduced content of the artifacts. This TDS can be used in x-ray CT assisted cryotherapy to significantly suppress or eliminate high density x-ray CT streak artifacts by digitally processing x-ray CT images. Applying TDS in cryotherapy will facilitate estimation of the amount and location of all frozen and unfrozen regions, potentially making cryotherapy safer and less operator dependent.

  6. Combining laser scan and photogrammetry for 3D object modeling using a single digital camera

    NASA Astrophysics Data System (ADS)

    Xiong, Hanwei; Zhang, Hong; Zhang, Xiangwei

    2009-07-01

    In the fields of industrial design, artistic design and heritage conservation, physical objects are usually digitalized by reverse engineering through some 3D scanning methods. Laser scan and photogrammetry are two main methods to be used. For laser scan, a video camera and a laser source are necessary, and for photogrammetry, a digital still camera with high resolution pixels is indispensable. In some 3D modeling tasks, two methods are often integrated to get satisfactory results. Although many research works have been done on how to combine the results of the two methods, no work has been reported to design an integrated device at low cost. In this paper, a new 3D scan system combining laser scan and photogrammetry using a single consumer digital camera is proposed. Nowadays there are many consumer digital cameras, such as Canon EOS 5D Mark II, they usually have features of more than 10M pixels still photo recording and full 1080p HD movie recording, so a integrated scan system can be designed using such a camera. A square plate glued with coded marks is used to place the 3d objects, and two straight wood rulers also glued with coded marks can be laid on the plate freely. In the photogrammetry module, the coded marks on the plate make up a world coordinate and can be used as control network to calibrate the camera, and the planes of two rulers can also be determined. The feature points of the object and the rough volume representation from the silhouettes can be obtained in this module. In the laser scan module, a hand-held line laser is used to scan the object, and the two straight rulers are used as reference planes to determine the position of the laser. The laser scan results in dense points cloud which can be aligned together automatically through calibrated camera parameters. The final complete digital model is obtained through a new a patchwise energy functional method by fusion of the feature points, rough volume and the dense points cloud. The design

  7. A Hierarchical Building Segmentation in Digital Surface Models for 3D Reconstruction

    PubMed Central

    Yan, Yiming; Gao, Fengjiao; Deng, Shupei; Su, Nan

    2017-01-01

    In this study, a hierarchical method for segmenting buildings in a digital surface model (DSM), which is used in a novel framework for 3D reconstruction, is proposed. Most 3D reconstructions of buildings are model-based. However, the limitations of these methods are overreliance on completeness of the offline-constructed models of buildings, and the completeness is not easily guaranteed since in modern cities buildings can be of a variety of types. Therefore, a model-free framework using high precision DSM and texture-images buildings was introduced. There are two key problems with this framework. The first one is how to accurately extract the buildings from the DSM. Most segmentation methods are limited by either the terrain factors or the difficult choice of parameter-settings. A level-set method are employed to roughly find the building regions in the DSM, and then a recently proposed ‘occlusions of random textures model’ are used to enhance the local segmentation of the buildings. The second problem is how to generate the facades of buildings. Synergizing with the corresponding texture-images, we propose a roof-contour guided interpolation of building facades. The 3D reconstruction results achieved by airborne-like images and satellites are compared. Experiments show that the segmentation method has good performance, and 3D reconstruction is easily performed by our framework, and better visualization results can be obtained by airborne-like images, which can be further replaced by UAV images. PMID:28125018

  8. Computation of elastic properties of 3D digital cores from the Longmaxi shale

    NASA Astrophysics Data System (ADS)

    Zhang, Wen-Hui; Fu, Li-Yun; Zhang, Yan; Jin, Wei-Jun

    2016-06-01

    The dependence of elastic moduli of shales on the mineralogy and microstructure of shales is important for the prediction of sweet spots and shale gas production. Based on 3D digital images of the microstructure of Longmaxi black shale samples using X-ray CT, we built detailed 3D digital images of cores with porosity properties and mineral contents. Next, we used finite-element (FE) methods to derive the elastic properties of the samples. The FE method can accurately model the shale mineralogy. Particular attention is paid to the derived elastic properties and their dependence on porosity and kerogen. The elastic moduli generally decrease with increasing porosity and kerogen, and there is a critical porosity (0.75) and kerogen content (ca. ≤3%) over which the elastic moduli decrease rapidly and slowly, respectively. The derived elastic moduli of gas- and oil-saturated digital cores differ little probably because of the low porosity (4.5%) of the Longmaxi black shale. Clearly, the numerical experiments demonstrated the feasibility of combining microstructure images of shale samples with elastic moduli calculations to predict shale properties.

  9. Improvements on digital inline holographic PTV for 3D wall-bounded turbulent flow measurements

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Mallery, Kevin; Hong, Jiarong

    2017-04-01

    Three-dimensional (3D) particle image velocimetry (PIV) and particle tracking velocimetry (PTV) provide the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. In this study, we present our latest developments on minimizing these challenges, which enables high-fidelity DIH-PTV implementation to larger sampling volumes with significantly higher particle seeding densities suitable for wall-bounded turbulent flow measurements. The improvements include: (1) adjustable window thresholding; (2) multi-pass 3D tracking; (3) automatic wall localization; and (4) continuity-based out-of-plane velocity component computation. The accuracy of the proposed DIH-PTV method is validated with conventional 2D PIV and double-view holographic PTV measurements in smooth-wall turbulent channel flow experiments. The capability of the technique in characterization of wall-bounded turbulence is further demonstrated through its application to flow measurements for smooth- and rough-wall turbulent channel flows. In these experiments, 3D velocity fields are measured within sampling volumes of 14.7  ×  50.0  ×  14.4 mm3 (covering the entire depth of the channel) with a velocity resolution of  <1.1 mm/vector. Overall, the presented DIH-PTV method and

  10. 3D reconstruction of digitized histological sections for vasculature quantification in the mouse hind limb

    NASA Astrophysics Data System (ADS)

    Xu, Yiwen; Pickering, J. Geoffrey; Nong, Zengxuan; Gibson, Eli; Ward, Aaron D.

    2014-03-01

    In contrast to imaging modalities such as magnetic resonance imaging and micro computed tomography, digital histology reveals multiple stained tissue features at high resolution (0.25μm/pixel). However, the two-dimensional (2D) nature of histology challenges three-dimensional (3D) quantification and visualization of the different tissue components, cellular structures, and subcellular elements. This limitation is particularly relevant to the vasculature, which has a complex and variable structure within tissues. The objective of this study was to perform a fully automated 3D reconstruction of histology tissue in the mouse hind limb preserving the accurate systemic orientation of the tissues, stained with hematoxylin and immunostained for smooth muscle α actin. We performed a 3D reconstruction using pairwise rigid registrations of 5μm thick, paraffin-embedded serial sections, digitized at 0.25μm/pixel. Each registration was performed using the iterative closest points algorithm on blood vessel landmarks. Landmarks were vessel centroids, determined according to a signed distance map of each pixel to a decision boundary in hue-saturation-value color space; this decision boundary was determined based on manual annotation of a separate training set. Cell nuclei were then automatically extracted and corresponded to refine the vessel landmark registration. Homologous nucleus landmark pairs appearing on not more than two adjacent slides were chosen to avoid registrations which force curved or non-sectionorthogonal structures to be straight and section-orthogonal. The median accumulated target registration errors ± interquartile ranges for the vessel landmark registration, and the nucleus landmark refinement were 43.4+/-42.8μm and 2.9+/-1.7μm, respectively (p<0.0001). Fully automatic and accurate 3D rigid reconstruction of mouse hind limb histology imaging is feasible based on extracted vasculature and nuclei.

  11. Digital Subtraction Phonocardiography (DSP) applied to the detection and characterization of heart murmurs

    PubMed Central

    2011-01-01

    Background During the cardiac cycle, the heart normally produces repeatable physiological sounds. However, under pathologic conditions, such as with heart valve stenosis or a ventricular septal defect, blood flow turbulence leads to the production of additional sounds, called murmurs. Murmurs are random in nature, while the underlying heart sounds are not (being deterministic). Innovation We show that a new analytical technique, which we call Digital Subtraction Phonocardiography (DSP), can be used to separate the random murmur component of the phonocardiogram from the underlying deterministic heart sounds. Methods We digitally recorded the phonocardiogram from the anterior chest wall in 60 infants and adults using a high-speed USB interface and the program Gold Wave http://www.goldwave.com. The recordings included individuals with cardiac structural disease as well as recordings from normal individuals and from individuals with innocent heart murmurs. Digital Subtraction Analysis of the signal was performed using a custom computer program called Murmurgram. In essence, this program subtracts the recorded sound from two adjacent cardiac cycles to produce a difference signal, herein called a "murmurgram". Other software used included Spectrogram (Version 16), GoldWave (Version 5.55) as well as custom MATLAB code. Results Our preliminary data is presented as a series of eight cases. These cases show how advanced signal processing techniques can be used to separate heart sounds from murmurs. Note that these results are preliminary in that normal ranges for obtained test results have not yet been established. Conclusions Cardiac murmurs can be separated from underlying deterministic heart sounds using DSP. DSP has the potential to become a reliable and economical new diagnostic approach to screening for structural heart disease. However, DSP must be further evaluated in a large series of patients with well-characterized pathology to determine its clinical potential

  12. The simulation of 3D microcalcification clusters in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman; Van Ongeval, Chantal; Zanca, Federica; Cockmartin, Lesley; Marshall, Nicholas; Jacobs, Jurgen; Young, Kenneth C.; Dance, David R.; Bosmans, Hilde

    2011-12-15

    Purpose: This work proposes a new method of building 3D models of microcalcification clusters and describes the validation of their realistic appearance when simulated into 2D digital mammograms and into breast tomosynthesis images. Methods: A micro-CT unit was used to scan 23 breast biopsy specimens of microcalcification clusters with malignant and benign characteristics and their 3D reconstructed datasets were segmented to obtain 3D models of microcalcification clusters. These models were then adjusted for the x-ray spectrum used and for the system resolution and simulated into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. Six radiologists were asked to distinguish between 40 real and 40 simulated clusters of microcalcifications in two separate studies on 2D mammography and tomosynthesis datasets. Receiver operating characteristic (ROC) analysis was used to test the ability of each observer to distinguish between simulated and real microcalcification clusters. The kappa statistic was applied to assess how often the individual simulated and real microcalcification clusters had received similar scores (''agreement'') on their realistic appearance in both modalities. This analysis was performed for all readers and for the real and the simulated group of microcalcification clusters separately. ''Poor'' agreement would reflect radiologists' confusion between simulated and real clusters, i.e., lesions not systematically evaluated in both modalities as either simulated or real, and would therefore be interpreted as a success of the present models. Results: The area under the ROC curve, averaged over the observers, was 0.55 (95% confidence interval [0.44, 0.66]) for the 2D study, and 0.46 (95% confidence interval [0.29, 0.64]) for the tomosynthesis study, indicating no statistically significant difference between real and simulated

  13. Anatomic and functional imaging of congenital heart disease with digital subtraction angiography

    SciTech Connect

    Buonocore, E.; Pavlicek, W.; Modic, M.T.; Meaney, T.F.; O'Donovan, P.B.; Grossman, L.B.; Moodie, D.S.; Yiannikas, J.

    1983-06-01

    Digital subtraction angiography (DSA) of the heart was performed in 54 patients for the evaluation of congenital heart diagnostic images and accurate physiologic shunt data that compared favorably with catheter angiography and nuclear medicine studies. Retrospective analysis of this series of patients indicated that DSA studies contributed sufficient informantion to shorten significantly or modify cardiac catheterization in 85% (79/93) of the defects that were identified. Interatrial septal defects were particularly well diagnosed, with identification occurring in 10 of 10 cases, wheseas intraventricular septal defects were identified in only 6 of 9 patients. Evaluation of postsurgical patients was accurate in 19 of 20 cases.

  14. Digital subtraction angiography of the pulmonary arteries for the diagnosis of pulmonary embolism

    SciTech Connect

    Ludwig, J.W.; Verhoeven, L.A.J.; Kersbergen, J.J.; Overtoom, T.T.C.

    1983-06-01

    A comparative study of radionuclide scanning (perfusion studies in all 18 patients and ventilation studies in 9) and digital subtraction angiography (DSA) was performed in 18 patients with suspected pulmonary thromboembolism. In 17 patients good visualization of the arteries was obtained with DSA; 10 of these patients had no pre-existing lung disease, and 7 had chronic obstructive pulmonary disease (COPD). The information provided by DSA in this small group was equal to or better than that of scintigraphy, especially in patients with COPD, and the reliability of DSA was superior to that of the radionuclide scintigraphy. Methods for preventing motion artifacts with DSA are also described.

  15. Cerebrovascular disease: evaluation with transbrachial intraarterial digital subtraction angiography using a 4-F catheter.

    PubMed

    Hicks, M E; Kreipke, D L; Becker, G J; Edwards, M K; Holden, R W; Jackson, V P; Bendick, P J; Kuehn, D S

    1986-11-01

    Three hundred sixty-one patients underwent intraarterial digital subtraction angiography for definite or probable occlusive vascular disease of the carotid arteries. Examinations were performed with 65-cm-long, 4-F aortic catheters. A transbrachial approach was used. Images were good or excellent in nearly all cases. No postprocedural neurologic deficits or hematomas occurred. Permanent pulse deficit occurred in two patients, and temporary deficit occurred in three patients, an improvement over the frequency found in previous transbrachial series using 6-8-F catheters. While these results establish the efficacy of this technique, they also indicate a possible greater relative safety in men than in women.

  16. Detection of micromechanical deformation under rigid body displacement using twin-pulsed 3D digital holography

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, Carlos; Hernandez-Montes, Maria del Socorro; Mendoza-Santoyo, Fernando

    2005-02-01

    Twin-pulsed digital holography in its 3D set up is used to recover exclusively the micro-mechanical deformation of an object. The test object is allowed to have rigid body movements such as rotation and translation, with the result that the fringe patterns contain information of the latter and the object deformation, a feature that may significantly modify the interpretation of the results. Experimental results from a flat metal plate subject to micro stress and a displacement in the x-z plane are presented to demonstrate that using this optical method it is possible to recover exclusively the contribution of the micro stress.

  17. Two detector, active digital holographic camera for 3D imaging and digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Żak, Jakub; Kujawińska, Małgorzata; Józwik, Michał

    2015-09-01

    In this paper we present the novel design and proof of concept of an active holographic camera consisting of two array detectors and Liquid Crystal on Silicon (LCOS) Spatial Light Modulator (SLM). The device allows sequential or simultaneous capture of two Fresnel holograms of 3D object/scene. The two detectors configuration provides an increased viewing angle of the camera, allows to capture two double exposure holograms with different sensitivity vectors and even facilitate capturing a synthetic aperture hologram for static objects. The LCOS SLM, located in a reference arm, serves as an active element, which enables phase shifting and proper pointing of reference beams towards both detectors in the configuration which allows miniaturization of the camera. The laboratory model of the camera has been tested for different modes of work namely for capture and reconstruction of 3D scene and for double exposure holographic interferometry applied for an engineering object under load. The future extension of the camera functionalities for Fourier holograms capture is discussed.

  18. Generating 3D and 3D-like animations of strongly uneven surface microareas of bloodstains from small series of partially out-of-focus digital SEM micrographs.

    PubMed

    Hortolà, Policarp

    2010-01-01

    When dealing with microscopic still images of some kinds of samples, the out-of-focus problem represents a particularly serious limiting factor for the subsequent generation of fully sharp 3D animations. In order to produce fully-focused 3D animations of strongly uneven surface microareas, a vertical stack of six digital secondary-electron SEM micrographs of a human bloodstain microarea was acquired. Afterwards, single combined images were generated using a macrophotography and light microscope image post-processing software. Subsequently, 3D animations of texture and topography were obtained in different formats using a combination of software tools. Finally, a 3D-like animation of a texture-topography composite was obtained in different formats using another combination of software tools. By one hand, results indicate that the use of image post-processing software not concerned primarily with electron micrographs allows to obtain, in an easy way, fully-focused images of strongly uneven surface microareas of bloodstains from small series of partially out-of-focus digital SEM micrographs. On the other hand, results also indicate that such small series of electron micrographs can be utilized for generating 3D and 3D-like animations that can subsequently be converted into different formats, by using certain user-friendly software facilities not originally designed for use in SEM, that are easily available from Internet. Although the focus of this study was on bloodstains, the methods used in it well probably are also of relevance for studying the surface microstructures of other organic or inorganic materials whose sharp displaying is difficult of obtaining from a single SEM micrograph.

  19. Surface strain-field determination of tympanic membrane using 3D-digital holographic interferometry

    NASA Astrophysics Data System (ADS)

    Hernandez-Montes, María del S.; Mendoza Santoyo, Fernando; Muñoz, Silvino; Perez, Carlos; de la Torre, Manuel; Flores, Mauricio; Alvarez, Luis

    2015-08-01

    In order to increase the understanding of soft tissues mechanical properties, 3D Digital Holographic Interferometry (3D-DHI) was used to quantify the strain-field on a cat tympanic membrane (TM) surface. The experiments were carried out applying a constant sound-stimuli pressure of 90 dB SPL (0.632 Pa) on the TM at 1.2 kHz. The technique allows the accurate acquisition of the micro-displacement data along the x, y and z directions, which is a must for a full characterization of the tissue mechanical behavior under load, and for the calculation of the strain-field in situ. The displacements repeatability in z direction shows a standard deviation of 0.062 μm at 95% confidence level. In order to realize the full 3D characterization correctly the contour of the TM surface was measured employing the optically non-contact two-illumination positions contouring method. The x, y and z displacements combined with the TM contour data allow the evaluation its strain-field by spatially differentiating the u(m,n), v(m,n), and w(m,n) deformation components. The accurate and correct determination of the TM strain-field leads to describing its elasticity, which is an important parameter needed to improve ear biomechanics studies, audition processes and TM mobility in both experimental measurements and theoretical analysis of ear functionality and its modeling.

  20. Multi-shape active composites by 3D printing of digital shape memory polymers

    NASA Astrophysics Data System (ADS)

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-04-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  1. Multi-shape active composites by 3D printing of digital shape memory polymers.

    PubMed

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L; Qi, H Jerry

    2016-04-13

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers - digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications.

  2. Multi-shape active composites by 3D printing of digital shape memory polymers

    PubMed Central

    Wu, Jiangtao; Yuan, Chao; Ding, Zhen; Isakov, Michael; Mao, Yiqi; Wang, Tiejun; Dunn, Martin L.; Qi, H. Jerry

    2016-01-01

    Recent research using 3D printing to create active structures has added an exciting new dimension to 3D printing technology. After being printed, these active, often composite, materials can change their shape over time; this has been termed as 4D printing. In this paper, we demonstrate the design and manufacture of active composites that can take multiple shapes, depending on the environmental temperature. This is achieved by 3D printing layered composite structures with multiple families of shape memory polymer (SMP) fibers – digital SMPs - with different glass transition temperatures (Tg) to control the transformation of the structure. After a simple single-step thermomechanical programming process, the fiber families can be sequentially activated to bend when the temperature is increased. By tuning the volume fraction of the fibers, bending deformation can be controlled. We develop a theoretical model to predict the deformation behavior for better understanding the phenomena and aiding the design. We also design and print several flat 2D structures that can be programmed to fold and open themselves when subjected to heat. With the advantages of an easy fabrication process and the controllable multi-shape memory effect, the printed SMP composites have a great potential in 4D printing applications. PMID:27071543

  3. Integration of regional to outcrop digital data: 3D visualisation of multi-scale geological models

    NASA Astrophysics Data System (ADS)

    Jones, R. R.; McCaffrey, K. J. W.; Clegg, P.; Wilson, R. W.; Holliman, N. S.; Holdsworth, R. E.; Imber, J.; Waggott, S.

    2009-01-01

    Multi-scale geological models contain three-dimensional, spatially referenced data, typically spanning at least six orders of magnitude from outcrop to regional scale. A large number of different geological and geophysical data sources can be combined into a single model. Established 3D visualisation methods that are widely used in hydrocarbon exploration and production for sub-surface data have been adapted for onshore surface geology through a combination of methods for digital data acquisition, 3D visualisation, and geospatial analysis. The integration of georeferenced data across a wider than normal range in scale helps to address several of the existing limitations that are inherent in traditional methods of map production and publishing. The primary advantage of a multi-scale approach is that spatial precision and dimensionality (which are generally degraded when data are displayed in 2D at a single scale) can be preserved at all scales. Real-time, immersive, interactive software, based on a "3D geospatial" graphical user interface (GUI), allows complex geological architectures to be depicted, and is more inherently intuitive than software based on a standard "desktop" GUI metaphor. The continuing convergence of different kinds of geo-modelling, GIS, and visualisation software, as well as industry acceptance of standardised middleware, has helped to make multi-scale geological models a practical reality. This is illustrated with two case studies from NE England and NW Scotland.

  4. Detectability limitations with 3-D point reconstruction algorithms using digital radiography

    SciTech Connect

    Lindgren, Erik

    2015-03-31

    The estimated impact of pores in clusters on component fatigue will be highly conservative when based on 2-D rather than 3-D pore positions. To 3-D position and size defects using digital radiography and 3-D point reconstruction algorithms in general require a lower inspection time and in some cases work better with planar geometries than X-ray computed tomography. However, the increase in prior assumptions about the object and the defects will increase the intrinsic uncertainty in the resulting nondestructive evaluation output. In this paper this uncertainty arising when detecting pore defect clusters with point reconstruction algorithms is quantified using simulations. The simulation model is compared to and mapped to experimental data. The main issue with the uncertainty is the possible masking (detectability zero) of smaller defects around some other slightly larger defect. In addition, the uncertainty is explored in connection to the expected effects on the component fatigue life and for different amount of prior object-defect assumptions made.

  5. Breast density measurement: 3D cone beam computed tomography (CBCT) images versus 2D digital mammograms

    NASA Astrophysics Data System (ADS)

    Han, Tao; Lai, Chao-Jen; Chen, Lingyun; Liu, Xinming; Shen, Youtao; Zhong, Yuncheng; Ge, Shuaiping; Yi, Ying; Wang, Tianpeng; Yang, Wei T.; Shaw, Chris C.

    2009-02-01

    Breast density has been recognized as one of the major risk factors for breast cancer. However, breast density is currently estimated using mammograms which are intrinsically 2D in nature and cannot accurately represent the real breast anatomy. In this study, a novel technique for measuring breast density based on the segmentation of 3D cone beam CT (CBCT) images was developed and the results were compared to those obtained from 2D digital mammograms. 16 mastectomy breast specimens were imaged with a bench top flat-panel based CBCT system. The reconstructed 3D CT images were corrected for the cupping artifacts and then filtered to reduce the noise level, followed by using threshold-based segmentation to separate the dense tissue from the adipose tissue. For each breast specimen, volumes of the dense tissue structures and the entire breast were computed and used to calculate the volumetric breast density. BI-RADS categories were derived from the measured breast densities and compared with those estimated from conventional digital mammograms. The results show that in 10 of 16 cases the BI-RADS categories derived from the CBCT images were lower than those derived from the mammograms by one category. Thus, breasts considered as dense in mammographic examinations may not be considered as dense with the CBCT images. This result indicates that the relation between breast cancer risk and true (volumetric) breast density needs to be further investigated.

  6. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    PubMed Central

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-01-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations. PMID:26346202

  7. 3D tracking the Brownian motion of colloidal particles using digital holographic microscopy and joint reconstruction.

    PubMed

    Verrier, Nicolas; Fournier, Corinne; Fournel, Thierry

    2015-06-01

    In-line digital holography is a valuable tool for sizing, locating, and tracking micro- or nano-objects in a volume. When a parametric imaging model is available, inverse problem approaches provide a straightforward estimate of the object parameters by fitting data with the model, thereby allowing accurate reconstruction. As recently proposed and demonstrated, combining pixel super-resolution techniques with inverse problem approaches improves the estimation of particle size and 3D position. Here, we demonstrate the accurate tracking of colloidal particles in Brownian motion. Particle size and 3D position are jointly optimized from video holograms acquired with a digital holographic microscopy setup based on a low-end microscope objective (×20, NA 0.5). Exploiting information redundancy makes it possible to characterize particles with a standard deviation of 15 nm in size and a theoretical resolution of 2×2×5  nm3 for position under additive white Gaussian noise assumption.

  8. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers.

    PubMed

    Mao, Yiqi; Yu, Kai; Isakov, Michael S; Wu, Jiangtao; Dunn, Martin L; Jerry Qi, H

    2015-09-08

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

  9. Sequential Self-Folding Structures by 3D Printed Digital Shape Memory Polymers

    NASA Astrophysics Data System (ADS)

    Mao, Yiqi; Yu, Kai; Isakov, Michael S.; Wu, Jiangtao; Dunn, Martin L.; Jerry Qi, H.

    2015-09-01

    Folding is ubiquitous in nature with examples ranging from the formation of cellular components to winged insects. It finds technological applications including packaging of solar cells and space structures, deployable biomedical devices, and self-assembling robots and airbags. Here we demonstrate sequential self-folding structures realized by thermal activation of spatially-variable patterns that are 3D printed with digital shape memory polymers, which are digital materials with different shape memory behaviors. The time-dependent behavior of each polymer allows the temporal sequencing of activation when the structure is subjected to a uniform temperature. This is demonstrated via a series of 3D printed structures that respond rapidly to a thermal stimulus, and self-fold to specified shapes in controlled shape changing sequences. Measurements of the spatial and temporal nature of self-folding structures are in good agreement with the companion finite element simulations. A simplified reduced-order model is also developed to rapidly and accurately describe the self-folding physics. An important aspect of self-folding is the management of self-collisions, where different portions of the folding structure contact and then block further folding. A metric is developed to predict collisions and is used together with the reduced-order model to design self-folding structures that lock themselves into stable desired configurations.

  10. How number line estimation skills relate to neural activations in single digit subtraction problems.

    PubMed

    Berteletti, I; Man, G; Booth, J R

    2015-02-15

    The Number Line (NL) task requires judging the relative numerical magnitude of a number and estimating its value spatially on a continuous line. Children's skill on this task has been shown to correlate with and predict future mathematical competence. Neurofunctionally, this task has been shown to rely on brain regions involved in numerical processing. However, there is no direct evidence that performance on the NL task is related to brain areas recruited during arithmetical processing and that these areas are domain-specific to numerical processing. In this study, we test whether 8- to 14-year-old's behavioral performance on the NL task is related to fMRI activation during small and large single-digit subtraction problems. Domain-specific areas for numerical processing were independently localized through a numerosity judgment task. Results show a direct relation between NL estimation performance and the amount of the activation in key areas for arithmetical processing. Better NL estimators showed a larger problem size effect than poorer NL estimators in numerical magnitude (i.e., intraparietal sulcus) and visuospatial areas (i.e., posterior superior parietal lobules), marked by less activation for small problems. In addition, the direction of the activation with problem size within the IPS was associated with differences in accuracies for small subtraction problems. This study is the first to show that performance in the NL task, i.e. estimating the spatial position of a number on an interval, correlates with brain activity observed during single-digit subtraction problem in regions thought to be involved in numerical magnitude and spatial processes.

  11. Recovering Old Stereoscopic Negatives and Producing Digital 3d Models of Former Appearances of Historic Buildings

    NASA Astrophysics Data System (ADS)

    Rodríguez Miranda, Á.; Valle Melón, J. M.

    2017-02-01

    Three-dimensional models with photographic textures have become a usual product for the study and dissemination of elements of heritage. The interest for cultural heritage also includes evolution along time; therefore, apart from the 3D models of the current state, it is interesting to be able to generate models representing how they were in the past. To that end, it is necessary to resort to archive information corresponding to the moments that we want to visualize. This text analyses the possibilities of generating 3D models of surfaces with photographic textures from old collections of analog negatives coming from works of terrestrial stereoscopic photogrammetry of historic buildings. The case studies presented refer to the geometric documentation of a small hermitage (done in 1996) and two sections of a wall (year 2000). The procedure starts with the digitization of the film negatives and the processing of the images generated, after which a combination of different methods for 3D reconstruction and texture wrapping are applied: techniques working simultaneously with several images (such as the algorithms of Structure from Motion - SfM) and single image techniques (such as the reconstruction based on vanishing points). Then, the features of the obtained models are described according to the geometric accuracy, completeness and aesthetic quality. In this way, it is possible to establish the real applicability of the models in order to be useful for the aforementioned historical studies and dissemination purposes. The text also wants to draw attention to the importance of preserving the documentary heritage available in the collections of negatives in archival custody and to the increasing difficulty of using them due to: (1) problems of access and physical conservation, (2) obsolescence of the equipment for scanning and stereoplotting and (3) the fact that the software for processing digitized photographs is discontinued.

  12. Polarization imaging of a 3D object by use of on-axis phase-shifting digital holography.

    PubMed

    Nomura, Takanori; Javidi, Bahram; Murata, Shinji; Nitanai, Eiji; Numata, Takuhisa

    2007-03-01

    A polarimetric imaging method of a 3D object by use of on-axis phase-shifting digital holography is presented. The polarimetric image results from a combination of two kinds of holographic imaging using orthogonal polarized reference waves. Experimental demonstration of a 3D polarimetric imaging is presented.

  13. The bust of Francesco II Gonzaga: from digital documentation to 3D printing

    NASA Astrophysics Data System (ADS)

    Adami, A.; Balletti, C.; Fassi, F.; Fregonese, L.; Guerra, F.; Taffurelli, L.; Vernier, P.

    2015-08-01

    Geomatics technics and methods are now able to provide a great contribution to the Cultural Heritage (CH) processes, being adaptable to different purposes: management, diagnosis, restoration, protection, study and research, communication, formation and fruition of the Cultural Heritage. This experimentation was done with an eye to encouraging and promoting the development of principles and good practices for recording, documentation and information management of cultural heritage. This research focuses on the documentation path of a cultural asset, in particular a Renaissance statue, aimed to achieve a three dimensional model useful for many digital applications and for solid reproduction. The digital copy can be used in many contexts and represents an efficient tool to preserve and promote CH. It can be included in virtual museum archives and catalogues, shared on network with cultural operators and users, and it permits the contextualization of the asset in its artistic and historical background. Moreover, the possibility to obtain a hard copy, reproduced through 3D printing, allows to reach new opportunities of interaction with CH. In this article, two techniques for the digitization of the terracotta bust of Francesco II Gonzaga, in the City Museum of Mantua, are described: the triangulation scanner and dense image matching photogrammetry. As well as the description of the acquisition and the elaborations, other aspects are taken into account: the characteristics of the object, the place for the acquisition, the ultimate goal and the economic availability. There are also highlighted the optimization pipeline to get the correct three-dimensional models and a 3D printed copy. A separate section discusses the comparison of the realized model to identify the positive and negative aspects of each adopted application.

  14. Computed tomography angiography versus digital subtraction angiography in vascular mapping for planning of microsurgical reconstruction of the mandible.

    PubMed

    Lell, Michael; Tomandl, Bernd F; Anders, Katharina; Baum, Ulrich; Nkenke, Emeka

    2005-08-01

    The aim of this work was to compare the potential of computed tomography angiography (CTA) with that of digital subtraction angiography (DSA) in vascular mapping of the external carotid artery (ECA) branches for planning of microvascular reconstructions of the mandible with osteomyocutaneous flaps. In 15 patients CTA and DSA were performed prior to surgery. Selective common carotid angiograms were acquired in two projection for both sides of the neck. Sixteen-slice spiral computed tomography was performed with a dual-phase protocol, using the arterial phase images for 3D CTA reconstruction. Thin-slab maximum intensity projections and volume rendering were employed for postprocessing of CTA data. The detectability of the different ECA branches in CTA and DSA was evaluated by two examiners. No statistically significant differences between CTA and DSA (p=0.097) were found for identifying branches relevant for microsurgery. DSA was superior to CTA if more peripheral ECA branches were included (P=0.030). CTA proved to be a promising alternative to DSA in vascular mapping for planning of microvascular reconstruction of the mandible.

  15. Comparative analysis of 3D expression patterns of transcription factor genes and digit fate maps in the developing chick wing.

    PubMed

    Fisher, Malcolm; Downie, Helen; Welten, Monique C M; Delgado, Irene; Bain, Andrew; Planzer, Thorsten; Sherman, Adrian; Sang, Helen; Tickle, Cheryll

    2011-04-22

    Hoxd13, Tbx2, Tbx3, Sall1 and Sall3 genes are candidates for encoding antero-posterior positional values in the developing chick wing and specifying digit identity. In order to build up a detailed profile of gene expression patterns in cell lineages that give rise to each of the digits over time, we compared 3 dimensional (3D) expression patterns of these genes during wing development and related them to digit fate maps. 3D gene expression data at stages 21, 24 and 27 spanning early bud to digital plate formation, captured from in situ hybridisation whole mounts using Optical Projection Tomography (OPT) were mapped to reference wing bud models. Grafts of wing bud tissue from GFP chicken embryos were used to fate map regions of the wing bud giving rise to each digit; 3D images of the grafts were captured using OPT and mapped on to the same models. Computational analysis of the combined computerised data revealed that Tbx2 and Tbx3 are expressed in digit 3 and 4 progenitors at all stages, consistent with encoding stable antero-posterior positional values established in the early bud; Hoxd13 and Sall1 expression is more dynamic, being associated with posterior digit 3 and 4 progenitors in the early bud but later becoming associated with anterior digit 2 progenitors in the digital plate. Sox9 expression in digit condensations lies within domains of digit progenitors defined by fate mapping; digit 3 condensations express Hoxd13 and Sall1, digit 4 condensations Hoxd13, Tbx3 and to a lesser extent Tbx2. Sall3 is only transiently expressed in digit 3 progenitors at stage 24 together with Sall1 and Hoxd13; then becomes excluded from the digital plate. These dynamic patterns of expression suggest that these genes may play different roles in digit identity either together or in combination at different stages including the digit condensation stage.

  16. General application of rapid 3-D digitizing and tool path generation for complex shapes

    SciTech Connect

    Kwok, K.S.; Loucks, C.S.; Driessen, B.J.

    1997-09-01

    A system for automatic tool path generation was developed at Sandia National Laboratories for finish machining operations. The system consists of a commercially available 5-axis milling machine controlled by Sandia developed software. This system was used to remove overspray on cast turbine blades. A laser-based, structured-light sensor, mounted on a tool holder, is used to collect 3D data points around the surface of the turbine blade. Using the digitized model of the blade, a tool path is generated which will drive a 0.375 inch grinding pin around the tip of the blade. A fuzzified digital filter was developed to properly eliminate false sensor readings caused by burrs, holes and overspray. The digital filter was found to successfully generate the correct tool path for a blade with intentionally scanned holes and defects. The fuzzified filter improved the computation efficiency by a factor of 25. For application to general parts, an adaptive scanning algorithm was developed and presented with simulation and experimental results. A right pyramid and an ellipsoid were scanned successfully with the adaptive algorithm in simulation studies. In actual experiments, a nose cone and a turbine blade were successfully scanned. A complex shaped turbine blade was successfully scanned and finished machined using these algorithms.

  17. Lessons in modern digital field geology: Open source software, 3D techniques, and the new world of digital mapping

    NASA Astrophysics Data System (ADS)

    Pavlis, Terry; Hurtado, Jose; Langford, Richard; Serpa, Laura

    2014-05-01

    Although many geologists refuse to admit it, it is time to put paper-based geologic mapping into the historical archives and move to the full potential of digital mapping techniques. For our group, flat map digital geologic mapping is now a routine operation in both research and instruction. Several software options are available, and basic proficiency with the software can be learned in a few hours of instruction and practice. The first practical field GIS software, ArcPad, remains a viable, stable option on Windows-based systems. However, the vendor seems to be moving away from ArcPad in favor of mobile software solutions that are difficult to implement without GIS specialists. Thus, we have pursued a second software option based on the open source program QGIS. Our QGIS system uses the same shapefile-centric data structure as our ArcPad system, including similar pop-up data entry forms and generic graphics for easy data management in the field. The advantage of QGIS is that the same software runs on virtually all common platforms except iOS, although the Android version remains unstable as of this writing. A third software option we are experimenting with for flat map-based field work is Fieldmove, a derivative of the 3D-capable program Move developed by Midland Valley. Our initial experiments with Fieldmove are positive, particularly with the new, inexpensive (<300Euros) Windows tablets. However, the lack of flexibility in data structure makes for cumbersome workflows when trying to interface our existing shapefile-centric data structures to Move. Nonetheless, in spring 2014 we will experiment with full-3D immersion in the field using the full Move software package in combination with ground based LiDAR and photogrammetry. One new workflow suggested by our initial experiments is that field geologists should consider using photogrammetry software to capture 3D visualizations of key outcrops. This process is now straightforward in several software packages, and

  18. The Reduction Of Motion Artifacts In Digital Subtraction Angiography By Geometrical Image Transformation

    NASA Astrophysics Data System (ADS)

    Fitzpatrick, J. Michael; Pickens, David R.; Mandava, Venkateswara R.; Grefenstette, John J.

    1988-06-01

    In the diagnosis of arteriosclerosis, radio-opaque dye is injected into the interior of the arteries to make them visible. Because of its increased contrast sensitivity, digital subtraction angiography has the potential for providing diagnostic images of arteries with reduced dye volumes. In the conventional technique, a mask image, acquired before the introduction of the dye, is subtracted from the contrast image, acquired after the dye is introduced, to produce a difference image in which only the dye in the arteries is visible. The usefulness of this technique has been severely limited by the image degradation caused by patient motion during image acquisition. This motion produces artifacts in the difference image that obscure the arteries. One technique for dealing with this problem is to reduce the degradation by means of image registration. The registration is carried out by means of a geometrical transformation of the mask image before subtraction so that it is in registration with the contrast image. This paper describes our technique for determining an optimal transformation. We employ a one-to-one elastic mapping and the Jacobian of that mapping to produce a geometrical image transformation. We choose a parameterized class of such mappings and use a heuristic search algorithm to optimize the parameters to minimize the severity of the motion artifacts. To increase the speed of the optimization process we use a statistical image comparison technique that provides a quick approximate evaluation of each image transformation. We present the experimental results of the application of our registration system to mask-contrast pairs, for images acquired from a specially designed phantom (described in a companion paper), and for clinical images.

  19. Accuracy assessment of high frequency 3D ultrasound for digital impression-taking of prepared teeth

    NASA Astrophysics Data System (ADS)

    Heger, Stefan; Vollborn, Thorsten; Tinschert, Joachim; Wolfart, Stefan; Radermacher, Klaus

    2013-03-01

    Silicone based impression-taking of prepared teeth followed by plaster casting is well-established but potentially less reliable, error-prone and inefficient, particularly in combination with emerging techniques like computer aided design and manufacturing (CAD/CAM) of dental prosthesis. Intra-oral optical scanners for digital impression-taking have been introduced but until now some drawbacks still exist. Because optical waves can hardly penetrate liquids or soft-tissues, sub-gingival preparations still need to be uncovered invasively prior to scanning. High frequency ultrasound (HFUS) based micro-scanning has been recently investigated as an alternative to optical intra-oral scanning. Ultrasound is less sensitive against oral fluids and in principal able to penetrate gingiva without invasively exposing of sub-gingival preparations. Nevertheless, spatial resolution as well as digitization accuracy of an ultrasound based micro-scanning system remains a critical parameter because the ultrasound wavelength in water-like media such as gingiva is typically smaller than that of optical waves. In this contribution, the in-vitro accuracy of ultrasound based micro-scanning for tooth geometry reconstruction is being investigated and compared to its extra-oral optical counterpart. In order to increase the spatial resolution of the system, 2nd harmonic frequencies from a mechanically driven focused single element transducer were separated and corresponding 3D surface models were calculated for both fundamentals and 2nd harmonics. Measurements on phantoms, model teeth and human teeth were carried out for evaluation of spatial resolution and surface detection accuracy. Comparison of optical and ultrasound digital impression taking indicate that, in terms of accuracy, ultrasound based tooth digitization can be an alternative for optical impression-taking.

  20. Investigation of 3D surface acoustic waves in granular media with 3-color digital holography

    NASA Astrophysics Data System (ADS)

    Leclercq, Mathieu; Picart, Pascal; Penelet, Guillaume; Tournat, Vincent

    2017-01-01

    This paper reports the implementation of digital color holography to investigate elastic waves propagating along a layer of a granular medium. The holographic set-up provides simultaneous recording and measurement of the 3D dynamic displacement at the surface. Full-field measurements of the acoustic amplitude and phase at different excitation frequencies are obtained. It is shown that the experimental data can be used to obtain the dispersion curve of the modes propagating in this granular medium layer. The experimental dispersion curve and that obtained from a finite element modeling of the problem are found to be in good agreement. In addition, full-field images of the interaction of an acoustic wave guided in the granular layer with a buried object are also shown.

  1. Performance analysis of different surface reconstruction algorithms for 3D reconstruction of outdoor objects from their digital images.

    PubMed

    Maiti, Abhik; Chakravarty, Debashish

    2016-01-01

    3D reconstruction of geo-objects from their digital images is a time-efficient and convenient way of studying the structural features of the object being modelled. This paper presents a 3D reconstruction methodology which can be used to generate photo-realistic 3D watertight surface of different irregular shaped objects, from digital image sequences of the objects. The 3D reconstruction approach described here is robust, simplistic and can be readily used in reconstructing watertight 3D surface of any object from its digital image sequence. Here, digital images of different objects are used to build sparse, followed by dense 3D point clouds of the objects. These image-obtained point clouds are then used for generation of photo-realistic 3D surfaces, using different surface reconstruction algorithms such as Poisson reconstruction and Ball-pivoting algorithm. Different control parameters of these algorithms are identified, which affect the quality and computation time of the reconstructed 3D surface. The effects of these control parameters in generation of 3D surface from point clouds of different density are studied. It is shown that the reconstructed surface quality of Poisson reconstruction depends on Samples per node (SN) significantly, greater SN values resulting in better quality surfaces. Also, the quality of the 3D surface generated using Ball-Pivoting algorithm is found to be highly depend upon Clustering radius and Angle threshold values. The results obtained from this study give the readers of the article a valuable insight into the effects of different control parameters on determining the reconstructed surface quality.

  2. GPU accelerated generation of digitally reconstructed radiographs for 2-D/3-D image registration.

    PubMed

    Dorgham, Osama M; Laycock, Stephen D; Fisher, Mark H

    2012-09-01

    Recent advances in programming languages for graphics processing units (GPUs) provide developers with a convenient way of implementing applications which can be executed on the CPU and GPU interchangeably. GPUs are becoming relatively cheap, powerful, and widely available hardware components, which can be used to perform intensive calculations. The last decade of hardware performance developments shows that GPU-based computation is progressing significantly faster than CPU-based computation, particularly if one considers the execution of highly parallelisable algorithms. Future predictions illustrate that this trend is likely to continue. In this paper, we introduce a way of accelerating 2-D/3-D image registration by developing a hybrid system which executes on the CPU and utilizes the GPU for parallelizing the generation of digitally reconstructed radiographs (DRRs). Based on the advancements of the GPU over the CPU, it is timely to exploit the benefits of many-core GPU technology by developing algorithms for DRR generation. Although some previous work has investigated the rendering of DRRs using the GPU, this paper investigates approximations which reduce the computational overhead while still maintaining a quality consistent with that needed for 2-D/3-D registration with sufficient accuracy to be clinically acceptable in certain applications of radiation oncology. Furthermore, by comparing implementations of 2-D/3-D registration on the CPU and GPU, we investigate current performance and propose an optimal framework for PC implementations addressing the rigid registration problem. Using this framework, we are able to render DRR images from a 256×256×133 CT volume in ~24 ms using an NVidia GeForce 8800 GTX and in ~2 ms using NVidia GeForce GTX 580. In addition to applications requiring fast automatic patient setup, these levels of performance suggest image-guided radiation therapy at video frame rates is technically feasible using relatively low cost PC

  3. Damage Assessment and Digital 2D-3D Documentation of PetraTreasury

    NASA Astrophysics Data System (ADS)

    Bala'awi, Fadi; Alshawabkeh, Yahya; Alawneh, Firas; Masri, Eyed al

    The treasury is the icon monument of the world heritage site of ancient Petra city. Unfortunately, this important part of the world's cultural heritage is gradually being diminished due to weathering and erosion problems. This give rise to the need to have a comprehensive study and full documentation of the monument in order to evaluate its status. In this research a comprehensive approach utilizing 2D-3D documentation of the structure using laser scanner and photogrammetry is carried parallel with a laboratory analysis and a correlation study of the salt content and the surface weathering forms. In addition, the research extends to evaluate a set of chemical and physical properties of the case study monument. Studies of stone texture and spatial distribution of soluble salts were carried out at the monument in order to explain the mechanism of the weathering problem. Then a series of field work investigations and laboratory work were undertaken to study the effect of relative humidity, temperature, and wind are the main factors in the salt damage process. The 3D modelling provides accurate geometric and radiometric properties of the damage shape. In order to support the visual quality of 3D surface details and cracks, a hybrid approach combining data from the laser scanner and the digital imagery was developed. Based on the findings, salt damage appears to be one of the main problems at this monument. Although, the total soluble salt content are quite low, but the salts contamination is all over the tested samples in all seasons, with higher concentrations at deep intervals. The thermodynamic calculations carried out by this research have also shown that salt damage could be minimised by controlling the surrounding relative humidity conditions. This measure is undoubtedly the most challenging of all, and its application, if deemed feasible, should be carried out in parallel with other conservation measures.

  4. Depth quantificaton for inhomogeneities within semisolid materials using 3D pulsed digital holography

    NASA Astrophysics Data System (ADS)

    Hernández-Montes, Maria del Socorro; Mendoza Santoyo, Fernando; Pérez-López, Carlos; Rodríguez Vera, Ramón

    2006-06-01

    A 3D experimental arrangement for pulsed digital holography is used to measure the depth position for both a glass sphere and tumor tissue, immersed in a semi-solid gel model. A master gel, one without inhomogeneities, is set to resonate via sound waves generated with a conventional speaker placed a few centimeters away from the gel container. Later an identical prepared gel with an inhomogeneity is placed in the original set up and interrogated at the same resonant frequency. On comparison and using only an out of plane sensitive set up it is possible to measure the displacement of the gel surface, indicating the presence of an internal inhomogeneity. However the depth position cannot be measured accurately since the out of plane component has also the contribution of the in-plane surface displacements. With the information gathered from the 3D pulsed digital holography set up it is possible to obtain three sensitivity vectors that serve to independently separate the contributions from each of the three x, y and z components of the vibration displacement, for the same exciting mechanical wave. It is then possible to build individual maps of displacement along the three rectangular axes and thus measure accurately the depth position of the inhomogeneity. Results from the optical data were correlated to the measured position for different inhomogeneity types, sizes and depths and on comparison an error in the position of less than 1% was found. This optical non invasive method is able to accurately find the inhomogeneity and its position within the gel making it a promising method for the study of mammal tumors, representing and alternative to the traditional invasive methods.

  5. Digital holographic measurements of shape and 3D sound-induced displacements of Tympanic Membrane

    PubMed Central

    Lu, Weina; Dobrev, Ivo; Cheng, Jeffrey Tao; Furlong, Cosme; Rosowski, John J

    2014-01-01

    Acoustically-induced vibrations of the Tympanic Membrane (TM) play a primary role in the hearing process, in that these motions are the initial mechanical response of the ear to airborne sound. Characterization of the shape and 3D displacement patterns of the TM is a crucial step to a better understanding of the complicated mechanics of sound reception by the ear. In this paper, shape and sound-induced 3D displacements of the TM in cadaveric chinchillas are measured by a lensless Dual-Wavelength Digital Holography system (DWDHS). The DWDHS consists of Laser Delivery (LD), Optical Head (OH), and Computing Platform (CP) subsystems. Shape measurements are performed in double-exposure mode and with the use of two wavelengths of a tunable laser while nanometer-scale displacements are measured along a single sensitivity direction and with a constant wavelength. In order to extract the three principal components of displacement in full-field-of-view, and taking into consideration the anatomical dimensions of the TM, we combine principles of thin-shell theory together with both, displacement measurements along the single sensitivity vector and TM surface shape. To computationally test this approach, Finite Element Methods (FEM) are applied to the study of artificial geometries. PMID:24790255

  6. 3D quantitative imaging of the microvasculature with the Texas Instruments Digital Micromirror Device

    NASA Astrophysics Data System (ADS)

    Fainman, Yeshaiahu; Botvinick, Elliott L.; Price, Jeffrey H.; Gough, David A.

    2001-11-01

    There is a growing need for developing 3D quantitative imaging tools that can operate at high speed enabling real-time visualization for the field of biology, material science, and the semiconductor industry. We will present our 3D quantitative imaging system based on a confocal microscope built with a Texas Instruments Digital Micromirror Device (DMD). By using the DMD as a spatial light modulator, confocal transverse surface (x, y) scanning can be performed in parallel at speeds faster than video rate without physical movement of the sample. The DMD allows us to programmably configure the source and the detection pinhole array in the lateral direction to achieve the best signal and to reduce the crosstalk noise. Investigations of the microcirculation were performed on 40 g to 45 g golden Syrian hamsters fit with dorsal skin fold window chambers. FITC-Dextran or Red blood cells from donor hamsters, stained with Celltracker CM-DiI, were injected into the circulation and imaged with the confocal microscope. We will present the measured results for the axial resolution, in vivo, as well as experimental results from imaging the window chamber.

  7. Digital holographic tomography method for 3D observation of domain patterns in ferroelectric single crystals

    NASA Astrophysics Data System (ADS)

    Mokrý, Pavel; Psota, Pavel; Steiger, Kateřina; Václavík, Jan; Vápenka, David; Doleček, Roman; Vojtíšek, Petr; Sládek, Juraj; Lédl, Vít.

    2016-11-01

    We report on the development and implementation of the digital holographic tomography for the three-dimensio- nal (3D) observations of the domain patterns in the ferroelectric single crystals. Ferroelectric materials represent a group of materials, whose macroscopic dielectric, electromechanical, and elastic properties are greatly in uenced by the presence of domain patterns. Understanding the role of domain patterns on the aforementioned properties require the experimental techniques, which allow the precise 3D measurements of the spatial distribution of ferroelectric domains in the single crystal. Unfortunately, such techniques are rather limited at this time. The most frequently used piezoelectric atomic force microscopy allows 2D observations on the ferroelectric sample surface. Optical methods based on the birefringence measurements provide parameters of the domain patterns averaged over the sample volume. In this paper, we analyze the possibility that the spatial distribution of the ferroelectric domains can be obtained by means of the measurement of the wavefront deformation of the transmitted optical wave. We demonstrate that the spatial distribution of the ferroelectric domains can be determined by means of the measurement of the spatial distribution of the refractive index. Finally, it is demonstrated that the measurements of wavefront deformations generated in ferroelectric polydomain systems with small variations of the refractive index provide data, which can be further processed by means of the conventional tomographic methods.

  8. A new time-to-digital converter for the 3D imaging Lidar

    NASA Astrophysics Data System (ADS)

    Hu, Chunsheng; Huang, Zongsheng; Qin, Shiqiao; Hu, Feng

    2012-10-01

    In order to reduce the negative influence caused by the temperature and voltage variations of the FPGA (Field Programmable Gate Array), we propose a new FPGA-based time-to-digital converter. The proposed converter adopts a high-stability TCXO (Temperature Compensated Crystal Oscillator), a FPGA and a new algorithm, which can significantly decrease the negative influence due to the FPGA temperature and voltage variations. This paper introduces the principle of measurement, main framework, delayer chain structure and delay variation compensation method of the proposed converter, and analyzes its measurement precision and the maximum measurement frequency. The proposed converter is successfully implemented with a Cyclone I FPGA chip and a TCXO. And the implementation method is discussed in detail. The measurement precision of the converter is also validated by experiments. The results show that the mean measurement error is less than 260 ps, the standard deviation is less than 300 ps, and the maximum measurement frequency is above 10 million times per second. The precision and frequency of measurement for the proposed converter are adequate for the 3D imaging lidar (light detection and ranging). As well as the 3D imaging lidar, the converter can be applied to the pulsed laser range finder and other time interval measuring areas.

  9. Local characterization of hindered Brownian motion by using digital video microscopy and 3D particle tracking

    SciTech Connect

    Dettmer, Simon L.; Keyser, Ulrich F.; Pagliara, Stefano

    2014-02-15

    In this article we present methods for measuring hindered Brownian motion in the confinement of complex 3D geometries using digital video microscopy. Here we discuss essential features of automated 3D particle tracking as well as diffusion data analysis. By introducing local mean squared displacement-vs-time curves, we are able to simultaneously measure the spatial dependence of diffusion coefficients, tracking accuracies and drift velocities. Such local measurements allow a more detailed and appropriate description of strongly heterogeneous systems as opposed to global measurements. Finite size effects of the tracking region on measuring mean squared displacements are also discussed. The use of these methods was crucial for the measurement of the diffusive behavior of spherical polystyrene particles (505 nm diameter) in a microfluidic chip. The particles explored an array of parallel channels with different cross sections as well as the bulk reservoirs. For this experiment we present the measurement of local tracking accuracies in all three axial directions as well as the diffusivity parallel to the channel axis while we observed no significant flow but purely Brownian motion. Finally, the presented algorithm is suitable also for tracking of fluorescently labeled particles and particles driven by an external force, e.g., electrokinetic or dielectrophoretic forces.

  10. Photopolymerization of 3D conductive polypyrrole structures via digital light processing

    NASA Astrophysics Data System (ADS)

    Price, Aaron D.

    2016-04-01

    The intrinsically conductive polymer polypyrrole is conventionally synthesized as monolithic films that exhibit significant actuation strains when subjected to an applied electric potential. Though numerous linear and bending actuators based on polypyrrole films have been investigated, the limitations inherent to planar film geometries inhibit the realization of more complex behaviours. Hence, three-dimensional polypyrrole structures are sought to greatly expand the potential applications for conductive polymer actuators. This research aims to develop a novel additive manufacturing method for the fabrication of three-dimensional structures of conductive polypyrrole. In this investigation, radiation-curing techniques are employed by means of digital light processing (DLP) technology. DLP is an additive manufacturing technique where programmed light patterns emitted from a dedicated source are used to selectively cure a specially formulated polymer resin. Successive curing operations lead to a layered 3D structure into which fine features may be incorporated. Energy dispersive spectroscopy (EDS) is subsequently employed to examine the unique microstructural features of the resultant 3D printed polymer morphology in order to elucidate the nature of the conductivity. These polymer microstructures are highly desirable since actuation response times are highly dependent on ion transport distances, and hence the ability to fabricate fine features offers a potential mechanism to improve actuator performance.

  11. The simulation of 3D mass models in 2D digital mammography and breast tomosynthesis

    SciTech Connect

    Shaheen, Eman De Keyzer, Frederik; Bosmans, Hilde; Ongeval, Chantal Van; Dance, David R.; Young, Kenneth C.

    2014-08-15

    Purpose: This work proposes a new method of building 3D breast mass models with different morphological shapes and describes the validation of the realism of their appearance after simulation into 2D digital mammograms and breast tomosynthesis images. Methods: Twenty-five contrast enhanced MRI breast lesions were collected and each mass was manually segmented in the three orthogonal views: sagittal, coronal, and transversal. The segmented models were combined, resampled to have isotropic voxel sizes, triangularly meshed, and scaled to different sizes. These masses were referred to as nonspiculated masses and were then used as nuclei onto which spicules were grown with an iterative branching algorithm forming a total of 30 spiculated masses. These 55 mass models were projected into 2D projection images to obtain mammograms after image processing and into tomographic sequences of projection images, which were then reconstructed to form 3D tomosynthesis datasets. The realism of the appearance of these mass models was assessed by five radiologists via receiver operating characteristic (ROC) analysis when compared to 54 real masses. All lesions were also given a breast imaging reporting and data system (BIRADS) score. The data sets of 2D mammography and tomosynthesis were read separately. The Kendall's coefficient of concordance was used for the interrater observer agreement assessment for the BIRADS scores per modality. Further paired analysis, using the Wilcoxon signed rank test, of the BIRADS assessment between 2D and tomosynthesis was separately performed for the real masses and for the simulated masses. Results: The area under the ROC curves, averaged over all observers, was 0.54 (95% confidence interval [0.50, 0.66]) for the 2D study, and 0.67 (95% confidence interval [0.55, 0.79]) for the tomosynthesis study. According to the BIRADS scores, the nonspiculated and the spiculated masses varied in their degrees of malignancy from normal (BIRADS 1) to highly

  12. Parametric Imaging Of Digital Subtraction Angiography Studies For Renal Transplant Evaluation

    NASA Astrophysics Data System (ADS)

    Gallagher, Joe H.; Meaney, Thomas F.; Flechner, Stuart M.; Novick, Andrew C.; Buonocore, Edward

    1981-11-01

    A noninvasive method for diagnosing acute tubular necrosis and rejection would be an important tool for the management of renal transplant patients. From a sequence of digital subtraction angiographic images acquired after an intravenous injection of radiographic contrast material, the parametric images of the maximum contrast, the time when the maximum contrast is reached, and two times the time at which one half of the maximum contrast is reached are computed. The parametric images of the time when the maximum is reached clearly distinguish normal from abnormal renal function. However, it is the parametric image of two times the time when one half of the maximum is reached which provides some assistance in differentiating acute tubular necrosis from rejection.

  13. All-optical digital logic: Full addition or subtraction on a three-state system

    SciTech Connect

    Remacle, F.; Levine, R. D.

    2006-03-15

    Stimulated Raman adiabatic passage (STIRAP) is a well-studied pump-probe control scheme for manipulating the population of quantum states of atoms or molecules. By encoding the digits to be operated on as 'on' or 'off' laser input signals we show how STIRAP can be used to implement a finite-state logic machine. The physical conditions required for an effective STIRAP operation are related to the physical conditions expected for a logic machine. In particular, a condition is derived on the mean number of photons that represent an on pulse. A finite-state machine computes Boolean expressions that depend both on the input and on the present state of the machine. With two input signals we show how to implement a full adder where the carry-in digit is stored in the state of the machine. Furthermore, we show that it is possible to store the carry-out digit as the next state and thereby return the machine to a state ready for the next full addition. Such a machine operates as a cyclical full adder. We further show how this full adder can equally well be operated as a full subtractor. To the best of our knowledge this is the first example of a nanosized system that implements a full subtraction.

  14. Fabrication of digital rainbow holograms and 3-D imaging using SEM based e-beam lithography.

    PubMed

    Firsov, An; Firsov, A; Loechel, B; Erko, A; Svintsov, A; Zaitsev, S

    2014-11-17

    Here we present an approach for creating full-color digital rainbow holograms based on mixing three basic colors. Much like in a color TV with three luminescent points per single screen pixel, each color pixel of initial image is presented by three (R, G, B) distinct diffractive gratings in a hologram structure. Change of either duty cycle or area of the gratings are used to provide proper R, G, B intensities. Special algorithms allow one to design rather complicated 3D images (that might even be replacing each other with hologram rotation). The software developed ("RainBow") provides stability of colorization of rotated image by means of equalizing of angular blur from gratings responsible for R, G, B basic colors. The approach based on R, G, B color synthesis allows one to fabricate gray-tone rainbow hologram containing white color what is hardly possible in traditional dot-matrix technology. Budgetary electron beam lithography based on SEM column was used to fabricate practical examples of digital rainbow hologram. The results of fabrication of large rainbow holograms from design to imprinting are presented. Advantages of the EBL in comparison to traditional optical (dot-matrix) technology is considered.

  15. Evaluation of chronic periapical lesions by digital subtraction radiography by using Adobe Photoshop CS: a technical report.

    PubMed

    Carvalho, Fabiola B; Gonçalves, Marcelo; Tanomaru-Filho, Mário

    2007-04-01

    The purpose of this study was to describe a new technique by using Adobe Photoshop CS (San Jose, CA) image-analysis software to evaluate the radiographic changes of chronic periapical lesions after root canal treatment by digital subtraction radiography. Thirteen upper anterior human teeth with pulp necrosis and radiographic image of chronic periapical lesion were endodontically treated and radiographed 0, 2, 4, and 6 months after root canal treatment by using a film holder. The radiographic films were automatically developed and digitized. The radiographic images taken 0, 2, 4, and 6 months after root canal therapy were submitted to digital subtraction in pairs (0 and 2 months, 2 and 4 months, and 4 and 6 months) choosing "image," "calculation," "subtract," and "new document" tools from Adobe Photoshop CS image-analysis software toolbar. The resulting images showed areas of periapical healing in all cases. According to this methodology, the healing or expansion of periapical lesions can be evaluated by means of digital subtraction radiography by using Adobe Photoshop CS software.

  16. Digital structural interpretation of mountain-scale photogrammetric 3D models (Kamnik Alps, Slovenia)

    NASA Astrophysics Data System (ADS)

    Dolžan, Erazem; Vrabec, Marko

    2015-04-01

    From the earliest days of geological science, mountainous terrains with their extreme topographic relief and sparse to non-existent vegetation were utilized to a great advantage for gaining 3D insight into geological structure. But whereas Alpine vistas may offer perfect panoramic views of geology, the steep mountain slopes and vertical cliffs make it very time-consuming and difficult (if not impossible) to acquire quantitative mapping data such as precisely georeferenced traces of geological boundaries and attitudes of structural planes. We faced this problem in mapping the central Kamnik Alps of northern Slovenia, which are built up from Mid to Late Triassic succession of carbonate rocks. Polyphase brittle tectonic evolution, monotonous lithology and the presence of temporally and spatially irregular facies boundary between bedded platform carbonates and massive reef limestones considerably complicate the structural interpretation of otherwise perfectly exposed, but hardly accessible massif. We used Agisoft Photoscan Structure-from-Motion photogrammetric software to process a series of overlapping high-resolution (~0.25 m ground resolution) vertical aerial photographs originally acquired by the Geodetic Authority of the Republic of Slovenia for surveying purposes, to derive very detailed 3D triangular mesh models of terrain and associated photographic textures. Phototextures are crucial for geological interpretation of the models as they provide additional levels of detail and lithological information which is not resolvable from geometrical mesh models alone. We then exported the models to Paradigm Gocad software to refine and optimize the meshing. Structural interpretation of the models, including mapping of traces and surfaces of faults and stratigraphic boundaries and determining dips of structural planes, was performed in MVE Move suite which offers a range of useful tools for digital mapping and interpretation. Photogrammetric model was complemented by

  17. Testing 3D landform quantification methods with synthetic drumlins in a real digital elevation model

    NASA Astrophysics Data System (ADS)

    Hillier, John K.; Smith, Mike J.

    2012-06-01

    Metrics such as height and volume quantifying the 3D morphology of landforms are important observations that reflect and constrain Earth surface processes. Errors in such measurements are, however, poorly understood. A novel approach, using statistically valid ‘synthetic' landscapes to quantify the errors is presented. The utility of the approach is illustrated using a case study of 184 drumlins observed in Scotland as quantified from a Digital Elevation Model (DEM) by the ‘cookie cutter' extraction method. To create the synthetic DEMs, observed drumlins were removed from the measured DEM and replaced by elongate 3D Gaussian ones of equivalent dimensions positioned randomly with respect to the ‘noise' (e.g. trees) and regional trends (e.g. hills) that cause the errors. Then, errors in the cookie cutter extraction method were investigated by using it to quantify these ‘synthetic' drumlins, whose location and size is known. Thus, the approach determines which key metrics are recovered accurately. For example, mean height of 6.8 m is recovered poorly at 12.5 ± 0.6 (2σ) m, but mean volume is recovered correctly. Additionally, quantification methods can be compared: A variant on the cookie cutter using an un-tensioned spline induced about twice (× 1.79) as much error. Finally, a previously reportedly statistically significant (p = 0.007) difference in mean volume between sub-populations of different ages, which may reflect formational processes, is demonstrated to be only 30-50% likely to exist in reality. Critically, the synthetic DEMs are demonstrated to realistically model parameter recovery, primarily because they are still almost entirely the original landscape. Results are insensitive to the exact method used to create the synthetic DEMs, and the approach could be readily adapted to assess a variety of landforms (e.g. craters, dunes and volcanoes).

  18. Persistent and automatic intraoperative 3D digitization of surfaces under dynamic magnifications of an operating microscope.

    PubMed

    Kumar, Ankur N; Miga, Michael I; Pheiffer, Thomas S; Chambless, Lola B; Thompson, Reid C; Dawant, Benoit M

    2015-01-01

    One of the major challenges impeding advancement in image-guided surgical (IGS) systems is the soft-tissue deformation during surgical procedures. These deformations reduce the utility of the patient's preoperative images and may produce inaccuracies in the application of preoperative surgical plans. Solutions to compensate for the tissue deformations include the acquisition of intraoperative tomographic images of the whole organ for direct displacement measurement and techniques that combines intraoperative organ surface measurements with computational biomechanical models to predict subsurface displacements. The later solution has the advantage of being less expensive and amenable to surgical workflow. Several modalities such as textured laser scanners, conoscopic holography, and stereo-pair cameras have been proposed for the intraoperative 3D estimation of organ surfaces to drive patient-specific biomechanical models for the intraoperative update of preoperative images. Though each modality has its respective advantages and disadvantages, stereo-pair camera approaches used within a standard operating microscope is the focus of this article. A new method that permits the automatic and near real-time estimation of 3D surfaces (at 1 Hz) under varying magnifications of the operating microscope is proposed. This method has been evaluated on a CAD phantom object and on full-length neurosurgery video sequences (∼1 h) acquired intraoperatively by the proposed stereovision system. To the best of our knowledge, this type of validation study on full-length brain tumor surgery videos has not been done before. The method for estimating the unknown magnification factor of the operating microscope achieves accuracy within 0.02 of the theoretical value on a CAD phantom and within 0.06 on 4 clinical videos of the entire brain tumor surgery. When compared to a laser range scanner, the proposed method for reconstructing 3D surfaces intraoperatively achieves root mean square

  19. Intrafractional 3D localization using kilovoltage digital tomosynthesis for sliding-window intensity modulated radiation therapy

    PubMed Central

    Zhang, Pengpeng; Hunt, Margie; Pham, Hai; Tang, Grace; Mageras, Gig

    2016-01-01

    Purpose To implement novel imaging sequences integrated into intensity modulated radiation therapy (IMRT) and determine 3D positions for intrafractional patient motion monitoring and management. Method In one method, we converted a static gantry IMRT beam into a series of arcs in which dose index and multileaf collimator positions for all control points were unchanged, but gantry angles were modified to oscillate ±3° around the original angle. Kilovoltage (kV) projections were acquired continuously throughout delivery and reconstructed to provide a series of 6° arc digital tomosynthesis (DTS) images which served to evaluate the in-plane positions of embedded-fiducials/vertebral-body. To obtain out-of-plane positions via triangulation, a 20° gantry rotation with beam hold-off was inserted during delivery to produce a pair of 6° DTS images separated by 14°. In a second method, the gantry remained stationary, but both kV source and detector moved over a 15° longitudinal arc using pitch and translational adjustment of the robotic arms. Evaluation of localization accuracy in an anthropomorphic Rando phantom during simulated intrafractional motion used programmed couch translations from customized scripts. Purpose-built software was used to reconstruct DTS images, register them to reference template images and calculate 3D fiducial positions. Result No significant dose difference (<0.5%) was found between the original and converted IMRT beams. For a typical hypofractionated spine treatment, 200 single DTS (6° arc) and 10 paired DTS (20° arc) images were acquired for each IMRT beam, providing in-plane and out-of-plane monitoring every 1.6 and 34.5 seconds, respectively. Mean ± standard deviation error in predicted position was −0.3±0.2 mm, −0.1±0.1 mm in-plane, and 0.2±0.4 mm out-of-plane with rotational gantry, 0.8±0.1 mm, −0.7±0.3 mm in-plane and 1.1±0.1 mm out-of-plane with translational source/detector. Conclusion Acquiring 3D fiducial positions

  20. UAV based 3D digital surface model to estimate paleolandscape in high mountainous environment

    NASA Astrophysics Data System (ADS)

    Mészáros, János; Árvai, Mátyás; Kohán, Balázs; Deák, Márton; Nagy, Balázs

    2016-04-01

    Our method to present current state of a peat bog was focused on the possible use of a UAV-system and later Structure-from-motion algorithms as processing technique. The peat bog site is located on the Vinderel Plateau, Farcǎu Massif, Maramures Mountains (Romania). The peat bog (1530 m a.s.l., N47°54'11", E24°26'37") lies below Rugasu ridge (c. 1820 m a.s.l.) and the locality serves as a conservation area for fallen down coniferous trees. Peat deposits were formed in a landslide concavity on the western slope of Farcǎu Massif. Nowadays the site is surrounded by a completely deforested landscape, and Farcǎu Massif lies above the depressed treeline. The peat bog has an extraordinary geomorphological situation, because a gully reached the bog and drained the water. In the recent past sedimentological and dendrochronological researches have been initiated. However, an accurate 3D digital surface model also needed for a complex paleoenvironmental research. Last autumn the bog and its surroundings were finally surveyed by a multirotor UAV developed in-house based on an open-source flight management unit and its firmware. During this survey a lightweight action camera (mainly to decrease payload weight) was used to take aerial photographs. While our quadcopter is capable to fly automatically on a predefined flight route, several over- and sidelapping flight lines were generated prior to the actual survey on the ground using a control software running on a notebook. Despite those precautions, limited number of batteries and severe weather affected our final flights, resulting a reduced surveyed area around peat bog. Later, during the processing we looked for a reliable tool which powerful enough to process more than 500 photos taken during flights. After testing several software Agisoft PhotoScan was used to create 3D point cloud and mesh about bog and its environment. Due to large number of photographs PhotoScan had to be configured for network processing to get

  1. Intrafractional 3D localization using kilovoltage digital tomosynthesis for sliding-window intensity modulated radiation therapy.

    PubMed

    Zhang, Pengpeng; Hunt, Margie; Pham, Hai; Tang, Grace; Mageras, Gig

    2015-09-07

    To implement novel imaging sequences integrated into intensity modulated radiation therapy (IMRT) and determine 3D positions for intrafractional patient motion monitoring and management.In one method, we converted a static gantry IMRT beam into a series of arcs in which dose index and multileaf collimator positions for all control points were unchanged, but gantry angles were modified to oscillate ± 3° around the original angle. Kilovoltage (kV) projections were acquired continuously throughout delivery and reconstructed to provide a series of 6° arc digital tomosynthesis (DTS) images which served to evaluate the in-plane positions of embedded-fiducials/vertebral-body. To obtain out-of-plane positions via triangulation, a 20° gantry rotation with beam hold-off was inserted during delivery to produce a pair of 6° DTS images separated by 14°. In a second method, the gantry remained stationary, but both kV source and detector moved over a 15° longitudinal arc using pitch and translational adjustment of the robotic arms. Evaluation of localization accuracy in an anthropomorphic Rando phantom during simulated intrafractional motion used programmed couch translations from customized scripts. Purpose-built software was used to reconstruct DTS images, register them to reference template images and calculate 3D fiducial positions.No significant dose difference (<0.5%) was found between the original and converted IMRT beams. For a typical hypofractionated spine treatment, 200 single DTS (6° arc) and 10 paired DTS (20° arc) images were acquired for each IMRT beam, providing in-plane and out-of-plane monitoring every 1.6 and 34.5 s, respectively. Mean ± standard deviation error in predicted position was -0.3 ± 0.2 mm, -0.1 ± 0.1 mm in-plane, and 0.2 ± 0.4 mm out-of-plane with rotational gantry, 0.8 ± 0.1 mm, -0.7 ± 0.3 mm in-plane and 1.1 ± 0.1 mm out-of-plane with translational source/detector.Acquiring 3D fiducial positions from kV-DTS during fixed gantry

  2. 3D measurements of live cells via digital holographic microscopy and terahertz spectroscopy

    NASA Astrophysics Data System (ADS)

    Park, Jun Yong; Oser, Dorian; Iapozzuto, Peter; Norbury, Sean; Mahajan, Supriya; Khmaladze, Alexander; Sharikova, Anna

    2016-03-01

    This is a study of the central nervous system (CNS) cells, including brain micro vascular endothelial cells (BMV) that constitute the blood brain barrier, and C6 glial cells that are the predominant cell in the brain. The cells are exposed to various chemicals by non-invasive, label-free methods. Digital holographic microscopy (DHM) is a technique that records an interference pattern between an object and reference waves, so that the computationally reconstructed holographic image contains both amplitude and phase information, and 3D images are obtained. The measurement of cell cultures by digital holographic microscopy yields information about cell death mechanisms, since these processes are correlated with individual cell volume. Our in-house DHM combines a visible (red) laser source with a conventional microscope base, and LabVIEW-run data processing. Terahertz spectral signatures are associated with structural changes in molecules and provide complementary information about cells. Both CNS cells BMV and C6 cells are treated with the drug "Methamphetamine" (METH), which induces apoptosis in neuronal cells and exhibits decrease in cell volume, a characteristic of cells undergoing apoptosis (induced cell death). METH can cause CNS cell death by cross-talk between mitochondria-, endoplasmic reticulum-, and receptor-mediated apoptotic events, all of which results in drug induced changes in neuroplasticity and significant neuropathology. Doxorubicin (DOX), a popular anticancer drug, is used as a control. We observe that METH treatment resulted in more pronounced cell volume shrinkage in both the BMV and C6 cells, as compared to DOX-induced cell apoptosis.

  3. Conceptual design of an 8 Tesla superconducting wiggler for a dedicated digital subtraction angiography source

    SciTech Connect

    Blum, E.B.

    1993-09-01

    One of the most important techniques used to diagnose heart disease is coronary angiography. Coronary angiography is only used when it is absolutely essential because of the risk of fatalities and other serious complications arising from the insertion of the catheter. The technique also exposes the patients to large amounts of x-rays. Research, begun at SSRL and continued on the X17 beam line at NSLS, demonstrated the feasibility of imaging human coronary arteries following venous injection of the contrast agent. The technique, caged digital subtraction angiography (DSA), uses two monochromatic beams of x-rays, one slightly above and one slightly below the iodine K absorption edge (33.169 KeV) to collect simultaneous images. When the two images are subtracted, the contrast agent, contained primarily in the blood vessels, is revealed and the background that is common to both images is suppressed. The images must be collected during a single heartbeat to avoid blurring from motion of the blood vessels. Conventional x-ray sources are too weak to provide the intense flux that is required in the narrow energy bandwidth of the beams. Only the most powerful synchrotron radiation beams from wiggler magnet sources can provide the intensity required in the short exposure time. Although DSA experiments have shown promise, they have been conducted at large, research synchrotron radiation facilities. A small, dedicated source will be needed before DSA can be used as a standard medical procedure. Such x-ray sources as laser backscattering, Cherenkov radiation, parametric x-radiation, and channeling radiation have been suggested for hospital based DSA sources but none of them appear to produce enough flux to be useful. Barring the discovery of a new source of intense x-rays, only synchrotron radiation seems to meet the requirements for DSA. This report briefly describes the preliminary design of a high field, superconducting wiggler magnet that can be used as a DSA source.

  4. Recording High Resolution 3D Lagrangian Motions In Marine Dinoflagellates using Digital Holographic Microscopic Cinematography

    NASA Astrophysics Data System (ADS)

    Sheng, J.; Malkiel, E.; Katz, J.; Place, A. R.; Belas, R.

    2006-11-01

    Detailed data on swimming behavior and locomotion for dense population of dinoflagellates constitutes a key component to understanding cell migration, cell-cell interactions and predator-prey dynamics, all of which affect algae bloom dynamics. Due to the multi-dimensional nature of flagellated cell motions, spatial-temporal Lagrangian measurements of multiple cells in high concentration are very limited. Here we present detailed data on 3D Lagrangian motions for three marine dinoflagellates: Oxyrrhis marina, Karlodinium veneficum, and Pfiesteria piscicida, using digital holographic microscopic cinematography. The measurements are performed in a 5x5x25mm cuvette with cell densities varying from 50,000 ˜ 90,000 cells/ml. Approximately 200-500 cells are tracked simultaneously for 12s at 60fps in a sample volume of 1x1x5 mm at a spatial resolution of 0.4x0.4x2 μm. We fully resolve the longitudinal flagella (˜200nm) along with the Lagrangian trajectory of each organism. Species dependent swimming behavior are identified and categorized quantitatively by velocities, radii of curvature, and rotations of pitch. Statistics on locomotion, temporal & spatial scales, and diffusion rate show substantial differences between species. The scaling between turning radius and cell dimension can be explained by a distributed stokeslet model for a self-propelled body.

  5. A digital holography set-up for 3D vortex flow dynamics

    NASA Astrophysics Data System (ADS)

    Lebon, Benoît; Perret, Gaële; Coëtmellec, Sébastien; Godard, Gilles; Gréhan, Gérard; Lebrun, Denis; Brossard, Jérôme

    2016-06-01

    In the present paper, a digital in-line holography (DIH) set-up, with a converging beam, is used to take three-dimensional (3D) velocity measurements of vortices. The vortices are formed periodically at the edges of a submerged horizontal plate submitted to regular waves. They take the form of vortex filaments that extend from side to side of the channel. They undergo strongly three-dimensional instability mechanisms that remain very complicated to characterize experimentally. The experiments are performed in a 10 × 0.3 × 0.3 m3 wave flume. The DIH set-up is performed using a modulated laser diode emitting at the wavelength of 640 nm and a lensless CCD camera. The beam crosses the channel side to side. To reveal the flow dynamics, 30-μm hydrogen bubbles are generated at the edge of the plate to serve as tracers. Their locations are recorded on the holograms multiple times to access the dynamics of the flow. This method leads to an accuracy in the order of 100 μm on the axial location. Those measurements have been validated with stereo-PIV measurements. A very good agreement is found on time-averaged velocity fields between the two techniques.

  6. Accurate B-spline-based 3-D interpolation scheme for digital volume correlation.

    PubMed

    Ren, Maodong; Liang, Jin; Wei, Bin

    2016-12-01

    An accurate and efficient 3-D interpolation scheme, based on sampling theorem and Fourier transform technique, is proposed to reduce the sub-voxel matching error caused by intensity interpolation bias in digital volume correlation. First, the influence factors of the interpolation bias are investigated theoretically using the transfer function of an interpolation filter (henceforth filter) in the Fourier domain. A law that the positional error of a filter can be expressed as a function of fractional position and wave number is found. Then, considering the above factors, an optimized B-spline-based recursive filter, combining B-spline transforms and least squares optimization method, is designed to virtually eliminate the interpolation bias in the process of sub-voxel matching. Besides, given each volumetric image containing different wave number ranges, a Gaussian weighting function is constructed to emphasize or suppress certain of wave number ranges based on the Fourier spectrum analysis. Finally, a novel software is developed and series of validation experiments were carried out to verify the proposed scheme. Experimental results show that the proposed scheme can reduce the interpolation bias to an acceptable level.

  7. Euro-Maps 3D- A Transnational, High-Resolution Digital Surface Model For Europe

    NASA Astrophysics Data System (ADS)

    Uttenthaler, A.; Barner, F.; Hass, T.; Makiola, J.; d'Angelo, P.; Reinartz, P.; Carl, S.; Steiner, K.

    2013-12-01

    Euro-Maps 3D is a homogeneous 5 m spaced digital surface model (DSM) semi-automatically derived by Euromap from 2.5 m in-flight stereo data provided by the Indian IRS-P5 Cartosat-1 satellite. This new and innovative product has been developed in close co- operation with the Remote Sensing Technology Institute (IMF) of the German Aerospace Center (DLR) and is being jointly exploited. The very detailed and accurate representation of the surface is achieved by using a sophisticated and well adapted algorithm implemented on the basis of the Semi-Global Matching approach. In addition, the final product includes detailed flanking information consisting of several pixel-based quality and traceability layers also including an ortho layer. The product is believed to provide maximum accuracy and transparency. The DSM product meets and exceeds HRE80 qualification standards. The DSM product will be made available transnational in a homogeneous quality for most parts of Europe, North Africa and Turkey by Euromap step-by-step. Other areas around the world are processed on demand.

  8. Development and Characterization of Embedded Sensory Particles Using Multi-Scale 3D Digital Image Correlation

    NASA Technical Reports Server (NTRS)

    Cornell, Stephen R.; Leser, William P.; Hochhalter, Jacob D.; Newman, John A.; Hartl, Darren J.

    2014-01-01

    A method for detecting fatigue cracks has been explored at NASA Langley Research Center. Microscopic NiTi shape memory alloy (sensory) particles were embedded in a 7050 aluminum alloy matrix to detect the presence of fatigue cracks. Cracks exhibit an elevated stress field near their tip inducing a martensitic phase transformation in nearby sensory particles. Detectable levels of acoustic energy are emitted upon particle phase transformation such that the existence and location of fatigue cracks can be detected. To test this concept, a fatigue crack was grown in a mode-I single-edge notch fatigue crack growth specimen containing sensory particles. As the crack approached the sensory particles, measurements of particle strain, matrix-particle debonding, and phase transformation behavior of the sensory particles were performed. Full-field deformation measurements were performed using a novel multi-scale optical 3D digital image correlation (DIC) system. This information will be used in a finite element-based study to determine optimal sensory material behavior and density.

  9. High-accuracy and real-time 3D positioning, tracking system for medical imaging applications based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Xue, Yuan; Cheng, Teng; Xu, Xiaohai; Gao, Zeren; Li, Qianqian; Liu, Xiaojing; Wang, Xing; Song, Rui; Ju, Xiangyang; Zhang, Qingchuan

    2017-01-01

    This paper presents a system for positioning markers and tracking the pose of a rigid object with 6 degrees of freedom in real-time using 3D digital image correlation, with two examples for medical imaging applications. Traditional DIC method was improved to meet the requirements of the real-time by simplifying the computations of integral pixel search. Experiments were carried out and the results indicated that the new method improved the computational efficiency by about 4-10 times in comparison with the traditional DIC method. The system was aimed for orthognathic surgery navigation in order to track the maxilla segment after LeFort I osteotomy. Experiments showed noise for the static point was at the level of 10-3 mm and the measurement accuracy was 0.009 mm. The system was demonstrated on skin surface shape evaluation of a hand for finger stretching exercises, which indicated a great potential on tracking muscle and skin movements.

  10. Acquiring multi-viewpoint image of 3D object for integral imaging using synthetic aperture phase-shifting digital holography

    NASA Astrophysics Data System (ADS)

    Jeong, Min-Ok; Kim, Nam; Park, Jae-Hyeung; Jeon, Seok-Hee; Gil, Sang-Keun

    2009-02-01

    We propose a method generating elemental images for the auto-stereoscopic three-dimensional display technique, integral imaging, using phase-shifting digital holography. Phase shifting digital holography is a way recording the digital hologram by changing phase of the reference beam and extracting the complex field of the object beam. Since all 3D information is captured by the phase-shifting digital holography, the elemental images for any specifications of the lens array can be generated from single phase-shifting digital holography. We expanded the viewing angle of the generated elemental image by using the synthetic aperture phase-shifting digital hologram. The principle of the proposed method is verified experimentally.

  11. Examination of heterogeneous crossing sequences between toner and rollerball pen strokes by digital microscopy and 3-D laser profilometry.

    PubMed

    Montani, Isabelle; Mazzella, Williams; Guichard, Marion; Marquis, Raymond

    2012-07-01

    The determination of line crossing sequences between rollerball pens and laser printers presents difficulties that may not be overcome using traditional techniques. This research aimed to study the potential of digital microscopy and 3-D laser profilometry to determine line crossing sequences between a toner and an aqueous ink line. Different paper types, rollerball pens, and writing pressure were tested. Correct opinions of the sequence were given for all case scenarios, using both techniques. When the toner was printed before the ink, a light reflection was observed in all crossing specimens, while this was never observed in the other sequence types. The 3-D laser profilometry, more time-consuming, presented the main advantage of providing quantitative results. The findings confirm the potential of the 3-D laser profilometry and demonstrate the efficiency of digital microscopy as a new technique for determining the sequence of line crossings involving rollerball pen ink and toner.

  12. Digital relief 3D model of the Khibiny massive (Kola peninsula)

    NASA Astrophysics Data System (ADS)

    Chesalova, Elena; Asavin, Alex

    2015-04-01

    On the basis of maps of 1: 50,000 and 1: 200,000 3D model Khibiny massif developed. We used software ARC / INFO v10.2 ESRI. This project will be organised to build background for gas pollution monitoring network. We planned to use the model to estimate local heterogeneities in the composition of the atmosphere at the emanation of greenhouse gases in the area, the construction of models of vertical distribution of the content of trace gases in the rock mass. In addition to the project GIS digital elevation model contains layers of geological and tectonic map that allows us to estimate the area of the output of certain petrographic rock groups characterized by different ratios of emitted hydrocarbons (CH4/ H2). The model allows to construct a classification of fault in the array. At first glance, there are two groups of faults - the ancient associated with the formation of the intrusive phases sequence, and the young - due to recent tectonic shifts. Ancient faults form a common semicircular structure of the pluton cause overall asymmetry Khibin heights with the transition to the border area between the Khibiny and Lovoozero. Modern tectonics mainly represented by radial and chord faults which are formed narrow mountain valleys and troughs. It remains an open question as to which system fault (old or young) is more productive to gas emanations? On the one hand the system characterized by a large old depth, on the other hand a young more active faults. Address these issues require further detailed observations. The essential question is to assess the possibility of maintaining a constant concentration gradient of these impurities in the atmosphere due to gas emanations of fracture zones and areas enriched occluded gases. In the simulation of these processes can be used initially set parameters: 1 the flow rate of the gas impurities 2 the value of wind flows in closed and open valley 3 Assessment of thermal diffusion coefficients determined by the temperature gradient

  13. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT.

    PubMed

    Badea, Cristian T; Hedlund, Laurence W; Johnson, G Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging.

  14. [Digital subtraction angiography with carbon dioxide in severe arterial ischemia and allergy to iodinated compounds].

    PubMed

    Calvo Cascallo, J; Mundi Salvadó, N; Cardona Fontanet, M

    1993-01-01

    When in some selected patients, a direct arterial surgery (DAS) procedure or an endoluminal surgery (ES) are required for a chronic arterial ischemia (III or IV degrees), and an arteriography with contrast is absolutely contraindicated (because of severe renal failure without hemodialysis program or a severe congestive heart failure or a hyperthyroidism or a seriously demonstrated hypersensibility against the contrast agents); an angiography by digital subtraction with carbon dioxide (DIVAS-CO2) is indicated. This technique provides good quality images with minimal risks for the patient and an adequate study for ulterior treatment. We report a case of a 67-years-old woman, with diabetes-II, ischemic cardiopathy, arterial hypertension and a demonstrated hypersensibility against the iodide compounds. The patient was admitted because of a chronic ischemia (IV degree) with ischemic ulcerations on some fingers from the left foot. High doses of analgesic drugs were needed. Because the hypersensibility against the iodide compounds, an angiography with CO2 was carried out. The good quality images provided by this technique showed the factibility of a revascularization.

  15. Comparison of CT angiography and digital subtraction angiography in the diagnosis of aortic coarctation.

    PubMed

    Miabi, Zinat; Pourfathi, Hojjat; Midia, Mehran; Midia, Ramin; Parvizi, Rezayat

    2011-01-01

    There are several methods for the diagnosis and evaluation of coarctation of the aorta. Digital Subtraction Angiography (DSA) is the standard detection method, though it entails complications and side-effects. The aim of the present study was to compare Computed Tomography (CT) angiography with DSA for diagnosing aortic coarctation. We performed a cross-sectional study of 15 patients (11 males and four females aged between two and 30 years) referred to Tabriz Shahid Madani Hospital and Imaging Center between August 2005 and February 2006 with suspected aortic coarctation. All patients were subjected to DSA and CT angiography for diagnosis of aortic coarctation. The mean age of the patients was 14.6 years; 11 were male (74.4%) and four (26.6%) were female. The DSA and CT angiography results were comparable in all patients in terms of diagnosis and the detection of complications, particularly cardiovascular complications. However, CT angiography was less time-consuming to perform than DSA (p < 0.0001). In conclusion, CT angiography, comparableto DSA, diagnosed coarctation of aorta in all the patients. However, CT angiography is a non-invasive, cost effective procedure that takes significantly less time to carry out than DSA. Therefore, CT angiography is recommended as an appropriate method for diagnosing the coarctation of aorta.

  16. Accurate registration of coronary arteries for volumetric CT digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Razeto, Marco; Matthews, James; Masood, Saad; Steel, Jill; Arakita, Kazumasa

    2013-03-01

    In the diagnosis of coronary artery disease with coronary computed tomography angiography, accurate evaluation remains challenging in the presence of calcifications or stents. Volumetric CT Digital Subtraction Angiography is a novel method that may become a powerful tool to overcome these limitations. However, precise registration of structures is essential, as even small misalignments can produce striking and disruptive bright and dark artefacts. Moreover, for clinical acceptance, the tool should require minimal user interaction and fast turnaround, thereby raising several challenges. In this paper we address the problem with a registration method based on a global non- rigid step, followed by local rigid refinement. In our quantitative analysis based on 10 datasets, each consisting of a pair of pre- and post-contrast scans of the same patient, we achieve an average Target Registration Error of 0.45 mm. Runtimes are less than 90 seconds for the global step, while each local refinement takes less than 15 seconds to run. Initial clinical evaluation shows good results in cases of moderate calcification, and indicates that around 50% of severely calcified and previously non-interpretable cases have been made interpretable by application of our method.

  17. Failing Hemodialysis Arteriovenous Fistula and Percutaneous Treatment: Imaging with CT, MRI and Digital Subtraction Angiography

    SciTech Connect

    Cavagna, Enrico; D'Andrea, Paolo; Schiavon, Francesco; Tarroni, Giovanni

    2000-07-15

    Purpose: To evaluate failing hemodialysis arteriovenous fistulas with helical CT angiography (CTA), MR angiography (MRA), and digital subtraction angiography (DSA), and to compare the efficacy of the three techniques in detecting the number, location, grade, and extent of stenoses and in assessing the technical results of percutaneous transluminal angioplasty (PTA) and stenting.Methods: Thirteen patients with Brescia-Cimino arteriovenous fistula malfunction underwent MRA and CTA of the fistula and, within 1 week, DSA. A total of 11 PTAs were performed; in three cases an MR-compatible stent was placed. DSA served as the gold standard for comparison in all patients. The presence, site, and number of stenoses or occlusions and the technical results of percutaneous procedures were assessed with DSA, CTA, and MRA.Results: MRA underestimated a single stenosis in one patient; CTA and MRA did not overestimate any stenosis. Significant artifacts related to stent geometry and/or underlying metal were seen in MRA sequences in two cases.Conclusions: CT and MRI can provide information regarding the degree of vascular impairment, helping to stratify patients into those who can have PTA (single or multiple stenoses) versus those who require an operative procedure (occlusion). Conventional angiography can be reserved for candidates for percutaneous intervention.

  18. In Vivo Small Animal Imaging using Micro-CT and Digital Subtraction Angiography

    PubMed Central

    Badea, C.T.; Drangova, M.; Holdsworth, D.W.; Johnson, G.A.

    2009-01-01

    Small animal imaging has a critical role in phenotyping, drug discovery, and in providing a basic understanding of mechanisms of disease. Translating imaging methods from humans to small animals is not an easy task. The purpose of this work is to review in vivo X-ray based small animal imaging, with a focus on in vivo micro-computed tomography (micro-CT) and digital subtraction angiography (DSA). We present the principles, technologies, image quality parameters and types of applications. We show that both methods can be used not only to provide morphological, but also functional information, such as cardiac function estimation or perfusion. Compared to other modalities, x-ray based imaging is usually regarded as being able to provide higher throughput at lower cost and adequate resolution. The limitations are usually associated with the relatively poor contrast mechanisms and potential radiation damage due to ionizing radiation, although the use of contrast agents and careful design of studies can address these limitations. We hope that the information will effectively address how x-ray based imaging can be exploited for successful in vivo preclinical imaging. PMID:18758005

  19. A LabVIEW Platform for Preclinical Imaging Using Digital Subtraction Angiography and Micro-CT

    PubMed Central

    Badea, Cristian T.; Hedlund, Laurence W.; Johnson, G. Allan

    2013-01-01

    CT and digital subtraction angiography (DSA) are ubiquitous in the clinic. Their preclinical equivalents are valuable imaging methods for studying disease models and treatment. We have developed a dual source/detector X-ray imaging system that we have used for both micro-CT and DSA studies in rodents. The control of such a complex imaging system requires substantial software development for which we use the graphical language LabVIEW (National Instruments, Austin, TX, USA). This paper focuses on a LabVIEW platform that we have developed to enable anatomical and functional imaging with micro-CT and DSA. Our LabVIEW applications integrate and control all the elements of our system including a dual source/detector X-ray system, a mechanical ventilator, a physiological monitor, and a power microinjector for the vascular delivery of X-ray contrast agents. Various applications allow cardiac- and respiratory-gated acquisitions for both DSA and micro-CT studies. Our results illustrate the application of DSA for cardiopulmonary studies and vascular imaging of the liver and coronary arteries. We also show how DSA can be used for functional imaging of the kidney. Finally, the power of 4D micro-CT imaging using both prospective and retrospective gating is shown for cardiac imaging. PMID:27006920

  20. From digital mapping to GIS-based 3D visualization of geological maps: example from the Western Alps geological units

    NASA Astrophysics Data System (ADS)

    Balestro, Gianni; Cassulo, Roberto; Festa, Andrea; Fioraso, Gianfranco; Nicolò, Gabriele; Perotti, Luigi

    2015-04-01

    Collection of field geological data and sharing of geological maps are nowadays greatly enhanced by using digital tools and IT (Information Technology) applications. Portable hardware allows accurate GPS localization of data and homogeneous storing of information in field databases, whereas GIS (Geographic Information Systems) applications enable generalization of field data and realization of geological map databases. A further step in the digital processing of geological map information consists of building virtual visualization by means of GIS-based 3D viewers, that allow projection and draping of significant geological features over photo-realistic terrain models. Digital fieldwork activities carried out by the Authors in the Western Alps, together with building of geological map databases and related 3D visualizations, are an example of application of the above described digital technologies. Digital geological mapping was performed by means of a GIS mobile software loaded on a rugged handheld device, and lithological, structural and geomorphological features with their attributes were stored in different layers that form the field database. The latter was then generalized through usual map processing steps such as outcrops interpolation, characterization of geological boundaries and selection of meaningful punctual observations. This map databases was used for building virtual visualizations through a GIS-based 3D-viewer that loaded detailed DTM (resolution of 5 meters) and aerial images. 3D visualizations were focused on projection and draping of significant stratigraphic contacts (e.g. contacts that separate different Quaternary deposits) and tectonic contacts (i.e. exhumation-related contacts that dismembered original ophiolite sequences). In our experience digital geological mapping and related databases ensured homogeneous data storing and effective sharing of information, and allowed subsequent building of 3D GIS-based visualizations. The latters gave

  1. Digital Reconstruction of AN Archaeological Site Based on the Integration of 3d Data and Historical Sources

    NASA Astrophysics Data System (ADS)

    Guidi, G.; Russo, M.; Angheleddu, D.

    2013-02-01

    The methodology proposed in this paper in based on an integrated approach for creating a 3D digital reconstruction of an archaeological site, using extensively the 3D documentation of the site in its current state, followed by an iterative interaction between archaeologists and digital modelers, leading to a progressive refinement of the reconstructive hypotheses. The starting point of the method is the reality-based model, which, together with ancient drawings and documents, is used for generating the first reconstructive step. Such rough approximation of a possible architectural structure can be annotated through archaeological considerations that has to be confronted with geometrical constraints, producing a reduction of the reconstructive hypotheses to a limited set, each one to be archaeologically evaluated. This refinement loop on the reconstructive choices is iterated until the result become convincing by both points of view, integrating in the best way all the available sources. The proposed method has been verified on the ruins of five temples in the My Son site, a wide archaeological area located in central Vietnam. The integration of 3D surveyed data and historical documentation has allowed to support a digital reconstruction of not existing architectures, developing their three-dimensional digital models step by step, from rough shapes to highly sophisticate virtual prototypes.

  2. Fish body surface data measurement based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Jiang, Ming; Qian, Chen; Yang, Wenkai

    2016-01-01

    To film the moving fish in the glass tank, light will be bent at the interface of air and glass, glass and water. Based on binocular stereo vision and refraction principle, we establish a mathematical model of 3D image correlation to reconstruct the 3D coordinates of samples in the water. Marking speckle in fish surface, a series of real-time speckle images of swimming fish will be obtained by two high-speed cameras, and instantaneous 3D shape, strain, displacement etc. of fish will be reconstructed.

  3. Classification-based summation of cerebral digital subtraction angiography series for image post-processing algorithms

    NASA Astrophysics Data System (ADS)

    Schuldhaus, D.; Spiegel, M.; Redel, T.; Polyanskaya, M.; Struffert, T.; Hornegger, J.; Doerfler, A.

    2011-03-01

    X-ray-based 2D digital subtraction angiography (DSA) plays a major role in the diagnosis, treatment planning and assessment of cerebrovascular disease, i.e. aneurysms, arteriovenous malformations and intracranial stenosis. DSA information is increasingly used for secondary image post-processing such as vessel segmentation, registration and comparison to hemodynamic calculation using computational fluid dynamics. Depending on the amount of injected contrast agent and the duration of injection, these DSA series may not exhibit one single DSA image showing the entire vessel tree. The interesting information for these algorithms, however, is usually depicted within a few images. If these images would be combined into one image the complexity of segmentation or registration methods using DSA series would drastically decrease. In this paper, we propose a novel method automatically splitting a DSA series into three parts, i.e. mask, arterial and parenchymal phase, to provide one final image showing all important vessels with less noise and moving artifacts. This final image covers all arterial phase images, either by image summation or by taking the minimum intensities. The phase classification is done by a two-step approach. The mask/arterial phase border is determined by a Perceptron-based method trained from a set of DSA series. The arterial/parenchymal phase border is specified by a threshold-based method. The evaluation of the proposed method is two-sided: (1) comparison between automatic and medical expert-based phase selection and (2) the quality of the final image is measured by gradient magnitudes inside the vessels and signal-to-noise (SNR) outside. Experimental results show a match between expert and automatic phase separation of 93%/50% and an average SNR increase of up to 182% compared to summing up the entire series.

  4. Accurate, fully-automated registration of coronary arteries for volumetric CT digital subtraction angiography

    NASA Astrophysics Data System (ADS)

    Razeto, Marco; Mohr, Brian; Arakita, Kazumasa; Schuijf, Joanne D.; Fuchs, Andreas; Kühl, J. Tobias; Chen, Marcus Y.; Kofoed, Klaus F.

    2014-03-01

    Diagnosis of coronary artery disease with Coronary Computed Tomography Angiography (CCTA) is complicated by the presence of signi cant calci cation or stents. Volumetric CT Digital Subtraction Angiography (CTDSA) has recently been shown to be e ective at overcoming these limitations. Precise registration of structures is essential as any misalignment can produce artifacts potentially inhibiting clinical interpretation of the data. The fully-automated registration method described in this paper addresses the problem by combining a dense deformation eld with rigid-body transformations where calci cations/stents are present. The method contains non-rigid and rigid components. Non-rigid registration recovers the majority of motion artifacts and produces a dense deformation eld valid over the entire scan domain. Discrete domains are identi ed in which rigid registrations very accurately align each calci cation/stent. These rigid-body transformations are combined within the immediate area of the deformation eld using a distance transform to minimize distortion of the surrounding tissue. A recent interim analysis of a clinical feasibility study evaluated reader con dence and diagnostic accuracy in conventional CCTA and CTDSA registered using this method. Conventional invasive coronary angiography was used as the reference. The study included 27 patients scanned with a second-generation 320-row CT detector in which 41 lesions were identi ed. Compared to conventional CCTA, CTDSA improved reader con dence in 13/36 (36%) of segments with severe calci cation and 3/5 (60%) of segments with coronary stents. Also, the false positive rate of CTDSA was reduced compared to conventional CCTA from 18% (24/130) to 14% (19/130).

  5. Quantitative blood flow measurements in the small animal cardiopulmonary system using digital subtraction angiography

    SciTech Connect

    Lin Mingde; Marshall, Craig T.; Qi, Yi; Johnston, Samuel M.; Badea, Cristian T.; Piantadosi, Claude A.; Johnson, G. Allan

    2009-11-15

    Purpose: The use of preclinical rodent models of disease continues to grow because these models help elucidate pathogenic mechanisms and provide robust test beds for drug development. Among the major anatomic and physiologic indicators of disease progression and genetic or drug modification of responses are measurements of blood vessel caliber and flow. Moreover, cardiopulmonary blood flow is a critical indicator of gas exchange. Current methods of measuring cardiopulmonary blood flow suffer from some or all of the following limitations--they produce relative values, are limited to global measurements, do not provide vasculature visualization, are not able to measure acute changes, are invasive, or require euthanasia. Methods: In this study, high-spatial and high-temporal resolution x-ray digital subtraction angiography (DSA) was used to obtain vasculature visualization, quantitative blood flow in absolute metrics (ml/min instead of arbitrary units or velocity), and relative blood volume dynamics from discrete regions of interest on a pixel-by-pixel basis (100x100 {mu}m{sup 2}). Results: A series of calibrations linked the DSA flow measurements to standard physiological measurement using thermodilution and Fick's method for cardiac output (CO), which in eight anesthetized Fischer-344 rats was found to be 37.0{+-}5.1 ml/min. Phantom experiments were conducted to calibrate the radiographic density to vessel thickness, allowing a link of DSA cardiac output measurements to cardiopulmonary blood flow measurements in discrete regions of interest. The scaling factor linking relative DSA cardiac output measurements to the Fick's absolute measurements was found to be 18.90xCO{sub DSA}=CO{sub Fick}. Conclusions: This calibrated DSA approach allows repeated simultaneous visualization of vasculature and measurement of blood flow dynamics on a regional level in the living rat.

  6. Laser Transfer of Metals and Metal Alloys for Digital Microfabrication of 3D Objects.

    PubMed

    Zenou, Michael; Sa'ar, Amir; Kotler, Zvi

    2015-09-02

    3D copper logos printed on epoxy glass laminates are demonstrated. The structures are printed using laser transfer of molten metal microdroplets. The example in the image shows letters of 50 µm width, with each letter being taller than the last, from a height of 40 µm ('s') to 190 µm ('l'). The scanning microscopy image is taken at a tilt, and the topographic image was taken using interferometric 3D microscopy, to show the effective control of this technique.

  7. Value of Single-Dose Contrast-Enhanced Magnetic Resonance Angiography Versus Intraarterial Digital Subtraction Angiography in Therapy Indications in Abdominal and Iliac Arteries

    SciTech Connect

    Schaefer, Philipp J. Schaefer, Fritz K. W.; Mueller-Huelsbeck, Stefan; Both, Markus; Heller, Martin; Jahnke, Thomas

    2007-06-15

    The objective of the study was to prove the value of single-dose contrast-enhanced magnetic resonance angiography [three-dimensional (3D) ceMRA] in abdominal and iliac arteries versus the reference standard intra-arterial digital subtraction angiography (i.a.DSA) when indicating a therapy. Patients suspected of having abdominal or iliac artery stenosis were included in this study. A positive vote of the local Ethics Committee was given. After written informed consent was obtained, 37 patients were enrolled, of which 34 were available for image evaluation. Both 3D ceMRA and i.a. DSA were performed for each patient. The dosage for 3D ceMRA was 0.1 mmol/kg body weight in a 1.5-T scanner with a phased-array coil. The parameters of the 3D-FLASH sequence were as follows: TR/TE 4.6/1.8 ms, effective thickness 3.5 mm, matrix 512 x 200, flip angle 30{sup o}, field of view 420 mm, TA 23 s, coronal scan orientation. Totally, 476 vessel segments were evaluated for stenosis degree by two radiologists in a consensus fashion in a blinded read. For each patient, a therapy was proposed, if clinically indicated. Sensitivity, specificity, positive and negative predictive values, and accuracy for stenoses {>=}50% were 68%, 92%, 44%, 97%, and 90%, respectively. In 13/34 patients, a discrepancy was found concerning therapy decisions based on MRA findings versus therapy decisions based on the reference standard DSA. The results showed that the used MRA imaging technique of abdominal and iliac arteries is not competitive to i.a. DSA, with a high rate of misinterpretation of the MRAs resulting in incorrect therapies.

  8. Value of single-dose contrast-enhanced magnetic resonance angiography versus intraarterial digital subtraction angiography in therapy indications in abdominal and iliac arteries.

    PubMed

    Schaefer, Philipp J; Schaefer, Fritz K W; Mueller-Huelsbeck, Stefan; Both, Markus; Heller, Martin; Jahnke, Thomas

    2007-01-01

    The objective of the study was to prove the value of single-dose contrast-enhanced magnetic resonance angiography [three-dimensional (3D) ceMRA] in abdominal and iliac arteries versus the reference standard intra-arterial digital subtraction angiography (i.a.DSA) when indicating a therapy. Patients suspected of having abdominal or iliac artery stenosis were included in this study. A positive vote of the local Ethics Committe was given. After written informed consent was obtained, 37 patients were enrolled, of which 34 were available for image evaluation. Both 3D ceMRA and i.a. DSA were performed for each patient. The dosage for 3D ceMRA was 0.1 mmol/kg body weight in a 1.5-T scanner with a phased-array coil. The parameters of the 3D-FLASH sequence were as follows: TR/TE 4.6/1.8 ms, effective thickness 3.5 mm, matrix 512 x 200, flip angle 30 degrees , field of view 420 mm, TA 23 s, coronal scan orientation. Totally, 476 vessel segments were evaluated for stenosis degree by two radiologists in a consensus fashion in a blinded read. For each patient, a therapy was proposed, if clinically indicated. Sensitivity, specificity, positive and negative predictive values, and accuracy for stenoses > or = 50% were 68%, 92%, 44%, 97%, and 90%, respectively. In 13/34 patients, a discrepancy was found concerning therapy decisions based on MRA findings versus therapy decisions based on the reference standard DSA. The results showed that the used MRA imaging technique of abdominal and iliac arteries is not competitive to i.a. DSA, with a high rate of misinterpretation of the MRAs resulting in incorrect therapies.

  9. User-Appropriate Viewer for High Resolution Interactive Engagement with 3d Digital Cultural Artefacts

    NASA Astrophysics Data System (ADS)

    Gillespie, D.; La Pensée, A.; Cooper, M.

    2013-07-01

    Three dimensional (3D) laser scanning is an important documentation technique for cultural heritage. This technology has been adopted from the engineering and aeronautical industry and is an invaluable tool for the documentation of objects within museum collections (La Pensée, 2008). The datasets created via close range laser scanning are extremely accurate and the created 3D dataset allows for a more detailed analysis in comparison to other documentation technologies such as photography. The dataset can be used for a range of different applications including: documentation; archiving; surface monitoring; replication; gallery interactives; educational sessions; conservation and visualization. However, the novel nature of a 3D dataset is presenting a rather unique challenge with respect to its sharing and dissemination. This is in part due to the need for specialised 3D software and a supported graphics card to display high resolution 3D models. This can be detrimental to one of the main goals of cultural institutions, which is to share knowledge and enable activities such as research, education and entertainment. This has limited the presentation of 3D models of cultural heritage objects to mainly either images or videos. Yet with recent developments in computer graphics, increased internet speed and emerging technologies such as Adobe's Stage 3D (Adobe, 2013) and WebGL (Khronos, 2013), it is now possible to share a dataset directly within a webpage. This allows website visitors to interact with the 3D dataset allowing them to explore every angle of the object, gaining an insight into its shape and nature. This can be very important considering that it is difficult to offer the same level of understanding of the object through the use of traditional mediums such as photographs and videos. Yet this presents a range of problems: this is a very novel experience and very few people have engaged with 3D objects outside of 3D software packages or games. This paper

  10. Imaging bacterial 3D motion using digital in-line holographic microscopy and correlation-based de-noising algorithm

    PubMed Central

    Molaei, Mehdi; Sheng, Jian

    2014-01-01

    Abstract: Better understanding of bacteria environment interactions in the context of biofilm formation requires accurate 3-dimentional measurements of bacteria motility. Digital Holographic Microscopy (DHM) has demonstrated its capability in resolving 3D distribution and mobility of particulates in a dense suspension. Due to their low scattering efficiency, bacteria are substantially difficult to be imaged by DHM. In this paper, we introduce a novel correlation-based de-noising algorithm to remove the background noise and enhance the quality of the hologram. Implemented in conjunction with DHM, we demonstrate that the method allows DHM to resolve 3-D E. coli bacteria locations of a dense suspension (>107 cells/ml) with submicron resolutions (<0.5 µm) over substantial depth and to obtain thousands of 3D cell trajectories. PMID:25607177

  11. Estimating breast thickness for dual-energy subtraction in contrast-enhanced digital mammography using calibration phantoms

    NASA Astrophysics Data System (ADS)

    Lau, Kristen C.; Kwon, Young Joon; Aziz, Moez Karim; Acciavatti, Raymond J.; Maidment, Andrew D. A.

    2016-04-01

    Dual-energy contrast-enhanced digital mammography (DE CE-DM) uses an iodinated contrast agent to image the perfusion and vasculature of the breast. DE images are obtained by a weighted logarithmic subtraction of the high-energy (HE) and low-energy (LE) image pairs. We hypothesized that the optimal DE subtraction weighting factor is thickness-dependent, and developed a method for determining breast tissue composition and thickness in DE CE-DM. Phantoms were constructed using uniform blocks of 100% glandular-equivalent and 100% adipose-equivalent material. The thickness of the phantoms ranged from 3 to 8 cm, in 1 cm increments. For a given thickness, the glandular-adipose composition of the phantom was varied using different combinations of blocks. The logarithmic LE and logarithmic HE signal intensities were measured; they decrease linearly with increasing glandularity for a given thickness. The signals decrease with increasing phantom thickness and the x-ray signal decreases linearly with thickness for a given glandularity. As the thickness increases, the attenuation difference per additional glandular block decreases, indicating beam hardening. From the calibration mapping, we have demonstrated that we can predict percent glandular tissue and thickness when given two distinct signal intensities. Our results facilitate the subtraction of tissue at the boundaries of the breast, and aid in discriminating between contrast agent uptake in glandular tissue and subtraction artifacts.

  12. Application of 3D digital image correlation to track displacements and strains of canvas paintings exposed to relative humidity changes.

    PubMed

    Malowany, Krzysztof; Tymińska-Widmer, Ludmiła; Malesa, Marcin; Kujawińska, Małgorzata; Targowski, Piotr; Rouba, Bogumiła J

    2014-03-20

    This paper introduces a methodology for tracking displacements in canvas paintings exposed to relative humidity changes. Displacements are measured by means of the 3D digital image correlation method that is followed by a postprocessing of displacement data, which allows the separation of local displacements from global displacement maps. The applicability of this methodology is tested on measurements of a model painting on canvas with introduced defects causing local inhomogeneity. The method allows the evaluation of conservation methods used for repairing canvas supports.

  13. Ultra-high-resolution 3D digitalized imaging of the cerebral angioarchitecture in rats using synchrotron radiation

    PubMed Central

    Zhang, Meng-Qi; Zhou, Luo; Deng, Qian-Fang; Xie, Yuan-Yuan; Xiao, Ti-Qiao; Cao, Yu-Ze; Zhang, Ji-Wen; Chen, Xu-Meng; Yin, Xian-Zhen; Xiao, Bo

    2015-01-01

    The angioarchitecture is a fundamental aspect of brain development and physiology. However, available imaging tools are unsuited for non-destructive cerebral mapping of the functionally important three-dimensional (3D) vascular microstructures. To address this issue, we developed an ultra-high resolution 3D digitalized angioarchitectural map for rat brain, based on synchrotron radiation phase contrast imaging (SR-PCI) with pixel size of 5.92 μm. This approach provides a systematic and detailed view of the cerebrovascular anatomy at the micrometer level without any need for contrast agents. From qualitative and quantitative perspectives, the present 3D data provide a considerable insight into the spatial vascular network for whole rodent brain, particularly for functionally important regions of interest, such as the hippocampus, pre-frontal cerebral cortex and the corpus striatum. We extended these results to synchrotron-based virtual micro-endoscopy, thus revealing the trajectory of targeted vessels in 3D. The SR-PCI method for systematic visualization of cerebral microvasculature holds considerable promise for wider application in life sciences, including 3D micro-imaging in experimental models of neurodevelopmental and vascular disorders. PMID:26443231

  14. Hard Copy to Digital Transfer: 3D Models that Match 2D Maps

    ERIC Educational Resources Information Center

    Kellie, Andrew C.

    2011-01-01

    This research describes technical drawing techniques applied in a project involving digitizing of existing hard copy subsurface mapping for the preparation of three dimensional graphic and mathematical models. The intent of this research was to identify work flows that would support the project, ensure the accuracy of the digital data obtained,…

  15. Micro 3D printing using a digital projector and its application in the study of soft materials mechanics.

    PubMed

    Lee, Howon; Fang, Nicholas X

    2012-11-27

    Buckling is a classical topic in mechanics. While buckling has long been studied as one of the major structural failure modes(1), it has recently drawn new attention as a unique mechanism for pattern transformation. Nature is full of such examples where a wealth of exotic patterns are formed through mechanical instability(2-5). Inspired by this elegant mechanism, many studies have demonstrated creation and transformation of patterns using soft materials such as elastomers and hydrogels(6-11). Swelling gels are of particular interest because they can spontaneously trigger mechanical instability to create various patterns without the need of external force(6-10). Recently, we have reported demonstration of full control over buckling pattern of micro-scaled tubular gels using projection micro-stereolithography (PμSL), a three-dimensional (3D) manufacturing technology capable of rapidly converting computer generated 3D models into physical objects at high resolution(12,13). Here we present a simple method to build up a simplified PμSL system using a commercially available digital data projector to study swelling-induced buckling instability for controlled pattern transformation. A simple desktop 3D printer is built using an off-the-shelf digital data projector and simple optical components such as a convex lens and a mirror(14). Cross-sectional images extracted from a 3D solid model is projected on the photosensitive resin surface in sequence, polymerizing liquid resin into a desired 3D solid structure in a layer-by-layer fashion. Even with this simple configuration and easy process, arbitrary 3D objects can be readily fabricated with sub-100 μm resolution. This desktop 3D printer holds potential in the study of soft material mechanics by offering a great opportunity to explore various 3D geometries. We use this system to fabricate tubular shaped hydrogel structure with different dimensions. Fixed on the bottom to the substrate, the tubular gel develops

  16. Teaching Digital Natives: 3-D Virtual Science Lab in the Middle School Science Classroom

    ERIC Educational Resources Information Center

    Franklin, Teresa J.

    2008-01-01

    This paper presents the development of a 3-D virtual environment in Second Life for the delivery of standards-based science content for middle school students in the rural Appalachian region of Southeast Ohio. A mixed method approach in which quantitative results of improved student learning and qualitative observations of implementation within…

  17. Image-Based Modeling Techniques for Architectural Heritage 3d Digitalization: Limits and Potentialities

    NASA Astrophysics Data System (ADS)

    Santagati, C.; Inzerillo, L.; Di Paola, F.

    2013-07-01

    3D reconstruction from images has undergone a revolution in the last few years. Computer vision techniques use photographs from data set collection to rapidly build detailed 3D models. The simultaneous applications of different algorithms (MVS), the different techniques of image matching, feature extracting and mesh optimization are inside an active field of research in computer vision. The results are promising: the obtained models are beginning to challenge the precision of laser-based reconstructions. Among all the possibilities we can mainly distinguish desktop and web-based packages. Those last ones offer the opportunity to exploit the power of cloud computing in order to carry out a semi-automatic data processing, thus allowing the user to fulfill other tasks on its computer; whereas desktop systems employ too much processing time and hard heavy approaches. Computer vision researchers have explored many applications to verify the visual accuracy of 3D model but the approaches to verify metric accuracy are few and no one is on Autodesk 123D Catch applied on Architectural Heritage Documentation. Our approach to this challenging problem is to compare the 3Dmodels by Autodesk 123D Catch and 3D models by terrestrial LIDAR considering different object size, from the detail (capitals, moldings, bases) to large scale buildings for practitioner purpose.

  18. Parallel phase-shifting digital holography and its application to high-speed 3D imaging of dynamic object

    NASA Astrophysics Data System (ADS)

    Awatsuji, Yasuhiro; Xia, Peng; Wang, Yexin; Matoba, Osamu

    2016-03-01

    Digital holography is a technique of 3D measurement of object. The technique uses an image sensor to record the interference fringe image containing the complex amplitude of object, and numerically reconstructs the complex amplitude by computer. Parallel phase-shifting digital holography is capable of accurate 3D measurement of dynamic object. This is because this technique can reconstruct the complex amplitude of object, on which the undesired images are not superimposed, form a single hologram. The undesired images are the non-diffraction wave and the conjugate image which are associated with holography. In parallel phase-shifting digital holography, a hologram, whose phase of the reference wave is spatially and periodically shifted every other pixel, is recorded to obtain complex amplitude of object by single-shot exposure. The recorded hologram is decomposed into multiple holograms required for phase-shifting digital holography. The complex amplitude of the object is free from the undesired images is reconstructed from the multiple holograms. To validate parallel phase-shifting digital holography, a high-speed parallel phase-shifting digital holography system was constructed. The system consists of a Mach-Zehnder interferometer, a continuous-wave laser, and a high-speed polarization imaging camera. Phase motion picture of dynamic air flow sprayed from a nozzle was recorded at 180,000 frames per second (FPS) have been recorded by the system. Also phase motion picture of dynamic air induced by discharge between two electrodes has been recorded at 1,000,000 FPS, when high voltage was applied between the electrodes.

  19. Rapid 3D video/laser sensing and digital archiving with immediate on-scene feedback for 3D crime scene/mass disaster data collection and reconstruction

    NASA Astrophysics Data System (ADS)

    Altschuler, Bruce R.; Oliver, William R.; Altschuler, Martin D.

    1996-02-01

    We describe a system for rapid and convenient video data acquisition and 3-D numerical coordinate data calculation able to provide precise 3-D topographical maps and 3-D archival data sufficient to reconstruct a 3-D virtual reality display of a crime scene or mass disaster area. Under a joint U.S. army/U.S. Air Force project with collateral U.S. Navy support, to create a 3-D surgical robotic inspection device -- a mobile, multi-sensor robotic surgical assistant to aid the surgeon in diagnosis, continual surveillance of patient condition, and robotic surgical telemedicine of combat casualties -- the technology is being perfected for remote, non-destructive, quantitative 3-D mapping of objects of varied sizes. This technology is being advanced with hyper-speed parallel video technology and compact, very fast laser electro-optics, such that the acquisition of 3-D surface map data will shortly be acquired within the time frame of conventional 2-D video. With simple field-capable calibration, and mobile or portable platforms, the crime scene investigator could set up and survey the entire crime scene, or portions of it at high resolution, with almost the simplicity and speed of video or still photography. The survey apparatus would record relative position, location, and instantly archive thousands of artifacts at the site with 3-D data points capable of creating unbiased virtual reality reconstructions, or actual physical replicas, for the investigators, prosecutors, and jury.

  20. Digital Hammurabi: design and development of a 3D scanner for cuneiform tablets

    NASA Astrophysics Data System (ADS)

    Hahn, Daniel V.; Duncan, Donald D.; Baldwin, Kevin C.; Cohen, Jonathon D.; Purnomo, Budirijanto

    2006-02-01

    Cuneiform is an ancient form of writing in which wooden reeds were used to impress shapes upon moist clay tablets. Upon drying, the tablets preserved the written script with remarkable accuracy and durability. There are currently hundreds of thousands of cuneiform tablets spread throughout the world in both museums and private collections. The global scale of these artifacts presents several problems for scholars who wish to study them. It may be difficult or impossible to obtain access to a given collection. In addition, photographic records of the tablets many times prove to be inadequate for proper examination. Photographs lack the ability to alter the lighting conditions and view direction. As a solution to these problems, we describe a 3D scanner capable of acquiring the shape, color, and reflectance of a tablet as a complete 3D object. This data set could then be stored in an online library and manipulated by suitable rendering software that would allow a user to specify any view direction and lighting condition. The scanner utilizes a camera and telecentric lens to acquire images of the tablet under varying controlled illumination conditions. Image data are processed using photometric stereo and structured light techniques to determine the tablet shape; color information is reconstructed from primary color monochrome image data. The scanned surface is sampled at 26.8 μm lateral spacing and the height information is calculated on a much smaller scale. Scans of adjacent tablet sides are registered together to form a 3D surface model.

  1. High fidelity digital inline holographic PTV for 3D flow measurements: from microfluidics to wall-bounded turbulence

    NASA Astrophysics Data System (ADS)

    Hong, Jiarong; Toloui, Mostafa; Mallery, Kevin

    2016-11-01

    Three-dimensional PIV and PTV provides the most comprehensive flow information for unraveling the physical phenomena in a wide range of fluid problems, from microfluidics to wall-bounded turbulent flows. Compared with other commercialized 3D PIV techniques, such as tomographic PIV and defocusing PIV, the digital inline holographic PTV (namely DIH-PTV) provides 3D flow measurement solution with high spatial resolution, low cost optical setup, and easy alignment and calibration. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, small sampling volume and expensive computations, limiting its broad use for 3D flow measurements. Here we will report our latest work on improving DIH-PTV method through an integration of deconvolution algorithm, iterative removal method and GPU computation to overcome some of abovementioned limitations. We will also present the application of our DIH-PTV for measurements in the following sample cases: (i) flows in bio-filmed microchannel with 50-60 μm vector spacing within sampling volumes of 1 mm (streamwise) x 1 mm (wall-normal) x 1 mm (spanwise); (ii) turbulent flows over smooth and rough surfaces (1.1 mm vector spacing within 15 mm x 50 mm x 15 mm); (iii) 3D distribution and kinematics of inertial particles in turbulent air duct flow.

  2. Multimodality evaluation of dural arteriovenous fistula with CT angiography, MR with arterial spin labeling, and digital subtraction angiography: case report.

    PubMed

    Alexander, Matthew; McTaggart, Ryan; Santarelli, Justin; Fischbein, Nancy; Marks, Michael; Zaharchuk, Greg; Do, Huy

    2014-01-01

    Dural arteriovenous fistulae (DAVF) are cerebrovascular lesions with pathologic shunting into the venous system from arterial feeders. Digital subtraction angiography (DSA) has long been considered the gold standard for diagnosis, but advances in noninvasive imaging techniques now play a role in the diagnosis of these complex lesions. Herein, we describe the case of a patient with right-side pulsatile tinnitus and DAVF diagnosed using computed tomography angiography, magnetic resonance with arterial spin labeling, and DSA. Implications for imaging analysis of DAVFs and further research are discussed.

  3. Web-based 3D digital pathology framework for large-mapping data scanned by FF-OCT

    NASA Astrophysics Data System (ADS)

    Chang, ChiaKai; Tsai, Chien-Chung; Chien, Meng-Ting; Li, Yu-I.; Shun, Chia-Tung; Huang, Sheng-Lung

    2015-03-01

    Full-Field Optical Coherence Tomography (FF-OCT) is a high resolution instrument in 3 dimensional (3D) space, including lateral and longitudinal direction. With FF-OCT, we can perform 3D scanning for excised biopsy or cell culture sample to obtain cellular information. In this work, we have set up a high resolution FF-OCT scanning instrument that can perform cellular resolution tomography scanning of skin tissue for histopathology study. In a scan range of 1cm(x), 1cm(y), 106μm(z), for example, digital data occupies 253 GB capacity. Copying these materials is time consuming, not to mention efficient browsing and analyzing of these data. To solve the problem of information delivery, we have established a network service to browse and analyze the huge volume data.

  4. A high-throughput comparative characterization of laser-induced soft tissue damage using 3D digital microscopy.

    PubMed

    Das, Debobrato; Reed, Stephanie; Klokkevold, Perry R; Wu, Benjamin M

    2013-02-01

    3D digital microscopy was used to develop a rapid alternative approach to quantify the effects of specific laser parameters on soft tissue ablation and charring in vitro without the use of conventional tissue processing techniques. Two diode lasers operating at 810 and 980 nm wavelengths were used to ablate three tissue types (bovine liver, turkey breast, and bovine muscle) at varying laser power (0.3, 1.0, and 2.0 W) and velocities (1-50 mm/s). Spectrophotometric analyses were performed on each tissue to determine tissue-specific absorption coefficients and were considered in creating wavelength-dependent energy attenuation models to evaluate minimum heat of tissue ablations. 3D surface contour profiles characterizing tissue damage revealed that ablation depth and tissue charring increased with laser power and decreased with lateral velocity independent of wavelength and tissue type. While bovine liver ablation and charring were statistically higher at 810 than 980 nm (p < 0.05), turkey breast and bovine muscle ablated and charred more at 980 than 810 nm (p < 0.05). Spectrophotometric analysis revealed that bovine liver tissue had a greater tissue-specific absorption coefficient at 810 than 980 nm, while turkey breast and bovine muscle had a larger absorption coefficient at 980 nm (p < 0.05). This rapid 3D microscopic analysis of robot-driven laser ablation yielded highly reproducible data that supported well-defined trends related to laser-tissue interactions and enabled high throughput characterization of many laser-tissue permutations. Since 3D microscopy quantifies entire lesions without altering the tissue specimens, conventional and immunohistologic techniques can be used, if desired, to further interrogate specific sections of the digitized lesions.

  5. Digital micromirror device (DMD)-based 3D printing of poly(propylene fumarate) scaffolds.

    PubMed

    Mott, Eric J; Busso, Mallory; Luo, Xinyi; Dolder, Courtney; Wang, Martha O; Fisher, John P; Dean, David

    2016-04-01

    Our recent investigations into the 3D printing of poly(propylene fumarate) (PPF), a linear polyester, using a DMD-based system brought us to a resin that used titanium dioxide (TiO2) as an ultraviolet (UV) filter for controlling cure depth. However, this material hindered the 3D printing process due to undesirable lateral or "dark" curing (i.e., in areas not exposed to light from the DMD chip). Well known from its use in sunscreen, another UV filter, oxybenzone, has previously been used in conjunction with TiO2. In this study we hypothesize that combining these two UV filters will result in a synergistic effect that controls cure depth and avoids dark cure. A resin mixture (i.e., polymer, initiator, UV filters) was identified that worked well. The resin was then further characterized through mechanical testing, cure testing, and cytotoxicity testing to investigate its use as a material for bone tissue engineering scaffolds. Results show that the final resin eliminated dark cure as shown through image analysis. Mechanically the new scaffolds proved to be far weaker than those printed from previous resins, with compressive strengths of 7.8 ± 0.5 MPa vs. 36.5 ± 1.6 MPa, respectively. The new scaffolds showed a 90% reduction in elastic modulus and a 74% increase in max strain. These properties may be useful in tissue engineering applications where resorption is required. Initial cytotoxicity evaluation was negative. As hypothesized, the use of TiO2 and oxybenzone showed synergistic effects in the 3D printing of PPF tissue engineering scaffolds.

  6. Quantification of gully volume using very high resolution DSM generated through 3D reconstruction from airborne and field digital imagery

    NASA Astrophysics Data System (ADS)

    Castillo, Carlos; Zarco-Tejada, Pablo; Laredo, Mario; Gómez, Jose Alfonso

    2013-04-01

    Major advances have been made recently in automatic 3D photo-reconstruction techniques using uncalibrated and non-metric cameras (James and Robson, 2012). However, its application on soil conservation studies and landscape feature identification is currently at the outset. The aim of this work is to compare the performance of a remote sensing technique using a digital camera mounted on an airborne platform, with 3D photo-reconstruction, a method already validated for gully erosion assessment purposes (Castillo et al., 2012). A field survey was conducted in November 2012 in a 250 m-long gully located in field crops on a Vertisol in Cordoba (Spain). The airborne campaign was conducted with a 4000x3000 digital camera installed onboard an aircraft flying at 300 m above ground level to acquire 6 cm resolution imagery. A total of 990 images were acquired over the area ensuring a large overlap in the across- and along-track direction of the aircraft. An ortho-mosaic and the digital surface model (DSM) were obtained through automatic aerial triangulation and camera calibration methods. For the field-level photo-reconstruction technique, the gully was divided in several reaches to allow appropriate reconstruction (about 150 pictures taken per reach) and, finally, the resulting point clouds were merged into a unique mesh. A centimetric-accuracy GPS provided a benchmark dataset for gully perimeter and distinguishable reference points in order to allow the assessment of measurement errors of the airborne technique and the georeferenciation of the photo-reconstruction 3D model. The uncertainty on the gully limits definition was explicitly addressed by comparison of several criteria obtained by 3D models (slope and second derivative) with the outer perimeter obtained by the GPS operator identifying visually the change in slope at the top of the gully walls. In this study we discussed the magnitude of planimetric and altimetric errors and the differences observed between the

  7. Faster and improved 3-D head digitization in MEG using Kinect

    PubMed Central

    Vema Krishna Murthy, Santosh; MacLellan, Matthew; Beyea, Steven; Bardouille, Timothy

    2014-01-01

    Accuracy in localizing the brain areas that generate neuromagnetic activity in magnetoencephalography (MEG) is dependent on properly co-registering MEG data to the participant's structural magnetic resonance image (MRI). Effective MEG-MRI co-registration is, in turn, dependent on how accurately we can digitize anatomical landmarks on the surface of the head. In this study, we compared the performance of three devices—Polhemus electromagnetic system, NextEngine laser scanner and Microsoft Kinect for Windows—for source localization accuracy and MEG-MRI co-registration. A calibrated phantom was used for verifying the source localization accuracy. The Kinect improved source localization accuracy over the Polhemus and the laser scanner by 2.23 mm (137%) and 0.81 mm (50%), respectively. MEG-MRI co-registration accuracy was verified on data from five healthy human participants, who received the digitization process using all three devices. The Kinect device captured approximately 2000 times more surface points than the Polhemus in one third of the time (1 min compared to 3 min) and thrice as many points as the NextEngine laser scanner. Following automated surface matching, the calculated mean MEG-MRI co-registration error for the Kinect was improved by 2.85 mm with respect to the Polhemus device, and equivalent to the laser scanner. Importantly, the Kinect device automatically aligns 20–30 images per second in real-time, reducing the limitations on participant head movement during digitization that are implicit in the NextEngine laser scan (~1 min). We conclude that the Kinect scanner is an effective device for head digitization in MEG, providing the necessary accuracy in source localization and MEG-MRI co-registration, while reducing digitization time. PMID:25389382

  8. Faster and improved 3-D head digitization in MEG using Kinect.

    PubMed

    Vema Krishna Murthy, Santosh; MacLellan, Matthew; Beyea, Steven; Bardouille, Timothy

    2014-01-01

    Accuracy in localizing the brain areas that generate neuromagnetic activity in magnetoencephalography (MEG) is dependent on properly co-registering MEG data to the participant's structural magnetic resonance image (MRI). Effective MEG-MRI co-registration is, in turn, dependent on how accurately we can digitize anatomical landmarks on the surface of the head. In this study, we compared the performance of three devices-Polhemus electromagnetic system, NextEngine laser scanner and Microsoft Kinect for Windows-for source localization accuracy and MEG-MRI co-registration. A calibrated phantom was used for verifying the source localization accuracy. The Kinect improved source localization accuracy over the Polhemus and the laser scanner by 2.23 mm (137%) and 0.81 mm (50%), respectively. MEG-MRI co-registration accuracy was verified on data from five healthy human participants, who received the digitization process using all three devices. The Kinect device captured approximately 2000 times more surface points than the Polhemus in one third of the time (1 min compared to 3 min) and thrice as many points as the NextEngine laser scanner. Following automated surface matching, the calculated mean MEG-MRI co-registration error for the Kinect was improved by 2.85 mm with respect to the Polhemus device, and equivalent to the laser scanner. Importantly, the Kinect device automatically aligns 20-30 images per second in real-time, reducing the limitations on participant head movement during digitization that are implicit in the NextEngine laser scan (~1 min). We conclude that the Kinect scanner is an effective device for head digitization in MEG, providing the necessary accuracy in source localization and MEG-MRI co-registration, while reducing digitization time.

  9. Controlling depth of focus in 3D image reconstructions by flexible and adaptive deformation of digital holograms.

    PubMed

    Ferraro, P; Paturzo, M; Memmolo, P; Finizio, A

    2009-09-15

    We show here that through an adaptive deformation of digital holograms it is possible to manage the depth of focus in 3D imaging reconstruction. Deformation is applied to the original hologram with the aim to put simultaneously in focus, and in one reconstructed image plane, different objects lying at different distances from the hologram plane (i.e., CCD sensor). In the same way, by adapting the deformation it is possible to extend the depth of field having a tilted object entirely in focus. We demonstrate the method in both lensless as well as in microscope configuration.

  10. Volumetric limiting spatial resolution analysis of four dimensional digital subtraction angiography (4D-DSA)

    NASA Astrophysics Data System (ADS)

    Davis, Brian; Oberstar, Erick; Royalty, Kevin; Schafer, Sebastian; Strother, Charles; Mistretta, Charles

    2015-03-01

    Static C-Arm CT 3D FDK baseline reconstructions (3D-DSA) are unable to provide temporal information to radiologists. 4D-DSA provides a time series of 3D volumes implementing a constrained image, thresholded 3D-DSA, reconstruction utilizing temporal dynamics in the 2D projections. Volumetric limiting spatial resolution (VLSR) of 4DDSA is quantified and compared to a 3D-DSA reconstruction using the same 3D-DSA parameters. Investigated were the effects of varying over significant ranges the 4D-DSA parameters of 2D blurring kernel size applied to the projection and threshold applied to the 3D-DSA when generating the constraining image of a scanned phantom (SPH) and an electronic phantom (EPH). The SPH consisted of a 76 micron tungsten wire encased in a 47 mm O.D. plastic radially concentric thin walled support structure. An 8-second/248-frame/198° scan protocol acquired the raw projection data. VLSR was determined from averaged MTF curves generated from each 2D transverse slice of every (248) 4D temporal frame (3D). 4D results for SPH and EPH were compared to the 3D-DSA. Analysis of the 3D-DSA resulted in a VLSR of 2.28 and 1.69 lp/mm for the EPH and SPH respectively. Kernel (2D) sizes of either 10x10 or 20x20 pixels with a threshold of 10% of the 3D-DSA as a constraining image provided 4D-DSA VLSR nearest to the 3D-DSA. 4D-DSA algorithms yielded 2.21 and 1.67 lp/mm with a percent error of 3.1% and 1.2% for the EPH and SPH respectively as compared to the 3D-DSA. This research indicates 4D-DSA is capable of retaining the resolution of the 3D-DSA.

  11. A defocus-information-free autostereoscopic three-dimensional (3D) digital reconstruction method using direct extraction of disparity information (DEDI)

    NASA Astrophysics Data System (ADS)

    Li, Da; Cheung, Chifai; Zhao, Xing; Ren, Mingjun; Zhang, Juan; Zhou, Liqiu

    2016-10-01

    Autostereoscopy based three-dimensional (3D) digital reconstruction has been widely applied in the field of medical science, entertainment, design, industrial manufacture, precision measurement and many other areas. The 3D digital model of the target can be reconstructed based on the series of two-dimensional (2D) information acquired by the autostereoscopic system, which consists multiple lens and can provide information of the target from multiple angles. This paper presents a generalized and precise autostereoscopic three-dimensional (3D) digital reconstruction method based on Direct Extraction of Disparity Information (DEDI) which can be used to any transform autostereoscopic systems and provides accurate 3D reconstruction results through error elimination process based on statistical analysis. The feasibility of DEDI method has been successfully verified through a series of optical 3D digital reconstruction experiments on different autostereoscopic systems which is highly efficient to perform the direct full 3D digital model construction based on tomography-like operation upon every depth plane with the exclusion of the defocused information. With the absolute focused information processed by DEDI method, the 3D digital model of the target can be directly and precisely formed along the axial direction with the depth information.

  12. Multi-modal digital holographic microscopy for wide-field fluorescence and 3D phase imaging

    NASA Astrophysics Data System (ADS)

    Quan, Xiangyu; Xia, Peng; Matoba, Osamu; Nitta, Koichi; Awatsuji, Yasuhiro

    2016-03-01

    Multi-modal digital holographic microscopy is a combination of epifluorescence microscopy and digital holographic microscopy, the main function of which is to obtain images from fluorescence intensity and quantified phase contrasts, simultaneously. The proposed system is mostly beneficial to biological studies, with the reason that often the studies are depending on fluorescent labeling techniques to detect certain intracellular molecules, while phase information reflecting properties of unstained transparent elements. This paper is presenting our latest researches on applications such as randomly moving micro-fluorescent beads and living cells of Physcomitrella patens. The experiments are succeeded on obtaining a succession of wide-field fluorescent images and holograms from micro-beads, and different depths focusing is realized via numerical reconstruction. Living cells of Physcomitrella patens are recorded in the static manner, the reconstruction distance indicates thickness of cellular structure. These results are implementing practical applications toward many biomedical science researches.

  13. 3D-geological structures with digital elevation models using GPU programming

    NASA Astrophysics Data System (ADS)

    Mateo Lázaro, Jesús; Sánchez Navarro, José Ángel; García Gil, Alejandro; Edo Romero, Vanesa

    2014-09-01

    We present an application that visualises three-dimensional geological structures with digital terrain models. The three-dimensional structures are displayed as their intersections with two-dimensional surfaces that may be defined analytically (e.g., sections) or with grid meshes in the case of irregular surfaces such as the digital terrain models. The process begins with classic techniques of terrain visualisation using hypsometric shading with textures. Then, geometric transformations that are easily conceived and programmed are added, thus representing the three-dimensional structures with their location and orientation. Functions of three variables are used to define the geological structures, and data from digital terrain models are used as one of the variables. This provides a simple source code and results in a short calculation time. Additionally, the process of generating new textures can be performed by a Graphics Processing Unit (GPU), thereby making real-time processing very effective and providing the possibility of displaying the simulation of geological structures in motion.

  14. Digital Inventory and Documentation of Korea's Important Cultural Properties Using 3D Laser Scanning

    NASA Astrophysics Data System (ADS)

    Dongseok, K.; Gyesoo, K.; Siro, K.; Eunhwa, K.

    2015-08-01

    As a country with 11 properties included on the World Heritage List and approximately 12,000 important cultural properties, Korea has been continuously carrying out the inventory and documentation of cultural properties to conserve and manage them since the 1960s. The inventory of cultural properties had been carried out by making and managing a register which recorded basic information mainly on state-designated cultural properties such as their size, quantity, and location. The documentation of cultural properties was also carried out by making measured drawings. However, the inventory and documentation done under the previous analog method had a limit to the information it could provide for the effective conservation and management of cultural properties. Moreover, in recent times important cultural properties have frequently been damaged by man-made and natural disasters such as arson, forest fires, and floods, so an alternative was required. Accordingly, Korea actively introduced digital techniques led by the government for the inventory and documentation of important cultural properties. In this process, the government established the concept of a digital set, built a more efficie nt integrated data management system, and created standardized guidelines to maximize the effectiveness of data acquisition, management, and utilization that greatly increased the level of digital inventory, documentation, and archiving.

  15. Near-wall 3D velocity measurements above biomimetic shark skin denticles using Digital In-line Holographic Microscopy

    NASA Astrophysics Data System (ADS)

    Toloui, Mostafa; Brajkovic, David; Hong, Jiarong

    2014-11-01

    Digital In-line Holography is employed to image 3D flow structures in the vicinity of a transparent rough surface consisting of closely packed biomimetic shark skin denticles as roughness elements. The 3D printed surface replicates the morphological features of real shark skin, and the denticles have a geometrical scale of 2 mm, i.e. 10 times of the real ones. In order to minimize optical aberrations near the fluid-roughness interface and enable flow measurements around denticles, the optical refractive index of the fluid medium is maintained the same as that of the denticle model in an index-matched flow facility using NaI solution as the working fluid. The experiment is conducted in a 1.2 m long test section with 50 mm × 50 mm cross section. The sampling volume is located in the downstream region of a shark skin replica of 12'' stretch where the turbulent flow is fully-developed and the transitional effect from smooth to the rough surface becomes negligible. Several instantaneous realizations of the 3D velocity field are obtained and are used to illustrate turbulent coherent structures induced by shark-skin denticles. This information will provide insights on the hydrodynamic function of shark's unique surface ornamentation.

  16. 3D digital image correlation investigation of PLC effect in a new Ni-Co base superalloy

    NASA Astrophysics Data System (ADS)

    Gao, Y.; Fu, S. H.; Cheng, T.; Huo, X.; Zhang, Q. C.

    2013-06-01

    Repeated plastic instability accompanying serrated yielding in stress-strain curves and localization of deformation is observed during plastic deformation of many metallic alloys when tensile specimens are deformed under certain experimental conditions of temperature, strain rate, and pre-deformation. This phenomenon is referred to as the Portevin- Le Chatelier (PLC) effect. TMW alloy, a newly developed Ni-Co base superalloy for aircraft engine application, also exhibit PLC effect during tensile test at temperatures ranging from 300 ° to 600 °, which are also the temperature range for engine working. In this paper, a 3D digital image correlation (3D DIC) measurement system was established to observe the localization of deformation (PLC band) in a tensile test performed on TMW alloy specimen at temperature of 400 °. The 3D DIC system, with displacement measurement accuracy up to 0.01 pixels and strain measurement accuracy up to 100 μɛ, has a high performance in displacement field calculation with more than 10000 points every second on a 3.1G Hz CPU computer. The test result shows that, the PLC bands are inclined at an angle of about 60° to the tensile axis. Unlike tensile test performed on aluminums alloy, the widths of PLC bands of TMW alloy specimen, ranging from 4 mm to 4.5 mm, are much greater than the specimen thickness (0.25 mm).

  17. Depth position measurement of inhomogeneities in semi-solid organic materials using 3D pulsed digital holography

    NASA Astrophysics Data System (ADS)

    del Socorro Hernández-Montes, María; Mendoza Santoyo, Fernando; Pérez-López, C.

    2006-02-01

    We show experimental results to determine the depth of inhomogeneities such as glass spheres and biological human tumors, in semi-solids organic materials, like gels (phantom), using the non invasive optical technique called 3D Pulsed Digital Holography (PDH). We reported previously that this technique may be used for the detection of biological tissues1. 3D Pulsed Digital Holography allowed us to make a quantitative analysis of the changes that the phantom suffers when it contains inhomogeneities as compared to a phantom that does not have one. The results obtained there showed quite remarkably the internal fault in semi-solids. In here we report early results obtained from three different object illumination positions that gave 3 wrapped phase maps that allowed the calculation of the depth position of the inhomogeneity within the phantom. The optical technique used looks at the phantom surface micro displacement, where measurements are correlated to the z position of the inhomogeneity inside the phantom. Likewise, the technique is able to show the deformation that the material undergoes in x, y, and z.

  18. Design of a 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) System

    NASA Astrophysics Data System (ADS)

    Grothe, Rob; Rixon, Greg; Dabiri, Dana

    2007-11-01

    A novel 3D Digital Liquid Crystal Particle Thermometry and Velocimetry (3DDLCPT/V) system has been designed and fabricated. By combining 3D Defocusing Particle Image Velocimetry (3DDPIV) and Digital Particle Image Thermometry (DPIT) into one system, this technique provides simultaneous temperature and velocity data using temperature-sensitive liquid crystal particles (LCP) as flow sensors. A custom water-filled prism corrects for astigmatism caused by off-axis imaging. New optics equations are derived to account for multi-surface refractions. This redesign also maximizes the use of the CCD area to more efficiently image the volume of interest. Six CCD cameras comprise the imaging system, with three allocated for velocity measurements and three for temperature measurements. The cameras are optically aligned to sub-pixel accuracy using a precision grid and high-resolution translation stages. Two high-intensity custom-designed xenon flashlamps provide illumination. Temperature calibration of the LCP is then performed. These results and proof-of-concept experiments will be discussed in detail.

  19. Digital holographic interferometer using simultaneously three lasers and a single monochrome sensor for 3D displacement measurements.

    PubMed

    Saucedo-A, Tonatiuh; De la Torre-Ibarra, M H; Santoyo, F Mendoza; Moreno, Ivan

    2010-09-13

    The use of digital holographic interferometry for 3D measurements using simultaneously three illumination directions was demonstrated by Saucedo et al. (Optics Express 14(4) 2006). The technique records two consecutive images where each one contains three holograms in it, e.g., one before the deformation and one after the deformation. A short coherence length laser must be used to obtain the simultaneous 3D information from the same laser source. In this manuscript we present an extension of this technique now illuminating simultaneously with three different lasers at 458, 532 and 633 nm, and using only one high resolution monochrome CMOS sensor. This new configuration gives the opportunity to use long coherence length lasers allowing the measurement of large object areas. A series of digital holographic interferograms are recorded and the information corresponding to each laser is isolated in the Fourier spectral domain where the corresponding phase difference is calculated. Experimental results render the orthogonal displacement components u, v and w during a simple load deformation.

  20. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks.

    SciTech Connect

    Nishimura, K

    2012-07-01

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from ~450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of ~2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with ~1.5 mrad angular resolution and muon energy of Emuon greater than 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  1. A Detailed Study of FDIRC Prototype with Waveform Digitizing Electronics in Cosmic Ray Telescope Using 3D Tracks

    SciTech Connect

    Nishimura, K.; Dey, B.; Aston, D.; Leith, D.W.G.S.; Ratcliff, B.; Roberts, D.; Ruckman, L.; Shtol, D.; Varner, G.S.; Va'vra, J.; Vavra, Jerry; /SLAC

    2012-07-30

    We present a detailed study of a novel Cherenkov imaging detector called the Focusing DIRC (FDIRC) with waveform digitizing electronics. In this test study, the FDIRC prototype has been instrumented with seven Hamamatsu H-8500 MaPMTs. Waveforms from {approx}450 pixels are digitized with waveform sampling electronics based on the BLAB2 ASIC, operating at a sampling speed of {approx}2.5 GSa/s. The FDIRC prototype was tested in a large cosmic ray telescope (CRT) providing 3D muon tracks with {approx}1.5 mrad angular resolution and muon energy of E{sub muon} > 1.6 GeV. In this study we provide a detailed analysis of the tails in the Cherenkov angle distribution as a function of various variables, compare experimental results with simulation, and identify the major contributions to the tails. We demonstrate that to see the full impact of these tails on the Cherenkov angle resolution, it is crucial to use 3D tracks, and have a full understanding of the role of ambiguities. These issues could not be fully explored in previous FDIRC studies where the beam was perpendicular to the quartz radiator bars. This work is relevant for the final FDIRC prototype of the PID detector at SuperB, which will be tested this year in the CRT setup.

  2. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    SciTech Connect

    Ravindran, V. R.; Sreelakshmi, C.; Vibin

    2008-09-26

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  3. Development of CT and 3D-CT Using Flat Panel Detector Based Real-Time Digital Radiography System

    NASA Astrophysics Data System (ADS)

    Ravindran, V. R.; Sreelakshmi, C.; Vibin, Vibin

    2008-09-01

    The application of Digital Radiography in the Nondestructive Evaluation (NDE) of space vehicle components is a recent development in India. A Real-time DR system based on amorphous silicon Flat Panel Detector has been developed for the NDE of solid rocket motors at Rocket Propellant Plant of VSSC in a few years back. The technique has been successfully established for the nondestructive evaluation of solid rocket motors. The DR images recorded for a few solid rocket specimens are presented in the paper. The Real-time DR system is capable of generating sufficient digital X-ray image data with object rotation for the CT image reconstruction. In this paper the indigenous development of CT imaging based on the Realtime DR system for solid rocket motor is presented. Studies are also carried out to generate 3D-CT image from a set of adjacent CT images of the rocket motor. The capability of revealing the spatial location and characterisation of defect is demonstrated by the CT and 3D-CT images generated.

  4. 3D fingerprint analysis using transmission-mode multi-wavelength digital holographic topography

    NASA Astrophysics Data System (ADS)

    Abeywickrema, Ujitha; Banerjee, Partha; Kota, Akash; Lakhtakia, Akhlesh; Swiontek, Stephen E.

    2016-03-01

    The analysis of fingerprints is important for biometric identification. Two-wavelength digital holographic interferometry is used to study the topography of various types of fingerprints. This topography depends on several conditions such as the temperature, time of the day, and the proportions of eccrine and sebaceous sweat. With two-wavelength holographic interferometry, surface information can be measured with a better accuracy compared to single-wavelength phase-retrieving techniques. Latent fingerprints on transparent glass, a forensically relevant substrate are first developed by the deposition of 50-1000-nm-thick columnar thin films, and then analyzed using the transmission-mode two-wavelength digital holographic technique. In this technique, a tunable Argon-ion laser (457.9 nm to 514.5 nm) is used and holograms are recorded on a CCD camera sequentially for several sets of two wavelengths. Then the phase is reconstructed for each wavelength, and the phase difference which corresponds to the synthetic wavelength (4 μm to 48 μm) is calculated. Finally, the topography is obtained by applying proper phase-unwrapping techniques to the phase difference. Interferometric setups that utilize light reflected from the surface of interest have several disadvantages such as the effect of multiple reflections as well as the effects of the tilt of the object and its shadow (for the Mach-Zehnder configuration). To overcome these drawbacks, digital holograms of fingerprints in a transmission geometry are used. An approximately in-line geometry employing a slightly tilted reference beam to facilitate separation of various diffraction orders during holographic reconstruction is employed.

  5. Developments in digital in-line holography enable validated measurement of 3D particle field dynamics.

    SciTech Connect

    Guildenbecher, Daniel Robert

    2013-12-01

    Digital in-line holography is an optical technique which can be applied to measure the size, three-dimensional position, and three-component velocity of disperse particle fields. This work summarizes recent developments at Sandia National Laboratories focused on improvement in measurement accuracy, experimental validation, and applications to multiphase flows. New routines are presented which reduce the uncertainty in measured position along the optical axis to a fraction of the particle diameter. Furthermore, application to liquid atomization highlights the ability to measure complex, three-dimensional structures. Finally, investigation of particles traveling at near sonic conditions prove accuracy despite significant experimental noise due to shock-waves.

  6. Real-time out-of-plane artifact subtraction tomosynthesis imaging using prior CT for scanning beam digital x-ray system

    SciTech Connect

    Wu, Meng; Fahrig, Rebecca

    2014-11-01

    Purpose: The scanning beam digital x-ray system (SBDX) is an inverse geometry fluoroscopic system with high dose efficiency and the ability to perform continuous real-time tomosynthesis in multiple planes. This system could be used for image guidance during lung nodule biopsy. However, the reconstructed images suffer from strong out-of-plane artifact due to the small tomographic angle of the system. Methods: The authors propose an out-of-plane artifact subtraction tomosynthesis (OPAST) algorithm that utilizes a prior CT volume to augment the run-time image processing. A blur-and-add (BAA) analytical model, derived from the project-to-backproject physical model, permits the generation of tomosynthesis images that are a good approximation to the shift-and-add (SAA) reconstructed image. A computationally practical algorithm is proposed to simulate images and out-of-plane artifacts from patient-specific prior CT volumes using the BAA model. A 3D image registration algorithm to align the simulated and reconstructed images is described. The accuracy of the BAA analytical model and the OPAST algorithm was evaluated using three lung cancer patients’ CT data. The OPAST and image registration algorithms were also tested with added nonrigid respiratory motions. Results: Image similarity measurements, including the correlation coefficient, mean squared error, and structural similarity index, indicated that the BAA model is very accurate in simulating the SAA images from the prior CT for the SBDX system. The shift-variant effect of the BAA model can be ignored when the shifts between SBDX images and CT volumes are within ±10 mm in the x and y directions. The nodule visibility and depth resolution are improved by subtracting simulated artifacts from the reconstructions. The image registration and OPAST are robust in the presence of added respiratory motions. The dominant artifacts in the subtraction images are caused by the mismatches between the real object and the prior CT

  7. NOTE: Suppression of high-density artefacts in x-ray CT images using temporal digital subtraction with application to cryotherapy

    NASA Astrophysics Data System (ADS)

    Baissalov, R.; Sandison, G. A.; Donnelly, B. J.; Saliken, J. C.; McKinnon, J. G.; Muldrew, K.; Rewcastle, J. C.

    2000-05-01

    Image guidance in cryotherapy is usually performed using ultrasound. Although not currently in routine clinical use, x-ray CT imaging is an alternative means of guidance that can display the full 3D structure of the iceball, including frozen and unfrozen regions. However, the quality of x-ray CT images is compromised by the presence of high-density streak artefacts. To suppress these artefacts we applied temporal digital subtraction (TDS). This TDS method has the added advantage of improving the grey-scale contrast between frozen and unfrozen tissue in the CT images. Two sets of CT images were taken of a phantom material, cryoprobes and a urethral warmer (UW) before and during the cryoprobe freeze cycle. The high-density artefacts persisted in both image sets. TDS was performed on these two image sets using the corresponding mask image of unfrozen material and the same geometrical configuration of the cryoprobes and the UW. The resultant difference image had a significantly reduced artefact content. Thus TDS can be used to significantly suppress or eliminate high-density CT streak artefacts without reducing the metallic content of the cryoprobes. In vivo study needs to be conducted to establish the utility of this TDS procedure for CT assisted prostate or liver cryotherapy. Applying TDS in x-ray CT guided cryotherapy will facilitate estimation of the number and location of all frozen and unfrozen regions, potentially making cryotherapy safer and less operator dependent.

  8. Ground and Aerial Digital Documentation of Cultural Heritage: Providing Tools for 3d Exploitation of Archaeological Data

    NASA Astrophysics Data System (ADS)

    Cantoro, G.

    2017-02-01

    Archaeology is by its nature strictly connected with the physical landscape and as such it explores the inter-relations of individuals with places in which they leave and the nature that surrounds them. Since its earliest stages, archaeology demonstrated its permeability to scientific methods and innovative techniques or technologies. Archaeologists were indeed between the first to adopt GIS platforms (since already almost three decades) on large scale and are now between the most demanding customers for emerging technologies such as digital photogrammetry and drone-aided aerial photography. This paper aims at presenting case studies where the "3D approach" can be critically analysed and compared with more traditional means of documentation. Spot-light is directed towards the benefits of a specifically designed platform for user to access the 3D point-clouds and explore their characteristics. Beside simple measuring and editing tools, models are presented in their actual context and location, with historical and archaeological information provided on the side. As final step of a parallel project on geo-referencing and making available a large archive of aerial photographs, 3D models derived from photogrammetric processing of images have been uploaded and linked to photo-footprints polygons. Of great importance in such context is the possibility to interchange the point-cloud colours with satellite imagery from OpenLayers. This approach makes it possible to explore different landscape configurations due to time-changes with simple clicks. In these cases, photogrammetry or 3D laser scanning replaced, sided or integrated legacy documentation, creating at once a new set of information for forthcoming research and ideally new discoveries.

  9. Improved grid-noise removal in single-frame digital moiré 3D shape measurement

    NASA Astrophysics Data System (ADS)

    Mohammadi, Fatemeh; Kofman, Jonathan

    2016-11-01

    A single-frame grid-noise removal technique was developed for application in single-frame digital-moiré 3D shape measurement. The ability of the stationary wavelet transform (SWT) to prevent oscillation artifacts near discontinuities, and the ability of the Fourier transform (FFT) applied to wavelet coefficients to separate grid-noise from useful image information, were combined in a new technique, SWT-FFT, to remove grid-noise from moiré-pattern images generated by digital moiré. In comparison to previous grid-noise removal techniques in moiré, SWT-FFT avoids the requirement for mechanical translation of optical components and capture of multiple frames, to enable single-frame moiré-based measurement. Experiments using FFT, Discrete Wavelet Transform (DWT), DWT-FFT, and SWT-FFT were performed on moiré-pattern images containing grid noise, generated by digital moiré, for several test objects. SWT-FFT had the best performance in removing high-frequency grid-noise, both straight and curved lines, minimizing artifacts, and preserving the moiré pattern without blurring and degradation. SWT-FFT also had the lowest noise amplitude in the reconstructed height and lowest roughness index for all test objects, indicating best grid-noise removal in comparison to the other techniques.

  10. 3D Imaging.

    ERIC Educational Resources Information Center

    Hastings, S. K.

    2002-01-01

    Discusses 3 D imaging as it relates to digital representations in virtual library collections. Highlights include X-ray computed tomography (X-ray CT); the National Science Foundation (NSF) Digital Library Initiatives; output peripherals; image retrieval systems, including metadata; and applications of 3 D imaging for libraries and museums. (LRW)

  11. Evaluating the bending response of two osseointegrated transfemoral implant systems using 3D digital image correlation.

    PubMed

    Thompson, Melanie L; Backman, David; Branemark, Rickard; Mechefske, Chris K

    2011-05-01

    Osseointegrated transfemoral implants have been introduced as a prosthetic solution for above knee amputees. They have shown great promise, providing an alternative for individuals who could not be accommodated by conventional, socket-based prostheses; however, the occurrence of device failures is of concern. In an effort to improve the strength and longevity of the device, a new design has been proposed. This study investigates the mechanical behavior of the new taper-based assembly in comparison to the current hex-based connection for osseointegrated transfemoral implant systems. This was done to better understand the behavior of components under loading, in order to optimize the assembly specifications and improve the useful life of the system. Digital image correlation was used to measure surface strains on two assemblies during static loading in bending. This provided a means to measure deformation over the entire sample and identify critical locations as the assembly was subjected to a series of loading conditions. It provided a means to determine the effects of tightening specifications and connection geometry on the material response and mechanical behavior of the assemblies. Both osseoinegrated assemblies exhibited improved strength and mechanical performance when tightened to a level beyond the current specified tightening torque of 12 N m. This was shown by decreased strain concentration values and improved distribution of tensile strain. Increased tightening torque provides an improved connection between components regardless of design, leading to increased torque retention, decreased peak tensile strain values, and a more gradual, primarily compressive distribution of strains throughout the assembly.

  12. Ceboruco Volcano Seismicity Study using a 3D Single Digital Station

    NASA Astrophysics Data System (ADS)

    Rodriguez-Uribe, M. C.; Nunez-Cornu, F. J.; Nava Pichardo, F. A.; Suarez-Plascencia, C.; Escudero Ayala, C. R.

    2011-12-01

    The Ceboruco stratovolcano (2,280 m.a.s.l.) is located in Nayarit, Mexico, at the west of the Mexican volcanic belt and towards the Sierra de San Pedro southeast. It last eruptive activity was in 1875, and during the following five years it presents superficial activity such as vapor emissions, ash falls and riodacític composition lava flows along the southeast side. We use data recorded from March 2003 to July 2008 at the CEBN triaxial short period digital station located at the southwest side of the volcano. Our final data set consist of 139 volcanic earthquakes. We classified them according waveform characteristics of the east-west horizontal component. We obtained four groups: impulsive arrivals, extended coda, bobbin form, and wave package amplitude modulation earthquakes. The extended coda is the group with more earthquakes and present durations of 50 seconds. Using the moving particle technique, we read the P and S wave arrival times and estimate azimuth arrivals. A P-wave velocity of 3.0 km/s was used to locate the earthquakes, the hypocenters are below the volcanic building within a circular perimeter of 5 km of radius and its depths are calculated relative to the CEBN elevation as follows. The impulsive arrivals earthquakes present hypocenters between 0 and 1 km while the other groups between 0 and 4 km. The epicenters show similar directions as the tectonic structures of the area (Tepic-Zacoalco Graben and regional faults). Results suggest fluid activity inside the volcanic building that could be related to fumes on the volcano. We conclude that the Ceboruco volcano is active. Therefore, it should be continuously monitored due to the risk that represent to the surrounding communities and economic activities.

  13. 3rd Tech DeltaSphere-3000 Laser 3D Scene Digitizer infrared laser scanner hazard analysis.

    SciTech Connect

    Augustoni, Arnold L.

    2005-02-01

    A laser hazard analysis and safety assessment was performed for the 3rd Tech model DeltaSphere-3000{reg_sign} Laser 3D Scene Digitizer, infrared laser scanner model based on the 2000 version of the American National Standard Institute's Standard Z136.1, for the Safe Use of Lasers. The portable scanner system is used in the Robotic Manufacturing Science and Engineering Laboratory (RMSEL). This scanning system had been proposed to be a demonstrator for a new application. The manufacture lists the Nominal Ocular Hazard Distance (NOHD) as less than 2 meters. It was necessary that SNL validate this NOHD prior to its use as a demonstrator involving the general public. A formal laser hazard analysis is presented for the typical mode of operation for the current configuration as well as a possible modified mode and alternative configuration.

  14. Digitized crime scene forensics: automated trace separation of toolmarks on high-resolution 2D/3D CLSM surface data

    NASA Astrophysics Data System (ADS)

    Clausing, Eric; Vielhauer, Claus

    2015-03-01

    Locksmith forensics is an important and very challenging part of classic crime scene forensics. In prior work, we propose a partial transfer to the digital domain, to effectively support forensic experts and present approaches for a full process chain consisting of five steps: Trace positioning, 2D/3D acquisition with a confocal 3D laser scanning microscope, detection by segmentation, trace type determination, and determination of the opening method. In particular the step of trace segmentation on high-resolution 3D surfaces thereby turned out to be the part most difficult to implement. The reason for that is the highly structured and complex surfaces to be analyzed. These surfaces are cluttered with a high number of toolmarks, which overlap and distort each other. In Clausing et al., we present an improved approach for a reliable segmentation of relevant trace regions but without the possibility of separating single traces out of segmented trace regions. However, in our past research, especially features based on shape and dimension turned out to be highly relevant for a fully automated analysis and interpretation. In this paper, we consequently propose an approach for this separation. To achieve this goal, we use our segmentation approach and expand it with a combination of the watershed algorithm with a graph-based analysis. Found sub-regions are compared based on their surface character and are connected or divided depending on their similarity. We evaluate our approach with a test set of about 1,300 single traces on the exemplary locking cylinder component 'key pin' and thereby are able of showing the high suitability of our approach.

  15. Feasibility of CT-based 3D anatomic mapping with a scanning-beam digital x-ray (SBDX) system

    NASA Astrophysics Data System (ADS)

    Slagowski, Jordan M.; Tomkowiak, Michael T.; Dunkerley, David A. P.; Speidel, Michael A.

    2015-03-01

    This study investigates the feasibility of obtaining CT-derived 3D surfaces from data provided by the scanning-beam digital x-ray (SBDX) system. Simulated SBDX short-scan acquisitions of a Shepp-Logan and a thorax phantom containing a high contrast spherical volume were generated. 3D reconstructions were performed using a penalized weighted least squares method with total variation regularization (PWLS-TV), as well as a more efficient variant employing gridding of projection data to parallel rays (gPWLS-TV). Voxel noise, edge blurring, and surface accuracy were compared to gridded filtered back projection (gFBP). PWLS reconstruction of a noise-free reduced-size Shepp-Logan phantom had 1.4% rRMSE. In noisy gPWLS-TV reconstructions of a reduced-size thorax phantom, 99% of points on the segmented sphere perimeter were within 0.33, 0.47, and 0.70 mm of the ground truth, respectively, for fluences comparable to imaging through 18.0, 27.2, and 34.6 cm acrylic. Surface accuracies of gFBP and gPWLS-TV were similar at high fluences, while gPWLS-TV offered improvement at the lowest fluence. The gPWLS-TV voxel noise was reduced by 60% relative to gFBP, on average. High-contrast linespread functions measured 1.25 mm and 0.96 mm (FWHM) for gPWLS-TV and gFBP. In a simulation of gated and truncated projection data from a full-sized thorax, gPWLS-TV reconstruction yielded segmented surface points which were within 1.41 mm of ground truth. Results support the feasibility of 3D surface segmentation with SBDX. Further investigation of artifacts caused by data truncation and patient motion is warranted.

  16. Feasibility of CT-based 3D anatomic mapping with a scanning-beam digital x-ray (SBDX) system.

    PubMed

    Slagowski, Jordan M; Tomkowiak, Michael T; Dunkerley, David A P; Speidel, Michael A

    This study investigates the feasibility of obtaining CT-derived 3D surfaces from data provided by the scanning-beam digital x-ray (SBDX) system. Simulated SBDX short-scan acquisitions of a Shepp-Logan and a thorax phantom containing a high contrast spherical volume were generated. 3D reconstructions were performed using a penalized weighted least squares method with total variation regularization (PWLS-TV), as well as a more efficient variant employing gridding of projection data to parallel rays (gPWLS-TV). Voxel noise, edge blurring, and surface accuracy were compared to gridded filtered back projection (gFBP). PWLS reconstruction of a noise-free reduced-size Shepp-Logan phantom had 1.4% rRMSE. In noisy gPWLS-TV reconstructions of a reduced-size thorax phantom, 99% of points on the segmented sphere perimeter were within 0.33, 0.47, and 0.70 mm of the ground truth, respectively, for fluences comparable to imaging through 18.0, 27.2, and 34.6 cm acrylic. Surface accuracies of gFBP and gPWLS-TV were similar at high fluences, while gPWLS-TV offered improvement at the lowest fluence. The gPWLS-TV voxel noise was reduced by 60% relative to gFBP, on average. High-contrast linespread functions measured 1.25 mm and 0.96 mm (FWHM) for gPWLS-TV and gFBP. In a simulation of gated and truncated projection data from a full-sized thorax, gPWLS-TV reconstruction yielded segmented surface points which were within 1.41 mm of ground truth. Results support the feasibility of 3D surface segmentation with SBDX. Further investigation of artifacts caused by data truncation and patient motion is warranted.

  17. Computer-aided detection of masses in digital tomosynthesis mammography: combination of 3D and 2D detection information

    NASA Astrophysics Data System (ADS)

    Chan, Heang-Ping; Wei, Jun; Zhang, Yiheng; Moore, Richard H.; Kopans, Daniel B.; Hadjiiski, Lubomir; Sahiner, Berkman; Roubidoux, Marilyn A.; Helvie, Mark A.

    2007-03-01

    We are developing a computer-aided detection (CAD) system for masses on digital breast tomosynthesis mammograms (DBTs). The CAD system includes two parallel processes. In the first process, mass detection and feature analysis are performed in the reconstructed 3D DBT volume. A mass likelihood score is estimated for each mass candidate using a linear discriminant (LDA) classifier. In the second process, mass detection and feature analysis are applied to the individual projection view (PV) images. A mass likelihood score is estimated for each mass candidate using another LDA classifier. The mass likelihood images derived from the PVs are back-projected to the breast volume to estimate the 3D spatial distribution of the mass likelihood scores. The mass likelihood scores estimated by the two processes at the corresponding 3D location are then merged and evaluated using FROC analysis. In this preliminary study, a data set of 52 DBT cases acquired with a GE prototype system at the Massachusetts General Hospital was used. The LDA classifiers with stepwise feature selection were designed with leave-one-case-out resampling. In an FROC analysis, the CAD system for detection in the DBT volume alone achieved test sensitivities of 80% and 90% at an average FP rate of 1.6 and 3.0 per breast, respectively. In comparison, the average FP rates of the combined system were 1.2 and 2.3 per breast, respectively, at the same sensitivities. The combined system is a promising approach to improving mass detection on DBTs.

  18. An Approach to 3d Digital Modeling of Surfaces with Poor Texture by Range Imaging Techniques. `SHAPE from Stereo' VS. `SHAPE from Silhouette' in Digitizing Jorge Oteiza's Sculptures

    NASA Astrophysics Data System (ADS)

    García Fernández, J.; Álvaro Tordesillas, A.; Barba, S.

    2015-02-01

    Despite eminent development of digital range imaging techniques, difficulties persist in the virtualization of objects with poor radiometric information, in other words, objects consisting of homogeneous colours (totally white, black, etc.), repetitive patterns, translucence, or materials with specular reflection. This is the case for much of the Jorge Oteiza's works, particularly in the sculpture collection of the Museo Fundación Jorge Oteiza (Navarra, Spain). The present study intend to analyse and asses the performance of two digital 3D-modeling methods based on imaging techniques, facing cultural heritage in singular cases, determined by radiometric characteristics as mentioned: Shape from Silhouette and Shape from Stereo. On the other hand, the text proposes the definition of a documentation workflow and presents the results of its application in the collection of sculptures created by Oteiza.

  19. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2008-10-01

    K. Fishman and B. M. W. Tsui, "Development of a computer-generated model for the coronary arterial tree based on multislice CT and morphometric data...mathematical models based on geometric primitives8-22. Bakic et al created synthetic x-ray mammograms using a 3D simulated breast tissue model consisting of...utilized a combination of voxel matrices and geometric primitives to create a breast phantom that includes the breast surface, the duct system, and

  20. Automated 3D detection and classification of Giardia lamblia cysts using digital holographic microscopy with partially coherent source

    NASA Astrophysics Data System (ADS)

    El Mallahi, A.; Detavernier, A.; Yourassowsky, C.; Dubois, F.

    2012-06-01

    Over the past century, monitoring of Giardia lamblia became a matter of concern for all drinking water suppliers worldwide. Indeed, this parasitic flagellated protozoan is responsible for giardiasis, a widespread diarrhoeal disease (200 million symptomatic individuals) that can lead immunocompromised individuals to death. The major difficulty raised by Giardia lamblia's cyst, its vegetative transmission form, is its ability to survive for long periods in harsh environments, including the chlorine concentrations and treatment duration used traditionally in water disinfection. Currently, there is a need for a reliable, inexpensive, and easy-to-use sensor for the identification and quantification of cysts in the incoming water. For this purpose, we investigated the use of a digital holographic microscope working with partially coherent spatial illumination that reduces the coherent noise. Digital holography allows one to numerically investigate a volume by refocusing the different plane of depth of a hologram. In this paper, we perform an automated 3D analysis that computes the complex amplitude of each hologram, detects all the particles present in the whole volume given by one hologram and refocuses them if there are out of focus using a refocusing criterion based on the integrated complex amplitude modulus and we obtain the (x,y,z) coordinates of each particle. Then the segmentation of the particles is processed and a set of morphological and textures features characteristic to Giardia lamblia cysts is computed in order to classify each particles in the right classes.

  1. Dynamic deformation measurements of a rotating disc by twin-pulsed 3D digital holography and interpolation of phase maps

    NASA Astrophysics Data System (ADS)

    Perez-Lopez, Carlos; Mendoza Santoyo, Fernando

    2004-06-01

    This paper describes the application of twin-pulsed 3D digital holography to the measurement of the dynamic deformation of a disc while it rotates. Object rotation produces interferometric fringes that are related to deformations for instance, stress due to the centrifugal forces, out-to plane vibrations, and the object angular displacement. Furthermore an unbalanced disc that rotates may present a characteristic vibration amplitude pattern at a specific frequency. An optical arrangement that illuminates, with a twin pulsed laser, from three different positions the object was used to recover the x, y and z displacement components in a rotating object. The technique is able to distinguish the disc rotation from the displacement along the x-y plane and the out-of-plane z displacement. Two laser pulses are fired in order to take two digital holgrams with a time separation of 20 μs. This is done for each of the three object illumination positions. Triads of twin-pulsed digital holograms taken at different times during object rotation are processed independently, and their optical phase maps retrieved by the conventional Fourier transform method together with the combination of data from the three illumination positions. The phase term related to the deformation is found experimentally where the intrinsic sensitivity vector is related to the rotation via the vector cross product, forming parallel fringes. To recover the rotation and deformation data the unwrapped phase maps were used as 'tilt' phase planes an all three sensitivity vectors in order to recover the in-plane, and out-to plane displacements. An interpolation algorithm was developed to correlate the time depending phase maps, leading to obtain object vibration frequency data. Experimental results are presented, showing in particular that the rotating object has an unbalancing due to the detected vibration frequency.

  2. The potential of 3D gully monitoring with GIS using high-resolution aerial photography and a digital photogrammetry system

    NASA Astrophysics Data System (ADS)

    Marzolff, I.; Poesen, J.

    2009-10-01

    Although gully erosion is generally considered a major process of land degradation, its contribution to total soil loss by erosion has recently been a subject of much discussion. The lack of adequate methods for the documentation and monitoring of gullies resulted in the shortage of quantitative data. Therefore, a high-resolution remote sensing system for aerial surveys by blimp or kite has been developed which meets spatial and temporal image resolutions required for short-term gully monitoring. The objective of this paper is to examine the potential of a method using non-metric digital photogrammetry and GIS for gully surface modelling and monitoring. Two bank gullies representing different morphological types of gullies (V-shaped and U-shaped) were chosen from a dataset of gully systems in semi-arid Spain. The considerable relief energy and complex topography of the gullies in a natural, vegetated landscape were found to be a challenge to digital photogrammetric techniques, introducing errors which inhibit fully automated DEM generation. Using a hybrid method combining stereomatching for mass-point extraction with manual 3D editing and digitizing, high-resolution DEMs (5 and 7.5 cm pixel size) were created for the study sites. GIS analysis of the DEMs for different monitoring periods (2 to 4 years) allowed the computation of gully area and volume, as well as their changes with an accuracy and detail sufficient to represent the geomorphological forms and processes involved. Furthermore, the spatially continuous survey of the entire form offered the possibility of distinguishing different zones of activity both at the gully rim and within the gully interior, identifying patterns of erosion and deposition which indicate the limited use of headcut retreat rates for the assessment of sediment production on a short-term basis.

  3. A New Total Digital Smile Planning Technique (3D-DSP) to Fabricate CAD-CAM Mockups for Esthetic Crowns and Veneers

    PubMed Central

    Mastrangelo, F.; Gherlone, E. F.; Gastaldi, G.

    2016-01-01

    Purpose. Recently, the request of patients is changed in terms of not only esthetic but also previsualization therapy planning. The aim of this study is to evaluate a new 3D-CAD-CAM digital planning technique that uses a total digital smile process. Materials and Methods. Study participants included 28 adult dental patients, aged 19 to 53 years, with no oral, periodontal, or systemic diseases. For each patient, 3 intra- and extraoral pictures and intraoral digital impressions were taken. The digital images improved from the 2D Digital Smile System software and the scanner stereolithographic (STL) file was matched into the 3D-Digital Smile System to obtain a virtual previsualization of teeth and smile design. Then, the mockups were milled using a CAM system. Minimally invasive preparation was carried out on the enamel surface with the mockups as position guides. Results. The patients found both the digital smile design previsualization (64.3%) and the milling mockup test (85.7%) very effective. Conclusions. The new total 3D digital planning technique is a predictably and minimally invasive technique, allows easy diagnosis, and improves the communication with the patient and helps to reduce the working time and the errors usually associated with the classical prosthodontic manual step. PMID:27478442

  4. A New Total Digital Smile Planning Technique (3D-DSP) to Fabricate CAD-CAM Mockups for Esthetic Crowns and Veneers.

    PubMed

    Cattoni, F; Mastrangelo, F; Gherlone, E F; Gastaldi, G

    2016-01-01

    Purpose. Recently, the request of patients is changed in terms of not only esthetic but also previsualization therapy planning. The aim of this study is to evaluate a new 3D-CAD-CAM digital planning technique that uses a total digital smile process. Materials and Methods. Study participants included 28 adult dental patients, aged 19 to 53 years, with no oral, periodontal, or systemic diseases. For each patient, 3 intra- and extraoral pictures and intraoral digital impressions were taken. The digital images improved from the 2D Digital Smile System software and the scanner stereolithographic (STL) file was matched into the 3D-Digital Smile System to obtain a virtual previsualization of teeth and smile design. Then, the mockups were milled using a CAM system. Minimally invasive preparation was carried out on the enamel surface with the mockups as position guides. Results. The patients found both the digital smile design previsualization (64.3%) and the milling mockup test (85.7%) very effective. Conclusions. The new total 3D digital planning technique is a predictably and minimally invasive technique, allows easy diagnosis, and improves the communication with the patient and helps to reduce the working time and the errors usually associated with the classical prosthodontic manual step.

  5. Experimental validation of 3D printed patient-specific implants using digital image correlation and finite element analysis.

    PubMed

    Sutradhar, Alok; Park, Jaejong; Carrau, Diana; Miller, Michael J

    2014-09-01

    With the dawn of 3D printing technology, patient-specific implant designs are set to have a paradigm shift. A topology optimization method in designing patient-specific craniofacial implants has been developed to ensure adequate load transfer mechanism and restore the form and function of the mid-face. Patient-specific finite element models are used to design these implants and to validate whether they are viable for physiological loading such as mastication. Validation of these topology optimized finite element models using mechanical testing is a critical step. Instead of inserting the implants into a cadaver or patient, we embed the implants into the computer-aided skull model of a patient and, fuse them together to 3D print the complete skull model with the implant. Masticatory forces are applied in the molar region to simulate chewing and measure the stress-strain trajectory. Until recently, strain gages have been used to measure strains for validation. Digital Image Correlation (DIC) method is a relatively new technique for full-field strain measurement which provides a continuous deformation field data. The main objective of this study is to validate the finite element model of patient-specific craniofacial implants against the strain data from the DIC obtained during the mastication simulation and show that the optimized shapes provide adequate load-transfer mechanism. Patient-specific models are obtained from CT scans. The principal maximum and minimum strains are compared. The computational and experimental approach to designing patient-specific implants proved to be a viable technique for mid-face craniofacial reconstruction.

  6. Temporal Subtraction of Digital Breast Tomosynthesis Images for Improved Mass Detection

    DTIC Science & Technology

    2007-10-01

    Hoeschen, U. Fill, M. Zankl, et al., "A High-Resolution Voxel Phantom of the Breast for Dose Calculations in Mammography," Radiation Protection ...34, Acta radiologica 41 (1), 52 (2000). 11 M.P. Callaway, C.R.M. Boggis, S.A. Astley, and I. Hutt, "The influence of previous films on screening...properties of digital mammograms using a computer simulation", Radiation Protection Dosimetry 114, 395 (2005). 75 P. Bakic, M. Albert, D. Brzakovic, and A

  7. Application of Technical Measures and Software in Constructing Photorealistic 3D Models of Historical Building Using Ground-Based and Aerial (UAV) Digital Images

    NASA Astrophysics Data System (ADS)

    Zarnowski, Aleksander; Banaszek, Anna; Banaszek, Sebastian

    2015-12-01

    Preparing digital documentation of historical buildings is a form of protecting cultural heritage. Recently there have been several intensive studies using non-metric digital images to construct realistic 3D models of historical buildings. Increasingly often, non-metric digital images are obtained with unmanned aerial vehicles (UAV). Technologies and methods of UAV flights are quite different from traditional photogrammetric approaches. The lack of technical guidelines for using drones inhibits the process of implementing new methods of data acquisition. This paper presents the results of experiments in the use of digital images in the construction of photo-realistic 3D model of a historical building (Raphaelsohns' Sawmill in Olsztyn). The aim of the study at the first stage was to determine the meteorological and technical conditions for the acquisition of aerial and ground-based photographs. At the next stage, the technology of 3D modelling was developed using only ground-based or only aerial non-metric digital images. At the last stage of the study, an experiment was conducted to assess the possibility of 3D modelling with the comprehensive use of aerial (UAV) and ground-based digital photographs in terms of their labour intensity and precision of development. Data integration and automatic photo-realistic 3D construction of the models was done with Pix4Dmapper and Agisoft PhotoScan software Analyses have shown that when certain parameters established in an experiment are kept, the process of developing the stock-taking documentation for a historical building moves from the standards of analogue to digital technology with considerably reduced cost.

  8. Characterization of High Strain Rate Mechanical behavior of AZ31 magnesium alloy using 3D Digital Image Correlation

    SciTech Connect

    Wang, Yanli; Xu, Hanbing; ERDMAN III, DONALD L; Starbuck, J Michael; Simunovic, Srdjan

    2011-01-01

    Characterization of the material mechanical behavior at sub-Hopkinson regime (0.1 to 1000 s{sup -1}) is very challenging due to instrumentation limitations and the complexity of data analysis involved in dynamic loading. In this study, AZ31 magnesium alloy sheet specimens are tested using a custom designed servo-hydraulic machine in tension at nominal strain rates up to 1000 s{sup -1}. In order to resolve strain measurement artifacts, the specimen displacement is measured using 3D Digital Image correlation instead from actuator motion. The total strain is measured up to {approx} 30%, which is far beyond the measurable range of electric resistance strain gages. Stresses are calculated based on the elastic strains in the tab of a standard dog-bone shaped specimen. Using this technique, the stresses measured for strain rates of 100 s{sup -1} and lower show little or no noise comparing to load cell signals. When the strain rates are higher than 250 s{sup -1}, the noises and oscillations in the stress measurements are significantly decreased from {approx} 250 to 50 MPa. Overall, it is found that there are no significant differences in the elongation, although the material exhibits slight work hardening when the strain rate is increased from 1 to 100 s{sup -1}.

  9. Full-field wing deformation measurement scheme for in-flight cantilever monoplane based on 3D digital image correlation

    NASA Astrophysics Data System (ADS)

    Li, Lei-Gang; Liang, Jin; Guo, Xiang; Guo, Cheng; Hu, Hao; Tang, Zheng-Zong

    2014-06-01

    In this paper, a new non-contact scheme, based on 3D digital image correlation technology, is presented to measure the full-field wing deformation of in-flight cantilever monoplanes. Because of the special structure of the cantilever wing, two conjugated camera groups, which are rigidly connected and calibrated to an ensemble respectively, are installed onto the vertical fin of the aircraft and record the whole measurement. First, a type of pre-stretched target and speckle pattern are designed to adapt the oblique camera view for accurate detection and correlation. Then, because the measurement cameras are swinging with the aircraft vertical trail all the time, a camera position self-correction method (using control targets sprayed on the back of the aircraft), is designed to orientate all the cameras’ exterior parameters to a unified coordinate system in real time. Besides, for the excessively inclined camera axis and the vertical camera arrangement, a weak correlation between the high position image and low position image occurs. In this paper, a new dual-temporal efficient matching method, combining the principle of seed point spreading, is proposed to achieve the matching of weak correlated images. A novel system is developed and a simulation test in the laboratory was carried out to verify the proposed scheme.

  10. Improvement of the size estimation of 3D tracked droplets using digital in-line holography with joint estimation reconstruction

    NASA Astrophysics Data System (ADS)

    Verrier, N.; Grosjean, N.; Dib, E.; Méès, L.; Fournier, C.; Marié, J.-L.

    2016-04-01

    Digital holography is a valuable tool for three-dimensional information extraction. Among existing configurations, the originally proposed set-up (i.e. Gabor, or in-line holography), is reasonably immune to variations in the experimental environment making it a method of choice for studies of fluid dynamics. Nevertheless, standard hologram reconstruction techniques, based on numerical light back-propagation are prone to artifacts such as twin images or aliases that limit both the quality and quantity of information extracted from the acquired holograms. To get round this issue, the hologram reconstruction as a parametric inverse problem has been shown to accurately estimate 3D positions and the size of seeding particles directly from the hologram. To push the bounds of accuracy on size estimation still further, we propose to fully exploit the information redundancy of a hologram video sequence using joint estimation reconstruction. Applying this approach in a bench-top experiment, we show that it led to a relative precision of 0.13% (for a 60 μm diameter droplet) for droplet size estimation, and a tracking precision of {σx}× {σy}× {σz}=0.15× 0.15× 1~\\text{pixels} .

  11. 3D reconstructions with pixel-based images are made possible by digitally clearing plant and animal tissue

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Reconstruction of 3D images from a series of 2D images has been restricted by the limited capacity to decrease the opacity of surrounding tissue. Commercial software that allows color-keying and manipulation of 2D images in true 3D space allowed us to produce 3D reconstructions from pixel based imag...

  12. Using subject-specific three-dimensional (3D) anthropometry data in digital human modelling: case study in hand motion simulation.

    PubMed

    Tsao, Liuxing; Ma, Liang

    2016-11-01

    Digital human modelling enables ergonomists and designers to consider ergonomic concerns and design alternatives in a timely and cost-efficient manner in the early stages of design. However, the reliability of the simulation could be limited due to the percentile-based approach used in constructing the digital human model. To enhance the accuracy of the size and shape of the models, we proposed a framework to generate digital human models using three-dimensional (3D) anthropometric data. The 3D scan data from specific subjects' hands were segmented based on the estimated centres of rotation. The segments were then driven in forward kinematics to perform several functional postures. The constructed hand models were then verified, thereby validating the feasibility of the framework. The proposed framework helps generate accurate subject-specific digital human models, which can be utilised to guide product design and workspace arrangement. Practitioner Summary: Subject-specific digital human models can be constructed under the proposed framework based on three-dimensional (3D) anthropometry. This approach enables more reliable digital human simulation to guide product design and workspace arrangement.

  13. Cerebral Circulation Time is Prolonged and Not Correlated with EDSS in Multiple Sclerosis Patients: A Study Using Digital Subtracted Angiography

    PubMed Central

    Monti, Lucia; Donati, Donatella; Menci, Elisabetta; Cioni, Samuele; Bellini, Matteo; Grazzini, Irene; Leonini, Sara; Galluzzi, Paolo; Severi, Sauro; Burroni, Luca; Casasco, Alfredo; Morbidelli, Lucia; Santarnecchi, Emiliano; Piu, Pietro

    2015-01-01

    Literature has suggested that changes in brain flow circulation occur in patients with multiple sclerosis. In this study, digital subtraction angiography (DSA) was used to measure the absolute CCT value in MS patients and to correlate its value to age at disease onset and duration, and to expand disability status scale (EDSS). DSA assessment was performed on eighty MS patients and on a control group of forty-four age-matched patients. CCT in MS and control groups was calculated by analyzing the angiographic images. Lesion and brain volumes were calculated in a representative group of MS patients. Statistical correlations among CCT and disease duration, age at disease onset, lesion load, brain volumes and EDSS were considered. A significant difference between CCT in MS patients (mean = 4.9s; sd = 1.27s) and control group (mean = 2.8s; sd = 0.51s) was demonstrated. No significant statistical correlation was found between CCT and the other parameters in all MS patients. Significantly increased CCT value in MS patients suggests the presence of microvascular dysfunctions, which do not depend on clinical and MRI findings. Hemodynamic changes may not be exclusively the result of a late chronic inflammatory process. PMID:25679526

  14. Development and evaluation of a digital subtraction angiography system using a large-area flat panel detector

    NASA Astrophysics Data System (ADS)

    Ikeda, Shigeyuki; Suzuki, Katsumi; Ishikawa, Ken; Colbeth, Richard E.; Webb, Chris; Tanaka, Saori; Okusako, Kenji

    2003-06-01

    We developed prototype Digital Subtraction Angiography (DSA) System with a new large area FPD. Dynamic range, MTF, Contrast ratio and line noise were much improved. The improved FPD is a scintillator-type detector, and has a 40 x 30 cm active area, 2048 x 1536 matrix with 194um pixel pitch. The Prototype DSA system has two x-ray detectors, the FPD and the I.I.-CCD camera, and we can choose them on demand. All images captured from both detectors at 3 frames/sec in DSA mode and 30 frames/sec in Fluoroscopy mode are forwarded to our image-processing unit. We applied the new DSA system to more than 150 studies and compared the results with images from the I.I.-CCD. In DSA mode, FPD System, which has a wide dynamic range, large detecting area, and good contrast ratio yielded superior angiogram images compared with the I.I-CCD system. In Fluoroscopy mode, we improved line noise and increased the contrast of catheters and guide wires with a new image processing technique. With these improvements, the image quality of the FPD System is superior to the I.I.-CCD system at the exposure range of over 2uR/frame (17.4 nGy/frame).

  15. Multislice CT Angiography in Renal Artery Stent Evaluation: Prospective Comparison with Intra-Arterial Digital Subtraction Angiography

    SciTech Connect

    Raza, Syed A.; Chughtai, Aamer R.; Wahba, Mona; Cowling, Mark G.; Taube, David; Wright, Andrew R.

    2004-01-15

    Purpose: To assess the role of multislice computed tomography angiography (MCTA) in the evaluation of renal artery stents, using intra-arterial digital subtraction angiography (DSA) as the gold standard. Methods: Twenty consecutive patients (15 men, 5 women) with 23 renal artery stents prospectively underwent both MCTA and DSA. Axial images, multiplanar reconstructions and maximum intensity projection images were used for diagnosis. The MCTA and DSA images were each interpreted without reference to the result of the other investigation. Results:The three cases of restenosis on DSA were detected correctly by MCTA; in 19 cases where MCTA showed a fully patent stent, the DSA was also negative. Sensitivity and negative predictive value (NPV) of MCTA were therefore 100%. In four cases, MCTA showed apparently minimal disease which was not shown on DSA. These cases are taken as false positive giving a specificity of 80% and a positive predictive value of 43%. Conclusion: The high sensitivity and NPV suggest MCTA may be useful as a noninvasive screen for renal artery stentrestenosis. MCTA detected mild disease in a few patients which was not confirmed on angiography.

  16. Cerebral circulation time is prolonged and not correlated with EDSS in multiple sclerosis patients: a study using digital subtracted angiography.

    PubMed

    Monti, Lucia; Donati, Donatella; Menci, Elisabetta; Cioni, Samuele; Bellini, Matteo; Grazzini, Irene; Leonini, Sara; Galluzzi, Paolo; Bracco, Sandra; Severi, Sauro; Burroni, Luca; Casasco, Alfredo; Morbidelli, Lucia; Santarnecchi, Emiliano; Piu, Pietro

    2015-01-01

    Literature has suggested that changes in brain flow circulation occur in patients with multiple sclerosis. In this study, digital subtraction angiography (DSA) was used to measure the absolute CCT value in MS patients and to correlate its value to age at disease onset and duration, and to expand disability status scale (EDSS). DSA assessment was performed on eighty MS patients and on a control group of forty-four age-matched patients. CCT in MS and control groups was calculated by analyzing the angiographic images. Lesion and brain volumes were calculated in a representative group of MS patients. Statistical correlations among CCT and disease duration, age at disease onset, lesion load, brain volumes and EDSS were considered. A significant difference between CCT in MS patients (mean = 4.9s; sd = 1.27 s) and control group (mean = 2.8s; sd = 0.51 s) was demonstrated. No significant statistical correlation was found between CCT and the other parameters in all MS patients. Significantly increased CCT value in MS patients suggests the presence of microvascular dysfunctions, which do not depend on clinical and MRI findings. Hemodynamic changes may not be exclusively the result of a late chronic inflammatory process.

  17. FPGA architectures for electronically scanned wide-band RF beams using 3-D FIR/IIR digital filters for rectangular array aperture receivers

    NASA Astrophysics Data System (ADS)

    Wijayaratna, Sewwandi; Madanayake, Arjuna; Beall, Brandon D.; Bruton, Len T.

    2014-05-01

    Real-time digital implementation of three-dimensional (3-D) infinite impulse response (IIR) beam filters are discussed. The 3-D IIR filter building blocks have filter coefficients, which are defined using algebraic closed-form expressions that are functions of desired beam personalities, such as the look-direction of the aperture, the bandwidth and sampling frequency of interest, inter antenna spacing, and 3dB beam size. Real-time steering of such 3-D beam filters are obtained by proposed calculation of filter coefficients. Application specific computing units for rapidly calculating the 3-D IIR filter coefficients at nanosecond speed potentially allows fast real-time tracking of low radar cross section (RCS) objects at close range. Proposed design consists of 3-D IIR beam filter with 4 4 antenna grid and the filter coefficient generation block in separate FPGAs. The hardware is designed and co-simulated using a Xilinx Virtex-6 XC6VLX240T FPGA. The 3-D filter operates over 90 MHz and filter coefficient computing structure can operate at up to 145 MHz.

  18. An automatic fuzzy-based multi-temporal brain digital subtraction angiography image fusion algorithm using curvelet transform and content selection strategy.

    PubMed

    Momeni, Saba; Pourghassem, Hossein

    2014-08-01

    Recently image fusion has prominent role in medical image processing and is useful to diagnose and treat many diseases. Digital subtraction angiography is one of the most applicable imaging to diagnose brain vascular diseases and radiosurgery of brain. This paper proposes an automatic fuzzy-based multi-temporal fusion algorithm for 2-D digital subtraction angiography images. In this algorithm, for blood vessel map extraction, the valuable frames of brain angiography video are automatically determined to form the digital subtraction angiography images based on a novel definition of vessel dispersion generated by injected contrast material. Our proposed fusion scheme contains different fusion methods for high and low frequency contents based on the coefficient characteristic of wrapping second generation of curvelet transform and a novel content selection strategy. Our proposed content selection strategy is defined based on sample correlation of the curvelet transform coefficients. In our proposed fuzzy-based fusion scheme, the selection of curvelet coefficients are optimized by applying weighted averaging and maximum selection rules for the high frequency coefficients. For low frequency coefficients, the maximum selection rule based on local energy criterion is applied to better visual perception. Our proposed fusion algorithm is evaluated on a perfect brain angiography image dataset consisting of one hundred 2-D internal carotid rotational angiography videos. The obtained results demonstrate the effectiveness and efficiency of our proposed fusion algorithm in comparison with common and basic fusion algorithms.

  19. 3D Digitization and Prototyping of the Skull for Practical Use in the Teaching of Human Anatomy.

    PubMed

    Lozano, Maria Teresa Ugidos; Haro, Fernando Blaya; Diaz, Carlos Molino; Manzoor, Sadia; Ugidos, Gonzalo Ferrer; Mendez, Juan Antonio Juanes

    2017-05-01

    The creation of new rapid prototyping techniques, low cost 3D printers as well as the creation of new software for these techniques have allowed the creation of 3D models of bones making their application possible in the field of teaching anatomy in the faculties of Health Sciences. The 3D model of cranium created in the present work, at full scale, present accurate reliefs and anatomical details that are easily identifiable by undergraduate students in their use for the study of human anatomy. In this article, the process of scanning the skull and the subsequent treatment of these images with specific software until the generation of 3D model using 3D printer has been reported.

  20. Intra-Arterial MR Perfusion Imaging of Meningiomas: Comparison to Digital Subtraction Angiography and Intravenous MR Perfusion Imaging

    PubMed Central

    Martin, Alastair J.; Alexander, Matthew D.; McCoy, David B.; Cooke, Daniel L.; Lillaney, Prasheel; Moftakhar, Parham; Amans, Matthew R.; Settecase, Fabio; Nicholson, Andrew; Dowd, Christopher F.; Halbach, Van V.; Higashida, Randall T.; McDermott, Michael W.; Saloner, David; Hetts, Steven W.

    2016-01-01

    Background and Purpose To evaluate the ability of IA MR perfusion to characterize meningioma blood supply. Methods Studies were performed in a suite comprised of an x-ray angiography unit and 1.5T MR scanner that permitted intraprocedural patient movement between the imaging modalities. Patients underwent intra-arterial (IA) and intravenous (IV) T2* dynamic susceptibility MR perfusion immediately prior to meningioma embolization. Regional tumor arterial supply was characterized by digital subtraction angiography and classified as external carotid artery (ECA) dural, internal carotid artery (ICA) dural, or pial. MR perfusion data regions of interest (ROIs) were analyzed in regions with different vascular supply to extract peak height, full-width at half-maximum (FWHM), relative cerebral blood flow (rCBF), relative cerebral blood volume (rCBV), and mean transit time (MTT). Linear mixed modeling was used to identify perfusion curve parameter differences for each ROI for IA and IV MR imaging techniques. IA vs. IV perfusion parameters were also directly compared for each ROI using linear mixed modeling. Results 18 ROIs were analyzed in 12 patients. Arterial supply was identified as ECA dural (n = 11), ICA dural (n = 4), or pial (n = 3). FWHM, rCBV, and rCBF showed statistically significant differences between ROIs for IA MR perfusion. Peak Height and FWHM showed statistically significant differences between ROIs for IV MR perfusion. RCBV and MTT were significantly lower for IA perfusion in the Dural ECA compared to IV perfusion. Relative CBF in IA MR was found to be significantly higher in the Dural ICA region and MTT significantly lower compared to IV perfusion. PMID:27802268

  1. Effect of injection technique on temporal parametric imaging derived from digital subtraction angiography in patient specific phantoms

    NASA Astrophysics Data System (ADS)

    Ionita, Ciprian N.; Garcia, Victor L.; Bednarek, Daniel R.; Snyder, Kenneth V.; Siddiqui, Adnan H.; Levy, Elad I.; Rudin, Stephen

    2014-03-01

    Parametric imaging maps (PIM's) derived from digital subtraction angiography (DSA) for the cerebral arterial flow assessment in clinical settings have been proposed, but experiments have yet to determine the reliability of such studies. For this study, we have observed the effects of different injection techniques on PIM's. A flow circuit set to physiologic conditions was created using an internal carotid artery phantom. PIM's were derived for two catheter positions, two different contrast bolus injection volumes (5ml and 10 ml), and four injection rates (5, 10, 15 and 20 ml/s). Using a gamma variate fitting approach, we derived PIM's for mean-transit-time (MTT), time-to-peak (TTP) and bolus-arrivaltime (BAT). For the same injection rates, a larger bolus resulted in an increased MTT and TTP, while a faster injection rate resulted in a shorter MTT, TTP, and BAT. In addition, the position of the catheter tip within the vasculature directly affected the PIM. The experiment showed that the PIM is strongly correlated with the injection conditions, and, therefore, they have to be interpreted with caution. PIM images must be taken from the same patient to be able to be meaningfully compared. These comparisons can include pre- and post-treatment images taken immediately before and after an interventional procedure or simultaneous arterial flow comparisons through the left and right cerebral hemispheres. Due to the strong correlation between PIM and injection conditions, this study indicates that this assessment method should be used only to compare flow changes before and after treatment within the same patient using the same injection conditions.

  2. Effect of injection technique on temporal parametric imaging derived from digital subtraction angiography in patient specific phantoms

    PubMed Central

    Ionita, Ciprian N; Garcia, Victor L.; Bednarek, Daniel R; Snyder, Kenneth V; Siddiqui, Adnan H; Levy, Elad I; Rudin, Stephen

    2014-01-01

    Parametric imaging maps (PIM’s) derived from digital subtraction angiography (DSA) for the cerebral arterial flow assessment in clinical settings have been proposed, but experiments have yet to determine the reliability of such studies. For this study, we have observed the effects of different injection techniques on PIM’s. A flow circuit set to physiologic conditions was created using an internal carotid artery phantom. PIM’s were derived for two catheter positions, two different contrast bolus injection volumes (5ml and 10 ml), and four injection rates (5, 10, 15 and 20 ml/s). Using a gamma variate fitting approach, we derived PIM’s for mean-transit-time (MTT), time-to-peak (TTP) and bolus-arrivaltime (BAT). For the same injection rates, a larger bolus resulted in an increased MTT and TTP, while a faster injection rate resulted in a shorter MTT, TTP, and BAT. In addition, the position of the catheter tip within the vasculature directly affected the PIM. The experiment showed that the PIM is strongly correlated with the injection conditions, and, therefore, they have to be interpreted with caution. PIM images must be taken from the same patient to be able to be meaningfully compared. These comparisons can include pre- and post-treatment images taken immediately before and after an interventional procedure or simultaneous arterial flow comparisons through the left and right cerebral hemispheres. Due to the strong correlation between PIM and injection conditions, this study indicates that this assessment method should be used only to compare flow changes before and after treatment within the same patient using the same injection conditions. PMID:25302010

  3. Computed Tomographic Angiography as an Adjunct to Digital Subtraction Angiography for the Pre-Operative Assessment of Cerebral Aneurysms

    PubMed Central

    Farsad, Khashayar; Mamourian, Alexander C; Eskey, Clifford J; Friedman, Jonathan A

    2009-01-01

    Objectives: Computerized tomographic angiography (CTA) has emerged as a valuable diagnostic tool for the management of patients with cerebrovascular disease. The use of CTA in lieu of, or as an adjunct to, conventional cerebral angiography in the management of cerebral aneurysms awaits further experience. In this study, we evaluated the role of CTA specifically for the pre-operative assessment and planning of cerebral aneurysm surgery. Patients and Methods: We reviewed the relevant neuroimaging of all patients treated at Dartmouth Hitchcock Medical Center between January, 2001 and December, 2004 with a diagnosis of cerebral aneurysm and diagnostic evaluation with both CTA and conventional digital subtraction angiography (DSA) using standard imaging protocols. 32 patients underwent both CTA and DSA during the study period for a total of 36 aneurysms. Images were independently re-assesed by two neurosurgeons for information valuable for pre-operative surgical planning. Results: In 26 of 36 aneurysms (72%), the CTA was felt to provide the best image quality in defining the morphology of the aneurysm. In 14 aneurysms (39%), CTA provided clinically valuable anatomic detail not demonstrated on DSA, largely due to better visualization of parent and perforating vessel relationships at the aneurysm neck. There were no instances where a lesion was seen on DSA but missed on CTA. The DSA was of most clinical value in determining flow dynamics, such as the arterial supply of an anterior communicating artery aneurysm and distal anterior cerebral branches via the two A1 segments. Conclusion: CTA with three-dimensional reconstructions is a valuable adjunct to the preoperative evaluation of cerebral aneurysms. We advocate routine use of CTA in all patients in whom surgical aneurysm repair is planned, even when DSA has already been performed. PMID:19452029

  4. Color-Coded Digital Subtraction Angiography in the Management of a Rare Case of Middle Cerebral Artery Pure Arterial Malformation

    PubMed Central

    Feliciano, Caleb E; Pamias-Portalatin, Eva; Mendoza-Torres, Jorge; Effio, Euclides; Moran, Yadira; Rodriguez-Mercado, Rafael

    2014-01-01

    Summary The advent of flow dynamics and the recent availability of perfusion analysis software have provided new diagnostic tools and management possibilities for cerebrovascular patients. To this end, we provide an example of the use of color-coded angiography and its application in a rare case of a patient with a pure middle cerebral artery (MCA) malformation. A 42-year-old male chronic smoker was evaluated in the emergency room due to sudden onset of severe headache, nausea, vomiting and left-sided weakness. Head computed tomography revealed a right basal ganglia hemorrhage. Cerebral digital subtraction angiography (DSA) showed a right middle cerebral artery malformation consisting of convoluted and ectatic collateral vessels supplying the distal middle cerebral artery territory-M1 proximally occluded. An associated medial lenticulostriate artery aneurysm was found. Brain single-photon emission computed tomography with and without acetazolamide failed to show problems in vascular reserve that would indicate the need for flow augmentation. Twelve months after discharge, the patient recovered from the left-sided weakness and did not present any similar events. A follow-up DSA and perfusion study using color-coded perfusion analysis showed perforator aneurysm resolution and adequate, albeit delayed perfusion in the involved vascular territory. We propose a combined congenital and acquired mechanism involving M1 occlusion with secondary dysplastic changes in collateral supply to the distal MCA territory. Angiographic and cerebral perfusion work-up was used to exclude the need for flow augmentation. Nevertheless, the natural course of this lesion remains unclear and long-term follow-up is warranted. PMID:25496681

  5. Effect of injection technique on temporal parametric imaging derived from digital subtraction angiography in patient specific phantoms.

    PubMed

    Ionita, Ciprian N; Garcia, Victor L; Bednarek, Daniel R; Snyder, Kenneth V; Siddiqui, Adnan H; Levy, Elad I; Rudin, Stephen

    2014-03-13

    Parametric imaging maps (PIM's) derived from digital subtraction angiography (DSA) for the cerebral arterial flow assessment in clinical settings have been proposed, but experiments have yet to determine the reliability of such studies. For this study, we have observed the effects of different injection techniques on PIM's. A flow circuit set to physiologic conditions was created using an internal carotid artery phantom. PIM's were derived for two catheter positions, two different contrast bolus injection volumes (5ml and 10 ml), and four injection rates (5, 10, 15 and 20 ml/s). Using a gamma variate fitting approach, we derived PIM's for mean-transit-time (MTT), time-to-peak (TTP) and bolus-arrivaltime (BAT). For the same injection rates, a larger bolus resulted in an increased MTT and TTP, while a faster injection rate resulted in a shorter MTT, TTP, and BAT. In addition, the position of the catheter tip within the vasculature directly affected the PIM. The experiment showed that the PIM is strongly correlated with the injection conditions, and, therefore, they have to be interpreted with caution. PIM images must be taken from the same patient to be able to be meaningfully compared. These comparisons can include pre- and post-treatment images taken immediately before and after an interventional procedure or simultaneous arterial flow comparisons through the left and right cerebral hemispheres. Due to the strong correlation between PIM and injection conditions, this study indicates that this assessment method should be used only to compare flow changes before and after treatment within the same patient using the same injection conditions.

  6. Single-lens 3D digital image correlation system based on a bilateral telecentric lens and a bi-prism: Systematic error analysis and correction

    NASA Astrophysics Data System (ADS)

    Wu, Lifu; Zhu, Jianguo; Xie, Huimin; Zhou, Mengmeng

    2016-12-01

    Recently, we proposed a single-lens 3D digital image correlation (3D DIC) method and established a measurement system on the basis of a bilateral telecentric lens (BTL) and a bi-prism. This system can retrieve the 3D morphology of a target and measure its deformation using a single BTL with relatively high accuracy. Nevertheless, the system still suffers from systematic errors caused by manufacturing deficiency of the bi-prism and distortion of the BTL. In this study, in-depth evaluations of these errors and their effects on the measurement results are performed experimentally. The bi-prism deficiency and the BTL distortion are characterized by two in-plane rotation angles and several distortion coefficients, respectively. These values are obtained from a calibration process using a chessboard placed into the field of view of the system; this process is conducted after the measurement of tested specimen. A modified mathematical model is proposed, which takes these systematic errors into account and corrects them during 3D reconstruction. Experiments on retrieving the 3D positions of the chessboard grid corners and the morphology of a ceramic plate specimen are performed. The results of the experiments reveal that ignoring the bi-prism deficiency will induce attitude error to the retrieved morphology, and the BTL distortion can lead to its pseudo out-of-plane deformation. Correcting these problems can further improve the measurement accuracy of the bi-prism-based single-lens 3D DIC system.

  7. Digital Geology from field to 3D modelling and Google Earth virtual environment: methods and goals from the Furlo Gorge (Northern Apennines - Italy)

    NASA Astrophysics Data System (ADS)

    De Donatis, Mauro; Susini, Sara

    2014-05-01

    A new map of the Furlo Gorge was surveyed and elaborated in a digital way. In every step of work we used digital tools as mobile GIS and 3D modelling software. Phase 1st Starting in the lab, planning the field project development, base cartography, forms and data base were designed in the way we thought was the best for collecting and store data in order of producing a digital n­-dimensional map. Bedding attitudes, outcrops sketches and description, stratigraphic logs, structural features and other informations were collected and organised in a structured database using rugged tablet PC, GPS receiver, digital cameras and later also an Android smartphone with some survey apps in-­house developed. A new mobile GIS (BeeGIS) was developed starting from an open source GIS (uDig): a number of tools like GPS connection, pen drawing annotations, geonotes, fieldbook, photo synchronization and geotagging were originally designed. Phase 2nd After some month of digital field work, all the informations were elaborated for drawing a geologic map in GIS environment. For that we use both commercial (ArcGIS) and open source (gvSig, QGIS, uDig) without big technical problems. Phase 3rd When we get to the step of building a 3D model (using 3DMove), passing trough the assisted drawing of cross-­sections (2DMove), we discovered a number of problems in the interpretation of geological structures (thrusts, normal faults) and more in the interpretation of stratigraphic thickness and boundaries and their relationships with topography. Phase 4th Before an "on­-armchair" redrawing of map, we decide to go back to the field and check directly what was wrong. Two main vantages came from this: (1) the mistakes we found could be reinterpreted and corrected directly in the field having all digital tools we need; (2) previous interpretations could be stored in GIS layers keeping memory of the previous work (also mistakes). Phase 5th A 3D model built with 3D Move is already almost self

  8. Digital preservation of anatomical variation: 3D-modeling of embalmed and plastinated cadaveric specimens using uCT and MRI.

    PubMed

    Moore, Colin W; Wilson, Timothy D; Rice, Charles L

    2017-01-01

    Anatomy educators have an opportunity to teach anatomical variations as a part of medical and allied health curricula using both cadaveric and three-dimensional (3D) digital models of these specimens. Beyond published cadaveric case reports, anatomical variations identified during routine gross anatomy dissection can be powerful teaching tools and a medium to discuss several anatomical sub-disciplines from embryology to medical imaging. The purpose of this study is to document how cadaveric anatomical variation identified during routine dissection can be scanned using medical imaging techniques to create two-dimensional axial images and interactive 3D models for teaching and learning of anatomical variations. Three cadaveric specimens (2 formalin embalmed, 1 plastinated) depicting anatomical variations and an embryological malformation were scanned using magnetic resonance imaging (MRI) and micro-computed tomography (μCT) for visualization in cross-section and for creation of 3D volumetric models. Results provide educational options to enable visualization and facilitate learning of anatomical variations from cross-sectional scans. Furthermore, the variations can be highlighted, digitized, modeled and manipulated using 3D imaging software and viewed in the anatomy laboratory in conjunction with traditional anatomical dissection. This study provides an example for anatomy educators to teach and describe anatomical variations in the undergraduate medical curriculum.

  9. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot.

    PubMed

    Kitson, Philip J; Glatzel, Stefan; Cronin, Leroy

    2016-01-01

    An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic 'programs' which can run on similar low cost, user-constructed robotic platforms towards an 'open-source' regime in the area of chemical synthesis.

  10. The digital code driven autonomous synthesis of ibuprofen automated in a 3D-printer-based robot

    PubMed Central

    Kitson, Philip J; Glatzel, Stefan

    2016-01-01

    An automated synthesis robot was constructed by modifying an open source 3D printing platform. The resulting automated system was used to 3D print reaction vessels (reactionware) of differing internal volumes using polypropylene feedstock via a fused deposition modeling 3D printing approach and subsequently make use of these fabricated vessels to synthesize the nonsteroidal anti-inflammatory drug ibuprofen via a consecutive one-pot three-step approach. The synthesis of ibuprofen could be achieved on different scales simply by adjusting the parameters in the robot control software. The software for controlling the synthesis robot was written in the python programming language and hard-coded for the synthesis of ibuprofen by the method described, opening possibilities for the sharing of validated synthetic ‘programs’ which can run on similar low cost, user-constructed robotic platforms towards an ‘open-source’ regime in the area of chemical synthesis. PMID:28144350

  11. Three dimensional surface analyses of pubic symphyseal faces of contemporary Japanese reconstructed with 3D digitized scanner.

    PubMed

    Biwasaka, Hitoshi; Sato, Kei; Aoki, Yasuhiro; Kato, Hideaki; Maeno, Yoshitaka; Tanijiri, Toyohisa; Fujita, Sachiko; Dewa, Koji

    2013-09-01

    Three dimensional pubic bone images were analyzed to quantify some age-dependent morphological changes of the symphyseal faces of contemporary Japanese residents. The images were synthesized from 145 bone specimens with 3D measuring device. Phases of Suchey-Brooks system were determined on the 3D pubic symphyseal images without discrepancy from those carried out on the real bones because of the high fidelity. Subsequently, mean curvatures of the pubic symphyseal faces to examine concavo-convex condition of the surfaces were analyzed on the 3D images. Average values of absolute mean curvatures of phase 1 and 2 groups were higher than those of phase 3-6 ones, whereas the values were approximately constant over phase 3 presumably reflecting the inactivation of pubic faces over phase 3. Ratio of the concave areas increased gradually with progressing phase or age classes, although convex areas were predominant in every phase.

  12. Method for dose-reduced 3D catheter tracking on a scanning-beam digital x-ray system using dynamic electronic collimation

    PubMed Central

    Dunkerley, David A. P.; Funk, Tobias; Speidel, Michael A.

    2016-01-01

    Scanning-beam digital x-ray (SBDX) is an inverse geometry x-ray fluoroscopy system capable of tomosynthesis-based 3D catheter tracking. This work proposes a method of dose-reduced 3D tracking using dynamic electronic collimation (DEC) of the SBDX scanning x-ray tube. Positions in the 2D focal spot array are selectively activated to create a region-of-interest (ROI) x-ray field around the tracked catheter. The ROI position is updated for each frame based on a motion vector calculated from the two most recent 3D tracking results. The technique was evaluated with SBDX data acquired as a catheter tip inside a chest phantom was pulled along a 3D trajectory. DEC scans were retrospectively generated from the detector images stored for each focal spot position. DEC imaging of a catheter tip in a volume measuring 11.4 cm across at isocenter required 340 active focal spots per frame, versus 4473 spots in full-FOV mode. The dose-area-product (DAP) and peak skin dose (PSD) for DEC versus full field-of-view (FOV) scanning were calculated using an SBDX Monte Carlo simulation code. DAP was reduced to 7.4% to 8.4% of the full-FOV value, consistent with the relative number of active focal spots (7.6%). For image sequences with a moving catheter, PSD was 33.6% to 34.8% of the full-FOV value. The root-mean-squared-deviation between DEC-based 3D tracking coordinates and full-FOV 3D tracking coordinates was less than 0.1 mm. The 3D distance between the tracked tip and the sheath centerline averaged 0.75 mm. Dynamic electronic collimation can reduce dose with minimal change in tracking performance. PMID:27375314

  13. Comparison of C-arm Computed Tomography and Digital Subtraction Angiography in Patients with Chronic Thromboembolic Pulmonary Hypertension

    SciTech Connect

    Hinrichs, Jan B. Marquardt, Steffen Falck, Christian von; Hoeper, Marius M. Olsson, Karen M.; Wacker, Frank K. Meyer, Bernhard C.

    2016-01-15

    PurposeTo assess the feasibility and diagnostic performance of contrast-enhanced, C-arm computed tomography (CACT) of the pulmonary arteries compared to digital subtraction angiography (DSA) in patients suffering from chronic thromboembolic pulmonary hypertension (CTEPH).MaterialsFifty-two patients with CTEPH underwent ECG-gated DSA and contrast-enhanced CACT. Two readers (R1, R2) independently evaluated pulmonary artery segments and their sub-segmental branching using DSA and CACT for optimal image quality. Afterwards, the diagnostic findings, i.e., intraluminal filling defects, stenosis, and occlusion, were compared. Inter-modality and inter-observer agreement was calculated, and subsequently consensus reading was done and correlated to a reference standard representing the overall consensus of both modalities. Fisher’s exact test and Cohen’s Kappa were applied.ResultsA total of 1352 pulmonary segments were evaluated, of which 1255 (92.8 %) on DSA and 1256 (92.9 %) on CACT were rated to be fully diagnostic. The main causes of the non-diagnostic image quality were motion artifacts on CACT (R1:37, R2:78) and insufficient contrast enhancement on DSA (R1:59, R2:38). Inter-observer agreement was good for DSA (κ = 0.74) and CACT (κ = 0.75), while inter-modality agreement was moderate (R1: κ = 0.46, R2: κ = 0.47). Compared to the reference standard, the inter-modality agreement for CACT was excellent (κ = 0.96), whereas it was inferior for DSA (κ = 0.61) due to the higher number of abnormal consensus findings read as normal on DSA.ConclusionCACT of the pulmonary arteries is feasible and provides additional information to DSA. CACT has the potential to improve the diagnostic work-up of patients with CTEPH and may be particularly useful prior to surgical or interventional treatment.

  14. Validation Tests of Open-Source Procedures for Digital Camera Calibration and 3d Image-Based Modelling

    NASA Astrophysics Data System (ADS)

    Toschi, I.; Rivola, R.; Bertacchini, E.; Castagnetti, C.; Dubbini, M.; Capra, A.

    2013-07-01

    Among the many open-source software solutions recently developed for the extraction of point clouds from a set of un-oriented images, the photogrammetric tools Apero and MicMac (IGN, Institut Géographique National) aim to distinguish themselves by focusing on the accuracy and the metric content of the final result. This paper firstly aims at assessing the accuracy of the simplified and automated calibration procedure offered by the IGN tools. Results obtained with this procedure were compared with those achieved with a test-range calibration approach using a pre-surveyed laboratory test-field. Both direct and a-posteriori validation tests turned out successfully showing the stability and the metric accuracy of the process, even when low textured or reflective surfaces are present in the 3D scene. Afterwards, the possibility of achieving accurate 3D models from the subsequently extracted dense point clouds is also evaluated. Three different types of sculptural elements were chosen as test-objects and "ground-truth" data were acquired with triangulation laser scanners. 3D models derived from point clouds oriented with a simplified relative procedure show a suitable metric accuracy: all comparisons delivered a standard deviation of millimeter-level. The use of Ground Control Points in the orientation phase did not improve significantly the accuracy of the final 3D model, when a small figure-like corbel was used as test-object.

  15. Anthropometric precision and accuracy of digital three-dimensional photogrammetry: comparing the Genex and 3dMD imaging systems with one another and with direct anthropometry.

    PubMed

    Weinberg, Seth M; Naidoo, Sybill; Govier, Daniel P; Martin, Rick A; Kane, Alex A; Marazita, Mary L

    2006-05-01

    A variety of commercially available three-dimensional (3D) surface imaging systems are currently in use by craniofacial specialists. Little is known, however, about how measurement data generated from alternative 3D systems compare, specifically in terms of accuracy and precision. The purpose of this study was to compare anthropometric measurements obtained by way of two different digital 3D photogrammetry systems (Genex and 3dMD) as well as direct anthropometry and to evaluate intraobserver precision across these three methods. On a sample of 18 mannequin heads, 12 linear distances were measured twice by each method. A two-factor repeated measures analysis of variance was used to test simultaneously for mean differences in precision across methods. Additional descriptive statistics (e.g., technical error of measurement [TEM]) were used to quantify measurement error magnitude. Statistically significant (P < 0.05) mean differences were observed across methods for nine anthropometric variables; however, the magnitude of these differences was consistently at the submillimeter level. No significant differences were noted for precision. Moreover, the magnitude of imprecision was determined to be very small, with TEM scores well under 1 mm, and intraclass correlation coefficients ranging from 0.98 to 1. Results indicate that overall mean differences across these three methods were small enough to be of little practical importance. In terms of intraobserver precision, all methods fared equally well. This study is the first attempt to simultaneously compare 3D surface imaging systems directly with one another and with traditional anthropometry. Results suggest that craniofacial surface data obtained by way of alternative 3D photogrammetric systems can be combined or compared statistically.

  16. Microscopic and histological examination of the mouse hindpaw digit and flexor tendon arrangement with 3D reconstruction

    PubMed Central

    Wong, Jason; Bennett, William; Ferguson, Mark W J; McGrouther, Duncan A

    2006-01-01

    Mice are currently the species of choice for the in vivo study of injury, but few detailed anatomical descriptions have been made of rodent digits, limiting their use for the investigation of intrasynovial tendon healing. In this study a detailed microscopic and histological investigation was performed using C57/BL6 and Tie2 LacZ reporter gene transgenic mice. Serial-sectioned mouse hindpaw digits were characterized using haematoxylin and eosin, Masson's trichrome (collagen), Alcian blue (fibrocartilage), Miller's stain (elastin) and TRITC-phalloidin (cellular cytoskeleton) staining. Digital vasculature was demonstrated using FITC-labelled dextran perfusion studies supplemented with LacZ expression in Tie2 LacZ transgenic mice digits. Imaging of the digit used a combination of brightfield and confocal microscopy with three-dimensional reconstruction. Our findings demonstrated that the mouse hindpaw possesses deep and superficial flexor tendons within a synovial sheath comparable with that found in other mammalian species. The intrasynovial tendons were avascular and had regions of fibrocartilaginous specialization relating to areas of compression. Corresponding vascular networks were demonstrated around the sheath using Tie2 LacZ mice and FITC-perfused hindpaws. Furthermore, there is an area of digit where both deep and superficial tendons reside between two pulleys, similar to zone 2 in the human hand where it would be possible to study intrasynovial tendon injury and adhesion formation. In conclusion, although the dimensions of the mouse digit pose technical challenges for surgical intervention, we have identified a model for the study of flexor tendon injury that will permit future genetic manipulation studies. PMID:17005025

  17. Design, construction and mechanical testing of digital 3D anatomical data-based PCL-HA bone tissue engineering scaffold.

    PubMed

    Yao, Qingqiang; Wei, Bo; Guo, Yang; Jin, Chengzhe; Du, Xiaotao; Yan, Chao; Yan, Junwei; Hu, Wenhao; Xu, Yan; Zhou, Zhi; Wang, Yijin; Wang, Liming

    2015-01-01

    The study aims to investigate the techniques of design and construction of CT 3D reconstructional data-based polycaprolactone (PCL)-hydroxyapatite (HA) scaffold. Femoral and lumbar spinal specimens of eight male New Zealand white rabbits were performed CT and laser scanning data-based 3D printing scaffold processing using PCL-HA powder. Each group was performed eight scaffolds. The CAD-based 3D printed porous cylindrical stents were 16 piece × 3 groups, including the orthogonal scaffold, the Pozi-hole scaffold and the triangular hole scaffold. The gross forms, fiber scaffold diameters and porosities of the scaffolds were measured, and the mechanical testing was performed towards eight pieces of the three kinds of cylindrical scaffolds, respectively. The loading force, deformation, maximum-affordable pressure and deformation value were recorded. The pore-connection rate of each scaffold was 100 % within each group, there was no significant difference in the gross parameters and micro-structural parameters of each scaffold when compared with the design values (P > 0.05). There was no significant difference in the loading force, deformation and deformation value under the maximum-affordable pressure of the three different cylinder scaffolds when the load was above 320 N. The combination of CT and CAD reverse technology could accomplish the design and manufacturing of complex bone tissue engineering scaffolds, with no significant difference in the impacts of the microstructures towards the physical properties of different porous scaffolds under large load.

  18. Venus in 3D

    NASA Technical Reports Server (NTRS)

    Plaut, Jeffrey J.

    1993-01-01

    Stereographic images of the surface of Venus which enable geologists to reconstruct the details of the planet's evolution are discussed. The 120-meter resolution of these 3D images make it possible to construct digital topographic maps from which precise measurements can be made of the heights, depths, slopes, and volumes of geologic structures.

  19. Digital Beamforming Synthetic Aperture Radar (DBSAR): Performance Analysis During the Eco-3D 2011 and Summer 2012 Flight Campaigns

    NASA Technical Reports Server (NTRS)

    Rincon, Rafael F.; Fatoyinbo, Temilola; Carter, Lynn; Ranson, K. Jon; Vega, Manuel; Osmanoglu, Batuhan; Lee, SeungKuk; Sun, Guoqing

    2014-01-01

    The Digital Beamforming Synthetic Aperture radar (DBSAR) is a state-of-the-art airborne radar developed at NASA/Goddard for the implementation, and testing of digital beamforming techniques applicable to Earth and planetary sciences. The DBSAR measurements have been employed to study: The estimation of vegetation biomass and structure - critical parameters in the study of the carbon cycle; The measurement of geological features - to explore its applicability to planetary science by measuring planetary analogue targets. The instrument flew two test campaigns over the East coast of the United States in 2011, and 2012. During the campaigns the instrument operated in full polarimetric mode collecting data from vegetation and topography features.

  20. 3D tracking and phase-contrast imaging by twin-beams digital holographic microscope in microfluidics

    NASA Astrophysics Data System (ADS)

    Miccio, L.; Memmolo, P.; Finizio, A.; Paturzo, M.; Merola, F.; Grilli, S.; Ferraro, P.

    2012-06-01

    A compact twin-beam interferometer that can be adopted as a flexible diagnostic tool in microfluidic platforms is presented. The devise has two functionalities, as explained in the follow, and can be easily integrated in microfluidic chip. The configuration allows 3D tracking of micro-particles and, at same time, furnishes Quantitative Phase-Contrast maps of tracked micro-objects by interference microscopy. Experimental demonstration of its effectiveness and compatibility with biological field is given on for in vitro cells in microfluidic environment. Nowadays, several microfluidic configuration exist and many of them are commercially available, their development is due to the possibility for manipulating droplets, handling micro and nano-objects, visualize and quantify processes occurring in small volumes and, clearly, for direct applications on lab-on-a chip devices. In microfluidic research field, optical/photonics approaches are the more suitable ones because they have various advantages as to be non-contact, full-field, non-invasive and can be packaged thanks to the development of integrable optics. Moreover, phase contrast approaches, adapted to a lab-on-a-chip configurations, give the possibility to get quantitative information with remarkable lateral and vertical resolution directly in situ without the need to dye and/or kill cells. Furthermore, numerical techniques for tracking of micro-objects needs to be developed for measuring velocity fields, trajectories patterns, motility of cancer cell and so on. Here, we present a compact holographic microscope that can ensure, by the same configuration and simultaneously, accurate 3D tracking and quantitative phase-contrast analysis. The system, simple and solid, is based on twin laser beams coming from a single laser source. Through a easy conceptual design, we show how these two different functionalities can be accomplished by the same optical setup. The working principle, the optical setup and the mathematical

  1. Use digital subtraction images of blue-light and near-infrared autofluorescence for the assessment of irregular foveal contour.

    PubMed

    Hua, Rui; Gangwani, Rita; Liu, Limin; Chen, Lei

    2015-01-01

    The aims of this study are to generate subtraction images of blue-light autofluorescence (BL-AF) and near-infrared autofluorescence (NIR-AF) from normal eyes, eyes with full thickness macular holes, and eyes with irregular foveal contour, and to compare their autofluorescence patterns. This retrospective study included 44 normal eyes of 22 health individuals, 32 eyes with full thickness macular holes of 32 patients, and 36 eyes with irregular foveal contour of 36 patients. BL-AF and NIR-AF were obtained from all patients and used to generate subtraction images using the Image J software. The decreased signal of central patch was recorded. The central foveal thickness (CFT) and outer nucleus layer (ONL) thickness of fovea were measured to calculate the ONL thickness/CFT ratio. The subtraction images showed regularly increased signal in the central macula of all normal eyes. In contrast, decreased signal of central patch was detected in all full thickness macular holes eyes and 26 out of 36 eyes with irregular foveal contour. No significant difference of the ONL thickness/CFT ratio (F = 2.32, P = 0.113) was observed between normal and irregular foveal contour eyes with or without decreased signal of central patch. Both regularly increased signal and decreased signal of central patch were detected in the eyes with irregular foveal contour. Our results suggest that subtraction images are useful for the assessment of certain macular conditions by providing supplementary information to the green-light autofluorescence and BL-AF.

  2. Quantitative fractography by digital image processing: NIH Image macro tools for stereo pair analysis and 3-D reconstruction.

    PubMed

    Hein, L R

    2001-10-01

    A set of NIH Image macro programs was developed to make qualitative and quantitative analyses from digital stereo pictures produced by scanning electron microscopes. These tools were designed for image alignment, anaglyph representation, animation, reconstruction of true elevation surfaces, reconstruction of elevation profiles, true-scale elevation mapping and, for the quantitative approach, surface area and roughness calculations. Limitations on time processing, scanning techniques and programming concepts are also discussed.

  3. Calculation of the Slip System Activity in Deformed Zinc Single Crystals Using Digital 3-D Image Correlation Data

    SciTech Connect

    Florando, J; Rhee, M; Arsenlis, A; LeBlanc, M; Lassila, D

    2006-02-21

    A 3-D image correlation system, which measures the full-field displacements in 3 dimensions, has been used to experimentally determine the full deformation gradient matrix for two zinc single crystals. Based on the image correlation data, the slip system activity for the two crystals has been calculated. The results of the calculation show that for one crystal, only the primary slip system is active, which is consistent with traditional theory. The other crystal however, shows appreciable deformation on slip systems other than the primary. An analysis has been conducted which confirms the experimental observation that these other slip system deform in such a manner that the net result is slip which is approximately one third the magnitude and directly orthogonal to the primary system.

  4. Photo-Based 3d Scanning VS. Laser Scanning - Competitive Data Acquisition Methods for Digital Terrain Modelling of Steep Mountain Slopes

    NASA Astrophysics Data System (ADS)

    Kolecka, N.

    2011-09-01

    The paper presents how terrestrial laser scanning (TLS) and terrestrial digital photogrammetry were used to create a 3D model of a steep mountain wall. Terrestrial methods of data acquisition are the most suitable for such relief, as the most effective registration is perpendicular to the surface. First, various aspects of photo-based scanning and laser scanning were discussed. The general overview of both technologies was followed by the description of a case study of the western wall of the Kościelec Mountain (2155 m). The case study area is one of the most interesting and popular rock climbing areas in the Polish High Tatra Mts. The wall is about 300 meters high, has varied relief and some parts are overhung. Triangular irregular mesh was chosen to represent the true- 3D surface with its complicated relief. To achieve a more smooth result for visualization NURBS curves and surfaces were utilized. Both 3D models were then compared to the standard DTM of the Tatra Mountains in TIN format, obtained from aerial photographs (0.2 m ground pixel size). The results showed that both TLS and terrestrial photogrammetry had similar accuracy and level of detail and could effectively supplement very high resolution DTMs of the mountain areas.

  5. Tuckshop Subtraction

    ERIC Educational Resources Information Center

    Duke, Roger; Graham, Alan; Johnston-Wilder, Sue

    2007-01-01

    This article describes a recent and successful initiative on teaching place value and the decomposition method of subtraction to pupils having difficulty with this technique in the 9-12-year age range. The aim of the research was to explore whether using the metaphor of selling chews (i.e., sweets) in a tuck shop and developing this into an iconic…

  6. Quantifying deficits in the 3D force capabilities of a digit caused by selective paralysis: application to the thumb with simulated low ulnar nerve palsy.

    PubMed

    Kuxhaus, Laurel; Roach, Stephanie S; Valero-Cuevas, Francisco J

    2005-04-01

    We present the development of a vision-feedback method to characterize how selective paralysis distorts the three-dimensional (3D) volume representing digit-tip force production capability and its application to healthy individuals producing thumb-tip force with and without simulated low ulnar nerve palsy (LUNP). Subjects produced maximal static voluntary force spanning the transverse, sagittal and frontal planes of the thumb (16, 15 and 10 subjects, respectively). Subjects produced thumb-tip force tasks in guided and self-selected directions. The envelope (convex hull) of extreme forces in each plane approximated that cross-section of the 3D volume of force capability. Some subjects repeated the tasks with a temporary ulnar nerve block applied at the wrist to simulate complete acute LUNP. Three geometric properties of the force convex hull characterized each cross-section's shape: the ratios of its principal moments of inertia (RPMIs), the orientation of its principal axis (OPA), and its centroid location. Our results show that force production in the thumb's sagittal plane may be a reproducible and objective test to grade motor impairment in LUNP: paired t-tests of the larger RPMI in this plane best distinguished the nerve-blocked cases from the control cases in the guided task (p = 0.012), and Discriminant Analysis of the centroid location for the self-selected task in this plane correctly classified 94.7% of subjects into the control and ulnar nerve-blocked groups. We show that our method measures and detects changes in a digit's force production capabilities. Towards a clinical test of motor impairment in LUNP, this biomechanical study dictates which 3D thumb-tip forces to measure (those in the sagittal plane) and how to measure them (using the self-selected task).

  7. Soft-tissue volumetric changes following monobloc distraction procedure: analysis using digital three-dimensional photogrammetry system (3dMD).

    PubMed

    Chan, Fuan Chiang; Kawamoto, Henry K; Federico, Christina; Bradley, James P

    2013-03-01

    We have previously reported that monobloc advancement by distraction osteogenesis resulted in decreased morbidity and greater advancement with less relapse compared with acute monobloc advancement with bone grafting. In this study, we examine the three-dimensional (3D) volumetric soft-tissue changes in monobloc distraction.Patients with syndromic craniosynostosis who underwent monobloc distraction from 2002 to 2010 at University of California-Los Angeles Craniofacial Center were studied (n = 12). We recorded diagnosis, indications for the surgery, and volumetric changes for skeletal and soft-tissue midface structures (preoperative/postoperative [6 weeks]/follow-up [>1 year]). Computed tomography scans and a digital 3D photogrammetry system were used for image analysis.Patients ranged from 6 to 14 years of age (mean, 10.1 years) at the time of the operation (follow-up 2-11 years); mean distraction advancement was 19.4 mm (range, 14-25 mm). There was a mean increase in the 3D volumetric soft-tissue changes: 99.5 ± 4.0 cm(3) (P < 0.05) at 6 weeks and 94.9 ± 3.6 cm(3) (P < 0.05) at 1-year follow-up. When comparing soft-tissue changes at 6 weeks postoperative to 1-year follow-up, there were minimal relapse changes. The overall mean 3D skeletal change was 108.9 ± 4.2 cm. For every 1 cm of skeletal gain, there was 0.78 cm(3) of soft-tissue gain.Monobloc advancement by distraction osteogenesis using internal devices resulted in increased volumetric soft-tissue changes, which remained stable at 1 year. The positive linear correlation between soft-tissue increments and bony advancement can be incorporated during the planning of osteotomies to achieve optimum surgical outcomes with monobloc distraction.

  8. Critical Analysis and Digital Reconstructions of Alberti's Architectures by the Use of 3d Morphometric Integrated Survey Database

    NASA Astrophysics Data System (ADS)

    Ferrari, F.; Medici, M.

    2017-02-01

    Since 2005, DIAPReM Centre of the Department of Architecture of the University of Ferrara, in collaboration with the "Centro Studi Leon Battista Alberti" Foundation and the Consorzio Futuro in Ricerca, is carrying out a research project for the creation of 3D databases that could allow the development of a critical interpretation of Alberti's architectural work. The project is primarily based on a common three-dimensional integrated survey methodology for the creation of a navigable multilayered database. The research allows the possibility of reiterative metrical analysis, thanks to the use of a coherent data in order to check and validate hypothesis by researchers, art historians and scholars on Alberti's architectural work. Coherently with this methodological framework, indeed, two case studies are explained in this paper: the church of San Sebastiano in Matua and The Church of the Santissima Annunziata in Florence. Furthermore, thanks to a brief introduction of further developments of the project, a short graphical analysis of preliminary results on Tempio Malatestiano in Rimini opens new perspectives of research.

  9. Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction

    NASA Astrophysics Data System (ADS)

    Annese, Jacopo; Schenker-Ahmed, Natalie M.; Bartsch, Hauke; Maechler, Paul; Sheh, Colleen; Thomas, Natasha; Kayano, Junya; Ghatan, Alexander; Bresler, Noah; Frosch, Matthew P.; Klaming, Ruth; Corkin, Suzanne

    2014-01-01

    Modern scientific knowledge of how memory functions are organized in the human brain originated from the case of Henry G. Molaison (H.M.), an epileptic patient whose amnesia ensued unexpectedly following a bilateral surgical ablation of medial temporal lobe structures, including the hippocampus. The neuroanatomical extent of the 1953 operation could not be assessed definitively during H.M.’s life. Here we describe the results of a procedure designed to reconstruct a microscopic anatomical model of the whole brain and conduct detailed 3D measurements in the medial temporal lobe region. This approach, combined with cellular-level imaging of stained histological slices, demonstrates a significant amount of residual hippocampal tissue with distinctive cytoarchitecture. Our study also reveals diffuse pathology in the deep white matter and a small, circumscribed lesion in the left orbitofrontal cortex. The findings constitute new evidence that may help elucidate the consequences of H.M.’s operation in the context of the brain’s overall pathology.

  10. Postmortem examination of patient H.M.’s brain based on histological sectioning and digital 3D reconstruction

    PubMed Central

    Annese, Jacopo; Schenker-Ahmed, Natalie M.; Bartsch, Hauke; Maechler, Paul; Sheh, Colleen; Thomas, Natasha; Kayano, Junya; Ghatan, Alexander; Bresler, Noah; Frosch, Matthew P.; Klaming, Ruth; Corkin, Suzanne

    2014-01-01

    Modern scientific knowledge of how memory functions are organized in the human brain originated from the case of Henry G. Molaison (H.M.), an epileptic patient whose amnesia ensued unexpectedly following a bilateral surgical ablation of medial temporal lobe structures, including the hippocampus. The neuroanatomical extent of the 1953 operation could not be assessed definitively during H.M.’s life. Here we describe the results of a procedure designed to reconstruct a microscopic anatomical model of the whole brain and conduct detailed 3D measurements in the medial temporal lobe region. This approach, combined with cellular-level imaging of stained histological slices, demonstrates a significant amount of residual hippocampal tissue with distinctive cytoarchitecture. Our study also reveals diffuse pathology in the deep white matter and a small, circumscribed lesion in the left orbitofrontal cortex. The findings constitute new evidence that may help elucidate the consequences of H.M.’s operation in the context of the brain’s overall pathology. PMID:24473151

  11. Two-alternative forced-choice evaluation of 3D CT angiograms

    NASA Astrophysics Data System (ADS)

    Habets, Damiaan F.; Chapman, Brian E.; Fox, Allan J.; Hyde, Derek E.; Holdsworth, David W.

    2001-06-01

    This study describes the development and evaluation of an appropriate methodology to study observer performance when comparing 2D and 3D angiographic techniques. 3D-CT angiograms were obtained from patients with cerebral aneurysms or occlusive carotid artery disease and perspective rendering of this 3D data was performed to produce maximum intensity projections (MIP) at view angles identical to digital subtraction angiography (DSA) images. Two-alternative-forced-choice methodology (2AFC) was then used to determine the percent correct (Pc), which is equivalent to the area Az under the receiver-operating characteristic (RTOC) curve. In a comparison of CRA MIP images and DSA images of the intracranial vasculature, the average value of Pc was 0.90+/- 0.03. Perspective reprojection produces digitally reconstructed radiographs (DRRs) with image quality that is nearly equivalent to conventional DSA, with the additional clinical advantage of providing digitally reconstructed images at an unlimited number of viewing angles.

  12. A novel approach to background subtraction in contrast-enhanced dual-energy digital mammography with commercially available mammography devices: Polychromaticity correction

    SciTech Connect

    Contillo, Adriano Di Domenico, Giovanni; Cardarelli, Paolo; Gambaccini, Mauro; Taibi, Angelo

    2015-11-15

    Purpose: Contrast-enhanced digital mammography is an image subtraction technique that is able to improve the detectability of lesions in dense breasts. One of the main sources of error, when the technique is performed by means of commercial mammography devices, is represented by the intrinsic polychromaticity of the x-ray beams. The aim of the work is to propose an iterative procedure, which only assumes the knowledge of a small set of universal quantities, to take into account the polychromaticity and correct the subtraction results accordingly. Methods: In order to verify the procedure, it has been applied to an analytical simulation of a target containing a contrast medium and to actual radiographs of a breast phantom containing cavities filled with a solution of the same medium. Results: The reconstructed densities of contrast medium were compared, showing very good agreement between the theoretical predictions and the experimental results already after the first iteration. Furthermore, the convergence of the iterative procedure was studied, showing that only a small number of iterations is necessary to reach limiting values. Conclusions: The proposed procedure represents an efficient solution to the polychromaticity issue, qualifying therefore as a viable alternative to inverse-map functions.

  13. Elementary subtraction.

    PubMed

    Seyler, Donald J; Kirk, Elizabeth P; Ashcraft, Mark H

    2003-11-01

    Four experiments examined performance on the 100 "basic facts" of subtraction and found a discontinuous "stair step" function for reaction times and errors beginning with 11 - n facts. Participants' immediate retrospective reports of nonretrieval showed the same pattern in Experiment 3. The degree to which elementary subtraction depends on working memory (WM) was examined in a dual-task paradigm in Experiment 4. The reconstructive processing used with larger basic facts was strongly associated with greater WM disruption, as evidenced by errors in the secondary task: this was especially the case for participants with lower WM spans. The results support the R. S. Siegler and E. Jenkins (1989) distribution of associations model, although discriminating among the alternative solution processes appears to be a serious challenge.

  14. 3D expression patterns of cell cycle genes in the developing chick wing and comparison with expression patterns of genes implicated in digit specification.

    PubMed

    Welten, Monique; Pavlovska, Gordana; Chen, Yu; Teruoka, Yuko; Fisher, Malcolm; Bangs, Fiona; Towers, Matthew; Tickle, Cheryll

    2011-05-01

    Sonic hedgehog (Shh) signalling controls integrated specification of digit pattern and growth in the chick wing but downstream gene networks remain to be unravelled. We analysed 3D expression patterns of genes encoding cell cycle regulators using Optical Projection Tomography. Hierarchical clustering of spatial matrices of gene expression revealed a dorsal layer of the wing bud, in which almost all genes were expressed, and that genes encoding positive cell cycle regulators had similar expression patterns while those of N-myc and CyclinD2 were distinct but closely related. We compared these patterns computationally with those of genes implicated in digit specification and Ptch1, 50 genes in total. Nineteen genes have similar posterior expression to Ptch1, including Hoxd13, Sall1, Hoxd11, and Bmp2, all likely Gli targets in mouse limb, and cell cycle genes, N-myc, CyclinD2. We suggest that these genes contribute to a network integrating digit specification and growth in response to Shh.

  15. 3D digital image processing for biofilm quantification from confocal laser scanning microscopy: Multidimensional statistical analysis of biofilm modeling

    NASA Astrophysics Data System (ADS)

    Zielinski, Jerzy S.

    The dramatic increase in number and volume of digital images produced in medical diagnostics, and the escalating demand for rapid access to these relevant medical data, along with the need for interpretation and retrieval has become of paramount importance to a modern healthcare system. Therefore, there is an ever growing need for processed, interpreted and saved images of various types. Due to the high cost and unreliability of human-dependent image analysis, it is necessary to develop an automated method for feature extraction, using sophisticated mathematical algorithms and reasoning. This work is focused on digital image signal processing of biological and biomedical data in one- two- and three-dimensional space. Methods and algorithms presented in this work were used to acquire data from genomic sequences, breast cancer, and biofilm images. One-dimensional analysis was applied to DNA sequences which were presented as a non-stationary sequence and modeled by a time-dependent autoregressive moving average (TD-ARMA) model. Two-dimensional analyses used 2D-ARMA model and applied it to detect breast cancer from x-ray mammograms or ultrasound images. Three-dimensional detection and classification techniques were applied to biofilm images acquired using confocal laser scanning microscopy. Modern medical images are geometrically arranged arrays of data. The broadening scope of imaging as a way to organize our observations of the biophysical world has led to a dramatic increase in our ability to apply new processing techniques and to combine multiple channels of data into sophisticated and complex mathematical models of physiological function and dysfunction. With explosion of the amount of data produced in a field of biomedicine, it is crucial to be able to construct accurate mathematical models of the data at hand. Two main purposes of signal modeling are: data size conservation and parameter extraction. Specifically, in biomedical imaging we have four key problems

  16. Tooteko: a Case Study of Augmented Reality for AN Accessible Cultural Heritage. Digitization, 3d Printing and Sensors for AN Audio-Tactile Experience

    NASA Astrophysics Data System (ADS)

    D'Agnano, F.; Balletti, C.; Guerra, F.; Vernier, P.

    2015-02-01

    Tooteko is a smart ring that allows to navigate any 3D surface with your finger tips and get in return an audio content that is relevant in relation to the part of the surface you are touching in that moment. Tooteko can be applied to any tactile surface, object or sheet. However, in a more specific domain, it wants to make traditional art venues accessible to the blind, while providing support to the reading of the work for all through the recovery of the tactile dimension in order to facilitate the experience of contact with art that is not only "under glass." The system is made of three elements: a high-tech ring, a tactile surface tagged with NFC sensors, and an app for tablet or smartphone. The ring detects and reads the NFC tags and, thanks to the Tooteko app, communicates in wireless mode with the smart device. During the tactile navigation of the surface, when the finger reaches a hotspot, the ring identifies the NFC tag and activates, through the app, the audio track that is related to that specific hotspot. Thus a relevant audio content relates to each hotspot. The production process of the tactile surfaces involves scanning, digitization of data and 3D printing. The first experiment was modelled on the facade of the church of San Michele in Isola, made by Mauro Codussi in the late fifteenth century, and which marks the beginning of the Renaissance in Venice. Due to the absence of recent documentation on the church, the Correr Museum asked the Laboratorio di Fotogrammetria to provide it with the aim of setting up an exhibition about the order of the Camaldolesi, owners of the San Michele island and church. The Laboratorio has made the survey of the facade through laser scanning and UAV photogrammetry. The point clouds were the starting point for prototypation and 3D printing on different supports. The idea of the integration between a 3D printed tactile surface and sensors was born as a final thesis project at the Postgraduate Mastercourse in Digital

  17. A versatile pipeline for the multi-scale digital reconstruction and quantitative analysis of 3D tissue architecture

    PubMed Central

    Morales-Navarrete, Hernán; Segovia-Miranda, Fabián; Klukowski, Piotr; Meyer, Kirstin; Nonaka, Hidenori; Marsico, Giovanni; Chernykh, Mikhail; Kalaidzidis, Alexander; Zerial, Marino; Kalaidzidis, Yannis

    2015-01-01

    A prerequisite for the systems biology analysis of tissues is an accurate digital three-dimensional reconstruction of tissue structure based on images of markers covering multiple scales. Here, we designed a flexible pipeline for the multi-scale reconstruction and quantitative morphological analysis of tissue architecture from microscopy images. Our pipeline includes newly developed algorithms that address specific challenges of thick dense tissue reconstruction. Our implementation allows for a flexible workflow, scalable to high-throughput analysis and applicable to various mammalian tissues. We applied it to the analysis of liver tissue and extracted quantitative parameters of sinusoids, bile canaliculi and cell shapes, recognizing different liver cell types with high accuracy. Using our platform, we uncovered an unexpected zonation pattern of hepatocytes with different size, nuclei and DNA content, thus revealing new features of liver tissue organization. The pipeline also proved effective to analyse lung and kidney tissue, demonstrating its generality and robustness. DOI: http://dx.doi.org/10.7554/eLife.11214.001 PMID:26673893

  18. Crabnebula Digital Suite, AN Algorithm of Survey and 3d Modelling for the Preservation and Management of Urban Heritage

    NASA Astrophysics Data System (ADS)

    Taibi, G.; Valenti, R.; Liuzzo, M.; D'Aiello, M.

    2013-02-01

    Safeguarding the cultural patrimony represents one of the objectives and one of the most important challenges of our time, because only this can ensure the conservation of the documented historical memory of our civilizations. The first level of safeguarding is knowledge, that means, in some ways and in any case, to document. Indeed, documentation constitutes an indispensable support for the protection of the cultural patrimony. In recent times, the evolution of concepts and the progress of technologies have meant that the cultural and scientific debate should evolve in the examination of which type of documentation is the most suitable. Today, the need to observe city sites by entering their meanders and penetrating their reality with the aim of being able to interpret, understand and appreciate the values of the more recondite intimacies of the places, is increasingly felt. The methodological approach of this study tackles the issue of managing information that is highly interrelated, referring to the entire monumental unicum of Ortigia, by means of recognition of the parts, at times also fragmentary. With this responsibility, a suite of digital instruments, online and offline, called Crabnebula, has been conceived and already applied to a significant portion of Ortigia, with the aim of uniting various useful information towards a critical interpretation of the places: from the integrated environmental, urban and architectonic survey, to the three-dimensional rendered model.

  19. Lifting scheme-based method for joint coding 3D stereo digital cinema with luminace correction and optimized prediction

    NASA Astrophysics Data System (ADS)

    Darazi, R.; Gouze, A.; Macq, B.

    2009-01-01

    Reproducing a natural and real scene as we see in the real world everyday is becoming more and more popular. Stereoscopic and multi-view techniques are used for this end. However due to the fact that more information are displayed requires supporting technologies such as digital compression to ensure the storage and transmission of the sequences. In this paper, a new scheme for stereo image coding is proposed. The original left and right images are jointly coded. The main idea is to optimally exploit the existing correlation between the two images. This is done by the design of an efficient transform that reduces the existing redundancy in the stereo image pair. This approach was inspired by Lifting Scheme (LS). The novelty in our work is that the prediction step is been replaced by an hybrid step that consists in disparity compensation followed by luminance correction and an optimized prediction step. The proposed scheme can be used for lossless and for lossy coding. Experimental results show improvement in terms of performance and complexity compared to recently proposed methods.

  20. Tests of variable-band multilayers designed for investigating optimal signal-to-noise vs artifact signal ratios in Dual-Energy Digital Subtraction Angiography (DDSA) imaging systems

    SciTech Connect

    Boyers, D.; Ho, A.; Li, Q.; Piestrup, M.; Rice, M.; Tatchyn, R.

    1993-08-01

    In recent work, various design techniques were applied to investigate the feasibility of controlling the bandwidth and bandshape profiles of tungsten/boron-carbon (W/B{sub 4}C) and tungsten/silicon (W/Si) multilayers for optimizing their performance in synchrotron radiation based angiographical imaging systems at 33 keV. Varied parameters included alternative spacing geometries, material thickness ratios, and numbers of layer pairs. Planar optics with nominal design reflectivities of 30%--94% and bandwidths ranging from 0.6%--10% were designed at the Stanford Radiation Laboratory, fabricated by the Ovonic Synthetic Materials Company, and characterized on Beam Line 4-3 at the Stanford Synchrotron Radiation Laboratory, in this paper we report selected results of these tests and review the possible use of the multilayers for determining optimal signal to noise vs. artifact signal ratios in practical Dual-Energy Digital Subtraction Angiography systems.

  1. 3D mechanical analysis of aeronautical plain bearings: Validation of a finite element model from measurement of displacement fields by digital volume correlation and optical scanning tomography

    NASA Astrophysics Data System (ADS)

    Germaneau, A.; Peyruseigt, F.; Mistou, S.; Doumalin, P.; Dupré, J.-C.

    2010-06-01

    On Airbus aircraft, spherical plain bearings are used on many components; in particular to link engine to pylon or pylon to wing. Design of bearings is based on contact pressure distribution on spherical surfaces. To determine this distribution, a 3D analysis of the mechanical behaviour of aeronautical plain bearing is presented in this paper. A numerical model has been built and validated from a comparison with 3D experimental measurements of kinematic components. For that, digital volume correlation (DVC) coupled with optical scanning tomography (OST) is employed to study the mechanical response of a plain bearing model made in epoxy resin. Experimental results have been compared with the ones obtained from the simulated model. This comparison enables us to study the influence of various boundary conditions to build the FE model. Some factors have been highlighted like the fitting behaviour which can radically change contact pressure distribution. This work shows the contribution of a representative mechanical environment to study precisely mechanical response of aeronautical plain bearings.

  2. Real-time photothermoplastic 8-inch camera with an emphasis on the visualization of 3D digital data by holographic means

    NASA Astrophysics Data System (ADS)

    Cherkasov, Yuri A.; Alexandrova, Elena L.; Rumjantsev, Alexander G.; Smirnov, Mikhail V.

    1995-04-01

    The development and investigations of large-formate (8-inch) real-time photothermoplastic (PTP) camera are carried out. The PTP camera is applied for operative recording of 3D- images by means of compound and digital holography and visualization of these holograms as 3D-static images. The optimization of the recording regimes is fulfilled with use the model of the relief-phase PTP images thermodevelopment, proposed by authors. According with that model, the achievement of maximal value of deformation (diffraction efficiency) is based on the opportunity in increasing of charge contrast of electrostatic latent image formed early by the moment of the viscosity decreasing during the thermodevelopment process. It is achieved by means of the control of the thermodevelopment regime. Also, the opportunities of the increase of the camera size (to 14 inch), of the rising of photosensitivity value and the enlarging of its spectral range, of the creation of Benton holograms and of the increasing of the speed of response to 25 Hz are discussed.

  3. Predation by the Dwarf Seahorse on Copepods: Quantifying Motion and Flows Using 3D High Speed Digital Holographic Cinematography - When Seahorses Attack!

    NASA Astrophysics Data System (ADS)

    Gemmell, Brad; Sheng, Jian; Buskey, Ed

    2008-11-01

    Copepods are an important planktonic food source for most of the world's fish species. This high predation pressure has led copepods to evolve an extremely effective escape response, with reaction times to hydrodynamic disturbances of less than 4 ms and escape speeds of over 500 body lengths per second. Using 3D high speed digital holographic cinematography (up to 2000 frames per second) we elucidate the role of entrainment flow fields generated by a natural visual predator, the dwarf seahorse (Hippocampus zosterae) during attacks on its prey, Acartia tonsa. Using phytoplankton as a tracer, we recorded and reconstructed 3D flow fields around the head of the seahorse and its prey during both successful and unsuccessful attacks to better understand how some attacks lead to capture with little or no detection from the copepod while others result in failed attacks. Attacks start with a slow approach to minimize the hydro-mechanical disturbance which is used by copepods to detect the approach of a potential predator. Successful attacks result in the seahorse using its pipette-like mouth to create suction faster than the copepod's response latency. As these characteristic scales of entrainment increase, a successful escape becomes more likely.

  4. Behavior subtraction.

    PubMed

    Jodoin, Pierre-Marc; Saligrama, Venkatesh; Konrad, Janusz

    2012-09-01

    Background subtraction has been a driving engine for many computer vision and video analytics tasks. Although its many variants exist, they all share the underlying assumption that photometric scene properties are either static or exhibit temporal stationarity. While this works in many applications, the model fails when one is interested in discovering changes in scene dynamics instead of changes in scene's photometric properties; the detection of unusual pedestrian or motor traffic patterns are but two examples. We propose a new model and computational framework that assume the dynamics of a scene, not its photometry, to be stationary, i.e., a dynamic background serves as the reference for the dynamics of an observed scene. Central to our approach is the concept of an event, which we define as short-term scene dynamics captured over a time window at a specific spatial location in the camera field of view. Unlike in our earlier work, we compute events by time-aggregating vector object descriptors that can combine multiple features, such as object size, direction of movement, speed, etc. We characterize events probabilistically, but use low-memory, low-complexity surrogates in a practical implementation. Using these surrogates amounts to behavior subtraction, a new algorithm for effective and efficient temporal anomaly detection and localization. Behavior subtraction is resilient to spurious background motion, such as due to camera jitter, and is content-blind, i.e., it works equally well on humans, cars, animals, and other objects in both uncluttered and highly cluttered scenes. Clearly, treating video as a collection of events rather than colored pixels opens new possibilities for video analytics.

  5. 3D micro-scale deformations of wood in bending: synchrotron radiation muCT data analyzed with digital volume correlation.

    PubMed

    Forsberg, F; Mooser, R; Arnold, M; Hack, E; Wyss, P

    2008-12-01

    A micro-scale three-point-bending experiment with a wood specimen was carried out and monitored by synchrotron radiation micro-computed tomography. The full three-dimensional wood structure of the 1.57x3.42x0.75mm(3) specimen was reconstructed at cellular level in different loading states. Furthermore, the full three-dimensional deformation field of the loaded wood specimen was determined by digital volume correlation, applied to the reconstructed data at successive loading states. Results from two selected regions within the wood specimen are presented as continuous displacement and strain fields in both 2D and 3D. The applied combination of synchrotron radiation micro-computed tomography and digital volume correlation for the deformation analysis of wood under bending stress is a novel application in wood material science. The method offers the potential for the simultaneous observation of structural changes and quantified deformations during in situ micro-mechanical experiments. Moreover, the high spatial resolution allows studying the influence of anatomical features on the fracture behaviour of wood. Possible applications of this method range from bio-mechanical observations in fresh plant tissue to fracture mechanics aspects in structural timber.

  6. The Diagnostic Radiological Utilization Of 3-D Display Images

    NASA Astrophysics Data System (ADS)

    Cook, Larry T.; Dwyer, Samuel J.; Preston, David F.; Batnitzky, Solomon; Lee, Kyo R.

    1984-10-01

    In the practice of radiology, computer graphics systems have become an integral part of the use of computed tomography (CT), nuclear medicine (NM), magnetic resonance imaging (MRI), digital subtraction angiography (DSA) and ultrasound. Gray scale computerized display systems are used to display, manipulate, and record scans in all of these modalities. As the use of these imaging systems has spread, various applications involving digital image manipulation have also been widely accepted in the radiological community. We discuss one of the more esoteric of such applications, namely, the reconstruction of 3-D structures from plane section data, such as CT scans. Our technique is based on the acquisition of contour data from successive sections, the definition of the implicit surface defined by such contours, and the application of the appropriate computer graphics hardware and software to present reasonably pleasing pictures.

  7. 3D Audio System

    NASA Technical Reports Server (NTRS)

    1992-01-01

    Ames Research Center research into virtual reality led to the development of the Convolvotron, a high speed digital audio processing system that delivers three-dimensional sound over headphones. It consists of a two-card set designed for use with a personal computer. The Convolvotron's primary application is presentation of 3D audio signals over headphones. Four independent sound sources are filtered with large time-varying filters that compensate for motion. The perceived location of the sound remains constant. Possible applications are in air traffic control towers or airplane cockpits, hearing and perception research and virtual reality development.

  8. Analysis of trabecular bone architectural changes induced by osteoarthritis in rabbit femur using 3D active shape model and digital topology

    NASA Astrophysics Data System (ADS)

    Saha, P. K.; Rajapakse, C. S.; Williams, D. S.; Duong, L.; Coimbra, A.

    2007-03-01

    Osteoarthritis (OA) is the most common chronic joint disease, which causes the cartilage between the bone joints to wear away, leading to pain and stiffness. Currently, progression of OA is monitored by measuring joint space width using x-ray or cartilage volume using MRI. However, OA affects all periarticular tissues, including cartilage and bone. It has been shown previously that in animal models of OA, trabecular bone (TB) architecture is particularly affected. Furthermore, relative changes in architecture are dependent on the depth of the TB region with respect to the bone surface and main direction of load on the bone. The purpose of this study was to develop a new method for accurately evaluating 3D architectural changes induced by OA in TB. Determining the TB test domain that represents the same anatomic region across different animals is crucial for studying disease etiology, progression and response to therapy. It also represents a major technical challenge in analyzing architectural changes. Here, we solve this problem using a new active shape model (ASM)-based approach. A new and effective semi-automatic landmark selection approach has been developed for rabbit distal femur surface that can easily be adopted for many other anatomical regions. It has been observed that, on average, a trained operator can complete the user interaction part of landmark specification process in less than 15 minutes for each bone data set. Digital topological analysis and fuzzy distance transform derived parameters are used for quantifying TB architecture. The method has been applied on micro-CT data of excised rabbit femur joints from anterior cruciate ligament transected (ACLT) (n = 6) and sham (n = 9) operated groups collected at two and two-to-eight week post-surgery, respectively. An ASM of the rabbit right distal femur has been generated from the sham group micro-CT data. The results suggest that, in conjunction with ASM, digital topological parameters are suitable for

  9. A compact 3D-printed interface for coupling open digital microchips with Venturi easy ambient sonic-spray ionization mass spectrometry.

    PubMed

    Hu, Jie-Bi; Chen, Ting-Ru; Chang, Chia-Hsien; Cheng, Ji-Yen; Chen, Yu-Chie; Urban, Pawel L

    2015-03-07

    Digital microfluidics (DMF) based on the electrowetting-on-dielectric phenomenon is a convenient way of handling microlitre-volume aliquots of solutions prior to analysis. Although it was shown to be compatible with on-line mass spectrometric detection, due to numerous technical obstacles, the implementation of DMF in conjunction with MS is still beyond the reach of many analytical laboratories. Here we present a facile method for coupling open DMF microchips to mass spectrometers using Venturi easy ambient sonic-spray ionization operated at atmospheric pressure. The proposed interface comprises a 3D-printed body that can easily be "clipped" at the inlet of a standard mass spectrometer. The accessory features all the necessary connections for an open-architecture DMF microchip with T-shaped electrode arrangement, thermostatting of the microchip, purification of air (to prevent accidental contamination of the microchip), a Venturi pump, and two microfluidic pumps to facilitate transfer of samples and reagents onto the microchip. The system also incorporates a touch-screen panel and remote control for user-friendly operation. It is based on the use of popular open-source electronic modules, and can readily be assembled at low expense.

  10. Analysis and Visualization of 2D and 3D Grain and Pore Size ofFontainebleau Sandstone Using Digital Rock Physics

    NASA Astrophysics Data System (ADS)

    Latief, FDE

    2016-08-01

    Fontainebleau sandstone is sandstone found in one of the cities in France. This sandstone has unique characteristics, which is a clean-fme sandstone, composed of 99% quartz, virtually devoid of clay, with the grain size of about 200 μm. Fontainebleau sandstone is widely used as a reference in the study of rock microstructure analysis and modelling. In this work analysis regarding the grain and pore size of Fontainebleau is presented. Calculation of 2D pore size and grain size distribution were done on the 299 slice of digital image of the Fontainebleau sandstone using Feret's diameters, equivalent diameters (d = 4A/P), and by means of local thickness/separation using plate model. For the 3D grain and pore size distribution, calculation of local thickness and local separation of the structure were used. Two dimensional analysis by means of Feret's diameter and equivalent diameter reveal that both grain and pore size distributions are in the form of reverse-J shaped (right skewed) while the local thickness/separation approach produces almost similar to symmetric Gaussian distribution. Three dimensional analysis produces fairly symmetric Gaussian distribution for both the grain and pore size. Further image processing were conducted and were succeed in producing three dimensional visual of the colour coded structure thickness (grain related) and structure separation (pore related).

  11. Contexts for Column Addition and Subtraction

    ERIC Educational Resources Information Center

    Lopez Fernandez, Jorge M.; Velazquez Estrella, Aileen

    2011-01-01

    In this article, the authors discuss their approach to column addition and subtraction algorithms. Adapting an original idea of Paul Cobb and Erna Yackel's from "A Contextual Investigation of Three-Digit Addition and Subtraction" related to packing and unpacking candy in a candy factory, the authors provided an analogous context by…

  12. Efficacy of sclerotherapy with radio-opaque foam guided by digital subtraction angiography for the treatment of complex venous malformations of the head and neck.

    PubMed

    Chen, A-W; Liu, Y-R; Li, K; Zhang, K; Wang, T; Liu, S-H

    2015-11-01

    Our aim was to evaluate the efficacy of sclerotherapy using radio-opaque foam and guided by digital subtraction angiography (DSA) for complex venous malformations in the head and neck in 11 selected patients between 2011 and 2013. The sclerosing foam was manufactured by the classic Tessari method and consisted of air, 1% polidocanol, and radio-opaque media iopromide (Ultravist(®)300) in a ratio of 7:2:1. We recorded the site and size of the lesion, time and duration of treatment, and therapeutic response. The lesions were on the face, cheek, temporal region, parotid region, neck, tongue, floor of the mouth, parapharyngeal space, and soft palate. The sclerosing foam was radio-opaque under DSA, and the mean (range) dose was 21 (3-65) ml. A mean (range) of 4 (2-7) treatments was required, and 10 of the 11 patients responded well. In 4 of the 11 cases the lesion resolved completely and in 6 there was a good response. Only one lesion recurred. Early complications included immediate swelling in injected areas, snoring, and pain on swallowing, but there were no air emboli or signs of cutaneous necrosis, and the complications were self-limiting. DSA-guided sclerotherapy with radio-opaque foam was safe and effective for the treatment of complex vascular malformations of the head and neck.

  13. Flow modification in canine intracranial aneurysm model by an asymmetric stent: studies using digital subtraction angiography (DSA) and image-based computational fluid dynamics (CFD) analyses

    NASA Astrophysics Data System (ADS)

    Hoi, Yiemeng; Ionita, Ciprian N.; Tranquebar, Rekha V.; Hoffmann, Kenneth R.; Woodward, Scott H.; Taulbee, Dale B.; Meng, Hui; Rudin, Stephen

    2006-03-01

    An asymmetric stent with low porosity patch across the intracranial aneurysm neck and high porosity elsewhere is designed to modify the flow to result in thrombogenesis and occlusion of the aneurysm and yet to reduce the possibility of also occluding adjacent perforator vessels. The purposes of this study are to evaluate the flow field induced by an asymmetric stent using both numerical and digital subtraction angiography (DSA) methods and to quantify the flow dynamics of an asymmetric stent in an in vivo aneurysm model. We created a vein-pouch aneurysm model on the canine carotid artery. An asymmetric stent was implanted at the aneurysm, with 25% porosity across the aneurysm neck and 80% porosity elsewhere. The aneurysm geometry, before and after stent implantation, was acquired using cone beam CT and reconstructed for computational fluid dynamics (CFD) analysis. Both steady-state and pulsatile flow conditions using the measured waveforms from the aneurysm model were studied. To reduce computational costs, we modeled the asymmetric stent effect by specifying a pressure drop over the layer across the aneurysm orifice where the low porosity patch was located. From the CFD results, we found the asymmetric stent reduced the inflow into the aneurysm by 51%, and appeared to create a stasis-like environment which favors thrombus formation. The DSA sequences also showed substantial flow reduction into the aneurysm. Asymmetric stents may be a viable image guided intervention for treating intracranial aneurysms with desired flow modification features.

  14. Comparative analysis of 3D data accuracy of single tooth and full dental arch captured by different intraoral and laboratory digital impression systems.

    PubMed

    Ryakhovsky, A N; Kostyukova, V V

    2016-01-01

    The aim of this study was to compare the accuracy of digital impressions taken by different intraoral and laboratory scanners. For this purpose a synthetic jaw model with prepared tooth was scanned using intraoral scanning systems: 3D Progress (MHT S.P.A., IT - MHT Optic Research AG, CH); True Definition (3M ESPE, USA); Trios (3Shape A/S, DNK); CEREC AC Bluecam, CEREC Omnicam (Sirona Dental System GmbH, DE); Planscan (Planmeca, FIN); and laboratory scanning systems: s600 ARTI (Zirkonzahn GmbH, IT); Imetric Iscan D104, CH); D900 (3Shape A/S, DNK); Zfx Evolution (Zfx GmbH, DE) (each n=10). Reference-scanning was done by ATOS Core (GOM mbH, DE). The resulting digital impressions were superimposed with the master-scan. The measured deviations by points (trueness) for intraoral scanners were: True Definition - 15.0±2.85 μm (single tooth) and 45.0±19.11 µm (full arch); Trios - 17.1±1.44 and 58.8±27.36 µm; CEREC AC Bluecam - 22.3±5.58 and 20.3±4.13 µm; CEREC Omnicam - 25.0±1.06 and 78.5±27.03 µm; 3D Progress - 26.4±5.75 and 213.5±47.44 µm; Planscan - 54.6±11.58 and 205.2±21.73 µm. For laboratory scanners: Imetric Iscan D104 - 10.2±0.87 μm (stamp) and 65.3±5.36 µm (full arch); Zfx Evolution - 12.8±0.83 and 66.4±2.80 µm; Zirkonzahn s600 ARTI - 15.1±1.36 and 65.9±1.33 µm; 3Shape D900 - 19.9±0.53 and 63.6±0.83 µm. Precision was: True Definition - 19.9±2.77 μm (single tooth) and 40.1±11.04 µm (full arch); Trios - 25.8±2.49 and 69.9±18.95 µm; CEREC AC Bluecam - 36.4±2.78 and 46.6±3.44 µm; CEREC Omnicam - 37.6±3.29 and 76.2±13.36 µm; 3D Progress - 76.9±11.04 and 102.2±8.06 µm; Planscan - 74.3±6.58 and 93.9±15.32 µm. For laboratory scanners: Imetric Iscan D104 - 11.7±4.39 μm (stamp) and 31.2±5.58 µm (full arch); Zfx Evolution - 8.4±0.49 and 24.8±3.98 µm; Zirkonzahn s600 ARTI - 13.4±6.74 and 20.7±4.34 µm; 3Shape D900 - 10.4±0.93 and 17.8±0.62 µm. Whole deviation of the dental arch was: 3D Progress - 98.0±5.70 µm

  15. TU-CD-207-03: Time Evolution of Texture Parameters of Subtracted Images Obtained by Contrast-Enhanced Digital Mammography (CEDM)

    SciTech Connect

    Mateos, M-J; Brandan, M-E; Gastelum, A; Marquez, J

    2015-06-15

    Purpose: To evaluate the time evolution of texture parameters, based on the gray level co-occurrence matrix (GLCM), in subtracted images of 17 patients (10 malignant and 7 benign) subjected to contrast-enhanced digital mammography (CEDM). The goal is to determine the sensitivity of texture to iodine uptake at the lesion, and its correlation (or lack of) with mean-pixel-value (MPV). Methods: Acquisition of clinical images followed a single-energy CEDM protocol using Rh/Rh/48 kV plus external 0.5 cm Al from a Senographe DS unit. Prior to the iodine-based contrast medium (CM) administration a mask image was acquired; four CM images were obtained 1, 2, 3, and 5 minutes after CM injection. Temporal series were obtained by logarithmic subtraction of registered CM minus mask images.Regions of interest (ROI) for the lesion were drawn by a radiologist and the texture was analyzed. GLCM was evaluated at a 3 pixel distance, 0° angle, and 64 gray-levels. Pixels identified as registration errors were excluded from the computation. 17 texture parameters were chosen, classified according to similarity into 7 groups, and analyzed. Results: In all cases the texture parameters within a group have similar dynamic behavior. Two texture groups (associated to cluster and sum mean) show a strong correlation with MPV; their average correlation coefficient (ACC) is r{sup 2}=0.90. Other two groups (contrast, homogeneity) remain constant with time, that is, a low-sensitivity to CM uptake. Three groups (regularity, lacunarity and diagonal moment) are sensitive to CM uptake but less correlated with MPV; their ACC is r{sup 2}=0.78. Conclusion: This analysis has shown that, at least groups associated to regularity, lacunarity and diagonal moment offer dynamical information additional to the mean pixel value due to the presence of CM at the lesion. The next step will be the analysis in terms of the lesion pathology. Authors thank PAPIIT-IN105813 for support. Consejo Nacional de Ciencia Y

  16. Beowulf 3D: a case study

    NASA Astrophysics Data System (ADS)

    Engle, Rob

    2008-02-01

    This paper discusses the creative and technical challenges encountered during the production of "Beowulf 3D," director Robert Zemeckis' adaptation of the Old English epic poem and the first film to be simultaneously released in IMAX 3D and digital 3D formats.

  17. Smart-pixel for 3D ranging imagers based on single-photon avalanche diode and time-to-digital converter

    NASA Astrophysics Data System (ADS)

    Markovic, Bojan; Tisa, Simone; Tosi, Alberto; Zappa, Franco

    2011-05-01

    We present a "smart-pixel" suitable for implementation of monolithic single-photon imaging arrays aimed at 3D ranging applications by means of the direct time-of-flight detection (like LIDAR systems), but also for photon timing applications (like FLIM, FCS, FRET). The pixel includes a Single-Photon Avalanche Diode (SPAD) and a Time-to-Digital Converter (TDC) monolithically designed and manufactured in the same chip, and it is able to detect single photons and to measure in-pixel the time delay between a START signal (e.g. laser excitation, LIDAR flash) and a photon detection (e.g. back reflection from a target object). In order to provide both wide dynamic range, high time resolution and very high linearity, we devised a TDC architecture based on an interpolation technique. A "coarse" counter counts the number of reference-clock rising-edges between START and STOP, while high resolution is achieved by means of two interpolators, which measure the time elapsed between START (and STOP) signal and a successive clock edge. In an array with many pixels, multiple STOP channels are needed while just one START channel is necessary if the START event is common to all channels. We report on the design and characterization of prototype circuits, fabricated in a 0.35 μm standard CMOS technology containing complete conversion channels (i.e. 20-μm active-area diameter SPAD, quenching circuitry, and TDC). With a 100 MHz reference clock, the TDC provides a time resolution of 10 ps, a dynamic range of 160 ns and DNL < 1% LSB rms.

  18. Subtractive 3D Printing of Optically Active Diamond Structures

    NASA Astrophysics Data System (ADS)

    Martin, Aiden A.; Toth, Milos; Aharonovich, Igor

    2014-05-01

    Controlled fabrication of semiconductor nanostructures is an essential step in engineering of high performance photonic and optoelectronic devices. Diamond in particular has recently attracted considerable attention as a promising platform for quantum technologies, photonics and high resolution sensing applications. Here we demonstrate the fabrication of optically active, functional diamond structures using gas-mediated electron beam induced etching (EBIE). The technique achieves dry chemical etching at room temperature through the dissociation of surface-adsorbed H2O molecules by energetic electrons in a water vapor environment. Parallel processing is possible by electron flood exposure and the use of an etch mask, while high resolution, mask-free, iterative editing is demonstrated by direct write etching of inclined facets of diamond microparticles. The realized structures demonstrate the potential of EBIE for the fabrication of optically active structures in diamond.

  19. Implication of cerebral circulation time in intracranial stenosis measured by digital subtraction angiography on cerebral blood flow estimation measured by arterial spin labeling

    PubMed Central

    Jann, Kay; Hauf, Martinus; Kellner-Weldon, Frauke; El-Koussy, Marwan; Kiefer, Claus; Federspiel, Andrea; Schroth, Gerhard

    2016-01-01

    PURPOSE Arterial spin labeling (ASL) magnetic resonance imaging to assess cerebral blood flow (CBF) is of increasing interest in basic research and in diagnostic applications, since ASL provides similar information to positron emission tomography about perfusion in vascular territories. However, in patients with steno-occlusive arterial disease (SOAD), CBF as measured by ASL might be underestimated due to delayed bolus arrival, and thus increased spin relaxation. We aimed to estimate the extent to which bolus arrival time (BAT) was delayed in patients with SOAD and whether this resulted in underestimation of CBF. METHODS BAT was measured using digital subtraction angiography (DSA) in ten patients with high-grade stenosis of the middle carotid artery (MCA). Regional CBF was assessed with pseudocontinuous ASL. RESULTS BATs were nonsignificantly prolonged in the stenotic hemisphere 4.1±2.0 s compared with the healthy hemisphere 3.3±0.9 s; however, there were substantial individual differences on the stenotic side. CBF in the anterior and posterior MCA territories were significantly reduced on the stenotic hemisphere. Severe stenosis was correlated with longer BAT and lower quantified CBF. CONCLUSION ASL-based perfusion measurement involves a race between the decay of the spins and the delivery of labeled blood to the region of interest. Special caution is needed when interpreting CBF values quantified in individuals with altered blood flow and delayed circulation times. However, from a clinician’s point of view, an accentuation of hypoperfusion (even if caused by underestimation of CBF due to prolonged BATs) might be desirable since it indexes potentially harmful physiologic deficits. PMID:27411297

  20. Structural and functional changes relevant to maxillary arterial flow observed during computed tomography and nonselective digital subtraction angiography in cats with the mouth closed and opened.

    PubMed

    Scrivani, Peter V; Martin-Flores, Manuel; van Hatten, Ruth; Bezuidenhout, Abraham J

    2014-01-01

    Some cats develop blindness during procedures with mouth gags, which possibly relates to maxillary arterial occlusion by opening the mouth. Our first aim was to use computed tomography (CT) to describe how vascular compression is possible based on morphologic differences between mouth positions. Our second aim was to use nonselective digital subtraction angiography to assess whether opening the mouth induces collateral circulation. Six healthy cats were examined. During CT, the maxillary artery coursed between the angular process of the mandible and the rostrolateral wall of the tympanic bulla. The median distance between these structures was shorter when the mouth was opened (left, 4.3 mm; right, 3.6 mm) vs. closed (left, 6.9 mm; right, 7.1 mm). Additionally, the distance was shorter on the side ipsilateral to the gag (P = 0.03). During nonselective angiography, with the mouth closed, there was strong sequential opacification of the external carotid arteries, maxillary arteries, maxillary retia mirabilia, cerebral arterial circle, and basilar artery. Additionally, there was uniform opacification of the cerebrum and cerebellum. With the mouth opened, opacification of the maxillary arteries (rostral to the angular processes) was reduced in all cats, the cerebral arterial circle and basilar artery had simultaneous opacification in four of six (67%) cats, and the cerebrum had reduced opacification compared to the cerebellum in four of six (67%). In conclusion, the maxillary arteries are situated such that they can be compressed when opening the mouth. Opening the mouth did not consistently induce collateral circulation sufficient to produce comparable cerebral opacification as when the mouth was closed.

  1. Comparison of extracranial artery stenosis and cerebral blood flow, assessed by quantitative magnetic resonance, using digital subtraction angiography as the reference standard

    PubMed Central

    Cai, Jingjing; Wu, Dan; Mo, Yongqian; Wang, Anxin; Hu, Shiyu; Ren, Lijie

    2016-01-01

    Abstract Extracranial arteriosclerosis usually indicates a high risk of ischemic stroke. In the past, a clinical decision following diagnosis was dependent on the percentage of vessel stenosis determined by an invasive technique. We aimed to develop a quantitative magnetic resonance (QMR) technique to evaluate artery structure and cerebral hemodynamics noninvasively. QMR and digital subtraction angiography (DSA) were performed in 67 patients with suspected cerebral vascular disease at our hospital. Accuracy, sensitivity, positive predictive values (PPVs), negative predictive values (NPVs), and Pearson correlation coefficient of QMR were calculated and compared for the detection and measurement of vascular stenoses using DSA as a gold standard. For patients with unilateral artery stenosis, quantitative cerebral blood flow (CBF) was measured by QMR in ipsilateral and contralateral hemispheres. Among 67 subjects (male 54, female 12), 201 stenoses were detected by QMR and DSA. QMR measuring the degree of stenosis and lesion length was in good correlation with the results obtained by DSA (r2 = 0.845, 0.721, respectively). As for artery stenosis, PPV and NPV of QMR were 89.55% and 95.71%, respectively. As for severe stenosis, sensitivity and specificity of QMR were 82.3% and 86.0% with DSA as a reference. For subjects with unilateral carotid stenosis, CBF in basal ganglia decreased significantly (P < 0.001) compared with the contralateral one in symptomatic and asymptomatic groups. For subjects with moderate stenosis (50–79%), CBF of temporal and basal ganglia was decreased compared with the contralateral ganglia. However, CBF in subjects with severe stenosis or occlusion in the basal ganglia was mildly elevated compared with the contralateral ganglia (P < 0.001). In our study, a good correlation was found between QMR and DSA when measuring artery stenosis and CBF. QMR may become an important method for measuring artery stenosis and cerebral hemodynamics in

  2. Nonenhanced peripheral MR-angiography (MRA) at 3 Tesla: evaluation of quiescent-interval single-shot MRA in patients undergoing digital subtraction angiography.

    PubMed

    Wagner, Moritz; Knobloch, Gesine; Gielen, Martin; Lauff, Marie-Teres; Romano, Valentina; Hamm, Bernd; Kröncke, Thomas

    2015-04-01

    Quiescent-interval single-shot MRA (QISS-MRA) is a promising nonenhanced imaging technique for assessment of peripheral arterial disease (PAD). Previous studies at 3 Tesla included only very limited numbers of patients for correlation of QISS-MRA with digital subtraction angiography (DSA) as standard of reference (SOR). The aim of this prospective institutional review board-approved study was to compare QISS-MRA at 3 Tesla with DSA in a larger patient group. Our study included 32 consecutive patients who underwent QISS-MRA, contrast-enhanced MRA (CE-MRA), and DSA. Two readers independently performed a per-segment evaluation of QISS-MRA and CE-MRA for image quality and identification of non-significant stenosis (<50%) versus significant stenosis (50-100%). The final dataset included 1,027 vessel segments. Reader 1 and 2 rated image quality as diagnostic in 96.8 and 98.0% of the vessel segments on QISS-MRA and in 99.3 and 98.4% of the vessel segments on CE-MRA, respectively. DSA was available for 922 segments and detected significant stenosis in 133 segments (14.4%). Consensus reading yielded the following diagnostic parameters for QISS-MRA versus CE-MRA: sensitivity: 83.5% (111/133) versus 82.7% (110/133), p = 0.80; specificity: 93.9% (741/789) versus 95.7% (755/789), p = 0.25; and diagnostic accuracy: 92.4% (852/922) versus 93.8% (865/922), p = 0.35. In conclusion, using DSA as SOR, QISS-MRA and CE-MRA at 3 Tesla showed similar diagnostic accuracy in the assessment of PAD. A limitation of QISS-MRA was the lower rate of assessable vessel segments compared to CE-MRA.

  3. A prospective feasibility study of duplex ultrasound arterial mapping, digital-subtraction angiography, and magnetic resonance angiography in management of critical lower limb ischemia by endovascular revascularization.

    PubMed

    Lowery, A J; Hynes, N; Manning, B J; Mahendran, M; Tawfik, S; Sultan, S

    2007-07-01

    Duplex ultrasound arterial mapping (DUAM) allows precise evaluation of peripheral vascular disease (PVD). However, magnetic resonance angiography (MRA) and digital-subtraction angiography (DSA) are the diagnostic tools used most frequently prior to intervention. Our aim was to compare clinical pragmatism, hemodynamic outcomes, and cost-effectiveness when using DUAM alone compared to DSA or MRA as preoperative assessment tools for endovascular revascularization (EvR) in critical lower limb ischemia (CLI). From 2002 through 2005, 465 patients were referred with PVD. Of these, 199 had CLI and 137 required EvR. Preoperative diagnostic evaluation included DUAM (n = 41), DSA (n = 50), or MRA (n = 46). EvR was aortoiliac in 27% of cases and infrainguinal in 73%. Patients were assessed at day 1, 6 weeks, 3 months, and 6 months. Composite end points were relief of rest pain, ulcer/gangrene healing, and increase in perfusion pressure, as measured by ankle-brachial index (ABI) and digital pressures. Patency by DUAM, limb salvage, morbidity, mortality, length of stay, and cost-effectiveness were compared between groups using nonparametric t-test, analysis of variance, and Kaplan-Meier analysis. The three groups were comparable in terms of age, sex, comorbidity, and Society for Vascular Surgery/International Society of Cardiovascular Surgery clinical classification. Six-month mean improvement in ABI in the DUAM group was comparable to that in the DSA group (P = 0.25) and significantly better than that in the MRA group (P < 0.05). Six-month patency rates for the DUAM group were comparable to those in the DSA group (P = 0.68, relative risk [RR] = 0.74, 95% confidence interval [CI] 0.18-2.99) and superior to that in the MRA group (P = 0.022, RR = 0.255, 95% CI 0.09-0.71). Length of hospital stay was lower in the DUAM group compared with the DSA group (P < 0.0001) and the MRA group (P = 0.0003). The cost of DUAM is lower than that of both DSA and MRA. DUAM accurately identified the

  4. Comparing parametric solid modelling/reconfiguration, global shape modelling and free-form deformation for the generation of 3D digital models of femurs from X-ray images.

    PubMed

    Filippi, Stefano; Motyl, Barbara; Bandera, Camillo

    2009-02-01

    At present, computer assisted surgery systems help orthopaedic surgeons both plan and perform surgical procedures. To enable these systems to function, it is crucial to have at one's disposal 3D models of anatomical structures, surgical tools and prostheses (if required). This paper analyses and compares three methods for generating 3D digital models of anatomical structures starting from X-ray images: parametric solid modelling/reconfiguration, global shape modelling and free-form deformation. Seven experiences involving the generation of a femur model were conducted by software developers and different skilled users. These experiences are described in detail and compared at different stages and from different points of view.

  5. YouDash3D: exploring stereoscopic 3D gaming for 3D movie theaters

    NASA Astrophysics Data System (ADS)

    Schild, Jonas; Seele, Sven; Masuch, Maic

    2012-03-01

    Along with the success of the digitally revived stereoscopic cinema, events beyond 3D movies become attractive for movie theater operators, i.e. interactive 3D games. In this paper, we present a case that explores possible challenges and solutions for interactive 3D games to be played by a movie theater audience. We analyze the setting and showcase current issues related to lighting and interaction. Our second focus is to provide gameplay mechanics that make special use of stereoscopy, especially depth-based game design. Based on these results, we present YouDash3D, a game prototype that explores public stereoscopic gameplay in a reduced kiosk setup. It features live 3D HD video stream of a professional stereo camera rig rendered in a real-time game scene. We use the effect to place the stereoscopic effigies of players into the digital game. The game showcases how stereoscopic vision can provide for a novel depth-based game mechanic. Projected trigger zones and distributed clusters of the audience video allow for easy adaptation to larger audiences and 3D movie theater gaming.

  6. Diagnostic yield and accuracy of CT angiography, MR angiography, and digital subtraction angiography for detection of macrovascular causes of intracerebral haemorrhage: prospective, multicentre cohort study

    PubMed Central

    Velthuis, Birgitta K; Rinkel, Gabriël J E; Algra, Ale; de Kort, Gérard A P; Witkamp, Theo D; de Ridder, Johanna C M; van Nieuwenhuizen, Koen M; de Leeuw, Frank-Erik; Schonewille, Wouter J; de Kort, Paul L M; Dippel, Diederik W; Raaymakers, Theodora W M; Hofmeijer, Jeannette; Wermer, Marieke J H; Kerkhoff, Henk; Jellema, Korné; Bronner, Irene M; Remmers, Michel J M; Bienfait, Henri Paul; Witjes, Ron J G M; Greving, Jacoba P; Klijn, Catharina J M

    2015-01-01

    Study question What are the diagnostic yield and accuracy of early computed tomography (CT) angiography followed by magnetic resonance imaging/angiography (MRI/MRA) and digital subtraction angiography (DSA) in patients with non-traumatic intracerebral haemorrhage? Methods This prospective diagnostic study enrolled 298 adults (18-70 years) treated in 22 hospitals in the Netherlands over six years. CT angiography was performed within seven days of haemorrhage. If the result was negative, MRI/MRA was performed four to eight weeks later. DSA was performed when the CT angiography or MRI/MRA results were inconclusive or negative. The main outcome was a macrovascular cause, including arteriovenous malformation, aneurysm, dural arteriovenous fistula, and cavernoma. Three blinded neuroradiologists independently evaluated the images for macrovascular causes of haemorrhage. The reference standard was the best available evidence from all findings during one year’s follow-up. Study answer and limitations A macrovascular cause was identified in 69 patients (23%). 291 patients (98%) underwent CT angiography; 214 with a negative result underwent additional MRI/MRA and 97 with a negative result for both CT angiography and MRI/MRA underwent DSA. Early CT angiography detected 51 macrovascular causes (yield 17%, 95% confidence interval 13% to 22%). CT angiography with MRI/MRA identified two additional macrovascular causes (18%, 14% to 23%) and these modalities combined with DSA another 15 (23%, 18% to 28%). This last extensive strategy failed to detect a cavernoma, which was identified on MRI during follow-up (reference strategy). The positive predictive value of CT angiography was 72% (60% to 82%), of additional MRI/MRA was 35% (14% to 62%), and of additional DSA was 100% (75% to 100%). None of the patients experienced complications with CT angiography or MRI/MRA; 0.6% of patients who underwent DSA experienced permanent sequelae. Not all patients with negative CT angiography and

  7. Europeana and 3D

    NASA Astrophysics Data System (ADS)

    Pletinckx, D.

    2011-09-01

    The current 3D hype creates a lot of interest in 3D. People go to 3D movies, but are we ready to use 3D in our homes, in our offices, in our communication? Are we ready to deliver real 3D to a general public and use interactive 3D in a meaningful way to enjoy, learn, communicate? The CARARE project is realising this for the moment in the domain of monuments and archaeology, so that real 3D of archaeological sites and European monuments will be available to the general public by 2012. There are several aspects to this endeavour. First of all is the technical aspect of flawlessly delivering 3D content over all platforms and operating systems, without installing software. We have currently a working solution in PDF, but HTML5 will probably be the future. Secondly, there is still little knowledge on how to create 3D learning objects, 3D tourist information or 3D scholarly communication. We are still in a prototype phase when it comes to integrate 3D objects in physical or virtual museums. Nevertheless, Europeana has a tremendous potential as a multi-facetted virtual museum. Finally, 3D has a large potential to act as a hub of information, linking to related 2D imagery, texts, video, sound. We describe how to create such rich, explorable 3D objects that can be used intuitively by the generic Europeana user and what metadata is needed to support the semantic linking.

  8. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  9. PLOT3D/AMES, APOLLO UNIX VERSION USING GMR3D (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    Apollo's 3-dimensional graphics hardware, but does not take advantage of the shading and hidden line/surface removal capabilities of the Apollo DN10000. Although this implementation does not offer a capability for putting text on plots, it does support the use of a mouse to translate, rotate, or zoom in on views. The version 3.6b+ Apollo implementations of PLOT3D (ARC-12789) and PLOT3D/TURB3D (ARC-12785) were developed for use on Apollo computers running UNIX System V with BSD 4.3 extensions and the graphics library GMR3D Version 2.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: 1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); 2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); 3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. UNIX is a registered trademark of AT&T.

  10. Locally adaptive 2D-3D registration using vascular structure model for liver catheterization.

    PubMed

    Kim, Jihye; Lee, Jeongjin; Chung, Jin Wook; Shin, Yeong-Gil

    2016-03-01

    Two-dimensional-three-dimensional (2D-3D) registration between intra-operative 2D digital subtraction angiography (DSA) and pre-operative 3D computed tomography angiography (CTA) can be used for roadmapping purposes. However, through the projection of 3D vessels, incorrect intersections and overlaps between vessels are produced because of the complex vascular structure, which makes it difficult to obtain the correct solution of 2D-3D registration. To overcome these problems, we propose a registration method that selects a suitable part of a 3D vascular structure for a given DSA image and finds the optimized solution to the partial 3D structure. The proposed algorithm can reduce the registration errors because it restricts the range of the 3D vascular structure for the registration by using only the relevant 3D vessels with the given DSA. To search for the appropriate 3D partial structure, we first construct a tree model of the 3D vascular structure and divide it into several subtrees in accordance with the connectivity. Then, the best matched subtree with the given DSA image is selected using the results from the coarse registration between each subtree and the vessels in the DSA image. Finally, a fine registration is conducted to minimize the difference between the selected subtree and the vessels of the DSA image. In experimental results obtained using 10 clinical datasets, the average distance errors in the case of the proposed method were 2.34±1.94mm. The proposed algorithm converges faster and produces more correct results than the conventional method in evaluations on patient datasets.

  11. Systolically gated 3D phase contrast MRA of mesenteric arteries in suspected mesenteric ischemia

    SciTech Connect

    Wasser, M.N.; Schultze Kool, L.J.; Roos, A. de

    1996-03-01

    Our goal was to assess the value of MRA for detecting stenoses in the celiac (CA) and superior mesenteric (SMA) arteries in patients suspected of having chronic mesenteric ischemia, using an optimized systolically gated 3D phase contrast technique. In an initial study in 24 patients who underwent conventional angiography of the abdominal vessels for different clinical indications, a 3D phase contrast MRA technique (3D-PCA) was evaluated and optimized to image the CAs and SMAs. Subsequently, a prospective study was performed to assess the value of systolically gated 3D-PCA in evaluation of the mesenteric arteries in 10 patients with signs and symptoms of chronic mesenteric ischemia. Intraarterial digital subtraction angiography and surgical findings were used as the reference standard. In the initial study, systolic gating appeared to be essential in imaging the SMA on 3D-PCA. In 10 patients suspected of mesenteric ischemia, systolically gated 3D-PCA identified significant proximal disease in the two mesenteric vessels in 4 patients. These patients underwent successful reconstruction of their stenotic vessels. Cardiac-gated MRA may become a useful tool in selection of patients suspected of having mesenteric ischemia who may benefit from surgery. 16 refs., 6 figs., 4 tabs.

  12. 3d-3d correspondence revisited

    DOE PAGES

    Chung, Hee -Joong; Dimofte, Tudor; Gukov, Sergei; ...

    2016-04-21

    In fivebrane compactifications on 3-manifolds, we point out the importance of all flat connections in the proper definition of the effective 3d N = 2 theory. The Lagrangians of some theories with the desired properties can be constructed with the help of homological knot invariants that categorify colored Jones polynomials. Higgsing the full 3d theories constructed this way recovers theories found previously by Dimofte-Gaiotto-Gukov. As a result, we also consider the cutting and gluing of 3-manifolds along smooth boundaries and the role played by all flat connections in this operation.

  13. Microfabricating 3D Structures by Laser Origami

    DTIC Science & Technology

    2011-11-09

    technique generates 3D microstructures by controlled out-of- plane folding of 2D patterns through a variety of laser-based digital fabrication...processes. Digital microfabrication techniques such as laser direct-write (LDW) offer a viable alternative for generating 3D self-folding designs. These...folding at the microscale where manual or mechanized actuation of the smaller struc- tures is not practical. LDW techniques allow micromachining and

  14. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    NASA Astrophysics Data System (ADS)

    Syryamkin, V. I.; Suntsov, S. B.; Klestov, S. A.; Echina, E. S.

    2015-10-01

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented.

  15. Design of smart 3D-digital X-ray microtomographic scanners for non-destructive testing of materials and components of electronic devices with a multilayered structure

    SciTech Connect

    Syryamkin, V. I. Klestov, S. A. Echina, E. S.; Suntsov, S. B.

    2015-10-27

    The article studies the operating procedures of an X-ray microtomographic scanner and the module of reconstruction and analysis 3D-image of a test sample in particular. An algorithm for 3D-image reconstruction based on image shadow projections and mathematical methods of the processing are described. Chapter 1 describes the basic principles of X-ray tomography and general procedures of the device developed. Chapters 2 and 3 are devoted to the problem of resources saving by the system during the X-ray tomography procedure, which is achieved by preprocessing of the initial shadow projections. Preprocessing includes background noise removing from the images, which reduces the amount of shadow projections in general and increases the efficiency of the group shadow projections compression. Chapter 4 covers general procedures of defect search, which is based on vector analysis principles. In conclusion, the main applications of X-ray tomography are presented.

  16. Improving 3D Wavelet-Based Compression of Hyperspectral Images

    NASA Technical Reports Server (NTRS)

    Klimesh, Matthew; Kiely, Aaron; Xie, Hua; Aranki, Nazeeh

    2009-01-01

    Two methods of increasing the effectiveness of three-dimensional (3D) wavelet-based compression of hyperspectral images have been developed. (As used here, images signifies both images and digital data representing images.) The methods are oriented toward reducing or eliminating detrimental effects of a phenomenon, referred to as spectral ringing, that is described below. In 3D wavelet-based compression, an image is represented by a multiresolution wavelet decomposition consisting of several subbands obtained by applying wavelet transforms in the two spatial dimensions corresponding to the two spatial coordinate axes of the image plane, and by applying wavelet transforms in the spectral dimension. Spectral ringing is named after the more familiar spatial ringing (spurious spatial oscillations) that can be seen parallel to and near edges in ordinary images reconstructed from compressed data. These ringing phenomena are attributable to effects of quantization. In hyperspectral data, the individual spectral bands play the role of edges, causing spurious oscillations to occur in the spectral dimension. In the absence of such corrective measures as the present two methods, spectral ringing can manifest itself as systematic biases in some reconstructed spectral bands and can reduce the effectiveness of compression of spatially-low-pass subbands. One of the two methods is denoted mean subtraction. The basic idea of this method is to subtract mean values from spatial planes of spatially low-pass subbands prior to encoding, because (a) such spatial planes often have mean values that are far from zero and (b) zero-mean data are better suited for compression by methods that are effective for subbands of two-dimensional (2D) images. In this method, after the 3D wavelet decomposition is performed, mean values are computed for and subtracted from each spatial plane of each spatially-low-pass subband. The resulting data are converted to sign-magnitude form and compressed in a

  17. 3D and Education

    NASA Astrophysics Data System (ADS)

    Meulien Ohlmann, Odile

    2013-02-01

    Today the industry offers a chain of 3D products. Learning to "read" and to "create in 3D" becomes an issue of education of primary importance. 25 years professional experience in France, the United States and Germany, Odile Meulien set up a personal method of initiation to 3D creation that entails the spatial/temporal experience of the holographic visual. She will present some different tools and techniques used for this learning, their advantages and disadvantages, programs and issues of educational policies, constraints and expectations related to the development of new techniques for 3D imaging. Although the creation of display holograms is very much reduced compared to the creation of the 90ies, the holographic concept is spreading in all scientific, social, and artistic activities of our present time. She will also raise many questions: What means 3D? Is it communication? Is it perception? How the seeing and none seeing is interferes? What else has to be taken in consideration to communicate in 3D? How to handle the non visible relations of moving objects with subjects? Does this transform our model of exchange with others? What kind of interaction this has with our everyday life? Then come more practical questions: How to learn creating 3D visualization, to learn 3D grammar, 3D language, 3D thinking? What for? At what level? In which matter? for whom?

  18. Acquisition, Visualization and Analysis of Photo Real 3D Virtual Geology at High Accuracy: Oblique, Close Range Data Acquisition From the Ground With Digital Cameras, Terrestrial Laser Scanners and GPS

    NASA Astrophysics Data System (ADS)

    Xu, X.; Aiken, C. L.

    2005-12-01

    For almost seven years we have been mapping geology digitally using a combination of laser rangefinding and GPS. We have extended that concept to add unique real photo texture mapping. This is a unique method combining computer visualization and photogrammetry and has been used to build 3D photo real models at millimeter to centimeter accuracy and resolution of a variety of 3D features especially extensive geologic outcrops in the US, Spain, Ireland, United Kingdom, and Mexico. Although the method is independent of the type of laser rangefinder being used we presently are using fast laser scanners for faster and more detailed models although these data sets are then extremely large resulting in hardware and software problems for users. These models are globally oriented so they can be integrated with other globally positioned data sets such as drill holes, geophysical surveys (seismic and ground penetrating radar), and conventional geologic mapping (stratigraphic sections, outcrop mapping of contacts and orientations.) etc. Three dimensional measurements such as strikes, dips and thicknesses are extracted by fitting surfaces to digitized lines in 3D space defining the intersection of a boundary or fracture/fault with the surface, allowing quantitative measurements with associated statistics. The models have incorporated data from as many as one hundred close range oblique photos (taken from the ground or helicopters etc.) and 60 terrestrial scans over a single site, and laterally over several kilometers. We have also applied the method to processing air photos, using the terrestrial scanners for the terrain model ( at a few centimeters), control from GPS and the commercially acquired air photos for the real photo texture mapping for a fully realized 3D orthophoto. We use the term "real photos" rather than "photorealistic" because the latter has been used for models with texture surfaces that are "like the real" but not the "real" photo surface whereas our approach

  19. Gradient-based 3D-2D registration of cerebral angiograms

    NASA Astrophysics Data System (ADS)

    Mitrović, Uroš; Markelj, Primož; Likar, Boštjan; Miloševič, Zoran; Pernuš, Franjo

    2011-03-01

    Endovascular treatment of cerebral aneurysms and arteriovenous malformations (AVM) involves navigation of a catheter through the femoral artery and vascular system into the brain and into the aneurysm or AVM. Intra-interventional navigation utilizes digital subtraction angiography (DSA) to visualize vascular structures and X-ray fluoroscopy to localize the endovascular components. Due to the two-dimensional (2D) nature of the intra-interventional images, navigation through a complex three-dimensional (3D) structure is a demanding task. Registration of pre-interventional MRA, CTA, or 3D-DSA images and intra-interventional 2D DSA images can greatly enhance visualization and navigation. As a consequence of better navigation in 3D, the amount of required contrast medium and absorbed dose could be significantly reduced. In the past, development and evaluation of 3D-2D registration methods received considerable attention. Several validation image databases and evaluation criteria were created and made publicly available in the past. However, applications of 3D-2D registration methods to cerebral angiograms and their validation are rather scarce. In this paper, the 3D-2D robust gradient reconstruction-based (RGRB) registration algorithm is applied to CTA and DSA images and analyzed. For the evaluation purposes five image datasets, each comprised of a 3D CTA and several 2D DSA-like digitally reconstructed radiographs (DRRs) generated from the CTA, with accurate gold standard registrations were created. A total of 4000 registrations on these five datasets resulted in mean mTRE values between 0.07 and 0.59 mm, capture ranges between 6 and 11 mm and success rates between 61 and 88% using a failure threshold of 2 mm.

  20. Investigation, development and application of optimal output feedback theory. Volume 2: Development of an optimal, limited state feedback outer-loop digital flight control system for 3-D terminal area operation

    NASA Technical Reports Server (NTRS)

    Broussard, J. R.; Halyo, N.

    1984-01-01

    This report contains the development of a digital outer-loop three dimensional radio navigation (3-D RNAV) flight control system for a small commercial jet transport. The outer-loop control system is designed using optimal stochastic limited state feedback techniques. Options investigated using the optimal limited state feedback approach include integrated versus hierarchical control loop designs, 20 samples per second versus 5 samples per second outer-loop operation and alternative Type 1 integration command errors. Command generator tracking techniques used in the digital control design enable the jet transport to automatically track arbitrary curved flight paths generated by waypoints. The performance of the design is demonstrated using detailed nonlinear aircraft simulations in the terminal area, frequency domain multi-input sigma plots, frequency domain single-input Bode plots and closed-loop poles. The response of the system to a severe wind shear during a landing approach is also presented.

  1. Watermarking 3D Objects for Verification

    DTIC Science & Technology

    1999-01-01

    signal ( audio /image/video) pro- cessing and steganography fields, and even newer to the computer graphics community. Inherently, digital watermarking of...Many view digital watermarking as a potential solution for copyright protection of valuable digital materials like CD-quality audio , publication...watermark. The object can be an image, an audio clip, a video clip, or a 3D model. Some papers discuss watermarking other forms of multime- dia data

  2. Generation and visualization of four-dimensional MR angiography data using an undersampled 3-D projection trajectory.

    PubMed

    Liu, Jing; Redmond, Michael J; Brodsky, Ethan K; Alexander, Andrew L; Lu, Aiming; Thornton, Francis J; Schulte, Michael J; Grist, Thomas M; Pipe, James G; Block, Walter F

    2006-02-01

    Time-resolved contrast-enhanced magnetic resonance (MR) angiography (CE-MRA) has gained in popularity relative to X-ray Digital Subtraction Angiography because it provides three-dimensional (3-D) spatial resolution and it is less invasive. We have previously presented methods that improve temporal resolution in CE-MRA while providing high spatial resolution by employing an undersampled 3-D projection (3D PR) trajectory. The increased coverage and isotropic resolution of the 3D PR acquisition simplify visualization of the vasculature from any perspective. We present a new algorithm to develop a set of time-resolved 3-D image volumes by preferentially weighting the 3D PR data according to its acquisition time. An iterative algorithm computes a series of density compensation functions for a regridding reconstruction, one for each time frame, that exploit the variable sampling density in 3D PR. The iterative weighting procedure simplifies the calculation of appropriate density compensation for arbitrary sampling patterns, which improve sampling efficiency and, thus, signal-to-noise ratio and contrast-to-noise ratio, since it is does not require a closed-form calculation based on geometry. Current medical workstations can display these large four-dimensional studies, however, interactive cine animation of the data is only possible at significantly degraded resolution. Therefore, we also present a method for interactive visualization using powerful graphics cards and distributed processing. Results from volunteer and patient studies demonstrate the advantages of dynamic imaging with high spatial resolution.

  3. 3D-2D registration of cerebral angiograms based on vessel directions and intensity gradients

    NASA Astrophysics Data System (ADS)

    Mitrovic, Uroš; Špiclin, Žiga; Štern, Darko; Markelj, Primož; Likar, Boštjan; Miloševic, Zoran; Pernuš, Franjo

    2012-02-01

    Endovascular treatment of cerebral aneurysms and arteriovenous malformations (AVM) involves navigation of a catheter through the femoral artery and vascular system to the site of pathology. Intra-interventional navigation is done under the guidance of one or at most two two-dimensional (2D) X-ray fluoroscopic images or 2D digital subtracted angiograms (DSA). Due to the projective nature of 2D images, the interventionist needs to mentally reconstruct the position of the catheter in respect to the three-dimensional (3D) patient vasculature, which is not a trivial task. By 3D-2D registration of pre-interventional 3D images like CTA, MRA or 3D-DSA and intra-interventional 2D images, intra-interventional tools such as catheters can be visualized on the 3D model of patient vasculature, allowing easier and faster navigation. Such a navigation may consequently lead to the reduction of total ionizing dose and delivered contrast medium. In the past, development and evaluation of 3D-2D registration methods for endovascular treatments received considerable attention. The main drawback of these methods is that they have to be initialized rather close to the correct position as they mostly have a rather small capture range. In this paper, a novel registration method that has a higher capture range and success rate is proposed. The proposed method and a state-of-the-art method were tested and evaluated on synthetic and clinical 3D-2D image-pairs. The results on both databases indicate that although the proposed method was slightly less accurate, it significantly outperformed the state-of-the-art 3D-2D registration method in terms of robustness measured by capture range and success rate.

  4. Pilot Study on the Detection of Simulated Lesions Using a 2D and 3D Digital Full-Field Mammography System with a Newly Developed High Resolution Detector Based on Two Shifts of a-Se.

    PubMed

    Schulz-Wendtland, R; Bani, M; Lux, M P; Schwab, S; Loehberg, C R; Jud, S M; Rauh, C; Bayer, C M; Beckmann, M W; Uder, M; Fasching, P A; Adamietz, B; Meier-Meitinger, M

    2012-05-01

    Purpose: Experimental study of a new system for digital 2D and 3D full-field mammography (FFDM) using a high resolution detector based on two shifts of a-Se. Material and Methods: Images were acquired using the new FFDM system Amulet® (FujiFilm, Tokio, Japan), an a-Se detector (receptor 24 × 30 cm(2), pixel size 50 µm, memory depth 12 bit, spatial resolution 10 lp/mm, DQE > 0.50). Integrated in the detector is a new method for data transfer, based on optical switch technology. The object of investigation was the Wisconsin Mammographic Random Phantom, Model 152A (Radiation Measurement Inc., Middleton, WI, USA) and the same parameters and exposure data (Tungsten, 100 mAs, 30 kV) were consistently used. We acquired 3 different pairs of images in the c-c and ml planes (2D) and in the c-c and c-c planes with an angle of 4 degrees (3D). Five radiologists experienced in mammography (experience ranging from 3 months to more than 5 years) analyzed the images (monitoring) which had been randomly encoded (random generator) with regard to the recognition of details such as specks of aluminum oxide (200-740 µm), nylon fibers (0.4-1.6 mm) and round lesions/masses (diameters 5-14 mm), using special linear glasses for 3D visualization, and compared the results. Results: A total of 225 correct positive decisions could be detected: we found 222 (98.7 %) correct positive results for 2D and 3D visualization in each case. Conclusion: The results of this phantom study showed the same detection rates for both 2D and 3D imaging using full field digital mammography. Our results must be confirmed in further clinical trials.

  5. 3D Printed Shelby Cobra

    SciTech Connect

    Love, Lonnie

    2015-01-09

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  6. Strategies in Subtraction Problem Solving in Children

    ERIC Educational Resources Information Center

    Barrouillet, Pierre; Mignon, Mathilde; Thevenot, Catherine

    2008-01-01

    The aim of this study was to investigate the strategies used by third graders in solving the 81 elementary subtractions that are the inverses of the one-digit additions with addends from 1 to 9 recently studied by Barrouillet and Lepine. Although the pattern of relationship between individual differences in working memory, on the one hand, and…

  7. AE3D

    SciTech Connect

    Spong, Donald A

    2016-06-20

    AE3D solves for the shear Alfven eigenmodes and eigenfrequencies in a torodal magnetic fusion confinement device. The configuration can be either 2D (e.g. tokamak, reversed field pinch) or 3D (e.g. stellarator, helical reversed field pinch, tokamak with ripple). The equations solved are based on a reduced MHD model and sound wave coupling effects are not currently included.

  8. Advanced Infusion Techniques with 3-D Printed Tooling

    SciTech Connect

    Nuttall, David; Elliott, Amy; Post, Brian K.; Love, Lonnie J.

    2016-05-10

    The manufacturing of tooling for large, contoured surfaces for fiber-layup applications requires significant effort to understand the geometry and then to subtractively manufacture the tool. Traditional methods for the auto industry use clay that is hand sculpted. In the marine pleasure craft industry, the exterior of the model is formed from a foam lay-up that is either hand cut or machined to create smooth lines. Engineers and researchers at Oak Ridge National Laboratory s Manufacturing Demonstration Facility (ORNL MDF) collaborated with Magnum Venus Products (MVP) in the development of a process for reproducing legacy whitewater adventure craft via digital scanning and large scale 3-D printed layup molds. The process entailed 3D scanning a legacy canoe form, converting that form to a CAD model, additively manufacturing (3-D Print) the mold tool, and subtractively finishing the mold s transfer surfaces. Future work will include applying a gelcoat to the mold transfer surface and infusing using vacuum assisted resin transfer molding, or VARTM principles, to create a watertight vessel. The outlined steps were performed on a specific canoe geometry found by MVP s principal participant. The intent of utilizing this geometry is to develop an energy efficient and marketable process for replicating complex shapes, specifically focusing on this particular watercraft, and provide a finished product for demonstration to the composites industry. The culminating part produced through this agreement has been slated for public presentation and potential demonstration at the 2016 CAMX (Composites and Advanced Materials eXpo) exposition in Anaheim, CA. Phase I of this collaborative research and development agreement (MDF-15-68) was conducted under CRADA NFE-15-05575 and was initiated on May 7, 2015, with an introduction to the MVP product line, and concluded in March of 2016 with the printing of and processing of a canoe mold. The project partner Magnum Venous Products (MVP) is

  9. 3D change detection - Approaches and applications

    NASA Astrophysics Data System (ADS)

    Qin, Rongjun; Tian, Jiaojiao; Reinartz, Peter

    2016-12-01

    Due to the unprecedented technology development of sensors, platforms and algorithms for 3D data acquisition and generation, 3D spaceborne, airborne and close-range data, in the form of image based, Light Detection and Ranging (LiDAR) based point clouds, Digital Elevation Models (DEM) and 3D city models, become more accessible than ever before. Change detection (CD) or time-series data analysis in 3D has gained great attention due to its capability of providing volumetric dynamics to facilitate more applications and provide more accurate results. The state-of-the-art CD reviews aim to provide a comprehensive synthesis and to simplify the taxonomy of the traditional remote sensing CD techniques, which mainly sit within the boundary of 2D image/spectrum analysis, largely ignoring the particularities of 3D aspects of the data. The inclusion of 3D data for change detection (termed 3D CD), not only provides a source with different modality for analysis, but also transcends the border of traditional top-view 2D pixel/object-based analysis to highly detailed, oblique view or voxel-based geometric analysis. This paper reviews the recent developments and applications of 3D CD using remote sensing and close-range data, in support of both academia and industry researchers who seek for solutions in detecting and analyzing 3D dynamics of various objects of interest. We first describe the general considerations of 3D CD problems in different processing stages and identify CD types based on the information used, being the geometric comparison and geometric-spectral analysis. We then summarize relevant works and practices in urban, environment, ecology and civil applications, etc. Given the broad spectrum of applications and different types of 3D data, we discuss important issues in 3D CD methods. Finally, we present concluding remarks in algorithmic aspects of 3D CD.

  10. 3-D Seismic Interpretation

    NASA Astrophysics Data System (ADS)

    Moore, Gregory F.

    2009-05-01

    This volume is a brief introduction aimed at those who wish to gain a basic and relatively quick understanding of the interpretation of three-dimensional (3-D) seismic reflection data. The book is well written, clearly illustrated, and easy to follow. Enough elementary mathematics are presented for a basic understanding of seismic methods, but more complex mathematical derivations are avoided. References are listed for readers interested in more advanced explanations. After a brief introduction, the book logically begins with a succinct chapter on modern 3-D seismic data acquisition and processing. Standard 3-D acquisition methods are presented, and an appendix expands on more recent acquisition techniques, such as multiple-azimuth and wide-azimuth acquisition. Although this chapter covers the basics of standard time processing quite well, there is only a single sentence about prestack depth imaging, and anisotropic processing is not mentioned at all, even though both techniques are now becoming standard.

  11. Radiochromic 3D Detectors

    NASA Astrophysics Data System (ADS)

    Oldham, Mark

    2015-01-01

    Radiochromic materials exhibit a colour change when exposed to ionising radiation. Radiochromic film has been used for clinical dosimetry for many years and increasingly so recently, as films of higher sensitivities have become available. The two principle advantages of radiochromic dosimetry include greater tissue equivalence (radiologically) and the lack of requirement for development of the colour change. In a radiochromic material, the colour change arises direct from ionising interactions affecting dye molecules, without requiring any latent chemical, optical or thermal development, with important implications for increased accuracy and convenience. It is only relatively recently however, that 3D radiochromic dosimetry has become possible. In this article we review recent developments and the current state-of-the-art of 3D radiochromic dosimetry, and the potential for a more comprehensive solution for the verification of complex radiation therapy treatments, and 3D dose measurement in general.

  12. Bootstrapping 3D fermions

    DOE PAGES

    Iliesiu, Luca; Kos, Filip; Poland, David; ...

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  13. Bootstrapping 3D fermions

    SciTech Connect

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-17

    We study the conformal bootstrap for a 4-point function of fermions <ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge CT. We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N. Finally, we also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  14. Validation of a computer analysis to determine 3-D rotations and translations of the rib cage in upright posture from three 2-D digital images

    PubMed Central

    Harrison, Deed E.; Janik, Tadeusz J.; Cailliet, Rene; Normand, Martin C.; Perron, Denise L.; Ferrantelli, Joseph R

    2006-01-01

    Since thoracic cage posture affects lumbar spine coupling and loads on the spinal tissues and extremities, a scientific analysis of upright posture is needed. Common posture analyzers measure human posture as displacements from a plumb line, while the PosturePrint™ claims to measure head, rib cage, and pelvic postures as rotations and translations. In this study, it was decided to evaluate the validity of the PosturePrint™ Internet computer system’s analysis of thoracic cage postures. In a university biomechanics laboratory, photographs of a mannequin thoracic cage were obtained in different postures on a stand in front of a digital camera. For each mannequin posture, three photographs were obtained (left lateral, right lateral, and AP). The mannequin thoracic cage was placed in 68 different single and combined postures (requiring 204 photographs) in five degrees of freedom: lateral translation (Tx), lateral flexion (Rz), axial rotation (Ry), flexion–extension (Rx), and anterior–posterior translation (Tz). The PosturePrint™ system requires 13 reflective markers to be placed on the subject (mannequin) during photography and 16 additional “click-on” markers via computer mouse before a set of three photographs is analyzed by the PosturePrint™ computer system over the Internet. Errors were the differences between the positioned mannequin and the calculated positions from the computer system. Average absolute value errors were obtained by comparing the exact inputted posture to the PosturePrint™’s computed values. Mean and standard deviation of computational errors for sagittal displacements of the thoracic cage were Rx=0.3±0.1°, Tz=1.6±0.7 mm, and for frontal view displacements were Ry=1.2±1.0°, Rz=0.6±0.4°, and Tx=1.5±0.6 mm. The PosturePrint™ system is sufficiently accurate in measuring thoracic cage postures in five degrees of freedom on a mannequin indicating the need for a further study on human subjects. PMID:16547756

  15. 3D photoacoustic imaging

    NASA Astrophysics Data System (ADS)

    Carson, Jeffrey J. L.; Roumeliotis, Michael; Chaudhary, Govind; Stodilka, Robert Z.; Anastasio, Mark A.

    2010-06-01

    Our group has concentrated on development of a 3D photoacoustic imaging system for biomedical imaging research. The technology employs a sparse parallel detection scheme and specialized reconstruction software to obtain 3D optical images using a single laser pulse. With the technology we have been able to capture 3D movies of translating point targets and rotating line targets. The current limitation of our 3D photoacoustic imaging approach is its inability ability to reconstruct complex objects in the field of view. This is primarily due to the relatively small number of projections used to reconstruct objects. However, in many photoacoustic imaging situations, only a few objects may be present in the field of view and these objects may have very high contrast compared to background. That is, the objects have sparse properties. Therefore, our work had two objectives: (i) to utilize mathematical tools to evaluate 3D photoacoustic imaging performance, and (ii) to test image reconstruction algorithms that prefer sparseness in the reconstructed images. Our approach was to utilize singular value decomposition techniques to study the imaging operator of the system and evaluate the complexity of objects that could potentially be reconstructed. We also compared the performance of two image reconstruction algorithms (algebraic reconstruction and l1-norm techniques) at reconstructing objects of increasing sparseness. We observed that for a 15-element detection scheme, the number of measureable singular vectors representative of the imaging operator was consistent with the demonstrated ability to reconstruct point and line targets in the field of view. We also observed that the l1-norm reconstruction technique, which is known to prefer sparseness in reconstructed images, was superior to the algebraic reconstruction technique. Based on these findings, we concluded (i) that singular value decomposition of the imaging operator provides valuable insight into the capabilities of

  16. Real-time sensing of mouth 3-D position and orientation

    NASA Astrophysics Data System (ADS)

    Burdea, Grigore C.; Dunn, Stanley M.; Mallik, Matsumita; Jun, Heesung

    1990-07-01

    A key problem in using digital subtraction radiography in dentistry is the ability to reposition the X-ray source and patient so as to reproduce an identical imaging geometry. In this paper we describe an approach to solving this problem based on real time sensing of the 3-D position and orientation of the patient's mouth. The research described here is part of a program which has a long term goal to develop an automated digital subtraction radiography system. This will allow the patient and X-ray source to be accurately repositioned without the mechanical fixtures that are presently used to preserve the imaging geometry. If we can measure the position and orientation of the mouth, then the desired position of the source can be computed as the product of the transformation matrices describing the desired imaging geometry and the position vector of the targeted tooth. Position and orientation of the mouth is measured by a real time sensing device using low-frequency magnetic field technology. We first present the problem of repositioning the patient and source and then outline our analytic solution. Then we describe an experimental setup to measure the accuracy, reproducibility and resolution of the sensor and present results of preliminary experiments.

  17. 3D scene reconstruction based on 3D laser point cloud combining UAV images

    NASA Astrophysics Data System (ADS)

    Liu, Huiyun; Yan, Yangyang; Zhang, Xitong; Wu, Zhenzhen

    2016-03-01

    It is a big challenge capturing and modeling 3D information of the built environment. A number of techniques and technologies are now in use. These include GPS, and photogrammetric application and also remote sensing applications. The experiment uses multi-source data fusion technology for 3D scene reconstruction based on the principle of 3D laser scanning technology, which uses the laser point cloud data as the basis and Digital Ortho-photo Map as an auxiliary, uses 3DsMAX software as a basic tool for building three-dimensional scene reconstruction. The article includes data acquisition, data preprocessing, 3D scene construction. The results show that the 3D scene has better truthfulness, and the accuracy of the scene meet the need of 3D scene construction.

  18. 3D Printed Shelby Cobra

    ScienceCinema

    Love, Lonnie

    2016-11-02

    ORNL's newly printed 3D Shelby Cobra was showcased at the 2015 NAIAS in Detroit. This "laboratory on wheels" uses the Shelby Cobra design, celebrating the 50th anniversary of this model and honoring the first vehicle to be voted a national monument. The Shelby was printed at the Department of Energy’s Manufacturing Demonstration Facility at ORNL using the BAAM (Big Area Additive Manufacturing) machine and is intended as a “plug-n-play” laboratory on wheels. The Shelby will allow research and development of integrated components to be tested and enhanced in real time, improving the use of sustainable, digital manufacturing solutions in the automotive industry.

  19. 3D Printable Graphene Composite

    PubMed Central

    Wei, Xiaojun; Li, Dong; Jiang, Wei; Gu, Zheming; Wang, Xiaojuan; Zhang, Zengxing; Sun, Zhengzong

    2015-01-01

    In human being’s history, both the Iron Age and Silicon Age thrived after a matured massive processing technology was developed. Graphene is the most recent superior material which could potentially initialize another new material Age. However, while being exploited to its full extent, conventional processing methods fail to provide a link to today’s personalization tide. New technology should be ushered in. Three-dimensional (3D) printing fills the missing linkage between graphene materials and the digital mainstream. Their alliance could generate additional stream to push the graphene revolution into a new phase. Here we demonstrate for the first time, a graphene composite, with a graphene loading up to 5.6 wt%, can be 3D printable into computer-designed models. The composite’s linear thermal coefficient is below 75 ppm·°C−1 from room temperature to its glass transition temperature (Tg), which is crucial to build minute thermal stress during the printing process. PMID:26153673

  20. Reconstruction of 3D angiography data using the algebraic reconstruction technique (ART)

    NASA Astrophysics Data System (ADS)

    Hampton, Carnell J.; Hemler, Paul F.

    2001-07-01

    Three-dimensional angiographic reconstrcution has emerged as an alternative to the traditional depiction of aneurysm angioarchitecture provided by 2-D perspective projections acquired by digital subtraction angiography (DSA) and fluoroscopy. One clinical application of research involving 3-D angiographic reconstruction is intraoperative localization and visualization during aneurysm embolization procedures. For this procedure, reconstruction quality is important for the 3-D reconstruction of anatomy as well as for the reconstrucution of intraaneurysm coils imaged endovascularly and subsequently rendered within an existing 3-D anatomic representation. Rotational angiography involves the acquisition of a series of 2-D, cone-beam projections of intracranial anatomy by a rotating x-ray gantry following a single injection of contrast media. Our investigation focuses on the practicality of using methods that employ algebraic reconstruction techniques (ART) to reconstruct 3-D data from 2-D cone-beam projections acquired using rotational angiography during embolization procedures. Important to our investigation are issues that arise within the implementation of the projection, correction and backprojection steps of the reconstruction algorithm that affect reconstruction quality. Several methods are discussed to perform accurate voxel grid projection and backprojection. Various parameters of the reconstruction algorithm implementation are also investigated. Preliminary results indicating that quality 3-D reconstructions from 2-D projections of synthetic volumes are presented. Further modifications to our implementation hold the promise of achieving accurate reconstruction results with a lower computation cost than the algorithm implemention used for this study. We have concluded that methods to extend the traditional ART algorithm for cone-beam projection acquisition produce quality 3-D reconstructions.

  1. Suppression subtractive hybridization.

    PubMed

    Ghorbel, Mohamed T; Murphy, David

    2011-01-01

    Comparing two RNA populations that differ from the effects of a single independent variable, such as a drug treatment or a specific genetic defect, can establish differences in the abundance of specific transcripts that vary in a population dependent manner. There are different methods for identifying differentially expressed genes. These methods include microarray, Serial Analysis of Gene Expression (SAGE), and quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-PCR). Herein, the protocol describes an easy and cost-effective alternative that does not require prior knowledge of the transcriptomes under examination. It is specifically relevant when low levels of RNA starting material are available. This protocol describes the use of Switching Mechanism At RNA Termini Polymerase Chain Reaction (SMART-PCR) to amplify cDNA from small amounts of RNA. The amplified cDNA populations under comparison are then subjected to Suppression Subtractive Hybridization (SSH-PCR). SSH-PCR is a technique that couples subtractive hybridization with suppression PCR to selectively amplify fragments of differentially expressed genes. The resulting products are cDNA populations enriched for significantly overrepresented transcripts in either of the two input RNAs. These cDNA populations can then be cloned to generate subtracted cDNA library. Microarrays made with clones from the subtracted forward and reverse cDNA libraries are then screened for differentially expressed genes using targets generated from tester and driver total RNAs.

  2. Subtraction at NNLO

    NASA Astrophysics Data System (ADS)

    Frixione, Stefano; Grazzini, Massimiliano

    2005-06-01

    We propose a framework for the implementation of a subtraction formalism at NNLO in QCD, based on an observable- and process-independent cancellation of infrared singularities. As a first simple application, we present the calculation of the contribution to the e+e- dijet cross section proportional to CFTR.

  3. The use of open data from social media for the creation of 3D georeferenced modeling

    NASA Astrophysics Data System (ADS)

    Themistocleous, Kyriacos

    2016-08-01

    There is a great deal of open source video on the internet that is posted by users on social media sites. With the release of low-cost unmanned aerial vehicles, many hobbyists are uploading videos from different locations, especially in remote areas. Using open source data that is available on the internet, this study utilized structure to motion (SfM) as a range imaging technique to estimate 3 dimensional landscape features from 2 dimensional image sequences subtracted from video, applied image distortion correction and geo-referencing. This type of documentation may be necessary for cultural heritage sites that are inaccessible or documentation is difficult, where we can access video from Unmanned Aerial Vehicles (UAV). These 3D models can be viewed using Google Earth, create orthoimage, drawings and create digital terrain modeling for cultural heritage and archaeological purposes in remote or inaccessible areas.

  4. Twin Peaks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The two hills in the distance, approximately one to two kilometers away, have been dubbed the 'Twin Peaks' and are of great interest to Pathfinder scientists as objects of future study. 3D glasses are necessary to identify surface detail. The white areas on the left hill, called the 'Ski Run' by scientists, may have been formed by hydrologic processes.

    The IMP is a stereo imaging system with color capability provided by 24 selectable filters -- twelve filters per 'eye.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  5. 3D and beyond

    NASA Astrophysics Data System (ADS)

    Fung, Y. C.

    1995-05-01

    This conference on physiology and function covers a wide range of subjects, including the vasculature and blood flow, the flow of gas, water, and blood in the lung, the neurological structure and function, the modeling, and the motion and mechanics of organs. Many technologies are discussed. I believe that the list would include a robotic photographer, to hold the optical equipment in a precisely controlled way to obtain the images for the user. Why are 3D images needed? They are to achieve certain objectives through measurements of some objects. For example, in order to improve performance in sports or beauty of a person, we measure the form, dimensions, appearance, and movements.

  6. Medical 3D Printing for the Radiologist.

    PubMed

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A; Cai, Tianrun; Kumamaru, Kanako K; George, Elizabeth; Wake, Nicole; Caterson, Edward J; Pomahac, Bohdan; Ho, Vincent B; Grant, Gerald T; Rybicki, Frank J

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article.

  7. Medical 3D Printing for the Radiologist

    PubMed Central

    Mitsouras, Dimitris; Liacouras, Peter; Imanzadeh, Amir; Giannopoulos, Andreas A.; Cai, Tianrun; Kumamaru, Kanako K.; George, Elizabeth; Wake, Nicole; Caterson, Edward J.; Pomahac, Bohdan; Ho, Vincent B.; Grant, Gerald T.

    2015-01-01

    While use of advanced visualization in radiology is instrumental in diagnosis and communication with referring clinicians, there is an unmet need to render Digital Imaging and Communications in Medicine (DICOM) images as three-dimensional (3D) printed models capable of providing both tactile feedback and tangible depth information about anatomic and pathologic states. Three-dimensional printed models, already entrenched in the nonmedical sciences, are rapidly being embraced in medicine as well as in the lay community. Incorporating 3D printing from images generated and interpreted by radiologists presents particular challenges, including training, materials and equipment, and guidelines. The overall costs of a 3D printing laboratory must be balanced by the clinical benefits. It is expected that the number of 3D-printed models generated from DICOM images for planning interventions and fabricating implants will grow exponentially. Radiologists should at a minimum be familiar with 3D printing as it relates to their field, including types of 3D printing technologies and materials used to create 3D-printed anatomic models, published applications of models to date, and clinical benefits in radiology. Online supplemental material is available for this article. ©RSNA, 2015 PMID:26562233

  8. Liquid-Crystal-Television Image Subtracters

    NASA Technical Reports Server (NTRS)

    Chao, Tien-Hsin; Liu, Hua-Kuang

    1988-01-01

    Two image-subtraction systems from output images that show differences between input images of two objects. First: differences appear as bright regions in otherwise dark output image. Second: differences and similarities shown by colors. All parts of two images processed simultaneously by optical components only; digital electronic processing of data not required. Concept offers potential for rapid, inexpensive comparison of images in such applications as automatic inspection, medical diagnosis, and robotic vision.

  9. Visualization and quantitation of coronary arteries using multiple-view energy subtraction digital radiography. Interim report 30 September 1983-29 September 1984

    SciTech Connect

    Macovski, A.

    1984-08-27

    The authors have studied a general approach to the imaging of coronary arteries using minimally invasive intravenous administration of contrast material. Using conventional DSA techniques this visualization would fail due to motion, low SNR, and intervening iodinated structures. The authors have implemented the digital fluoroscopy system with a rotating gantry and tested it on phantoms. Evaluation of stenosis in coronary arteries is difficult with low SNR images. The authors have studied and implemented a vessel outlining system using a global estimation procedure. The most recent approach has significantly improved computational efficiency. The processing of multiple-energy data to eliminate the moving soft tissue results in a noise penalty. The authors have studied and implemented an approach to restore the original SNR by deriving the high frequency components from a non-selective image. The authors have also implemented a scatter-cancellation system for minimizing this source of error.

  10. 3D Surgical Simulation

    PubMed Central

    Cevidanes, Lucia; Tucker, Scott; Styner, Martin; Kim, Hyungmin; Chapuis, Jonas; Reyes, Mauricio; Proffit, William; Turvey, Timothy; Jaskolka, Michael

    2009-01-01

    This paper discusses the development of methods for computer-aided jaw surgery. Computer-aided jaw surgery allows us to incorporate the high level of precision necessary for transferring virtual plans into the operating room. We also present a complete computer-aided surgery (CAS) system developed in close collaboration with surgeons. Surgery planning and simulation include construction of 3D surface models from Cone-beam CT (CBCT), dynamic cephalometry, semi-automatic mirroring, interactive cutting of bone and bony segment repositioning. A virtual setup can be used to manufacture positioning splints for intra-operative guidance. The system provides further intra-operative assistance with the help of a computer display showing jaw positions and 3D positioning guides updated in real-time during the surgical procedure. The CAS system aids in dealing with complex cases with benefits for the patient, with surgical practice, and for orthodontic finishing. Advanced software tools for diagnosis and treatment planning allow preparation of detailed operative plans, osteotomy repositioning, bone reconstructions, surgical resident training and assessing the difficulties of the surgical procedures prior to the surgery. CAS has the potential to make the elaboration of the surgical plan a more flexible process, increase the level of detail and accuracy of the plan, yield higher operative precision and control, and enhance documentation of cases. Supported by NIDCR DE017727, and DE018962 PMID:20816308

  11. Martian terrain - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    An area of rocky terrain near the landing site of the Sagan Memorial Station can be seen in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. This image is part of a 3D 'monster' panorama of the area surrounding the landing site.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  12. Additive and subtractive transparent depth displays

    NASA Astrophysics Data System (ADS)

    Kooi, Frank L.; Toet, Alexander

    2003-09-01

    Image fusion is the generally preferred method to combine two or more images for visual display on a single screen. We demonstrate that perceptual image separation may be preferable over perceptual image fusion for the combined display of enhanced and synthetic imagery. In this context image separation refers to the simultaneous presentation of images on different depth planes of a single display. Image separation allows the user to recognize the source of the information that is displayed. This can be important because synthetic images are more liable to flaws. We have examined methods to optimize perceptual image separation. A true depth difference between enhanced and synthetic imagery works quite well. A standard stereoscopic display based on convergence is less suitable since the two images tend to interfere: the image behind is masked (occluded) by the image in front, which results in poor viewing comfort. This effect places 3D systems based on 3D glasses, as well as most autostereoscopic displays, at a serious disadvantage. A 3D display based on additive or subtractive transparency is acceptable: both the perceptual separation and the viewing comfort are good, but the color of objects depends on the color in the other depth layer(s). A combined additive and subtractive transparent display eliminates this disadvantage and is most suitable for the combined display of enhanced and synthetic imagery. We suggest that the development of such a display system is of a greater practical value than increasing the number of depth planes in autostereoscopic displays.

  13. Generation of orientation tools for automated zebrafish screening assays using desktop 3D printing

    PubMed Central

    2014-01-01

    Background The zebrafish has been established as the main vertebrate model system for whole organism screening applications. However, the lack of consistent positioning of zebrafish embryos within wells of microtiter plates remains an obstacle for the comparative analysis of images acquired in automated screening assays. While technical solutions to the orientation problem exist, dissemination is often hindered by the lack of simple and inexpensive ways of distributing and duplicating tools. Results Here, we provide a cost effective method for the production of 96-well plate compatible zebrafish orientation tools using a desktop 3D printer. The printed tools enable the positioning and orientation of zebrafish embryos within cavities formed in agarose. Their applicability is demonstrated by acquiring lateral and dorsal views of zebrafish embryos arrayed within microtiter plates using an automated screening microscope. This enables the consistent visualization of morphological phenotypes and reporter gene expression patterns. Conclusions The designs are refined versions of previously demonstrated devices with added functionality and strongly reduced production costs. All corresponding 3D models are freely available and digital design can be easily shared electronically. In combination with the increasingly widespread usage of 3D printers, this provides access to the developed tools to a wide range of zebrafish users. Finally, the design files can serve as templates for other additive and subtractive fabrication methods. PMID:24886511

  14. 3D field harmonics

    SciTech Connect

    Caspi, S.; Helm, M.; Laslett, L.J.

    1991-03-30

    We have developed an harmonic representation for the three dimensional field components within the windings of accelerator magnets. The form by which the field is presented is suitable for interfacing with other codes that make use of the 3D field components (particle tracking and stability). The field components can be calculated with high precision and reduced cup time at any location (r,{theta},z) inside the magnet bore. The same conductor geometry which is used to simulate line currents is also used in CAD with modifications more readily available. It is our hope that the format used here for magnetic fields can be used not only as a means of delivering fields but also as a way by which beam dynamics can suggest correction to the conductor geometry. 5 refs., 70 figs.

  15. The dimension added by 3D scanning and 3D printing of meteorites

    NASA Astrophysics Data System (ADS)

    de Vet, S. J.

    2016-01-01

    An overview for the 3D photodocumentation of meteorites is presented, focussing on two 3D scanning methods in relation to 3D printing. The 3D photodocumention of meteorites provides new ways for the digital preservation of culturally, historically or scientifically unique meteorites. It has the potential for becoming a new documentation standard of meteorites that can exist complementary to traditional photographic documentation. Notable applications include (i.) use of physical properties in dark flight-, strewn field-, or aerodynamic modelling; (ii.) collection research of meteorites curated by different museum collections, and (iii.) public dissemination of meteorite models as a resource for educational users. The possible applications provided by the additional dimension of 3D illustrate the benefits for the meteoritics community.

  16. Technical innovation: Multidimensional computerized software enabled subtraction computed tomographic angiography.

    PubMed

    Bhatia, Mona; Rosset, Antoine; Platon, Alexandra; Didier, Dominique; Becker, Christoph D; Poletti, Pierre-Alexandre

    2010-01-01

    Computed tomographic angiography (CTA) is a frequent noninvasive alternative to digital subtraction angiography. We previously reported the development of a new subtraction software to overcome limitations of adjacent bone and calcification in CT angiographic subtraction. Our aim was to further develop and improve this fast and automated computerized software, universally available for free use and compatible with most CT scanners, thus enabling better delineation of vascular structures, artifact reduction, and shorter reading times with potential clinical benefits. This computer-based free software will be available as an open source in the next release of OsiriX at the Web site http://www.osirix-viewer.com.

  17. Assessing 3d Photogrammetry Techniques in Craniometrics

    NASA Astrophysics Data System (ADS)

    Moshobane, M. C.; de Bruyn, P. J. N.; Bester, M. N.

    2016-06-01

    Morphometrics (the measurement of morphological features) has been revolutionized by the creation of new techniques to study how organismal shape co-varies with several factors such as ecophenotypy. Ecophenotypy refers to the divergence of phenotypes due to developmental changes induced by local environmental conditions, producing distinct ecophenotypes. None of the techniques hitherto utilized could explicitly address organismal shape in a complete biological form, i.e. three-dimensionally. This study investigates the use of the commercial software, Photomodeler Scanner® (PMSc®) three-dimensional (3D) modelling software to produce accurate and high-resolution 3D models. Henceforth, the modelling of Subantarctic fur seal (Arctocephalus tropicalis) and Antarctic fur seal (Arctocephalus gazella) skulls which could allow for 3D measurements. Using this method, sixteen accurate 3D skull models were produced and five metrics were determined. The 3D linear measurements were compared to measurements taken manually with a digital caliper. In addition, repetitive measurements were recorded by varying researchers to determine repeatability. To allow for comparison straight line measurements were taken with the software, assuming that close accord with all manually measured features would illustrate the model's accurate replication of reality. Measurements were not significantly different demonstrating that realistic 3D skull models can be successfully produced to provide a consistent basis for craniometrics, with the additional benefit of allowing non-linear measurements if required.

  18. Intraoral 3D scanner

    NASA Astrophysics Data System (ADS)

    Kühmstedt, Peter; Bräuer-Burchardt, Christian; Munkelt, Christoph; Heinze, Matthias; Palme, Martin; Schmidt, Ingo; Hintersehr, Josef; Notni, Gunther

    2007-09-01

    Here a new set-up of a 3D-scanning system for CAD/CAM in dental industry is proposed. The system is designed for direct scanning of the dental preparations within the mouth. The measuring process is based on phase correlation technique in combination with fast fringe projection in a stereo arrangement. The novelty in the approach is characterized by the following features: A phase correlation between the phase values of the images of two cameras is used for the co-ordinate calculation. This works contrary to the usage of only phase values (phasogrammetry) or classical triangulation (phase values and camera image co-ordinate values) for the determination of the co-ordinates. The main advantage of the method is that the absolute value of the phase at each point does not directly determine the coordinate. Thus errors in the determination of the co-ordinates are prevented. Furthermore, using the epipolar geometry of the stereo-like arrangement the phase unwrapping problem of fringe analysis can be solved. The endoscope like measurement system contains one projection and two camera channels for illumination and observation of the object, respectively. The new system has a measurement field of nearly 25mm × 15mm. The user can measure two or three teeth at one time. So the system can by used for scanning of single tooth up to bridges preparations. In the paper the first realization of the intraoral scanner is described.

  19. 'Diamond' in 3-D

    NASA Technical Reports Server (NTRS)

    2004-01-01

    This 3-D, microscopic imager mosaic of a target area on a rock called 'Diamond Jenness' was taken after NASA's Mars Exploration Rover Opportunity ground into the surface with its rock abrasion tool for a second time.

    Opportunity has bored nearly a dozen holes into the inner walls of 'Endurance Crater.' On sols 177 and 178 (July 23 and July 24, 2004), the rover worked double-duty on Diamond Jenness. Surface debris and the bumpy shape of the rock resulted in a shallow and irregular hole, only about 2 millimeters (0.08 inch) deep. The final depth was not enough to remove all the bumps and leave a neat hole with a smooth floor. This extremely shallow depression was then examined by the rover's alpha particle X-ray spectrometer.

    On Sol 178, Opportunity's 'robotic rodent' dined on Diamond Jenness once again, grinding almost an additional 5 millimeters (about 0.2 inch). The rover then applied its Moessbauer spectrometer to the deepened hole. This double dose of Diamond Jenness enabled the science team to examine the rock at varying layers. Results from those grindings are currently being analyzed.

    The image mosaic is about 6 centimeters (2.4 inches) across.

  20. Prominent rocks - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Many prominent rocks near the Sagan Memorial Station are featured in this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. Wedge is at lower left; Shark, Half-Dome, and Pumpkin are at center. Flat Top, about four inches high, is at lower right. The horizon in the distance is one to two kilometers away.

    Mars Pathfinder is the second in NASA's Discovery program of low-cost spacecraft with highly focused science goals. The Jet Propulsion Laboratory, Pasadena, CA, developed and manages the Mars Pathfinder mission for NASA's Office of Space Science, Washington, D.C. JPL is an operating division of the California Institute of Technology (Caltech). The Imager for Mars Pathfinder (IMP) was developed by the University of Arizona Lunar and Planetary Laboratory under contract to JPL. Peter Smith is the Principal Investigator.

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  1. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform.

    PubMed

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-03-30

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques.

  2. Background Subtraction Based on Three-Dimensional Discrete Wavelet Transform

    PubMed Central

    Han, Guang; Wang, Jinkuan; Cai, Xi

    2016-01-01

    Background subtraction without a separate training phase has become a critical task, because a sufficiently long and clean training sequence is usually unavailable, and people generally thirst for immediate detection results from the first frame of a video. Without a training phase, we propose a background subtraction method based on three-dimensional (3D) discrete wavelet transform (DWT). Static backgrounds with few variations along the time axis are characterized by intensity temporal consistency in the 3D space-time domain and, hence, correspond to low-frequency components in the 3D frequency domain. Enlightened by this, we eliminate low-frequency components that correspond to static backgrounds using the 3D DWT in order to extract moving objects. Owing to the multiscale analysis property of the 3D DWT, the elimination of low-frequency components in sub-bands of the 3D DWT is equivalent to performing a pyramidal 3D filter. This 3D filter brings advantages to our method in reserving the inner parts of detected objects and reducing the ringing around object boundaries. Moreover, we make use of wavelet shrinkage to remove disturbance of intensity temporal consistency and introduce an adaptive threshold based on the entropy of the histogram to obtain optimal detection results. Experimental results show that our method works effectively in situations lacking training opportunities and outperforms several popular techniques. PMID:27043570

  3. 3D integral imaging with optical processing

    NASA Astrophysics Data System (ADS)

    Martínez-Corral, Manuel; Martínez-Cuenca, Raúl; Saavedra, Genaro; Javidi, Bahram

    2008-04-01

    Integral imaging (InI) systems are imaging devices that provide auto-stereoscopic images of 3D intensity objects. Since the birth of this new technology, InI systems have faced satisfactorily many of their initial drawbacks. Basically, two kind of procedures have been used: digital and optical procedures. The "3D Imaging and Display Group" at the University of Valencia, with the essential collaboration of Prof. Javidi, has centered its efforts in the 3D InI with optical processing. Among other achievements, our Group has proposed the annular amplitude modulation for enlargement of the depth of field, dynamic focusing for reduction of the facet-braiding effect, or the TRES and MATRES devices to enlarge the viewing angle.

  4. Comparison of intra-arterial digital subtraction angiography using carbon dioxide by 'home made' delivery system and conventional iodinated contrast media in the evaluation of peripheral arterial occlusive disease of the lower limbs.

    PubMed

    Madhusudhan, K S; Sharma, S; Srivastava, D N; Thulkar, S; Mehta, S N; Prasad, G; Seenu, V; Agarwal, S

    2009-02-01

    To prospectively compare the feasibility, safety and diagnostic role of carbon dioxide (CO(2)) digital subtraction angiography (DSA) using a 'home made' delivery system with iodinated contrast medium (ICM) DSA in the evaluation of peripheral arterial occlusive diseases (PAOD) of lower limbs. Twenty-one patients (27 limbs; all men; mean age, 47.6 years) who presented with PAOD of lower limbs underwent DSA using both intra-arterial CO(2) and ICM. Conventional ICM DSA was performed first and used as gold standard. Carbon dioxide was then injected by hand using a locally improvised home made plastic bag delivery system. Patient tolerance was assessed subjectively. Arteries from aortic bifurcation to the ankle were independently evaluated by two radiologists and graded for stenosis using a five-point scale. For each patient, the quality of CO(2) DSA images were compared with the corresponding images of ICM DSA and an overall grade of 'good', 'acceptable' or 'poor' was assigned. Cohen's kappa coefficient was used to determine inter-observer agreement. Carbon dioxide opacified 86.2% (188/195) of major arteries and depicted stenosis adequately in 84.5% (191/226) of arterial segments. A good or acceptable image quality of CO(2) DSA was obtained in over 95% of patients. Infrapopliteal arteries were inadequately visualized. Mild pain was seen in six (28.6%) patients with both contrast agents; one patient developed severe pain during CO(2) DSA. Inter-observer agreement was good (k > 0.75) at 70% of the segments. Administration of CO(2) into lower limb arteries is well tolerated. Carbon dioxide DSA using the locally improvised home made delivery system is a feasible and safe alternative to ICM DSA in the evaluation of PAOD. It provides adequate imaging of arteries of lower extremities except infrapopliteal segments.

  5. Subtractive Structural Modification of Morpho Butterfly Wings.

    PubMed

    Shen, Qingchen; He, Jiaqing; Ni, Mengtian; Song, Chengyi; Zhou, Lingye; Hu, Hang; Zhang, Ruoxi; Luo, Zhen; Wang, Ge; Tao, Peng; Deng, Tao; Shang, Wen

    2015-11-11

    Different from studies of butterfly wings through additive modification, this work for the first time studies the property change of butterfly wings through subtractive modification using oxygen plasma etching. The controlled modification of butterfly wings through such subtractive process results in gradual change of the optical properties, and helps the further understanding of structural optimization through natural evolution. The brilliant color of Morpho butterfly wings is originated from the hierarchical nanostructure on the wing scales. Such nanoarchitecture has attracted a lot of research effort, including the study of its optical properties, its potential use in sensing and infrared imaging, and also the use of such structure as template for the fabrication of high-performance photocatalytic materials. The controlled subtractive processes provide a new path to modify such nanoarchitecture and its optical property. Distinct from previous studies on the optical property of the Morpho wing structure, this study provides additional experimental evidence for the origination of the optical property of the natural butterfly wing scales. The study also offers a facile approach to generate new 3D nanostructures using butterfly wings as the templates and may lead to simpler structure models for large-scale man-made structures than those offered by original butterfly wings.

  6. Full-color holographic 3D printer

    NASA Astrophysics Data System (ADS)

    Takano, Masami; Shigeta, Hiroaki; Nishihara, Takashi; Yamaguchi, Masahiro; Takahashi, Susumu; Ohyama, Nagaaki; Kobayashi, Akihiko; Iwata, Fujio

    2003-05-01

    A holographic 3D printer is a system that produces a direct hologram with full-parallax information using the 3-dimensional data of a subject from a computer. In this paper, we present a proposal for the reproduction of full-color images with the holographic 3D printer. In order to realize the 3-dimensional color image, we selected the 3 laser wavelength colors of red (λ=633nm), green (λ=533nm), and blue (λ=442nm), and we built a one-step optical system using a projection system and a liquid crystal display. The 3-dimensional color image is obtained by synthesizing in a 2D array the multiple exposure with these 3 wavelengths made on each 250mm elementary hologram, and moving recording medium on a x-y stage. For the natural color reproduction in the holographic 3D printer, we take the approach of the digital processing technique based on the color management technology. The matching between the input and output colors is performed by investigating first, the relation between the gray level transmittance of the LCD and the diffraction efficiency of the hologram and second, by measuring the color displayed by the hologram to establish a correlation. In our first experimental results a non-linear functional relation for single and multiple exposure of the three components were found. These results are the first step in the realization of a natural color 3D image produced by the holographic color 3D printer.

  7. Laser 3D micro-manufacturing

    NASA Astrophysics Data System (ADS)

    Piqué, Alberto; Auyeung, Raymond C. Y.; Kim, Heungsoo; Charipar, Nicholas A.; Mathews, Scott A.

    2016-06-01

    Laser-based materials processing techniques are gaining widespread use in micro-manufacturing applications. The use of laser microfabrication techniques enables the processing of micro- and nanostructures from a wide range of materials and geometries without the need for masking and etching steps commonly associated with photolithography. This review aims to describe the broad applications space covered by laser-based micro- and nanoprocessing techniques and the benefits offered by the use of lasers in micro-manufacturing processes. Given their non-lithographic nature, these processes are also referred to as laser direct-write and constitute some of the earliest demonstrations of 3D printing or additive manufacturing at the microscale. As this review will show, the use of lasers enables precise control of the various types of processing steps—from subtractive to additive—over a wide range of scales with an extensive materials palette. Overall, laser-based direct-write techniques offer multiple modes of operation including the removal (via ablative processes) and addition (via photopolymerization or printing) of most classes of materials using the same equipment in many cases. The versatility provided by these multi-function, multi-material and multi-scale laser micro-manufacturing processes cannot be matched by photolithography nor with other direct-write microfabrication techniques and offer unique opportunities for current and future 3D micro-manufacturing applications.

  8. 3D Model of Surfactant Replacement Therapy

    NASA Astrophysics Data System (ADS)

    Grotberg, James; Tai, Cheng-Feng; Filoche, Marcel

    2015-11-01

    Surfactant Replacement Therapy (SRT) involves instillation of a liquid-surfactant mixture directly into the lung airway tree. Though successful in neonatal applications, its use in adults had early success followed by failure. We present the first mathematical model of 3D SRT where a liquid plug propagates through the tree from forced inspiration. In two separate modeling steps, the plug first deposits a coating film on the airway wall which subtracts from its volume, a ``coating cost''. Then the plug splits unevenly at the airway bifurcation due to gravity. The steps are repeated until a plug ruptures or reaches the tree endpoint alveoli/acinus. The model generates 3D images of the resulting acinar distribution and calculates two global indexes, efficiency and homogeneity. Simulating published literature, the earlier successful adult SRT studies show comparatively good index values, while the later failed studies do not. Those unsuccessful studies used smaller dose volumes with higher concentration mixtures, apparently assuming a well mixed compartment. The model shows that adult lungs are not well mixed in SRT due to the coating cost and gravity effects. Returning to the higher dose volume protocols could save many thousands of lives annually in the US. Supported by NIH Grants HL85156, HL84370 and Agence Nationale de la Recherche, ANR no. 2010-BLAN-1119-05.

  9. SU-E-J-231: Comparison of 3D Angiogram and MRI in Delineating the AVM Target for Frameless Stereotactic Radiosurgery

    SciTech Connect

    Avkshtol, V; Tanny, S; Reddy, K; Chen, C; Parsai, E

    2014-06-01

    Purpose: Stereotactic radiation therapy (SRT) provides an excellent alternative to embolization and surgical excision for the management of appropriately selected cerebral arteriovenous malformations (AVMs). The currently accepted standard for delineating AVMs is planar digital subtraction angiography (DSA). DSA can be used to acquire a 3D data set that preserves osseous structures (3D-DA) at the time of the angiography for SRT planning. Magnetic resonance imaging (MRI) provides an alternative noninvasive method of visualizing the AVM nidus with comparable spatial resolution. We utilized 3D-DA and T1 post-contrast MRI data to evaluate the differences in SRT target volumes. Methods: Four patients underwent 3D-DA and high-resolution MRI. 3D T1 post-contrast images were obtained in all three reconstruction planes. A planning CT was fused with MRI and 3D-DA data sets. The AVMs were contoured utilizing one of the image sets at a time. Target volume, centroid, and maximum and minimum dimensions were analyzed for each patient. Results: Targets delineated using post-contrast MRI demonstrated a larger mean volume. AVMs >2 cc were found to have a larger difference between MRI and 3D-DA volumes. Larger AVMs also demonstrated a smaller relative uncertainty in contour centroid position (1 mm). AVM targets <2 cc had smaller absolute differences in volume, but larger differences in contour centroid position (2.5 mm). MRI targets demonstrated a more irregular shape compared to 3D-DA targets. Conclusions: Our preliminary data supports the use of MRI alone to delineate AVM targets >2 cc. The greater centroid stability for AVMs >2 cc ensures accurate target localization during image fusion. The larger MRI target volumes did not result in prohibitively greater volumes of normal brain tissue receiving the prescription dose. The larger centroid instability for AVMs <2 cc precludes the use of MRI alone for target delineation. We recommend incorporating a 3D-DA for these patients.

  10. Pulse subtraction Doppler

    NASA Astrophysics Data System (ADS)

    Mahue, Veronique; Mari, Jean Martial; Eckersley, Robert J.; Caro, Colin G.; Tang, Meng-Xing

    2010-01-01

    Recent advances have demonstrated the feasibility of molecular imaging using targeted microbubbles and ultrasound. One technical challenge is to selectively detect attached bubbles from those freely flowing bubbles and surrounding tissue. Pulse Inversion Doppler is an imaging technique enabling the selective detection of both static and moving ultrasound contrast agents: linear scatterers generate a single band Doppler spectrum, while non-linear scatterers generate a double band spectrum, one being uniquely correlated with the presence of contrast agents and non-linear tissue signals. We demonstrate that similar spectrums, and thus the same discrimination, can be obtained through a Doppler implementation of Pulse Subtraction. This is achieved by reconstructing a virtual echo using the echo generated from a short pulse transmission. Moreover by subtracting from this virtual echo the one generated from a longer pulse transmission, it is possible to fully suppress the echo from linear scatterers, while for non-linear scatterers, a signal will remain, allowing classical agent detection. Simulations of a single moving microbubble and a moving linear scatterer subject to these pulses show that when the virtual echo and the long pulse echo are used to perform pulsed Doppler, the power Doppler spectrum allows separation of linear and non-linear moving scattering. Similar results are obtained on experimental data acquired on a flow containing either microbubble contrast agents or linear blood mimicking fluid. This new Doppler method constitutes an alternative to Pulse Inversion Doppler and preliminary results suggest that similar dual band spectrums could be obtained by the combination of any non-linear detection technique with Doppler demodulation.

  11. 3D Printed Molecules and Extended Solid Models for Teaching Symmetry and Point Groups

    ERIC Educational Resources Information Center

    Scalfani, Vincent F.; Vaid, Thomas P.

    2014-01-01

    Tangible models help students and researchers visualize chemical structures in three dimensions (3D). 3D printing offers a unique and straightforward approach to fabricate plastic 3D models of molecules and extended solids. In this article, we prepared a series of digital 3D design files of molecular structures that will be useful for teaching…

  12. 3D Spectroscopy in Astronomy

    NASA Astrophysics Data System (ADS)

    Mediavilla, Evencio; Arribas, Santiago; Roth, Martin; Cepa-Nogué, Jordi; Sánchez, Francisco

    2011-09-01

    Preface; Acknowledgements; 1. Introductory review and technical approaches Martin M. Roth; 2. Observational procedures and data reduction James E. H. Turner; 3. 3D Spectroscopy instrumentation M. A. Bershady; 4. Analysis of 3D data Pierre Ferruit; 5. Science motivation for IFS and galactic studies F. Eisenhauer; 6. Extragalactic studies and future IFS science Luis Colina; 7. Tutorials: how to handle 3D spectroscopy data Sebastian F. Sánchez, Begona García-Lorenzo and Arlette Pécontal-Rousset.

  13. Spherical 3D isotropic wavelets

    NASA Astrophysics Data System (ADS)

    Lanusse, F.; Rassat, A.; Starck, J.-L.

    2012-04-01

    Context. Future cosmological surveys will provide 3D large scale structure maps with large sky coverage, for which a 3D spherical Fourier-Bessel (SFB) analysis in spherical coordinates is natural. Wavelets are particularly well-suited to the analysis and denoising of cosmological data, but a spherical 3D isotropic wavelet transform does not currently exist to analyse spherical 3D data. Aims: The aim of this paper is to present a new formalism for a spherical 3D isotropic wavelet, i.e. one based on the SFB decomposition of a 3D field and accompany the formalism with a public code to perform wavelet transforms. Methods: We describe a new 3D isotropic spherical wavelet decomposition based on the undecimated wavelet transform (UWT) described in Starck et al. (2006). We also present a new fast discrete spherical Fourier-Bessel transform (DSFBT) based on both a discrete Bessel transform and the HEALPIX angular pixelisation scheme. We test the 3D wavelet transform and as a toy-application, apply a denoising algorithm in wavelet space to the Virgo large box cosmological simulations and find we can successfully remove noise without much loss to the large scale structure. Results: We have described a new spherical 3D isotropic wavelet transform, ideally suited to analyse and denoise future 3D spherical cosmological surveys, which uses a novel DSFBT. We illustrate its potential use for denoising using a toy model. All the algorithms presented in this paper are available for download as a public code called MRS3D at http://jstarck.free.fr/mrs3d.html

  14. 3D Elevation Program—Virtual USA in 3D

    USGS Publications Warehouse

    Lukas, Vicki; Stoker, J.M.

    2016-04-14

    The U.S. Geological Survey (USGS) 3D Elevation Program (3DEP) uses a laser system called ‘lidar’ (light detection and ranging) to create a virtual reality map of the Nation that is very accurate. 3D maps have many uses with new uses being discovered all the time.  

  15. CBCT-based 3D MRA and angiographic image fusion and MRA image navigation for neuro interventions

    PubMed Central

    Zhang, Qiang; Zhang, Zhiqiang; Yang, Jiakang; Sun, Qi; Luo, Yongchun; Shan, Tonghui; Zhang, Hao; Han, Jingfeng; Liang, Chunyang; Pan, Wenlong; Gu, Chuanqi; Mao, Gengsheng; Xu, Ruxiang

    2016-01-01

    Abstract Digital subtracted angiography (DSA) remains the gold standard for diagnosis of cerebral vascular diseases and provides intraprocedural guidance. This practice involves extensive usage of x-ray and iodinated contrast medium, which can induce side effects. In this study, we examined the accuracy of 3-dimensional (3D) registration of magnetic resonance angiography (MRA) and DSA imaging for cerebral vessels, and tested the feasibility of using preprocedural MRA for real-time guidance during endovascular procedures. Twenty-three patients with suspected intracranial arterial lesions were enrolled. The contrast medium-enhanced 3D DSA of target vessels were acquired in 19 patients during endovascular procedures, and the images were registered with preprocedural MRA for fusion accuracy evaluation. Low-dose noncontrasted 3D angiography of the skull was performed in the other 4 patients, and registered with the MRA. The MRA was overlaid afterwards with 2D live fluoroscopy to guide endovascular procedures. The 3D registration of the MRA and angiography demonstrated a high accuracy for vessel lesion visualization in all 19 patients examined. Moreover, MRA of the intracranial vessels, registered to the noncontrasted 3D angiography in the 4 patients, provided real-time 3D roadmap to successfully guide the endovascular procedures. Radiation dose to patients and contrast medium usage were shown to be significantly reduced. Three-dimensional MRA and angiography fusion can accurately generate cerebral vasculature images to guide endovascular procedures. The use of the fusion technology could enhance clinical workflow while minimizing contrast medium usage and radiation dose, and hence lowering procedure risks and increasing treatment safety. PMID:27512846

  16. MAP3D: a media processor approach for high-end 3D graphics

    NASA Astrophysics Data System (ADS)

    Darsa, Lucia; Stadnicki, Steven; Basoglu, Chris

    1999-12-01

    Equator Technologies, Inc. has used a software-first approach to produce several programmable and advanced VLIW processor architectures that have the flexibility to run both traditional systems tasks and an array of media-rich applications. For example, Equator's MAP1000A is the world's fastest single-chip programmable signal and image processor targeted for digital consumer and office automation markets. The Equator MAP3D is a proposal for the architecture of the next generation of the Equator MAP family. The MAP3D is designed to achieve high-end 3D performance and a variety of customizable special effects by combining special graphics features with high performance floating-point and media processor architecture. As a programmable media processor, it offers the advantages of a completely configurable 3D pipeline--allowing developers to experiment with different algorithms and to tailor their pipeline to achieve the highest performance for a particular application. With the support of Equator's advanced C compiler and toolkit, MAP3D programs can be written in a high-level language. This allows the compiler to successfully find and exploit any parallelism in a programmer's code, thus decreasing the time to market of a given applications. The ability to run an operating system makes it possible to run concurrent applications in the MAP3D chip, such as video decoding while executing the 3D pipelines, so that integration of applications is easily achieved--using real-time decoded imagery for texturing 3D objects, for instance. This novel architecture enables an affordable, integrated solution for high performance 3D graphics.

  17. Personalized development of human organs using 3D printing technology.

    PubMed

    Radenkovic, Dina; Solouk, Atefeh; Seifalian, Alexander

    2016-02-01

    3D printing is a technique of fabricating physical models from a 3D volumetric digital image. The image is sliced and printed using a specific material into thin layers, and successive layering of the material produces a 3D model. It has already been used for printing surgical models for preoperative planning and in constructing personalized prostheses for patients. The ultimate goal is to achieve the development of functional human organs and tissues, to overcome limitations of organ transplantation created by the lack of organ donors and life-long immunosuppression. We hypothesized a precision medicine approach to human organ fabrication using 3D printed technology, in which the digital volumetric data would be collected by imaging of a patient, i.e. CT or MRI images followed by mathematical modeling to create a digital 3D image. Then a suitable biocompatible material, with an optimal resolution for cells seeding and maintenance of cell viability during the printing process, would be printed with a compatible printer type and finally implanted into the patient. Life-saving operations with 3D printed implants were already performed in patients. However, several issues need to be addressed before translational application of 3D printing into clinical medicine. These are vascularization, innervation, and financial cost of 3D printing and safety of biomaterials used for the construct.

  18. Whole Number Subtraction -- An Analysis.

    ERIC Educational Resources Information Center

    Gilpin, John B.

    This document is intended as a resource for persons using, designing, or evaluating instructional materials in whole number subtraction. Its purpose is to provide conceptual machinery: (1) for describing/specifying subtraction tests and exercises and (2) for formulating related questions and conjectures. It is mainly a logical analysis subject to…

  19. 3D printing: making things at the library.

    PubMed

    Hoy, Matthew B

    2013-01-01

    3D printers are a new technology that creates physical objects from digital files. Uses for these printers include printing models, parts, and toys. 3D printers are also being developed for medical applications, including printed bone, skin, and even complete organs. Although medical printing lags behind other uses for 3D printing, it has the potential to radically change the practice of medicine over the next decade. Falling costs for hardware have made 3D printers an inexpensive technology that libraries can offer their patrons. Medical librarians will want to be familiar with this technology, as it is sure to have wide-reaching effects on the practice of medicine.

  20. Frames-Based Denoising in 3D Confocal Microscopy Imaging.

    PubMed

    Konstantinidis, Ioannis; Santamaria-Pang, Alberto; Kakadiaris, Ioannis

    2005-01-01

    In this paper, we propose a novel denoising method for 3D confocal microscopy data based on robust edge detection. Our approach relies on the construction of a non-separable frame system in 3D that incorporates the Sobel operator in dual spatial directions. This multidirectional set of digital filters is capable of robustly detecting edge information by ensemble thresholding of the filtered data. We demonstrate the application of our method to both synthetic and real confocal microscopy data by comparing it to denoising methods based on separable 3D wavelets and 3D median filtering, and report very encouraging results.

  1. An efficient and robust 3D mesh compression based on 3D watermarking and wavelet transform

    NASA Astrophysics Data System (ADS)

    Zagrouba, Ezzeddine; Ben Jabra, Saoussen; Didi, Yosra

    2011-06-01

    The compression and watermarking of 3D meshes are very important in many areas of activity including digital cinematography, virtual reality as well as CAD design. However, most studies on 3D watermarking and 3D compression are done independently. To verify a good trade-off between protection and a fast transfer of 3D meshes, this paper proposes a new approach which combines 3D mesh compression with mesh watermarking. This combination is based on a wavelet transformation. In fact, the used compression method is decomposed to two stages: geometric encoding and topologic encoding. The proposed approach consists to insert a signature between these two stages. First, the wavelet transformation is applied to the original mesh to obtain two components: wavelets coefficients and a coarse mesh. Then, the geometric encoding is done on these two components. The obtained coarse mesh will be marked using a robust mesh watermarking scheme. This insertion into coarse mesh allows obtaining high robustness to several attacks. Finally, the topologic encoding is applied to the marked coarse mesh to obtain the compressed mesh. The combination of compression and watermarking permits to detect the presence of signature after a compression of the marked mesh. In plus, it allows transferring protected 3D meshes with the minimum size. The experiments and evaluations show that the proposed approach presents efficient results in terms of compression gain, invisibility and robustness of the signature against of many attacks.

  2. 3D World Building System

    ScienceCinema

    None

    2016-07-12

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  3. 3D World Building System

    SciTech Connect

    2013-10-30

    This video provides an overview of the Sandia National Laboratories developed 3-D World Model Building capability that provides users with an immersive, texture rich 3-D model of their environment in minutes using a laptop and color and depth camera.

  4. LLNL-Earth3D

    SciTech Connect

    2013-10-01

    Earth3D is a computer code designed to allow fast calculation of seismic rays and travel times through a 3D model of the Earth. LLNL is using this for earthquake location and global tomography efforts and such codes are of great interest to the Earth Science community.

  5. Market study: 3-D eyetracker

    NASA Technical Reports Server (NTRS)

    1977-01-01

    A market study of a proposed version of a 3-D eyetracker for initial use at NASA's Ames Research Center was made. The commercialization potential of a simplified, less expensive 3-D eyetracker was ascertained. Primary focus on present and potential users of eyetrackers, as well as present and potential manufacturers has provided an effective means of analyzing the prospects for commercialization.

  6. Euro3D Science Conference

    NASA Astrophysics Data System (ADS)

    Walsh, J. R.

    2004-02-01

    The Euro3D RTN is an EU funded Research Training Network to foster the exploitation of 3D spectroscopy in Europe. 3D spectroscopy is a general term for spectroscopy of an area of the sky and derives its name from its two spatial + one spectral dimensions. There are an increasing number of instruments which use integral field devices to achieve spectroscopy of an area of the sky, either using lens arrays, optical fibres or image slicers, to pack spectra of multiple pixels on the sky (``spaxels'') onto a 2D detector. On account of the large volume of data and the special methods required to reduce and analyse 3D data, there are only a few centres of expertise and these are mostly involved with instrument developments. There is a perceived lack of expertise in 3D spectroscopy spread though the astronomical community and its use in the armoury of the observational astronomer is viewed as being highly specialised. For precisely this reason the Euro3D RTN was proposed to train young researchers in this area and develop user tools to widen the experience with this particular type of data in Europe. The Euro3D RTN is coordinated by Martin M. Roth (Astrophysikalisches Institut Potsdam) and has been running since July 2002. The first Euro3D science conference was held in Cambridge, UK from 22 to 23 May 2003. The main emphasis of the conference was, in keeping with the RTN, to expose the work of the young post-docs who are funded by the RTN. In addition the team members from the eleven European institutes involved in Euro3D also presented instrumental and observational developments. The conference was organized by Andy Bunker and held at the Institute of Astronomy. There were over thirty participants and 26 talks covered the whole range of application of 3D techniques. The science ranged from Galactic planetary nebulae and globular clusters to kinematics of nearby galaxies out to objects at high redshift. Several talks were devoted to reporting recent observations with newly

  7. 3D vision system assessment

    NASA Astrophysics Data System (ADS)

    Pezzaniti, J. Larry; Edmondson, Richard; Vaden, Justin; Hyatt, Bryan; Chenault, David B.; Kingston, David; Geulen, Vanilynmae; Newell, Scott; Pettijohn, Brad

    2009-02-01

    In this paper, we report on the development of a 3D vision system consisting of a flat panel stereoscopic display and auto-converging stereo camera and an assessment of the system's use for robotic driving, manipulation, and surveillance operations. The 3D vision system was integrated onto a Talon Robot and Operator Control Unit (OCU) such that direct comparisons of the performance of a number of test subjects using 2D and 3D vision systems were possible. A number of representative scenarios were developed to determine which tasks benefited most from the added depth perception and to understand when the 3D vision system hindered understanding of the scene. Two tests were conducted at Fort Leonard Wood, MO with noncommissioned officers ranked Staff Sergeant and Sergeant First Class. The scenarios; the test planning, approach and protocols; the data analysis; and the resulting performance assessment of the 3D vision system are reported.

  8. 3D printing in dentistry.

    PubMed

    Dawood, A; Marti Marti, B; Sauret-Jackson, V; Darwood, A

    2015-12-01

    3D printing has been hailed as a disruptive technology which will change manufacturing. Used in aerospace, defence, art and design, 3D printing is becoming a subject of great interest in surgery. The technology has a particular resonance with dentistry, and with advances in 3D imaging and modelling technologies such as cone beam computed tomography and intraoral scanning, and with the relatively long history of the use of CAD CAM technologies in dentistry, it will become of increasing importance. Uses of 3D printing include the production of drill guides for dental implants, the production of physical models for prosthodontics, orthodontics and surgery, the manufacture of dental, craniomaxillofacial and orthopaedic implants, and the fabrication of copings and frameworks for implant and dental restorations. This paper reviews the types of 3D printing technologies available and their various applications in dentistry and in maxillofacial surgery.

  9. PLOT3D user's manual

    NASA Technical Reports Server (NTRS)

    Walatka, Pamela P.; Buning, Pieter G.; Pierce, Larry; Elson, Patricia A.

    1990-01-01

    PLOT3D is a computer graphics program designed to visualize the grids and solutions of computational fluid dynamics. Seventy-four functions are available. Versions are available for many systems. PLOT3D can handle multiple grids with a million or more grid points, and can produce varieties of model renderings, such as wireframe or flat shaded. Output from PLOT3D can be used in animation programs. The first part of this manual is a tutorial that takes the reader, keystroke by keystroke, through a PLOT3D session. The second part of the manual contains reference chapters, including the helpfile, data file formats, advice on changing PLOT3D, and sample command files.

  10. Recent Development in 3D Food Printing.

    PubMed

    Yang, Fan; Zhang, Min; Bhandari, Bhesh

    2015-10-19

    Robots and softwares have been significantly improving our daily lives by rendering us much convenience. And 3D printing is a typical example, for it is going to usher in a new era of localized manufacturing that is actually based on digital fabrication by layer-by-layer deposition in three dimensional space. In terms of food industry, the revolution that three-dimensional printing technologies is bringing to food manufacturing is convenience of low-cost customized fabrication and even precise nutrition control. This paper is aimed to give a brief introduction of recent development of food printing and material property of food ingredients that can be used to design the 3D food matrix and investigate the relationship between process parameters and resulting printed food properties in order to establish a food manufacturing process with this new food production approach.

  11. Scalable large format 3D displays

    NASA Astrophysics Data System (ADS)

    Chang, Nelson L.; Damera-Venkata, Niranjan

    2010-02-01

    We present a general framework for the modeling and optimization of scalable large format 3-D displays using multiple projectors. Based on this framework, we derive algorithms that can robustly optimize the visual quality of an arbitrary combination of projectors (e.g. tiled, superimposed, combinations of the two) without manual adjustment. The framework creates for the first time a new unified paradigm that is agnostic to a particular configuration of projectors yet robustly optimizes for the brightness, contrast, and resolution of that configuration. In addition, we demonstrate that our algorithms support high resolution stereoscopic video at real-time interactive frame rates achieved on commodity graphics hardware. Through complementary polarization, the framework creates high quality multi-projector 3-D displays at low hardware and operational cost for a variety of applications including digital cinema, visualization, and command-and-control walls.

  12. On the Standard Rounding Rule for Addition and Subtraction.

    ERIC Educational Resources Information Center

    Lee, Wei; Mulliss, Christopher L.; Chu, Hung-Chih

    2000-01-01

    Investigates the commonly suggested rounding rule for addition and subtraction including its derivation from a basic assumption. Uses Monte-Carlo simulations to show that this rule predicts the minimum number of significant digits needed to preserve precision 100% of the time. (Author/KHR)

  13. Enriching Addition and Subtraction Fact Mastery through Games

    ERIC Educational Resources Information Center

    Bay-Williams, Jennifer M.; Kling, Gina

    2014-01-01

    The learning of "basic facts"--single-digit combinations for addition, subtraction, multiplication, and division--has long been a focus of elementary school mathematics. Many people remember completing endless worksheets, timed tests, and flash card drills as they attempted to "master" their basic facts as children. However,…

  14. Real time 3D scanner: investigations and results

    NASA Astrophysics Data System (ADS)

    Nouri, Taoufik; Pflug, Leopold

    1993-12-01

    This article presents a concept of reconstruction of 3-D objects using non-invasive and touch loss techniques. The principle of this method is to display parallel interference optical fringes on an object and then to record the object under two angles of view. According to an appropriated treatment one reconstructs the 3-D object even when the object has no symmetrical plan. The 3-D surface data is available immediately in digital form for computer- visualization and for analysis software tools. The optical set-up for recording the 3-D object, the 3-D data extraction and treatment, as well as the reconstruction of the 3-D object are reported and commented on. This application is dedicated for reconstructive/cosmetic surgery, CAD, animation and research purposes.

  15. Unassisted 3D camera calibration

    NASA Astrophysics Data System (ADS)

    Atanassov, Kalin; Ramachandra, Vikas; Nash, James; Goma, Sergio R.

    2012-03-01

    With the rapid growth of 3D technology, 3D image capture has become a critical part of the 3D feature set on mobile phones. 3D image quality is affected by the scene geometry as well as on-the-device processing. An automatic 3D system usually assumes known camera poses accomplished by factory calibration using a special chart. In real life settings, pose parameters estimated by factory calibration can be negatively impacted by movements of the lens barrel due to shaking, focusing, or camera drop. If any of these factors displaces the optical axes of either or both cameras, vertical disparity might exceed the maximum tolerable margin and the 3D user may experience eye strain or headaches. To make 3D capture more practical, one needs to consider unassisted (on arbitrary scenes) calibration. In this paper, we propose an algorithm that relies on detection and matching of keypoints between left and right images. Frames containing erroneous matches, along with frames with insufficiently rich keypoint constellations, are detected and discarded. Roll, pitch yaw , and scale differences between left and right frames are then estimated. The algorithm performance is evaluated in terms of the remaining vertical disparity as compared to the maximum tolerable vertical disparity.

  16. 3-D Perspective Pasadena, California

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This perspective view shows the western part of the city of Pasadena, California, looking north towards the San Gabriel Mountains. Portions of the cities of Altadena and La Canada, Flintridge are also shown. The image was created from three datasets: the Shuttle Radar Topography Mission (SRTM) supplied the elevation data; Landsat data from November 11, 1986 provided the land surface color (not the sky) and U.S. Geological Survey digital aerial photography provides the image detail. The Rose Bowl, surrounded by a golf course, is the circular feature at the bottom center of the image. The Jet Propulsion Laboratory is the cluster of large buildings north of the Rose Bowl at the base of the mountains. A large landfill, Scholl Canyon, is the smooth area in the lower left corner of the scene. This image shows the power of combining data from different sources to create planning tools to study problems that affect large urban areas. In addition to the well-known earthquake hazards, Southern California is affected by a natural cycle of fire and mudflows. Wildfires strip the mountains of vegetation, increasing the hazards from flooding and mudflows for several years afterwards. Data such as shown on this image can be used to predict both how wildfires will spread over the terrain and also how mudflows will be channeled down the canyons. The Shuttle Radar Topography Mission (SRTM), launched on February 11, 2000, uses the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. The mission was designed to collect three dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, an additional C-band imaging antenna and improved tracking and navigation devices. The mission is a cooperative project between the National Aeronautics and Space Administration (NASA), the National Imagery and Mapping Agency

  17. Automated Serial Sectioning for 3D Reconstruction

    NASA Technical Reports Server (NTRS)

    Alkemper, Jen; Voorhees, Peter W.

    2003-01-01

    Some aspects of an apparatus and method for automated serial sectioning of a specimen of a solder, aluminum, or other relatively soft opaque material are discussed. The apparatus includes a small milling machine (micromiller) that takes precise, shallow cuts (increments of depth as small as 1 micron) to expose successive sections. A microscope equipped with an electronic camera, mounted in a fixed position on the micromiller, takes pictures of the newly exposed specimen surface at each increment of depth. The images are digitized, and the resulting data are subsequently processed to reconstruct three-dimensional (3D) features of the specimen.

  18. 3D Scan Systems Integration

    DTIC Science & Technology

    2007-11-02

    AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 5 Feb 98 4. TITLE AND SUBTITLE 3D Scan Systems Integration REPORT TYPE AND DATES COVERED...2-89) Prescribed by ANSI Std. Z39-1 298-102 [ EDO QUALITY W3PECTEDI DLA-ARN Final Report for US Defense Logistics Agency on DDFG-T2/P3: 3D...SCAN SYSTEMS INTEGRATION Contract Number SPO100-95-D-1014 Contractor Ohio University Delivery Order # 0001 Delivery Order Title 3D Scan Systems

  19. 3D scanning and printing skeletal tissues for anatomy education.

    PubMed

    Thomas, Daniel B; Hiscox, Jessica D; Dixon, Blair J; Potgieter, Johan

    2016-09-01

    Detailed anatomical models can be produced with consumer-level 3D scanning and printing systems. 3D replication techniques are significant advances for anatomical education as they allow practitioners to more easily introduce diverse or numerous specimens into classrooms. Here we present a methodology for producing anatomical models in-house, with the chondrocranium cartilage from a spiny dogfish (Squalus acanthias) and the skeleton of a cane toad (Rhinella marina) as case studies. 3D digital replicas were produced using two consumer-level scanners and specimens were 3D-printed with selective laser sintering. The fidelity of the two case study models was determined with respect to key anatomical features. Larger-scale features of the dogfish chondrocranium and frog skeleton were all well-resolved and distinct in the 3D digital models, and many finer-scale features were also well-resolved, but some more subtle features were absent from the digital models (e.g. endolymphatic foramina in chondrocranium). All characters identified in the digital chondrocranium could be identified in the subsequent 3D print; however, three characters in the 3D-printed frog skeleton could not be clearly delimited (palatines, parasphenoid and pubis). Characters that were absent in the digital models or 3D prints had low-relief in the original scanned specimen and represent a minor loss of fidelity. Our method description and case studies show that minimal equipment and training is needed to produce durable skeletal specimens. These technologies support the tailored production of models for specific classes or research aims.

  20. Volumetric 3D display using a DLP projection engine

    NASA Astrophysics Data System (ADS)

    Geng, Jason

    2012-03-01

    In this article, we describe a volumetric 3D display system based on the high speed DLPTM (Digital Light Processing) projection engine. Existing two-dimensional (2D) flat screen displays often lead to ambiguity and confusion in high-dimensional data/graphics presentation due to lack of true depth cues. Even with the help of powerful 3D rendering software, three-dimensional (3D) objects displayed on a 2D flat screen may still fail to provide spatial relationship or depth information correctly and effectively. Essentially, 2D displays have to rely upon capability of human brain to piece together a 3D representation from 2D images. Despite the impressive mental capability of human visual system, its visual perception is not reliable if certain depth cues are missing. In contrast, volumetric 3D display technologies to be discussed in this article are capable of displaying 3D volumetric images in true 3D space. Each "voxel" on a 3D image (analogous to a pixel in 2D image) locates physically at the spatial position where it is supposed to be, and emits light from that position toward omni-directions to form a real 3D image in 3D space. Such a volumetric 3D display provides both physiological depth cues and psychological depth cues to human visual system to truthfully perceive 3D objects. It yields a realistic spatial representation of 3D objects and simplifies our understanding to the complexity of 3D objects and spatial relationship among them.

  1. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates

  2. PLOT3D/AMES, UNIX SUPERCOMPUTER AND SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    calculations on a supercomputer, the Supercomputer/IRIS implementation of PLOT3D offers advanced 3-D, view manipulation, and animation capabilities. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are available. Simple animation sequences can be created on the IRIS, or,if an appropriately modified version of ARCGRAPH (ARC-12350) is accesible on the supercomputer, files can be created for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and options for recording images to digital disk, video tape, or 16-mm film. The version 3.6b+ Supercomputer/IRIS implementations of PLOT3D (ARC-12779) and PLOT3D/TURB3D (ARC-12784) are suitable for use on CRAY 2/UNICOS, CONVEX, and ALLIANT computers with a remote Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstation. These programs are distributed on .25 inch magnetic tape cartridges in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations (ARC-12783, ARC-12782); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC12777, ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 - which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates

  3. 3D-printed microfluidic automation.

    PubMed

    Au, Anthony K; Bhattacharjee, Nirveek; Horowitz, Lisa F; Chang, Tim C; Folch, Albert

    2015-04-21

    Microfluidic automation - the automated routing, dispensing, mixing, and/or separation of fluids through microchannels - generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology's use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer.

  4. 3D-Printed Microfluidic Automation

    PubMed Central

    Au, Anthony K.; Bhattacharjee, Nirveek; Horowitz, Lisa F.; Chang, Tim C.; Folch, Albert

    2015-01-01

    Microfluidic automation – the automated routing, dispensing, mixing, and/or separation of fluids through microchannels – generally remains a slowly-spreading technology because device fabrication requires sophisticated facilities and the technology’s use demands expert operators. Integrating microfluidic automation in devices has involved specialized multi-layering and bonding approaches. Stereolithography is an assembly-free, 3D-printing technique that is emerging as an efficient alternative for rapid prototyping of biomedical devices. Here we describe fluidic valves and pumps that can be stereolithographically printed in optically-clear, biocompatible plastic and integrated within microfluidic devices at low cost. User-friendly fluid automation devices can be printed and used by non-engineers as replacement for costly robotic pipettors or tedious manual pipetting. Engineers can manipulate the designs as digital modules into new devices of expanded functionality. Printing these devices only requires the digital file and electronic access to a printer. PMID:25738695

  5. 3D polymer scaffold arrays.

    PubMed

    Simon, Carl G; Yang, Yanyin; Dorsey, Shauna M; Ramalingam, Murugan; Chatterjee, Kaushik

    2011-01-01

    We have developed a combinatorial platform for fabricating tissue scaffold arrays that can be used for screening cell-material interactions. Traditional research involves preparing samples one at a time for characterization and testing. Combinatorial and high-throughput (CHT) methods lower the cost of research by reducing the amount of time and material required for experiments by combining many samples into miniaturized specimens. In order to help accelerate biomaterials research, many new CHT methods have been developed for screening cell-material interactions where materials are presented to cells as a 2D film or surface. However, biomaterials are frequently used to fabricate 3D scaffolds, cells exist in vivo in a 3D environment and cells cultured in a 3D environment in vitro typically behave more physiologically than those cultured on a 2D surface. Thus, we have developed a platform for fabricating tissue scaffold libraries where biomaterials can be presented to cells in a 3D format.

  6. Autofocus for 3D imaging

    NASA Astrophysics Data System (ADS)

    Lee-Elkin, Forest

    2008-04-01

    Three dimensional (3D) autofocus remains a significant challenge for the development of practical 3D multipass radar imaging. The current 2D radar autofocus methods are not readily extendable across sensor passes. We propose a general framework that allows a class of data adaptive solutions for 3D auto-focus across passes with minimal constraints on the scene contents. The key enabling assumption is that portions of the scene are sparse in elevation which reduces the number of free variables and results in a system that is simultaneously solved for scatterer heights and autofocus parameters. The proposed method extends 2-pass interferometric synthetic aperture radar (IFSAR) methods to an arbitrary number of passes allowing the consideration of scattering from multiple height locations. A specific case from the proposed autofocus framework is solved and demonstrates autofocus and coherent multipass 3D estimation across the 8 passes of the "Gotcha Volumetric SAR Data Set" X-Band radar data.

  7. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a

  8. PLOT3D/AMES, DEC VAX VMS VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P. G.

    1994-01-01

    well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. If ARCGRAPH (ARC-12350) is installed on the user's VAX, the VMS/DISSPLA version of PLOT3D can also be used to create files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program capable of animating and recording images on film. The version 3.6b+ VMS/DISSPLA implementations of PLOT3D (ARC-12777) and PLOT3D/TURB3D (ARC-12781) were developed for use on VAX computers running VMS Version 5.0 and DISSPLA Version 11.0. The standard distribution media for each of these programs is a 9-track, 6250 bpi magnetic tape in DEC VAX BACKUP format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC12782); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a

  9. Combinatorial 3D Mechanical Metamaterials

    NASA Astrophysics Data System (ADS)

    Coulais, Corentin; Teomy, Eial; de Reus, Koen; Shokef, Yair; van Hecke, Martin

    2015-03-01

    We present a class of elastic structures which exhibit 3D-folding motion. Our structures consist of cubic lattices of anisotropic unit cells that can be tiled in a complex combinatorial fashion. We design and 3d-print this complex ordered mechanism, in which we combine elastic hinges and defects to tailor the mechanics of the material. Finally, we use this large design space to encode smart functionalities such as surface patterning and multistability.

  10. 3-D movies using microprocessor-controlled optoelectronic spectacles

    NASA Astrophysics Data System (ADS)

    Jacobs, Ken; Karpf, Ron

    2012-02-01

    Despite rapid advances in technology, 3-D movies are impractical for general movie viewing. A new approach that opens all content for casual 3-D viewing is needed. 3Deeps--advanced microprocessor controlled optoelectronic spectacles--provides such a new approach to 3-D. 3Deeps works on a different principle than other methods for 3-D. 3-D movies typically use the asymmetry of dual images to produce stereopsis, necessitating costly dual-image content, complex formatting and transmission standards, and viewing via a corresponding selection device. In contrast, all 3Deeps requires to view movies in realistic depth is an illumination asymmetry--a controlled difference in optical density between the lenses. When a 2-D movie has been projected for viewing, 3Deeps converts every scene containing lateral motion into realistic 3-D. Put on 3Deeps spectacles for 3-D viewing, or remove them for viewing in 2-D. 3Deeps works for all analogue and digital 2-D content, by any mode of transmission, and for projection screens, digital or analogue monitors. An example using aerial photography is presented. A movie consisting of successive monoscopic aerial photographs appears in realistic 3-D when viewed through 3Deeps spectacles.

  11. PLOT3D/AMES, SGI IRIS VERSION (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are

  12. PLOT3D/AMES, SGI IRIS VERSION (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    advanced features which aid visualization efforts. Shading and hidden line/surface removal can be used to enhance depth perception and other aspects of the graphical displays. A mouse can be used to translate, rotate, or zoom in on views. Files for several types of output can be produced. Two animation options are even offered: creation of simple animation sequences without the need for other software; and, creation of files for use in GAS (Graphics Animation System, ARC-12379), an IRIS program which offers more complex rendering and animation capabilities and can record images to digital disk, video tape, or 16-mm film. The version 3.6b+ SGI implementations of PLOT3D (ARC-12783) and PLOT3D/TURB3D (ARC-12782) were developed for use on Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D workstations. These programs are each distributed on one .25 inch magnetic tape cartridge in IRIS TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, and Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777,ARC-12781); (3) generic UNIX and DISSPLA Version 11.0 (ARC-12788, ARC-12778); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are

  13. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITHOUT TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  14. PLOT3D/AMES, GENERIC UNIX VERSION USING DISSPLA (WITH TURB3D)

    NASA Technical Reports Server (NTRS)

    Buning, P.

    1994-01-01

    well as 2-D and 3-D lines, but does not support graphics features requiring 3-D polygons (shading and hidden line removal, for example). Views can be manipulated using keyboard commands. This version of PLOT3D is potentially able to produce files for a variety of output devices; however, site-specific capabilities will vary depending on the device drivers supplied with the user's DISSPLA library. The version 3.6b+ UNIX/DISSPLA implementations of PLOT3D (ARC-12788) and PLOT3D/TURB3D (ARC-12778) were developed for use on computers running UNIX SYSTEM 5 with BSD 4.3 extensions. The standard distribution media for each ofthese programs is a 9track, 6250 bpi magnetic tape in TAR format. Customers purchasing one implementation version of PLOT3D or PLOT3D/TURB3D will be given a $200 discount on each additional implementation version ordered at the same time. Version 3.6b+ of PLOT3D and PLOT3D/TURB3D are also supported for the following computers and graphics libraries: (1) generic UNIX Supercomputer and IRIS, suitable for CRAY 2/UNICOS, CONVEX, Alliant with remote IRIS 2xxx/3xxx or IRIS 4D (ARC-12779, ARC-12784); (2) Silicon Graphics IRIS 2xxx/3xxx or IRIS 4D (ARC-12783, ARC-12782); (3) VAX computers running VMS Version 5.0 and DISSPLA Version 11.0 (ARC-12777, ARC-12781); and (4) Apollo computers running UNIX and GMR3D Version 2.0 (ARC-12789, ARC-12785 which have no capabilities to put text on plots). Silicon Graphics Iris, IRIS 4D, and IRIS 2xxx/3xxx are trademarks of Silicon Graphics Incorporated. VAX and VMS are trademarks of Digital Electronics Corporation. DISSPLA is a trademark of Computer Associates. CRAY 2 and UNICOS are trademarks of CRAY Research, Incorporated. CONVEX is a trademark of Convex Computer Corporation. Alliant is a trademark of Alliant. Apollo and GMR3D are trademarks of Hewlett-Packard, Incorporated. System 5 is a trademark of Bell Labs, Incorporated. BSD4.3 is a trademark of the University of California at Berkeley. UNIX is a registered trademark of AT&T.

  15. DNA Assembly in 3D Printed Fluidics

    PubMed Central

    Patrick, William G.; Nielsen, Alec A. K.; Keating, Steven J.; Levy, Taylor J.; Wang, Che-Wei; Rivera, Jaime J.; Mondragón-Palomino, Octavio; Carr, Peter A.; Voigt, Christopher A.; Oxman, Neri; Kong, David S.

    2015-01-01

    The process of connecting genetic parts—DNA assembly—is a foundational technology for synthetic biology. Microfluidics present an attractive solution for minimizing use of costly reagents, enabling multiplexed reactions, and automating protocols by integrating multiple protocol steps. However, microfluidics fabrication and operation can be expensive and requires expertise, limiting access to the technology. With advances in commodity digital fabrication tools, it is now possible to directly print fluidic devices and supporting hardware. 3D printed micro- and millifluidic devices are inexpensive, easy to make and quick to produce. We demonstrate Golden Gate DNA assembly in 3D-printed fluidics with reaction volumes as small as 490 nL, channel widths as fine as 220 microns, and per unit part costs ranging from $0.61 to $5.71. A 3D-printed syringe pump with an accompanying programmable software interface was designed and fabricated to operate the devices. Quick turnaround and inexpensive materials allowed for rapid exploration of device parameters, demonstrating a manufacturing paradigm for designing and fabricating hardware for synthetic biology. PMID:26716448

  16. Tilted planes in 3D image analysis

    NASA Astrophysics Data System (ADS)

    Pargas, Roy P.; Staples, Nancy J.; Malloy, Brian F.; Cantrell, Ken; Chhatriwala, Murtuza

    1998-03-01

    Reliable 3D wholebody scanners which output digitized 3D images of a complete human body are now commercially available. This paper describes a software package, called 3DM, being developed by researchers at Clemson University and which manipulates and extracts measurements from such images. The focus of this paper is on tilted planes, a 3DM tool which allows a user to define a plane through a scanned image, tilt it in any direction, and effectively define three disjoint regions on the image: the points on the plane and the points on either side of the plane. With tilted planes, the user can accurately take measurements required in applications such as apparel manufacturing. The user can manually segment the body rather precisely. Tilted planes assist the user in analyzing the form of the body and classifying the body in terms of body shape. Finally, titled planes allow the user to eliminate extraneous and unwanted points often generated by a 3D scanner. This paper describes the user interface for tilted planes, the equations defining the plane as the user moves it through the scanned image, an overview of the algorithms, and the interaction of the tilted plane feature with other tools in 3DM.

  17. From 3D view to 3D print

    NASA Astrophysics Data System (ADS)

    Dima, M.; Farisato, G.; Bergomi, M.; Viotto, V.; Magrin, D.; Greggio, D.; Farinato, J.; Marafatto, L.; Ragazzoni, R.; Piazza, D.

    2014-08-01

    In the last few years 3D printing is getting more and more popular and used in many fields going from manufacturing to industrial design, architecture, medical support and aerospace. 3D printing is an evolution of bi-dimensional printing, which allows to obtain a solid object from a 3D model, realized with a 3D modelling software. The final product is obtained using an additive process, in which successive layers of material are laid down one over the other. A 3D printer allows to realize, in a simple way, very complex shapes, which would be quite difficult to be produced with dedicated conventional facilities. Thanks to the fact that the 3D printing is obtained superposing one layer to the others, it doesn't need any particular work flow and it is sufficient to simply draw the model and send it to print. Many different kinds of 3D printers exist based on the technology and material used for layer deposition. A common material used by the toner is ABS plastics, which is a light and rigid thermoplastic polymer, whose peculiar mechanical properties make it diffusely used in several fields, like pipes production and cars interiors manufacturing. I used this technology to create a 1:1 scale model of the telescope which is the hardware core of the space small mission CHEOPS (CHaracterising ExOPlanets Satellite) by ESA, which aims to characterize EXOplanets via transits observations. The telescope has a Ritchey-Chrétien configuration with a 30cm aperture and the launch is foreseen in 2017. In this paper, I present the different phases for the realization of such a model, focusing onto pros and cons of this kind of technology. For example, because of the finite printable volume (10×10×12 inches in the x, y and z directions respectively), it has been necessary to split the largest parts of the instrument in smaller components to be then reassembled and post-processed. A further issue is the resolution of the printed material, which is expressed in terms of layers

  18. Speaking Volumes About 3-D

    NASA Technical Reports Server (NTRS)

    2002-01-01

    In 1999, Genex submitted a proposal to Stennis Space Center for a volumetric 3-D display technique that would provide multiple users with a 360-degree perspective to simultaneously view and analyze 3-D data. The futuristic capabilities of the VolumeViewer(R) have offered tremendous benefits to commercial users in the fields of medicine and surgery, air traffic control, pilot training and education, computer-aided design/computer-aided manufacturing, and military/battlefield management. The technology has also helped NASA to better analyze and assess the various data collected by its satellite and spacecraft sensors. Genex capitalized on its success with Stennis by introducing two separate products to the commercial market that incorporate key elements of the 3-D display technology designed under an SBIR contract. The company Rainbow 3D(R) imaging camera is a novel, three-dimensional surface profile measurement system that can obtain a full-frame 3-D image in less than 1 second. The third product is the 360-degree OmniEye(R) video system. Ideal for intrusion detection, surveillance, and situation management, this unique camera system offers a continuous, panoramic view of a scene in real time.

  19. Inverse reference in subtraction performance: an analysis from arithmetic word problems.

    PubMed

    Orrantia, Josetxu; Rodríguez, Laura; Múñez, David; Vicente, Santiago

    2012-01-01

    Studies of elementary calculation have shown that adults solve basic subtraction problems faster with problems presented in addition format (e.g., 6 ± = 13) than in standard subtraction format (e.g., 13 - 6 = ). Therefore, it is considered that adults solve subtraction problems by reference to the inverse operation (e.g., for 13 - 6 = 7, "I know that 13 is 6 + 7") because presenting the subtraction problem in addition format does not require the mental rearrangement of the problem elements into the addition format. In two experiments, we examine whether adults' use of addition to solve subtractions is modulated by the arrangement of minuend and subtrahend, regardless of format. To this end, we used arithmetic word problems since single-digit problems in subtraction format would not allow the subtrahend to appear before the minuend. In Experiment 1, subtractions were presented by arranging minuend and subtrahend according to previous research. In Experiment 2, operands were reversed. The overall results showed that participants benefited from word problems where the subtrahend appears before the minuend, including subtractions in standard subtraction format. These findings add to a growing body of literature that emphasizes the role of inverse reference in adults' performance on subtractions.

  20. 3D printing of functional biomaterials for tissue engineering.

    PubMed

    Zhu, Wei; Ma, Xuanyi; Gou, Maling; Mei, Deqing; Zhang, Kang; Chen, Shaochen

    2016-08-01

    3D printing is emerging as a powerful tool for tissue engineering by enabling 3D cell culture within complex 3D biomimetic architectures. This review discusses the prevailing 3D printing techniques and their most recent applications in building tissue constructs. The work associated with relatively well-known inkjet and extrusion-based bioprinting is presented with the latest advances in the fields. Emphasis is put on introducing two relatively new light-assisted bioprinting techniques, including digital light processing (DLP)-based bioprinting and laser based two photon polymerization (TPP) bioprinting. 3D bioprinting of vasculature network is particularly discussed for its foremost significance in maintaining tissue viability and promoting functional maturation. Limitations to current bioprinting approaches, as well as future directions of bioprinting functional tissues are also discussed.

  1. Reconstruction-based 3D/2D image registration.

    PubMed

    Tomazevic, Dejan; Likar, Bostjan; Pernus, Franjo

    2005-01-01

    In this paper we present a novel 3D/2D registration method, where first, a 3D image is reconstructed from a few 2D X-ray images and next, the preoperative 3D image is brought into the best possible spatial correspondence with the reconstructed image by optimizing a similarity measure. Because the quality of the reconstructed image is generally low, we introduce a novel asymmetric mutual information similarity measure, which is able to cope with low image quality as well as with different imaging modalities. The novel 3D/2D registration method has been evaluated using standardized evaluation methodology and publicly available 3D CT, 3DRX, and MR and 2D X-ray images of two spine phantoms, for which gold standard registrations were known. In terms of robustness, reliability and capture range the proposed method outperformed the gradient-based method and the method based on digitally reconstructed radiographs (DRRs).

  2. Macrophage podosomes go 3D.

    PubMed

    Van Goethem, Emeline; Guiet, Romain; Balor, Stéphanie; Charrière, Guillaume M; Poincloux, Renaud; Labrousse, Arnaud; Maridonneau-Parini, Isabelle; Le Cabec, Véronique

    2011-01-01

    Macrophage tissue infiltration is a critical step in the immune response against microorganisms and is also associated with disease progression in chronic inflammation and cancer. Macrophages are constitutively equipped with specialized structures called podosomes dedicated to extracellular matrix (ECM) degradation. We recently reported that these structures play a critical role in trans-matrix mesenchymal migration mode, a protease-dependent mechanism. Podosome molecular components and their ECM-degrading activity have been extensively studied in two dimensions (2D), but yet very little is known about their fate in three-dimensional (3D) environments. Therefore, localization of podosome markers and proteolytic activity were carefully examined in human macrophages performing mesenchymal migration. Using our gelled collagen I 3D matrix model to obligate human macrophages to perform mesenchymal migration, classical podosome markers including talin, paxillin, vinculin, gelsolin, cortactin were found to accumulate at the tip of F-actin-rich cell protrusions together with β1 integrin and CD44 but not β2 integrin. Macrophage proteolytic activity was observed at podosome-like protrusion sites using confocal fluorescence microscopy and electron microscopy. The formation of migration tunnels by macrophages inside the matrix was accomplished by degradation, engulfment and mechanic compaction of the matrix. In addition, videomicroscopy revealed that 3D F-actin-rich protrusions of migrating macrophages were as dynamic as their 2D counterparts. Overall, the specifications of 3D podosomes resembled those of 2D podosome rosettes rather than those of individual podosomes. This observation was further supported by the aspect of 3D podosomes in fibroblasts expressing Hck, a master regulator of podosome rosettes in macrophages. In conclusion, human macrophage podosomes go 3D and take the shape of spherical podosome rosettes when the cells perform mesenchymal migration. This work

  3. 3D Printed Bionic Nanodevices.

    PubMed

    Kong, Yong Lin; Gupta, Maneesh K; Johnson, Blake N; McAlpine, Michael C

    2016-06-01

    The ability to three-dimensionally interweave biological and functional materials could enable the creation of bionic devices possessing unique and compelling geometries, properties, and functionalities. Indeed, interfacing high performance active devices with biology could impact a variety of fields, including regenerative bioelectronic medicines, smart prosthetics, medical robotics, and human-machine interfaces. Biology, from the molecular scale of DNA and proteins, to the macroscopic scale of tissues and organs, is three-dimensional, often soft and stretchable, and temperature sensitive. This renders most biological platforms incompatible with the fabrication and materials processing methods that have been developed and optimized for functional electronics, which are typically planar, rigid and brittle. A number of strategies have been developed to overcome these dichotomies. One particularly novel approach is the use of extrusion-based multi-material 3D printing, which is an additive manufacturing technology that offers a freeform fabrication strategy. This approach addresses the dichotomies presented above by (1) using 3D printing and imaging for customized, hierarchical, and interwoven device architectures; (2) employing nanotechnology as an enabling route for introducing high performance materials, with the potential for exhibiting properties not found in the bulk; and (3) 3D printing a range of soft and nanoscale materials to enable the integration of a diverse palette of high quality functional nanomaterials with biology. Further, 3D printing is a multi-scale platform, allowing for the incorporation of functional nanoscale inks, the printing of microscale features, and ultimately the creation of macroscale devices. This blending of 3D printing, novel nanomaterial properties, and 'living' platforms may enable next-generation bionic systems. In this review, we highlight this synergistic integration of the unique properties of nanomaterials with the

  4. High-speed optical 3D sensing and its applications

    NASA Astrophysics Data System (ADS)

    Watanabe, Yoshihiro

    2016-12-01

    This paper reviews high-speed optical 3D sensing technologies for obtaining the 3D shape of a target using a camera. The focusing speed is from 100 to 1000 fps, exceeding normal camera frame rates, which are typically 30 fps. In particular, contactless, active, and real-time systems are introduced. Also, three example applications of this type of sensing technology are introduced, including surface reconstruction from time-sequential depth images, high-speed 3D user interaction, and high-speed digital archiving.

  5. High Resolution 3d Modeling of the Behaim Globe

    NASA Astrophysics Data System (ADS)

    Menna, F.; Rizzi, A.; Nocerino, E.; Remondino, F.; Gruen, A.

    2012-07-01

    The article describes the 3D surveying and modeling of the Behaim globe, the oldest still existing and intact globe of the earth, preserved at the German National Museum of Nuremberg, Germany. The work is primarily performed using high-resolution digital images and automatic photogrammetric techniques. Triangulation-based laser scanning is also employed to fill some gaps in the derived image-based 3D geometry and perform geometric comparisons. Major problems are encountered in texture mapping. The 3D modeling project and the creation of high-resolution map-projections is performed for scientific, conservation, visualization and education purposes.

  6. 3D Printing: Print the future of ophthalmology.

    PubMed

    Huang, Wenbin; Zhang, Xiulan

    2014-08-26

    The three-dimensional (3D) printer is a new technology that creates physical objects from digital files. Recent technological advances in 3D printing have resulted in increased use of this technology in the medical field, where it is beginning to revolutionize medical and surgical possibilities. It is already providing medicine with powerful tools that facilitate education, surgical planning, and organ transplantation research. A good understanding of this technology will be beneficial to ophthalmologists. The potential applications of 3D printing in ophthalmology, both current and future, are explored in this article.

  7. Scientific Objectives of Small Carry-on Impactor (SCI) and Deployable Camera 3 Digital (DCAM3-D): Observation of an Ejecta Curtain and a Crater Formed on the Surface of Ryugu by an Artificial High-Velocity Impact

    NASA Astrophysics Data System (ADS)

    Arakawa, M.; Wada, K.; Saiki, T.; Kadono, T.; Takagi, Y.; Shirai, K.; Okamoto, C.; Yano, H.; Hayakawa, M.; Nakazawa, S.; Hirata, N.; Kobayashi, M.; Michel, P.; Jutzi, M.; Imamura, H.; Ogawa, K.; Sakatani, N.; Iijima, Y.; Honda, R.; Ishibashi, K.; Hayakawa, H.; Sawada, H.

    2016-10-01

    The Small Carry-on Impactor (SCI) equipped on Hayabusa2 was developed to produce an artificial impact crater on the primitive Near-Earth Asteroid (NEA) 162173 Ryugu (Ryugu) in order to explore the asteroid subsurface material unaffected by space weathering and thermal alteration by solar radiation. An exposed fresh surface by the impactor and/or the ejecta deposit excavated from the crater will be observed by remote sensing instruments, and a subsurface fresh sample of the asteroid will be collected there. The SCI impact experiment will be observed by a Deployable CAMera 3-D (DCAM3-D) at a distance of ˜1 km from the impact point, and the time evolution of the ejecta curtain will be observed by this camera to confirm the impact point on the asteroid surface. As a result of the observation of the ejecta curtain by DCAM3-D and the crater morphology by onboard cameras, the subsurface structure and the physical properties of the constituting materials will be derived from crater scaling laws. Moreover, the SCI experiment on Ryugu gives us a precious opportunity to clarify effects of microgravity on the cratering process and to validate numerical simulations and models of the cratering process.

  8. Petal, terrain & airbags - 3D

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Portions of the lander's deflated airbags and a petal are at the lower area of this image, taken in stereo by the Imager for Mars Pathfinder (IMP) on Sol 3. 3D glasses are necessary to identify surface detail. The metallic object at lower right is part of the lander's low-gain antenna. This image is part of a 3D 'monster

    Click below to see the left and right views individually. [figure removed for brevity, see original site] Left [figure removed for brevity, see original site] Right

  9. 3D Computations and Experiments

    SciTech Connect

    Couch, R; Faux, D; Goto, D; Nikkel, D

    2004-04-05

    This project consists of two activities. Task A, Simulations and Measurements, combines all the material model development and associated numerical work with the materials-oriented experimental activities. The goal of this effort is to provide an improved understanding of dynamic material properties and to provide accurate numerical representations of those properties for use in analysis codes. Task B, ALE3D Development, involves general development activities in the ALE3D code with the focus of improving simulation capabilities for problems of mutual interest to DoD and DOE. Emphasis is on problems involving multi-phase flow, blast loading of structures and system safety/vulnerability studies.

  10. Streamlined, Inexpensive 3D Printing of the Brain and Skull

    PubMed Central

    Cash, Sydney S.

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3–4 in consumable plastic filament as described, and the total process takes 14–17 hours, almost all of which is unsupervised (preprocessing = 4–6 hr; printing = 9–11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1–5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes. PMID:26295459

  11. Streamlined, Inexpensive 3D Printing of the Brain and Skull.

    PubMed

    Naftulin, Jason S; Kimchi, Eyal Y; Cash, Sydney S

    2015-01-01

    Neuroimaging technologies such as Magnetic Resonance Imaging (MRI) and Computed Tomography (CT) collect three-dimensional data (3D) that is typically viewed on two-dimensional (2D) screens. Actual 3D models, however, allow interaction with real objects such as implantable electrode grids, potentially improving patient specific neurosurgical planning and personalized clinical education. Desktop 3D printers can now produce relatively inexpensive, good quality prints. We describe our process for reliably generating life-sized 3D brain prints from MRIs and 3D skull prints from CTs. We have integrated a standardized, primarily open-source process for 3D printing brains and skulls. We describe how to convert clinical neuroimaging Digital Imaging and Communications in Medicine (DICOM) images to stereolithography (STL) files, a common 3D object file format that can be sent to 3D printing services. We additionally share how to convert these STL files to machine instruction gcode files, for reliable in-house printing on desktop, open-source 3D printers. We have successfully printed over 19 patient brain hemispheres from 7 patients on two different open-source desktop 3D printers. Each brain hemisphere costs approximately $3-4 in consumable plastic filament as described, and the total process takes 14-17 hours, almost all of which is unsupervised (preprocessing = 4-6 hr; printing = 9-11 hr, post-processing = <30 min). Printing a matching portion of a skull costs $1-5 in consumable plastic filament and takes less than 14 hr, in total. We have developed a streamlined, cost-effective process for 3D printing brain and skull models. We surveyed healthcare providers and patients who confirmed that rapid-prototype patient specific 3D models may help interdisciplinary surgical planning and patient education. The methods we describe can be applied for other clinical, research, and educational purposes.

  12. Use of Very High-Resolution Airborne Images to Analyse 3d Canopy Architecture of a Vineyard

    NASA Astrophysics Data System (ADS)

    Burgos, S.; Mota, M.; Noll, D.; Cannelle, B.

    2015-08-01

    Differencing between green cover and grape canopy is a challenge for vigour status evaluation in viticulture. This paper presents the acquisition methodology of very high-resolution images (4 cm), using a Sensefly Swinglet CAM unmanned aerial vehicle (UAV) and their processing to construct a 3D digital surface model (DSM) for the creation of precise digital terrain models (DTM). The DTM was obtained using python processing libraries. The DTM was then subtracted to the DSM in order to obtain a differential digital model (DDM) of a vineyard. In the DDM, the vine pixels were then obtained by selecting all pixels with an elevation higher than 50 [cm] above the ground level. The results show that it was possible to separate pixels from the green cover and the vine rows. The DDM showed values between -0.1 and + 1.5 [m]. A manually delineation of polygons based on the RGB image belonging to the green cover and to the vine rows gave a highly significant differences with an average value of 1.23 [m] and 0.08 [m] for the vine and the ground respectively. The vine rows elevation is in good accordance with the topping height of the vines 1.35 [m] measured on the field. This mask could be used to analyse images of the same plot taken at different times. The extraction of only vine pixels will facilitate subsequent analyses, for example, a supervised classification of these pixels.

  13. Comparing 3D virtual methods for hemimandibular body reconstruction.

    PubMed

    Benazzi, Stefano; Fiorenza, Luca; Kozakowski, Stephanie; Kullmer, Ottmar

    2011-07-01

    Reconstruction of fractured, distorted, or missing parts in human skeleton presents an equal challenge in the fields of paleoanthropology, bioarcheology, forensics, and medicine. This is particularly important within the disciplines such as orthodontics and surgery, when dealing with mandibular defects due to tumors, developmental abnormalities, or trauma. In such cases, proper restorations of both form (for esthetic purposes) and function (restoration of articulation, occlusion, and mastication) are required. Several digital approaches based on three-dimensional (3D) digital modeling, computer-aided design (CAD)/computer-aided manufacturing techniques, and more recently geometric morphometric methods have been used to solve this problem. Nevertheless, comparisons among their outcomes are rarely provided. In this contribution, three methods for hemimandibular body reconstruction have been tested. Two bone defects were virtually simulated in a 3D digital model of a human hemimandible. Accordingly, 3D digital scaffolds were obtained using the mirror copy of the unaffected hemimandible (Method 1), the thin plate spline (TPS) interpolation (Method 2), and the combination between TPS and CAD techniques (Method 3). The mirror copy of the unaffected hemimandible does not provide a suitable solution for bone restoration. The combination between TPS interpolation and CAD techniques (Method 3) produces an almost perfect-fitting 3D digital model that can be used for biocompatible custom-made scaffolds generated by rapid prototyping technologies.

  14. The World of 3-D.

    ERIC Educational Resources Information Center

    Mayshark, Robin K.

    1991-01-01

    Students explore three-dimensional properties by creating red and green wall decorations related to Christmas. Students examine why images seem to vibrate when red and green pieces are small and close together. Instructions to conduct the activity and construct 3-D glasses are given. (MDH)

  15. 3D Printing: Exploring Capabilities

    ERIC Educational Resources Information Center

    Samuels, Kyle; Flowers, Jim

    2015-01-01

    As 3D printers become more affordable, schools are using them in increasing numbers. They fit well with the emphasis on product design in technology and engineering education, allowing students to create high-fidelity physical models to see and test different iterations in their product designs. They may also help students to "think in three…

  16. SNL3dFace

    SciTech Connect

    Russ, Trina; Koch, Mark; Koudelka, Melissa; Peters, Ralph; Little, Charles; Boehnen, Chris; Peters, Tanya

    2007-07-20

    This software distribution contains MATLAB and C++ code to enable identity verification using 3D images that may or may not contain a texture component. The code is organized to support system performance testing and system capability demonstration through the proper configuration of the available user interface. Using specific algorithm parameters the face recognition system has been demonstrated to achieve a 96.6% verification rate (Pd) at 0.001 false alarm rate. The system computes robust facial features of a 3D normalized face using Principal Component Analysis (PCA) and Fisher Linear Discriminant Analysis (FLDA). A 3D normalized face is obtained by alighning each face, represented by a set of XYZ coordinated, to a scaled reference face using the Iterative Closest Point (ICP) algorithm. The scaled reference face is then deformed to the input face using an iterative framework with parameters that control the deformed surface regulation an rate of deformation. A variety of options are available to control the information that is encoded by the PCA. Such options include the XYZ coordinates, the difference of each XYZ coordinates from the reference, the Z coordinate, the intensity/texture values, etc. In addition to PCA/FLDA feature projection this software supports feature matching to obtain similarity matrices for performance analysis. In addition, this software supports visualization of the STL, MRD, 2D normalized, and PCA synthetic representations in a 3D environment.

  17. Making Inexpensive 3-D Models

    ERIC Educational Resources Information Center

    Manos, Harry

    2016-01-01

    Visual aids are important to student learning, and they help make the teacher's job easier. Keeping with the "TPT" theme of "The Art, Craft, and Science of Physics Teaching," the purpose of this article is to show how teachers, lacking equipment and funds, can construct a durable 3-D model reference frame and a model gravity…

  18. Advanced system for 3D dental anatomy reconstruction and 3D tooth movement simulation during orthodontic treatment

    NASA Astrophysics Data System (ADS)

    Monserrat, Carlos; Alcaniz-Raya, Mariano L.; Juan, M. Carmen; Grau Colomer, Vincente; Albalat, Salvador E.

    1997-05-01

    This paper describes a new method for 3D orthodontics treatment simulation developed for an orthodontics planning system (MAGALLANES). We develop an original system for 3D capturing and reconstruction of dental anatomy that avoid use of dental casts in orthodontic treatments. Two original techniques are presented, one direct in which data are acquired directly form patient's mouth by mean of low cost 3D digitizers, and one mixed in which data are obtained by 3D digitizing of hydrocollids molds. FOr this purpose we have designed and manufactured an optimized optical measuring system based on laser structured light. We apply these 3D dental models to simulate 3D movement of teeth, including rotations, during orthodontic treatment. The proposed algorithms enable to quantify the effect of orthodontic appliance on tooth movement. The developed techniques has been integrated in a system named MAGALLANES. This original system present several tools for 3D simulation and planning of orthodontic treatments. The prototype system has been tested in several orthodontic clinic with very good results.

  19. 3-D laser patterning process utilizing horizontal and vertical patterning

    DOEpatents

    Malba, Vincent; Bernhardt, Anthony F.

    2000-01-01

    A process which vastly improves the 3-D patterning capability of laser pantography (computer controlled laser direct-write patterning). The process uses commercially available electrodeposited photoresist (EDPR) to pattern 3-D surfaces. The EDPR covers the surface of a metal layer conformally, coating the vertical as well as horizontal surfaces. A laser pantograph then patterns the EDPR, which is subsequentl